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Chapter 44
Topological groups

Measure theory begins on the real line, which is of course a group; and one of the most fundamental
properties of Lebesgue measure is its translation-invariance (134A). Later we come to the standard measure
on the unit circle (255M), and counting measure on the integers is also translation-invariant, if we care to
notice; moreover, Fourier series and transforms clearly depend utterly on the fact that shift operators don’t
disturb the measure-theoretic structures we are building. Yet another example appears in the usual measure
on {0,1}!, which is translation-invariant if we identify {0,1}! with the group Z% (345Ab). Each of these
examples is special in many other ways. But it turns out that a particular combination of properties which
they share, all being locally compact Hausdorff spaces with group operations for which multiplication and
inversion are continuous, is the basis of an extraordinarily powerful theory of invariant measures.

As usual, T have no choice but to move rather briskly through a wealth of ideas. The first step is to
set out a suitably general existence theorem, assuring us that every locally compact Hausdorff topological
group has non-trivial invariant Radon measures, that is, ‘Haar measures’ (441E). As remarkable as the
existence of Haar measures is their (essential) uniqueness (442B); the algebra, topology and measure theory
of a topological group are linked in so many ways that they form a peculiarly solid structure. I investigate a
miscellany of facts about this structure in §443, including the basic theory of the modular functions linking
left-invariant measures with right-invariant measures.

I have already mentioned that Fourier analysis depends on the translation-invariance of Lebesgue measure.
It turns out that substantial parts of the abstract theory of Fourier series and transforms can be generalized
to arbitrary locally compact groups. In particular, convolutions (§255) appear again, even in non-abelian
groups (§444). But for the central part of the theory, a transform relating functions on a group X to
functions on its ‘dual’ group X', we do need the group to be abelian. Actually I give only the foundation
of this theory: if X is an abelian locally compact Hausdorff group, it is the dual of its dual (445U). (In
‘ordinary’ Fourier theory, where we are dealing with the cases X = X = R and X = S!, X = Z, this duality
is so straightforward that one hardly notices it.) But on the way to the duality theorem we necessarily see
many of the themes of Chapter 28 in more abstract guises.

A further remarkable fact is that any Haar measure has a translation-invariant lifting (447J). The proof
demands a union between the ideas of the ordinary Lifting Theorem (§341) and some of the elaborate
structure theory which has been developed for locally compact groups (§446).

For the last two sections of the chapter, I look at groups which are not locally compact, and their actions
on appropriate spaces. For a particularly important class of group actions, Borel measurable actions of
Polish groups on Polish spaces, we have a natural necessary and sufficient condition for the existence of
an invariant measure (448P), complementing the result for locally compact spaces in 441C. In a slightly
different direction, we can look at those groups, the ‘amenable’ groups, for which all actions (on compact
Hausdorff spaces) have invariant measures. This again leads to some very remarkable ideas, which I sketch
in §449.
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441 Invariant measures on locally compact spaces

I begin this chapter with the most important theorem on the existence of invariant measures: every
locally compact Hausdorff group has left and right Haar measures (441E). I derive this as a corollary of a
general result concerning invariant measures on locally compact spaces (441C), which has other interesting
consequences (441H).
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2 Topological groups 441A

441A Group actions I repeat the definitions from §4A5 on which this chapter is based.

(a) If G is a group and X is a set, an action of G on X is a function (a,z) — asz : G x X — X such
that

(ab)ex = as(bex) for all a, b€ G, z € X,

esx = x for every x € X
where e is the identity of G (4A5Ba). In this context I write
asA = {asz :x € A}

for a € G, A C X (4A5Bc). If f is a function defined on a subset of X, then (asf)(z) = f(a~'ex) whenever
a € Gand z € X and a ez € dom f (4A5C(c-i)).

(b) If a group G acts on a set X, a measure p on X is G-invariant if u(a='eF) is defined and equal to
uwE whenever a € G and p measures E.

(Of course this is the same thing as saying that p(asFE) = pFE for every a € G and measurable set F; 1
use the formula with a=! so as to match my standard practice when a is actually a function from X to X.)

(c) If a group G acts on a set X and a measure p on X is G-invariant, then [ f(asz)u(dz) is defined and
equal to [ f du whenever f is a virtually measurable [—oo, co]-valued function defined on a conegligible subset
of X and [ fdp is defined in [—o00, o). P Set ¢(z) = aex for € X. Then ¢ 'E] = {z: aex € E} =a 1«E
for every E C X, so ¢ : X — X is inverse-measure-preserving. Now [ f(asz)u(dz) = [ fodu = [ fdu by
235Gb. Q

441B It will be useful later to be able to quote the following elementary results.

Lemma Let X be a topological space, G a group, and « an action of G on X such that z + aex is continuous
for every a € G.

(a) If p is a quasi-Radon measure on X such that p(asU) < pU for every open set U C X and every
a € G, then p is G-invariant.

(b) If 1 is a Radon measure on X such that p(asK) < pK for every compact set K C X and every a € G,
then p is G-invariant.

proof Note first that the maps = + aex are actually homeomorphisms (4A5Bd), so that asU and asK
will be open, or compact, as U and K are. Next, the inequality < in the hypotheses is an insignificant
refinement; since we must also have

pU = p(a="easl) < p(aeU)
in (a),
P = p(a™teaK) < plasK)

in (b), we always have equality here.

Now fix a € G, and set T,(z) = aex for z € X. Then T, is a homeomorphism, so the image measure
pwT; 1 will be quasi-Radon, or Radon, if p is. In (a), we are told that w7, ! agrees with p on the open
sets, while in (b) we are told that they agree on the compact sets; so in both cases we have p = uT, *, by
415H(iii) or 416E(b-ii). Consequently we have uT,, }[E] = uE whenever p measures E. As a is arbitrary, u
is G-invariant.

441C Theorem (STEINLAGE 75) Let X be a non-empty locally compact Hausdorff space and G a group
acting on X. Suppose that
(i)  — aex is continuous for every a € Gj
(ii) every orbit {asz : a € G} is dense;
(iii) whenever K and L are disjoint compact subsets of X there is a non-empty open subset
U of X such that, for every a € G, at most one of K, L meets asU.
Then there is a non-zero G-invariant Radon measure p on X.

MEASURE THEORY



441C Invariant measures on locally compact spaces 3

proof (a) ,cq a*U = X for every non-empty open U C X. P If z € X, then the orbit of z must meet U,
so there is a @ € G such that asz € U; but this means that z € a~!+U. Q

Fix some point zy of X and write V for the set of open sets containing zg. Then if K, L are disjoint
compact subsets of X there is a U € V such that, for every a € G, at most one of K, L meets asU. P By
hypothesis, there is a non-empty open set V such that, for every a € G, at most one of K, L meets asV.
Now there is an b € G such that bezg € V; set U = b=V, Because b~! acts on X as a homeomorphism,
U € V; and if a € G, then asU = (ab™!)sV can meet at most one of K and L. Q

(b) f U € V and A C X is any relatively compact set, then {asU : a € G} is an open cover of X, so
there is a finite set I C G such that A C |J,.; asU. Write [A: U] for min{#(I): I C G, A C [, a*U}.

(c) The following facts are now elementary.
(i) fU € V and A, B C X are relatively compact, then
0<JA:U]<JAUB:U|<[A:U|+|B:U],
and [A: U] =0iff A=10.
(i) U, V € V and V is relatively compact, and A C X also is relatively compact, then
[A: U] <[A: V][V U]
PIACU,c aVand V C Uy beU, then A C e e (ab)eU. Q

(iii) f U € V, A C X is relatively compact and b € G, then [beA : U] = [A: U]. P If I C G and
A C JyeraoU, then beA C |, (ba)eU, so [beA : U] < #(I); as I is arbitrary, [beA : U] < [A: U]. On
the other hand, the same argument shows that

[A:U] =[b7tebe A: U] < [beA: U],
so we must have equality. Q

(d) Fix a relatively compact Vo € V. (This is the first place where we use the hypothesis that X is locally
compact.) For every U € V and every relatively compact set A C X write

AU
A=

Then (c) tells us immediately that
(i) if A, B C X are relatively compact,

0<A\gA L )\U(AUB) < A \vA+ \yB;

(ii) Ay A < [A: Vp] for every relatively compact A C X;
(iii) Ay (beA) = Ay A for every relatively compact A C X and every b € G}
(iV) )\UVb =1.

(e) Now for the point of the hypothesis (iii) of the theorem. If K, L are disjoint compact subsets of X,
there is a V' € V such that A\y(K U L) = \y K + A\yL whenever U € V and U C V. P By (a), there is a
V € V such that any translate asV can meet at most one of K and L. Take any U € V included in V. Let
I C G be such that J,c;asU 2 K UL and #(I) = [K UL : U]. Then

I'={a:acl, KNnaU=#0}, I"={a:a€l, LNaU # 0}
are disjoint. K C J,c; a*U,so [K : U] < #(I'), and similarly [L : U] < #(I”). But this means that
[K:U|+[L:U <#I)+#I")<#(I)=[KUL:U]|,
MK + ML < /\U(KU L)
As we already know that Ay (K U L) < A\yK + Ay L, we must have equality, as claimed. Q

(f) Let F be an ultrafilter on V containing all sets of the form {U : U e V, U CV}for Ve V. IfACX
is relatively compact, 0 < AgA < [A: V] for every U € V, s0 AA = limy_, » Ay A4 is defined in [0, [A : Vi]].
From (d-i) and (d-iii) we see that
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4 Topological groups 441C

0 < A(bA) = AA < ANAUB) < A+ \B

for all relatively compact A, B C X and b € G. From (d-iv) we see that AVy = 1. Moreover, from (e) we
see that if K, L C X are disjoint compact sets,

(U:U eV, \y(KUL) = \yK + A\yL} € F,
so A(KUL)=MK + \L.

(g) By 416M, there is a Radon measure p on X such that
uK =inf{\L: L C X is compact, K C int L}

for every compact set K C X. Now p is G-invariant. B Take b € G. If K, L. C X are compact and
K Cint L, then be K C int beL, because x — bex is a homeomorphism; so

w(be K) < A(beL) = AL.
As L is arbitrary, u(beK) < pK. As b and K are arbitrary, p is G-invariant, by 441Bb. Q
(h) Finally, uVo > AVp > 1, so u is non-zero.

441D The hypotheses of 441C are deliberately drawn as widely as possible. The principal application
is the one for which the chapter is named.

Definition If G is a topological group, a left Haar measure on G is a non-zero quasi-Radon measure p
on G which is invariant for the left action of G on itself, that is, u(aE) = uE whenever p measures E and
a€d.

Similarly, a right Haar measure is a non-zero quasi-Radon measure p such that u(Fa) = uE whenever
E edomy and a € G.

(My reasons for requiring ‘quasi-Radon’ here will appear in §§442 and 443.)

441E Theorem A locally compact Hausdorff topological group has left and right Haar measures, which
are both Radon measures.

proof Both the left and right actions of G on itself satisfy the conditions of 441C. B In both cases,
condition (i) is just the (separate) continuity of multiplication, and (ii) is trivial, as every orbit is the
whole of G. As for (iii), let us take the left action first. Given disjoint compact subsets K, L of G, then
M ={y~'2:y € K, z € L} is a compact subset of G not containing the identity e. Because the topology
is Hausdorff, M is closed and X \ M is a neighbourhood of e. Because multiplication and inversion are
continuous, there are open neighbourhoods V', V' of e such that u~'v € G\ M whenever u € V and v € V.
Set U =V NV’; then U is a non-empty open set in G.

? Suppose, if possible, that there is a a € G such that asU = aU meets both K and L. Take y € K NaU
and 2 € LNaU. Thena 'y c UCV anda 'z €U CV’, so

y~lz=(a"ty) a2 € G\ M;

but also y~'z € M. X

Thus aU meets at most one of K, L for any a € G. As K and L are arbitrary, condition (iii) of 441C is
satisfied.

For the right action, we use the same ideas, but vary the formulae. Set M = {yz=! :y € K, z € L}, and
choose V and V' such that uv= € G\ M foru € V,v € V'. Thenifa € G,y € K and z € L, za(ya)™* € M
and one of za, ya does not belong to U = V N V', that is, one of z, y does not belong to Ua™! = a-U. Q

Then 441C provides us with non-zero left and right Haar measures on GG, and also tells us that they are
Radon measures.

441F A different type of example is provided by locally compact metric spaces.

Definition If (X, p) is any metric space, its isometry group is the set of permutations g : X — X which
are isometries, that is, p(g(x), 9(y)) = p(z,y) for all z, y € X.
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441H Invariant measures on locally compact spaces 5

441G The topology of an isometry group Let (X, p) be a metric space and G the isometry group
of X.

(a) Give G the topology of pointwise convergence inherited from the product topology of XX. Then G
is a Hausdorff topological group and the action of G on X is continuous. P If z € X, gg, hg € G and € > 0,
then V = {g : p(gho(z), goho(x)) < i€} is a neighbourhood of go and V' = {h : p(h(z), ho(z)) < %€} is a
neighbourhood of hg. If g € V and h € V' then

p(gh(x), goho(z)) < p(gh(z), gho(x)) + p(gho(), goho(z))

< p(h(), ho()) + ye < e

As go, ho and e are arbitrary, the function (g, h) — gh(z) is continuous; as z is arbitrary, multiplication on
G is continuous. As for inversion, suppose that go € G, ¢ > 0 and x € X. Then V = {g: p(gg; ' (), ) < €}
is a neighbourhood of gy, and if g € V' then

plg~ (@), 90" (2)) = plz, 990 ' (2)) < e.

Because gg, € and x are arbitrary, inversion on G is continuous, and G is a topological group. Because X is
Hausdorff, so is G.

To see that the action is continuous, take gg € G, g € X and e > 0. Then V ={g: g € G, p(g(xo), go(z0))
< %e} is a neighbourhood of go. If g € V and z € U(xy, %e), then

pl9(x), go(x0)) < plg(), 9(w0)) + pg(w0). go(x0)) < plw, o) + 3¢ < €.

As go, xo and € are arbitrary, (g,z) — g(z) : G x X — X is continuous. Q

(b) If X is compact, so is G. P By Tychonoff’s theorem (3A3J), X¥ is compact. Suppose that g € XX
belongs to the closure of G in XX. For any z, y € X, the set {f : f € XX, p(f(z), f(y)) = p(x,y)} is closed
and includes G, so contains g; thus g is an isometry. ? If g[X] # X, take x € X \ g[X] and set z,, = g"(x)
for every n € N. Because ¢ is continuous and X is compact, g[X] is closed and there is some ¢ > 0 such
that U(x,0) N g[X] = 0. But this means that

p(xnu xn) = P(gm(l‘),gm(ﬂfn—m)) = P(ﬂ% xn—nL) > 0

whenever m < n, so that (z,)nen can have no cluster point in X; which is impossible, because X is supposed
to be compact. X This shows that g is surjective and belongs to G. As g is arbitrary, G is closed in XX,
therefore compact. Q

441H Theorem If (X, p) is a non-empty locally compact metric space with isometry group G, then
there is a non-zero G-invariant Radon measure on X.

proof (a) Fix any 2o € X, and set Z = {g(zo) : g € G}; then Z is a closed subset of X, so is in itself locally
compact. Let H be the isometry group of Z.

(b) We need to know that g[Z € H for every g € G. P Because g : X — X is a homeomorphism,
9l2] = {99'(x0) : g’ € G} = Z,

so g Z is a permutation of Z, and of course it is an isometry, that is, belongs to H. Q

(c) Now Z and H satisfy the conditions of 441C.
P (i) is true just because all isometries are continuous.

(ii) Take z € Z and let U be a non-empty relatively open subset of Z. Then U = Z NV for some
open set V C X; as ZNV # (), there must be a gg € G such that go(xo) € V. At the same time, there is a
sequence (hn)nen in G such that z = lim,, o Ay (z0). Now

p(g0(x0), gohy ' (2)) = p(hn(x0),2) = 0

D.H.FREMLIN



6 Topological groups 441H

as n — 00, so there is some n such that goh '(z) € V; of course goh., (2) also belongs to U, while goh ' [ Z
belongs to H, by (b) above. As U is arbitrary, the H-orbit of z is dense in Z; as z is arbitrary, H satisfies
condition (ii) of 441C.

(iii) Given that K and L are disjoint compact subsets of Z, there must be a § > 0 such that p(y,z) > §
for every y € K, z € L. Let U be the relatively open ball {z : z € Z, p(z,z¢) < 36}. Then for any h € H,
ply,z) < 0 for any y, z € h[U], so h[U] cannot meet both K and L. Q

(d) 441C therefore provides us with a non-zero H-invariant Radon measure v on Z. Setting uF = v(ENZ)
whenever E C X and ENZ € domv, it is easy to check that p is G-invariant (using (b) again) and is a
Radon measure on X.

4411 Remarks (a) Evidently there is a degree of overlap between the cases above. In an abelian group,
for instance, the left and right group actions necessarily give rise to the same invariant measures. If we take
X = R2, it has a group structure (addition) for which we have invariant measures (e.g., Lebesgue measure);
these are just the translation-invariant measures. But 441H tells us that we also have measures which are
invariant under all isometries (rotations and reflections as well as translations); from where we now stand,
there is no surprise remaining in the fact that Lebesgue measure is invariant under this much larger group.
(Though if you look back at Chapter 26, you will see that a bare-handed proof of this takes a certain amount
of effort.) If we turn next to the unit sphere {z : ||z| = 1} in R?, we find that there is no useful group
structure, but it is a compact metric space, so carries invariant measures, e.g., two-dimensional Hausdorff
measure.

(b) The arguments of 441C leave open the question of how far the invariant measures constructed there
are unique. Of course any scalar multiple of an invariant measure will again be invariant. It is natural
to give a special place to invariant probability measures, and call them ‘normalized’; whenever we have a
non-zero totally finite invariant measure we shall have an invariant probability measure. Counting measure
on any set will be invariant under any action of any group, and it is natural to say that these measures
also are ‘normalized’; when faced with a finite set with two or more elements, we have to choose which
normalization seems most reasonable in the context.

(c) We shall see in 442B that Haar measures (with a given handedness) are necessarily scalar multiples
of each other. In 442Ya, 443Ud and 443Xy we have further situations in which invariant measures are
essentially unique. If, in 441C, there are non-trivial G-invariant subsets of X, we do not expect such a
result. But there are interesting cases in which the question seems to be open.

441J Of course we shall be much concerned with integration with respect to invariant measures. The
results we need are elementary corollaries of theorems already dealt with at length, but it will be useful to
have them spelt out.

Proposition Let X be a set, G a group acting on X, and p a G-invariant measure on X. If f is a real-valued
function defined on a subset of X, and a € G, then [ f(z)u(dz) = [ f(asz)p(dz) if either integral is defined
in [—o0, 00].

proof Apply 235G to the inverse-measure-preserving functions & — asx and x — a tex.

441K Theorem Let X be a set, G a group acting on X, and p a G-invariant measure on X with measure
algebra 2.

(a) We have an action of G on 2 defined by setting asE* = (a+FE)* whenever a € G and p measures E.

(b) We have an action of G on L° = L9(p) defined by setting asf* = (asf)* for every a € G, f € LO(u).

(c) For 1 < p < oo the formula of (b) defines actions of G on LP = LP(u), and |lasul|, = ||u||, whenever
u € LP and a € G.

proof (a) If E, F € dom y and E* = F*, then (because z — a~lex is inverse-measure-preserving) (asE)* =
(asF)* for every a € G. So the given formula does define a function from G x 2 to . It is now easy to
check that it is an action.
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441Xc Invariant measures on locally compact spaces 7

(b) Take f € £L° = £O%u) and a € G. Set ¢o(x) = a~lex for z € X, so that ¢, : X — X is inverse-
measure-preserving. Then aef = f¢, belongs to £L°. If f, g € £° and f =ae G, then fo, =ae gda, so
(asf)* = (aeg)*. This shows that the given formula defines a function from G x L° to L°, and again it is
easy to see that it is an action.

(c) If f € LP(p) then

[lasflrdu = [|f(a= ex)Pdp = [|f[Pdp

by 441J. So asf € LP(u) and ||asf*||, = || f*||p. Thus we have a function from G x L? to L, and once more
it must be an action.

441L Proposition Let X be a locally compact Hausdorff space and G a group acting on X in such a
way that = »—> aex is continuous for every a € G. If p is a Radon measure on X, then p is G-invariant
iff [ f(z)pu(dz) = [ f(aex)pu(dz) for every a € G and every continuous function f : X — R with compact
support.

proof For a € G, set T,(x) = asz for every z € X. Then v, = pT, ! is a Radon measure on X. If
f € Cr(X), then

[ fdve = [ fTadp
by 235G. Now

1 is G-invariant <= v, = u for every a € G
— /fdua = /fdu for every a € G, f € Cr(X)
(416E(b-v))
= /fTadu = /fd,u for every a € G, f € Cr(X)

as claimed.

441X Basic exercises >(a) Let X be a set. (i) Show that there is a one-to-one correspondence between
actions s of the group Z on X and permutations f : X — X defined by the formula nex = f"(x). (ii) Show
that if f : X — X is a permutation, a measure g on X is Z-invariant for the corresponding action iff f
and f~! are both inverse-measure-preserving. (iii) Show that if X is a compact Hausdorff space and « is a
continuous action of Z on X, then there is a Z-invariant Radon probability measure on X. (Hint: 437T.)

(b) Let (X, T,v) be a measure space and G a group acting on X. Set ¥ = {F : E C X, geE € T for
every g € G}, and for E € ¥ set

uwE = sup{z v(g;oF;) :n € N, Fy, ..., F, are disjoint subsets of F
i=0
belonging to ¥, g; € G for each i < n}

(cf. 112Yd, 234X1). Show that u is a G-invariant measure on X.

(c) Let 7 > 1 be an integer, and X = [0,1[". Let G be the set of r X r matrices with integer coefficients
<m> m
and determinant +1, and for A € G, x € X say that Aex = e where | ... | = Ax and <a> is the
<nr> Nr
fractional part of « for each & € R. (i) Show that « is an action of G on X, and that Lebesgue measure on X
is G-invariant. (ii) Show that if X is given the compact Hausdorff topology corresponding to the bijection
a — (cos2ma, sin 2ra) from X to the unit circle in R?, and G is given its discrete topology, the action is
continuous.
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8 Topological groups 441Xd

(d) Let X be a topological space and G a group acting on X such that («) all the maps x — aex are
continuous (3) all the orbits of G are dense. Show that any non-zero G-invariant quasi-Radon measure on
X is strictly positive.

>(e) Let G be a compact Hausdorff topological group. (i) Show that its conjugacy classes are closed.
(ii) Show that if K, L C G are disjoint compact sets then {ac ™ 'da=' :a € G, ¢ € K, d € L} is a compact
set not containing e, so that there is a neighbourhood U of e such that whenever ¢c™'d € U and a € G then
either aca™! ¢ K or ada™' ¢ L. (iii) Show that every conjugacy class of G carries a Radon probability
measure which is invariant under the conjugacy action of G.

(f) Let (G, -) be a topological group. (i) On G define a binary operation ¢ by saying that x oy = y -« for
all z, y € G. Show that (G, ) is a topological group isomorphic to (G,-), and that any element of G has
the same inverse for either group operation. (ii) Suppose that pu is a left Haar measure on (G, -). Show that
p is a right Haar measure on (G, o). (iii) Set ¢(a) = a™! for a € G. Show that if u is a left Haar measure
on (G,-) then the image measure u¢ ="' is a right Haar measure on (G,-). (iv) Show that (G,-) has a left
Haar measure iff it has a right Haar measure. (v) Show that (G, -) has a left Haar probability measure iff it
has a totally finite left Haar measure iff it has a right Haar probability measure. (iv) Show that (G, -) has
a o-finite left Haar measure iff it has a o-finite right Haar measure.

>(g)(i) For Lebesgue measurable E C R\ {0}, set vE = [, ﬁdm. Show that v is a (two-sided) Haar
measure if R\ {0} is given the group operation of multiplication. (ii) For Lebesgue measurable E C C\ {0},
identified with R?\ {0}, set vE = [, ﬁ p(dz), where p is two-dimensional Lebesgue measure. Show that v

is a (two-sided) Haar measure on C \ {0} if we take complex multiplication for the group operation. (Hint:
263D.)

>(h)(i) Show that Lebesgue measure on R” is a (two-sided) Haar measure, for any r > 1, if we take
addition for the group operation. (ii) Show that the usual measure on {0,1}/ is a two-sided Haar measure,
for any set I, if we give {0, 1}! the group operation corresponding to its identification with Z1. (iii) Describe
the corresponding Haar measure on PI when P1I is given the group operation A.

(i) Let G be a locally compact Hausdorff topological group. (i) Show that any (left) Haar measure on
G must be strictly positive. (ii) Show that G has a totally finite (left) Haar measure iff it is compact. (iii)
Show that G has a o-finite (left) Haar measure iff it is o-compact.

>(j)(i) Let G and H be topological groups with left Haar measures u and v. Show that the quasi-Radon
product measure on G x H (417N) is a left Haar measure on G x H. (ii) Let (G;);er be a family of topological
groups, and suppose that each G; has a left Haar probability measure (as happens, for instance, if each G;
is compact). Show that the quasi-Radon product measure on [[,.; G; (4170) is a left Haar measure on

HieI Gi.

(k)(i) Show that any (left) Haar measure on a topological group, as defined in 441D, must be locally
finite. (ii) Show that any (left) Haar measure on a locally compact Hausdorff group must be a Radon
measure.

el

(1) Let > 1 be an integer, and set X = {z : z € R", ||z|| = 1}. Let G be the group of orthogonal r x r
real matrices, so that G acts transitively on X. Show that (when given its natural topology as a subset of
er) G is a compact Hausdorff topological group. Let u be a left Haar measure on G, and x any point of X;
set ¢,.(T) = T for T € G. Show that the image measure pu¢, ! is a G-invariant measure on X, independent
of the choice of z.

(m) Let X be a non-abelian Hausdorff topological group with a left Haar probability measure p. Let A
be the quasi-Radon product measure on X2. Show that A\{(z,y) : 2y = ya} < g. (Hint: if Z is the centre
of X, X/Z is not cyclic, so pZ < %.)

(n) Let X be a compact metric space, and g : X — X any isometry. Show that g is surjective. (Hint: if
x € X, then p(¢"z, g"x) > p(x, g[X]) for any m < n.)
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441Yd Invariant measures on locally compact spaces 9

(o) Let (X,p) be a locally compact metric space, and C the set of closed subsets of X with its Fell
topology (4A2T). Show that if G is the isometry group of X with its topology of pointwise convergence,
then (g, F') — g¢[F] is a continuous action of G on C.

(p) Let (X, p) be a metric space and K the family of compact subsets of X with the topology induced
by the Vietoris topology on the space of closed subsets of X (4A2T). Show that if G is the isometry group
of X with its topology of pointwise convergence, then (g, K) — ¢[K] is a continuous action of G on K.

>(q) Let (X, p) be a metric space, and G its isometry group with the topology ¥ of pointwise convergence.
(i) Show that if X is compact, ¥ can be defined by the metric (g, h) — max,cx p(g(z), h(x)). (ii) Show that
if {y: p(y,x) <~} is compact for every x € X and v > 0, then G is locally compact. (iii) Show that if X is
separable then G is metrizable. (iv) Show that if (X, p) is complete then G is complete under its bilateral
uniformity. (v) Show that if X is separable and (X, p) is complete then G is Polish.

>(r) Give N the zero-one metric p. Let G be the isometry group of N (that is, the group of all permutations
of N) with its topology of pointwise convergence. (i) Show that G is a G4 subset of NV, so is a Polish group.
(ii) Show that if we set A(g,h) = min{n : n € N, g(n) # h(n)} and o(g,h) = 1/(1 + A(g~',h71)) for
distinct g, h € G, then o is a right-translation-invariant metric on G inducing its topology. (iii) Show that
there is no complete right-translation-invariant metric on G inducing its topology. (Hint: any such metric
must have the same Cauchy sequences as ¢.) (iv) Show that G is not locally compact.

>(s) Let 7 > 1 be an integer, and S,_; the sphere {x : z € R", ||z|| = 1}. (i) Show that every isometry
¢ from S,_ to itself corresponds to an orthogonal r x r matrix T. (Hint: T = (¢(e;).€;)i j<r.) (ii) Show
that the topology of pointwise convergence on the isometry group of S,_; corresponds to the topology on
the set of r X r matrices regarded as a subset of R™.

(t) Let X be a locally compact metric space and G a subgroup of the isometry group of X. Show that
for every x € X there is a non-zero G-invariant Radon measure on {g(x) : g € G}.

(u) Let X be a set with its zero-one metric and G the group of permutations of X with its topology of
pointwise convergence. Let YW C P(X?) be the set of total orderings of X. Show that W is compact for the
usual topology of P(X?). For g € G and W € W write geW = {(g(z),9(y)) : (z,y) € W}; show that « is a
continuous action of G on W. Show that there is a unique G-invariant Radon probability measure p on W

such that pu{W : (x;,z;41) € W for every i < n} = ( whenever o, ... ,z, € X are distinct.

1
n+1)!

441Y Further exercises (a) Let (X, p) be a metric space, and C the family of non-empty closed subsets
of X, with its Hausdorff metric p (4A2T). Show that if G is the isometry group of X, (g, F') — g¢[F] is an
action of G on C.

(b) (M.Elekes & T.Keleti) Let X be a set, G a group acting on X, ¥ a o-algebra of subsets of X such
that geE € ¥ whenever F € ¥ and g € G, and H an element of ¥. Suppose that u is a measure, with
domain the subspace o-algebra X, such that u(geE) = pE whenever E € ¥y and g € G are such that
g*E C H. (i) Show that > ° (uE, = > ° uE! whenever (E,),cn and (E}),cn are sequences in Xy for
which there are sequences (g, )nen, (g5, )nen in G such that (gneEp)nen and (g),+E! )nen are partitions of the
same subset of X. (ii) Show that there is a G-invariant measure with domain ¥ which extends p.

(c) Take 1 < s < r € N. Let C be the set of closed subsets of R” with its Fell topology. Let Cs C C be
the set of s-dimensional linear subspaces of R". Show that Cs is a closed subset of C, therefore a compact
metrizable space in its own right, and that the group G of orthogonal r x r matrices acts transitively on Cg,
so that there is a G-invariant Radon probability measure on Cs.

(d) For w, z € C\ {0} set p(w, z) = |Ln(¥)|, where Lnv = In |v| + i arg v for non-zero complex numbers
v. (i) Show that p is a metric on C\ {0}. (ii) Show that the 2-dimensional Hausdorff measure ,ug; derived

from p (264K, 471A) is a Haar measure for the multiplicative group C \ {0}. (iii) Show that /LSL’IJ)Q =1y,
where v is the measure of 441Xg(ii).
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10 Topological groups 441Ye

(e) Let X be the group of real r x r orthogonal matrices, where r > 2 is an integer. Give X the
Euclidean metric, regarding it as a subset of R". (i) Show that the left and right actions of X on itself
are distance-preserving. (i) Show that @—dimensional Hausdorff measure on X is a two-sided Haar
measure.

(f) Let X = SO(3) be the set of real 3 x 3 orthogonal matrices with determinant 1. Give X the metric
corresponding to its embedding in 9-dimensional Euclidean space. (i) Show that X can be parametrized as
the set of matrices

z z —cosfv1 — 22 sin v1 — 22

ol a] = cosavl—22 zcosacosf —sinasinf) —zcosasinf — sinacos 6
0 sinayv1 —22 zsinacosf + cosasinf  —zsinasinf + cos a cos

with z € [-1,1], o € [-7, 7] and 0 € [—m, «]. (ii) Show that if T" is the 9 x 3 matrix which is the derivative

2
z 0
ofpat | a |, then TTT = 1_0Z2 9 9, | has constant determinant, so that if u is Lebesgue measure
0
0 2z 2

on [—1,1] x [~m,7]? then the image measure pu¢ ! is a Haar measure on X. (Hint: 441Ye, 265E.) (iii) Show
that if A € X corresponds to a rotation through an angle v(A) € [0, 7] then its trace tr(A) (that is, the sum
of its diagonal entries) is 1 + 2cosy(A). (Hint: tr(AB) = tr(BA) for any square matrices A and B of the

same size.) (iv) Show that if X is given its Haar probability measure then cosv(A) has expectation —3.

(g) Let H be the division ring of the quaternions, that is, R* with its usual addition and with multipli-
cation defined by the rule

(£0,&1,&2,8&3) x (Mo, M, m2,m3) = (€omo — &1 — Eam2 — &3z, Eom + 1o + Eamz — E3me,
Somz — &z + Eamo + Eamn, Eoms + E1m2 — S + E31o)-

For Lebesgue measurable E C H\ {0}, set vE = [, de. Show that (i) |z x y| = [z[||[y[| for all z, y € H
(ii) H\ {0} is a group (iii) v is a (two-sided) Haar measure on H \ {0}.

(h) In 441X1, show that u¢, ! is a scalar multiple of Hausdorff (r — 1)-dimensional measure on X.

(i) For any topological spaces X and Y, and any set G of functions from X to Y, the compact-open
topology on G is the topology generated by sets of the form {g : g € G, g[K] C H}, where K C X is
compact and H CY is open. Show that if (X, p) is a metric space and G is the isometry group of X, then
the topology of pointwise convergence on G is its compact-open topology.

(j) Let X be a compact Hausdorff space and G the group of all homeomorphisms from X to itself. (i)
Let P be the family of all continuous pseudometrics on X (see 4A2Jg). For p € P and g, h € G, set
To(9,h) = max,ex p(g9(x), h(x)). Show that every 7, is a right-translation-invariant pseudometric on G,
and that G with the topology generated by {7, : p € P} is a topological group. (ii) Show that this is the
compact-open topology as defined in 441Yi. (iii) Show that if X is metrizable then G is Polish.

(k) Let (X,W) be a locally compact Hausdorff uniform space, and suppose that G is a group acting
on X ‘uniformly equicontinuously’; that is, for every W € W there is a V' € W such that (aex,asy) € W
whenever (z,y) € V and a € G. Show that there is a non-zero G-invariant Radon measure on X.

(1) Let X be a compact metric space and G the isometry group of X. Show that every G-orbit in X is
closed.

(m) Let T be any set, and p the {0,1}-valued metric on T. Let X be the set of partial orders on T,
regarded as a subset of P(T x T'). Show that X is compact (cf. 418Xy). Let G be the group of isometries
of T with its topology of pointwise convergence. Set mex = {(t,u) : (77 1(t),7 1 (u)) € z} for 7 € G and
x € X. Show that « is a continuous action of G on X. Show that there is a strictly positive G-invariant
Radon probability measure p on X.
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(n) Let X be a set, G a group acting on X, and p a G-invariant measure on X with measure algebra 2.
Show that if 7 is any rearrangement-invariant extended Fatou norm on L°(2() then the formula of 441Kb
defines a norm-preserving action of G on the Banach space L.

(0) Let «x be an action of a group G on a set X, p a G-invariant measure on X, (2, i) its measure
algebra and ey the induced action on 2. Set Z = X¢; define ¢ : X — Z by setting ¢(z) = (g~ tex)yeq for
x € X; let v be the image measure pu¢~—1, and (B, ) its measure algebra. Let «z be the left shift action of
G on Z; show that v is «z-invariant, so that there is an induced action ey on B. Show that (2 fi,y) and
(B, 7, e) are isomorphic.

(p) Let X be a topological space, G a topological group and « a continuous action of G on X. Let
M;R be the set of totally finite quasi-Radon measures on X. (i) Show that we have an action « of G on
MJR defined by saying that (asv)(E) = v(a~'+E) whenever a € G, v € M;R and E C X are such that v
measures a~ e F. (ii) Show that this action is continuous if we give M ;R its narrow topology. (iii) Show that
ifve M;R, f € £1(v) is non-negative and fv is the corresponding indefinite-integral measure, then as(fv)
is the indefinite-integral measure (aef)(asv) for every a € G.

(q) Let X be a set, G a group acting on X and p a totally finite G-invariant measure on X with domain
Y. Suppose there is a probability measure v on G, with domain T, such that (a,z) — a tez : G x X — X
is (T®X, ¥)-measurable and v is invariant under the left action of G on itself. Let u € L°(u1) be such that
asu = u for every a € G. Show that there is an f € £%(u) such that f* = u and asf = f for every a € G.
(Hint: if u = g* where g : X — R is X-measurable and p-integrable, try f(z) = [ g(a™+z)r(da) when this
is defined.)

(r) Let X be a topological space, G a compact Hausdorff group, « a continuous action of G on X, and p
a G-invariant quasi-Radon measure on X. Let u € L%(u) be such that asu = u for every a € G. Show that
there is an f € £%(u) such that f* = wu and aef = f for every a € G.

441 Notes and comments The proof I give of 441C is essentially the same as the proof of 441FE in HALMOS
50, §58.

In part (f) of the proof of 441C T use an ultrafilter, relying on a fairly strong consequence of the Axiom of
Choice. In this volume, as in the last, I generally employ the axiom of choice without stopping to consider
whether it is really needed. But Haar measure, at least, is so important that I point out now that it can
be built with much weaker principles. For a construction of Haar measure not dependent on choice, see
561G in Volume 5. I ought to remark that the argument there leads us to a translation-invariant linear
functional rather than a measure, and that while there is still a version of the Riesz representation theorem
(5641), we may get something less than a proper countably additive measure if we do not have countable
choice. Moreover, in the absence of the full axiom of choice, we may find that we have fewer locally compact
topological groups than we expect.

While Haar measure is surely the pre-eminent application of the theory here, I think that some of the
other consequences of 441C (441H, 441Xe, 441X1, 441Yc¢, 441Yk) are sufficiently striking to justify the
trouble involved in the extra generality. I ought to remark that there are important examples of invariant
measures which have nothing to do with 441C. Some of these will appear in §449; for the moment I note
only 441Xa.

FEDERER 69, §2.7, develops a general theory of ‘covariant’ measures p (‘relatively invariant’ in HALMOS
50) such that p(asE) = ¢(a)uE for appropriate sets E C X and a € G, where ¢ : G — ]0,00[ is a
homomorphism; for instance, taking p to be Lebesgue measure on R", we have uT'[E] = | det T|uFE for every
linear space isomorphism T : R” — R" and every measurable set E (263A). The theory I have described here
can deal only with the subgroup of isometric linear isomorphisms (that is, the orthogonal group). Covariant
measures arise naturally in many other contexts, such as 443T below.

Hausdorff measures, being defined in terms of metrics, are necessarily invariant under isometries, so
appear naturally in this context, starting with 2641. There are interesting challenges both in finding suitable
metrics and in establishing exact constants, as in 441Yd-441Ye.
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12 Topological groups 441 Notes

It is worth pausing over the topology of an isometry group, as described in 441G. It is quite surprising
that such an elementary idea should give us a topological group at all. I offer some exercises (441Xq-441Xs,
441Y1) to help you relate the construction to material which may be more familiar. It is of course a ‘weak’
topology, except when the underlying space is compact (441Xq(i)). See also 441Yj. These groups are rarely
locally compact, and you may find them pushed out of your mind by the extraordinary theory which you
will see developed in the next hundred pages; but in the last two sections of this chapter, and in §493, they
will become leading examples.

Version of 21.3.07

442 Uniqueness of Haar measures

Haar measure has an extraordinary wealth of special properties, and it will be impossible for me to cover
them all properly in this chapter. But surely the second thing to take on board, after the existence of Haar
measures on locally compact Hausdorff groups (441E), is the fact that they are, up to scalar multiples,
unique. This is the content of 442B. We find also that while left and right Haar measures can be different
(442Xf), they are not only direct mirror images of each other (442C) — as is, I suppose, to be expected —
but even more closely related (442F, 442H, 442L). Investigating this relation, we are led naturally to the
‘modular function’ of a group (4421).

442A Lemma Let X be a topological group and p a left Haar measure on X.

(a) p is strictly positive and locally finite.

(b) If G C X is open and v < u@, there are an open set H and an open neighbourhood U of the identity
such that HU C G (writing HU for {zy:x € H, y € U}) and pH > 7.

(¢c) If X is locally compact and Hausdorff, 1 is a Radon measure.

proof (a)(i) ? If G C X were a non-empty open set such that uG = 0, then we should have p(zG) =0
for every x € X, so that X would be covered by negligible open sets; but as u is supposed to be 7-additive,
puX =0.X

(ii) Because p is effectively locally finite, there is some non-empty open set G such that uG < oco; but
now {zG : xz € X} is a cover of X by open sets of finite measure.

(b) Let U be the family of open sets containing the identity e, and H the family of open sets H such
that HU C G for some U € U. Because U is downwards-directed, H is upwards-directed; because e € U for
every U €U, | JH C G. If z € G, then 271G € U, and there is a U € U such that UU C x71G; but now
2UU C G, so 2U € H. Thus | JH = G. Because p is 7-additive, there is an H € H such that uH > ~.

(c) Use (a) and 416G.

442B Theorem Let X be a topological group. If p and v are left Haar measures on X, they are multiples
of each other.

proof (a) Let G be the family of non-empty open sets G such that uG and vG are both finite; because p
and v are locally finite (442Aa), G is a base for the topology of X. Note that GU H € G for all G, H € G.
Set U ={U:U € G,U=U"1 eecU}, where e is the identity of G; then U is a base of neighbourhoods of
e (4A5Ec). Let F be the filter on U generated by the sets {U : U e U, U C V} as V runs over U.

(b) (The key.) If G € G and 0 < € < 1, there is a V; € U such that

nG nlU
_ s L HY
- e =5

whenever U € Y and U C V;. PP By 442Aa, uG and vG are both non-zero. By 442Ab, there are an open

set H and a neighbourhood V; of e such that HV; C G and uH > (1 — €)uG; shrinking V; if need be, we

may suppose that V3 € U. Take any U € U such that U C Vi, so that HU C G. Consider the product
(© 1998 D. H. Fremlin
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442E Uniqueness of Haar measures 13

quasi-Radon measure A of 4 and v on X x X (417R), and the set W = {(z,y) : 2,y € G, 2"y € U}.
Because the function (z,y) — 2~y is continuous (4A5Eb), W is open. Consequently

J iz (w,y) € Whv(dy) = AW = [v{y: (z,y) € W}n(d)
(417C(b-v-p)). But we see that if x € H then 2U C G, so (z,y) € W whenever y € zU, and

fl/{y ez, y) € Whp(dz) > fH v(zU)p(dz) = pH - vU.
On the other hand,

/ il - (2,y) € Wh(dy) < /G o ey € Uyn(dy) = /G il y~le € Uu(dy)

:/ nwyU)v(dy) = pU - vG,
G

so that
(1—-e)uG-vU < uH -vU < AW < uU - vG.
Dividing both sides by vU - vG, we have the result. Q

(c) In the same way, there is a V5 € V such that
vG vU
_ ¥ Y
(1 e)HG <
whenever U e Y and U C Vs, Soif U e Y and U C Vi N V5, we have
MG U 1 pG
(1 E)VG = vU = 1—evG’
As ¢ is arbitrary,

. pU G
limy— 7 vU — vG’
And this is true for every G € G.

(d) Soif we set a = limy_, x %, we shall have uG = avG for every G € G. Now p and av are quasi-Radon
measures agreeing on the base G, which is closed under finite unions, so are identical, by 415H(iv).

442C Proposition Let X be a topological group and y a left Haar measure on X. Setting vE = u(E~1)
whenever £ C X is such that E~! = {z7! : z € F} is measured by u, v is a right Haar measure on X.

proof Set ¢(x) = z~! for x € X. Then ¢ is a homeomorphism, so the image measure v = p¢~"' is a
quasi-Radon measure. It is non-zero because vX = puX. If F € domv and x € X, then

v(Bx) = plz'E7Y) = uE~1 = vE.

So v is a right Haar measure.

442D Remark Clearly all the arguments of 442A-442C must be applicable to right Haar measures; that
is, any right Haar measure must be locally finite and strictly positive; two right Haar measures on the same
group must be multiples of each other; and if X carries a right Haar measure v then £ — vE~! will be a
left Haar measure on X. (If you are unhappy with such a bold appeal to the symmetry between ‘left’ and
‘right’ in topological groups, write the reflected version of 442C out in full, and use it to reflect 442A-442B.)

Thus we may say that a topological group carries Haar measures if it has either a left or a right Haar
measure. These can, of course, be the same; in fact it takes a certain amount of exploration to find a group
in which they are different (e.g., 442Xf).

442E Lemma Let X be a topological group, p a left Haar measure on X and v a right Haar measure
on X. If G, H C X are open, then

uG-vH = fH v(zG~Y)u(dr).
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proof Let A be the quasi-Radon product measure of 1 and v on X x X. The sets Wy = {(z,y) : y 'z €

G,z € H} and Wy = {(z,y) : * € G, yx € H} are both open, so 417C(b-v-£) tells us that

/ v(zG Hp(de) = /V{y cx € H,y 'a e Gu(dr) = W,

H
= /u{x cx e H,y 'z e Glu(dy) = /,u(H NyG)v(dy)
= /u(yilH NGv(dy) = /u{:z: cx € G, yx € Hv(dy)
=AWy = /Gy{y tyxr € H}p(dr)

:/ v(Hz Yu(dr) = pG - vH.
a

442F Domains of Haar measures 442B tells us, in part, that any two left Haar measures on a
topological group must have the same domain and the same negligible sets; similarly, any two right Haar
measures have the same domain and the same negligible sets. In fact left and right Haar measures agree on
both.

Proposition Let X be a topological group which carries Haar measures. If p is a left Haar measure and v
is a right Haar measure on X, then they have the same domains and the same null ideals.

proof (a) Suppose that F' C X is a closed set such that uF' = 0. Then vF = 0. P? Otherwise, there is an
open set H such that vH < oo and v(F N H) > 0. Let G be any open set such that 0 < 4G < co. By 442E,
uG-vH = fH v(zG~ V) u(dz).
But also
pG-v(H\ F) = fH\F v(zG Hp(dz) = fH v(zG Yu(dz) = pG - vH,
sopuG-v(HNF)=0 XQ

(b) It follows that
vE = SUPFCE is closed vF =0
whenever E is a Borel set such that uF = 0. Now take any E € dom p. Set
G={G:G C X is open, uG < oo, vG < co}.

Because both p and v are locally finite, G covers X. If G € G, there are Borel sets E’, E” such that
E'CENGCE" and p(E"\ E') = 0. In this case v(E” \ E’) = 0 so ENG € domv. Because v is complete,
locally determined and 7-additive, E € domwv (4141). If uE = 0, it follows that

vE = SUPFCE is closed vF =0
just as above.
(c) Thus v measures E whenever u measures E, and E is v-negligible whenever it is p-negligible. T am
sure you will have no difficulty in believing that all the arguments above, in particular that of 442E, can be

re-cast to show that domv C dom y; alternatively, apply the result in the form just demonstrated to the
left Haar measure v’ and the right Haar measure p’, where

VE=vE"!, /E=uE!
as in 442C.
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442G Corollary Let X be a topological group and p a left Haar measure on X with domain 3. Then,
for FEC X anda € X,

EcY < E 'Y <« Eacy,
pE =0 < pE~'=0 < p(Fa)=0.
proof Apply 442F with vE = pE~1.

442H Remark From 442F-442G we see that if X is any topological group which carries Haar measures,
there is a distinguished o-algebra ¥ of subsets of X, which we may call the algebra of Haar measurable
sets, which is the domain of any Haar measure on X. Similarly, there is a o-ideal A of PX, the ideal of Haar
negligible sets!, which is the null ideal for any Haar measure on X. Both ¥ and A are translation-invariant
and also invariant under the inversion operation x — z 1.

If we form the quotient 2 = X /A, then we have a fixed Dedekind complete Boolean algebra which is
the Haar measure algebra of the group X in the sense that any Haar measure on X, whether left or
right, has measure algebra based on 2. If @ € X, the maps z + ax, x + xa, x — 2z~ ! give rise to Boolean
automorphisms of 2.

For a member of ¥, we have a notion of ‘o-finite’ which is symmetric between left and right (442Xd). We
do not in general have a corresponding two-sided notion of ‘finite measure’ (442Xg(i)); but of course we can
if we wish speak of a set as having ‘finite left Haar measure’ or ‘finite right Haar measure’ without declaring
which Haar measure we are thinking of. It is the case, however, that if the group X itself has finite left Haar
measure, it also has finite right Haar measure; see 442Ic-d below.

4421 The modular function Let X be a topological group which carries Haar measures.

(a) There is a group homomorphism A : X — ]0, oo defined by the formula
w(Ez) = A(z)uE whenever p is a left Haar measure on X and E € dom p.
P Fix on a left Haar measure it on X. For z € X, let u, be the function defined by saying
B = [i(Ex) whenever E C X | Ex € dom p,

that is, for every Haar measurable set £ C X. Because the function ¢, : X — X defined by setting
¢:(y) = yr~1 is a homeomorphism, p, = fip, ! is a quasi-Radon measure on X; and

pa(yE) = (yBr) = p(Ex) = po B
whenever u, measures F, so i, is a left Haar measure on X. By 442B, there is a A(z) € 0, oo such that

te = A(z)fi; because fi surely takes at least one value in |0, o[, A(z) is uniquely defined.
If v is any other left Haar measure on X, then p = aji for some a > 0, so that

w(Ez) = ai(Ex) = aA(x)pE = Alx)pE.

Thus A : X — ]0, 00[ has the property asserted in the formula offered.
To see that A is a group homomorphism, take any =, y € X and a Haar measurable set F such that
0 < fE < o0, and observe that

A@y)iE = i Ery) = Ay)i(Ex) = Aly)A@)E,
so that A(zy) = A(y)A(z) = A(z)A(y). Q
A is called the left modular function of X.

(b) We find now that v(zE) = A(z~!)vE whenever v is a right Haar measure on X, z € X and E C X
is Haar measurable. PP Let p be the left Haar measure derived from v, so that uE = vE~! whenever E is
Haar measurable. If x € X and E € domv, then

v(zE)=pE 27 = A(z"HpuE = A(z")vE. Q

Thus we may call x — Az~ 1) = ﬁ the right modular function of X.

I'Warning! do not confuse with the ‘Haar null’ sets described in 444Ye below.
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(c) If X is abelian, then obviously A(x) = 1 for every x € X, because pu(Ez) = u(xFE) = pE whenever
x € X, pis a left Haar measure on X and F is Haar measurable. Equally, if any (therefore every) left
(or right) Haar measure p on X is totally finite, then pu(Xz) = p(zX) = pX, so again A(x) = 1 for every
x € X. This will be the case, in particular, for any compact Hausdorff topological group (recall that by
441E any such group carries Haar measures), because its Haar measures are locally finite, therefore totally
finite.

Groups in which A(x) =1 for every x are called unimodular.

(d) From the definition of A, we see that a topological group carrying Haar measures is unimodular iff
every left Haar measure is a right Haar measure.

(e) In particular, if a group has any totally finite (left or right) Haar measure, its left and right Haar
measures are the same, and it has a unique Haar probability measure, which we may call its normalized
Haar measure.

In the other direction, any group with its discrete topology is unimodular, since counting measure is a
two-sided Haar measure.

442J Proposition For any topological group carrying Haar measures, its left modular function is con-
tinuous.

proof Let X be a topological group carrying Haar measures, with left modular function A.

(a) If € > 0, there is an open set U, containing the identity e of X such that A(x) < 1+¢ for every z € U.
P Take any left Haar measure p on X, and an open set G such that 0 < uG < co. By 442Ab, there are an
open set H and a neighbourhood U, of the identity such that HU, C G and puG < (1+ e)pH. If z € U,

thenHzQG,soA(x):%§1+e.Q

(b) Now, given 79 € X and € > 0, V = {z : 27 lzg € U,, xalm € U} is an open set containing zg. If
x €V, then

A(x) = Alao)Alwg 'x) < (1+ €)A(0),
A(wo) = A@)A(r ag) < (14 €)A(),
SO
T A(wo) < A) < (1+ )A().
As € is arbitrary, A is continuous at zg; as z¢ is arbitrary, A is continuous.

442K Theorem Let X be a topological group and p a left Haar measure on X. Let A be the left
modular function of X.

(a) w(E~Y) = [, A(z~1)u(dz) for every E € dom p.

®)([) [ flaHu(dr) = [ A(z~!) f(x)p(dx) whenever f is a real-valued function such that either integral
is defined in [—o0, 00];

(ii) [ f(z)u(dz) = [ A(z™) f(z~")u(dz) whenever f is a real-valued function such that either integral

is defined in [—o0, x0].

(¢) [ flzy)p(dz) = A(y™) [ f(z)pu(dz) whenever y € X and f is a real-valued function such that either
integral is defined in [—o0, o0].
proof (a)(i) Setting 1 E = pE~! for Haar measurable sets E C X, we know that vy is a right Haar
measure, so 442E tells us that

uG -1 H = fH v (xG~ Y p(dr) = fH w(Gr= Y p(dr) = quH Az~ u(dx)

for all open sets G, H C X. Since there is an open set G such that 0 < uG < oo, pH ™ = [, A(z™")p(dz)
for every open set H C X.

(ii) Now let v be the indefinite-integral measure defined by setting 1oE = [A(z™')xE(x)u(dz)
whenever this is defined in [0, co] (234J2). Then v, is effectively locally finite. B If 1o E > 0, then uE > 0,

2Formerly 234B.
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442Xe Uniqueness of Haar measures 17

so there is an n € N such that u(E N H) > 0, where H is the open set {z : A(z™!) < n}. Now there is an
open set G C H such that uG < oo and pu(F N G) > 0, in which case 12.G < nuG < 0o and v(ENG) > 0.

Q

Accordingly vs is a quasi-Radon measure (4150b). Since it agrees with the quasi-Radon measure v; on
open sets, by (i), the two are equal; that is, pE~! = [, A(z!)u(dz) for every E € dom p.

(b)(i) Apply 235E with X =Y, ¥ =T = domy, p = v and ¢(z) = z71, J(z) = A(z™1), g(z) =
A(z=1) f(z) for x € X. From (a) we have
JIxx(@ [F)du = [, , Al u(dz) = pF = vF
for every F € T (using 442G to see that F~! € ¥). So we get

[ e Hutdn) = [ A gt utde) = [ 7 g6 du
— [gdv= [ A ) r)u(a

if any of the integrals is defined in [—o0, c0].

(ii) Set 7(33) = f(2~1) whenever this is defined (4A5C(c-ii)), and apply (i) to ?
(¢) Similarly, apply 235E with p = v, ¢(z) = zy, J(z) = A(y) for every z € X; then

[T xx(¢ F)dp = A(y)u(Fy=") = pF

for every F € dom y, so

[ Fay)ulde) = Ay™") [T x fodu=Ay™) [ f(z)p(dx).

4421 Corollary Let X be a group carrying Haar measures. If p is a left Haar measure on X and v is a
right Haar measure, then each is an indefinite-integral measure over the other.

proof Let ji be the right Haar measure defined by setting i = pE~" for every Haar measurable £ C X.
Then GE = [, Az~ )u(dx) for every E € domp = dom i, so ji is an indefinite-integral measure over u;
because v is a multiple of i, it also is an indefinite-integral measure over p. Similarly, or because A is
strictly positive, p is an indefinite-integral measure over v.

442X Basic exercises >(a) Let X and Y be topological groups with (left) Haar probability measures
wand v, and ¢ : X = Y a continuous surjective group homomorphism. Show that ¢ is inverse-measure-
preserving for p and v.

(b) (i) Let X and Y be two topological groups carrying Haar measures. Show that the product topological
group X x Y (4A5QG) carries Haar measures. (i) Let (X;);c; be any family of topological groups carrying
totally finite Haar measures. Show that the product group [],.; X; carries a totally finite Haar measure.
(Hint: 4170.)

icl

(c) Let X be a subgroup of the group (R,+). Show that X carries Haar measures iff it is either
discrete (so that counting measure is a Haar measure on X) or of full outer Lebesgue measure (so that the
subspace measure on X is a Haar measure). (Hint: if G has a Haar measure v and is not discrete, then
v(GNla, f]) = (B — a)v(GNJ0,1]) whenever a < 8.) In particular, Q does not carry Haar measures.

(d) Let X be a topological group carrying Haar measures; let ¥ be the algebra of Haar measurable
subsets of X. Let 1 and v be any Haar measures on X (either left or right). Show that a set £ € ¥ can
be covered by a sequence of sets of finite measure for p iff it can be covered by a sequence of sets of finite
measure for v.

(e) Let X be a topological group carrying Haar measures and 2 its Haar measure algebra (in the sense of
442H). Show that we have left, right and conjugacy actions of X on 2 given by the formulae zeE* = (2F)*,
zeE* = (E2z71)* and 2¢E* = (2E271)* for every Haar measurable E C X and every z € X.
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18 Topological groups 442Xf

>(f) On R? define a binary operation * by setting (£1,&) * (91,m2) = (&1 + 1, &2 + €51m2). (i) Show
that * is a group operation under which R? is a locally compact topological group. (ii) Show that Lebesgue
measure 4 is a right Haar measure for . (iii) Let v be the indefinite-integral measure on R? defined by
setting vE = [, 5 e~ 81d€ déy for Lebesgue measurable sets £ C R2. Show that v is a left Haar measure for
. (Hint: 263D.) (iv) Thus (R?2, ) is not unimodular. (v) Show that the left modular function of (R?, %) is

(&1,62) — e 61,

>(g) Let X be any topological group which is not unimodular. (i) Show that there is an open subset
of X which is of finite measure for all left Haar measures on X and of infinite measure for all right Haar
measures. (Hint: the modular function is unbounded.) (ii) Let p be a left Haar measure on X and v a right
Haar measure. Show that L°(u) = L°(v) and L™ (u) = L>°(u), but that LP(u) # LP(v) for any p € [1,0].

(h) Let X and Y be topological groups carrying Haar measures, with left modular functions Ax and Ay
respectively. Show that the left modular function of X x Y is (z,y) — Ax(z)Ay (y).

(i) Let X be any topological group and A : X — ]0,00[ a group homomorphism such that {z : A(z) <
1+ €} is a neighbourhood of the identity in X for every € > 0. Show that A is continuous.

(j) Let X be a topological group with a right Haar measure v and left modular function A. Show that
vE~! = [ A(z)v(dz) for every Haar measurable set E C X.

442Y Further exercises (a) In 441Yc, show that the only G-invariant Radon measures on C, are
multiples of Hausdorff s(r — s)-dimensional measure on Cs. (Hint: G itself is W—dimensional (cf. 441Ye),
and for any C € C, the stabilizer of C' is 5(5;1) + (Tfs)(gfsfl)—dimensional. See FEDERER 69, 3.2.28.)

(b) Let r > 1, and let X be the group of non-singular r x r real matrices. Regarding X as an open subset

of R, show that a two-sided Haar measure y can be defined on X by setting uE = I \dTlAV“ r(dA),

. 2 . .
where py, is Lebesgue measure on R” ; so that X is unimodular.

(c) Show that there is aset A C [0, 1], of Lebesgue outer measure 1, such that no countable set of translates
of A covers any set of Lebesgue measure greater than 0. (Hint: let (F¢)e<. run over the uncountable closed
subsets of [0,1] with cofinal repetitions (4A3Fa), and enumerate the countable subsets of R as (I¢)e<.
Choose inductively z¢, vy € Fg such that z¢ ¢ U, -2} — Lo, ¢ & U, ccetn + e set A= {x¢ 1§ <c}.)
Show that we can extend Lebesgue measure on R to a translation-invariant measure for which A is negligible.
(Hint: 417A.)

(d) Let (X, p) be a metric space, and p, v two non-zero quasi-Radon measures on X such that pB(z,d) =
uB(y,0) and vB(x,0) = vB(y,0) for all § > 0 and z, y € X. Show that y is a multiple of v.

4427 Problem Let X be a compact Hausdorff space, and G the group of autohomeomorphisms of
X. Suppose that G acts transitively on X. Does it follow that there is at most one G-invariant Radon
probability measure on X?

442 Notes and comments Haar measure dominates the theory of locally compact topological groups for
two reasons: it is ubiquitous (the existence theorem, 441E) and essentially defined by the group structure
(the uniqueness theorem, 442B). I have tried to show that these are rather different results by setting the
theorems out with different hypotheses. I presented the existence theorem as a special case of 441C, which
demands a locally compact space and a group, but allows them to be different. In the uniqueness theorem
(roughly following HaLMOS 50) I demand a group with an invariant quasi-Radon measure, but do not (at
this point) ask for any hypothesis of compactness. In fact it will become apparent in the next section that
this is a somewhat spurious generality; 442B and 4421 here can be deduced from the traditional forms in
which the group is assumed to be locally compact and Hausdorff. From the point of view of the topological
measure theory to which this volume is devoted, however, I think the small extra labour involved in tracing
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through the arguments without relying on the Riesz Representation Theorem is instructive. For instance,
it emphasizes interesting features of the domains and null ideals of Haar measures (442H).

There is however a more serious question concerning the uniqueness theorem. I do not know whether
it really belongs to the theory of topological groups, as described here, or to the theory of group actions
along with 441C. The trouble is that I know of no example of a Hausdorff space X and a transitive group
G of homeomorphisms of X such that X carries G-invariant Radon measures which are not multiples of
each other (see 4427). 443U and 443Xy below eliminate the simplest possibilities. We do need to put some
restriction on the measures; for instance, counting measure on R is translation-invariant, but has nothing
to do with Lebesgue measure. There are also proper translation-invariant extensions of Lebesgue measure
(442Yc); for far-reaching elaborations of this idea see HEWITT & Ross 63, §16.

Version of 14.1.13

443 Further properties of Haar measure

I devote a section to filling in some details of the general theory of Haar measures before turning to
the special topics dealt with in the rest of the chapter. The first question concerns the left and right shift
operators acting on sets, on elements of the measure algebra, on measurable functions and on function
spaces. All these operations can be regarded as group actions, and, if appropriate topologies are assigned,
they are continuous actions (443C, 443G). As an immediate consequence of this I give an important result
about product sets {ab: a € A, b € B} in a topological group carrying Haar measures (443D).

The second part of the section revolves around a basic structure theorem: all the Haar measures considered
here can be reduced to Haar measures on locally compact Hausdorff groups (443L). The argument involves
two steps: the reduction to the Hausdorff case, which is elementary, and the completion of a Hausdorff
topological group. Since a group carries more than one natural uniform structure we must take care to
use the correct one, which in this context is the ‘bilateral’ uniformity (443H-4431, 443K). On the way I
pick up an essential fact about the approximation of Haar measurable sets by Borel sets (443J). Finally, I
give Halmos’ theorem that Haar measures are completion regular (443M) and a note on the complementary
nature of the meager and null ideals for atomless Haar measure (4430).

In the third part of the section I turn to the special properties of quotient groups of locally compact
groups and the corresponding actions, following A.Weil. If X is a locally compact Hausdorff group and Y
is a closed subgroup of X, then Y is again a locally compact Hausdorff group, so has Haar measures and a
modular function; at the same time, we have a natural action of X on the set of left cosets of Y. It turns out
that there is an invariant Radon measure for this action if and only if the modular function of Y matches
that of X (443R). In this case we can express a left Haar measure of X as an integral of measures supported
by the cosets of Y (443Q). When Y is a normal subgroup, so that X/Y is itself a locally compact Hausdorff
group, we can relate the modular functions of X and X/Y (443T). We can apply these results whenever we
have a continuous transitive action of a compact group on a compact space (443U).

443 A Haar measurability I recall and expand on some facts already noted in 442H. Let X be a
topological group carrying Haar measures.

(a) All Haar measures on X, whether left or right, have the same domain X, which T call the algebra
of ‘Haar measurable’ sets, and the same null ideal N, which T call the ideal of ‘Haar negligible’ sets. The
corresponding quotient algebra 2 = X /N, the ‘Haar measure algebra’, is the Boolean algebra underlying the
measure algebra of any Haar measure. Because Haar measures are (by the definition in 441D) quasi-Radon,
therefore complete and strictly localizable (415A), X¢ is closed under Souslin’s operation (431A) and 2 is
Dedekind complete (322Be). Recall that any semi-finite measure on 2, and in particular any Haar measure
on X, gives rise to the same measure-algebra topology and uniformity on 2 (324H), so we may speak of
‘the’ topology and uniformity of 2.

Because ¥ is the domain of a left Haar measure, xF € ¥ whenever FF € ¥ and z € X; because X is the
domain of a right Haar measure, Ex € % whenever £ € ¥ and x € X. Similarly, F and Ez are Haar

(©) 2001 D. H. Fremlin
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20 Topological groups 443Aa

negligible whenever E is Haar negligible and € X. Moreover, E~! = {27! : € E} is Haar measurable or
Haar negligible whenever F is.

Note that ¥ and A are invariant in the strong sense that if ¢ : X — X is any group automorphism
which is also a homeomorphism, then ¥ = {¢[F] : E € X} and N = {¢[E] : E € N}. P If pis a left
Haar measure on X, let v be the image measure pu¢~'. Because ¢ is a homeomorphism, v is a non-zero
quasi-Radon measure. If v measures F and a € X, then

v(aE) = p¢~ [aE] = u((¢~"a)(¢7[E]) = pé~ ' [E] = vE.
So v is again a left Haar measure, and has domain ¥ and null ideal A'. But domv = {E : ¢"}[E] € &} =
{¢E): E€X}and v [{0}) ={E: ¢ E|e N} ={¢[E] . E€N. Q

(b) We even have a symmetric notion of ‘measurable envelope’ in X: for any A C X, there is a Haar
measurable set £ D A such that p(ENF) = p*(AN F) for any Haar measurable ' C X and any Haar
measure g on X. PP Start with a fixed Haar measure . Then A has a measurable envelope E for pg, by
213J and 213L. Now to say that ‘E is a measurable envelope for A’ means just that (i) A C E € ¥ (ii) if
FeXYand F C E\ Athen F € N, so F is also a measurable envelope for A for any other Haar measure
on X. Q

In this context I will call £ a Haar measurable envelope of A.

(c) Similarly, we have a notion of full outer Haar measure: a subset A of X is of full outer Haar
measure if X is a Haar measurable envelope of A, that is, AN E # () whenever F is a Haar measurable set
which is not Haar negligible, that is, A is of full outer measure for any (left or right) Haar measure on X.

(d) For any Haar measure g on X, we can identify L°(u) with L>°(2() (3631) and L°(u) with LO(2)
(364Ic). Thus these constructions are independent of . The topology of convergence in measure of L°
is determined by its Riesz space structure (367T); so that this also is independent of the particular Haar
measure we may select. Of course the same is true of the norm of L°>°. Note however that the spaces LP, for
1 < p < o0, are different for left and right Haar measures on any group which is not unimodular (442Xg),
and that even for left Haar measures p the norm on LP(u) changes if p is re-normalized.

(e) When it seems appropriate, I will use the phrases Haar measurable function, meaning a function
measurable with respect to the o-algebra of Haar measurable sets, and Haar almost everywhere, meaning
‘on the complement of a Haar negligible set’. Note that we can identify L°(2) with the set of equivalence
classes in the space £°, where £0 is the space of Haar measurable real-valued functions defined Haar-a.e. in
X, and f ~ g if f = g Haar-a.e. In the language of §241, £° = £9(u) for any Haar measure j on X.

(f) Because E—! € S forevery E € 3, and E~! € A whenever E € A, we have a canonical automorphism
a+— a :2A — 2A defined by writing (E*)~ = (E~1)* for every E € ¥. Being an automorphism, this must
be a homeomorphism for the measure-algebra topology of 2 (324G). In the same way, if f € £Y then
f € LY where f(z) = f(2~!) whenever this is defined (4A5C(c-ii)), since {z : # € dom f, f(x) > a} =
{z : 2 € dom f, f(z) > a}~! belongs to ¥ for every «; and we can define an f-algebra automorphism
u u: LY — LO by saying that (f*) = (f)* for f € L0, If we identify L% with L°(2l) rather than with a
set of equivalence classes in £°, then we can define the map « — % as the Riesz homomorphism associated
with the Boolean homomorphism a + @ : 2l — 2, as in 364P. Note that i/ = ||u||co for every u € L,
but that (unless X is unimodular) other LP spaces are not invariant under the involution < (442Xg again).

(g) If X carries any totally finite (left or right) Haar measure, it is unimodular, and has a unique, two-
sided, Haar probability measure (442Ie). (In particular, this is the case whenever X is compact.) For such
groups we have LP-spaces, for 1 < p < oo, defined by the group structure, with canonical norms.

443B Lemma Let X be a topological group and p a left Haar measure on X. If E C X is measurable
and pF < oo, then for any € > 0 there is a neighbourhood U of the identity e such that u(EAzEy) < €
whenever z, y € U.
min(1,e)
10+3uE
locally finite, there is an open set Gg of finite measure such that u(E\ Go) < §. Let F C Go \ E be a closed

proof Set § = > 0. Write U for the family of open neighbourhoods of e. Because p is effectively
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set such that uF" > p(Go\ E)—9, and set G = Go\ F, so that u(G\ E) < ¢ and u(E\G) < 4. For U € U set
Hy = int{x : UzU C G}. Then H = {Hy : U € U} is upwards-directed, and has union G, because if z € G
there is a U € U such that UzUU C G, so that « € Hy. So there is a V € U such that u(G\ Hy) < 4.
Recall that the left modular function A of X is continuous (442J). So there is a U € U such that U C V
and |[A(y) — 1] < ¢ for every y € U.

Now suppose that z, y € U. Set £y = EN Hy. Then zE1y C G, so

w(E1UzEyy) < pG < pE + 6.

On the other hand,
pEy > pE — p(E\G) — (G \ Hy) > pE — 24,
w@Ery) = A(y)pEy =2 (1 = 0)(nE — 20) > pE — (2 + pE)d.
So
wW(ENzEy) > p(Ey NaEy) = pky + p(zEry) — p(ByUxEry) > pE — (5 + pk)o.

At the same time,

wxEy) = Aly)pE < (1+6)pE.
So

wEAxEy) = uE + p(xEy) —2u(ENxEy) < (10 4+ 3uF)d <,

as required.

443C Theorem Let X be a topological group carrying Haar measures, and 2l its Haar measure algebra.
Then we have continuous actions of X on 2 defined by writing

zoE* = (zE)*, we.E* = (Ex1)*, xe.E*= (xEx"1)

for Haar measurable sets £ C X and x € X.

proof (a) The functions e, «. and . are all well defined because the maps E — zF, E — Ex~! and
E s zEx~! are all Boolean automorphisms of the algebra ¥ of Haar measurable sets preserving the ideal
of Haar negligible sets (442G). It is elementary to check that they are actions of X on 2.

Fix a left Haar measure 4 on X and let i be the corresponding measure on 2. Then the topology of 2(
is defined by the pseudometrics p,, for fia < 0o, where p, (b, ¢) = fi(an (b A c)).

(b) Now suppose that xg € X, by € 2, fia < co and € > 0. Let E, Fy € ¥ be such that E* = a and
F3 = bo; set § = 3¢ > 0. Note that

g 'ENFy) < p(zg'E) = pE < oc.
Let U be a neighbourhood of the identity e such that
WEAYE) <6, pl(zg BN Fo)Ay(ag BN F)) <6
whenever y € U (443B). Set
a =aytea = (25 E)°.

Now suppose that € Uzg N xoU ! and that pu/(b,by) < 8. Then p,(web, woe1bg) < . P Let F € ¥ be
such that F* =b. Then 22y " and 2~ 'z both belong to U, so
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E N (zFAxoFy))
EnzF)+ p(ENxoFy) — 2u(ENaF NxoFy)
TTENF) 4 u(ENxgFy) — 2u(z e (zg " ENFy) N F)
CPENF) + p(z ' EAzy E) + p(zy PE N Fy)

— (g " ENFy N F) + 2z ao(zg ' E N Fo)Azg 'E N Fy))
< p(zg'EN(FAR)) + p(EAzzy ' E) + 26
<5+0+20=45=c. Q

palxerb, xoerbo) =

—_—

I
I
I
I

T
T

IN

As xg, by, a and € are arbitrary, +; is continuous.

(c) The same arguments, using a right Haar measure to provide pseudometrics defining the topology of
2, show that s, is continuous. (Or use the method of 443X (d-ii).)

(d) Accordingly the map (z,y,a) — x+;(ye-a) is continuous. So
(x,a) = xoy(xera) = Toca

is continuous.

443D Proposition Let X be a topological group carrying Haar measures. If £ C X is Haar measurable
but not Haar negligible, and A C X is not Haar negligible, then

(a) there are z, y € X such that ANaE, AN Ey are not Haar negligible;

(b) EA and AFE both have non-empty interior;

(c) E7'E and EE~! are neighbourhoods of the identity.

proof (a)(i) Let p be any left Haar measure on X, and for Borel sets FF C X set
vE =sup{p(FNIE):IC X is finite}.

It is easy to check that v is an effectively locally finite 7-additive Borel measure, inner regular with respect
to the closed sets, because {IF : I € [X]|<*} is upwards-directed and p is quasi-Radon. Moreover,

v(zF) = sup;e(x)<w p(xF N IE) = suprexj<w p(F Nz ' E) = vF

for every Borel set F' C X and every € X. Accordingly the c.l.d. version 7 of v is a left-translation-
invariant quasi-Radon measure on X (415Cb); since vE > 0, U is non-zero and is itself a left Haar measure.
Consequently A is not 7-negligible. Let H be a measurable envelope of A for Haar measure (443Ab). Then
H is not Haar negligible, so there is a closed set F' C H which is not Haar negligible, and vF = vF > 0.
Thus there is an z € X such that

0<u(FNzE) <u(HNzE)=p*(ANzkE),
and AN xF is not Haar negligible.

(ii) Applying the same arguments, but starting with a right Haar measure u, we see that there is a
y € X such that AN Ey is not Haar negligible.

(b) Let u be a left Haar measure on X, and F' a Haar measurable envelope of A. The function x —
(rE~1)* : X — 2 is continuous, where 2 is the Haar measure algebra of X (443C), so

H={z:p*(ANnzE~1) >0} ={x: F*N(zE~')* #0}
is open. Now
HC{z:AnzE 1 #0} = AE,

so H C int AE; and E~! is Haar measurable and not Haar negligible, so H # (), by (a). Thus int AE # ().
Similarly, using a right Haar measure (or observing that EA = (A7'E~1)71), we see that FA has
non-empty interior.
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(c) Again taking a left Haar measure pu, u is semi-finite, so there is an F' C F such that 0 < uF < co. By
443B, there is a neighbourhood U of the identity such that u(FAzFy) < uF for all z, y € U. In particular,
ifx e U, u(F\2F) < uF,so FNzF # 0 and x € FF~! C EE~!; at the same time, u(F \ Fx) < uF,
FNFr#(0andx € F''FCE'E. So E-'E and EE~! both include U and are neighbourhoods of the
identity.

443E Corollary Let X be a Hausdorff topological group carrying Haar measures. Then the following
are equiveridical:

(i) X is locally compact;

(ii) every Haar measure on X is a Radon measure;

(iii) there is some compact subset of X which is not Haar negligible.

proof (i)=-(ii) Haar measures are locally finite quasi-Radon measures (441D, 442Aa), so on locally compact
Hausdorff spaces must be Radon measures (416G).

(ii)=(iii) is obvious, just because Haar measures are non-zero and any Radon measure is tight (that is,
inner regular with respect to the closed compact sets).

(iii)=(i) If K C X is a compact set which is not Haar negligible, then KK is a compact set with
non-empty interior, so X is locally compact (4A5Eg).

443F Later in the chapter we shall need the following straightforward fact.

Lemma Let X be a topological group carrying Haar measures, and Y an open subgroup of X. If y is a
left Haar measure on X, then the subspace measure uy is a left Haar measure on Y. Consequently a subset
of Y is Haar measurable or Haar negligible, when regarded as a subset of the topological group Y, iff it is
Haar measurable or Haar negligible when regarded as a subset of the topological group X.

proof By 415B, uy is a quasi-Radon measure; because p is strictly positive, gy is non-zero, and it is easy
to check that it is left-translation-invariant. So it is a Haar measure on Y. The rest follows at once from
442H /443A.

443G  We can repeat the ideas of 443C in terms of function spaces, as follows.

Theorem Let X be a topological group with a left Haar measure u. Let ¥ be the domain of p, £9 = £%(u)
the space of Y-measurable real-valued functions defined almost everywhere in X, and L° = L%u) the
corresponding space of equivalence classes (§241).

(a) asf, as.f and ae.f (definitions: 4A5C(c-ii)) belong to £° for every f € £° and a € X.

(b) If @ € X, then ess sup |ae;f| = ess sup |ae,.f| = esssup|f| for every f € L>® = L£°°(u), where
ess sup | f| is the essential supremum of |f| (243Da). For 1 < p < oo, |lasifll, = ||fll, and |las - fll, =
A(a)~YP| ||, for every f € LP = LP(u), where A is the left modular function of X.

(c) We have shift actions of X on L° defined by setting

asif* = (asf)*,  asf*=(asrf)*, aecf* = (acf)*
for a € X and f € £°. If 7 is the reversal operator on L° defined in 443Af, we have
asj i = (as,u)®,  as i = (ascu)®

for every a € X and u € L.

(d) If we give L° its topology of convergence in measure these three actions, and also the reversal operator
., are continuous.

(e) For 1 < p < oo the formulae of (c¢) define actions of X on L = LP(u), and ||asjull, = ||ul|, for every
u € LP, a € X; interpreting A(a)~/* as 1 if necessary, ||asqul|, = A(a)"'/?||ul|, whenever u € LP and
a€X.

(f) For 1 < p < oo these actions are continuous.

proof (a) Let f € L% Then F = dom f is conegligible, so aF = domas;f and Fa~' = domae,f are
conegligible (442G). For any a € R, set E, = {x : x € F, f(x) < a}; then {z : (as;f)(z) < a} = aF, and
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{2 : (ae.f)(z) < a} = E,a~! are measurable, so as;f and ae,.f are measurable. Thus as;f and ae,f belong
to £0. Tt follows at once that as.f = as;(as,f) belongs to L°.

(b)(i) For a > 0,

ess sup |f| < a <= |f(z)| < « for almost all
<~ |(as1f)(z)| < « for almost all
< |(a*f)(z)] < a for almost all x

because the null ideal of p is invariant under both left and right translations. So ess sup | f| = ess sup |ae; f| =
ess sup |ae, f|.

(ii) For 1 < p < oo,

last 2 = / [(anf) (@) () = / o )P () = / (@) P ()
(4417)
— £

ot = [ o )a) i) = [ If @)l utdo) = Aa™) [ 1#@)Pa(d)
(442Kc)
— (A1)

(c)(i) I have already checked that as,f, as,f and as.f belong to £° whenever f € L% and a € X. If f,
g€ LY and f =, g, let E be the conegligible set {x : x € dom fNdomg, f(z) = g(z)}; then aF and Ea~!
and aEa~! are conegligible and

(as1f)(z) = (as19)(z) for every z € aE, (as.f)(x) = (as.g)(x) for every z € Ea™1,

(asef)(x) = (ascg)(z) for every x € aFa™?,

SO aei f =ae. %G, G f =ae. aorg and ae.f =, ascg. Accordingly the formulae given define functions e, e,
and . from X x L° to LY. They are actions just because the original ;, +, and . are actions of X on £°
(4A5Cc-4A5Cd).

(ii) If f € £, then
(asf)(@) = fla™'z) = fa~"a) = (as f) (1) = (as.f)° (@)

when any of these is defined, which is almost everywhere, so asju = (as,u)* for every u € L°. Similarly,

(asef)(@) = fla™ wa) = fla w7 a) = (ascf)(z7Y) = (ascf)* (2)
and as .t = (asu)®.

(d)(i) In 367T there is a description of convergence in measure on L° in terms of its Riesz space structure.
As © is a Riesz space automorphism of L, it must also be a homeomorphism for the topology of convergence
in measure.

(ii) To see that s is continuous, it will be convenient to work with the space £% of Haar measurable
real-valued functions defined on the whole of X. I will use a characterization of convergence in measure from
245F: a subset W of LY is open iff whenever f3 € W there are a set E of finite measure and an ¢ > 0 such that
f* € W whenever u{z : x € E, | f(z)—fo(x)| > €} < e. Now if E is a measurable set of finite measure, f € L%,
and € > 0, there is a neighbourhood U of the identity e of X such that u{z: z € E, |f(azx) — f(x)] > €} <€
for every a € U. P Let m > 1 be such that p{z : z € E, [f(z)| > me} < 2e. For —m < k < m, set
Ey={z:2 € E, ke < f(z) < (k+ 1)e}. By 443B, there is a neighbourhood U of e such that

-1 €
p(ExLa Ey) < —
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whenever a € U and —m < k < m. Now, for a € U,
{z:z€ B, |flax) — f(z)| > ¢} C{ax:x € B, |f(x)] >mes UUp ", (ExLa ' Ey)

has measure at most
€ €
—4+2m— =e.
2 + am Q

that p(ag 'E) = pFE is finite. Let U be a neighbourhood of e such that
nyEAE) <6

(iii) Let £ be a measurable set of finite measure, ag € X, fo € L% and € > 0. Set § = ¢/3 > 0. Note
plz sz € ag B, | folyx) — fo(w)] = 6} <6,

whenever y € U.
Now suppose that a € UagNaoU ! and that f € £, is such that u{x : 2 € ay ' E, |f(z) — fo(z)| > 6} < 6.

In this case,
{z:x € E,|f(a z) — folag'z)| > €}
C{z:ze B, |f(a"2) ~ fola )| > 6}
U{z:z € E, |fola™ z) — folag'z)| > 5}
C (BEAaay'BE)U{r: 2 € aay'E, |f(a™'2) — fo(atz)| > &}
Uag{w:w € ay'E, |fo(a  agw) — fo(w)| > 5}

C (ELaay'E)Ua{w:w € ay'E, |f(w) — fo(w)| > 5}
Uag{w : w € ag ' E, | fo(a  agw) — fo(w)| > 6}

has measure at most 30 = € because aa, ! e and a 'ag all belong to U. Because F and € are arbitrary, the

function (a,u) — aeju is continuous at (ag, f3); as ag and f; are arbitrary, «; is continuous.

(iv) Now
(a,u) — aspu = (aii)”

must also be continuous. It follows at once that e, is continuous, since as.u = as;(as,u).

(e) follows at once from (b) and (c).
(i) If w € L? and € > 0, there is a neighbourhood U of e such that ||u — ye;(ze,u)||, < € whenever y,

(f) Fix p € [1, 0.
z € U. P When u is of the form (xF)*, where uF < 0o, we have
lu = yer(zert)llp = p(EAYE==1)YP,

yei(zeru) = x(yEz71)",
so the result is immediate from 443B. If u = Y """ a;(xE;)*, where every E; has finite measure, then, setting

u; = (xE;)* for each 1,
lu = yor(zeru)lp < 35 levlllui — yer(zerui)llp < €
whenever y and z are close enough to e. In general, there is a v of this form such that |ju — v[|, < Le. If we
take a neighbourhood U of e such that ||[v — ye;(z+,0)||, < e and A(2)"*/P < 2 whenever y, z € U, then
_ 1
lye1(zeru) = yor(zep0)llp = A(2) 7P lu — vl < Se

whenever z € U, so
lu = yer(zeru)llp < llu—vllp + [l = yar(zer0)[lp + lyi(zer0) — yor(zeru)lp < €
whenever y, z € U. Q
(ii) Now suppose that ug € LP, ag, bp € X and € > 0. Set vy = age;(boerup) and § = ¢/(1 +
< 2 and |lvg — yer(zervo)llp < 9O

2A(bg)~/P) > 0. Let U be a neighbourhood of e such that A(y)~/?

whenever y, z € U. If a € Uag, b € Uby and |ju — ug||, < 4, then
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||a°l(b'ru) - UO”p < ||a'l(b'ru) - a'l(b'rUO)Hp + ”a'l(b‘ruo) - UOHP
= A0)7P|lu— uolly + llaag e (bbg *+rv0) — woll,

< A TYPA(b) PS4+ 6 < 6(1 + 2A(b)"VP) = €.

As € is arbitrary, (a,b, u) — ae;(be,u) is continuous at (ag, bo, uo)-
As in (c), this is enough to show that «;, «. and . are all continuous actions.

Remark I have written this out for a left Haar measure p, since the spaces LP(u) depend on this; if v is
a right Haar measure, and X is not unimodular, then LP(u) # LP(v) for 1 < p < co. But recall that the
topology of convergence in measure on L° is the same for all Haar measures (443Ad), so (c) above, and the
case p = oo of (b) and (d), are two-sided; they belong to the theory of the Haar measure algebra.

443H Theorem Let X be a topological group carrying Haar measures. Then there is a neighbourhood
of the identity which is totally bounded for the bilateral uniformity on X.

proof Let u be a left Haar measure on X. Let Vg be a neighbourhood of the identity e such that uVy < oo
(442Aa). Let V be a neighbourhood of e such that VV C Vj and V! = V.

? Suppose, if possible, that V is not totally bounded for the bilateral uniformity on X. By 4A50a, one
of the following must occur:

case 1 There is an open neighbourhood U of e such that V' ¢ IU for any finite set I C X. In this
case, we may choose a sequence (x,)nen in V inductively such that x,, ¢ x;U whenever i < n. Let U
be an open neighbourhood of e such that U; C V and UlUl_1 C U; then (2,U;)nen is disjoint. Since
w(xnUr) = plUy > 0 for every n (by the other clause in 442Aa), p(lJ, ey 2nU1) = oo; but 2,U; C V for
every n, so this is impossible.

case 2 There is an open neighbourhood U of e such that V' ¢ UI for any finite set I C X. So we
may choose a sequence (z,)nen in V inductively such that x,, ¢ Uz; whenever i < n. Let U; be an open
neighbourhood of e such that U; C V and UlUl_1 C U; then (Uflxn>neN is disjoint, so (x,; U} )nen is also
disjoint. Since p(x, 'Uy) = pUs > 0 for every n, p(U, ey 25 Ut) = oo; but 2, *U; C Vj for every n, so this
also is impossible. X

Thus V is totally bounded for the bilateral uniformity on X, and we have the required totally bounded
neighbourhood of e.

4431 Corollary Let X be a topological group. If A C X is totally bounded for the bilateral uniformity
of X, it has finite outer measure for any (left or right) Haar measure on X.

proof If y is a Haar measure on X, let U be an open neighbourhood of the identity e of finite measure.
There is a finite set I such that A C IU NUTI (4A50a again), so that p*A < #(I)uU is finite.

443J Proposition Let X be a topological group carrying Haar measures, and 2l its Haar measure
algebra.
(a) There is an open-and-closed subgroup Y of X such that, for any Haar measure u on X, Y can be
covered by countably many open sets of finite measure.
(b)(i) If E C X is any Haar measurable set, there are an F, set E/ C E and a Gs set E” D F such that
E" \ E' is Haar negligible.
(ii) Every Haar negligible set is included in a Haar negligible Borel set, and for every Haar measurable
set F there is a Borel set F' such that EAF is Haar negligible.
(iii) The Haar measure algebra 2 of X may be identified with B/Z, where B is the Borel o-algebra of
X and Z is the ideal of Haar negligible Borel sets.
(iv) Every member of L°(2) can be identified with the equivalence class of some Borel measurable
function from X to R. Every member of L (2) can be identified with the equivalence class of a bounded
Borel measurable function from X to R.

proof (a) Let V be an open neighbourhood of the identity which is totally bounded for the bilateral
uniformity of X (443H); we may suppose that V-1 =V. Set Y = VUVVUVVVUVVVVU.... Then Y
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is an open subgroup of X, therefore also closed (4A5Ek). By 4A50Db, every power of V' is totally bounded,
so Y is a countable union of totally bounded sets. If p is any left Haar measure on X, then any totally
bounded set has finite outer measure for p (4431). Thus Y is a countable union of sets of finite measure for
. The same argument applies to right Haar measures, so Y is a subgroup of the required form.

(b)(i) Let E C X be a Haar measurable set, and fix a left Haar measure y on X. Take the open subgroup
Y of (a), and index the set of its left cosets as (Y;);cr; because any translate of a totally bounded set is
totally bounded (4A50b again), each Y; is an open set expressible as | J,, .y Hin, where every Hy, is a totally
bounded open set, so that uH,, is finite.

For i € I and m, n € N there is a closed set Fjp,,, C E N Hyyp, such that pFin, > p(E N Hipy) — 27", Set
Frn = Uies Fimn for each m, n € N; then F,,,, is closed (4A2Bb). So £’ = J F,... is F,. For each
1el,

m,neN

(E\E)NY; € Upen(E N Him \ Uy Fimn)
is negligible; thus {G : G C X is open, u(GN E\ E’) = 0} covers X and F \ E’ must be negligible (414Ea).
In the same way, there is an F, set F* C X \ E such that (X \ E) \ F* is negligible; now E” = X \ F*
is G5 and E” \ E is negligible, so E” \ E’ also is. (I am speaking here as if ‘negligible’ meant ‘u-negligible’.
But of course this is the same thing as the ‘Haar negligible’ of the statement of the proposition.)

(ii), (iii), (iv) follow at once.

443K Theorem Let X be a Hausdorff topological group carrying Haar measures. Then the completion
X of X under its bilateral uniformity is a locally compact Hausdorff group, and X is of full outer Haar
measure in X. Any (left or right) Haar measure on X is the subspace measure corresponding to a Haar
measure (of the same chirality) on X.

proof (a) By 443H and 4A5N, Xisa locally compact Hausdorff group in which X is embedded as a dense
subgroup.

(b) Let p be a left Haar measure on X. Then there is a Radon measure A on X such that 1 is the
subspace measure Ax. P For Borel sets £ C )/(\', set vE = pu(X N E). Then v is a Borel measure, and it
is T-additive because p is. Any point of X has a compact neighbourhood V' in X ; now V must be totally
bounded for the bilateral uniformity of X (4A2Je), so V N X is totally bounded for the bilateral uniformity
of X (4A5Ma), and vV = p(V N X) is finite (4431). Thus v is locally finite. If vE > 0, there is an open set
H C X such that uH < oo and u(H N X N E) > 0, because p is effectively locally finite; now there is an
open set G C X such that H = X N G, so that vG < 0o and ¥(G N E) > 0. Thus v is effectively locally
finite.

By 416H, the c.l.d. version A of v is a Radon measure on X. Since AK = vK = 0 whenever K C X \ X
is compact, X is of full outer measure for X\. Accordingly

Ax(GNX)=AG=vG=u(GNX)
for every open set G C X , and Ax = u, because they are quasi-Radon measures agreeing on the open sets

(415B, 415H(iii)). Q

(c) Continuing the argument of (b), A is a left Haar measure on X. P Let G C X be open, and z € X.
If K C 2G is compact, then 27K C G, and {w : w € X, wK C G} is a non-empty open set (4A5Ei), so
meets X. Take z € X such that zK C G; then

AG=p(XNG)>puXnNaK)=px(XNK))=pXNK)=M\K.

As K is arbitrary, A(2G) < AG. By 441Ba, A is invariant under the left action of X on itself, that is, is a
left Haar measure. Q
We know that X is of full outer measure for A, so this shows that it has full outer Haar measure in X.

(d) The same arguments, looking at Gz and Kz~! in (c), show that if u is a right Haar measure on X
it is the subspace measure \x for a right Haar measure A on X.
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443L Corollary Let X be any topological group with a Haar measure . Then we can find Z, A and ¢
such that
(i) Z is a locally compact Hausdorff topological group;

(ii) X is a Haar measure on Z;

(iii) ¢ : X — Z is a continuous homomorphism inverse-measure-preserving for p and A;

(iv) p is inner regular with respect to {¢p~1[K]: K C Z is compact};

(v) if E C X is Haar measurable, we can find a Haar measurable set ' C Z such that ¢—1[F] C E and
E\ ¢71[F] is Haar negligible;

(vi) a set G C X is an open set in X iff it is of the form ¢~ ![H| for some open set H C Z;

(vii) a set G C X is a regular open set in X iff it is of the form ¢~ ![H] for some regular open set H C Z;

(viii) a set A C X is nowhere dense in X iff ¢[A] is nowhere dense in Z.

proof (a) Let Y C X be the closure of {e}, where e is the identity of X. Then Y is a closed normal
subgroup of X, and if ¢ : X — X/Y is the quotient map, every open (or closed) subset of X is of the form
¢~ 1[H] for some open (or closed) set H CY (4A5Kb).

Consider the image measure v = u¢~! on X/Y. This is quasi-Radon. P Because u is a complete 7-
additive topological measure, so is v. If F' € domv and vF > 0, there is an open set G C X such that
puG < oo and p(G N ¢~ LF]) > 0; now G = ¢~ ![H] for some open set H C X/Y, and vH = puG is finite,
while v(HN F) = p(GN¢~1[F]) > 0. Thus v is effectively locally finite (therefore semi-finite). Again, if
F € domv and vF > v, there is a closed set E C ¢~ ![F] such that uE > ~; now FE is expressible as ¢~ ![H]
for some closed set H C X/Y'; because ¢ is surjective, H C F, and vH = pE > . Thus v is inner regular
with respect to the closed sets. Finally, suppose that F C X/Y is such that F' N F’ € dom v whenever
vF' < co. If E C X is a closed set of finite measure, it is of the form ¢~ ![F'] where vF’' = uFE < oo, so
F'NF €domv and EN ¢~ L[F] € dom p; by 412Ja, we can conclude that ¢~![F] € dom y and F € dom v.
Thus v is locally determined and is a quasi-Radon measure. Q

We find also that v is a left Haar measure. B If z € X/Y and F' € dom v, express z as ¢(x) where z € X;
then ¢~1[2F] = x¢~1[F], so

v(2F) = p(a¢~[F]) = u¢~[F] = vF. Q

(b) Thus X/Y is a topological group with a left Haar measure v. Because Y is closed, X/Y is Hausdorff

(4A5J](b-ii-a)). We can therefore form its completion Z = )?/T/ , a locally compact Hausdorfl group, and
find a left Haar measure A on Z such that v is the corresponding subspace measure on X/Y', which is of full
outer measure for A (443K). The embedding X/Y & Z is therefore inverse-measure-preserving for v and
A, so that ¢, regarded as a map from X to Z, is inverse-measure-preserving for u and A. Also, of course,
¢ : X — Z is a continuous homomorphism.

If EC X and puE > v, there is a closed set E' C E such that uE’ > ~v. Now E’ is of the form ¢~![F]
where FF C X/Y is closed and vF = puE’ > ~. Next, F is of the form (X/Y) N F’ where F' C Z is closed
and \F" = vF > 7. So there is a compact set K C F’ such that AK > ~, and we have

o HK]C o7 F =97 [FICE, po '[K]=v(KN(X/Y)) =K >7.

As E and « are arbitrary, u is inner regular with respect to {¢![K]: K C Z is compact}. So (i)-(iv) are
true.

(c) If E C X is Haar measurable, then by 443J(b-i) there is an F, set E/ C E such that E \ E’ is Haar
negligible. Now there are an F, set H C X/Y such that E' = ¢ ![H] and an F, set ' C Z such that
H = (X/Y)NF, in which case E' = ¢~ 1[F], and E \ ¢![F] is Haar negligible. This deals with (v).

(d) Concerning (vi)-(viii), we just have to put 4A2B and 4A5Kb together. If G, A C X, then

G is open in X <= there is an open V C X/Y such that G = ¢~ '[V]
<= therearea V C X/Y and an open H C Z
such that G = ¢ '[V] and V = (X/Y)N H
<= there is an open H C Z such that G = ¢~ '[H];
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G is a regular open set in X <= ¢[G] is a regular open subset of X/Y
(4A5K (b-iii), 4A2B(Liii))
<= there is a regular open H C Z
such that ¢[G] = (X/Y)NH
(4A2B(j-ii))
<= there is a regular open H C Z
such that G = ¢~ '[H];

A is nowhere dense in X <= ¢[A] is nowhere dense in X/Y
(4A5K(iv)-(v))
<= ¢[A4] is nowhere dense in Z

(4A2B(j-1)).

443M Theorem (HaLmos 50) Let X be a topological group and p a Haar measure on X. Then p is
completion regular.

proof (a) Suppose first that p is a left Haar measure and that X is locally compact and Hausdorff. In this
case any self-supporting compact set K C X is a zero set. I? For each n € N, there is an open neighbourhood
U, of the identity such that u(KAzK) < 27" for every = € U, (443B); we may suppose that U,1 C U,
for each n. Each set U, K is open (4A5Ed), so (,cnyUnK is a Gs set. T If K # (), .y Un K, there is an
T € ﬂneN U,K \ K. For each n € N, there are y,, € U,, 2z, € K such that z = y,2,. Let F be any
non-principal ultrafilter on N. Then z = lim,,_, 7 z,, is defined in K, so

vzl =lim, raz, ! =lim, 7y,
is defined in X; because y,, € U; for every i < n,

227 € Nien Ui = Nien U

Consequently p(zz ! KAK) = 0; because p is left-translation-invariant, u(K \ 2271 K) = 0. But as z ¢ K,
z€ K\ 2z 'K and KN (X \ 227K) is non-empty. And zx~1K is closed, so X \ 227K is open and K is
not self-supporting, contrary to hypothesis. X

Thus K = (1, .y UnK is a Gs set. Being a compact Gs set in a completely regular Hausdorff space, it is
a zero set (4A2F (h-v)). Q

Since p is surely inner regular with respect to the compact self-supporting sets (414F), it is inner regular
with respect to the zero sets, and is completion regular.

(b) Now suppose that pu is a left Haar measure on an arbitrary topological group X. By 443L, we can find
a locally compact Hausdorff topological group Z, a continuous homomorphism ¢ : X — Z and a left Haar
measure A on Z such that ¢ is inverse-measure-preserving for p and A and p is inner regular with respect
to {¢7[K]: K C Z is compact}. Now if E € dom p and v < uFE, there is a compact set K C Z such that
¢71[K] C E and vK > ~. Next, there is a zero set L C K such that vL > ; in which case ¢"![L] C E is a
zero set and pu¢~1[L] > ~. Thus p is inner regular with respect to the zero sets and is completion regular.

(c) Finally, if p is a right Haar measure on a topological group X, let ji be the corresponding left Haar
measure, setting 1 F = pE~! for Haar measurable sets E. Then i is inner regular with respect to the zero
sets; because x — 27! : X — X is a homeomorphism, so is .

443N 1 give a simple result showing how the measure-theoretic properties of groups carrying Haar
measures have topological consequences which might not be expected.
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Proposition Let X be a topological group carrying Haar measures (for instance, X might be any locally
compact Hausdorff group).

(i) Let G be a regular open subset of X. Then G is a cozero set.

(ii) Let F be a nowhere dense subset of X. Then F is included in a nowhere dense zero set.

proof (a) Suppose to begin with that X is locally compact, o-compact and Hausdorff. Let u be a left Haar
measure on X; then p is o-finite, because X is covered by a sequence of compact sets, which must all have
finite measure.

(i) Write U for the family of open neighbourhoods of the identity e of X. For each U € U, set
Hy = int{z : zU C G}; then {Hy : U € U} is an upwards-directed family of open sets with union G, as in
the proofs of 442Ab and 442B, so G* = supy ¢y Hy; in the measure algebra 2 of y. Because y is o-finite,
2l is cce (322G) and there is a sequence (Up)nen in U such that G* = sup,, oy Hy;  (316E). In this case,
G\ U, en Hu, is negligible, so must have empty interior.
By 4A5S, there is a closed normal subgroup Y of X, included in
Let m: X — X/Y be the canonical map.
For each n € N, Q,, = w[Hy, | is open (4A5]J(a-1)), and

Hy, C 7 'Q,] = Hy,Y C Hy, U, C G.

nen Un, such that X/Y is metrizable.

So

G= UneN Hy, = UneN W_I[Qn]-
Setting @ = int |J,,cy @n, and using 4A5J(a-i) and 4A2B(f-ii), we see that

Q] =it U, ey HQn] =it G =G
(this is where I use the hypothesis that G is a regular open set). But @, being an open set in a metrizable
space, is a cozero set (4A2Lc), so G = 7 1[Q)] is a cozero set (4A2C(b-iv)), as required by (i).

(ii) Now consider the nowhere dense set F' C X. This time, let G be a maximal disjoint family of
cozero subsets of X \ F. Then G is countable, again because p is o-finite, and | JG is dense, because the
topology of X is completely regular. So X \ |JG is a nowhere dense zero set including F'.

(b) Next, suppose that X is any locally compact Hausdorff topological group. Then X has a o-compact
open subgroup X, (4A5El). By (a), any regular open set in Xy is a cozero set in Xy. The same applies to
all the (left) cosets of Xg, because these are homeomorphic to Xj.

If C' is any coset of Xg, then G N C is a regular open set in C, so is a cozero set in C'. But as the left
cosets of X form a partition of X into open sets, G is also a cozero set in X (4A2C(b-vii)).

Similarly, F' N C is nowhere dense in C' for every left coset C' of Xy, so is included in a nowhere dense
zero set in C', and the union of these will be a nowhere dense zero set in X including F'.

(¢) Now suppose that X is any group carrying Haar measures. Let Z, A and ¢ : X — Z be as in 443L.
Then G is expressible as ¢ 1[H] for some regular open set H C Z (443L(vii)); by (b), H is a cozero set,
so G also is (4A2C(b-iv) again). As for F, ¢[F] is nowhere dense in Z, by 443L(viii). Let F’ O ¢[F] be a
nowhere dense zero set; then ¢~1[F'] D F is a zero set, and ¢[¢~'[F’]] C F’ is nowhere dense, so ¢~ 1[F'] is
nowhere dense.

4430 An expected result, well known for Lebesgue measure, but which seems to need a little attention
for the non-metrizable case, is the following.

Proposition Let X be a topological group and p a left Haar measure on X. Then the following are
equiveridical:

(i) w is not purely atomic;

(ii) p is atomless;

(iii) there is a non-negligible nowhere dense subset of X;

(iv) p is inner regular with respect to the nowhere dense sets;

(v) there is a conegligible meager subset of X;

(vi) there is a negligible comeager subset of X.
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If X is Hausdorff, we can add
(vii) the topology of X is not discrete.

proof Write ¥ for the domain of p.

(a)(i)=(ii) If p is not purely atomic, let E € ¥ be a non-negligible set not including any atom. If FF € ¥
is any other non-negligible set, then there is an x € X such that F Nz FE is not negligible, by 443Da. Now
the subspace measures on F NzE and 2~ 'F N E are isomorphic, and the latter is atomless, so F N zE is
not an atom and F is not an atom. As F' is arbitrary, u is atomless.

(b)(iii)=-(iv) The argument is similar. Suppose that A is a non-negligible nowhere dense subset of X;
then E = A is a non-negligible closed nowhere dense set. If F' € X is non-negligible, there is an # € X such
that F Nz FE is non-negligible; as y — zy : X — X is a homeomorphism, zF and F Nz FE are nowhere dense.
Thus every non-negligible measurable set includes a nowhere dense non-negligible measurable set; as the
family of nowhere dense sets is an ideal, p is inner regular with respect to the nowhere dense sets (412Aa).

(c)(iv)=-(i) Suppose that u is inner regular with respect to the nowhere dense sets. Let U be an open
neighbourhood of the identity e of X with finite measure (442Aa once more), and V' an open neighbourhood
of e such that VV =1V C U. Then puV > 0, by the other half of 442Aa.

? If there is a py-atom E C V, let Fy C F be a non-negligible measurable nowhere dense set, F; C Fj a
non-negligible closed set and F C F; a non-empty self-supporting closed set (414F). Because y — xy is a
measure-preserving automorphism, xF is a self-supporting closed set, and an atom for u, for every x € X.
So if z, y € X and xF NyF is non-negligible, then xF' \ yF is negligible and «F C yF; similarly, yF C «F,
so ¢F = yF. Now no finite number of translates of the nowhere dense set F' can cover the non-empty open
set V, while V' C |J, oy F, so we must have a sequence (z,)nen in X such that z, FNV \ ., z:F # 0
for every n € N. In this case, z;F' N x, F is negligible whenever i < n, so

1(Upen ond) = 3 ey t(anF) = oo,

However VNz,F #0,s02, € VF ' CVV~!tand z,F CVV 'V CU for every n € N; and U is supposed
to have finite measure. X
Accordingly V' does not include any atom and g cannot be purely atomic.

<n

(d)(iv)=(v) Suppose that yx is inner regular with respect to the nowhere dense sets. Let G be a maximal
disjoint family of open sets of non-zero finite measure. Then int(X \|JG) is negligible, because p is effectively
locally finite, so must be empty, and X \ |J G is nowhere dense. For each G € G, let (Fgy,)nen be a sequence
of nowhere dense measurable subsets of G such that uG = lim,_,, Fa,. For n € N, set A4, = UGeg Fa,.
Then A,, is nowhere dense. PP If H C X is open and not empty, either H N A,, = @) or there is a G' € G such
that HNG # 0, in which case HNG\ Fgn, C H\ A, is open and non-empty. Q So D = (X \UJG)UU, ey 4n
is meager. ? If D is not conegligible, let H be an open set of finite measure such that A\ D is non-negligible.
As H\ D C |G, there is a G € G such that y(HNG\ D) > 0;but HNG\ D C G\ U, o Fon- X

Thus D is a conegligible meager set.

neN

(e)(v)<(vi) The complement of a witness for (v) witnesses (vi), and conversely.
(f) (v)=(iii) is elementary, since u is non-zero.

(g)(ii)=-(iii) Suppose that p is atomless. I proceed through an expanding series of special cases, as in
443N.

(a) Suppose to begin with that X is locally compact, Hausdorff and o-compact. In this case X has
a closed negligible normal subgroup Y such that X/Y is separable and metrizable. B Since u is atomless,
{e} must be negligible. Since p is locally finite and inner regular with respect to the closed sets, there must
be a sequence (U, )nen of open neighbourhoods of e such that inf, ey pU, = 0. By 4A5S again, there is a
closed normal subgroup Y C [,y Uy such that X/Y" is metrizable, and of course Y is negligible. Since the
canonical map from X onto X/Y is continuous (4A5J(a-i) again), X/Y is o-compact, therefore separable
(4A2Hd, 4A2Pd). Q
Write 7 : X — X/Y for the canonical map. Let D C X/Y be a countable dense set, and consider 7~ 1[D].
This is a countable union of translates of Y, so is negligible; let F' C X \ 7~ ![D] be a closed non-negligible
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set. Then 7[F| does not meet D. Because 7 is an open mapping (4A5Ja once more), int F' = () and F is
nowhere dense.
Thus in this case we have a non-negligible nowhere dense set, as required.

(B8) Now suppose just that X is locally compact and Hausdorff. In this case it has an open o-compact
subgroup Xy say. The subspace measure px, on Xy is a left Haar measure on Xy (443F), and is atomless;
by (), there is a nowhere dense set F' C X, such that 0 < px,F = pF. So in this case too we have a
non-negligible nowhere dense set.

() For the general case, let Z, A and ¢ : X — Z be as in 443L. Then ) is atomless. B 443L(v) implies
that the measure-preserving Boolean homomorphism from the measure algebra of A to the measure algebra
of p induced by ¢ is surjective, therefore an isomorphism; so both measure algebras are atomless and A is
atomless (322Bg). Q

By (), there is a nowhere dense non-negligible subset H of Z; replacing H by its closure, if necessary,
we may suppose that H is closed. Set F' = ¢~1[H]; then F C X is closed and non-negligible because ¢ is
continuous and inverse-measure-preserving. Since ¢[F] C H is nowhere dense, so is F' (443L(viii)). Thus we
have the required non-negligible nowhere dense set in the general case also.

(h) Now suppose that X is Hausdorff. If u is atomless, then p{z} = 0 for every z, so {«} is never open
and the topology is not discrete. If u has an atom E, let FF C E be a closed self-supporting set of non-zero
measure; then F' also is an atom, so cannot have two disjoint non-empty relatively open sets, and must be
a singleton. Thus we have an xg such that pu{zo} > 0; as p is left-translation-invariant, u{z} = p{zo} for
every x € X. We know also that there is an open set G of non-zero finite measure, which must be finite;
so every singleton subset of G is open. It follows that every singleton subset of X is open, and X has its
discrete topology. Thus (ii)<(vii) when X is Hausdorff.

443P Quotient spaces I come now to the relationship between the modular functions of §442, normal
subgroups and quotient spaces.

Lemma Let X be a locally compact Hausdorff topological group and Y a closed subgroup of X. Let
Z = X/Y be the set of left cosets of Y in X with the quotient topology and 7 : X +— Z the canonical
map, so that Z is a locally compact Hausdorff space and we have a continuous action of X on Z defined
by writing asmz = w(az) for a, x € X (4A5J(b-iii)). Let v be a left Haar measure on Y and write Cx(X),
Cr(Z) for the spaces of continuous real-valued functions with compact supports on X, Z respectively.

(a) We have a positive linear operator T : Cj(X) — Cx(Z) defined by writing

(Tf)(mz) = [, flay)r(dy)

for every f € Cp(X)and z € X. If f > 0in Cp(X) then Tf > 0 in Cx(Z). If h > 0 in Cx(Z) then there is
an f >0 in Cy(X) such that Tf = h.

(b) If a € X and f € Ck(X), then T(as;f)(2) = (Tf)(a"tez) for every z € Z.

(c) Now suppose that a belongs to the normalizer of Y (that is, aYa™! = Y). In this case, we can define
1 (a) €]0, 00 by the formula

v(aFa™t) = (a)vF for every F € domv,
and
T(as, f)(wz) = P(a) - (T f)(m(za))
for every x € X and f € Ci(X).

proof I should begin by remarking that because Y is a closed subgroup of a locally compact Hausdorff
group, it is itself a locally compact Hausdorff group, so does have a left Haar measure, which is a Radon
measure.

(a)(i) The first thing to check is that if f € Cj(X) then Tf is well-defined as a member of R%. P (a) If
z € X, then y — f(zy) : Y — R is a continuous function with compact support, so [ f(zy)v(dy) is defined
inR. (B) If 21, 2 € X and 7wz = wxa, then x;lxg €Y, and

[ faay)v(dy) = [ f(@i(z; eay))v(dy) = [ flay)v(dy),
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applying 441J to the function y — f(z1y) and the left action of Y on itself. Thus we can safely write
(Tf)(rz) = [ f(zy)v(dy) for every x € X, and T'f will be a real-valued function on Z. Q

(ii) Now T'f is continuous for every f € Ci(X). P Given 2y € Z, take xg € X such that z = wxo.
We have an h € Ci(X)" such that for every ¢ > 0 there is an open set U, containing xo such that
|f(zoy) — f(xy)| < eh(y) whenever x € U, and y € X (4A5PD). In this case,

(Tf)(wz) = (Tf)(mzo)| = | [ f(zy) = fzoy)v(dy)| < e [, h(y)v(dy)

for every z € U, so that |(T'f)(z) — (T'f)(z0)| < € [, hdv for every z € w[U]. Since each n[U] is an open
neighbourhood of zy (4A5J(a-1), as always), T'f is continuous at zp; as zg is arbitrary, T'f is continuous. Q

(iii) Since

{21 (Tf)(2) # 0} = {mz - / F(ay)u(dy) # 0} € {m - f(xy) # 0 for some y € ¥}
— {mx: f(x) £0} C n[{w 7 () £ 0]

is relatively compact, T'f € Ci(Z) for every f € Cr(X).
(iv) The formula for T'f makes it plain that T : C(X) — C;(Z) is a positive linear operator.

(v) If f € Cr(X)" and z € X are such that f(z) > 0, then {y : y € Y, f(xy) > 0} is a non-empty
open set in Y; because v is strictly positive,

(Tf)(mx) ffzy (dy) > 0.
In particular, Tf > 0 if f > 0. Moreover, if z € Z there is an f € Cj(X)" such that (Tf)(z) > 0. Now
{z: (Th)(2) > 0} : f € Cr(X)*}

is an upwards-directed family of open subsets of Z, so if L C Z is any compact set there is an f € Cj(X)™"
such that (T'f)(z) > 0 for every z € L.

(vi) Now suppose that h € Cx(Z)". By (v), there is an fo € Cx(X)™T such that (T'fo)(z) > 0 whenever
z € {w: h(w) # 0}. Setting h'(z) = h(z)/(Tfo)(z) when h(z) # 0, 0 for other z € Z, we have b/ € Cy(2)
and h = h' x Tfy. Set

f(z) = fo(z)h (mx) >0

for every z € X. Because h' and 7 are continuous, f € Cx(X). For any z € X,

(Tf)(rz) = / folwy) W (n(y))(dy) = W (xz) / folazy)v(dy)
— I (w2)(T fo)(xz) = h(rz).
Thus T'f = h.
(b) If z = 7, then a~tez = w(a~'x), so

(Tf)a"e2) = [ fla ay)v(dy) = [(asf)(@y)v(dy) = T(asf)(2).

(c) Define ¢ : Y — Y by writing ¢(y) = a~lya for y € Y. Because ¢ is a homeomorphism, the image
measure v¢~! is a Radon measure on Y'; because ¢ is a group automorphism, v¢~—! is a left Haar measure.
(If F € domve¢~! and y € Y, then

v yF] =v(ayFa™') = v(Fa™) = v(aFa™t) = vo~L[F].)

v¢~! must therefore be a multiple of v; say vé~! = ¢(a)v.
If g € Cr(Y), then

fga ya)v fg¢dy—fgdu¢ fgdu
Now take f € Ci(X). Then

D.H.FREMLIN



34 Topological groups 443P

Tlav, 1)) = [ @) ap)tdy) = [ flayapidy
/fa:aa Yya)v(dy) = /fxay (dy)

(using the remark above with g(y) = f(zay))

= P(a)(Tf)(n(za))

for every z € X, as claimed.

443Q Theorem Let X be a locally compact Hausdorff topological group and Y a closed subgroup of X.
Let Z = X/Y be the set of left cosets of Y in X with the quotient topology, and 7 : X — Z the canonical
map, so that Z is a locally compact Hausdorff space and we have a continuous action of X on Z defined
by writing aerax = w(ax) for a, x € X. Let v be a left Haar measure on Y. Suppose that A is a non-zero
X-invariant Radon measure on Z.

(a) For each z € Z, we have a Radon measure v, on X defined by the formula

v.E=v(Y Nz~ lE)

whenever 7z = z and the right-hand side is defined. In this case, for a real-valued function f defined on a
subset of X,

[ fdv. = [ flay)v(dy)

whenever either side is defined in [—o0, o0].
(b) We have a left Haar measure p on X defined by the formulae

J fdu= [[ fdv.(d2)
for every f € Cr(X), and
uG = [ .G \dz)

for every open set G C X.

() If D C Z, then D € dom A\ iff 7~1[D] C X is Haar measurable, and AD = 0 iff 7=}[D] is Haar
negligible.

(d) If vY =1, then X is the image measure pm

(e) Suppose now that X is o-compact. Then pE = [v,E X(dz) for every Haar measurable set E C X.
If f € LY(p), then [ fdu= [[ fdv.\(dz).

(f) Still supposmg that X is o-compact, take f € £1(u), and for a € X set f,(y) = f(ay) whenever y € Y
and ay € dom f. Then Qf = {a:a € X, f, € L1 (v)} is p-conegligible, and the function a — f3 : Qf —
L'(v) is almost continuous.

—1

proof (a) First, we do have a function v, depending only on z, because if z = 721 = 7wz then m;lxl ey,
SO

v(Y Na'E) = vz e (Y Na'E)) =v(Y Nay ' E)

whenever either side is defined. Of course v,, being the image of the Radon measure v under the continuous
map y — xy : Y — X whenever 7z = z, is always a Radon measure on X (4181). We also have

[y flay)v(dy) = [ f dvee

whenever z € X and f is a real-valued function such that either side is defined in [—oc0, 00], by 235J.
I remark here that if 2 € Z then the coset C = m~![{z}] is v,-conegligible, because if mz = z then
Y=Ynz"!C.

(b)(i) Let T : Cr(X) — Cx(Z) be the positive linear operator of 443P; that is,
2) = [ flay)w(dy) = [ fdv.
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whenever f € C(X), x € X and z = mz. Then we have a positive linear functional 6 : C(X) — R defined
by setting 6(f) = [T fd\ for every f € Cx(X). By the Riesz Representation Theorem (436J), there is a
Radon measure p on X defined by saying that [ fdu = 6(f) for every f € Ci(X). Note that x is non-zero.
P Because A is non-zero, there is some h € Cj(Z)" such that [hdX # 0; now there is some f € Cj(X)
such that T'f = h, by 443Pa, and [ fdu #0. Q

(ii) p is a left Haar measure. P If f € Ci(X) and a € X, then we have T'(as;f)(z) = (T'f)(a"tez) for
every z € Z, by 443Pb. So

/wmmz/ﬂmﬁwz/iﬂmme@:/nwm@a
(by 441J or 441L, because A is X-invariant)

:/f@.

By 441L in the other direction, p is invariant under the left action of X on itself, that is, is a left Haar
measure. Q

(iii) If G C X is open then uG = [1v,GA(dz). P Set A = {f: f € Cx(X),0 < f < xG}. Then
uG =supse 4 [ f dp and

v,G = SUDPfe A f fdv, = SupfeA(Tf)(Z)

for every z € Z, by 414Ba, because v, is T-additive. But as T'f is continuous for every f € A, and A is
T-additive, we also have

fVZG)\(dZ) :supfeAfod)\:supfeAffd,u:uG. Q

(c)(i) Let A be the family of those sets A C X such that pA and [ v,(A)A(dz) are defined in [0, co] and
equal. Then (J, o An belongs to A whenever (A,)nen is a non-decreasing sequence in A, and A\ B € A
whenever A, B € A, B C A and pA < co. Moreover, if A € A and pA = 0, then every subset of A belongs
to A, since A must be v,-negligible for A-almost every z. We also know from (b) that every open set belongs
to A.

Applying the Monotone Class Theorem (136B) to {A: A € A, A C G}, we see that if E C X is a Borel
set included in an open set G of finite measure, then £ € A. So if F is a relatively compact Haar measurable
set, E € A (using 443J(b-i), or otherwise).

(ii) If D € dom A then 7=[D] € dompu. P Let K C X be compact. Then 7[K] C Z is compact,
so there are Borel sets Fy, Fo C Z such that F; C DNn[K] C Fy and F, \ F} is A-negligible. Now
v.(K N7 1[Fy \ F1]) = 0 whenever z ¢ F, \ Fy, by the remark added to the proof of (a) above, so

wENa P\ ) = [v.(Knr ! [Fy\ Fi])A(dz) = 0.
Since
Knn YR CKna'[D]C Knr F,

K Na=1[D] € dompu. As K is arbitrary, 7—![D] is measured by u, so is Haar measurable. Q
If AD = 0 then the same arguments show that p(K N7~ 1[D]) = 0 for every compact K C X, so that
ur~1[D] = 0 and 7—1[D] is Haar negligible.

(iii) Now suppose that D C Z is such that 771[D] € domu. Let L C Z be compact. Then there is
a relatively compact open set G C X such that 7[G] 2 L (because {#[G] : G C X is open and relatively
compact} is an upwards-directed family of open sets covering Z). In this case,

f v.(GNa DN L)A(dz) = p(GNra~ D] nw=t[L])
is well-defined, by (i). But if z = w2 then

v.(GNna DN L)

0ifz¢ DNL,
=v,G=v(YNz 'G)>0ifze DNL,
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because if z € L then 7z € 7[G] and Y Nz~1G # 0. So
DNL={z:v,(GNna"YDNL]) >0}
is measured by A. As L is arbitrary, and X is a Radon measure, D € dom A.
(iv) If 7= '[D] is Haar negligible, then, in (iii) above, we shall have [v,(G N7 *[DNL])A(dz) =0, so
that A\(D N L) = 0; as L is arbitrary, AD = 0, by 412Ib or 412Jc.
(d) If vY = 1, then, for any open set H C Z, v,m 1[H] = 1 if 2 € H, 0 otherwise. So
pr ' [H] = [v.(x'[H])M(dz) = AH.
Thus A and the image measure pum ! agree on the open sets and, being Radon measures (4181 again), must

be equal (416E(b-iii)).

(e) If X is actually o-compact, then (c)(i) of this proof tells us that uE = [v,E X(dz) for every Haar
measurable set £ C X, since F is the union of an increasing sequence of relatively compact measurable sets.
Consequently [ fdup = [[ fdv.A(dz) for every p-simple function f. Now suppose that f is a non-negative
p-integrable function. Then there is a non-decreasing sequence (f,)nen of non-negative p-simple functions
converging to f everywhere in dom f. If we set A = {z: v}(X \ dom f) > 0}, then

[ (X \ dom F)A(d2) = p(X \ dom f) =0,
s0 M = 0. Since [ fdv, =lim, o [ fndv, for every z € Z \ A,

/fdp:nlirrgo/fndu
= lim / / fadvA(dz) = / fdv.\(dz).

Applying this to the positive and negative parts of f, we see that the same formula is valid for any u-
integrable function f.

(F)(Q) If f € LY(p) and a € X, then
J fadv = [ flay)v(dy) = [ fdvra
if any of these are defined. So if f, g € LY(u), || fa — gall1 = [ |f — g|dVnq if either is defined.

(ii) Let @ be the set of all almost continuous functions from pu-conegligible subsets of X to L!(v),
where L!(v) is given its norm topology. (In terms of the definition in 411M, a member ¢ of ® is to be almost
continuous with respect to the subspace measure on dom ¢.) If ¢ € ® and 1 is a function from a conegligible
subset of X to L!(v) which is equal almost everywhere to ¢, then ¢ € ®. If (¢, )nen is a sequence in ®
converging p-almost everywhere to ¢, then ¢ € & (418F).

(iii) For f € L'(u), set ¢(a) = f2 whenever this is defined in L' (v). Set M = {f : f € L(u), ¢y € ®}.
If (f))en is a sequence in M, f € L£'(u) and ||f™) — flly < 47" for every n, then f € M. P Set
g=>:02"f™ — f|, defined on

{z 2 €dom f N, ey dom f(M), 35 27| f(W)(2) — f(z)| < oo}
then g € £!(1). Now
D ={z:z¢€ Z, gis v,-integrable}

is A-conegligible, by (e), and E = {a : a € X, wa € D} is p-conegligible, by (c).
If a € F, then

|f(§n) — fal £27"g vpe-ace.

for every n > 1. So
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l65(a) = é (@)l = /Y fa— £)dw = /X 1 = ) |dvga

< 2_"/gdum —0

as n — oo. Thus ¢y = lim, ;o ¢ almost everywhere, and ¢ € @, by (ii). Q

(iv) Cr(X) C M. PIf f € Cp(X) and ag € X, then there is an h € Ci(X)T such that for every
€ > 0 there is an open set G, containing ag such that |f(aoy) — f(ay)| < eh(y) whenever a € Gc and y € X
(4A5PD again). In this case,

67 (a0) = ér (@)l = [ £ (aoy) — fay)lw(dy) < e [, hv
whenever a € G.. As ¢ is arbitrary, ¢ is continuous at ao; as ag is arbitrary, ¢ is continuous, and f € M.

Q

(v) Now take any f € £'(u). Then for each n € N we can find ") € Cy(X) such that || f() —f|j; <47"
(4161), so f € M, by (iii). This completes the proof.

443R Theorem Let X be a locally compact Hausdorff topological group and Y a closed subgroup of X.
Let Z = X/Y be the set of left cosets of Y in X with the quotient topology, so that Z is a locally compact
Hausdorff space and we have a continuous action of X on Z defined by writing a«(2Y) = azY for a, z € X.
Let Ax be the left modular function of X and Ay the left modular function of Y. Then the following are
equiveridical:

(i) there is a non-zero X-invariant Radon measure A on Z;

(ii) Ay is the restriction of Ax to Y.

proof Fix a left Haar measure v on Y, and let T : Cy(X) — Ci(Z) be the corresponding linear operator
as defined in 443Pa.

(a)(i)=(ii) Suppose that A is a non-zero X-invariant Radon measure on Z. Construct a left Haar
measure g on X as in 443Q. In the notation of part (b-i) of the proof of 443Q, we have

[ fdp= [[ fdv.\(dz) = [T fdA

for every f € Ci(X).
Suppose that a € Y. In this case, a surely belongs to the normalizer of Y, and, in the language of 443Pc,
we have v(aFa~1) = ¢ (a)vF for every F € domv. But as

v(aFa™t) =v(Fa™!) = Ay (a v F,

we must have ¥(a) = Ay (a™1).
Fix some f > 0 in Cy(X). We have

T(aw,f)(rz) = b(a) - (Tf)(w(2)) = 0la) [ Floay)ldy) = v1a) [ Fay)vidy)
(because a € Y)

=(a) - (Tf) ()

for every x, so that (using 442Kc) we have

(@) [ fdu= [ ansin= [ T(an ax
— i) [Trir=v(@) [ fdu=av@@™) [ £

As [ fdp > 0, we must have Ay (a™!) = Ay (a™!); as a is arbitrary, Ay = Ax|Y, as required by (ii).
(b)(ii)=(i) Now suppose that Ay = Ax[Y. This time, start with a left Haar measure p on X.
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(a) (The key.) If f € C(X) is such that T'f > 0in Cy(Z), then [ fdp > 0. P Thereisan h € Cy(Z)*
such that h(z) = 1 whenever z € Z and (T'f)(z) # 0; by 443Pa, we can find a g € Cj(X)" such that T'g = h.
Now observe that x — (T f)(7x) is a non-negative continuous real-valued function on X, so

0< / 9(2) (T f) (nz)ulde)

/ /fxy (dy)u(dz) / / dz)v(dy)

(by 417Ga or 417Gb, because (z,y) — g(z)f(zy) : X x Y — R is a continuous function with compact
support)

- / Ax(y) / o(ey™) f()p(de)w(dy)
Y X

(applying 442Kc to the function z +— g(axy=1)f(z))

_ / /(@) / Ax(y V) glay™ ) (dy)p(dz)
X

(because (z,y) — Ax(y~Hg(zy—1)f(x) is continuous and has compact support)

/ / Ay (y~)glay ™ )v(dy)u(da)

(because Ax|Y = Ay, by hypothesis)
— [ 1@ [ stwgldputiz)
X Y

(applying 442K (b-ii) to the function y — g(zy))

/f (Tg)(mrx)p(dx) /f

because (T'g)(mx) = 1 whenever f(z) # 0. Q

(8) Applying this to f and —f, we see that [ fdp = 0 whenever T'f = 0, so that [ fdu = [gdu
whenever f, g € Ci(X) and Tf = Tg. Accordingly (because T is surjective) we have a functional 6 :
Cr(Z) — R defined by saying that (T'f) = [ fdp whenever f € Ci(X), and 6 is positive and linear. By
the Riesz Representation Theorem again, there is a Radon measure A on Z such that 6(h) = [ hdX for every
h e Ck(Z).

If a € X and h € Ck(Z) take f € C’k( ) such that T'f = h. Then, for any z € X,

(Tf)(asmz) = (T f)(m = [ flazy)v(dy) = [(a= o1 f)(xy)v(dy) = T(a" e f) (7).
So

[ haniaz) = [(@nian@) = [T tan @A)

:/afl.lfdu:/fduz/h(z)x(dz

By 441L again, A is X-invariant. Also X is non-zero because there is surely some f such that [ fdu # 0.
So we have the required non-zero X-invariant Radon measure on Z.

443S Applications This theorem applies in a variety of cases. Let X be a locally compact Hausdorff
topological group and Y a closed subgroup of X.

(a) If Y is a normal subgroup of X, then Ay = Ax[Y. P X/Y has a group structure under which
it is a locally compact Hausdorff group (4A5J(b-ii)). It therefore has a left Haar measure, which is surely
X-invariant in the sense of 443R. Q

Note that in this context any of the invariant measures A of 443Q must be left Haar measures on the
quotient group.
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(b) If Y is compact, then Ay = Ax|Y. P Both Ay and Ax[Y are continuous homomorphisms from Y’
to ]0, oo[; since the only compact subgroup of |0, oo is {1}, they are both constant with value 1. @ So 443R
tells us that we have an X-invariant Radon measure A on X/Y. Since Y has a Haar probability measure,
A will be the image of a left Haar measure under the canonical map (443Qd).

(c) If, in (b), Y is a normal subgroup, then we find that, for W € dom A and = € X,
AW - mz) = p(r= W] 2) = Ax(2)AW,
so that Ax,ym = Ax, writing 7 : X — X/Y for the canonical map. This is a special case of 443T below,
because (in the terminology there) ¢ (a) = vY/vY =1 for every a € X.

(d) T Y is open, Ay = Ax|Y. P If u is a left Haar measure on X, then the subspace measure py
is a left Haar measure on Y (443F). There is an open set G C Y such that 0 < puG < oo, and now
w(Gy) = Ax(y)nG = Ay (y)uG for every y € Y. Q This time, X/Y is discrete, so counting measure is an
X-invariant Radon measure on X/Y.

443T Theorem Let X be a locally compact Hausdorff topological group and Y a closed normal subgroup
of X;let Z = X/Y be the quotient group, and 7 : X — Z the canonical map. Write Ax, Ay for the left
modular functions of X, Z respectively. Define 1) : X — ]0, co[ by the formula

v(aFa=t) = ¢ (a)vF whenever F € domv and a € X,
where v is a left Haar measure on Y (cf. 443Pc). Then
Az () = $(a)Ax ()
for every a € X.

proof Let T : Cx(X) — Ck(Z) be the map defined in 443P, and A a left Haar measure on Z; then, as in
443Qb, we have a left Haar measure p on X defined by the formula ffd,u = fo dM for every f € Ci(X).
Fix on some f > 0 in Cx(X) and a € X, and set w = wa. By 443Pc, we have

T(asrf)(2) = ¢(a)(Tf)(x(xa)) = P(a)(Tf)(zw)

whenever Tz = z. So

Ax() [ fau= [ a fin

(442Kc once more)
— [ 1@ f)ar=vta) [@1)w)
— v@)Bzw) [ THENE) = d@az(w™) [ fdu

Thus Ax(a™!) =¥ (a)Az(w™!); because both Ay and Az are multiplicative,
Az(ra) = Az(w) = P(a)Ax(a).

443U Transitive actions All the results from 443P onwards have been expressed in terms of groups
acting on quotient groups. But the same structures can appear if we start from a group action. To simplify
the hypotheses, I give the following result for compact groups only.

Theorem Let X be a compact Hausdorff topological group, Z a non-empty compact Hausdorff space, and
+ a transitive continuous action of X on Z. Write 7,(x) = xsz for z € Z and = € X.

(a) Forevery z € Z, Y, = {z : ¢ € X, xez = z} is a compact subgroup of X. If we give the set X/Y,
of left cosets of Y, in X its quotient topology, we have a homeomorphism ¢, : X/Y, — Z defined by the
formula ¢, (2Y,) = ez for every z € X.
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(b) Let u be a Haar probability measure on X. Then the image measure pr, ! is an X-invariant Radon
probability measure on Z, and pm,! = pur; ! for all w, z € Z.

(c) Every non-zero X-invariant Radon measure on Z is of the form pm; ! for a Haar measure g on X and
some (therefore any) z € Z.

(d) There is a strictly positive X-invariant Radon probability measure on Z, and any two non-zero
X-invariant Radon measures on Z are scalar multiples of each other.

(e) Take any z € Z, and let v be the Haar probability measure of Y,. If u is a Haar measure on X, then

ukE = f v(Y, N 1E)u(dz)
whenever ¥ C X is Haar measurable.

proof (a) Because « is an action of X on Z, Y, is always a subgroup; because « is continuous, Y, is closed,
therefore compact. Given z € Z, then for z, y € X we have

Tz =yez <= Yy €Y, <= zY, =9Y,.

So the formula given for ¢, defines an injection from Z/Y, to Z, which is surjective because » is transitive.
To see that ¢, is continuous, take any open set H C Z. Then

{z:2Y, € o [H]} = {x: 22 € H} = 7, }[H]
is open in X (because « is continuous), so ¢, ![H] is open in X/Y,. Because X/Y, is compact and ¢, is a

bijection, ¢, is a homeomorphism (3A3Dd).

(b) Because X is compact, therefore unimodular (442Ic), we can speak of ‘Haar measures’ on X without
specifying ‘left’” or ‘right’. If u is the Haar probability measure on X, then the image measure pmr, ! is a
Radon probability measure on Z (4181 once more). To see that the measures pm, ! are X-invariant, take
any Borel set H C Z and y € X, and consider

LeH)=pl{r ez cy VeH) = pl{ayrez € HY = pfa : yx € TI';I[H]}

= pu(y~'m H]) = p(r [H]) = (prz ) (H).

By 441B, this is enough to ensure that pr ! is invariant.
If w, z € Z and H C Z is a Borel set, then there is a y € X such that yew = z, and now

m [ H={z:zewe H} ={z: (zy 1)z € H} = {x: 2y~ € n [H]} = (n;'[H)])y.

() (y

But p is a two-sided Haar measure, so

(o) (H) = p(my, [H]) = (7 [H])y) = p(n 7 [H]) = (p ) (H).
Thus pm,! and ur; ! agree on the Borel sets and must be equal (416Eb).
(c¢) Now we come to the interesting bit. Suppose that A is a non-zero X-invariant Radon measure on

Z. Take any z € Z and consider the Radon measure X on X/Y, got by setting N'H = A¢,[H] whenever
H C X/Y, and ¢.[H] is measured by A. In this case, if z € X and H C X/Y, is measured by X,

N(zeH) = Moo (zow) : w € H} = M. (2oyY,) 1y € X, yY, € H}
=Mo:(2yY.) 1y e X, yY, € H} = Mayez 1y € X, yY, € H}
— Mar(ye) 1y € X, Ve € H} = Mo [H]) = A6 [H]
(because A is X-invariant)
=\NH.

So A is X-invariant.

Now let v be the Haar probability measure on the compact Hausdorff group Y,. By 443Qb, we have
a (left) Haar measure p on X defined by the formula pG = [1,G X (dw) for every open G C X, where
vyy.G = v(Y, N2z~ 1Q) for every y € X and every open G C X. Let H C Z be an open set. Then for any
reX,
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Vey,(m H) =v{y:ye Y, ayen,  [H}=v{y:y €Y, xysz € H}
=v{y:yeY,, a(yz) EH} =v{y:y €Y, xez € H}
=vY,=1ifxez € H,
= vf) = 0 otherwise.
So
p(r 7Y H]) = N{zY, 12z € X, ez € H} = N¢ [H] = \H.

z

As H is arbitrary, the image measure um; ! agrees with A on the open subsets of Z; as they are both Radon
measures, um, 1 = A, as required.

(d) This is now easy. X carries a non-zero Haar measure, so by (b) there is an X-invariant Radon
probability measure on Z. If A\; and Ay are non-zero X-invariant Radon measures on Z, then they are
of the form pym,! and pom; ! where 1 and pg are Haar measures on X and w, z € Z. By (b) again,
uﬂr;l = unr;l, and since p; and pe are multiples of each other (442B), so are A\; and As.

To see that the invariant probability measure A on X is strictly positive, take any non-empty open set
H C Z. Then Z is covered by the open sets x«H, as x runs over X. Because Z is compact, it is covered by
finitely many of these, so at least one of them has non-zero measure. But they all have the same measure
as H, so A\H > 0.

(e) Write 0 : X — X/Y, for the canonical map. For w € X/Y, we have a Radon measure v,, on X
defined by setting v, B = v(Y, Nz~ 1E) whenever f#x = w and the right-hand side is defined (443Qa).
By (a)-(b) above, or otherwise, there is a non-zero X-invariant Radon measure A on X/Y,; re-scaling if
necessary, we may suppose that A(X/Y,) = pX. By 443Qe, we have a Haar measure p/ on X defined by
setting 4'E = [ v, E X(dw) for every Haar measurable E; since

WX = fl/wX AMdw) = fVYZ AMdw) = MX/Y,) = uX,
W' = p. Moreover, A = p'0~1 (443Qd). So

uwk =y E = /l/wE Adw)

_ / Vool (d) — / V(Y N2~ B)u(da)

for every Haar measurable £ C X.

443X Basic exercises >(a) Let X be a topological group, u a left Haar measure on X and A the
corresponding quasi-Radon product measure on X x X. (i) Show that the maps (x,y) — (y,z), (z,y) —
(x,2y), (x,y) — (y~'lz,y) are automorphisms of the measure space (X x X,\). (Hint: use 417C(b-v-
B) to show that they preserve the measures of open sets.) (ii) Show that the maps (z,y) — (y—1, zy),
(r,y) = (yz,271), (2,9) — (y3z,27'y~2) are automorphisms of (X x X,)\). (Hint: express them as
compositions of maps of the forms in (ii).)

(b) Let X be a topological group carrying Haar measures and A C X. (i) Show that A is self-supporting
(definition: 411Na) for one Haar measure on X iff it is self-supporting for every Haar measure on X. (ii)
Show that A has non-zero inner measure for one Haar measure on X iff it has non-zero inner measure for
every Haar measure on X.

(c) Let X be a topological group, 1 a Haar measure on X, and E, F measurable subsets of X. Show
that (z,y,w,2) — p(zBy NwFz) : X* — [0,00] is lower semi-continuous.

(d) Let X be a topological group carrying Haar measures and 2 its Haar measure algebra. (i) Show that
we have a continuous action of X x X on 2l defined by the formula (z,y)E* = (zEy~!)* for z, y € X and
Haar measurable sets F C X. (ii) Show that if z € X and a € 2 then xe,a = (z+,d)*, where @ is as defined
in 443Af.
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(e) Let (%, 1) be a measure algebra. Show that it is isomorphic to the measure algebra of a topological
group with a Haar measure iff it is localizable and quasi-homogeneous in the sense of 374G-374H.

(f) Let X be a topological group with a left Haar measure p. (i) Show that if Y is a subgroup of X such
that u.Y > 0, then Y is open. In particular, any non-negligible closed subgroup of X is open. (ii) Let Y be
any subgroup of X which is not Haar negligible. Show that the subspace measure py is a left Haar measure
on Y. Show that Y is a Haar measurable envelope of Y. (Hint: apply 443Db inside the topological group
Y.)

(g) Write out a version of 443G for right Haar measures.

(h) Let X be a topological group carrying Haar measures, and L° the space of equivalence classes of
Haar measurable functions, as in 443A; let u — % : L — LY be the operator of 443Af. Show that if ; is a
left Haar measure on X and v is a right Haar measure, p € [1,00] and u € L, then 4 € LP(v) iff u € LP(u).

(i) Let X be a topological group carrying Haar measures, and 2 its Haar measure algebra. Show that,
in the language of 443C and 443G, x(x+;a) = z+;xa and x(z+.a) = x+,.xa for every x € X and a € 2.

(j) Let X be a topological group carrying Haar measures. Show that X is totally bounded for its bilateral
uniformity iff X is totally bounded for its right uniformity (definition: 4A5Ha) iff its Haar measures are
totally finite.

(k) Let X be a topological group, p a left Haar measure on X, and A C X a set which is self-supporting
for . Show that the following are equiveridical: (i) for every neighbourhood U of the identity e, there is a
countable set I C X such that A C UI; (ii) for every neighbourhood U of e, there is a countable set I C X
such that A C IU; (iii) for every neighbourhood U of e, there is a countable set I C X such that A C IUT;
(iv) A can be covered by countably many sets of finite measure for y; (v) A can be covered by countably
many open sets of finite measure for u; (vi) A can be covered by countably many sets which are totally
bounded for the bilateral uniformity on X.

>(1) Let X be a topological group carrying Haar measures. (i) Show that the following are equiveridical:
(o) X is cce; (B) X has a o-finite Haar measure; (y) every Haar measure on X is o-finite. (ii) Show that if
X is locally compact and Hausdorff, we can add (§) X is o-compact.

(m) Let X be a topological group carrying Haar measures. Show that every subset of X has a Haar
measurable envelope which is a Borel set.

(n) In 443L, show that (i) ¢[A] is Haar negligible in Z whenever A is Haar negligible in X (ii) Ax = Az¢,
where A x, Az are the left modular functions of X, Z respectively (iii) ¢[X] is dense in Z (iv) Z is unimodular
iff X is unimodular.

>(0) Let X and Y be topological groups with left Haar measures p and v. Show that the c.l.d. and
quasi-Radon product measures of u and v on X x Y coincide. (Hint: start with locally compact Hausdorff
spaces, and show that a compact Gs set in X x Y belongs to B(X)®B(Y), where B(X) and B(Y) are the
Borel og-algebras of X and Y; now use 441Xj and 443L.)

(p) Let (X;)icr be a family of topological groups and X = [],.; X; their product. Suppose that each
X; has a Haar probability measure p;. Show that the ordinary and quasi-Radon product measures on X
coincide.

(q) Let X be a locally compact Hausdorff group and Y a closed subgroup of X; write X/Y for the space
of left cosets of Y in X, with its quotient topology. Show that if A\; and A2 are non-zero X-invariant Radon
measures on X/Y, then each is a multiple of the other. (Hint: look at the Haar measures they define on
X))

>(r) Write S* for the circle group {s: s € C, |s| = 1}, and set X = S x S!, where the first copy of S!
is given its usual topology and the second copy is given its discrete topology, so that X is an abelian locally
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compact Hausdorff group. Set E = {(s,s) : s € S'}. (i) Show that E is a closed Haar negligible subset of
X. (i) Set Y = {(1,s) : s € S'}; check that Y is a closed normal subgroup of X, and that the quotient
group X/Y can be identified with S* with its usual topology; let A be the Haar probability measure of X/Y.
Let v be counting measure on Y. Show that, in the language of 443Q, v, F = 1 for every z € X/Y, so
that uE # [v.E N(dz). (iii) Setting f = xE, show that the map a — f described in 443Qf is not almost
continuous.

(s)(i) In 443P, suppose that G C X is an open set such that GY = X. Show that for every h €
Cr(Z)T there is an f € Ci(X)T such that Tf = h and {z: f(z) > 0} C G. (ii) In 443Pc, show that
is multiplicative. (iii) In 443R, suppose that there is an open set G C X such that GY has finite measure
for the left Haar measures of X. Show that Z has an X-invariant Radon probability measure. (Hint: Y is
totally bounded for its right uniformity.)

(t) Let X be a locally compact Hausdorff group. Show that it has a closed normal subgroup Y such that
Y and X/Y are both unimodular. (Hint: take Y = {x : A(z) = 1}.)

>(u) Let X = R? be the example of 442Xf. (i) Let Y; be the subgroup {(£,0) : £ € R}. Describe the left
cosets of Y7 in X. Show that there is no non-trivial X-invariant Radon measure on the set X/Y; of these
left cosets. Find a base U for the topology of X/Y] such that you can identify the sets xeU, where z € X
and U € U, with sufficient precision to explain why the hypothesis (iii) of 441C is not satisfied. (ii) Let Y5
be the normal subgroup {(0,€) : £ € R}. Find the associated function 1 : X — ]0, co[ as described in 443Pc
and 443T.

(v) Let X be a locally compact Hausdorff group and Y a compact normal subgroup of X. Show that X
is unimodular iff the quotient group X/Y is unimodular. (Hint: the function 1) of 443T must be constant.)

(w) Take any integer » > 1, and let G be the isometry group of R” with its topology of pointwise
convergence (441G). (i) Show that G is metrizable and locally compact. (Hint: 441Xq.) (ii) Let H C G be
the set of translations. Show that H is an abelian closed normal subgroup of G, and that Lebesgue measure
on R” can be regarded as a Haar measure on H. (iii) Show that the quotient group G/H is compact. (iv)
Show that G is unimodular. (Hint: the function v of 443T is constant.)

>(x) Set X = R3 with the operation

(£1,62,83) % (n1,m2,m3) = (&1 + M1, & + €51ma, &5 + e~ S1np).

(i) Show that (with the usual topology of R3) X is a topological group. (ii) Show that it is unimodular.
(Hint: Lebesgue measure is a two-sided Haar measure.) (iii) Show that X has both a closed subgroup and
a Hausdorfl quotient group which are not unimodular.

>(y) Let (X,p) be a non-empty compact metric space such that the group G of isometries of X is
transitive. Show that any two non-zero G-invariant Radon measures on X must be multiples of each other.
(Hint: 441Gb, 443U.)

>(z) Show that 443G is equally valid if we take functions to be complex-valued rather than real-valued,
and work with L. rather than LP.

443Y Further exercises (a) Let X be a topological group carrying Haar measures and 2 its Haar
measure algebra. Show that two principal ideals of 2 are isomorphic (as Boolean algebras) iff they have the
same cellularity.

(b) Let X be a topological group carrying Haar measures, and E C X a Haar measurable set such that
E NVU is not Haar negligible for any neighbourhood U of the identity. Show that for any A C X the set
A'={z:2 € A, AnzE is Haar negligible} is Haar negligible.

(c) Let X be a locally compact Hausdorff group. Show that we have continuous shift actions ;, . and
+. of X on the Banach space Cy(X) defined by formulae corresponding to those of 443G.
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(d) Let X be a compact Hausdorff topological group and 2l its Haar measure algebra. Let Y be a
subgroup of X; for y € Y, define § € Aut2 by setting §(a) = ye;a for a € 2. Show that {§ : y € Y} is
ergodic (definition: 395Ge) iff Y is dense in X.

(e) Let A be a Boolean algebra, G a group, and « an action of G on 2 such that a — gea is a Boolean
automorphism for every g € G. (i) Show that we have a corresponding action of G on L = L (2l) defined
by saying that, for every g € G, gexa = x(g+a) for a € A and v — geu is a positive linear operator on L.
(ii) Show that if 2 is Dedekind o-complete, this action on L> extends to an action on L® = L°(2l) defined
by saying that [geu > o = ge[u > o] for g € G, u € L° and o € R.

(f) Let (A, i) be a measure algebra, G a topological group, and « a continuous action of G on 2 (when
2l is given its measure-algebra topology) such that a — gea is a measure-preserving Boolean automorphism
for every g € G. (i) Show that the corresponding action of G on L° = L9(2l), as defined in 443Ye, is
continuous when LY is given the topology of convergence in measure, and induces continuous actions of G
on LP = LP(A, i) for 1 < p < oo. (ii) Show that if we give the unit ball B of L> = L () the topology
induced by T4(L>°, L'), then the action of G on L° induces a continuous action of G on B.

(g) Let X be a topological group with a left Haar measure p, and A C X. Show that the following are
equiveridical: (i) A is totally bounded for the bilateral uniformity of X (ii) there are non-empty open sets
G, H C X such that u(AG), u(A=1H) are both finite.

(h) Give an example of a locally compact Hausdorff group, with left Haar measure p, such that no open
normal subgroup can be covered by a sequence of sets of finite measure for p.

(i) Let X be a topological group. Let ¥ be the family of subsets of X expressible in the form ¢~![F] for
some Borel subset F' of a separable metrizable topological group Y and some continuous homomorphism
¢ : X — Y. Show that ¥ is a o-algebra of subsets of X and that multiplication, regarded as a function
from X x X to X, is (Z@Z, Y)-measurable. Show that any compact Gs set belongs to . Show that if X
is o-compact, then ¥ is the Baire o-algebra of X.

(j) Let X be any Hausdorff topological group with cardinal greater than c¢. Let B be the Borel o-algebra
of X. Show that (z,y) — zy is not (PX®PX, B)-measurable.

(k) Let X be a topological group and g a left Haar measure on X. Show that g is inner regular
with respect to the family of closed sets F C X such that F = ) FU, for some sequence (Up)nen of
neighbourhoods of the identity.

neN

(1) Let X be a topological group carrying Haar measures. Let E C X be a Haar measurable set such
that £ N U is not Haar negligible for any neighbourhood U of the identity. Show that there is a sequence
(Tn)nen in E such that z;,z;, ...2;, € E whenever n € N and ip < i1 < ... < i, in N. (See PLEWIK &
Voicr 91.)

(m) Let X be a topological group and p a Haar measure on X. Show that any closed self-supporting
subset of X is a zero set.

(n) Find a compact Hausdorff space X with a strictly positive Radon measure such that there is a regular
open set G C X which is not a cozero set.

(0) Let X be a locally compact Hausdorff topological group which is not discrete (as topological space).
(i) Show that there is a Haar negligible zero set containing the identity of X. (ii) Show that if X is o-
compact, it has a Haar negligible compact normal subgroup Y which is a zero set in X, so that X/Y is
metrizable. (iii) Show that there is a Haar negligible set A C X such that AA is not Haar measurable.

(p) Find a non-discrete locally compact Hausdorff topological group X such that if Y is a normal subgroup
of X which is a zero set in X then Y is open.
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(a) Show that there is a subgroup X of the additive group R? such that X has full outer Lebesgue
measure but {£ : (£,0) € X} = Q. Show that X carries Haar measures, but that its closed subgroup
X N (R x {0}) does not.

(r) Show that if X is a locally compact Hausdorff group, Y a compact subgroup of X, Z = X/Y the
set of left cosets of Y and 7 : X — Z the canonical map, and Z is given its quotient topology, then
R = {(mx,2) : € X} is an usco-compact relation in Z x X and R[L] = n~![L] is compact for every
compact L C Z.

(s) Let G be the isometry group of R", as in 443Xw. (i) Show that if we set p(g,h) = sup <1 lg(z) —
h(z)||, then p is a metric on G defining its topology. (ii) Describe Haar measures on G () in terms of
Hausdorff measure of an appropriate dimension for the metric p (8) in terms of a parametrization of G and
Lebesgue measure on a suitable Euclidean space.

(t) Let > 1 be an integer, and G the group of invertible affine transformations of R”, with the topology
of pointwise convergence inherited from (R”)®". (i) Show that G is a locally compact Hausdorff topological
group. (ii) Show that G is not unimodular, and find its modular functions.

(u) Let X be a topological group with a left Haar measure p and left modular function A; suppose that
X is not unimodular. Show that u{z : o < A(z) < S} = 0o whenever & < f and {z : @ < A(z) < B} is
non-empty.

443 Notes and comments Most of us, by the time we come to study measures on general topological
groups, have come to trust our intuition concerning the behaviour of Lebesgue measure on R, and the
principal discipline imposed by the subject is the search for the true path between hopelessness and over-
confidence when extending this intuition to the general setting. The biggest step is the loss of commutativity,
especially as the non-abelian groups of elementary courses in group theory are mostly finite, and are therefore
untrustworthy guides to the concerns of this chapter. Accordingly we find ourselves going rather slowly and
carefully through the calculations in such results as 443C. Note, for instance, that in an abelian group the
actions I call ¢; and «,. are still different; x+; E' corresponds to x + F = E + x, but x+.E corresponds to F — x.
(The action e, becomes trivial, of course.) When we come to translate the formulae of Fourier analysis in
the next section, manoeuvres of this kind will often be necessary. In the present section, I have done my
best to give results in ‘symmetric’ forms; you may therefore take it that when the words ‘left’ or ‘right’
appear in the statement of a proposition, there is some real need to break the symmetry. Subject to these
remarks, such results as 443C and 443G are just a matter of careful conventional analysis. I see that I have
used slightly different techniques in the two cases. Of course 443C can be thought of as a special case of
443Gc-443Gd, if we remember that x : 2 — L°(2A) embeds 2 topologically as a subspace of L (367R).

443B, 443D and 443E belong to a different family; they deal with actual sets rather than with members
of a measure algebra or a function space. I suppose it is 443D which will most often be quoted. Its corollary
443K deals with the obvious question of when Haar measures are tight.

Readers who have previously encountered the theory of Haar measures on locally compact groups will
have been struck by how closely the more general theory here is able to follow it. The explanation lies in
443K-443L; my general Haar measures are really just subspace measures on subgroups of full Haar measure
in locally compact groups. Knowing this, it is easy to derive all the results above from the locally compact
theory. I use this method only in 443M-4430, because (following HALMOS 50) I feel that from the point of
view of pure measure theory the methods show themselves more clearly if we do not use ideas depending on
compactness, but instead rely directly on 7-additivity. But I note that 443Xo and 443Yi also go faster with
the aid of 443L.

HALMOS 50 goes a little farther, with a theory of groups carrying translation-invariant measures for which
the operation (x,y) — zy is (S®X, ¥)-measurable, where ¥ is the domain of the measure. The essence of the
theory here, and my reason for insisting on 7-additive measures, is that for these we have a suitable theory
of product measures. If we start with quasi-Radon measures and use the quasi-Radon product measure,
then multiplication is measurable just because it is continuous. In order to achieve similar results without
either assuming metrizability or using the theory of 7-additive product measures, we have to restrict the
measure to something smaller than the Borel o-algebra, as in 443Yg. (See 443Yj.) 443J and 443Xo show
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that certain disconcerting features of general Radon measures (419C, 419E) cannot arise in the case of Haar
measures.

When I come to look at subgroups and quotient groups, I do specialize to the locally compact case.
One obstacle to generalization is the fact that a closed subgroup of a group carrying Haar measures need
not itself carry Haar measures (443Yq). 443P and 443R are taken from FEDERER 69, who goes farther,
with many other applications. I give a fairly detailed analysis of the relationship between a Haar measure
on a group X and a corresponding X-invariant measure on a family of left cosets (443Q) for the sake of
applications in §447. One of the challenges here is to distinguish clearly those results which apply to all
locally compact groups from those which rely on o-compactness or some such limitation. There is a standard
example (443Xr) which provides a useful test in such questions. You may recognise this as a version of a
fundamental example related to Fubini’s theorem, given in 252K.

Most of the results of this section begin with a topological group X. But starting from §441 it is equally
natural to start with a group action. If we have a topological group X acting continuously on a topological
space Z, and X carries Haar measures, then we have a good chance of finding an invariant measure on Z.
In the simplest case, in which X and Z are both compact and the action is transitive, there is a unique
invariant Radon probability measure on Z (443U).

Version of 23.7.07/4.6.13

444 Convolutions

In this section, I look again at the ideas of §§255 and 257, seeking the appropriate generalizations to
topological groups other than R. Following HEWITT & Ro0ss 63, I begin with convolutions of measures
(444A-444F) before proceeding to convolutions of functions (4440-444V); in between, I mention the convo-
lution of a function and a measure (444G-444M) and a general result concerning continuous group actions
on quasi-Radon measure spaces (444F).

While I continue to give the results in terms of real-valued functions, the applications of the ideas here

in the next section will be to complex-valued functions; so you may wish to keep the complex case in mind
(444Xx).

444 A Convolution of measures: Proposition If X is a topological group and A and v are two totally
finite quasi-Radon measures on X, we have a quasi-Radon measure A x v on X defined by saying that

A )(E) = (A x v){(z,y) : 2y € E}
- /y(x_lE))\(dat) =/A(Ey‘1)l/(dy)

for every E € dom(\ * v), where A x v is the quasi-Radon product measure on X x X.

proof Set ¢(z,y) = ay for z, y € X. Then ¢ is continuous, while X, being a topological group, is regular
(4A5Ha); so so 418Hb tells us that there is a unique quasi-Radon measure A v on X such that ¢ is inverse-
measure-preserving for A x v and Axv, that is, (Axv)(E) = (Axv){(z,y) : xy € E} whenever E is measured
by A xv.

As for the other formulae, Fubini’s theorem (417Ga) tells us that

(A w)(E) = (A x )6~ [E)
— [ EDHahAED) = [va )
= [ 36D uhviy) = [ AEy iy
for any E € dom(\  v).

444B Proposition If X is a topological group, A1 * (A2 * A3) = (A1 * Ag) * A3 for all totally finite
quasi-Radon measures A1, Ay and A3 on X.

(© 1999 D. H. Fremlin
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proof If E C X is Borel, then
(M % O # Ag))(E) = /()\2 « \s) (@ E), (da)

- / (o x As){(y,2) : 2y2 € E}A (da)
— O x (g x ) (@, (4, 2)) : 2z € E)
= ((M x A2) x M3){((z, ), 2) : 2yz € E}
_ / O x o) {(2,y) : 2y2 € E}a(d2)
= (% X)) (B

(For the central identification between A1 X (A2 X Az) and (A1 X A2) X A3, observe that as both are quasi-Radon
measures it is enough to check that they agree on sets of the type G x (G2 X G3) =2 (G x G3) X G3 where
G1, G2 and G3 are open, as in 417J.)

So A1 x (A2 x Az) and (A1 * A2) * A3 agree on the Borel sets and must be identical.

(
(

)
x?

444C Theorem Let X be a topological group and A, v two totally finite quasi-Radon measures on X.
Then

[ fdx«v) = [ flzy)(A x v)d(z,y) = [[ fzy)Mde)v(dy) = [[ fzy)v(dy)A(dz)
for any (A % v)-integrable real-valued function f. In particular, (A % v)(X) = AX - vX.
proof If f is of the form yF, so that

Jrdxxv) = = v)(E), [ flay)A x v)d(z,y) = A x v){(z,y) : 2y € B},

IJ feyAda)v(dy) = [ MEy = v(dy),  [[ fey)v(dy)rde) = [v(z" E)A\(dx)
this is covered by the result in 444A. Now it is easy to run through the standard progression to the cases of

(i) simple functions (ii) non-negative Borel measurable functions defined everywhere (iii) functions defined,
and zero, almost everywhere (iv) non-negative integrable functions and (v) arbitrary integrable functions.

444D Proposition Let X be an abelian topological group. Then A x v = v % A for all totally finite
quasi-Radon measures A\, p on X.

proof For any Borel set £ C X,

(A v)(E) = (A xv){(z,y) :zy € B} = (v x M){(y, z) : 2y € E}
= x AM){(y,x) :yx € E} = (v x \)(E).

444E The Banach algebra of 7-additive measures (a) Let X be a topological group. Recall
from 437Ab that we have a band Cy(X)7 in the L-space C,(X)™ consisting of those order-bounded linear
functionals f : Cp(X) — R such that |f| is smooth (equivalently, f* and f~ are both smooth); that is,
such that |f|, /T and f~ can be represented by totally finite quasi-Radon measures on X. Because X is
completely regular (4A5Ha again), Cp(X)7 can be identified with the band M., of signed 7-additive Borel
measures on X, that is, the set of those countably additive functionals v defined on the Borel o-algebra of

X such that |v| is 7-additive (437G).

(b) For any 7-additive totally finite Borel measures A, v on X we can define their convolution A * v by
the formulae of 444A, that is,

A*v)(E) = [v(@ " E)A(dz) = [ X(Ey~")r(dy)

for any Borel set £ C X, if we note that the completions 5\, U of A and v are quasi-Radon measures (415Cb),
so that A * v, as defined by these formulae, is just the restriction of A x I, as defined in 444A, to the Borel
o-algebra. Now the formulae make it obvious that the map * is bilinear in the sense that
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M A+ X)xv=X A *xv+ A *v,
A*(V1+V2):A*V1+)\*V2,

(@A) xv = A* (aw) = a(A * V)

for all totally finite 7-additive Borel measures A\, A1, Ao, v, 1, v5 and all a > 0. Consequently, regarding
elements of M, as functionals on the Borel o-algebra, we have a bilinear operator *x : M, x M, — M,
defined by saying that

(M=) x (11 —v) = A1 *vp — AL * Vo — Aok vy + Ao x 1y

for all Ay, Aa, v1, o € M.

(c) We see from 444B that * is associative on M7, so it will be associative on the whole of M,. Observe
that * is positive in the sense that A« v > 0 if A\, v > 0; so that

Axv) = (AT st = AT s = AT x4 AT x|
<A TRt AT T AT R AT x0T
= [Al*[v]

for any A\, v € M.

(d) If A\, v € M then ||A]| = AX and |v| = vX (362Ba), so
M) =Ax)(X) = Axv)(X x X)=2X-vX = ||M]|v].
Generally, for any A\, v € M.,
A vl = (A s wl[] < TIAL [l = A=A

Thus M., is a Banach algebra under the operation *, as well as being an L-space. If X is abelian then M,
will be a commutative algebra, by 444D.

444F In preparation for the next construction I give a general result extending ideas already touched
on in 443C and 443G.

Theorem Let X be a topological space, G a topological group and « a continuous action of G on X. For
ACX,ac G write asA = {asx : © € A}. Let v be a measure on X.

(a) If f: X — [0,00] is lower semi-continuous, then a — [asfdv : G — [0, 0] is lower semi-continuous.
(See 4A5Cc for the definition of asf.) In particular, if V. C X is open, then a — v(asV) : G — [0,00] is
lower semi-continuous.

(b) If f : X — R is continuous, then a — (asf)* : G — LY is continuous, if L° = L°%(v) is given the
topology of convergence in measure.

(c) If v is o-finite and E C X is a Borel set, then a — (a+E)* : G — 2 is Borel measurable, if the measure
algebra 20 of v is given its measure-algebra topology.

(d) If v is o-finite and f : X — R is Borel measurable, then a — (asf)* : G — L° is Borel measurable.

(e) If v is o-finite, then

(i) a = v(asE) : G — [0, 00] is Borel measurable for any Borel set E C X;
(ii) if f : X — R is Borel measurable, then @ = {a : [a+f dv is defined in [—o0, 00} is a Borel set, and
a~ [asfdv:Q — [—oco,00] is Borel measurable.

proof (a)(i) Note first that if f : X — [0,00] is Borel measurable, then, for each a € G, asf is the
composition of f with the continuous function z — a~tex, so is Borel measurable, and if f is finite-valued
then (aef)* is defined in L = L°(v).

(ii) Suppose that f : X — [0, 00| is lower semi-continuous, v € [0,00[, a € G and [ aef > 7. Let U be
the set of open neighbourhoods of a in G. For U e U, xz € X set

ou (x) = sup{infpey yev (bef)(y) : V is an open neighbourhood of z in X}.
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Then ¢y is lower semi-continuous. P If ¢y (x) > «, there is an open neighbourhood V of x such that
infpepyev (bef)(y) > o now ¢y (y) > a for every y € V. Q If U’ C U then ¢y > ¢y, so {¢y : U € U} is
upwards-directed. Also supy ey ¢u = asf in [0,00]%. P Of course ¢y (z) < (asf)(z) for every z. If z € X
and (asf)(z) > «, then {y : f(y) > a} is an open set containing a~!ex, so (because « is continuous) there
are a U € U and an open neighbourhood V of = such that f(b=tey) > o whenever b € U and y € V; in
which case ¢y (z) > o. As « is arbitrary, supy ¢y ¢u(x) = (asf)(z). Q

By 414Ba, [a«fdv = supyy [ ¢udy, and there is a U € U such that [ ¢ydr > . Now suppose that
b € U; then ¢y (z) < (bef)(z) for every =, so [befdv > ~. This shows that {a : [asfdv > v} is an open
set in G, so that a — f asf dv is lower semi-continuous.

(iii) If V C X is open, then xV is lower semi-continuous, and x(a*V) = a«(xV) for every a € G. So
a— v(asV) = [as(xV)dv is lower semi-continuous.
Thus (a) is true.

(b) Take any a € G, E € domv such that vE < oo and € > 0. Let U be the family of open neighbourhoods
of a in G, and for U € U set

Hy =int{x : [(bef)(x) — (asf)(x)| < € whenever b € U}.

Then {Hy : U € U} is upwards-directed. Also, it has union X. P If x € X then, because (b,y) — f(b~1ey)
is continuous, there are a U € U and an open neighbourhood V' of  such that |(bsf)(y) — (asf)(z)| < Fe
whenever b € U and y € V. But now |(bef)(y) — (asf)(y)| < € whenever b € U and y € V, so that Hy
includes V', which contains z. Q

So there is a U € U such that v(E \ Hy) < € (414Ea). In this case, for any b € U, we must have

fE min(1, |bef — asf|)dv < (1 + vE).

As E and € are arbitrary, b — (bef)* is continuous at a; as a is arbitrary, it is continuous everywhere. Thus
(b) is true.

(c)(i) Let us start by supposing that FE is an open set and that v is totally finite. In this case the function
a — v(a+E) is lower semi-continuous, by (a) above, therefore Borel measurable. Now let W C 2 be an open
set, and write H = {a:a € G, (asE)* € W}. For m, k € Nset Hy, = {a:27"k <v(aE) <2 ™(k+1)},
so that H,, is Borel, and U,,,x, = G\ Hpi \ H, so that U, is open. Let H' be UmﬁeN H,,,NU,,x; then H' is
Boreland H' C H. In fact H' = H. P If a € H, then W is an open set containing (a«E)*. Let 6 > 0 be such
that a € W whenever 7(a A (asF)*) < §, where 7 is the measure on 2; let m, k € N be such that 27™ < ié
and 27"k < v(a-E) < 27™(k + 1). If we take v’ to be the indefinite-integral measure over v defined by
X(aE), then v’ is a quasi-Radon measure (4150b), so (by (a) again) U = {b: v/(beE) > 27™(k — 1)} is an
open set, and of course it contains a. If b € U N H,,, then

V((bsE)A(asE)) = v(bsE) 4+ v(asE) — 2v((beE) N (asE))
<O M(E+1) 42k +1)—2-27"(k—1)<4-27™ <4,

so (beE)* € W and b € H. This shows that UN (Hpyur \ H) =0 and U C Uy and a € U N Hypp € H' . As
a is arbitrary, H = H'. Q Thus H is a Borel subset of G. As W is arbitrary, the map a — (a*FE)* is Borel
measurable.

(ii) To extend this to a general o-finite quasi-Radon measure v, still supposing that F is open, let
h: X — R be a strictly positive integrable function (215B(viii)) and »’ the corresponding indefinite-integral
measure. As in (i), this ¢’ also is a quasi-Radon measure. Since v and v’ have the same domains and the
same null ideals, the Boolean algebra 2l is still the underlying algebra of the measure algebra of v’; by 324H,
the topologies on 2 induced by the measures 7, 7’ are the same. So we can apply (i) to the measure v’ to
see that a — (asE)* : G — 2 is still Borel measurable.

(iii) Next, suppose that F is expressible as Uign Va; \ Vai+1 where each V; is open. Then a — (asE)*
is Borel measurable. P Set X’ = X x {0,...,2n + 1}, with the product topology (giving {0,... ,2n + 1}
its discrete topology) and define a measure v’ on X and an action of G on X’ by setting

V'F = Z?Z(')H v{z: (z,i) € F}
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whenever F' C X’ is such that {z : (z,7) € F} € domv for every i < 2n + 1,
as(z,i) = (asx, )

whenever a € G, z € X and i < 2n+ 1. Then V = {(x,7) : i < 2n+ 1, x € V;} is an open set in X', while
V' is a o-finite quasi-Radon measure, as is easily checked; so, by (ii), the map a — (a*V)* : G — 2’ is Borel
measurable, where 2’ is the measure algebra of /. On the other hand, we can identify 2" with the simple
power A2"+2 (322Lb), and the map

(Ci)i<on41 > SUD;<,, €20 \ Coiq1  APMT2 — 2
is continuous, by 323B. So the map

a > (asE)* = sup; <, (a+V2i)* \ (a*V2it1)*
is the composition of a Borel measurable function with a continuous function, and is Borel measurable. Q
(iv) Now the family £ of all those Borel sets E C X such that a — (asE)*® is Borel measurable is closed

under unions and intersections of monotonic sequences. P (a) If (E,)nen is a non-decreasing sequence in
&€ with union E, then

(asE)* = sup, cn(asEy)* = lim, oo (asEy)®

(323Ea) for every a € G. So a — (a=E)* is the pointwise limit of a sequence of Borel measurable functions
into a metrizable space (323Gb, because (2, 7) is o-finite), and is Borel measurable, by 418Ba. Thus F € £.
(8) If (E,)nen is a non-increasing sequence in £ the same argument applies, since this time

(asE)* = infpen(acEy)® = limy, o0 (asEy)®

(323Eb) for every a € G. Q

Since £ contains all sets of the form (J,., Vi N F; where every V; is open and every F; is closed, by (iii),
£ must be the whole Borel o-algebra, by 4A3C(g-ii).

This completes the proof of (c).

(d)(i) We need the following extension of (¢): if (E,)nen is any sequence of Borel sets in X, then
a = ((aEp)*)nen : G — 2AY is Borel measurable. P I repeat the idea of (c-iii) above. On X' = X x N
define a measure v’ by setting

VF ="  v{z:(x,n) € F}

whenever F' C X' is such that {x : (x,n) € F} € domwv for every n € N. As before, it is easy to check
that v’ is a o-finite quasi-Radon measure, if we give N its discrete topology and X’ the product topology.
As before, set as(z,n) = (asz,n) for a € G, x € X and n € N, to obtain a continuous action of G on X".
Applying (c) to this action, the map a — (asF)* : G — 2’ is Borel measurable, where 2" is the measure
algebra of v/ and E = {(z,n) : n € N,z € E,}. But we can identify 2!’ (as Boolean algebra) with 2~
by 322L, as before; so that if we re-interpret a + (a+E)* : G — A as a = {(a*E,)")nen : G — AN it is
still Borel measurable. (As in (c-ii), this time using 323L, the measure-algebra topology of 2" matches the
product topology on 2Y.) Q

(ii) Now suppose that f: X — [0, 1] is Borel measurable. Define (E,,),cn inductively by the formula
E,={z:zeX, (f-2, 27" 'xE;)(x) =271}
Then every E, is a Borel set and f =Y 2 27" !'xE,. Next, observe that the function
(Cnhnen — Y ome 027" Ixe, t AN — L0

is continuous, because each of the maps ¢ — 27"~ 1xc is continuous (367R), addition is continuous (245Da,
367Ma) and the series is uniformly summable. Accordingly we may think of the map a +— (aef)® as the
composition of the continuous function {(¢)nen — ZZOZO 2 "lyc; with the Borel measurable function
a— {(a*E,)*)nen, and it is Borel measurable.

(iii) For general Borel measurable f : X — R, set q(t) = (1 + It\%)’ so that ¢ : R — ]0,1] is
a homeomorphism, and set p = ¢~! : ]0,1[ — R. Then the function p : P — L is continuous, where
P={u:uell [uec]0,1[] =1} (367S). But now
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asf = pege(asf) = polas(gof))
for every a, so that a — (asf)* is the composition of the Borel map a — (as(go f))
map p, and is Borel measurable.

with the continuous

(e)(i) We need only recall that 7 : 2 — R is lower semi-continuous (323Cb), so that (applying (c) above)
a— v(aeE) =v(aE)*
is a composition of Borel measurable functions and is Borel measurable. (Of course there are much more

direct arguments, using fragments of the proof above.)

(ii) The point is that the maps u — ut, u — u~ : L® — (L°)* are continuous (245Db, 367M),
while u — [u: (L) — [0,00] is lower semi-continuous (369Mb), therefore Borel measurable. Accordingly
ar [(asf)" = [((asf)*)* and a > [(asf)~ are Borel measurable functions from G to [0, o], so that

Q = {a:min(f(a+f)*, [(asf)7) < o0}
is a Borel set, and
a fa-f = f(a-f)+ — f(a-f)’ 1 Q — [—00, ]

is Borel measurable.

444G Corollary Let X be a topological group and v a o-finite quasi-Radon measure on X.

(a) If f: X — R is a Borel measurable function, then {z : [ f(y~'2)v(dy) is defined in [—o0, oc]} is a
Borel set in X and z — [ f(y~'z)v(dy) is Borel measurable.

(b) If f, g : X — R are Borel measurable functions, then {z : [ f(zy~")g(y)v(dy) is defined in [—o0, o]}
is a Borel set and z — [ f(xy~')g(y)v(dy) is Borel measurable.

(c) If v is totally finite and f : X — R is a bounded continuous function, then z — [ f(y~tz)v(dy) :
X — R is continuous.

proof (a) Set 7(3:) = f(z7?) for * € X (4A5C(c-ii)); then 7‘ is Borel measurable. Let ; be the left action
of X on itself. Then, in the language of 444Fe, Q = {z : [ e, f dv is defined in [—00, 0]} is a Borel set, and
[ 2+ f dv is Borel measurable. But

(v f) () = Fle™'y) = fya)
for all z, y, so fx-l? dv = [ f(y~'z)v(dy) if either integral is defined.

(b)(i) Set VE = vE~! when this is defined, writing E~! = {#7! : € E} for E C X; that is, ¥ is the
image measure v¢~!, where ¢(x) = 2! for x € X. Because ¢ is a homeomorphism, ¥ is a quasi-Radon
measure. By 235J, [ hdV = [ h(z~!)v(dz) for any real-valued function h for which either integral is defined
in [—o0, o0].

(ii) Now suppose that f and g are non-negative Borel measurable functions from X to R. Then g also
is a non-negative Borel measurable function. We know from 444Fd that x + (27 1e f)* : X — L9(V) is a
Borel measurable function; now multiplication in LV is continuous (367Mb), so the map x — ((z 1o/ f) x §)*
is Borel measurable; since integration is lower semi-continuous on (L)*, z — [(z 7 e;f)x G dV : X — [0, 00]
is Borel measurable. But

[ o) x Gav = [ flay)gly ) P(dy) = [ fley)g(y)v(dy)

whenever any of the integrals is defined in [—o0, o0], so this is the function we needed to know about.

(iii) For general Borel measurable functions f and g, we have
[ ey Dawwian) = ([ 5@ g @) + [ 5 @ e @)
(] £ g ) + [ £ gt )
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exactly when the subtraction can be done in [—o0, 00|, so that z — [ f(zy~1)g(y)v(dy) is a difference of
Borel measurable functions and is Borel measurable, with Borel measurable domain.

(c) Continuing the argument of (a), if f is bounded and continuous and v is totally finite then all the
functions 2+ f are bounded and continuous, so [ @+ f dv is defined and finite for every z. Next, the function

T (x-l?)' : X — L°(v) is continuous for the topology of convergence in measure (444Fb), which agrees
with the norm topology of L(v) on || ||o-bounded sets (246Jb). It follows that

v [(@af)r = [ fly " a)v(dy)

is continuous.

444H Convolutions of measures and functions I introduce some notation which I shall use for the
rest of the section. Let X be a topological group. If f is a real-valued function defined on a subset of X,
and v is a measure on X, set

(v f)(@) = [ fly~ x)v(dy)

whenever the integral is defined in R.

4441 Proposition Let X be a topological group and A, v two totally finite quasi-Radon measures on X.

(a) For any Borel measurable function f : X — R, v * f is a Borel measurable function with a Borel
domain.

(b) v f € Cp(X) for every f € Cp(X).

(c) For any real-valued function f defined on a subset of X, (A% (v * f))(x) = (A *v) % f)(x) whenever
the right-hand side is defined.

proof (a) This follows at once from 444Ga.
(b) This is just a restatement of 444Gec.
(c) If (A *v) * f)(x) is defined, then

(e« @) = [ 1 D0 = [[ 1) o)
(444C)

://f(zflyflz)y(dz)/\(dy)
_ / (v )y 2)Ady) = (A * (v * f))(@).

444J Convolutions of functions and measures Let X be a topological group carrying Haar measures;
let A be its left modular function (442I). If f is a real-valued function defined on a subset of X, and v is a
measure on X, set

(f *v)(@) = [ flay ") Ay~ )v(dy)
whenever the integral is defined in R. From 444Gb we see that if v is a o-finite quasi-Radon measure and

f is Borel measurable, then f * v is a Borel measurable function with a Borel domain. If f is non-negative
and v-integrable, write fv for the corresponding indefinite-integral measure over v (234J3).

444K Proposition Let X be a topological group with a left Haar measure pu. Let v be a totally
finite quasi-Radon measure on X. Then for any non-negative p-integrable real-valued function f, fu is a
quasi-Radon measure; moreover, v * f and f % v are u-integrable, and we have

3Formerly 234B.
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(s Pu=vefu (Frop=fuxv.
In particular, [vx fdu= [ fxvdp=vX- [ fdpu.
proof (a) fu is a quasi-Radon measure by 4150b.

(b) Suppose first that f is Borel measurable and defined everywhere on X, as well as being non-negative
and p-integrable.

(i) Let E C X be a Borel set such that uE < oo. The function (z,y) — f(z 7 y)xE(y) : X x X — [0, 00|
is Borel measurable, so

(v % fu)(E) = / (f) (& E)u(de)

~ [[ 1o Bontayvia

(by the definition of fu, 234I%)
- / fay)x (@ E) (@ ) p(dy) v (der)

— [[ s oxwmtantin) = [[ 1 E@r@

(by Fubini’s theorem, 417Ga because (z,y) — f(z 7 y)xE(y) is non-negative and Borel measurable and zero
outside X xE). So [ f(z~'y)v(dz) must be finite for y-almost every y € E. Because p is complete and locally
determined and inner regular with respect to the Borel sets of finite measure, (v * f)(y) = [ f(a™ Ly)v(dr)
is defined in R for p-almost every y € X. So we have an indefinite-integral measure (u * f ). Next, we have

(444A)

(441J)

00> vX [ fdn = (v f)(X) = (v« f)(E)
- / F& )X E () (de)u(dy) = / / (v HWXE@udy) = (v Fu)(E)

for every Borel set E such that puFE is finite. Again because u is inner regular with respect to the Borel sets
of finite measure, v  f is p-integrable and (v * f)u is totally finite. Since v * fu and (v * f)(u) are totally
finite quasi-Radon measures agreeing on open sets of finite measure for p, and p is locally finite (442Aa),
415H(iv) assures us that v * fu= (v * f)(u).

(ii) Now consider f *v. This time, if E C X is Borel and puFE < oo,

(s )(®) = [(mErtwan = [[ - f . u(dy)

- / Al /E F ey ulde)v(dy)
- /E / Aly™) f ey~ )w(dy)u(dz).

Once again, we see that [A(y™')f(zy ')v(dy) is defined for p-almost every z € E; as E is arbitrary,
(f *xv)(x) is defined in R for p-almost every x € X; and 444GD tells us that f v is Borel measurable. As
before,

(by 442Kc)

4Formerly 234A.
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Sy Frvdu < (fuxv)(X) = [ fdp-vX < o0

for Borel sets E with uFE < oo, so that f x v is p-integrable; as before, the quasi-Radon measures (f * v)u
and fu *x v agree on open sets of finite y-measure, so coincide.

(c) Next, suppose that f is defined and zero p-a.e. In this case there is a Borel set F such that uE =0
and f(z) is defined and equal to zero for every x € X \ E (443J(b-ii)). Set g = xE. Then gu is the zero
measure, 80 (Vx g)u = v * gu, (g *xv)pu = gu = v are all zero; that is, there is some p-conegligible set F' such
that

0=(vxg)(x fxE y~lr)v(dy) = v(zE™Y),

0=(g*v)(z)= fxE(wy‘l)A = [, v(dy)

for every x € F. But now, for z € F', we must have l/(xE’ ) = V(E*Ix) =0 (smce A is strictly positive),
so that

v @)= [ fly  aw(dy) = [ ., Fly " e)v(dy) =0,
because if y ¢ xE~! then y~ 'z ¢ E and f(y~'x) = 0. Similarly,

(f*v)(@) = [ flay DAY v(dy) = [, fley ™A v(dy) =0
Thus v * f and f x v are defined, and zero, u-almost everywhere.

(d) For an arbitrary non-negative p-integrable function f, we can express it in the form g + h where g is
a non-negative u-integrable Borel measurable function defined everywhere, and h is zero almost everywhere.
In this case, vxh™*, v¥h™, hT v and h™ xv are defined, and zero, p-a.e., so v* f =, vxgand f*v =, g*V.
We therefore have

(v flu=Wwsgu=vrgu=v*fu, (frv)p=_(gxv)p=gu*v=fuxv,

as required.

(e) Finally, we have
Jvsfdu=((v* HHp)(X) = (= fu)(X) = vX - (fu)(X) =vX - [ fdu,

ff*yd,uz((f*V)M)(X):(fN*V)(X):(f:“)(X)'VX:VX'ffdM'

4441, Corollary Let X be a topological group carrying Haar measures. Suppose that v is a non-zero
quasi-Radon measure on X and E C X is a Haar measurable set such that v(zE) = 0 for every z € X.
Then F is Haar negligible.

proof Let p be a left Haar measure on X. There is a non-zero totally finite quasi-Radon measure v’ on X
such that v/(zE) = 0 for every € X. P Take any F such that 0 < vF < oo, and set v'H = v(HNF)
whenever this is defined. @ Let G be any Borel set such that uG < oo, and set f = x(GN E~1). Then f is
p-integrable, and

W' f)(z fx (GNE Yy ta)/(dy) =v'(2G 1 NaE) =0

for every x € X. By 444K, v *f,u = (v'* f)u is the zero measure, and (fu)(X) = 0, that is, u(GNE~!) = 0.
As G is arbitrary, pE~! = 0 and E is Haar negligible (442H).

444M Proposition Let X be a topological group and p a left Haar measure on X. Let v be a quasi-
Radon measure on X and p € [1, 00].

(a) Suppose that X < co. Then we have a bounded positive linear operator u +— v*wu : LP(u) — LP(u),
of norm at most vX, defined by saying that v * f* = (z/ x f)* for every f € LP(u).

(b) Set v = [ A(y)=P/Py(dy) if p < oo, [ A(y)~'v(dy) if p = co, where A is the left modular function
of X. Suppose that v < co. Then we have a bounded positive linear operator u — u* v : LP(u) — LP(p),
of norm at most +, defined by saying that f*xv = (f *xv)* for every f € LP(u).
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proof I will write £P, LP for £P(u), LP(u). Note that if f1, fo € £L%(u) and f; = fo p-a.e., then 444L tells
us that v« |fi — fa| and |f1 — f2| * v are both zero p-almost everywhere, so that v * fi =, v * fo and
f1 %V =ac f2*v, in the sense that there is a p-conegligible set F' such that (v * f1)[F = (v * f2)| F and
(fi *V)[F = (fa xv)[ F. In particular, if we are told that v  f; belongs to £P, and that f = f5 in L°(u),
then we can be sure that v * fo € LP and (v * f3)* = (v * f1)*; and similarly for fi x v, fo *v.

(a) If vX = 0 the result is trivial. Multiplying v by a positive scalar does not affect the inequalities we
need, so we may suppose that vX = 1. If f > 0 is p-integrable, then 444K tells us that v * f is p-integrable
and that

o fll = /X (v s F)@)uldz) = (v Fu)(X)
= (v Fi)(X) = vX - (F)(X) = | £,

using 444C or 444A for the penultimate equality. Since evidently v*(f+g) =v*f+v=*g, vx(af) =avxf
at any point where the right-hand sides of the equations are defined in R, we have a positive linear operator
Ty : L' — L' defined by saying that Ty g* = (v *g)* for every u-integrable Borel measurable function g, with
T3] = 1.

Similarly, if A~ : X — R is a bounded Borel measurable function, then v * h also is a Borel measurable
function, by 444Ga. Of course it is bounded, since

(v k) (@) = | [y~ 2)v(dy)| < supyex [A(y)]

for every x. So we have a positive linear operator T, : L — L defined by saying that Tooh® = (v * h)*
for every bounded Borel measurable function h. Moreover, if u € L, there is a Borel measurable h such
that h* = u and sup,¢ x [2(y)| = ||u«, so that

[Tocttlloo < supex [(v+ h)(2)] < [ufloc;

thus | Tl < 1.
Since T} and T, agree on L' N L>, they have a common extension to a linear operator T : L' + L —
L' + L. By 371Gd, ||Tul|, < ||ul|, whenever p € [1,00] and u € LP. (Strictly speaking, I am relying on

the standard identifications of L', L> and L? with the corresponding subspaces of L°(21), where (2, i) is
the measure algebra of u. Of course the argument for 371Gd applies equally well in L°(u).) Now suppose
that f € £P. Then it is expressible as g + h where g € £! and h : X — R is a bounded Borel measurable
function, so we shall have

v+ f =vx*g+vxh wherever the right-hand side is defined;

accordingly v x f is defined p-a.e. and is measurable, and

v fllp = I(v*g)* + (v h)*|lp = [ITrg” + Toch®[lp
=Tf*Mlp <Ml = 1715,
as required.

(b)(i) As in (a), the case vX = 0 is trivial. Otherwise, because A is strictly positive, v > 0; again
considering a scalar multiple of v if necessary, we may suppose that v = 1. Note that v is surely o-finite.

(ii) If p=1, then vX = v = 1. If f € £! is non-negative, then, by 444K, as in (a) above,

If vl = ((f *)u)(X) = (frxv)(X) = (fu)(X) - vX = || f]].
For general p-integrable f,

If vl < W vl + 17 vl = 15+ 1l = 1

(iii) If p = oo, then directly from the formula (f x v)(z) = [ f(zy™ ')Ay~ ')v(dy) we see that if
f: X — R is a bounded Borel measurable function then

(f x ) (@) < [ Aly) " w(dy) - supyex [£ ()] = supyex [f(y)]
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for every x. Since changing f on a p-negligible set changes f x v on a p-negligible set, we can argue as in
(a) above to see that f* > (f xv)* defines a linear operator from L to itself of norm at most 1.

(iv) Now suppose that 1 < p < co. Set ¢ = pfl, so that [ A(y~)Y%u(dy) = v = 1. Suppose for
the moment that f € LP is a non-negative Borel measurable function, and let A : X — R be another
non-negative Borel measurable function such that f hidp < 1. In this case

[t xndn= [[ n@rsar a0 ptdputn)
/ / Aly™)ulde)v(dy)

(by 417Ga, because (z,y) — h(x)f(zy~1)A(y~!) is Borel measurable and {z : h(z) # 0} is a countable

union of sets of finite measure for u, while v is o- ﬁmte

~ [[ Hews@n(@amiay
by 442Kc, as usual, at least if the last integral is finite. But, for any y € X,

[ e s@ntan) <11, / () |a(d))

= fll,(Ay™) /|h )9 p(dz)) < | fllp Ay,
So
[(f*v) x hdp= [[ h(zy)f 2)v(dy) < [Ifl,AQ=) Y (dy) = || fll,-

Because p (being a quasi-Radon measure) is seml-ﬁmte7 this means that f*v € LP and that || f*v|, < ||f|l,
(366D-366E, or 244Xe and 244Fa). (Once again, we need to know that every member of L? can be represented
by a Borel measurable function; this is a consequence of 443J or 412Xe.)

For general Borel measurable f : X — R such that [ |f[Pdu < oo, we know that from 444G that f v is
Borel measurable, while |f * v| < |f| v (and f * v is defined wherever |f]| * v is finite), so that

L+ vllp < T wllp < A = 11l
Finally, if f € LP is arbitrary, then there is a Borel measurable g : X — R such that f =,. g, so that
f*V=pe g*v and
1+ vllp = llg*vllp < llglly = [1/15-

It follows at once that we have a bounded linear operator f* — (f *v)® : LP — LP, of norm at most 1 = ~.

444N The following lemma on exchanging the order of repeated integrals will be fundamental to the
formulae in the rest of the section.

Lemma Let X be a topological group and y a left Haar measure on X. Suppose that f, g, h € £%(u) (the
space of measurable real-valued functions defined p-a.e. in X) are non-negative. Then, writing [ ...d(z,y)
to denote integration with respect to the quasi-Radon product measure p x p,

I[ f@)gW)h(zy)dady = [[ f(x)g(y)h(zy)dyde = [ f(x)g(y)h(zy)d(z,y)
in [0, oo].

proof Following the standard pattern in results of this type, I deal with successively more complicated
functions f, g and h. Evidently the situation is symmetric, so that it will be enough if I can show that

I f@)gW)h(zy)dzdy = [ f(x)g(y)h(zy)d(z,y).
(a) Suppose first that f = xF, g = xG and h = xH, where F, G, H are Borel subsets of X. In this case

[J f@)g(y)h(zy)dady = supy v ess [, [, F(@)a(y)h(zy)dady,
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where 2/ is the ideal of measurable sets of finite measure for u. B For y € X, n € N and U € %/ write
ff h(xy)dx = p(F N Hy™ 1Y), fU h(xy)dx = pW(UNFNHy™ 1),

M@mew,Mmzmmmm

Then every gy is continuous, by 443C (with a little help from 323Cc), while supycsr qu(y) = ¢(y) for every

y, because p is semi-finite. Because y is 7-additive and effectively locally finite, (¢(™)* = supycss (q[(J"))‘ in
LO(p) for every n (414Ab); because %7 is upwards-directed,

/@@M@My:wp/¢m@M@My
neN
= sup / a7 (¥)g(y)dy = sup / qu (y)g(y)dy,

neN,Uexf vexf

that is,

I f(@)g(y)h(zy)dady = supyes, [ [, f@)g(y)h(zy)dedy.
On the other hand, for any U € ¥/, we surely have

[ [, F@a)h(zy)dady = supyess [, [, F(@)gy)h(zy)dedy,

again because p is semi-finite. Putting these together, we have the result. Q
Looking at the other side of the equation, [ f(z)g(y)h(zy)d(z,y) = (1 x )W, where W = (F x G) N
{(z,y) : xy € H} is a Borel set; so that

//ﬂwammWMMyzsm>mxm«wamww

U, vexf

= sup /U va(x)g(y)h(xy)d(%y)

Uvess
(417C(b-iii)). But now we can apply 417Ga to see that, for any U, V € %/,

Joroy F@g()h(zy)d(z,y) = [, [, f(@)g(y)h(zy)dady.

Taking the supremum over U and V', we get
[ f@)gW)h(zy)d(z,y) = [[ f(x)g(y)h(zy)dzdy.
(b) Clearly both sides of our equation

[ F@g)h(zy)d(z,y) = [[ f(2)g(y)h(zy)dady
are additive in f, g and h separately (subtraction, of course, will be another matter, as I am allowing co to
appear without restriction); and also behave identically if f or g or h is multiplied by a non-negative scalar.
So the identity will be valid if f, g and h are all finite sums of non-negative multiples of indicator functions
of Borel sets. Moreover, by repeated use of B.Levi’s theorem, we see that if (f,)nen, (gn)nen and (hn)nen
are non-decreasing sequences of such functions with suprema f, g and h, then

Lﬁwmw —m/ngn o (2)d(z, )

= sup / fn(@)gn (y) hn (zy)dady = / / f(@)g(y)h(zy)dzdy.

So the identity is valid for all non-negative Borel measurable functions f, g and h.

(¢) Finally, suppose only that f, g and h are non-negative, measurable and defined almost everywhere. In
this case, by 443J(b-iv), there are Borel measurable functions fy, go and hg, non-negative, defined everywhere
on X and equal almost everywhere to f, g and h respectively. Let E be the conegligible set

{z : 2 € dom f NdomhNdomy, f(z) = fo(z), g(x) = go(x), h(z) = ho(z)}.
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We find that [ f(z)h(zy)dz = [ fo(x)ho(zy)dz for every y € X. P EN Ey~ ! is conegligible (see 443A),
and f(z)h(zy) = fo(z)ho(zy) for every x € ENEy~t. Q Consequently
I[ f@)g()h(zy)dady = [[ fo(z)go(y)ho(axy)dady.

Secondly, f(z)g(y)h(zy) = fo(x)go(y)ho(zy) (1 X M)—a-e- P Set W= {(z,y): v € E,y€E,zy€E}
Fubini’s theorem, applied to (U x V) \ W where U, V € %/, shows that W is conegligible; but of course

f@g)h(zy) = folx)go(y)ho(xy) whenever (:L' y) eW.Q Accordingly

| F@)g(y)h(zy = [ fo(@)go(y)ho(zy)d(x,y).
Combining this with the result of (b), apphed to fo, go and ho, we see that once again
J f@)g(y)h(zy =[] £(@)g(y)h(zy)dady,

as required.

4440 Convolutions of functions: Theorem Let X be a topological group and p a left Haar measure
on X. For f, g€ L% = LO(n), write (f * g)(z) = [ f(y)g9(y~'x)dy whenever this is defined in R, taking the
integral with respect to p.

(a) Writing A for the left modular function of X,

(fxg)(z /f gy 'a)dy = /f(afy)g(y’l)dy
/A‘i @@@—/AWﬂﬂw”M@@

whenever any of these integrals is defined in R.

(b) If f =a¢. f1 and g =a.¢. g1, then fxg = f1xg;.
©)@) |(f*g)(@)| < (If] *|g])(z) whenever either is defined in R.

(i)
((f1+ f2) % 9)(@) = (f1 % 9)(@) + (f2 % 9) @),
(f * (91 + 92))(@) = (F * 91)(@) + (F % 92) (@),

((af)* g)(@) = (f * (ag))(x) = a(f * g)(z)
whenever the right-hand expressions are defined in R.
(d) If f, g and h belong to £° and any of

JUf1+1gD (@) hl(z)de,  [[ 1f(@)g(y)h(zy)|dedy,
[ 1f@g)h(zy)|dydz, [ |f(x)g(y)h(zy)|d(z,y)
is defined in [0, 00| (writing [ ... a:,y) for integration with respect to the quasi-Radon product measure
wx pon X x X), then
J(f = g)@h(z)dz,  [[ f()g(y)h(zy)dzdy,

[ f@)g)h(zy)dydz, [ f(z)g(y)h(zy)d(z,y)

are all defined, finite and equal, provided that in the expression (f * ¢g)(z)h(x) we interpret the product as
0 when h(z) =0 and (f * g)(x) is undefined.

(e) If f, g and h belong to L£L°, fxg and gxh are defined a.e. and x € X is such that either (|f|*(|g|*|h|))(z)
or ((|f]*|g]) * |h])(z) is defined in R, then (f x (g* h))(x) and ((f * g) * h)(x) are defined and equal.

(f) Ifa e X and f, g € £O,

asi(f*g) = (asf)*g, a=(f*g)=fx*(asg),
(as f)x g =Aa™") [ * (a " ag),
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Fri=(g+f)"
(g) If X is abelian then fxg =g« f for all f and g.
proof (a) Use 441J and 442Kb to see that the four formulae for f * g coincide.
(b) Setting
E ={y:yedomfndom f; NdomgNdomgi, f(y) = f1(y), 9(y) = 91 ()},

E is conegligible. If 2 € X, then f(y)g(y~'z) = fi(y)g1(y~'z) for every y € ENxzE~!, which is also
conegligible, by 443A; so (f x g)(x) = (f1 * g1)(x) if either is defined.

(c) These are all elementary.

(d) First consider non-negative f, g and h. The point is that, if any of the integrals is defined and finite,

[ a@h@is= [[ A gtanht)dody

//A " f @ Hg(xy)h(y)dydae

(by 444N, recalling that x — A(z~! ~1) will belong to £° if f does, by 442J and 442H)

//f y)dydx = //f h(zy)dydx

(substituting xy for y in the inner integral, as permitted by 441J). (The ‘and finite’ at the beginning of the
last sentence is there because I have changed the rules since the last paragraph, and f * ¢ is not allowed to
take the value co. So we have to take care that

{y : h(y) >0, ff Yg(z~ly)dr = o}
is negligible.) Now applying 444N again, we get

[t @@z = [ [ f@gwhiedsdy
— [[ 1@9twhnivds = [ F@g@hend.y
if any of these integrals is finite.

For the general case, the hypothesis on |f], |g| and |h| is sufficient to ensure that the four expressions are
equal for any combination of f*, g* and h*; adding and subtracting these combinations appropriately, we
get the result.

(e) The point is that, for non-negative f, g and h,
(29 h)@) = [ ()@l 0)dz = [(7 59 )z

(setting h'(z) = h(z71x))
//f B (yz)dzdy

(using (d); to see that k' is measurable, refer to 443A as usual)
- // FW)g(2)h(z"ty™ )dzdy
— [ £@lg 1 )y = (£ * g+ W)(2)

at least as long as one of the expressions here is finite. (Note that, as in 255J, we need to suppose that fx*g
and g * h are defined a.e. when moving from [(f * g)(2)h(z"'z)dz to [[ f(y)g(z)h(z~'y~*)dydz and from
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I[ f(y)g(z)h(z"ty ta)dzdy to [ f(y)(g*h)(y~'z)dy, since in part (d) I am more tolerant of infinities in the
repeated integrals than I was in the definition of f * g.) Once again, subject to the inner integrals implicit
in the formulae f x (g * h) and (f * g) * h being adequately defined, we can use addition and subtraction to
obtain the result for general f, g and h.

(f) These are immediate from the formulae in (a), using 442K if necessary.
(g) If X is abelian, then A( ) =1 for every y, so
(g M) = [ g fy a)dy = [ g)Aly™ ) fley=")dy = (f * g)(x)
if either (f * g)(z) or (g * f)(a:) is defined in R.

444P Proposition Let X be a topological group and p a left Haar measure on X.
() If f € LY(p)T and g € LO(u) then f x g, as defined in 4440, is equal to (fu) * g as defined in 444H.

(b) If f € L%(p) and g € L' ()T then f g = f * (gu).
proof Again, these are immediate from the formulae above:

(f*9)(@) = [ gy a) f(W)uldy) = [ gly~ @) (fu)(dy) = (fu*g)(x),

(f*9)(= ff 2y DA g()u(dy) = [ fley™ A=) (gr)(dy) = (f * gu)(x)

whenever these are deﬁned, using 235K, as usual, to calculate [...d(fu), [...d(gu). (Note that as we
assume throughout that f and g are defined p-almost everywhere, all the functlons y— gy tz), y —
f(xy~1) are also defined p-a.e., by the results set out in 443A.)

444Q Proposition Let X be a topological group and p a left Haar measure on X.
(a) Let f, g be non-negative p-integrable functions. Then, defining f x g as in 4440, we have f *x g €
Lr= L1(u) and

(f) * (gu) = (f = g)p-
(b) For any f, g€ L', fxg € L' and

[ frgdu= [ fdufgdu, |f*gl <|flhlglh-
proof (a) Putting 444K and 444P together, fu* gu = (fu* g)u, so that f*g = fu g is p-integrable, and
(f+ g = (Fuxglp= fuxgp.
(b) Taking h = xX in 4440d, we get [ f*gdp= [ fdu [ gdu. Now
1+ glv = [1F =gl < [1f1xlgl = [171] gl = 1 llxllg]ls

444R Proposition Let X be a topological group and p a left Haar measure on X. Take any p € [1, 00].
(a) If f € L' () and g € LP(u), then f+g € LP(u) and |[f * gllp < || fll1llgll,-

(b) f+G = (g f)* forall f, g€ £ If X is unimodular then ||?||p = ||f|l, for every f e £O.

(¢c)Set g =0 ifp=1,p/(p—1)ifl <p<oo, 1lifp=oo IffeLP(u)and g e L9u), then
[ * ¢ is defined everywhere in X and is continuous, and ||f * §llcc < ||fllpllgllg- If X is unimodular, then
frgeC(X)and [|f* gllo < [Ifllpllgllq for every f & LP(u), g € L9(p).

Remark In the formulae above, interpret [g||oc as ||g*[|oc = ess sup |g| for g € £ = L£>(u), and as oo for
g € L9\ L. Because y is strictly positive, this agrees with the usual definition ||g||cc = sup,cy |g(z)| when
g is continuous and defined everywhere on X.

proof (a) If f >0, then f* g = (fu) * g belongs to LP(u), and

1f = gllp =1 frxglly < (f)(X)lglly = I fll1llgllp,
by 444Pa and 444Ma. Generally, f * g =a.0. fT * g — f~ % g belongs to £LP(u) and
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1 gllp < WS glly + 157 gllp < AL+ 1 10 glle = 1l llgllp-

(b)(i) By 443A once more, ? € £° whenever f € L. For z € X,
(F*§)@) = [ FWF o)y = [ Fy gl y)dy = (9 Ha™) = (g% )" (@)
if any of these are defined.
(ii) If X is unimodular, then, for any f € £,
171l = [ 1f @) Pde = [ A)|f@)Pde = ||}
while ess sup |?\ = ess sup |f| because E~! is conegligible whenever E C X is conegligible.
(c)(i) For any z € X,
(f*9)x) = [ fy) wlydy:ffx (z19)
in the language of 443G and 4440. By 443Gb, ze;g € L9, 50 (f *x g)(x) = [ f x (we1g) is defined.
(ii) If p > 1, so that ¢ < oo, then z — (x-lg)' : X — L7 is continuous (443Gf), so
z (fxg)(@) = [ f*x (zag)*
is continuous, because f* € LP = (L7)*. pr =1, then
(f*9)(@) = [ fley)g(y)dy = [(@~ e f) x g
for every x; since z +— (x71e)f)* : X — L1 is continuous, so is f* g.

(iii) If X is unimodular then f % g = f * g is continuous, because § € £ by (b), and ||f * g|lec <
I 1pl1G1lg = 1l £1Ipllgllq-

4448 Remarks Let X be a topological group and u a left Haar measure on X.

(a) From 4440b and 444Ra we see that we have a bilinear operator (u,v) — u*v : L*(u) x LP(u) — LP(p)
defined by saying that f** g* = (f * g)* for every f € £'(u) and g € LP(u). Indeed, 4440Db tells us that x
can actually be regarded as a function from L' x LP to £LP. Putting 443Ge together with 4440e and 4440f,
we have

wx (vkw) = (uxv)*w,
aej(uxw) = (aqu) *w, as.(uxw)=ux* (as,w),

(aspu) xw = A(a™Hu * (a=teoyw)
whenever u, v € L', w € LP and a € X.
Similarly, if the group is unimodular, and % + % = 1, the map * : LP x L9 — Cp(X) (444Rc) factors
through a map from LP x L? to Cy(X).
(b) In particular, * : L' x L' — L' is associative; evidently it is bilinear; and |lu * v||; < |lul|1||v|; for

all u, v € L'. So L' is a normed algebra; since L' is || ||;-complete, it is a Banach algebra. By 444Qb,
Jusxv=[u[vforall u,ve L' L'is commutative if X is abelian (4440g).

(c) Let B be the Borel o-algebra of X and M, the Banach algebra of signed r-additive Borel measures
on X, as in 444E. If, for f € £L! = LY(u) and E € B, we write (fu[B)(E) = fE fdu, then fulB € M;;
for f > 0, this is because the indefinite-integral measure fu is a quasi-Radon measure, and in general it is
because fulB = ftulB— f~ulB. For f, g € L', we have

fr=9"in L' = f=ac g=> fulB=gulB,
so we have an operator T : L' — M, defined by setting T'(f*) = fu[B for f € L. It is easy to check that

(f+9ulB=fulB+gulB, (af)ulB=a(fulB),
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([fluIB)(E) = fE |f| =suppep pcr fFf - fE\Ff = [fulB|(E)
for f, g € L', a € R and F € B, so that T is a Riesz homomorphism; moreover,
£l Bl = [fulBI(X) = (|flulBY(X) = [ |fldu =[]

for f € £1, so that T is norm-preserving. Finally, for non-negative f, g € £, we have

Tf*+Tg* = (fulB)* (gulB) = (fr* gu)I B
(444ED, since the completions of fu[B, gulB are the quasi-Radon indefinite-integral measures fu, gu)
= (f*g)ulB
(444Qa)
=T(f*g)=T(f° *g°).

Thus Tu * Tv = T(u * v) for non-negative u, v € L!; by linearity, Tu * Tv = T (u * v) for all u, v € L', and
T is an embedding of L' as a subalgebra of M. .

444T Proposition Let X be a topological group and u a left Haar measure on X. Then for any
p € [1,00[, f € LP(p) and € > 0 there is a neighbourhood U of the identity e in X such that ||vx f— f||, <€
and || f * v — f||, < e whenever v is a quasi-Radon measure on X such that vU = vX = 1.

proof (a) To begin with, suppose that f is non-negative, continuous and bounded, and that G = {z :
f(z) > 0} has finite measure; set M = sup,cx f(x). Write i for the family of neighbourhoods of e. Take
d >0, n €]0,1] such that

(20 + (1 + 0P = )P fll, < e,

(L= [((f =mxX)")Pdp — MPy > (1=6) [ frdpu, (1 —n) PP <146
For each U € U, set
Hy =int{z: f(y) > f(x) —n for every y € zU L U U 'z}.

Then Hy is open and for every x € X there is a U € U such that |[f(y) — f(z)| < in whenever y €
2UUYUU U, so that « € int2U C Hy. Thus {Hy : U € U} is an upwards-directed family of open sets
with union X, and there is a U € U such that (G \ Hy) < n; moreover, because A is continuous, we can
suppose that A(y~!) > 1 —n for every y € U.

Now suppose that v is a quasi-Radon measure on X such that vU = v X = 1. Then, for any = € Hy,

(v f)(@) = [ fly  ewdy) = [, fly " 2)v(dy) = f(z) —n

lz € U= 'z whenever y € U. Similarly,

(f*v)(2) = [, flay )AL~ v(dy) = (f@) = n)(L =)

for every € Hy. Now this means that, setting h1 = v f, ha = f*v we have (fAh;)(z) > (f(z)—n)(1—n)
for every z € Hy and both i. Accordingly

because z € Hyy and y~

/ (f A haPdp > (1— )P / ((f = meX)H)Pdp

GNHy

>(1- n)p/((f —xX)")Pdp — / fr

G\HU
> (=) [ (=) Pdu - My = (1-9) [ f7an
Now, just because f and h; are non-negative, and p > 1,
|f = hilP +2(f A hi)P < fP + D7

Also, writing
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v= [ AP ru(dy) = [, Aly) TP Py(dy) < (1-n)FPP <144,
we have

ally =I5 Flp < s Ially = 17 5 7l < 2171
(444M), so that [ hPdy < (14 6)P [ fPdp for both i, and
J1f = hildp < [ fPdp+ [ hPdp—2[(f Ahi)Pdp < (26 + (146)P —1) [ frdp
for both . But this means that
max(f — £ % vl If — v Fll) < 26+ (14 8) ~ VP f], < e

As v is arbitrary, we have found a suitable U.

(b) For any continuous bounded function f such that p{z : f(z) # 0} < oo, we can find neighbourhoods
U1, Us of e such that

(@)
N[

IfF=vxfrlp < ge fFY = frsvl, <

whenever vU; =vX =1,
If==vxflp<ge If7=fxvlp < ge

whenever vUs = v X = 1. So we shall have

If—vsflp<e Nf—frvip<e

V]|
V)

whenever v(U; NU) =vX = 1.

(c) For general f € LP(u), there is a bounded continuous function g : X — R such that u{z : g(z) #
0} < oo and ||f — gl < %€ (415Pa). Now there is a neighbourhood Uy of e such that

lg—vxgly < ie, lg—g*vip < je
whenever vU; = vX = 1. There is also a neighbourhood U, of e such that A(y=1)(=P)/P < 2 for every
y € Us, so that

lg*v— fxv|, <2|g— fl, < 76

whenever vUs = v X = 1. Since we have

lvxg—v=fllp <llg—fllp < ze

whenever vX =1, we get || f —v* f|, <€ ||f = f*v|, < e whenever v(U; NU3) =vX =1
This completes the proof.

444U Corollary Let X be a topological group and p a left Haar measure on X. For any Haar measurable
E C X such that 0 < pE < oo, and any f € <, £F (1), write

fo@) = 5 fop it 15@) = 1 f, f

for z € X. Then, for any p € [1,00[, f € LP and € > 0, there is a neighbourhood U of the identity in X
such that ||fg — fl|, <eand ||fg — fll, < e whenever E C U is a non-negligible Haar measurable set.

proof Take § € ]0,1[ such that 6(1 — §)1=P)/?||f||, < le. By 444T, there is a neighbourhood U of the
identity such that ||f — f = v|, < 3¢, [|f — v f|, < € whenever v is a quasi-Radon measure on X such
that U = vX = 1. Shrinking U if necessary, we may suppose also that U = U~!, that uU < oo and that
|A(z) — 1| < 0 for every x € U, where A is the left modular function of X. If E C U and uFE > 0, consider

the quasi-Radon measures v, v/, U and V' on X defined by setting
1 - w(ENF o _ . -
vE = o fEﬂF Al Nulde), v'F = %7 VE=vF™', VF=VF!

whenever these are defined. (They are quasi-Radon measures because v and v’ are totally finite indefinite-
integral measures over p and the map x + 2! is a homeomorphism.) Because E C U = U™}, we have
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vU=vU"!= ﬁfbﬁ Az Yp(dz) =1=vX

by 442Ka, while
VX =vU=1vU"'=1

Now consider f * v and ¥/ * f. For any = € X,

(4 9)a) = [ Fay A = [ fan)A@)v(dy)

(because ¥ is the image of v under the map y +— y~!)

1

T ouE /XE(y)A(y_l)f(xy)A(y)u(dy)

(noting that v is an indefinite-integral measure over p, and using 235K)

— o [ BT ) = = [ fudn) = A e,

= [ s 0 ) = [ £ dy)

(because ¥’ is the image of v/ under the map y + y~ 1)

=L [xB@ s wontdy) =22 [ B rwtdy)

(by 442Kc)
L Fntan) = Fy (o).
So
— E-! >
If = follp < WF = F0lp+ [ 5 = 1If * P,
Now pE~' = [, A p(dy), so that
1 —1 pE" .
WE —pE7Y < [ IA(™Y) = Un(dy) < 0pE, |2 =1 < 6;
also
1F * 71 < Ul [ )/ Pu(dy) < || fl(1 = 8)0 P77
by 444Mb, so

-
=5 — UIf * Pl <80 =)0/ fl, < 3

and ||f — fell, <e
On the other hand,

If = felly =1f =V flp <&

as F is arbitrary, we have found a suitable U.

4440

444V So far I have not emphasized the special properties of compact groups. But of course they are
the centre of the subject, and for the sake of a fundamental theorem in §446 I give the following result.

Theorem Let X be a compact topological group and p a left Haar measure on X.

(a) For any u, v € L? = L?(u1) we can interpret their convolution u * v either as a member of the space

C(X) of continuous real-valued functions on X, or as a member of the space L2

(b) If w € L2, then u +— u* w is a compact linear operator whether regarded as a map from L? to C(X)

or as a map from L? to itself.

(c) If w € L? and w = i (as defined in 443Af), then u +— u x w : L? — L? is a self-adjoint operator.
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proof (a) Being compact, X is unimodular (442Ic). As noted in 444Sa, * can be regarded as a bilinear
operator from L? x L? to Cp(X) = C(X). Because X must be finite, we now have a natural map f > f*
from C(X) to L?, so that we can think of u * v as a member of L? for u, v € L?.

(b)(i) Evidently u + u*w : L? — C(X) is linear, for any w € L2

(ii) Let B be the unit ball of L?, and give it the topology induced by the weak topology T,(L?, L?),

so that B is compact (4A4Ka). Let «; be the left action of X on L? as in 443G and 4448S.

If f, g€ £?and a € X, then

(f*9)(a) = [ f@)g(a a)dw = [ f(2)G(a w)dr = [ f x as.

(Note that because X is unimodular, § and a+; g are square-integrable whenever g is.) So if u, w € L? and
a€ X, (uxw)(a) = (ulasid). It follows that, for any w € L2, the function (a,u) — (u*w)(a) : X x B - R
is continuous. I We know that «; : X x L? — L? is continuous when L? is given its norm topology (443Gf).
Now (u,v) + (ulv) is continuous, so (a,u) + (u* w)(a) = (u|as;w) must be continuous. Q

Because X is compact, this means that v — wxw : B — C(X) is continuous when C(X) is given its
norm topology and B is given the weak topology (4A2G(g-ii)). Because B is compact in the weak topology,

{uxw : u € B} is compact in C(X). But this implies that u — u*w is a compact linear operator (definition:
3A5La).

(iii) Again because X is compact, p is totally finite, so, for f € C(X), ||fll2 < |fllcovV/ X, and the
natural map f +— f*: C(X) — L? is a bounded linear operator. Consequently the map u + (u*w)* : L? —
L? is a compact operator, by 4A4La.

(c) Now suppose that w = 1. In this case (u * w|v) = (u|v * w) for all u, v € L?. P Express u, v and w
as f*, g* and h* where f, g and h are square-integrable Borel measurable functions defined everywhere on
X. We have

(u*w|v):/(f*h daz—//f (@) dyda
~ [[ 1wht w)gladzay

(because (z,y) — f(y)h(y~'z)g(z) is Borel measurable, 4 is totally finite and [ |f(y)h(y~'z)g(z)|dydx =

(Ju] * |w|]|v]) is finite)
~ [[ 1w @y = [ 1o B wdy

= (u|v* W) = (ujvxw). Q

As u and v are arbitrary, this shows that u +— u * w : L? — L? is self-adjoint.

444X Basic exercises >(a) Let X be a Hausdorff topological group. Show that if A and v are totally
finite Radon measures on X then \ * v is the image measure (A x v)¢ !, where ¢(x,y) = xy for z, y € X,
and in particular is a Radon measure.

>(b) Let X be a topological group and A, v two totally finite quasi-Radon measures on X. Writing
supp A for the support of A, show that supp(\ * v) = (supp A)(supp v).

(c) Let X be a topological group and M, :R the family of totally finite quasi-Radon measures on X. Show
that (A\,v) — Axv: M:R X MJR — MJR is continuous for the narrow topology on MJR. (Hint: 437Ma,
437N.)

(d) Let X be a Hausdorff topological group. Show that X is abelian iff its Banach algebra of signed
T-additive Borel measures is commutative.
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(e) Let X be a topological group, and M, its Banach algebra of signed 7-additive Borel measures. (i)
Show that we have actions s, s, of X on M, defined by writing (as;v)(E) = v(aE), (as,v)(E) = v(Ea™?!).

(ii) Show that (ae;A) * v = as;(A *x V), A% (ae,v) = as,(A*v) for all a € X and A\, v € M.

(f) Let X be a compact Hausdorff topological group, and B a norm-bounded subset of the Banach algebra
M, of signed 7-additive Borel measures on X. Show that (\,v) — Axv : B x B — M, is continuous for
the vague topology on M,. (Hint: 437Md.)

(g) Let X be a topological group, and v a totally finite quasi-Radon measure on X. Show that for
any Borel sets F, F C X, the function (g,h) — v(gFE N Fh) is Borel measurable. (Hint: for Borel sets
W C X xX,set VW = v{x: (z,z) € W}. Consider the action of X x X on itself defined by writing

(9, h)(x,y) = (gz,yh™").)

(h) Let X be a topological group and f a real-valued function defined on a subset of X. (i) Show that
ae (v f) = v x (asf) (definition: 4A5Cc) whenever a € X and v is a measure on X. (ii) Show that if X
carries Haar measures, then ae;(f % v) = (as;f) * v whenever a € X and v is a measure on X.

(i) Let X be a topological group carrying Haar measures, f : X — R a bounded continuous function and
v a totally finite quasi-Radon measure on X. Show that f % v is continuous.

(j) Let X be a topological group carrying Haar measures, f a real-valued function defined on a subset of
X, and A, v totally finite quasi-Radon measures on X. Show that ((f*v)*\)(x) = (f*(v*A))(z) whenever
the right-hand side is defined. (See also 444Y]j.)

(k) Let X be an abelian topological group carrying Haar measures. Show that f x v = v * f for every
measure v on X and every real-valued function f defined on a subset of X.

>(1) Let X be a topological group and p a left Haar measure on X. (i) Let v be a totally finite quasi-
Radon measure on X such that x — v(xF') is continuous for every closed set F' C X. Show that v is truly
continuous with respect to u. (Hint: if uF = 0, apply 444K to v * xyF~! to see that v(xF) = 0 for p-almost
every x.) (ii) Let v be a totally finite Radon measure on X such that z — v(zK) is continuous for every
compact set K C X. Show that v is truly continuous with respect to pu.

(m) Let X be a topological group carrying Haar measures, F C X a Haar negligible set and v a o-finite
quasi-Radon measure on X. Show that v(xF) = v(Ez) = 0 for Haar-a.e. z € X.

(n) Let X be a topological group carrying Haar measures, and v a non-zero totally finite quasi-Radon
measure on X such that v(zE) = 0 whenever x € X and vE = 0. (i) Show that v is strictly positive, so
that X is ccc. (ii) Show that a subset of X is v-negligible iff it is Haar negligible.

(o) Use the method of part (b) of the proof of 444M to prove part (a) there.

>(p) Let X be the group S! x S!, with the topology defined by giving the first coordinate the usual
topology of S! and the second coordinate its discrete topology, so that X is a locally compact abelian
group. Let u be a Haar measure on X. (i) Find a Borel measurable function f: X x X — {0, 1} such that
[[ fx,y)pldz)u(dy) # [[ f(z,y)u(dy)p(dz). (i) Let v be the Radon measure on X defined by setting
vE = #({s : (s,s71) € E}) if this is finite, co otherwise. Define g : X — {0,1} by setting g(s,t) = 1 if
s = t, 0 otherwise. Show that [[ g(zy)v(dy)u(dz) = oo, [[ g(zy)u(dz)r(dy) = 0. (iii) Find a closed set
F C X such that « — v(zF) is not Haar measurable.

>(q) Let X be a Hausdorff topological group and for a € X write §, for the Dirac measure on X
concentrated at a. (i) Show that &, * dp = d4p for all a, b € X. (ii) Show that, in the notation of 444Xe,
d, * U is the completion of a~le;v and ¥ * &, is the completion of as,.v for every a € X and every totally
finite 7-additive Borel measure v on X with completion ». (iii) Show that d, * f = as;f for every a € X and
every real-valued function f defined on a subset of X. (iv) Show that if X carries Haar measures, and has
left modular function A, f xd, = A(a=!)a"te,f for every a € X and every real-valued function f defined
on a subset of X. (v) Use these formulae to relate 4440f to 444B.
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(r) Let X be a topological group and u a left Haar measure on X. Show that if f, g € £°(X) then
(frg)" =G+

(s) Let X be a locally compact Hausdorff topological group and p a left Haar measure on X. Show that
if f, g : X — R are continuous functions with compact support, then f * g is a continuous function with
compact support.

(t) In 444Rc, show that f x ¢ is uniformly continuous for the bilateral uniformity. (Hint: in 443Gf,
x + xeju is uniformly continuous.)

(u) Let X be a topological group with a totally finite Haar measure p. Show that (i) (uxw|v) = (u|vxw) for
any u, v, w € L?> = L?(j1), where @ and u*v are defined as in 443Af and 444V (ii) the map u + uxw : L? — L?
is a compact linear operator for any w € L2?. (Hint: for (ii), use 443L.)

(v) Let X be a topological group with a Haar probability measure . Show that L?(u) with convolution
is a Banach algebra.

>(w)(i) Let X1, X5 be topological groups with totally finite quasi-Radon measures \;, v; on X; for each
i. Let A = A1 X A2, ¥ = 11 X 15 be the quasi-Radon product measure on the topological group X = X; x Xos.
Show that Ax v = (A *v1) X (A2 *v2). (ii) Let (X;);esr be a family of topological groups, and \;, v; quasi-
Radon probability measures on X; for each i. Let A = [[,c; Ai, v = [[;c; ¥4 be the quasi-Radon product

measures on the topological group [],.; X;. Show that A v = [[;c; Ai * 4.

>(x) Show that 444C, 4440, 444P, 444Qb and 444R-444U remain valid if we work with complex-valued,
rather than real-valued, functions, and with £ and L rather than £? and LP.

(y) Let X be a topological group with a left Haar measure p and left modular function A. Write

A € L° = L9(p) for the equivalence class of the function A. For u € L° write u* for U x A. Show that (i)
(u*)* = u for every u € LY (ii) u +— u* : L® — LY is a Riesz space automorphism (iii) u* € L' for every
we L' = LY (p) (iv) u s u* : L' — L' is an L-space automorphism (v) u* * v* = (v x u)* for all u, v € L!
(v) defining T : L* — M., as in 444Sc, show that Tu* = T (that is, (Tu*)(E) = (Tuw)(E~!) for Borel sets
E) for every u € L'.

444Y Further exercises (a) Find a subgroup X of {0, 1} and quasi-Radon probability measures \, v
on X and a set A C X such that (Axv)*(A) =1but (A xv){(z,y) iz, ye X, z+ye€ A} =0.

(b) Let X be a topological semigroup, that is, a semigroup with a topology such that multiplication
is continuous. (i) For totally finite 7-additive Borel measures A, v on X, show that there is a T-additive
Borel measure A * v defined by saying that (A« v)(E) = (A x v){(z,y) : 2y € E} for every Borel set E C X.
(ii) Show that in this context (A1 * A2) * A3 = Ay * (A2 % Az). (iil) Show that [ fd(Axv) = [ f(zy)A(dz)v(dy)
whenever f is (A % v)-integrable. (iv) Show that if the topology is Hausdorff and A and v are tight (that
is, inner regular with respect to the compact sets) so is A * v. (v) Show that we have a Banach algebra of
signed T-additive Borel measures on X, as in 444E.

(c) Let X be a topological group, and write MT((C) for the complexification of the L-space M, of 444E,
as described in 354Y1. Show that MT(C), with the natural extension of the convolution operator of 444E, is
a complex Banach algebra, and that we still have |Axv| < |A| % |v] for A\, v € MO,

(d) Find a locally compact Hausdorff topological group X, a Radon probability measure v on X and an
open set G C X such that {(zGx~1)*: 2 € X} is not a separable subset of the measure algebra of v.

(e) Let X be a metrizable group. We say that a subset A of X is Haar null if there are a universally
Radon-measurable set £ O A and a non-zero Radon measure v on X such that v(zEy) = 0 for every =z,
y € X. (i) Show that the family of Haar null sets is a translation-invariant o-ideal of subsets of X. (Hint:
if (E,)nen is a sequence of universally Radon-measurable Haar null sets, we can find Radon probability
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measures v, concentrated on compact sets near the identity such that v, (xE,y) = 0 for every z, y and n;
now construct an infinite convolution product v = vy * v1 * ... from the probability product of the v, and
show that v(zE,y) = 0 for every z, y and n.) (ii) Show that if X and Y are Polish groups, ¢ : X — Y is
a surjective continuous homomorphism and B C Y is Haar null, then ¢~'[B] is Haar null in X. (iii) Show
that if X is a locally compact Polish group then a subset of X is Haar null iff it is Haar negligible in the
sense of 442H. (See SOLECKI 01.)

(f) Suppose that the continuum hypothesis is true. Let v be Cantor measure on R (256Hc). Show that
there is a set A C R such that v(z + A) = 0 for every z € R, but A is not Haar negligible.

(g) Let X be a topological group and p a left Haar measure on X. Let 7 be a T-invariant extended
Fatou norm on L%(u) (§374). Show that if v is any totally finite quasi-Radon measure on X, then we have
a linear operator f* — (v * f)® from L7 to itself, of norm at most v.X.

(h) Let X be a topological group with a left Haar measure p, M, the Banach algebra of signed T-additive
Borel measures on X, and p € [1,00]. (i) Show that we have a multiplicative linear operator T' from M,
to the Banach algebra B(LP(u); LP(u)) defined by writing (Tv)(f*) = (¢ * f)* whenever v is a totally finite
7-additive Borel measure on X with completion © and f € LP(u). (Hint: Use 444K and 444B to show that
Axv)* f =a0 Ax (v* f) for enough A\, v and f. See also 444Yj.) (ii) Show that ||Tv| < ||v|| for every
v € Mt (iii) Give an example in which ||Tv| < ||v].

(i) Let X be a unimodular topological group with left Haar measure p. Suppose that p, ¢, r € [1, 00| are
such that % + % =1+ %, interpreting é as 0. Show that if f € LP(u) and g € L9(u) then fxg € L7(u)

and || f * gll» < ||fllpllgllq- (Hint: 255Y1. Take care to justify any changes in order of integration.)

(j) Let X be a topological group carrying Haar measures. Investigate conditions under which the asso-
ciative laws

Ax(vxfy=Qxv)xf, Ax(fxv)=Axf)*xv, [fxA*xv)=(f*N)*v,
frlgxv)=(f*xg)xv, [fxvxg)=(fxv)*xg, vx(fxg)=w=x[f)xg

will be valid, where A and v are quasi-Radon measures on X and f, g are real-valued functions. Relate your
results to 444Xq.

(k) Let X be a topological group with a left Haar measure p and left modular function A. (i) Suppose
that f € £%u). Show that the following are equiveridical: (a) f(yz) = A(y)f(xy) for (u x p)-almost
every 7, y € X; (B) (ascf)* = A(a™t)f* for every a € X. (ii) Show that in this case f(x) = 0 for almost
every z such that A(x) # 1. (iii) Suppose that f € £1(u). Show that the following are equiveridical: ()
flyz) = A(y) f(zy) for (u x p)-almost every z, y € X; (B) (f*g)* = (g * f)* for every g € L ().

(1) Let X be a topological group and p a left Haar measure on X. Let 7 be a T-invariant extended Fatou
norm on L°(u) such that 7] L7 is an order-continuous norm. For a totally finite quasi-Radon measure v on
X,let T, : L™ — L7 be the corresponding linear operator (444Yg). Show that for any u € L™ and € > 0
there is a neighbourhood U of the identity in X such that 7(T,u — u) < € whenever vU = vX = 1.

(m) Let X be a topological group with a left Haar measure pu. For u € L? = L?(u), set A, = {asju:a €
X} (443G) in L?, and D = {v*u:v € L*(u), v > 0, [v =1}. (i) Show that the closed convex hull of A,
in L? is the closure of D. (Hint: (a) use 4440d to show that if w € L? and (w'|w) > v for every w’ € A,,
then (w'|w) > v for every w’ € D (B) use 444U to show that A, C D.) (ii) Show that the closed linear
subspace W, generated by A, is the closure of {v*u :v € L'}. (iii) Show that if w € L? and w € A, that
is, (u'|w) = 0 for every v/ € A, then W,, C W;. (iv) Show that if X is o-compact, then W, is separable.
(Hint: A, is o-compact, by 443Gf.) (v) Set C = {f*: f € L2NC(X)}. Show that C' N W, is dense in W,,.
(Hint: v+ u € C for many v, by 444Rc.) (vi) Show that if X is o-compact, then W,, has an orthonormal
basis in C. (vii) Show that L? has an orthonormal basis in C. (Hint: if X is o-compact, take a maximal
orthogonal family of subspaces W, find a suitable orthonormal basis of each, and use (iii) to see that these
assemble to form a basis of L2. For a general locally compact Hausdorff group, start with a o-compact open
subgroup, and then deal with its cosets. For a general topological group with a Haar measure, use 443L.)
(Compare 416Yh.)
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(n) Let X be a topological group with a left Haar measure p. Let A be the quasi-Radon product measure
on X x X. Let U be the set of those h € £L(\) such that (X x X)\ {(z,y) : (z,y) € dom h, h(z,y) = 0} can
be covered by a sequence of open sets of finite measure. (i) Show that if h € U, then (z,y) — h(y,y~'x)
belongs to U. (Hint: 443Xa.) (ii) Show that if »h € U, then (Th)(z) = [h(y,y 'z)u(dy) is defined for
almost every x € X and Th is p-integrable, with ||Th|y < ||h]l1. (Hint: 255Xj.) (iii) Show that if hq,
hy € U are equal M\-a.e. then Thy = Thy p-a.e. (iv) Show that every member of L'(\) can be represented
by a member of U. (Hint: 443Xk.) (v) Show that if f, g € £!(u) and both are zero outside some countable
union of open sets of finite measure, then T(f ® g) = f * g, where (f ® g)(z,y) = f(z)g(y). (vi) Show that
if we set T(h®) = (Th)* for h € U, then T : L'(\) — L'(p) is the unique continuous linear operator such
that T'(u ® v) = u v for all u, v € L' (1), where u * v is defined in 444S and ® : L'(p) x L () — L*()\) is
the canonical bilinear operator (253E).

(0) In 444Yn, suppose that uX = 1. (i) Show that the map T belongs to the class T,z of §373. (ii) Show
that if p € [1, 00] then ||Th||, < ||h||, whenever h € U N LP(N).

(p) Rewrite this section in terms of right Haar measures instead of left Haar measures.

(q) Let X be a topological group and M, ;“R the set of totally finite quasi-Radon measures on X. For
v e M;R, define v € M;'R by saying that ¥(F) = vE~! whenever E C X and v measures E~!. (i) Show

that if A\, v € M;R then A * I = (v A)7. (i) Taking e;, +. to be the left and right actions of X on
itself, and defining corresponding actions of X on Mq+R as in 441Yp, show that as;(A xv) = (as;\) * v and
as,(A*xv) = X x (as,v) for \, v € M;'R and a € X.

444 Notes and comments The aim of this section and the next is to work through ideas from the second
half of Chapter 25, and Chapter 28, in forms natural in the context of general topological groups. (It is
of course possible to go farther; see 444YDb. It is the glory and confusion of twentieth-century mathematics
that it has no firm stopping points.) The move from R to an arbitrary topological group is a large one,
and I think it is worth examining the various aspects of this leap as they affect the theorems here. The
most conspicuous change, and the one which most greatly affects the forms of the results, is the loss of
commutativity. We are forced to re-examine every formula to determine exactly which manipulations can
still be justified. Multiplications must be written the right way round, and inversions especially must be
watched. But while there are undoubtedly some surprises, we find that in fact (provided we take care over
the definitions) the most important results survive. Of course I wrote the earlier results out with a view
to what I expected to do here, but no dramatic manoeuvers are needed to turn the fundamental results
255G, 255H, 255J, 257B, 257E, 257F into the new versions 4440d, 444Qb, 4440e, 444C, 4448, 444Qa. (The
changed order of presentation is an indication of the high connectivity of the web here, not of any new
pattern.) In fact what makes the biggest difference is not commutativity, as such, but unimodularity. In
groups which are not unimodular we do have new phenomena, as in 444Mb and 4440f, and these lead to
complications in the proofs of such results as 444U, even though the result there is exactly what one would
expect.

In this section I ignore right Haar measures entirely. I do not even put them in the exercises. If you wish
to take this theory farther, you may some day have to work out the formulae appropriate to right Haar
measures. (You can check your results in HEWITT & Ross 63, 20.32.) But for the moment, I think that
they are likely to be just a source of confusion. There is one point which you may have noticed. The theory
of groups is essentially symmetric. In the definition of ‘group’ there is no distinction between left and right.
In the formulae defining group actions, we do have such a distinction, because they must reflect the fact
that we write gex rather than zeg. With «; and »,., for instance (4440f), if we want them to be actions in
the standard sense we have to put an ~! into the definition of «; but not into the definition of .. But we
still expect that, for instance, A * v and v * A will be related in some transparent way. However there is an
exception to this rule in the definitions of v * f and f % v (444H, 444J). The modular function appears in
the latter, so in fact the definition applies only in a more restricted class of groups. In abelian groups we
assume that f * v and v x f will be equal, and they are (444Xk), but strictly speaking, on the definitions
here, we can write f * v = v x f only for abelian topological groups carrying Haar measures.
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From the point of view of the proofs in this section, the principal change is that the Haar measures here
are no longer assumed to be o-finite. I am well aware that non-o-finite measures are a minority interest,
especially in harmonic analysis, but I do think it interesting that o-finiteness is not relevant to the main
results, and the techniques required to demonstrate this are very much in the spirit of this treatise (see, in
particular, the proof of 444N, and the repeated applications of 443Jb). The basic difficulty is that we can no
longer exchange repeated integrals, even of non-negative Borel measurable functions, quite automatically.
Let me emphasize that the result in 444N is really rather special. If we try to generalize it to other measures
or other types of function we encounter the usual obstacles (444Xp).

A difficulty of a different kind arises in the proof of 444Fc. Here I wish to show that the function
g (geE)* : G — 2 is Borel measurable for every Borel measurable set E. The first step is to deal with
open sets F/, and it would be nice if we could then apply the Monotone Class Theorem. But the difficulty
is that even though the map (a,b) — a\b: 2 x 2 — 2 is continuous, it does not quite follow that the map

9= (g=(E\ F))* = (9-E)* \ (g-F)*

is Borel measurable whenever g — (geE)* and g +— (g«F')* are, because the map g — ((g*E)*, (g F)*) : G —
20 x 21 might conceivably fail to be Borel measurable, if the metric space 2l is not separable, that is, if the
Maharam type of the measure v is uncountable. Of course the difficulty is easily resolved by an extra twist
in the argument.

I use different techniques for the two parts of 444M as an excuse to recall the ideas of §371; in fact part
(a) is slightly easier than part (b) when proved by the method of the latter (444Xo).

444U is a kind of density theorem. Compared with the density theorems in §§223 and 261, it is a ‘mean’
rather than ‘pointwise’ density theorem; if E is concentrated near the identity, then f;, approximates f* in
L?, but there is no suggestion that we can be sure that fg(x) = f(x) for any particular zs unless we know
much more about the set E. In fact this is to be expected from the form of the results concerning Lebesgue
measure. The sets E' considered in Volume 2 are generally intervals or balls, and even in such a general form
as 223Ya we need a notion of scalar multiplication separate from the group operation.

Version of 20.3.08

445 The duality theorem

In this section I present a proof of the Pontryagin-van Kampen duality theorem (445U). As in Chapter 28,
and for the same reasons, we need to use complex-valued functions; the relevant formulae in §§443 and 444
apply unchanged, and I shall not repeat them here, but you may wish to re-read parts of those sections taking
functions to be complex- rather than real-valued. (It is possible to avoid complex-valued measures, which
I relegate to the exercises.) The duality theorem itself applies only to abelian locally compact Hausdorff
groups, and it would be reasonable, on first reading, to take it for granted that all groups here are of this
type, which simplifies some of the proofs a little.

My exposition is based on that of RUDIN 67. I start with the definition of ‘dual group’, including a
description of a topology on the dual (445A), and the simplest examples (445B), with a mention of Fourier-
Stieltjes transforms of measures (445C-445D). The elementary special properties of dual groups of groups
carrying Haar measures are in 445E-445@G; in particular, in these cases, the bidual of a group begins to make
sense, and we can start talking about Fourier transforms of functions.

Serious harmonic analysis begins with the identification of the dual group with the maximal ideal space
of L' (445H-445K). The next idea is that of ‘positive definite’ function (445L-445M). Putting these together,
we get the first result here which asserts that the dual group of an abelian group X carrying Haar measures
is sufficiently large to effectively describe functions on X (Bochner’s theorem, 445N). It is now easy to
establish that X can be faithfully embedded in its bidual (4450). We also have most of the machinery
necessary to describe the correctly normalized Haar measure of the dual group, with a first step towards
identifying functions whose Fourier transforms will have inverse Fourier transforms (the Inversion Theorem,
445P). This leads directly to the Plancherel Theorem, identifying the L? spaces of X and its dual (445R).
At this point it is clear that the bidual X cannot be substantially larger than X, since they must have
essentially the same L? spaces. A little manipulation of shifts and convolutions in L? (445S-445T) shows
that X must be dense in X, and a final appeal to local compactness shows that X is closed in X.

(© 1998 D. H. Fremlin
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445A Dual groups Let X be any topological group.

(a) A character on X is a continuous group homomorphism from X to S' = {z:2 € C, |z| = 1}. Tt is
easy to see that the set X' of all characters on X is a subgroup of the group (S)X, just because S! is an
abelian topological group. (If x, 6 € X, then x — x(x)8(z) is continuous, and

(x0)(xy) = x(zy)0(zy) = x(x)x(y)0(x)0(y) = x(x)0(x)x(y)0(y) = (xO)(x)(x0)(y).)

So X itself is an abelian group.

(b) Give X the topology of uniform convergence on subsets of X which are totally bounded for the
bilateral uniformity on X (4A5Hb, 4A50). (If £ is the set of totally bounded subsets of X, then the
topology of X is generated by the pseudometrics pg, where pg(x,0) = sup,cg |x(z) — 0(z)| for E € £ and
X, 0 € X. Tt will be useful, in this formula, to interpret supf) = 0, so that py is the zero pseudometric.
Note that £ is closed under finite unions, so {pg : E € £} is upwards-directed, as in 2A3Fe.) Then X is a
Hausdorff topological group. (If x € E € £ and x, xo, 0, 00 € X,

|(x0) () = (xobo)(2)| = [x(2)(0(x) — bo(x)) + Oo(x) (x(2) — xo())|
<10(z) = Oo(2)| + [x(x) = xo()],

X Hx) = xo ' (@)] = [x(2) = xo(2)| = [x(x) — xo(2)],

SO

pE(x9, X000) < pE(X,X0) + pE(0,00),  pE(X"x0") = PE(X X0)-
If x # 6 then there is an € X such that x(z) # 6(x), and now {z} € £ and py;1(x,0) > 0.)

(c) Note that if X is locally compact, then its totally bounded sets are just its relatively compact sets
(4A50e), so the topology of X is the topology of uniform convergence on compact subsets of X.

(d) If X is compact, then X is discrete. I X itself is totally bounded, so U = {x : |x(z) — 1| < 1 for
every ¢ € X} is a neighbourhood of the identity ¢ in X. But if x € U and « € X then |x(z)” — 1| < 1 for
every n € N, so x(z) = 1. Thus U = {+} and ¢ is an isolated point of X'; it follows that every point of X is
isolated. Q

(e) If X is discrete then X is compact. B The only totally bounded sets in X are the finite sets, so the
topology of X is just that induced by its embedding in (S')X. On the other hand, every homomorphism
from X to S! is continuous, so X is a closed set in (S')X, which is compact by Tychonoff’s theorem. Q

(f) T ought to remark that to most group theorists the word ‘character’ means something rather different.
For a finite abelian group X with its discrete topology, the ‘characters’ on X, as defined in (a) above, are
just the group homomorphisms from X to C\ {0}, which in this context can be identified with the characters
of the irreducible complex representations of X.

445B Examples (a) If X = R with addition, then X’ can also be identified with the additive group R,
if we write y, () = e™? for z, y € R.

P It is easy to check that every x,, so defined, is a character on R, and that y — x, : R =+ X is a
homomorphism. On the other hand, if x is a character, then (because it is continuous) there is a § > 0
such that |y(z) — 1] < 1 whenever |z| < §. x(6) is uniquely expressible as e¢® where o] < Z. Set
y = a/d, so that x(8) = x,(6). Now x(46) must be one of the square roots of x(4), so is £x,(30); but as
IX(36) — 1] < 1, it must be +x,(36). Inducing on n, we see that x(27"6) = x,(27"0) for every n € N, so
that x(27"kd) = xy(27"ké) for every k € Z, n € N; as x and x, are continuous, x = xy. Thus the map
Y — Xy is surjective and is a group isomorphism between R and X

As for the topology of X', R is a locally compact topological group, so the totally bounded sets are just
the relatively compact sets (4A50e again), that is, the bounded sets in the usual sense (2A2F). Now a

straightforward calculation shows that for any o > 0 in R and € € ]0, 2],
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Pleaol (X Xs) € € <= aly — 2| < 2arcsin g,

so that the topology of X agrees with that of R. Q

(b) Let X be the group Z with its discrete topology. Then we may identify its dual group X with S*
itself, writing x¢(n) = ¢" for ¢ € S', n € Z. P Once again, it is elementary to check that every y. is a
character, and that ¢ — x¢ is an injective group homomorphism from Stto X. If y € X, set ¢ = x(1);
then x = x¢. So X = S'. And because the only totally bounded sets in X are finite, x — X, is continuous,
therefore a homeomorphism. Q

(c) On the other hand, if X = S! with its usual topology, then we may identify its dual group X with
Z, writing x,,(¢) = ¢" for n € Z, ¢ € S*. P The verification follows the same lines as in (a) and (b). As
usual, the key step is to show that the map n — x, : Z — X is surjective. We can do this by applying (a).
If y € X, then x — x(e®) is a character of R, so there is a y € R such that y(ei*) = ¢ for every x € R.
In particular, e*¥™ = x(1) =1, so y € Z, and x = x,. Concerning the topology of X, we know from 445Ad
that it must be discrete, so that also matches the usual topology of Z. Q

(d) Let (X;)jes be any family of topological groups, and X their product (4A5G). For each j € J let
&; be the dual group of X;. Then the dual group of X can be identified with the subgroup X of Hjel X
consisting of those y € HjeJ X; such that {j : x(j) is not the identity} is finite; the action of X on X is
defined by the formula

xea = [Tje s x(7)(@(5))-

(This is well-defined because only finitely many terms in the product are not equal to 1.) If I is finite, so
that X = Hjel &, the topology of & is the product topology.

P As usual, it is easy to check that e, as defined above, defines an injective homomorphism from X to the
dual group of X. If 8 is any character on X, then for each j € I we have a continuous group homomorphism
gj + X; = X defined by setting €;(€)(j) = &, €;(§)(k) = ey, the identity of X, for every k # j. Setting
x(j) = 0¢; for each j, we obtain x € H]EI &X;. Now there is a neighbourhood U of the identity of X such
that |6(x) — 1| < 1 for every € U, and we may suppose that U is of the form {z : z(j) € G, for every
j € J}, where J C I is finite and G, is a neighbourhood of e; for every j € J. If k € I\ J, ex(§) € U
for every & € Xy, so that |x(k)(&) — 1] < 1 for every &, and x(k) must be the identity character on Xp;
this shows that x € X. If z € X and z(j) = ¢; for j € J, then again |#(z™) — 1| < 1 for every n € N, so
0(x) = xsx = 1. For any x € X, we can express it as a finite product y [, ; ;(2(j)) where y(j) = e; for
every j € J, so that

0(x) = 0(y)] 1 e, 025(x(h) = [1jes x()(2(4)) = x-z.
Thus « defines an isomorphism between X and the dual group of X.

As for the topology of X, a subset of X is totally bounded iff it is included in a product of totally bounded
sets (4A50d). If E =][;.; Ej is such a product (and not empty), then for x, § € X

sup;er pr; (X(4),0(5)) < pe(X,0) < X icr PE; (X(1), 0(5)),
so (if I is finite) the topology on X is just the product topology. Q

445C Fourier-Stieltjes transforms Let X be a topological group, and X its dual group. For any
totally finite topological measure v on X, we can form its ‘characteristic function’ or Fourier-Stieltjes
transform v : X — C by writing 2(x) = [ x(z)v(dz). (This generalizes the ‘characteristic functions’ of
§285.)

445D Theorem Let X be a topological group, and X its dual group. If A\ and v are totally finite

A
quasi-Radon measures on X, then (A *v)" = \ x 1.

proof If x € X, then, by 444C,
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(o) (0 = [ xder) = [ [ xtanaaaiay)
— [[ xanwrastan = [ x@xdo) - [ xwwian) =300p00.

445E Let us turn now to groups carrying Haar measures. I start with three welcome properties.

Proposition Let X be a topological group with a neighbourhood of the identity which is totally bounded
for the bilateral uniformity on X, and X its dual group, with its dual group topology.

(a) The map (x,z) — x(z) : X x X — S is continuous.

(b) Let X be the dual group of X, again with its dual group topology, the topology of uniform convergence
on totally bounded subsets of X. Then we have a continuous homomorphism z — # : X — X defined by
setting £(x) = x(z) for x € X and x € X.

(c) For any totally finite quasi-Radon measure v on X, its Fourier-Stieltjes transform v : X — C is
uniformly continuous.

Remark Note that the condition here is satisfied by any topological group X carrying Haar measures
(443H).

proof Fix an open totally bounded set Uy containing the identity.
(a) Let xo € X, 29 € X and € > 0. Then x,Uj is totally bounded, so

1
V={x:Ix(y) = xo(y)| < e for every y € 2oUp}

is a neighbourhood of x¢. Also

1
U=A{z:z¢€x¢Up, |xo(x) — xo(z0)| < 56}
is a neighbourhood of z¢. And if x € V, x € U we have
IX(@) — xo(zo)| < [x(z) — xo(z)| + [x0(2) — Xo0(20)| < €

As xo0, zo and € are arbitrary, (x,z) — x(z) is continuous.

(b)(i) It is easy to check that &, as defined above, is always a homomorphism from X to S!, and that
r—2: X — (SYH? is a homomorphism. Because p{ay is always one of the defining pseudometrics for the
topology of X (445Ab), & is always continuous, so belongs to X.

(ii) To see that ™ is continuous, I argue as follows. Take an open set H C X and g € X such that
To € H. Then there are a totally bounded set F* C X and an € > 0 such that r € H whenever ¢ € X and
pr(r, o) < e. Now xoUj is a totally bounded neighbourhood of zg, so

V={0:0cXx, |0y -1 < %e for every y € xoUp}
is a neighbourhood of the identity in X. There are therefore xg,... , X, € X such that F' C ngn xx V. Set
U={z:2 €z, |xu(x) — xr(x0)] < %e for every k < n}.

Then U is an open neighbourhood of z( in X.
If x € U and x € F then there is a k < n such that 6§ = X,;lx € V, so that

IX(@) = x (o) = |x&(2)0(x) — Xk (x0)6(20)|
< [xa(®) = xr(@0)| + [0(2) = B(ao)| < Se+5e =,
But this shows that pp(Z,20) <€, s0 & € H.

So we have g € U C {z: & € H}. As xq is arbitrary, {x : & € H} is open; as H is arbitrary, x — & is
continuous.

D.H.FREMLIN



74 Topological groups 445E

(c) Let € > 0. Because v is 7-additive, there are zg,... ,z, € X such that v(X \ Uy, 2xUo) < e, Set
E= ngn x,Up; then E is totally bounded. So

V={0:0(z)-1]| < for every x € E}

1+3 X
is a neighbourhood of the identity in X. If y, ¥’ € X are such that § = xy~'x’ belongs to V, then
() — blx |</|X 2)|v(dz) = /|1— 2)|v(dz)
< 2w(X \ E) + 1;’5)( <e

Since € is arbitrary (and X is abelian), this is enough to show that # is uniformly continuous.

445F Fourier transforms of functions Let X be a topological group with a left Haar measure pu.
For any - integrable complex-valued function f, define its Fourier transform JA“ : X — C by setting
= [f(z u(dx) for every character y of X. (Compare 283A. If f is real and non-negative, then

f = ( fu) as deﬁned in 445C, where fp is the indefinite-integral measure, as in 444K.) Note that f =g

whenever f =,.. g, so we can equally well write u(y) = f(x) whenever u = f* in L{(p).

445G Proposition Let X be a topological group with a left Haar measure p. Then for any p-integrable
complex-valued functions f and g, (f * g)" = f x g; that is, (u*v)" =4 x ¥ for all u, v € LL(u).

proof For any character y on X,

[ X xg)a)da = [ [ (o) s@)gtu)dady
~ [ x@xws@)gdady = Fooien

(using 4440d).

445H Theorem Let X be a topological group with a left Haar measure u; let X be its dual group and
let ® be the set of non-zero multiplicative linear functionals on the complex Banach algebra L =L&(p)
(444Sb). Then there is a one-to-one correspondence between X and ®, defined by the formulae

6(f*) = [ % xdu= f(x) for every f € £k = LL(p),

d(asju) = x(a)p(u) for every u € LE, a € X,
for x € X and ¢ € ®.

Remark I follow 443G in writing as; f* = (as; f)*, where (as;f)(z) = f(a™'z) for f € L} and a, z € X, as
in 4A5Cc.

proof (a) If x € X' then we can think of its equivalence class x* as a member of L = L2°(u), so that we

can define ¢, € (L{)* by writing ¢, (u) = [ x* x u for every u € L; that is, ¢y (f*) = [ f x x = f( ) for
every f € L}C. 445G tells us that ¢, is multlphcatlve To see that 1t is non-zero, recall that p is strictly
positive (442Aa) and that y is continuous. Let G be an open set containing the identity e of X such that
Ix(x) — 1] < % for every x € G; then Re(x(z)) > % for every z € G, so

|fG daz|>RefG dx—fGRe z))dz > $uG > 0.

Accordingly ¢, (xG)* # 0 and ¢, # 0. (I hope that no confusion will arise if I continue occasionally to write
X E for the indicator function of a set E, even if the symbol y is already active in the sentence.)
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(b) Now suppose that ¢ is a non-zero multiplicative linear functional on L{. Fix on some gy € L%: such
that ¢(g3) = 1. Let A be the left modular function of X. (If you are reading this proof on the assumption
that X is abelian, then ae,f = a~'e;f and A = 1, so the argument below simplifies usefully.)

(i) For any u € L} and a € X, ¢(a " oju) = A(a)p(as,u). B Let f € LL be such that f* = u. Take
any € > 0. Then for any sufficiently small open neighbourhood U of the identity, if we set h = #LUXU , We
shall have

[(asrf)xh—as flli <€ |hxf—flli<e
(444T, with 444P; see 444U). Setting w = h*, we have

l(asru) s w—asully e fwsu—ull <e,

[#(a™ o) = Ala)p(asru)| < |@a™" ou) — $(u* (a™ ow))]
(444Sa)
+ [A(a)p((asru) x w) — Ala)p(asyu)|
= [p(a™ ou) — p(u)g(a™ qw)
+ Aa)|¢((asru) x w) — ¢asru)
< |p(a™ o) — pla™ yw)p(u)]
+ Aa)||(asru) x w — aspul|y
(because ||¢|| < 1in (L{)*, by 4A6F)
< lp(a™ o) = d((a™ o) * u)| + eA(a)
< |la™topu — (a7 oqw) * ul|y + €Ala)
= |la ™ op(u — w w1 + eAa)
(by another of the formulae in 444Sa)
= |lu — wxul|; + €A(a)
(443Ce)
< (1+A(a))e.

As € is arbitrary, we have the result. Q

(ii) For any u, v € L{ and a € X, ¢(asu)d(v) = ¢(u)d(asv). P

Planu)(v) = ¢((asu) *v) = ¢las(uxv)) = Ala™ )p(a™ e (u * v))
= A(a™d(uxa™o0) = g(w)A(a™ )p(a™ erv) = p(u)d(axw),
using (i) for the third and sixth equalities, and 444Sa for the second and fourth. Q
(iii) Let vo be gg, so that ¢(vg) = 1, and set x(a) = ¢(asjvg) for every a € X. Then if a, b € X,

x(ab) = p(abervo) = ¢(axi(bervo))

(because + is an action of X on L{, as noted in 443Ge for L')

= ¢(asi(bervo))B(vo) = d(bervo)p(asivo)
(by (ii) above)

= x(a)x(b).

So x : X — C is a group homomorphism. Moreover, because «; is continuous (443Gf), and ¢ also is
continuous (indeed, of norm at most 1), x is continuous. Finally,

Ix(a)| < llasvolli = [|voll
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for every a € X, by 443Gb; it follows at once that {x(a)™ : n € Z} is bounded, so that |x(a)| = 1, for every
a € X. Thus xy € X. Moreover, for any u € L(lC7

¢(asu) = d(asiu)d(vo) = p(u)d(asivo) = x(a)p(w).

(iv) Now ¢ = ¢,. PP Because ¢ € (L{)*, there is some h € L (u) such that ¢(f*) = [h(z)
for every f € £L{ (243Gb/243K; recall that by the rules of 441D, p is suppose to be a quas1 Radon measure,
therefore strictly localizable, by 415A). In this case, for any f € L,

o) = ol +g0)* = [ @) = g0) @) = [ [ ) f@rn(w)dyis

// z)go(x~y)dyde = /¢ (z0190)* f (2)dx

—/()ﬂ)m—¢ﬁf)q

(44404)

(c) Thus we see that the formulae announced do define a surjection from X onto ®. We have still to
confirm that it is injective. But if x, 6 are distinct members of X, then {z : x(z) # 6(z)} is a non-empty
open set, so has positive measure, because pu is strictly positive; because p is semi-finite, they represent
different linear functionals on L}C, and ¢, # ¢g.

This completes the proof.

4451 The topology of the dual group: Proposition Let X be a topological group with a left
Haar measure u, and & its dual group. For xy € &, let x* be its equivalence class in L% = L(O:(ﬂ), and
¢y € (LE)* = (L& (w))* the multiplicative linear functional corresponding to x, as in 445H. Then the maps
X — x* and x — ¢, are homeomorphisms between X and its images in L2 and (L{)*, if we give LY the
topology of convergence in measure (245A/245M) and (L{)* the weak* topology (2A51g).

proof (a) Note that x — x* is injective because p is strictly positive, so that if x, 8 are distinct members
of X then the non-empty open set {z : x(x) # 6(x)} has non-zero measure; and that x — ¢, is injective by
445H. So we have one-to-one correspondences between X and its images in LY and (L¢)*.

Write ¥ for the topology of X as defined in 445Ab, T,,, for the topology induced by its identification with
its image in LY, and T,, for the topology induced by its identification with its image in (LL)*. Let £ be the
family of non-empty totally bounded subsets of X and £/ the set of measurable sets of finite measure; for
Ec& FeX and fe Ll =LL(u) set

PE(X,0) = sup,cg [x(z) — 0(z)|,

pr(x.0) = fF min(1, [x(z) — 0(x)])u(dx),
P 0) = | [ fa)x(@)u(de) = [ f(a)8(z)u(dr)

for x, 8 € X. Then ¥ is generated by the pseudometrics {pg : E € £}, T,, is generated by {p}. : F € £/}
and T, is generated by {p’s : f € Ll

(b) ¥, € T. P Suppose that FF C X is a measurable set of finite measure, and € > 0. There is a
non-empty totally bounded open set U C X (443H). Since {zU : € X} is an open cover of X and p
is 7-additive, there are yo,...,y, € X such that pu(F \ Uj<n y;U) < ie set B = Uj<nyU. Then E is

totally bounded, and p»(x,6) < € whenever pg(x,6) < As F and € are arbitrary, the identity map

= 1+3 E
(X, %) = (X,%,,) is continuous (2A3H), that is, ¥, C%. Q

() Tw C T PIf f €Ll and e > 0let F e X/, M >0 be such that [(|f| — MxF)"du < fe. If x,
/ _€
6 € X and pF(X,9)§4M,then
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p';<x,9>=!/<x—e>xf|s/\x—ewxm
_ + _
§2/(|f| MxF) +M/F|x 0

< e+2M/min(1,|x—0|):%6+2Mp/1;(x,9)Se.
F

N | =

As f and € are arbitrary, this shows that ¥, C ¥,,. Q

(d) Finally, TC T,. PFix x € X, E €& and € > 0. Let u € L{. be such that ¢, (u) = 1, and represent
u as f* where f € L{(u). Set U = {a : a € X, |layu — ull; < ie}; then U is an open neighbourhood
of the identity e of X, because a — aeju is continuous (443Gf). Because E is totally bounded, there are
Yo,--- »Yn € X such that E C J, ., yxU. Set fi, = ypef, so that f = yreu for each k < n.

Now suppose that # € X is such that

P70, x) < i, p7,.(0,x) < i for every k < n.
Take any x € E. Then there is a k < n such that x € yU, so that yk_lx € U and
lzeru = yrerull = llyeer(ys; worw = w)ll = llyg wou —ufy < 5
(using 443Ge for the second equality). Now ¢, (z+ju) = x(z) (445H), so
|go(zarw) — x(@)| < [do(zoru — yrorw)| + [do(yrain) — Oy (Yrarw)| + Dy (yroru — zou)]

3

< 2|zeu — yroyull + p’jk(H,x) < €

On the other hand,

10(z) = go(zeru)| = |0(2)[|1 = do(u)] = p(0,x) <

So |6(z) — x(x)| < e. As z is arbitrary, pg(6,x) <.
As x, E and € are arbitrary, this shows that T C T,,. Q

PR

445J Corollary For any topological group X carrying Haar measures, its dual group X is locally compact
and Hausdorff.

proof Let ® be the set of non-zero multiplicative linear functionals on L{ = L{(u), for some left Haar
measure p on X, and give ® its weak* topology. Then ® U {0} C (LL)* is the set of all multiplicative linear
functionals on L(}:, and is closed for the weak™ topology, because

{¢:¢ € (Lg)", dp(uxv)=(u)p(v)}
is closed for all u, v € L{. Because the unit ball of (L{)* includes ® (4A6F again), and is a compact
Hausdorff space for the weak* topology (3A5F), so is ® U {0}. So @ itself is an open subset of a compact
Hausdorff space and is a locally compact Hausdorff space (3A3Bg). Since the topology on X’ can be identified
with the weak* topology on ® (445I), X also is locally compact and Hausdorff.

445K Proposition Let X be a topological group and p a left Haar measure on X. Let X be the dual
group of X, and write Cy = Cp(X; C) for the Banach algebra of continuous functions h : X — C such that
{x : |h(x)| > €} is compact for every ¢ > 0.

(a) For any u € Lt = L (u), its Fourier transform 4 belongs to Co.

(b) The map u — @ : L%: — () is a multiplicative linear operator, of norm at most 1.

(c) Suppose that X is abelian. For f € LL = LL(u), set f(z) = f(z~1) whenever this is defined. Then
fe Lt and |flly = ||fl:. For u € L, we may define @ € L by setting @ = f* whenever u = f*. Now i is
the complex conjugate of 1, so (u* @) = |u|>.
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(d) Still supposing that X is abelian, {& : u € L} is a norm-dense subalgebra of Cy, and ||ti]|oc = r(u),
the spectral radius of u (4A6G), for every u € L.

proof (a) As in 445H and 445J, let ® be the set of non-zero multiplicative linear functionals on L, so that
® U {0} is compact for the weak* topology of (LL)*, and () = ¢y (u) for every x € X. By the definition of
the weak* topology, ¢ — ¢(u) is continuous; since we can identify the weak™ topology on ® with the dual
group topology of X (4451), 4 is continuous. Also, for any € > 0,

{xixed Julx)| = et ={p: 0 €@, |p(u)| > e},
which is a closed subset of ® U {0}, therefore compact.

(b) It is immediate from the definition of * that it is a linear operator from L{ to C*, and therefore
from L}C to Cy; it is multiplicative by 445G, and of norm at most 1 because all the multiplicative linear
functionals u ~ () must be of norm at most 1.

(c) Now suppose that X is abelian. If f € £, then

ffmdx:ffx—ldx:ffxdx

by 442Kb, so f € L}; the same formulae tell us that ||f|l; = ||f|[i. If f =ae g then f =.. § (442G, or
otherwme) so 4 is well-defined. If x € &', and v = f*, then

00 = [ Flapx(a)ds = [ T T(w)ds = / F@x(@)da
/ Fa @)z = / fa 00,

so 4 is the complex conjugate of 4, and

(ux@t) =t x i = |42,

(d) To see that A = {t : u € LL} is dense in Cp, we can use the Stone-Weierstrass theorem in the
form 4A6B. A is a subalgebra of Cp; it separates the points (because the canonical map from X to (L&)*
is injective); if x € X, there is an h € A such that h(x) # 0 (because elements of X’ act on L{ as non-zero
functionals); and the complex conjugate of any function in A belongs to A, by (c) above.

Accordingly A is dense in Cy, by 4A6B.

The calculation of |||« is an immediate consequence of the characterization of r(u) as max{|¢(u)|: ¢ €
®} (4A6K) and the identification of ® with X.

Remark This is the first point in this section where we really need to know whether or not our group is
abelian.

445L Positive definite functions Let X be a group.

(a) A function h: X — C is called positive definite if

> k0 GiCkh g tay) > 0
for all {y,...,(, € C and xg,... ,z, € X.

(b) Suppose that h : X — C is positive definite. Then, writing e for the identity of X,
(i) |h(x)| < h(e) for every x € X;
(i) h(z~t) = h(z) for every x € X.
Plf(cCandz e X, taken=1, 29 =€, 21 =z, (; = 1 and {; = ¢ in the definition in (a) above, and
observe that

(1+1¢1)h(e) + Ch(w) + Ch(a™) = h(e~"e) + Chle ) + Ch(z™"e) + (Ch(z~'z) > 0.

Taking ( = 0, 2 = e we get h(e) > 0. Taking ¢ = 1 we see that h(x) + h(z~1) is real, and taking ¢ = 4, we

see that h(z) — h(z~!) is purely imaginary; that is, h(z~") = h(z), for any z. Taking ¢ such that |¢| = 1,
Ch(z) = —|h(z)| we get 2h(e) — 2|h(x)| > 0, that is, |h(z)| < h(e) for every x € X. Q
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(c) If h: X — C is positive definite and x : X — S! is a homomorphism, then h x y is positive definite.
PIfy,...,(, €Candxg,...,r, € X then

>0 GCk(h X ) () = 320 o Gx(@) Cex (wr ) Ry ty) > 0. Q

(d) If X is an abelian topological group and u a Haar measure on X, then for any f € L%(u) the
convolution fx f : X — C is continuous and positive definite, where f(z) = f(z—!) whenever this is defined.
P As in 444Rc, f * f is defined everywhere on X and is continuous. (The definition of ™~ has shifted since
8444, but the argument there applies unchanged to the present situation.) Now, if zg,...,z, € X and

CO,...,CnE(C,

S GGl Hlpe) = 3 cjck/f (v~ oy ;) dy

7,k=0 7,k=0

/Z GCuf () f (2 " ary)dy

jk 0

-/ S G (eyy) 1, ey )y

jkO

/ Z (it (59) f (wry)dy

7,k=0

- / 1S G g Pdy > 0.

=0

So f * f is positive definite. Q

445M Proposition Let X be a topological group and v a quasi-Radon measure on X. If h: X - Cisa
continuous positive definite function, then [[ h(y~'z)f(z)f(y)v(dz)v(dy)> 0 for every v-integrable function
f-

proof (a) Extend f, if necessary, to the whole of X; since the hypothesis implies that dom f is conegligible,
this does not affect the integrals. Let A be the product quasi-Radon measure on X x X; because h is con-
tinuous (by hypothesis) and bounded (by 445L(b-i)), the function (x,y) — h(y~'z)f(z)f(y) is A-integrable,
and (because {z : f(x) # 0} can be covered by a sequence of sets of finite measure)

I= [[hy~ o) (@) f(y)r(da)v(dy) = [ by~ z)f(2)fy)Md(z,y)

(417G).

(b) Let € > 0. Set v = sup,cx |h(z)| = h(e) (445L(
of finite measure for v such that ’yf(XXx)\(FxF) |f(@)f(y)|A(d(z,y)) < 3€ and f is bounded on F; say
|f(z)] < M for every x € F. Let § > 0 be such that

§(M?2 4+ 2M~y)(vF)? +2M?y5 < Le.

-1)). Let FF C X be a non-empty measurable set

Let G be the set

{G x H:G, HC X are open, |h(y~'z) — h(y; 'z1)| <6
whenever x, z1 € G, y, y1 € H}.
Because h is continuous, G is a cover of X x X. Because A is T-additive, there is a finite set Gg C G such
that A((F x F)\ UGo) < d; we may suppose that Gy is non-empty. Set W = (F x F)N|JGp. Enumerate
go as <Gl X H1>1§n
Let F be a finite partition of F' into measurable sets such that |f(x) — f(2’)| < 6 whenever x, 2’ belong
to the same member of F. Let £ be the partition of F' generated by FU{FNG; : j <n}U{FNH,;:j<n}.
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Enumerate £ as (Ex)r<m; for each k < m choose x, € Ey. Set J ={(j,k):j <m,k<m, E; x B, CW}
then W = U, x)es £ ¥ Ek.
(c) If (j,k) € J, z € E; and y € Ej, then
[y~ a) f (@) f(y) — hlay ;) f () far)] < 6(M> +2M7),
because there must be some r < n such that E; x Ey C G, x H,, so that |h(y~'x) — h(z} 'z;)| < &, while

there are members of F including E; and Ej, so that |f(z) — f(z;)| < and |f(y) — f(zx)| < J; at the same
time,

[F@) f)l < M2, (b )l F ()] < My, k(g ap)l| f(ag)] < My
because z, y, x; and z all belong to F'.
(d) Set ¢; = f(z;)vE; for j <m, so that (; = f(z;)vE;. Now consider

| /W Wy o) @ TN Y) — 3 GGhloyley)]

(5,k)eJ

1Y [ b ST~ Al ) ) T Ao, )

-t — h(x;  x)) f(z;) fx T
3 M T ~ ) Il )
< Y 6(M?+ 2MA)wE;vE;
(J,k)eJd
< S(M? + 2My)AW < 6(M? 4+ 2M~)(vF)2.

IN

On the other hand,

| / Wy~ o) £ (@) FMd(z )] < F@ TN, )
(X x X)\W

|
(XXX)\(FxF)

Ty / F@) TN, y)
(FXF)\W
ée +y0M?,

and

J<mk<m,(j,k)¢J F<mk<m, (k)¢
= yM?X\((F x F)\ W) < yM?s.
Putting these together,
11— 37 GGl ta))| < 6(M? + 2MAy)(vF)? + %e +ySM? + Y M25 < €.
J,k=0
But 377 ¢;Ceh(xy ') > 0, because h is positive definite. As e is arbitrary, I > 0, as required.
445N Bochner’s theorem (HERGLOTZ 1911, BOCHNER 1933, WEIL 1940) Let X be an abelian

topological group with a Haar measure u, and X its dual group. Then for any continuous positive definite
function h : X — C there is a unique totally finite Radon measure v on X such that

fhxfdu:ff”dz/ for every f € L& = L{(p),
fx v(dy) for every x € X.
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proof (a) If h(e) = 0, where e is the identity in X, then h = 0, by 445L(b-i), and we can take v to be the
zero measure. Otherwise, since multiplying h by a positive scalar leaves h positive definite and does not
affect the result, we may suppose that h( ) =1. For f,ge L}l = L}C(u) set

(flg) = [[ f@)g)h(y z)dady = [[ f(z)g(y=)h(yz)dzdy
(by 442Kb, since X is unlmodular). Then, by 445M, (f|f) > 0 for every f € Lf. Also (fi + f2lg) =

(f1lg) + (f2l9), (¢flg) = C(flg) and (g]f) = (flg) for all f, g, f1, f2 € L¢ and ¢ € C. P Only the last is
anything but trivial, and for this we have

ol = [ st Finty adzdy
/ / h(y~‘z)dydx

(by 417Ga, because (z,y) — g(z)f(y)h(y~'z) is integrable for the product measure and zero off the square

of a countable union of sets of finite measure)

// Fy)h(z—ly)dydz
//f h(z=1y)dydx

= (flg)-

(using 445L(b-ii))

(b) If £, g€ £L, |(fl))* < (fIf)(glg). P (Really this is just Cauchy’s inequality.) For any «, 3 € C,

|a*(f1f) +2Re(aB(flg)) + 181*(glg) = (af + Bglaf + Bg) = 0.

If (f|f) = 0 we have 2 Re(a(f|g)) + (g]lg) > 0 for every a € C so in this case (f|g) = 0; similarly (f|g) = 0 if
(glg) = 0; otherwise we can find non-zero «, 3 such that |a|? = (glg), |8|> = (f|f) and ozﬂ(f|g) —laB(flg)l,
in which case the inequality simplifies to |(f|g)| < |lap| and |(f]9)|*> < (f|f)(glg), as required. Q

(c¢) Now consider the functional ¢ € (L§)* = (L¢(p))* corresponding to h, so that ¢(f*) = [ hx fdu for
every f € L&. Then [¢(f*)|? < (f|f) for every f € L{. P Let € > 0. Then there is an open neighbourhood
U of e such that U = U~! and

|h(y~tz) — h(e)| < e whenever z, y € U,

lasif — flli < e for every a € U
where (as;f)(x) = f(a~'z) whenever this is defined, as usual (443Gf). Shrinking U if need be, we may
suppose that U < oo, and of course pU > 0. Set g = LXU € LE. Then

(£lg) - |//f Wy~ Lz)dzdy — //f 2)dudy]
=1 / / F(ya)h(w)dedy - /U /X F(@)h(w)dady
1 / / Lo f)(x) — f(x))h(z)dady
<5 [ [ 1t an@ - r@lihe)ldedy
o [ ltas = flantay) <
Also
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I(9l9) — MUQ// (y ') — 1)dwdy|
MU2//|h x) — 1|dzdy < e.

max(0, [ (f*)] = €)* < [(fl9)P* < (f/)(glg) < (L +e)(fIf)-
Letting € | 0 we have the result. Q
(d) If we look at (f|f), however, and apply 4440d, we see that

(116) = [ [t Fwihy a)dody
— [[ 1@ TG hwatsdy = [ no)(s < s,
where f(z) = f(z—1) whenever this is defined; that is,
(fI1F) =o(f * ).
(Note that f € £L because X is unimodular, as in part (c) of the proof of 445K.) So (c) tells us that
()2 < (S # f)e
for every f € L}, that is, [¢(u)|? < ¢(u = @) for every u € L, defining @ as in 445Kc.

So

(e) In fact

[ (w)| < [lalloo
for every u € L(C P Set ugp = v and ugy1 = uy * Uy for every k € N. We need to know that up = 4 for
k > 1. To see this, represent uj_1 as f* where f € £L, so that uy = (f * f) . Now

s @)=(f*Da) = / Fa1y) F(y=1)dy
- / T 19 f (y)dy = / Fu'a) fy)dy = (f * D)

for every x, so (f*f)N = f*f and g = ug. Accordingly uki1 = ug *xuyg for k > 1 and we have uy, = (ul)2k71
for every k > 1.
At the same time, we have |1 (uz)|? < ¥ (uxy1) for every k, by (d), so that, for k > 1,

()" < lu) < ugls = 3"

”17

()] < " 1
Letting k — oo, |1(u)| < \/r(u1), where 7(u1) is the spectral radius of u;.
At this point, recall that r(u;) = |ti1le (445Kd), while |u|? = wu; (445Kc), so r(uy) = |u/|%, and
[W(u)] < i)~ Q
(f) Now consider " as a linear operator from L} to Cy = Cp(X;C), as in 445K. If & = 0 then ¢ (u) = 0, by
(e), so setting A = {& : u € L} we have a linear functional 19 : A — C defined by saying that 1o (%) = 1 (u)

for every u € LL. By (e), Hz/)0|| < 1. Now 1 has an extension to a bounded linear operator 1, still of norm
at most 1, from Cy to C (3A5AD).

(g) Suppose that ¢ € Cy and 0 < ¢ < 1, writing 1 for the constant function with value 1; set o = 11 (q).
Then for any ¢ € C and v > 0 we have |¢ — va| < max(|¢],|y],|¢ —7]). P Let € > 0. Set V = {« :
|1 — h(z)| < €}; then V is an open neighbourhood of e; set f = l%va and u = f*, so that

lilloo = r(u) < Jlufly =1,
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|1 - |—| fvl— z))dz| < e.

Set v = w * u; then
$1(0) = ¥(v) = () = (1 -€)?,
using part (d) for the central inequality. But © = %], so that 0 < v < 1 and v, (v) < 1.

Now consider ||¢0 — 7¢|lso. If x € &, then (0(x) and yq(x) both lie in the triangle with vertices 0, ¢ and
~, because 0 <9 <1and 0<¢<1. So

[€O(x) = va(0)] < max(|], [¢], [y = <))
As x is arbitrary,
1€ = 7glloo < max(|yl, I¢], [y = ¢))-
Accordingly

¢ —ya| <|¢ = Cpr(0)] + [11(CV — vaq)
<[¢)(1 = (1= €)%) + [1¢0 — vqlloo < 2€[¢| + max(|C], 7], ¢ — )

As € is arbitrary, we have the result. Q
Taking ¢ = = 1 we see that |1—a| < 1, so that Rea > 0. Taking ¢ = +4, we see that |i+ya| < /142
for every v > 0, so that Zm « = 0. Thus ¢4 (g) > 0; and this is true whenever 0 < ¢ < 1 in Cp.

(h) It follows at once that 11 (¢) > 0 whenever ¢ > 0 in Cy. Applying the Riesz Representation Theorem,
in the form 436K, to the restriction of ¢ to Cy(X;R), we see that there is a totally finite Radon measure
v on X such that ¢1(q) = [ ¢dv for every real-valued ¢ € Cp; of course it follows that ¢1(¢) = [gdv for
every q € Cj. Unwrapplng the definition of 1, we see that

[ (@) f@)de = p(f*) =i (f) = [ fdv

for every f € L& (u).
(i) For the second formula, argue as follows. Given f € £{(u), consider the function (z,x) — f(z)x(z) :
X x X — C. Because (x,x) — x(x) is continuous (445Ea), this is A-measurable, where A is the domain
of the product quasi-Radon measure p X v on X x X. It is integrable because vX < oo and |x(z)| =1
for every x, x; moreover, it is zero off the set {z : f(z) # 0} x X, which is a countable union of products
of sets of ﬁnite measure. Note also that because x — x(z) is continuous and bounded for every z € X,
fX v(dy) is defined, and |hy(z)| < vX, for every x € X. What is more, h; is continuous. I Let

% be the dual group of X, and for x € X let & be the corresponding member of X. Then, in the language
of 445C, applied to the topological group X,

hi(z) = [&dv =D(&)

for every € X. But v : ¥ — C is continuous, by 445Ec, and x +— & : X — X is continuous, by 445Eb; so
h1 also is continuous. Q
We may therefore apply Fubini’s theorem (417G) to see that

[ t@h@n) = [[ fen@rdond / [ t@x@n(dana
— [ Foovtan) = / f(@)h(a)u(da).
Since this is true for every f € L}D h1 =a.. h; since both are continuous, h; = h, as required.

(j) Finally, to see that v is uniquely defined, note that {f f € L{}is || [loo-dense in Cp (445Kd), so 436K

tells us that there can be at most one totally finite Radon measure v on X such that [h x fdu = [ JA‘dV
for every f € Lt.
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4450 Proposition Let X be a Hausdorff abelian topological group carrying Haar measures. Then the
map z — & from X to its bidual group X is a homeomorphism between X and its image in X. In particular,
the dual group X of X separates the points of X.

proof We already know that ~ is continuous (445Eb) and that X is locally compact and Hausdorff (445J).
Now let U be any neighbourhood of the identity e of X. Let V' C U be an open neighbourhood of e such
that VV =1 C U and uV < co. Then f = xV € LZ(u), so f = f is positive definite and continuous (445Ld)

and there is a totally finite Radon measure v on X such that (f * f)(z) = [ x(z)v(dx) for every z € X
(445N). Note that, writing ¢ for the identity of X and # : X — C for the Fourier-Stieltjes transform of v,

B(e) = / e(x)(dy) = / x(@idx) = (f * F)(e)
- / F@) ) (dy) = / F()Puldy) # 0.

Now 7 is continuous (445Ec), so W = {r : ©(r) # 0} is a neighbourhood of ¢. If z € X and & € W, then
(f* N) = [x@)w(dx) = [20)v(dx) = D(2) #0,

so there is some y € X such that f(y)f(y~'z) # 0, that is, f(y) # 0 and f(z~'y) # 0, that is, y and 2~y
both belong to V; in which case x € VV ! C U.

Thus U D {x : & € W}. This means that, writing & for {{x : £ € H} : H C X is open}, every
neighbourhood of e for the original topology T of X is a neighbourhood of e for &. But (it is easy to
check) (X, &) is a topological group because X is a topological group and ™ is a homomorphism. So ¥ C &
(4A5FD). As we know already that & C ¥, the two topologies are equal.

It follows at once that if T is Hausdorff, then (because & is Hausdorff) the map ~ is an injection and is
a homeomorphism between X and its image in X.

445P The Inversion Theorem Let X be an abelian topological group and p a Haar measure on X.
Then there is a unique Haar measure \ on the dual group X of X such that whenever f : X — C is

continuous, p-integrable and positive definite, then JA” : X — C is A-integrable and
f@) = [ FO)x(@)Ady)
for every z € X.

proof (a) Write P for the set of p-integrable positive definite continuous functions h : X — C. For h € P,
let v, be the corresponding totally finite Radon measure on X defined in 445N, so that

[fxhdu= [ fdv,
for every f € L& = LE(p).

(b) The basis of the argument is the following fact. If f € £} and hy, hy € P, then

fJAC X }ALQthl = f} X féleVhT

P/} X ]A’levhz = /(f*ill)AthQ
(445G)
- / (@) (f % ) (2)pa(d) = / Fae™)(f * ) (@) u(de)
(by 445Lb)
= ((f ) # B)(e) = ((f #Foa) 5 Fr)(e)

(because # is associative and commutative, by 4440e and 4440g)
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:/}‘x hodvy,. Q

Now because h; and hs are both bounded (by [ |hi|du and [ |ha|dp respectively), and vy, and vy, are
both totally finite measures, and {f‘ : feLL(p)}is || |lso-dense in Cy = Cy(X;C) (445Kd), we must have

fp X ﬁgduhl = fp X Bldl/hz
for every p € Cj.
(c) Let K be the family of compact subsets of X'. For K € K set

P ={h:h € P, h(x) >0 for every xy € K}.
Then Py is non-empty. I Set
U={z:z€X,[1-x(z)| <3 forevery y € K}.

Then U is a neighbourhood of the identity e of X, by 445Eb. Let V be an open neighbourhood of e, of
finite measure, such that VV~! C U, set g = Niva, and try h = g * g. Then h is continuous and positive
definite (445Ld), real-valued and non-negative (because g and § are), zero outside U (because VV~! C U,
as in the proof of 4450), and

[hdp= [gdp- [Gdu=1
(444Qb). Next,
h=h= P
(445Kc) is non-negative, and if y € K then
1= h(0l = | [ h(z) = h(x)x(z)u(de)| < [ h(@)]1 — x(2)|u(dz) < §
because |1 — y(z)| < 3 if 2 € U and h(z) =0if z € X \ U. So

(xX) = h(x) >

=>>
[N

for every x € K, and h € Px. Q

(d) Because K is upwards-directed, {Pg : K € K} is downwards-directed and generates a filter F on P.
Let Cy = Ci(X;C) be the space of continuous complex-valued functions on X with compact support. If
q € Cj, then

#(q) = limp, 7 f % dvy,

A .
is defined in C, where in the division ¢/h we interpret 0/0 as 0 if necessary. PP Setting K = {x : ¢(x) # 0},
we see in fact that for any hi, hy € Pg we may define a function p € Cj, by setting

p(x)*i) if x € K,

Bl(X)
=0if ¢(x) =0,

so that

(by (b) above)
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So this common value must be ¢(q). Q

If ¢, ¢ € Cr and o € C, then
/q+q /dv +/ dvn,

/%duh:a/%dyh
h h

whenever h € Pg, where K = {x : [¢(x)| + |¢'(x)]| > 0}; so &(q + ¢') = ¢(q) + ¢(¢') and ¢(aq) = ag(q).
Moreover, if ¢ > 0, then ¢/h > 0 for every h € Pk, so ¢(q) > 0

(e) By the Riesz Representation Theorem (in the form 436J) there is a Radon measure A on X" such that
J qdX = ¢(q) for any continuous function ¢ of compact support. (As in part (h) of the proof of 445N, the
shift from real-valued ¢ to complex-valued ¢ is elementary.)

(f) Now )\ is translation-invariant. I Take § € X and ¢ € Ck. Set K = {x:q(x) #0} and L = 'K,
and take any h € Pg. Set hi(z) = h x §~1. Then h; is positive definite (445Lc); of course it is continuous
and p-integrable; and for any x € L,

= [ h(x) yu(de) = h(ex) > 0.
So hy € Py,.
To relate vy, to vy, observe that if f € L}C then
X) = [ f(@)8(x)x(z)u(dz) = (f x 6)"(x),
so
J F O, (@) = [(7 % O)@)ha(@)p(dz) = [ J(@)h(@)u(dz) = [ FOOw(dx).

So we see that the equation
[ p(0x)vn, (dx) = [ p(x)n(dx)

is valid whenever p is of the form ]Af, for some f € £{, and therefore for every p € Cj.
Set q1(x) = q(0x) for every x € X, so that ¢; € C and L = {x : q1(x) # 0}. Accordingly

_ (a0, _ [0
o) = [ g / o)

_ / 1), (dx) = 6(a).
h(x)

So
[ a(0x)A\dx) = [ a()A(dx).

As ¢ and 0 are arbitrary, A is translation-invariant (441L). Q

(g) Thus A is either zero or a Haar measure on X. T have still to confirm that

z) = [ FO0x@)A(dy)

whenever f is continuous, positive definite and p-integrable, and z € X. But recall the formula from (b)
above. If ¢ € C, K = {x : q¢(x) # 0} and h € Pk, then we must have

> h
/qxfd)\:/q dl/h:/ql< dl/f:/qduf.
h

X
s>

= >
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In particular, [ ¢ x fd\ > 0 whenever ¢ > 0; since f is continuous (445Ka), and A, being a Radon measure,

is strictly positive, this shows that f > 0. Also
ffd)\:sup{qu fdh:qeCr, 0< g <1} =v(X) < oo,

A
so we have an indefinite-integral measure f\; since this is a Radon measure (416Sa), and acts on Cy, in the
same way as vy, it is actually equal to vy (by the uniqueness guaranteed in 436J). In particular, for any
zeX,

z) = [ x(@)vs(dx) = [ x(x) f()Adx)
by the second formula in 445N, and 235K. But

F00 = [ Fa@nt@n(a) = [ £ x(@utdz)
~ [ #@a Hutz)

(because X is abelian, therefore unimodular)

)

(by 445Lb)

for every x € X. So

ﬂ@:/&uﬁuﬂnum:/&*@ﬁunmm

:/ﬂmﬂ@xw»

(h) We should check that X is non-zero and unique. But the construction in part (¢) of the proof shows

that there are many f € P such that f(e) # 0, and for any such f we have f(e ffd/\ This shows
simultaneously that A is non-zero, therefore a Haar measure; and as all the Haar measures on X are scalar
multiples of each other, there is at most one suitable .

(because X is abelian)

445Q Remark We can extract the following useful fact from part (g) of the proof above. If h: X — C
is p-integrable, continuous and positive definite, then h is non-negative and A-integrable, and the Radon

measure v, of 445N is just the indefinite-integral measure h\.
Note also that X is actually a Radon measure; of course it has to be, because X is locally compact and
Hausdorft (445J).

445R The Plancherel Theorem Let X be an abelian topological group with a Haar measure u, and
X its dual group. Let A be the Haar measure on X corresponding to p (445P). Then there is a normed

space isomorphism 7" : LZ(u) — LZ(\) defined by setting T'(f*) = f“ whenever f € L&(u) N LE(1).

proof (a) Since ]A” = g whenever f =, g, the formula certainly defines an operator T' from L& (u) N L2 (p)
to L&(\), and of course it is linear.

If f € LL(u) N LE (1), h = f * f is continuous and positive definite (445Ld) and integrable, and h= \f|2
(445Kc). Now
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/ﬁﬁmz/ﬁwzh@
— [ #@Fa utdz) = [ I17dn

Thus ||Tul|2 = ||ull2 whenever u € L{(p) N LE(u); since L (p) N LE(u) is || ||o-dense in L2 (p) (244Ha/244PDb,
or otherwise), we have a unique isometry 7" : L2(u) — L2 () agreeing with the given formula on L& ()N L2 (p)
(2A4I).

(445P)

(b) The meat of the theorem is of course the proof that T is surjective. P? Suppose, if possible, that
W = T[LZ(u)] is not equal to LZ()). Because T is linear, W is a linear subspace of LZ(\); because T is an
isometry, W is isometric to LZ(u), and in particular is complete, therefore closed in LZ(\) (3A4Fd). There
is therefore a non-zero continuous linear functional on LZ(\) which is zero on W (3A5Ad), and this is of
the form u — [u x v for some v € LZ(\) (244J/244Pc). What this means is that there is a g € £Z(\) such

that g* # 0 in LZ(X) but ff x gd\ = 0 for every f € LL(u) N LE(w).
Suppose that f € £L(x) and that h is any p-integrable continuous positive definite function on X. Then
h is bounded (445Lb), so |h|? also is p-integrable, and f* h € L&(u) N L2E(1) (444Ra). Accordingly

[gxFxhdr=[gx(f+h)d\=0.

Thus [ g x ]A”dyh = 0, where v}, = iﬁz/\ is the Radon measure on X corresponding to h constructed in 445N
(see 445Q). And this is true for every f € L&(u). But as {f e Ll( )} is || |lo-dense in Cy(X;C)
(445Kd), and g is vp-integrable (because h € LZ(N), by (a), so [|g x h\d)\ < 00), g must be zero vp-a.e.,
that is, g x lﬁz = 0 A-a.e. Now recall (from part (¢) of the proof of 445P, for instance) that for every compact

set K C X there is a u-integrable continuous positive definite h such that h(x) # 0 for every x € K, so
g =0 a.e. on K. Since \ is tight, g = 0 a.e. (412]c), which is impossible. XQ
Thus T is surjective and we have the result.

445S While we do not have a direct definition of f for f e L2\ L, the map T : L& (u) — LZ(X\) does

A
correspond to the map f — f in many ways. In particular, we have the following useful properties.

Proposition Let X be an abelian topological group with a Haar measure p, X its dual group, A the
associated Haar measure on X and 7' : L(u) — LZ(\) the standard isometry described in 445R. Suppose
that fo, f1 € L&(n) and go, g1 € LZ(v) are such that Tf§ = g§ and Tf; = g1, and take any 6 € X'. Then
(a) setting fo = fo, 92(x) = go(x 1) whenever this is defined, T'f3 = g3;
(b) setting f3 = f1 x 6, g3(x) = ¢g1(0x) whenever this is defined, T'f5 = g3;

(c) setting fu = fo x f1 € L&(p), }4(9) = (90 * g1)(6).

proof (a) We have isometries Ry : L2(u) — L2(p) and Ry : LE(\) — LZ()) defined by setting Ry f* = (f)*

for every f € L&(u) and Rag® = (g)* for every g € LZ()), where §(x) = g(x~') whenever this is defined.
Now if f € L&(p), then

= [ f@)x(@)u(dz) = [ fe)x (@)p(de) = f(x)
for every x € X. So TRyu = RyTu for every u € L{(p) N LA(p); as LE N LE is dense in L&, TRy = RoT
which is what we need to know.

(b) This time, set Ry f* = (f x 0)* for every f € L£LZ(n) and Rag®
(6+19)(x) = g(6~'x) whenever this is defined. Once again, Ry : L2(u)
are isometries. If f € £L(u), then

= (071ejg)* for g € LZ(N), where
— L2(p) and Ry : L2(N) — L2())
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(fx0)(x) = [ f(=) Juldz) = F(6x)
for every x, so TRy f* = RoT f*; once again, this is enough to prove that TRy = RyT, as required.

(c) We have

(90 490)6) = [ 900 D 00MN@) = [ 200N = (g51s5)
(where (| ) is the standard inner product of L (X))
= (Tf31Tf3)
(using (a) and (b))
= (f31f3)

(because linear isometries of Hilbert space preserve inner products, see 4A4Jc)

/ fa(@) Fa@)pa(de) / [ (@)0() fo(@)u(dz) = (fo x f2)"(0).

445T Corollary Let X be an abelian topological group with a Haar measure p, and A the corresponding
Haar measure on the dual group X of X (445P). Then for any non-empty open set H C X, there is an

J € L£L{(p) such that f £ 0 and f(x) =0forye X\ H.
proof Let V7 and V5 be non-empty open sets of finite measure such that V1V, C H, and let g1, go be their
indicator functions. Then there are f1, f2 € L&(p) such that T f; = g5 for both j, where T : L2 (1) — Lz())

is the isometry of 445R. In this case, by 445Sc, (f1 X fo)" = g1 * g2. But it is easy to check that g; * go is
non-zero and zero outside H.

445U The Duality Theorem (PONTRYACIN 1934, KAMPEN 1935) Let X be a locally compact Haus-
dorff abelian topological group. Then the canonical map z — & from X to its bidual X (445E) is an
isomorphism between X and X as topological groups.

proof By 4450, T is a homeomorphism between X and its image X Cx. Accordingly X is itself, with its
subspace topology, a locally compact topological group, and is closed in X (4A5Mc).

? Suppose, if possible, that X # X. Let u be a Haar measure on X (441E) and A the associated Haar
measure on the dual X of X (445P). By 445T, there is a g € £L{(\) such that g is zero on X but not zero
everywhere, so that g is not zero a.e. We may suppose that g is defined everywhere on X. In this case we

have
0=0(2) = [ 9(0)20)Adx) = [ 900)x(x)A(dx)
for every z € X.

By 418], g : X — C is almost continuous. Let K C {x : x € X, g(x) # 0} be a compact set such that
Ji lgldx > 2 [, |gldX and g[ K is continuous. Set g(x) = g(x)/|g(x)| for x € K. Now consider the linear
span A of {2 : x € X} as a linear space of complex-valued functions on X. Since zy = & x g for all z, y € X,
A is a subalgebra of Cj, = Cy(X;C); since =1 = & for every x € X, h € A for every h € A; the constant
function é belongs to A; and A separates the points of X'. By the Stone-Weierstrass theorem, in the form
281G, there is an h € A such that |h(x) — q(x)| < 3 for every x € K and |h(x)| < 1 for every x € X. Of
course [ g x hd\ =0 for every h € A because [ g x &d\ =0 for every z € X.

Now, however,

/ |g|d/\:/ g x qd\ < |/ gxhd/\|+/ lg| % |h — q|dX
K K K K
< gxnarf+} [ lgars [ jgar+d [ glin< [ lglan
X\K K X\K K K
which is impossible. X

Thus X = X and the proof is complete.
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445X Basic exercises (a) Consider the additive group Q with its usual topology. Show that its dual
group can be identified with the additive group R with its usual topology.

(b) Let X be any topological group, and X its dual group. Show that if v is a totally finite Radon
measure on X, then its Fourier-Stieltjes transform 2 : X — C is continuous.

(c) Let X be a topological group carrying Haar measures and X its dual group. For a totally finite
quasi-Radon measure v on X set »(z = [x(z) ) for every x € X. (i) Show that v : X — C is
continuous. (ii) Show that for any totally finite quasu Radon measure g on X with Fourier-Stieltjes transform

i, [ fdv = [vdp.

>(d) Let X be a group and hq, hy : X — C positive definite functions. Show that hy + ho, ahq and h1
are also positive definite for any « > 0.

(e)(i) Let X be a group, Y a subgroup of X and h: Y — C a positive definite function. Set hy(z) = h(x)
ifxeY, hi(x)=0if x € X \' Y. Show that h; is positive definite. (ii) Let X and Y be groups, ¢ : X —» Y
a group homomorphism and h : Y — C a positive definite function. Show that h¢ : X — C is positive
definite.

(f) Let X be a topological group and X its dual group. (i) Let v be any totally finite topological measure
on X and set h(z) = [ x(z)v(dx) for x € X. Show that h: X — C is posmve definite. (ii) Let v be any
totally finite topologlcal measure on X. Show that its Fourier transform 2 : X — C is positive definite.

>(g) Let X be a topological group with a left Haar measure, and h : X — C a bounded continuous
function. Show that h is positive definite iff [h(z~'y)f(y)f(x)dzdy > 0 for every integrable function f.

>(h) Let ¢ : R” — C be a function. Show that it is the characteristic function of a probability distribution
on R" iff it is continuous and positive definite and ¢(0) = 1.

>(i) Let X be a compact Hausdorff abelian topological group, and u the Haar probability measure on
X. Show that the corresponding Haar measure on the dual group & of X is just counting measure on X.

>(j) Let X be an abelian group with its discrete topology, and p counting measure on X. Let X be the
dual group and A the corresponding Haar measure on X'. Show that AX = 1.

(k) Let X be the topological group R, and p = \/%ML, where pup, is Lebesgue measure. (i) Show that if

we identify the dual group X of X with R, writing x(z) = e X* for z, x € R, then the Haar measure on X
corresponding to the Haar measure p on X is p itself. (ii) Show that if we change the action of R on itself
by setting x(z) = e 2™X% then the Haar measure on X corresponding to ju, is pir.

(D) Let Xy, ..., X, be abelian topological groups with Haar measures po, ... , fin, and let X = Xg x...x
X, be the product group with its Haar measure p = pg X ... X p,,. For each k < n let Xy be the dual group
of X and A the Haar measure on &} corresponding to pg. Show that if we identify X = Xy x ... x A,
with the dual group of X, then the Haar measure on X corresponding to p is just the product measure
Ao X ... X Ap.

>(m) Let X be a compact Hausdorfl abelian topological group, with dual group X, and g the Haar
probability measure on X. (i) Show that [ xdu = 0 for every y € X except the identity. (ii) Show that
{x* : x € X} is an orthonormal basis of the Hilbert space LZ(u). (Hint: (u|x*) = (Tu|k*) where T is the
operator of 445R.)

(n) Let X be an abelian topological group with a Haar measure u, A the associated Haar measure on
the dual group X and T : LZ(u) — LZ()\) the standard isometry. Suppose that u, v € LZ(u). Suppose
that fo, f1 E LZ(1), go, g1 € LE(v) are such that Tf3 = g8 and Tft = g}. Show that (fo * f1)(z) =

)x(x

fgo x(z)

clu
JA(dy) for any x € X.
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(o) Let X be a locally compact Hausdorff abelian topological group and X its dual group. Show that
a function h : X — C is the Fourier-Stieltjes transform of a totally finite Radon measure on X iff it is
continuous and positive definite.

(p)(i) Show that we can define a binary operation +g2,qic on X = {0, 1} by setting x+2a4icy = z whenever
z,y, z € X and Zf:o 20(z (i) + y(i) — z(i)) is divisible by 2¥*! for every k. (ii) Show that if we give X its
usual topology then (X, +2,4ic) is an abelian topological group. (iii) Show that the usual measure on X is
the Haar probability measure for this group operation. (iv) Show that G = {¢:¢ € C,3In €N, ¢*" =1} is
a subgroup of C. (v) Show that the dual of (X, +2adic) is {x¢ : ¢ € G} where x¢(x) = [[;2,¢**® for ( € G
and x € X. (vi) Show that the functions f, g : X — X described in 388E are of the form = — & F9.qic To
for a certain xy € X.

(q) Let X be alocally compact Hausdorff abelian topological group. Show that if two totally finite Radon
measures on X have the same Fourier-Stieltjes transform, they are equal. (Hint: 281G.)

445Y Further exercises (a) Let X be any Hausdorff topological group. Let X be its completion under
its bilateral uniformity. Show that the dual groups of X and X can be identified as groups. Show that they
can be identified as topological groups if either X is metrizable or X has a totally bounded neighbourhood
of the identity.

(b) Let (Xj),cr be a countable family of topological groups, with product X; let X; be the dual group
of each Xj;, and X the dual group of X. Show that the topology of X is generated by sets of the form
X N[[,e; Hj where H; C X is open for each j.

(¢) Let X be a real linear topological space, with addition as its group operation. Show that its dual
group is just the set of functionals z — e/(®) where f : X — R is a continuous linear functional. Hence
show that there are abelian groups with trivial duals.

(d) Let X be the group of rotations of R3, that is, the group of orthogonal real 3 x 3 matrices with
determinant 1, and give X its usual topology, corresponding to its embedding as a subspace of RY. Show
that the only character on X is the constant function 1. (Hint: (i) show that two rotations through the
same angle are conjugate in X; (ii) show that if 0 < 6 < 7 then the product of two rotations through the
angle 6 about orthogonal axes is not a rotation through an angle 26.)

(e) Let X be a finite abelian group, endowed with its discrete topology. Show that its dual is isomorphic
to X. (Hint: X is a product of cyclic groups.)

(f) Show that if I is any uncountable set, then there is a quasi-Radon probability measure v on the
topological group R’ such that its Fourier-Stieltjes transform # is not continuous. (Hint: take v to be a
power of a suitably widely spread probability distribution on R.)

(g) Let X be an abelian topological group with a Haar measure p, and A the associated Haar measure
on the dual group X of X. Let T : LZ(u) — LZ()\) be the standard isomorphism. Suppose that f € L2 (u)
and g € L{(A) NLEA(N) are such that Tf* = g*. Show that f(z) = [ g(x)x(x)A(dx) for almost every z € X.
(Hint: look first at locally compact Hausdorff X.)

(h) Let X be a locally compact Hausdorff abelian topological group with dual group X, Pgr the set of
Radon probability measures on X, (1,,)nen a sequence in Pr and v a member of Pg. Show that the following
are equiveridical: (i) (v, )nen — v for the narrow topology on Pg; (ii) lim, o 75 (x) = 2(x) for every x € X.
(Hint: compare 285L. For the critical step, showing that {v,, : n € N} is uniformly tight, use the formulae

in 445N to show that there is an integrable f : & — C such that 0 < ]V‘ <land [ f(x)u(dm) >1-—1e)

(i) Let X be a topological group carrying Haar measures and X its dual group. Let M, be the complex
Banach space of signed totally finite T-additive Borel measures on X (put the ideas of 437F and 437Yb
together). Show that X separates the points of M, in the sense that if ¥ € M, is non-zero, there is an
z € X such that [ x(z)v(dy) # 0, if the integral is appropriately interpreted. (Hint: use the method in the
proof of 445U.)
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(j) Let X be an abelian topological group carrying Haar measures. Let M, be the complex Banach space
of signed totally finite T-additive Borel measures on X. Show that the dual X of X separates the points of
M, in the sense that if v € M, is non-zero, there is a x € X such that [ x(z)v(dz) # 0. (Hint: use 443L
to reduce to the case in which X is locally compact and Hausdorff; now use 445U and 445Y1.)

(k) Let X be an abelian topological group and p a Haar measure on X. Show that the spectral radius
of any non-zero element of L{(u) is non-zero. (Hint: 445Yj, 445Kd.)

(1) Show that for any integer p > 2 there is an operation +padic on {0, ... ,p— 1} with properties similar
to those of the operation +9,4;c of 445Xp.

(m) Let 12 be Lebesgue measure on [0,00[. (i) For f, g € £'(p) define (f = g)(z) = [ f(y)g(z — y)u(dy)
whenever the integral is defined. Show that f*g € £(u). (ii) Show that we can define a bilinear operator x
on L (u) by setting f**g* = (f*g)* for f, g € L1 (1), and that under this multiplication L*(u) is a Banach
algebra. (iii) Show that if ¢ : L'(y) — R is a multiplicative linear operator then there is some s > 0 such

that ¢(f*) = [~ f(x)e*"u(dx) for every f € L(p).

445 Notes and comments I repeat that this section is intended to be a more or less direct attack on the
duality theorem. At every point the clause ‘let X be a locally compact Hausdorff abelian topological group’
is present in spirit. The actual statement of each theorem involves some subset of these properties, purely
in accordance with the principle of omission of irrelevant hypotheses, not because I expect to employ the
results in any more general setting.

In 445ADb I describe a topology on the dual group in a context so abstract that we have rather a lot of
choice. For groups carrying Haar measures, the alternative descriptions of the topology on the dual (4451)
make it plain that this must be the first topology to study. By 445E it is already becoming fairly convincing.
But it is not clear that there is any such pre-eminent topology in the general case.

Fourier-Stieltjes transforms hardly enter into the arguments of this section; I mention them mostly because
they form the obvious generalization of the ideas in §285. But I note that the principal theorem of §285 (that
sequential convergence of characteristic functions corresponds to sequential convergence of distributions,
285L) generalizes directly to the context here (445Yh).

I have tried to lay this treatise out in such a way that we periodically return to themes from past chapters
at a higher level of sophistication. There seem to be four really important differences between this section
and the previous treatment in Chapter 28. (i) The first is the obvious one; we are dealing with general locally
compact Hausdorff abelian groups, rather than with R and S' and Z. Of course this puts much heavier
demands on our technique, and, to begin with, leaves our imaginations unfocused. (ii) The second concerns
differentiation, or rather its absence; since we no longer have any differential structure on our groups, a
substantial part of the theory evaporates, and we are forced to employ new tactics in the rest. (iii) The
third concerns the normalization of the measure on the dual group. As soon as we know that & is a locally
compact group (445J) we know that it carries Haar measures. The problem is to describe the particular
one we need in appropriate terms. In the case of the dual pairs (R,R) or (S!,Z), we have measures already
presented (counting measure on Z, Lebesgue measure on |—m, 7] and R). (They are not in fact dual in the
sense we need here, at least not if we use the simplest formulae for the duality, and have to be corrected
in each case by a factor of 27. See 445Xk.) But since we do have dual pairs already to hand, we can
simultaneously develop theories of Fourier transforms and inverse Fourier transforms (for the pair (S*,Z)
the inverse Fourier transform is just summation of trigonometric series), and the problem is to successfully
match operations which have independent existences. (iv) The final change concerns an interesting feature of
Z and R. Repeatedly, in §§282-283, the formulae invoked symmetric limits lim,, Ezzfn or lim, ffa to
approach some conditionally convergent sum or integral. Elsewhere one sometimes deals with singularities
by examining ‘Cauchy principal values’; if f_ll f is undefined, try limqyo(/ " f + fal f). This particular
method seems to disappear in the general context. But the general challenge of the subject remains the
same: to develop a theory of the transform u +— 2 which will apply to the largest possible family of objects
u and will enable us to justify, in the widest possible contexts, the manipulations listed in the notes to §284.
The calculations in 445S and 445Xn, treating ‘shift’ and ‘convolution’ in L2, are typical.

In terms of the actual proofs of the results here, ‘test functions’ (284A) have gone, and in their place
we take a lot more trouble over the Banach algebra L!. This algebra is the key to one of the magic bits,
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which turns up in rather undignified corners in 445Kd and part (e) of the proof of 445N. Down to 4450,
the dominating problem is that we do not know that the dual group X of a group X is large enough to tell
us anything interesting about X. (After that, the problem reverses; we have to show that X is not too big.)
We find that (under rather specially arranged circumstances) we are able to say something useful about the
spectral radius of a member of L', and we use this to guarantee that it has a non-trivial Fourier transform.
If we identify X with the maximal ideal space of L' (445H), then the Fourier transform on L! becomes the
‘Gelfand map’, a general construction of great power in the theory of commutative Banach algebras.

There is one similarity between the methods of this section and those of §284. In both cases we have
isomorphisms between LZ(u) and LZ()) (the Plancherel Theorem), but cannot define the Fourier transform
of a function in L(% in any direct way; indeed, while the Fourier transform of a function in Lé, or even of
a (totally finite) measure, can really be thought of as a (continuous) function, the transform of a function
in L? is at best a member of L?, not a function at all. We manoeuvre around this difficulty by establishing
that our (genuine) Fourier transforms match dense subspaces isometrically. In §284 I used test functions,
and in the present section I use £ N L2, Test functions are easier partly because the Fourier transform of a
test function is again a test function, and all the formulae we need are easy to establish for such functions.

Searching for classes of functions which will be readily manageable in general locally compact abelian
groups, we come to the ‘positive definite’ functions. The phrase is unsettling, since the functions themselves
are in no obvious sense positive (nor even, as a rule, real-valued). Also their natural analogues in the theory
of bilinear forms are commonly called ‘positive semi-definite’. However, their Fourier transforms, whether
regarded as measures (445N) or as functions (445Q), are positive, and, as a bonus, we get a characterization
of the Fourier transforms of measures (445Xf, 445Xh), answering a question left hanging in 285Xu.

Version of 8.10.13
446 The structure of locally compact groups

I develop those fragments of the structure theory of locally compact Hausdorff topological groups which
are needed for the main theorem of the next section. Theorem 446B here is of independent interest, being
both itself important and with a proof which uses the measure theory of this chapter in an interesting way;
but the rest of the section, from 446D on, is starred. Note that in this section, unlike the last, groups are
not expected to be abelian.

446 A Finite-dimensional representations (a) Definitions (i) For any r € N, write M,. = M,.(R) for
the space of r x r real matrices. If we identify it with the space B(R";R"), where R" is given its Euclidean
norm, then M, becomes a unital Banach algebra (4A6C), with identity I, the r x r identity matrix. Write
GL(r,R) for the group of invertible elements of M,..

(ii) Let X be a topological group. A finite-dimensional representation of X is a continuous
homomorphism from X to a group of the form GL(r,R) for some r € N. If the homomorphism is injective
the representation is called faithful (cf. 4A5Be).

(b) Observe that if X is any topological group and ¢ is a finite-dimensional representation with kernel
Y, then X/Y has a faithful finite-dimensional representation 1 defined by writing ¢ (z*) = ¢(z) for every
x € X (4A5La).

446B Theorem Let X be a compact Hausdorff topological group. Then for any a € X, other than the
identity, there is a finite-dimensional representation ¢ of X such that ¢(a) # I; and we can arrange that
¢(x) is an orthogonal matrix for every = € X.

proof (a) Let U be a symmetric neighbourhood of the identity e in X such that a ¢ UU. Because X is
completely regular (3A3Bb), there is a non-zero continuous function h : X — [0, co[ such that h(z) = 0 for
every v € X \ U; replacing h by = — h(z) + h(x™!) if necessary, we may suppose that h(z) = h(z~!) for
every z. Let p be a (left) Haar measure on X (441E), and set w = h* in L°(u).

(b) Define an operator T from L? = L?(u1) to itself by setting

Tu = u * w for every u € L?,
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where * is convolution; that is, T'f* = (f * h)* for every f € £2 = £2(p). Then T is a compact self-adjoint
operator on the real Hilbert space L? (444V).

(c) For any z € X, define S, : L? — L? by setting S,u = zeju for u € L?, where «; is the left shift action,
so that S, is a norm-preserving linear operator (443Ge). Also S, commutes with 7. P If f € £2, then

S.Tf* = (za(f xh))* = ((z1f) x h)°
(4440¢)
= Tszf.- Q

(d) Now S,Tw # Tw. P Set g = h* h, so that Tw = g* and g, as;g are both continuous functions
(444Rc). Then

(av9)(e) = g(a™?) = [ hy)h(y~'a " )dy =0
because if y € U then y a1 ¢ U, while
gle) = [ m(y)h(y=")dy = [ h(y)*dy > 0.

So the open set {z : g(z) # (asg)(x)} is non-empty; because p is strictly positive (442Aa), it is non-
negligible, and

SaTw = (a%g)* # 9° =Tw. Q

(e) The closed linear subspace {u : S,u = u} therefore does not include T[L?]. But the linear span
of {Tw : v is an eigenvector of T} is dense in T[L?] (4A4M), so there is an eigenvector v* of T such that
S.Tv* # Tv*. Let v € R be such that Tv* = yv*; since Tv* #0, v # 0, and V = {u : u € L?, Tu = yu} is
finite-dimensional (4A4Lb).

(f) S.[V]CV forevery ze X. P
TS,u=5.Tu=S8,(yu) =~S,u

for every u € V. Q

We therefore have a map z — S,[V : X — B(V;V). As observed in 443Gc, this is actually a semi-
group homomorphism, and of course S.|V is the identity of B(V;V), so S,V is always invertible, and
we have a group homomorphism from X to the group of invertible elements of B(V;V). Taking an or-
thonormal basis (vi,...,v,) of V, we have a homomorphism ¢ from X to GL(r,R), defined by setting
() = ((S,v;|v;))1<i j<r for every z € X. Moreover, ¢ is continuous. P For any u € L?, z + S,u: X — L?
is continuous, by 443Gf. But this means that all the maps z — (S,v;|v;) are continuous; since the topology
of GL(r,R) can be defined in terms of these functionals (see the formulae in 262H), ¢ is continuous. Q

Thus ¢ is a finite-dimensional representation of X. But V' was chosen to contain v*; of course Tv* € V,
while S, Tv* # Tv*; so that ¢(a) is not the identity.

(g) Finally, ¢(z) is an orthogonal matrix for every z € X. PP As observed in (c), S, is norm-preserving, so
S.|V is again norm-preserving. By 4A4Jb, (S,v;|S.v;) = (vi|v;) for 1 <4,j <r, that is, ¢(z) is orthogonal.
Q

446C Corollary Let X be a compact Hausdorff topological group. Then for any neighbourhood U of
the identity of X there is a finite-dimensional representation of X with kernel included in U.

proof Let ® be the set of finite-dimensional representations of X. By 446B, (1,4 ker(¢) = {e}, where
e is the identity of X. Because X \intU is compact and disjoint from (1,4 ker(¢) (and ker(¢) is closed
for every ¢), there must be ¢o, ..., ¢, € ® such that (), ker(¢;) C U. For each i < n, let r; € N be the
integer such that ¢; is a continuous homomorphism from X to GL(r;,R). Set r =" ,r;. Then we have
amap ¢: X — GL(r,R) given by the formula
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oy =| O w0
0 0 ceo On(x)

for every x € X. It is easy to check that ¢ is a continuous homomorphism, and ker(¢) =, ., ker(¢;) C U.
So we have an appropriate representation of X.

*446D Notation (a) It will help to be clear on an elementary point of notation. If X is a group and A
is a subset of X I will write A% = {e}, where e is the identity of X, and A"T! = AA" for n € N, so that
A3 = {x1m923 : 11, T2, 3 € A}, etc. Now we find that A™F" = AMA™ and A™" = (A™)" for all m, n € N.
Writing A=1 = {27! : 2 € A} as usual, we have (A")~! = (A71)". But note that if we also continue to
write A=t = {z71 : x € A}, then AA~! is not in general equal to A% and that there is no simple relation
between A", B" and (AB)", unless X is abelian.

(b) In the rest of this section, I shall make extensive use of the following device. If X is a group with

identity e, e € A C X and n € N, write D,,(4) = {z: 2 € X, 2° € A for every i < n}.

(i) Do(A) = X.

(ii) D1(A) = A.

(iii) Dp(A) C D,y (A) whenever m < n.

(iv) Dpn(A) C D,y (D (A)) for all m, n € N.
Plfzc Dmn(A) then (z°)7 € A whenever j <n and i <m. Q

(v) If r e Nand A" C B, then D,,(A) C D, (B) for every n € N; in particular, A C D,(B).
P For r = 0 this is trivial. Otherwise, take z € D,,(A) and i < nr. Then we can express @ as i1 + ...+ i,
where ¢; < n for each j, so that

xt = H;:lxij cA"CB. Q

(vi) If A= A~! then D, (A) = D, (A)~* for every n € N.
(vii) If D,,(A) € B where m € N, then D,,,,(A4) C D,,(B) for every n € N.
P If 2 € Dyn(A) and i < n, then 2% € A for every j <m, so z* € D,,(A) C B. Q

(c¢) In (b), if X is a topological group and A is closed, then every D, (A) is closed; if moreover A is
compact, then D, (A) is compact for every n > 1. If A is a neighbourhood of e, then so is every D,,(A4),
because the map = — z’ is continuous for every i < n.

*446E Lemma Let X be a group, and U C X. Let f : X — [0,00[ be a bounded function such that
flx) =0for x € X\ U, set & = sup,cx f(x). Let A C X be a symmetric set containing e, and K a set
including A*, where k& > 1. Define g : X — [0, co[ by setting

1 .
g(@) = L7 sup{f(ya) g € A7)
for z € X. Then

(a) f(z) < g(z) < aforevery z € X, and g(z) =0if z ¢ K~ 1U.

(b) |g(az) — g(z)] < % ifjeN,a€ AV and x € X.

(c) For any z, z € X, [g(z) — g(2)| < sup,ere [f(yx) — f(yz)|-
proof (a) Of course

1

@) = 150550 fler) < g(2) < 150 a=a

for every x. Suppose that g(x) # 0. Then there must be an i < k and a y € A’ such that f(yz) # 0, so that
yr € U. But also, because e € A, y € A¥ C K, sox €y U C K~'U.
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(b) Suppose first that j = 1, so that a € A. If € > 0 there are y; € A%, for i < k, such that g(ax) <
%Z’?;OI f(yiaz) + €. Now y;a € A for each 4, so

g(2) > T80 fyrax) > glax) e~ 2.

[e%

As € is arbitrary, g(x) > g(axz) — ¢. Similarly, as a=' € A (because A is symmetric), g(az) > g(z) — ¢ and

lg(az) — g(z)] < .
For the general case, induce on j. (If j =0, then a = e and the result is trivial.)

(c) Set y = sup, e ¢ | f(yz)— f(yz)|. If € > 0, there are y; € A*, for i < k, such that g(x) < %Zf;ol flyiz)+
€. Now every y; belongs to K, so

1

9(2) = 2050 Fyiz) > 150050 (fiz) =) = gl@) — e — .

0
As € is arbitrary, g(z) > g(x) — ~; similarly, g(x) > g(z) — 7.

*446F Lemma Let X be a locally compact Hausdorff topological group and (A, ),en a sequence of
closed symmetric subsets of X all containing the identity e of X. Suppose that for every neighbourhood
W of e there is an ng € N such that A,, C W for every n > ng. Let U be a compact neighbourhood of e
and suppose that for each n € N we have k(n) € N such that Aﬁ(n) C U and Aﬁ(n)ﬂ Z U. Let F be a
non-principal ultrafilter on N and write @ for the limit lim,,_, » Aﬁ(n) in the space C of closed subsets of X
with the Fell topology.

(i) If Q® = Q then Q is a compact subgroup of X included in U and meeting the boundary of U.

(i) If Q2 # Q then there are a neighbourhood W of e and an infinite set I C N such that for every n € I
there are an o € A,, and an i < k(n) such that z° ¢ W.

proof (a) I ought to begin by explaining why the limit lim,,_, » AZ(") is defined; this is just because the Fell
topology is always compact (4A2T(b-iii)) and when based on a locally compact Hausdorff space is Hausdorff
(4A2T (e-ii)).

Because U is closed, {F : F € C, F C U} is closed, by the definition of the Fell topology (4A2T(a-ii));
because every Aﬁ(n) is included in U, so is @, and @ is compact. Because  — 2! is a homeomorphism of
X, F +— F~!is a homeomorphism of C, and

Q! = lim, 7 (AR™) 1 = limy, s 2 (A, 1)) = limy, 7 AL = Q.

And of course e € Q because e € AX™ for every n and {(z,F):2 € FeC}isclosed in X x C (4A2T(e-1)).

For each n € N, we have an a,, € Aﬁ(") and an z, € A,, such that a,z, ¢ U. Now a = lim,,, r a,, is
defined (because U is compact), and belongs to Q. Also lim,_,~ 2, = e, because every neighbourhood of e
includes all but finitely many of the A, so a = lim,_, r a, 2, ¢ int U, and a belongs to the boundary of U.
Thus @ meets the boundary of U.

(b) From (a) we see that if Q? = Q then @ is a compact subgroup of X, included in U and meeting the
boundary of U. So henceforth let us suppose that Q? # @ and seek to prove (ii).
Let w € Q% \ Q. Let Wy C U be an open neighbourhood of e such that WowWg N QW§ = () (4A5Ee).

(c) Fix a left Haar measure p on X. Let f: X — [0,00[ be a continuous function such that {z : f(z) >
0} C Wy and [ f(z)dz = 1. Set o = sup,cx f(z) and 8 = [ f(z)?dz, so that « is finite and B > 0.
WoU?W, C U* is open and relatively compact, so has finite measure, and there is an 7 > 0 such that

2n(1 + ap(WoU?Wy)) < 6.

Let W be a neighbourhood of e such that W C Wy and |f(yax) — f(ybx)| < n whenever y € (U~1)?2 U U,
x € X and ab~! € W (4A5Pa).

(d) Express w as w'w” where w', w” € Q. Then

{n: AR A Wow' # 0},  {n: AR A w' Wy # 0},
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{n: AK cQwoy = {n: AR AU\ Q) = 0
all belong to F, by the definition of the Fell topology. Also
{n:k(n)>1}

is cofinite in N, because A,, C U for all n large enough. Let I be the intersection of these four sets, so that
I belongs to F and must be infinite.

(e) Let n € I. ? Suppose, if possible, that 2 € W for every z € A,, and i < k(n). (The rest of the proof
will be a search for a contradiction.) Note that k(n) > 1.
Choose z; € A, for j < 2k(n), such that the products T2k(n)—1T2k(n)—2 - - - Th(n)s Th(n)—1 - - - To belong to
Wow', w" Wy respectively; set @ = Zop(n)—1 - . - To, S0 that
w e Aik(n) N Wow'w" Wy C WowW.
Since AE™ C QW and WowW2 N QW2 is empty, ®W, does not meet AL,
(f) Define g : X — [0, 0o[ by setting

9(2) = g T T sup{F(ye) 1y € A7),

Then g(wz)f(xz) =0 for every x € X. P If f(x) # 0, then x € Wy, so wzx ¢ AE™W,, and g(wzx) = 0, by
446Ea. Q Accordingly

J(g(@) = g(@x)) f(x)de = [ g(x)f(x)dz > 5

since g > f (446Ea).
Set yo = e and y; 11 = x;y; for i < 2k(n), so that yop,) = W and

yi € Al € AT = (42 C U
for every i < 2k(n). Then
9(x) = g(ox) = S50 (i) — g(inia)
for every x € X. Let i < 2k(n) be such that

(g) We have
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that is,
ko) [ (9(a) — gfua)) S0 o)
— [ 6@) - g @) (0 0)do
k(n)—1 '
=3 [te@ - glun)(e ) - 0 ) do
§=0
Set,
S (o 2)(f (v~ ) - f(v™"a))da,

By = f(g(x) — gk M) (v a)d;

then
Bs— Br = k(n) [(9(x) — gluz)) (v~ 2)dx > L.

(h)(a) Examine $;. We know that, because u € A, |g(z) — g(ux)| < ﬁ for every z (see 446EDb). On

the other hand, we are supposing that 7 € W for every j < k(n) and every x € A,, so, in particular,
uw € W C W, for every j < k(n). Also, as noted in (f), v € U2 So for any j < k(n) we must have
|f(v"lu=Iz) — f(v~lz)| < 7 for every z € X, by the choice of W, while f(v"'u=7z) — f(v™tx) = 0 unless
xr € W0U2WO. So

k(n)—1

< 3 [ 19t@) = gt ) = s o)l da

k(n)—l
Z ﬁﬂ#(WOUQWo) = anu(WoU?Wp).
§=0

(B) Now consider 8. As u*™ € W, |f(zu*™z) — f(z2)] < n for every z € U and = € X, by the
choice of W, so (because Ak U) |g(u*™z) — g(x)| < n for every = (446Ec). Accordingly

2| < [ flo~ra)de =n [ f(z)de =1

(i) But this means that
B < 2(181] + |B2]) < 2n(1 + ap(WoU?Wy)) < B,
which is absurd. X

(j) Thus for every n € I there are an x € A,, and an i < k(n) such that 2* ¢ W, and (ii) is true. This
completes the proof.

*446G ‘Groups with no small subgroups’ (a) Definition Let X be a topological group. We say
that X has no small subgroups if there is a neighbourhood U of the identity e of X such that the only
subgroup of X included in U is {e}.

(b) If X is a Hausdorff topological group and U is a compact symmetric neighbourhood of the identity e
such that the only subgroup of X included in U is {e}, then {D,(U) : n € N} is a base of neighbourhoods
of e, where D,,(U) = {z : x € X, 2' € U for every i < n}. P By 446Dc, (D,,(U)),>1 is a non-increasing
sequence of compact neighbourhoods of e, and if x € ), .y Dn(U) then zieUforeveryi € NjasU ' = U,
U includes the subgroup {2’ : i € Z}, so x = e. Thus (o Dn(U) = {e} and {D,,(U) : n € N} is a base of
neighbourhoods of e (4A2Gd). Q
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(c) In particular, a locally compact Hausdorfl' topological group with no small subgroups is metrizable

(4A5Q).

*446H Lemma Let X be a locally compact Hausdorff topological group. For A C X, n € N set
D, (A) = {x : 2° € A for every i < n}. If U C X is a compact symmetric neighbourhood of the identity
which does not include any subgroup of X other than {e}, then there is an r > 1 such that D,,(U)* C U
for every n € N.

proof ? Suppose, if possible, that for every r > 1 there is an n, € N such that D, (U)" € U. Of course
n, > 1. Set Ag =U and A, = D,,,.(U) for r > 1. Note that D,,, (U) C Ay but D,,,(U)" € U, so Aj* Z U.
We therefore have, for every r € N, a k, such that Alf(r) C U but Alf(r)ﬂ Z U. Also, by 446Gb, every
neighbourhood of e includes all but finitely many of the A,.. We can therefore apply 446F to the sequence
(A )ren. Of course k(r) > 1 for every r, while k(r) < n, for » > 1. Since U includes no non-trivial subgroup,
(i) of 446F is impossible, and we are left with (ii). Let W, I be as declared there, so that A, Z Dy (W)
for every r € I. There must be some m > 1 such that D,,(U) C W (446Gb). Take r € I such that r > m;
then rn, > mk(r), so

Ay = Dy, (U) € Dyp(ry(U) € Dy (D (U))
(446D (b-iv))
Cc Dk(r) (W)7

which is impossible. X

*4461 Lemma Let X be a locally compact Hausdorfl topological group and U a compact symmetric
neighbourhood of the identity in X such that U does not include any subgroup of X other than {e}. For
n €N, set D, (U) = {x: 2" € U for every i < n}, and let F be any non-principal ultrafilter on N. Suppose
that (z,)nen is a sequence in X such that x, € D,(U) for every n € N. Then we have a continuous
homomorphism ¢ : R — X defined by setting ¢(t) = lim,,, » 22" whenever (i(n))nen is a sequence in Z
such that lim,,_, » @ —tinR.

proof (a) If (i(n))nen is any sequence in N such that limnﬁf@ is defined in R, then lim,,_ 7 xfl(”) is

defined in X. P There is some m € N such that m > lim,_, » @, so that J = {n : i(n) < mn} € F; but if

n

n € J, then

by 446D(b-v), and xil(") € U™. But this means that F contains {n : xil(") € U™}; as U™ is compact,
lim,, , 7 xib(n) is defined in X. Q
i(n)

More generally, if (i(n)),en is any sequence in Z such that lim,_, » - is defined in R, then lim,,_, r s
is defined in X. P At least one of {n : i(n) > 0}, {n : i(n) < 0} belongs to F. In the former case,

lim, 7 x;(n) = lim, .7 mﬁax(&i(n))

)

is defined; in the latter case,

limy sz ) = Ly (™) 7Y = (i, e 2O

is defined. Q
(b) If V is any neighbourhood of e, there is a § > 0 such that lim,,_, » il
sequence in Z such that lim,,_, » |@\ < 4. PP By 446Gb, there is an m > 1 such that D,,(U) C V. Take

") € V whenever (i(n))nen is a

§<L.If limnﬂ}-|i(n)| <4, then J = {n:mli(n)| <n} € F. Butif n € J, then

n
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and 2,/ € D, (U); since Dy, (U), like U, is symmetric (446D (b-vi)), ai™ e D,,(U). This is true for every
n € J, so lim,_,r x:fn) € D,,(U) CV, as required. Q

Z(n) i(n) _

=0, then lim,, , 7z,

( ) i(n)

Consequently, if (i(n))nen, (j(n))nen are sequences in Z such that lim,,_,  — and lim,,_, = both exist
n n

in R and are equal, then lim,,_., » a:it( " = lim,, , 7 Ij(n P Set k(n) = i(n) — j(n). Then lim,_,r xﬁ(") —e

(n)

() It follows at once that if (i(n)),en is a sequence in Z such that lim,,_, » —=

because lim,, , — = 0. But now

lim,,_, 7 x’n( = lim,, ]:xj(") k(n) _ =lim,,_, z%(”). Q

(d) We do therefore have a function ¢ : R — X defined by the given formula. Now ¢(s +t) = ¢(s)q(t)

for all s, t € R. I Take sequences (i(n))nen, (J(1))nen such that s = lim,_, l(n)

t=lim, o Tn) then
s+t =Ilm, o w, SO

i(n)+i(n) _ = lim,,_, r x;(")x%(n) =q(s)q(t). Q

q(s+1t) =lim, ,rxp
(e) Thus ¢ is a homomorphism. Finally, (b) shows that it is continuous at 0, so it must be continuous
(4A5Fa).

*446J Lemma Let X be a locally compact Hausdorff topological group with no small subgroups. Then
there is a neighbourhood V of the identity e such that z = y whenever z, y € V and 22 = 2.

proof Let U be a symmetric compact neighbourhood of e not including any subgroup of X except {e}.
Let (Up)nen be a non-increasing sequence of neighbourhoods of e comprising a base of neighbourhoods of e
(446Gc), and with Uy = U.
? Suppose, if possible, that for each n € N there are distinct z,,, y, € U, such that 22 = y2. Set
=1,
an = %, Ypn; then

-1 _ =2 =1, _ -1
Ty ATy = T YnTp =Y, Ty = G .

Accordingly

rlamx, = (27 anr,)™ = a

—m
n

for every m € N.
Since U includes no non-trivial subgroup, and a, # e, there is a k(n) € N such that af, € U for i < k(n)

and ak(n )+1 ¢ U. Let F be any non-principal ultrafilter on N; then a = lim,_, an(n)
to U. Also, because (2,,)nen and (y,)nen both converge to e, so does {(a,)nen, and

is defined and belongs

a = lim,_, 7 ak(")+ € X \intU;

thus a cannot be e.

—1,k(n) . _  —k(n)
However, z., *an 'xn = an for each n, so

_ . 1k . k(n)y_ _
e lae = lim,,_, r xnlan(n)xn = hmn_,}-(an(")) L=q L

So a =a"! and {e,a} is a non-trivial subgroup of X included in U, which is supposed to be impossible. X
Thus some U, serves for V.

*446K Lemma Let X be a locally compact Hausdorfl topological group with no small subgroups. For
A C X set D, (A) = {x : 2" € A for every i < n}. Then there is a compact symmetric neighbourhood U of
the identity e such that whenever V is a neighbourhood of e there are an ny € N and a neighbourhood W
of e such that whenever n > ng, € D,(U), y € D,,(U) and z"y™ € W, then zy € D, (V).

proof (a) Let Uy be a compact symmetric neighbourhood of e such that (o) U includes no subgroup of X
other than {e} (3) whenever x, y € Uy and 2? = y?, then x = y; such a neighbourhood exists by 446J. Let
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r > 1 be such that D,.,(Up)™ C Uy for every n € N (446H). Let U be a compact symmetric neighbourhood
of e such that U" C Uy. In this case D, (U) C D,.,(Up) for every n, by 446D(b-v). So D, (U)* C U, for

every n.

(b) Fix a left Haar measure g on X. Let f : X — [0, 0o be a continuous function such that [ f(z)dz =1
and f(z) = 0 for z € X \ Up. Set o = sup,¢cx |f(z)|, B8 = [ f(z)*dz, so that « is finite and 3 > 0. For
n > 1, set

1 .
fula) = L0 sup{ f(ya) 1y € DU}
for x € X. Because D,,(U)™ C Uy, we can apply 446E to see that, for each n,
() fo = f,
(ii) fo(z) =0if x ¢ UZ,
(ii1) [ fn(az) = fu(@)| <22 j €N, a € Dy(U) and x € X,

(iv) for any z, z € X, |fu(x) — fn(2)] < SUp, e, |f(yz) = f(y2)|
It follows that
(v) for any € > 0 there is a neighbourhood W of e such that |f,(ax) — f,(bz)| < € whenever
a,b,re X,neNandab~t e W
(4A5Pa again).

(c) Tt will help to have the following fact available. Suppose we are given sequences (Z,)nen, (Yn)neN
such that z,, and y, belong to D, (U) for every n € N and lim,,_, zl'y* = e. Write

T = sup{|fu(yn2) = fo(z,/2)] 1 <n, v € X}
for each n € N. Then lim,, o, 7, = 0. P? Otherwise, there is an > 0 such that J = {n : v, > n} is
infinite. Let W be a neighbourhood of e such that |f,(az) — f,(bx)| < n whenever n € N, z, a, b € X and
ab=! € W ((b-v) above); let W’ be a neighbourhood of e such that ab € W whenever a, b € U and ba € W’
(4A5Ej). Then for each n € J there must be a j(n) < n such that yi (™) 3 (™) ¢ W, while 22 and 3™
both belong to U, so that 27(")7(%) ¢ W’. Let F be a non-principal ultrafilter on N containing J. By 4461,

there are continuous homomorphisms ¢, ¢ from R to X such that ¢(¢) = lim,,_, » ), q(t) = lim, yl(”)

whenever (i(n)),en is a sequence in Z such that lim,,_, » == l(n) =t in R. (Of course z,,! € D, (U) for every
n, by 446D(b-vi).) Setting to = lim,,_,x = ](n) € [0,1],

q(—t0)q(to) = lim,, 7 23yl ¢ int W7,
so q(to) # G(to) and g # ¢. But
a(—=1)q(1) = lim, 7 2jyy, = e,
so ¢(1) = ¢(1). Now if 0 < i(n) < n, then et ¢ D,(U)" C Up; soif 0 <t <1, q(t) € Up. Similarly,
4(t) € Uy whenever t € [0,1]. But recall that Uy was chosen so that if z, y € Uy and 22 = y? then z = y.
In particular, since ¢(3) and G(3) both belong to Uo, and their squares g(1), (1) are equal, ¢(1) = 4(3).

Repeating this argument, we see that ¢(27%) = §(27%) for every k € N, so that ¢(27%i) = G(27%i) for every
k €N, i € Z; since q and ¢ are supposed to be continuous, they must be equal; but ¢(tg) # G(t0). XQ

(d) Now let V' be any neighbourhood of e.

? Suppose, if possible, that for every neighbourhood W of e and ng € N there are n > ng and =,
y € D,(U) such that 2"y™ € W but zy ¢ D, (V). For k € N choose n, € N and Zy, g € Dy, (U) such
that f:kﬂgk S Dk(U) but i’kgk ¢ an (V), and NnE > Nk—1 if k Z 1. Now we know that <Dk(U)>keN is a
non-increasing sequence constituting a base of neighbourhoods of e (446Gb), so limy_,o0 Zp" 72" = e. Set
J ={ny : k € N}. For n = ny, set x,, = &g, yn = Ji; for n € N\ J, set x, =y, = e. Then z,, y,, € D, (U)
for every n € N and (z'y")pen — € as n — oo, while 2,y, ¢ D, (V) for n € J.

We know from (c) that

n = sup{|fu(¥x) = fulan’2)]:j <n, 2 € X} =0
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as n — oo; for future reference, take a sequence (j(n))n>1 such that 1 < j(n) < n for every n > 1,
limy, o0 2 = 0 and limy, o 225 = 0
n i(n)

(e) Let I > 1 be such that D;(U3) C V (446Gb again), and set K = U2'™'. Then D,,;(U3) C D, (V)
for every n (446D(b-vii)). So xpyn ¢ Dn(U3) for n € J. For each n € J choose m(n) < nl such that
(Tnyn)™™ ¢ US; for n € N\ J, set m(n) = 1. Then (2,y,) "™z ¢ UZ for any z € Uy and n € J, and
Fn((@nyn) ™™ z) f(z) = 0 for any 2 € X and n € J. So

‘f(fn((xnyn)_m(”).r) fn(z z)dz| = ffn z)dx > 3

for n € J, because f,, > f ((b-i) above).

(£f) Of course m(n) > 0 for every n € J, therefore for every n. So we can set

() = =T £((2,,) )

m(n)

for x € X and n € N. Note that g,, like f, is non-negative, and also that fgn Ydz = [ f(z)dz = 1. We
need to know that g,(x) = 0 if z ¢ K; this is because (x,y,)" € D, (U)?" C U! for every i § m(n), while
f(z) =0if x ¢ Uy, and Uy is symmetric.

We also have

|gn(az) — gn(z)| < S |f((@ayn)'az) = f((2nyn)'w)]

< sup{| f(waz) — f(wz)| : w € U3}

for every n € Nand a, x € X (cf. 446Ec), so for every > 0 there must be a neighbourhood W of e such that
|gn(az) — g(x)| < n whenever n € N, a € W and « € X, by 4A5Pa once more. Since also g, (azx) = gn(z) =0
ifa € Uy and = ¢ UoflK7 and UOAK has finite measure, we see that for every n > 0 there is a neighbourhood
W of e such that [ |g,(az) — g(z)|dx < n for every a € W, n € N.

(g) Returning to the formula in (e), we see that, for any n € J,

85| [ (alea) ™) = fula)) § (@)
m(n)—1

7‘ Z /fn xnyn -t ) fn((SCnyn)ﬂI))f(ﬂf)dﬂ

m(n

P> / Fa(@nin)™"2) = fa(@)) S (@aya) ') da]

)| / (o (@) ') = fu(@)) gn (x)da
< tn] [ (Faln '"0) = ful@)gn@)ds
< In| / Faly0) = ful@) = fulyn o3 0) + fulay'2)) gn(2)de ]
+in| / 2 (2) = fulw ') = fulyr e)) gn(2)d].

Next,

3(n) (2fa(@) = falzy @) = fulyn o))
=j(n)(fal@) = fulay'w)) - fn( )+ fala,?™a)
+3(n) (fa(@) = faly ') = fal@) + fuly,? )
+2fu(@) = fule,? M) = fuly, M)
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for every x, and finally

[ @1@) = £l P0) = £ O gno)do
— [(a@) — i D) gule)de — [ (ai) = fula)) g2
+ [ ali0) = ful ) g )
— [ i) ~ fu@) )~ [(Fu2) = u(a) g0 (2)da
[ ai0) = fulaw?02) g, o)
— [ ) = @) (003" 5) = g2 (2) o
[ alai™0) = 1772 ()

So if we write

/Bln—lnf( = fu(z) — fn( . _1 )"’fn(x x))gn( )dz,

Ban = <05 [ (10)(a(@) = Fulw7 ') = Fu(@) + ful@a” ) gu (2)da

i(n

Bn = 05 (GO Fnl@) = Fulo ) = fuw) + falya” " 0)) g (),

i(n

Bin = =5 [ (@™ 2) = Fa(@)) (90 (") = gu(a)) d

Bsn = (n ol (Fora2) = fulzn” ™)) gu(@)de
for n > 1, we have

|51n| + |52n‘ + |63n| + |B4n| + |55n| Z B

for every n € J.

(h) Now p1, > 0asn—oco. P

| / (Fulir0) — Ful@) — fuly'0'2) + fulwi12)) gn(z)da]

- / P ) ~ Sa@)gnoe [ (i 70) — a0 on()e
= |/ f” $ - :U) (l’)d.’b*/(fn(y;1$)7fn($))gn(xnx)dm|
| [ (a0 2) = £a(2)) (90 @) — g () ]

/Ign — gn(zpa)|dx

|ﬁ1n‘ < alf |gn(x) - gn(xnx”dx =0

as n — 0o, by (f), since surely (z,)neny — €. Q

by (b-iii). So

(i) Now look at (a,. If we set

103
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v = sup{ [ |gn(az) — g(z)|dx : a € D, (U)7 ™M},

then 7/, — 0 as n — co. I Given € > 0, there is a neighbourhood W of e such that [ |g,(az) — gn(z)|dz <€
whenever n > 1 and a € W, as noted at the end of (f). Let p be such that D,(U) C W Then, for
all n large enough, pj(n) < n, so that D, (U)P(™ C Uy and D,(U)'™ C D,(Uy) € W (446D(b-v)) and
[ gn(ax) — g(x)|dz < € for every a € D, (U)™. Q

We have

/ G00(0)~ o) = ol + ol )
=| Z /fn x,'w) = fol@, @) + ful@, " @) gn () da|
= | Z ) =tz ognterte — [[(atez'e) ~ fulez =) ane)de]
=| Z /fn — fa(z, ) gn (2 )dw—/(fn(x)—fn(xglx))gn(x;x)dx|

- Z / Ful) = Fule ) (90 (2) = gn (i) do

IN
\
§

= fal@, ) l|gn(@) = gn(@,2)ldz < j(n)77),.

So
|Bon| < layl, = 0
as n — oo. Similarly, (B83,)n>1 — 0.
(j) As for B4y, we have

S 1 @A) = fu@)l g0 () = gn()|dw < 227

putting (b-iii) and the definition of 4/, together. So
|B4n| S la’%/z —0
as n — 0o.

(k) We come at last to Bs,. Here, for every n > 1,
[ (a2) = Sl ™)) gula)da] < [ 11, 6000) = ) 0) g (o)
< Vn/gn(x)dz = Tn

by the definition of 7, in (c) above. So

by the choice of the j(n).

(1) Thus B;, — 0 as n — oo for every i. But this is impossible, because 0 < § < Z?Zl |Bin]| for every
neJ X

This contradiction shows that we must be able to find a neighbourhood W of e and an ny € N such that
xy € D, (V) whenever n > ng, z, y € D, (U) and 2"y™ € W; as V is arbitrary, U has the property required.
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*446L Definition Let X be a topological group. A B-sequence in X is a non-increasing sequence
(Vi) nen of closed neighbourhoods of the identity, constituting a base of neighbourhoods of the identity, such
that there is some M such that for every n € N the set V,,V,~! can be covered by at most M left translates
of V,,.

*446M Proposition Let X be a locally compact Hausdorff topological group with no small subgroups.
Then it has a B-sequence.

proof (a) For A C X set D,(A) = {z : 2 € A for every i < n}. We know from 446K that there is a
compact symmetric neighbourhood U of the identity e such that whenever V' is a neighbourhood of e there
are an ng € N and a neighbourhood W of e such that whenever n > ng, © € D,(U), y € D,(U) and
z™y" € W, then axy € D, (V). Shrinking U if necessary, we may suppose that U includes no subgroup of X
other than {e}, so that there is an r > 1 such that D,.,(U)™ C U for every n € N (446H).

Let V be a closed symmetric neighbourhood of e such that V2" C U. Then D, (V)? C D,,(U) for every
neN. P Dy(V) C Dayn(U), by 446D (b-v), so

(Dn(v)2)n g D2rn(U)2n g U,

and D,,(V)? C D,,(U) (446D (b-v) again). Q Take ng € N and a neighbourhood W of e such that whenever
n>mng, z,y € D,(U) and 2"y™ € WIW, then xy € D, (V).

(b) Let M be so large that U can be covered by M left translates of W. Then for any n > ng,
D, (V)D,(V)~! = D, (V)? can be covered by M left translates of D,,(V).

P Let 2o,...,2zm—1 besuch that U C |, zW. Foreach i < M, set A; = {z: 2 € D,(U), 2™ € z,W};
if A; # () choose x; € A;; otherwise, set x; =e.

For any y € D,,(V)?,y € D,,(U), so y™ € U and there is some i < M such that y € A;. In this case ; also
belongs to A4;. Now z;ly” and z;lx? both belong to W, so x; "y" belongs to W ='W, and x;ly € D,(V),
by the choice of W and ng. But this means that y € x;D,, (V). As y is arbitrary, D,,(V)? C Uicar iDn(V)
is covered by M left translates of D, (V). Q

(c) But this means that (Dy4n,(V))nen is a B-sequence in X. (It constitutes a base of neighbourhoods
of e by 446Gb, as usual.)

*446N Proposition Let X be a locally compact Hausdorff topological group with a faithful finite-
dimensional representation. Then it has a B-sequence.

proof (a) Let ¢ : X — GL(r,R) be a faithful finite-dimensional representation. Identifying M, with the
Banach algebra B = B(R";R"), where R" is given the Euclidean norm, we see that GL(r,R) is an open subset
of B (4A6H). Note also that the operator norm || || of B is equivalent to its ‘Euclidean’ norm corresponding to

an identification with R™, that is, writing ||T|| s = /Y27, Y i TH T = (Tij)1<ij<r, || || s is equivalent
to || |I. (See the inequalities in 262H.) In particular, all the balls B(T,0) = {S : ||S — T|| < ¢} are closed
for the Euclidean norm (4A2Lj). If we write uy, for Lebesgue measure on B, identified with RTQ, and set
v = prB(0,1), then 0 < v < oo (because B(0,1) includes, and is included in, non-trivial Euclidean balls)
and i B(T,8) = 6"~ for every T € B and § > 0 (using 263A, or otherwise).

(b) We need to recall a basic inequality concerning inversion in Banach algebras. If T' € B and ||T—1|| < %,
then T is invertible and

1= T-I|

(4A6H), so |71 < 2.

(c) Now let V' be a compact neighbourhood of the identity e of X. Let V4 be a neighbourhood of e such
that (V,V; )~V P C V. For 6 > 0, set Us = {x: x € V, ||p(z) — I|| < §}. Then each Us is a compact
neighbourhood of e, because ¢ is continuous. Also

MssoUs ={z:x eV, ¢(x) =1} = {e}.
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So {Us : § > 0} is a base of neighbourhoods of e (4A2Gd), and there is a §; > 0 such that Us, C Vi; of
course we may suppose that §; < %.

(d) If § < % and = € UsU; ", then |¢(z) — I|| < 46. P Express z as yz~! where y, z € Us. Then
lé(z) = 11| < 3, 0 [l¢(=~")]| < 2 and

le(@) = I = l[(6(y) — ¢(z)e(z" Il < 2ll(y) — B(2)]| < 45. Q

(e) Now if § < dy, U(;U(;1 can be covered by at most m = 17" left translates of Us. P? Suppose, if
possible, otherwise. Then we can choose xq, ... , T, € U(;U(;1 such that z; ¢ x;Us whenever i < j < m. If
1< j <m, then

z; ey € (UsUy Y 7UsUs C (Vv D)ty t C v,
and x; 'a; ¢ Us, so || ¢(z; tz;) — I|| > 6. Set T; = ¢(x;) for each i < m; then
IT: 1) <46 < §
for each 4, by (d), while
0 < |\o(a7 zy) = Il = I Ty — 1)l < T ITy — Till < 21175 - Tl

whenever i < j < m. Write B, = B(Tj, %) for each i; then all the B; are disjoint. But also they are all

included in B(I, 1%), so we have

7“2 7"2
AT+ D)y < (),

which is impossible. XQ
(f) Accordingly, setting W,, = Us—ng,, (Wn)nen is a B-sequence in X.

*4460 Theorem Let X be a locally compact Hausdorff topological group. Then it has an open subgroup
Y which has a compact normal subgroup Z such that Y/Z has no small subgroups.

proof (a) Let U be a compact neighbourhood of the identity e of X. Then there are a subgroup Y of X,
included in U, and a neighbourhood W of e such that every subgroup of X included in W} is also included
in Y().

P (i) To begin with (down to the end of (iii)) let us suppose that X is metrizable. Let (V,)nen be a
non-increasing sequence of closed symmetric neighbourhoods of e running over a base of neighbourhoods of
e, and such that V2 C Vy C U. For each n € N, set A,, = {z : 2* € V,, for every i € N}.

(ii)? Suppose, if possible, that (J,cy Ak € U for every n € N. For each n € N let k(n) € N be such
that Aﬁ(n) c U, Aﬁ(n)ﬂ Z U. Then (A,)nen and U satisfy the conditions of 446F (because A,, C V,
whenever m > n, and {V,, : n € N} is a base of neighbourhoods of e). Let F be a non-principal ultrafilter
on N and set @ = lim,,_, A’Z(”) in the space C of closed subsets of X with the Fell topology.

If W is any neighbourhood of e, there is an n € N such that V,, € W, so that 2 € W whenever
z €U,,>, Am and ¢ € N. Thus (ii) of 446F is not true, and @ must be a closed subgroup of X included in
U and meeting the boundary of U.

By 446C, there are an r € N and a continuous homomorphism ¢ : @ — GL(r,R) such that the kernel
Z of ¢ is included in intV;. Let G € X be an open set including Z and with closure disjoint from
(X \intVi)U{z : z € Q, ||¢p(x) — I|| = £}; such can be found because Z is compact and X is regular
(4A2F (h-ii)). Then Z C G, and any subgroup Z’ of @ included in G has ||¢(z)’ — I|| < % for every z € Z'
and i € N, so that Z' C Z, by 4A6N. Set V = G.

Since V C U and AE™ ! ¢ U for every n, we can find j(n) < k(n) such that A C v oand A3 Vv
for every m. Set Q' = lim,,_, AT As before, (ii) of 446F cannot be true of @', and @’ must be a closed
subgroup of X meeting the boundary of V. Because e € A,,, A%(") - Aﬁ(n) for every n, and Q' C @, because
{(E,F): E C F}is closed in C (4A2T(e-1)); also @ C V, s0 Q' C Z. But Z does not meet the boundary
of V. X
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(iii) So there is some n € N such that A% C U for every k € N. Because A, = Ay, Yo = Uy AL is
a subgroup of X. Any subgroup of X included in V,, is a subset of A,, so is included in Y. Thus we have a
pair Yy, Wy =V, of the kind required, at least when X is metrizable.

(iv) Now suppose that X is o-compact. Let U; be a neighbourhood of e such that U2 C U. Then
there is a closed normal subgroup Xy of X such that Xo C U; and X' = X/X| is metrizable (4A5S). By
(i)-(iii), there are a subgroup Y{ of X', included in the image of U; in X', and a neighbourhood W{ of the
identity in X’ such that any subgroup of X’ included in W{ must also be included in Y. Write 7: X — X’
for the canonical homomorphism and consider Yy = = [Y]], Wy = m~}[W{]. Then Wj is a neighbourhood
of e and Y} is a subgroup of X included in

7T_1[7T[U1]] =U; Xy C U12 cU.

And if Z is any subgroup of X included in Wy, then 7[Z] C W{ so n[Z] C Yy and Z C Y. Thus in this case
also we have the result.

(v) Finally, for the general case, observe that X has a o-compact open subgroup X; (4A5El). So we
can find a subgroup Y; of X, included in U N X3, and a neighbourhood Wy of the identity in X; such that
any subgroup of X7 included in Wy is also included in Y. But of course Yy and Wy also serve for X and U.

This completes the proof of (a). Q

(b) Of course Y is a subgroup of X (4A5Em); being included in U, it is compact. By 446C, there
is a finite-dimensional representation ¢ : Yy — GL(r,R), for some r € N, such that the kernel Z of ¢ is
included in int Wo. Let W; be a neighbourhood of e in X such that ||¢(z) — I|| < & for every z € Wi N Yy,
and set W = W1Z N Wy. Note that if © € W NY}, there is a z € Z such that zz € W; N Yy, so that
¢(z) — I = ||¢(zz) — I|| < 5. Of course Z C int W1 Z, so Z C int W.

If Y/ is a subgroup of Yy included in W, then [[¢(z)" — I|| < § for every i € Nand 2 € Y/, s0 Y’ C Z.
Consequently any subgroup of X included in W is a subgroup of Z, since by the choice of Yy and Wj it is
a subgroup of Yj.

Now let Y be the normalizer of Z in X. Z is compact, so G = {z : 2Zx~1 C int W} is open (4A5Ei),
and contains e; but also G C Y, because if x € G then zZz~! is a subgroup of X included in W, and must
be included in Z. Accordingly Y = GY is open.

Since any subgroup of Y included in W is a subgroup of Z, we see that any subgroup of Y/Z included in
the image of W is the trivial subgroup, and Y/Z has no small subgroups, as required.

*446P Corollary Let X be a locally compact Hausdorff topological group. Then it has a chain (X¢)e<,
of closed subgroups, where  is an infinite cardinal, such that
(i) Xo is open,
(ii) Xey1 is a normal subgroup of X, for every ¢ < k,
(iii) X¢ is compact for £ > 1,
(iv) X¢ = [, <¢ Xy for non-zero limit ordinals { < &,
(v) X¢/Xeq1 has a B-sequence for every £ < k&,
(vi) X,, = {e}, where e is the identity of X.

proof (a) By 4460, X has an open subgroup X, with a compact normal subgroup X; such that X,/X;
has no small subgroups. By 446M, X,/X; has a B-sequence.

(b) Let @ be the set of finite-dimensional representations of X7; if we distinguish the trivial homomor-
phisms from X; to each GL(r,R), ® is infinite. Set k = #(®) and let (¢¢)1<¢<, run over ®. For 1 < ¢ < &,
set

Xe={z:ze Xy, ¢y(x)=1for1 <n<}
Then (X¢)e<, satisfies conditions (i)-(iv). As for (v), I have already checked the case { =0, andif 1 <& < &,
then ¢¢ | X¢ is a finite-dimensional representation of X¢ with kernel X¢ 1, so X¢/X¢ 1 has a faithful finite-

dimensional representation (446Ab), and therefore has a B-sequence (446N).
Finally, X,, = {e} by 446B; if € X; and x # e, there is a ¢ € ® such that ¢(z) # ¢(e), so that x ¢ X,.
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446X Basic exercises (a) Let X be a locally compact Hausdorff abelian topological group. Show that
for every element a of X, other than the identity, there is a two-dimensional representation ¢ of X such that
¢(a) # 1. (Hint: 4450.)

(b) Let (X,,)nen be any sequence of groups with their discrete topologies, and X the product topological
group [, ey Xn. Show that X has a B-sequence. (Hint: set V,, = {z : 2(i) = e(i) for i <n}.)

446Y Further exercises (a) Let X be the countable group of all permutations of N which are products
of an even number of transpositions. Give X its discrete topology, so that it is a locally compact topological
group. Show that any finite-dimensional representation of X is trivial. (Hint: X is simple and has many
commuting involutions.)

(b) Let X be a compact Hausdorff topological group, f € C(X) and € > 0. Show that there are a
finite-dimensional representation ¢ : X — GL(r,R) and a, b € R” such that |f(x) — (¢(z)(a)|b)] < € for
every x € X.

(¢) Let k be an infinite cardinal, and (B, 7,) the measure algebra of the usual measure on {0,1}*. Give
the group Auty, (B,) of measure-preserving automorphisms of B, its topology of pointwise convergence.
Let X be a compact Hausdorff topological group of weight at most «. Show that there is a continuous
injective homomorphism from X to Autg, (%8,).

446 Notes and comments The ideas above are extracted from the structure theory for locally compact
groups, as described in MONTGOMERY & ZIPPIN 55. (A brisker and sometimes neater, but less complete,
exposition can be found in KAPLANSKY 71.) The full theory goes very much deeper into the analysis of
groups with no small subgroups. One of the most important ideas, hidden away in 4461 and part (c) of the
proof of 446K, is that of ‘one-parameter subgroup’; if X is a group with no small subgroups, there are enough
continuous homomorphisms from R to X not only to provide a great deal of information on the topological
group structure of X, but even to set up a differential structure (KAPLANSKY 71, §I1.3). For our purposes
here, however, all we need to know is that groups with no small subgroups have ‘B-sequences’ (446L-446M),
which can form the basis of a theory corresponding to Vitali’s theorem and Lebesgue’s Density Theorem in
R" (447C-447D below).

There are four essential elements in the argument here. Working from the outside, the first step is 4460:
starting from a locally compact Hausdorff group X, we can find an open subgroup X, of X and a compact
normal subgroup X; of Xy such that Xy/X; has no small subgroups. This depends on a subtle argument
based on the first key lemma, the dichotomy in 446F, which in turn uses the ‘smoothing’ construction in
446E and a careful analysis of inequalities involving integrals. (Naturally enough, the translation-invariance
of the Haar integral is a leitmotiv of this investigation.) Note the remarkable transition in 446H. The sets
D,,(U) are defined solely in terms of powers, while the sets D,,(U)™ involve products. We are able to obtain
information about products x; ...z, from information about the powers x; for i, j < n.

Next, we need to find a chain of closed subnormal subgroups of X7, decreasing to {e}, such that the
quotients all have faithful finite-dimensional representations (in this context, this means that they are iso-
morphic to compact subgroups of GL(r,R)). This step depends on the older ideas in 446B-446C, where
we use the theory of compact operators on Hilbert spaces to show that a compact group has many repre-
sentations as actions on finite-dimensional subspaces of its L? space. (Observe that in this section I revert
to real-valued, rather than complex-valued, functions.) This can be thought of as a development of the
result of 4450. If X is a locally compact abelian group, its characters separate its points (cf. 446Xa); if X
is compact but not necessarily abelian, its finite-dimensional representations separate its points. (But if X
is neither compact nor abelian, there are further difficulties; see 446Ya.)

The other two necessary facts are that both groups with no small subgroups, and groups with faithful
finite-dimensional representations, have B-sequences. The latter is reasonably straightforward (446N); any
complications are due entirely to the fact that the natural measure on GL(r,R), inherited from R’”z, is
not quite invariant under multiplication, so we have to manipulate some inequalities. For groups with no
small subgroups (446M) we have much more to do. The proof I give here depends on a second key lemma,
446K, refining the methods of 446F; a slightly stronger version of this result is the basis of the analysis of
one-parameter subgroups in the general theory (compare MONTGOMERY & ZIPPIN 55, §3.8).
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Version of 7.1.10

447 Translation-invariant liftings

I devote a section to the main theorem of IONESCU TULCEA & IONESCU TULCEA 67: a group carrying
Haar measures has a translation-invariant lifting (447J). The argument uses an inductive construction of
the same type as that used in §341 for the ordinary Lifting Theorem. It depends on the structure theory
for locally compact groups described in §446. On the way I describe a Vitali theorem for certain metrizable
groups (447C), with a corresponding density theorem (447D).

447A Liftings and lower densities Let X be a group carrying Haar measures, X its algebra of Haar
measurable sets and 2 its Haar measure algebra (442H, 443A).

(a) Recall that a lifting of 2 is either a Boolean homomorphism 6 : 2 — ¥ such that (fa)* = a for
every a € 2, or a Boolean homomorphism ¢ : ¥ — ¥ such that EA¢FE is Haar negligible for every F € ¥
and ¢F = () whenever E is Haar negligible (341A). Such a lifting 6 or ¢ is left-translation-invariant if
0((zE)*) = z(0E°) or ¢(zE) = z(¢E) for every E € ¥ and = € X. (In the notation of 443C, a lifting
0 : A — ¥ is left-translation-invariant if 6(ze;a) = z0a for every x € X, a € 2.)

The language of 341A demanded a named measure; I spoke there of a lifting for a measure space (X, %, 1)
or a measure 4. But (as noted in 341Lh) what the concept really depends on is a triple (X, 3, 7Z), where X is
an algebra of subsets of X and 7 is an ideal of ¥. Variations in the measure which do not affect the algebra
of measurable sets or the null ideal are irrelevant. So, in the present context, we can speak of a ‘lifting for
Haar measure’ without declaring which Haar measure we are using, nor even whether it is a left or right
Haar measure.

(b) Now suppose that Xy is a o-subalgebra of ¥. In this case, a partial lower density on ¥, is a
function ¢ : ¥y — X such that ¢F = ¢F whenever E, F' € ¥y and EAF is negligible, EAQFE is negligible
for every E € o, o0 = 0 and ¢(E N F) = ¢E N ¢F for all E, F € . (See 341C-341D.) As in (a), such a
function is left-translation-invariant if zF € ¥y and ¢(zE) = 2(¢F) for every z € X and E € %.

447B Lemma Let X be a group carrying Haar measures and Y a subgroup of X. Write ¥y for the
algebra of Haar measurable subsets £/ of X such that EY = E, and suppose that ¢ : ¥y — ¥y is a left-
translation-invariant partial lower density. Then G C ¢(GY’) for every open set G C X.

proof Of course GY is open (4A5Ed), so belongs to Xy . Let a € G and let U be an open neighbourhood
of the identity in X such that U 'Ua C G. Then UaY is a non-empty open set, therefore not negligible
(442Aa), and there is an @ € UaY N¢(UaY). Express = as uay where u € U and y € Y; then ua = zy~! €
Uan¢(UaY), because ¢p(UaY) € Ly. So

a=u"tua e utP(UaY) = ¢p(u"'UaY) C $(GY).
As a is arbitrary, G C Q(GY).
447C Vitali’s theorem Let X be a topological group with a left Haar measure p, and (V,,)nen a B-
sequence in X (definition: 446L). If A C X is any set and K is an infinite subset of N for every z € A,

then there is a disjoint family V of sets such that A\ |JV is negligible and every member of V is of the form
xV,, for some z € A and n € K.

proof (a) There is surely some 7 such that V, is totally bounded for the bilateral uniformity on X (443H);
replacing V; by V, for i < r and K, by K, \ r for each z, we may suppose that V; is totally bounded.

(b) Choose (I,)nen inductively, as follows. Given I; C X for j < n, choose a set I,, C A which is
maximal subject to the conditions

n € K, for every = € I,
zV,, NyV; = 0 whenever z € I,,, j <n and y € I;,

2V, NyV, = 0 whenever z, y € I,, are distinct.
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On completing the induction, set V = {zV,, : n € N, x € I,,}; this is a disjoint family.

(c) ? Suppose, if possible, that A\ |JV is not negligible. By 415B, the subspace measure on A\ |JV is
7-additive and has a non-empty support. Take any a belonging to this support and set G = int(aV}); then
G is totally bounded and § = p*(GNA\JV) is non-zero. Let M be such that every V,,V,~! can be covered
by M left translates of V;,, so that u(V, V1) < MpuV,, for every n. Set

Jo=1,NGVy', E,=J,V,, E,=EV!

for each n.
If neNand z € J,, then 2V,, C GVO_lVO. Accordingly (because (xV,,).c, is disjoint)

#(Jn)uVy = Za:e‘]n w@Vy) < /‘(GVOilVO) <o
because G‘/}fl% is totally bounded (4A50b). So J,, is finite and E,, is closed. Note that if € I,, and
GNaV, # 0, then z € GV, C GV({1 and x € Jy; s0 GNUJYV = GNU,eyEn. Also, (Ep)nen is a
disjoint sequence of subsets of GVOAVO; accordingly > ° puF, is finite, and there is an m € N such that
MY > uE, <é.

Observe next that, for any z € X and n € N,

w(@Va V) = p(Vo Vi t) < MpVi, = Mu(aVi,).

So
/’LE~n S ZajEJ” /j/('rvnvn_l) S MZ[L’E,]” /’(‘("L‘VTL) = M/’(‘En

for each n, and #(Unzm)En < 0.
This means that |J E,, cannot include AN G\ UV, and there is a z belonging to

n>m
Anc\(Jvu |J En)=4anc\(|J E.u | En)
n>m neN n>m
=AnG\(|J E.u | En).
n<m n>m

Now there must be a first & > m such that k € K, and 2V € G\ U, .,, En. (This is where we use the
hypothesis that {V;, : n € N} is a base of neighbourhoods of the identity.) Since z € G\ Ji, z ¢ Ii, and
there are j < k, x € I; such that zVj, NzV; # 0. In this case, z € GV(fl, so x € Jj. Accordingly

z € mVijfl C ijijl C Ej
and j < m; but this means that 2V; NaV; C 2V, N E; must be empty, which is impossible. X
(d) Thus u(A\UV) =0, and V is an appropriate family.

447D Theorem Let X be a topological group with a left Haar measure u, and (V},),en a B-sequence
in X. Then for any Haar measurable set £ C X,

.opENZV,)
T, XE

for almost every =z € X.

proof (a) Let a < 1, and set

E n
A={z:z€E, liminfM <
n—00 uwVy

at.

? Suppose, if possible, that A is not negligible. Then there is an open set G of finite measure such that
w(GNA)=+v>0. Let § > 0 be such that v > a(y + J) + . Take a Borel set F' which is a measurable
envelope of G N A and a closed set Fy C G\ F such that uFy > u(G\ F) — 6. Writing H = G \ F1, we see
that HNA=GN A and

pH < p*(HNA)+6=v+06.
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For each x € HN A, set
K, ={n:2V, CH, p(ENzV,) < auV,}.

Then K, is infinite. By Vitali’s theorem in the form 447C, there is a disjoint family V C {zV,, : x €
HNA, ne K,} such that (HNA)\JV is negligible. Since every member of V has non-zero measure, while
wH is finite, V is countable. Now p(|JV) > p*(H N A), so u(H \ |JV) < §; also, because u(ENV) < auV
for every V € V, and V is disjoint,

wENUY) <apUV) < oapdd
and
Yy=p(ANH)<W(ENH) < w(ENUV)+6 <auH +6 < aly+0) +4,
which is impossible, by the choice of §. X
(b) As « is arbitrary,

lim inf AEO0TVR)
n—00 an
for almost every z € E. Similarly,
E E
liminfM =1, limsup (ENoVn) 0
for almost every z € X \ E, so
opENZV,)
A =y = XE@)

for almost every = € X.

447TE We need to recall some results from 443P-443R. Let X be a locally compact Hausdorff topological
group, and Y a closed subgroup of X such that the modular function of Y is the restriction to Y of the
modular function of X. Let u be a left Haar measure on X and py a left Haar measure on Y.

(a) Writing Cy(X) for the space of continuous real-valued functions on X with compact support, and
X/Y for the set of left cosets of YV’ in X with the quotient topology, we have a linear operator T : C(X) —
Cr(X/Y) defined by writing (Tf)(z*) = [, f(zy)py (dy) whenever z € X and f € Cy(X) (443P); moreover,

T[Cr(X)T] = Cx(X/Y)T (443Pa), and we have an invariant Radon measure A on X/Y such that [T fd\ =
J fdp for every f € Ci(X) (see part (b) of the proof of 443R). Turning this structure round, we see from
443Qb that p, uy and A here are related in exactly the same way as p, v and A in 443Q. If Y is a normal
subgroup of X, so that X/Y is the quotient group, X is a left Haar measure. If Y is compact and py is the
Haar probability measure on Y, then ) is the image measure pum 1, where 7(z) = 2* = zY for every z € X
(443Qd).

(b) If EC X and EY =Y, then E is Haar measurable iff E = {z* : z € E} belongs to the domain of \,
and F is Haar negligible iff E is A-negligible (443Qc).

(c) Now suppose that X is o-compact. Then for any Haar measurable E C X, uE = [ gdX in [0, 0],
where g(z*) = py (Y N2z 71E) is defined for almost every x € X (443Qe). In particular, E is Haar negligible
iff uy (Y Naz~1E) =0 for almost every z € X.

(d) Again suppose that X is o- compact Then we can extend the operator T of part (a) to an operator
from £'(u) to LY(N) by writing (T'f)(z*) = [ f(zy)uy (dy) whenever f € L£'(n), € X and the integral
is defined, and [Tfd\ = [ fdu for every f e LY (u) (443Qe). If f € LY(u), and we set f.(y) = f(zy)
for all those # € X, y € Y for which zy € dom f, then Q = {z : f, € L'(uy)} is p-conegligible, and
x> f2:Q — LY(py) is almost continuous (443Qf).
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(e) If X is o-compact, Y is compact and py is the Haar probability measure on Y, so that A is the image
measure pm ', then we can apply 235G to the formula in (d) to see that

JJ fay)uy (dy)u(dz) = [(Tf)(*)p(dr) = [TfdA= [ fdp

for every p-integrable function f, and therefore (because y is o-finite) for every function f such that [ fdu
is defined in [—o0, c0]. In particular, uE = [v(Y Na~'E)u(dz) for every Haar measurable set E C X.

447F Lemma Let X be a o-compact locally compact Hausdorff topological group and Y a closed
subgroup of X such that the modular function of Y is the restriction to Y of the modular function of X.
Let Z be a compact normal subgroup of Y such that the quotient group Y/Z has a B-sequence. Let Xy
be the o-algebra of those Haar measurable subsets E of X such that EY = E, and X the algebra of Haar
measurable sets E C X such that £EZ = E. Let ¢ : 3y — Xy be a left-translation-invariant partial lower
density. Then there is a left-translation-invariant partial lower density P : ¥z — Xz extending ¢.

proof (a) Let u be a left Haar measure on X, uy a left Haar measure on Y and pz the Haar probability
measure on Z; then there 1s a left Haar measure v on Y/Z such that [ g(y)py (dy) = [(T'g)(u)v(du) for every
g € Cp(Y), where (Tg)(y*) = [ 9(yz)pz(dz) for every y € Y (447Ea). We are supposing that Y/Z has a
B-sequence (V) nen. It follows that there is a sequence (hy,)nen in Cy(Y)T such that (i) [ hy(y)py (dy) =1
for every n (ii) whenever F' C Y is Haar measurable (regarded as a subset of Y, that 15) and FZ Z, then

limy o0 [ XF(by)hn(y)py (dy) = xF(b)
for py-almost every b € Y.

P Since any subsequence of (V,,),en is a B-sequence, and Y/Z is locally compact, we may suppose that
every V,, is compact. For each n € N, choose a non-negative h], € C(Y/Z) such that

1
/ _ !/ —_n
fhndz/fl, f\hn——y nxvn|d1/<2 .

(This is possible by 4161, or otherwise.) Let h,, € Ci(Y)" be such that Th, = h!, (447Ea again); then
[ hndpy = [hi,dv = 1. Now if F C Y is Haar measurable and FZ = Z, there is a Haar measurable

F CY/Z such that F = {y: y* € F} (447Eb). Take b € Y and n € N. Because

[ xF(by2)hn(y2)pz(dz) = [ XEO )b (yz)pz(dz) = xF(by* )b, (y*)
for every y € Y,

/ XE (0 (3) oy (dy) = / / XE(by2)hn (y2) a2 (d2) oy (dy)
(447Ee)

= [ By () = [ F (o, (wp(an)
because y — y* is inverse-measure-preserving for uy and v (447Ee). So

IXF(b) — / XE (b () ()| = [ E(0*) — / XE (b u) b, (w)w(du)|

< W) ~ 4 [ xFE iy (do)

1

+ [0 0) = A=xVa (v

v(ENb*V,) _

< [P () - 0

Since

{v:veY/Z lim, I/VT” # xF(v)}
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is v-negligible (447D), its inverse image in Y is uy-negligible, so xF'(b) = im0 [ XF (by)hn (y)py (dy) for
almost every b, as claimed. Q

(b) We find now that if E € ¥z, then lim,,, [ xE(zy)hn(y)py (dy) = xE(x) for p-almost every z € X.
P Set B, = YNz~ 'E for z € X. Because X is o-compact, we can express F as the union of a non-decreasing
sequence (F(k')>keN where each F(*) is Haar measurable and relatively compact; set F;gk) =Y Nna tF® for
each z. In this case, for any k € N, Q) = {z : M e dom(py)} is conegligible, and z — (XF,é’“))' CQ —
L'(uy) is almost continuous (447Ed), so that x + foa(;k)(y)hn(y)uy(dy) : Qr — [0, 1] is measurable, for
each n. But this means that, setting @ = [,y @

v [ XBa(y)ha(y)y (dy) = limeoo [ XEL @)ha(y)py (dy) : Q = [0,1]

is measurable, for every n € N. Note that if x € X and y € Y then Fé’;) = yilFék), so that QY = Qy for
every k € N, and QY = Q.

Now consider @ = {z : € Q, lim,_,o0 [ XE(zy)hn(y)py (dy) = xE(z)}. This is a Haar measurable
subset of X. If a € @, then

YNa'Q={y:yecY, limy, o xE(ays)h,(s)py (ds) = xE(ay)}

is py-conegligible, by the choice of the h, in (a) above. Because Q is p-conegligible, @\ Q is p-negligible
(447Ec) and @ is conegligible, as required. Q

(c) We are now ready for the formulae at the centre of this proof. For any Haar measurable set E C X,
n € Nand v < 1, set

tny(E) = J{GN¢F : G C X is open, F € Sy,

/XE(xy)hn(y),uy (dy) is defined and at least «y for every z € GN F},

%E = m’y<1 UneN nmzn wm’Y(E)'

The rest of the proof is devoted to checking that ¢ [X7 is a left-translation-invariant partial lower density
extending ¢.

(d) I had better make one remark straight away. If G C X is open, then G C ¢(GY') (447B). It
follows that if G C X is open, F € Xy and G N ¢F # 0, then GNF # 0. P If a € G N @F, then
a € d(GY)NPF = p(GY NF), s0o GY NF # 0, that is, GNF = GNFY ! is non-empty. Q I mention this
now because we need to know that the condition

f XE (zy)h, (y)py (dy) is defined and at least v for every x € GNF

in the definition of 1, (E) is never vacuously satisfied if G N ¢F # (). In particular, 1, () = ) whenever
n € Nand 0 <y <1, so that () = .

(e) If E C X is Haar measurable, n € N and € > 0, then for almost every a € X there are an open
set G C X and an F € Xy such that a € G N ¢F and [|xE(zy) — xE(ay)|hy(y)py (dy) < € whenever

z € GNF. P Let A be the invariant Radon measure on X /Y derived from p and py as in 447Ea. Take
d > 0 such that (1 + 2||h,|lec) < €. Because X is o-compact, locally compact and Hausdorff, therefore
Lindelof and regular (4A2Hd, 3A3Bb), there is a sequence (f,)reny of continuous functions from X to
[0,1] such that [|xE(z) — fr(z)|pu(dz) < 277 for every r (415Pb). Set g, = |xE — f,| for each r. For
f € LY (), define Tf € L'(\) by writing (Tf)(z*) = [ f(zy)uy (dy) whenever this is defined (447Ed); we
have [Tfd\ = [ fdp.

Set Q = {x:Y Nz 'E € dom puy}, so that Q € Xy is conegligible (447Ec). For each r, set F, = {u: u €
X/Y, Tg,(u) is defined and at least §}; then

VP ;1 .
My <5 [ Tgrdh =5 [ grdp < 277/8.
So N,en F, is A-negligible. Set
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Fo={z:zeX, z* e F}={z:Tg.(z*) >0}
— / gr(@y)y (dy) > 6} = {x - / XE(@y) — fo(xy) |y (dy) > 6)

for each r; then F.Y = F,., F, is Haar measurable (447Eb) and (1, oy F is p-negligible (also by 447Eb).
Since (X \ F)A¢(X \ F}) is negligible for each r, Q1 = Q N,y @(X \ F) \ F is conegligible. Note that
Q1Y = Q1.
Suppose that a € Q1. Then there is an r € N such that
ac Ql QQ(X\FT)\FT = (Ql \Fr)m?(Ql \Fr)

Set F'= Q1 \F, € Ey. Consider the function z — [ f,(zy)h,(y)py (dy). We chose h,, with compact support
L CY say. If V is a compact neighbourhood of @ in X, then f,. is uniformly continuous on V' L for the right
uniformity on X (4A5Ha, 4A2Jf). There is therefore an open neighbourhood U of the identity of X such
that |f.(z') — f-(x)| < § whenever z, 2’ € VL and 2'z~! € U; of course we may suppose that G = Ua is a
subset of V.

Take any x € G N F. Then if y € L, we have ay, xy both in VL, while zy(ay)™! € U, so that
Fr(xy) — Frlay)| < 8. Accordingly |fo(zy) — fr(ay)ln(y) < Ohu(y) for every y € ¥, and

S 1fr(ay) = fr(2y) | hn(y) py (dy) < 6.
At the same time, because both = and a belong to F'= Q1 \ Fr,

[ IxE(ay) — fr(ay)|hn(y)py (dy) < 8]l o,

[ IxE(zy) — fr(@y)|hn(y)y (dy) < 6]|haco-
Putting these together,

[ IxE(ay) — xE(zy)|ha () iy (dy) < 5(1+ 2] hnlloe) < e

Thus G and F witness that a has the property required; as a is any member of the conegligible set @1, we
have the result. Q

(f) If E € ¥z then EAYE is negligible. P By (e), applied in turn to every n and every € of the form
27% there is a conegligible set Q; C X such that whenever a € Q1, n € N and € > 0 there are an open
set G containing a and an F € Yy such that a € ¢F and [ |xE(zy) — xE(ay)|hn(y)py (dy) < € for every
z € GNF. By (b), there is a conegligible set Q2 C X such that lim,, oo [ XE(ay)hn,(y)py (dy) = xE(a) for
every a € Qs.

Suppose that ¢ € Q1 NQ2 N E. Let v < 1; set € = %(1 — 7). Because a € @2, there is an n € N such that
J XE(ay)hm (y)py (dy) > 1 — € for every m > n. Take any m > n. Because a € @1, there are an open set G
and an F' € Yy such that « € GN¢F and [ |[xE(ay) — XE(xy)|hm(y)py (dy) < € whenever z € GN F. But
now

[ XE@y)hn (y)py (dy) > 1 — 26 =y
for every x € GNF, s0 a € Y,y (E). This is true for every m > n; as « is arbitrary, a € YE. As a is
arbitrary, Q1 N Q2N E C Y E.

Now suppose that a € él N Q2 NYE. Then there is an n € N such that a € v, 3/4(E) for every m > n.
There is an m > n such that | [ xE(ay)hm(y)uy (dy) — xE(a)| < §. There are an open set Gy and an
Fy € ¥y such that a € G1 N ¢F and | XE(xy)hp (y)py (dy) > % for every x € G; N Fy. There are also an
open set Gy and an Fy € Sy such that a € G2 N ¢F, and [ |xE(ay) — XE(xy)|hm (y)py (dy) < § for every
x € GaNFy. Set G =Gy NGy, F=F NFy then a € GN¢F, so GNF is not empty ((d) above). Take
z € GNF. Then N

S XE@y)han )iy (dy) > 5,

[ IxE(ay) — xE(zy)|hm (y)py (dy) < }1
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| XE(ay)hm (y)py (dy) — xE(a)| < 1,

so xE(a) > i and a € E. This shows that Q1 N Q2 NYECE.
Accordingly EAYE C X \ (Q1 N Q2) is negligible, as required. Q
In particular, ¥ £ is Haar measurable for every F € Y.

(g) If E € Xy then vE € ¥z. P We have just seen that ¢ F is Haar measurable. Take z € Z, n € N,
v < 1land a € lﬁn,y(EY Then there are an open G C X and an F € Yy such that a € G N ¢F and
J XE(zy)hn(y)py (dy) >~ for every x € GN F. Because F and ¢F belong to Yy, az € ¢F. Of course Gz
is an open set containing az. If z € Gz N F, then zz~! € GNF and [ xE(zz"'y)h,(y)puy (dy) > ~. But

xE(zz"ly) = xE(zy -y~ '27ly) = xE(zy)
for every y € Y, because Z <Y (so 2/ = y~'27ly € Z) and we are supposing that E € ¥z (so zyz’ € E iff

xy € E). So
[ XE(@y)hn(y)py (dy) = [ xE(@z"y)hn (y)py (dy) > 7.

As x is arbitrary, Gz and F witness that az € ¢, F

This shows that, for any n and v, az € 1, (E) whenever a € ¥, (F) and z € Z. It follows at once that
az € YE whenever a € Y and z € Z, as claimed. Q

(h) For any Haar measurable E C X and ¢ € X, ¢(cE) = c¢yE. P Suppose that n € N, v < 1
and a € ¥py(E). Then there are an open set G C X and an F € ¥y such that « € G N ¢F and
[ xE(xy)hn(y)puy (dy) > v for every z € GN F. Now ¢G is an open set containing ca, cF € Xy and
¢(cF') = coF contains ca, and if z € ¢G N cF' we have

[ X (E)(xy)hn(zy)py (dy) = [ XE(c ay)hn(xy)py (dy) > v

because ¢ 'z € G N F. But this means that ¢G, cF witness that ca € 1,,(cE). Since a is arbitrary,
cUny(E) C tpy(cE); as n and « are arbitrary, ey E C 1(cE). Similarly, of course, ¢™'¢(cE) C ¢E, so in
fact 1 (cE) = ciE, as claimed. Q

(i) If Ey, E; C X are Haar measurable and F; \ Fs is p-negligible, ¥ E; C ¢ Ey. P Take n € N,
v < 1 and a € ¥, (E1). Then there are an open set G C X and an F € Yy such that a € G N ¢F and
J XEr(zy)hn(y)py (dy) > v for every 2 € GN F. Let Q be the set of those 2 € X such that py measures
YNz~ (E;\ E2) and [ x(E1\ E2)(zy)py (dy) = 0; then QY = Q is conegligible (447Ec). Now QN F € Xy,
and ¢(Q N F) = ¢F contains a. But if € GNQNF, xE(xy) < xEa(xy) for py-almost every y. So

[ XE2(zy)h )y (dy) > [ xE1(zy)ha (y)py (dy) > 7.
Thus G and QN F witness that a € ¥, (E2). As a is arbitrary, ¥, (E1) C ¥, (E2); as n and ~y are arbitrary,

YE, CYE,. Q
In particular, (i) Y £ = ¢ Es whenever E1AEs is negligible (ii) Y £y C ¢ E, whenever Ey C Es.

(j) If El, E2 Q X are Haar Ineasurable, %(El N EQ) = %El Q%EQ | id By (1), Q(El N EQ) g %El ﬂ%EQ
So take a € YE; NYE,. Let v < 1. Set 0 = %(14—7) < 1. Then there are ny, ns € N such that a € ,,s(E1)
for every m > ny and a € ,,s(Fs) for every m > ny. Set n = max(ny,ns) and take any m > n. Then there
are open sets G1, G2 C X and Fy, Fy € Yy such that a € G1NG2NOFL N oFs, [ XE1(xy)hm (y)py (dy) > 0
for every x € G1NF; and fng (zy)hm (y) oy (dy) > § for every © € GoNFy. Let Q € Xy be the conegligible
set of those x € X such that [ x(E1 N Es)(zy)py (dy) is defined. Set G = G1 NGy, F = F; N F> N Q; then
G is open, F' € Yy and

PF = Q(Fl NFy) = PF1 N @Fy,

so that a € G N @F. Now take any z € G N F. We have
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/ (1= X(Ex 0 E)) (@y)hon )iy (d)

< / (1= XE: () o (9)1(dly) + / (1 — XEa () hom (3)1(dy)
<2(1-0)=1-7,

and [ x(E1 N E2)(xy)hy (y)py (dy) > 7, because [ hy, (y)py (dy) = 1.
As x is arbitrary, G and F' witness that a € ¢,,,(E1 N Ey). And this is true for every m > n. As v is
arbitrary, a € ¢(Ey N Ey). As a is arbitrary, Y E1 N ¢ Ey C ¢ (E1 N Ey) and the two are equal. Q

(k) If E € Xy, YE = ¢E. P (i) Suppose a € ¢, n € Nand vy < 1. Set FF = EN¢E € Xy, G = X.
Then G N ¢F = ¢(EN L) = ¢F contains a. Take any x € F'. Then

[ XE(@y)hn(y)py (dy) = [ hn(y)py (dy) = 1;

as x is arbitrary, a € ¥, (E). As n and v are arbitrary, a € ¥ E; as a is arbitrary, ¢E C ¢ E. (ii) Suppose
a € YE. Then there must be some open G C X and F € Yy and n € N such that « € G N ¢F and
I XE(zy)hn(y)py (dy) > 0 for every x € G N F. This surely implies that GNF C EY = E, so that
GYNFCE. ButaeGC¢(GY), by 447B, so

a € $(GY)NF = $(GY NF) C ¢E

This shows that Yy £ C oF. Q

(1) Thus we have assembled all the facts required to establish that ¢[¥z is a left-translation-invariant
partial lower density extending ¢.

447G Lemma Let X be a o-compact locally compact Hausdorff topological group, and (Y, ),en a non-
increasing sequence of compact subgroups of X with intersection Y. Let ¥ be the algebra of Haar measurable
subsets of X; set ¥y, = {E: E € ¥, EY,, = E} for each n, and ¥y = {E : E € ¥, EY = E}. Suppose
that for each n € N we are given a left-translation-invariant partial lower density ¢,, : £y, — Xy, , and that
bni1 extends ¢, for every n. Then there is a left-translation-invariant partial lower density ¢ : Xy — Xy
extending every ¢,,. B

proof (a) Fix a left Haar measure p on X, and for each n € N let v, be the Haar probability measure on
Y, (442Ie). As noted in 443Sb, the modular function of X must be equal to 1, and equal to the modular
function of Y,,, everywhere in every Y,,.

(b) We need to know that for any E' € ¥y there is an F in the o-algebra A generated by |J, oy Xy,
such that EAF is negligible. I Because X is o-compact and p is a Radon measure (442Ac), there is a
sequence (K;);en of compact sets such that K; C E for every i and E \ | J;oy K is negligible. For each
i €N, ey KiYn = KiY (4A5Eh), so is included in E. Set F' = (J;cn (N, en KiYn; then F' belongs to the

o-algebra generated by |,y Yy, , and K; C F C E for every 4, so EAF is negligible. Q

(c) For each E € Xy, n € N set
gEn(x) = vp (Y, N2~ E) whenever this is defined.

By 447Ee, gg, is defined p-almost everywhere and is ¥-measurable. In fact gg, is Xy, -measurable, because
9en(ty) = gpn(x) whenever z € X, y € Y,, and either is defined. If F € 3y, then gp,(z)xF(x) =
Vn(Y, Nz7H(E N F)) whenever this is defined, which is almost everywhere; so [ gendp = p(E N F), by
447Ee. If E, E' € ¥y and EAE' is negligible, then gg, =ae. gun, because gpap , = 0 a.e.

It follows that (ggn)nen — XF p-a.e. for every E € ¥y. P Let G C X be any non-empty relatively
compact open set, and set U = GYjp, so that U also is a non-empty relatively compact open set, UY,, = U

for every n and UY = U. Set uy(F) = #— whenever F' € ¥ and F' C U, so that uy is a probability measure

on U.
Writing Z(U) E(U) and AY) for the subspace o-algebras on U generated by Yy, , ¥y and A, we see that

it €2y then
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Jp 98ndu = 55 [ gEadp = pu(ENF).

So ggn U is a conditional expectation of x(ENU) on Zg). By Lévy’s martingale theorem (275I), (ggn)nen
converges almost everywhere in U to a conditional expectation g of x(E N U) on AY) because of course
AW is the o-algebra of subsets of U generated by Unen Zg). But as there is an F' € A such that EAF is
negligible, by (b) above, g must be equal to xE almost everywhere in U.

Thus gg, — xFE almost everywhere in U and therefore almost everywhere in G. As G is arbitrary,
gen — XE almost everywhere in X, by 412Jb (applied to the family I of subsets of relatively compact open

sets). Q
(d) Now we can use the method of 341G, as follows. For E € ¥y, k > 1 and n € N set
Hy(E) = {x : 2 € dom(ggn), gen(z) >1-27F1 € By, |

ﬁkn(E) = ?n(Hkn(E))» ?E = ﬂk21 UneN ann I:IkM(E)'
By the arguments of parts (e)-(i) of the proof of 341G, ¢ is a lower density on ¥y extending every ¢,,.

(e) To see that ¢ is left-translation-invariant, we may argue as follows. Let £ € Xy and a € X. Then,
for any n,

Gab.n () = v, (Yo Nz~ laE) = gpn(a™'x)

for almost every z, so aHy, (E)AHy,(aF) is negligible, and

f{;m(aE) = Qn(Hkn(aE)) = én(aHkn(E)) = a?n(Hlm(E)) = aﬁkn(E)v
for every k. Accordingly

Q(GE) = ﬂkzl UnEN mmzn I:[k"L(aE) = a(nk21 UnEN ann j:{km(E)) = QQ(E)’

as required.

447H Lemma Let X be a locally compact Hausdorff topological group, and ¥ the algebra of Haar
measurable sets in X. Then there is a left-translation-invariant lower density ¢ : ¥ — 3.

proof (a) To begin with (down to the end of (c) below) let us suppose that X is o-compact. By 446P, there
is a family (X¢)e<, of closed subgroups of X, where x is an infinite cardinal, such that

X is an open subgroup of X,

for every £ < x, X¢11 is a normal subgroup of X, and X¢/X¢11 has a B-sequence,

for every non-zero limit ordinal { < k, X¢ = ﬂn<£ X,

X, is compact,

X, = {e}, where e is the identity of X.
Note that for every ¢ < k, the modular function A¢ of X, is just the restriction to X¢ of the modular
function A of X. P For { = 0 this is because X is an open subgroup of X (443Sd). For £ > 1, X¢ is
compact, so Ag and A[ X, are both constant with value 1, as noted in 443Sb. Q

(b) For each ¢ < k, write X¢ for the o-algebra {E : E € ¥, EX, = E}. I seek to choose inductively
a family (¢¢)e<, such that each ¢¢ : X¢ — X¢ is a left-translation-invariant partial lower density, and ¢¢
extends ¢, whenever n <¢.

(i) Start Since X, is an open subgroup of X, every member of Xy is open, and we can start the
induction by setting ¢go ' = E for every E € ¥o.

(ii) Inductive step to a successor ordinal If we have defined (¢,),<¢, where £ < K, then X¢ 1 < X is
compact and X¢ /X1 has a B-sequence. So the conditions of 447F are satisfied and ¢¢ has an extension to
a left-translation-invariant partial lower density ¢ei1 : Xep1 — Leq1. Of course ¢§+?extends ¢n, for every
1 < & because ¢¢ does. B B B

(iii) Inductive step to a limit ordinal of countable cofinality If we have defined (¢,),<¢, where £ < & is
a non-zero limit ordinal of countable cofinality, let (£,,)nen be a strictly increasing sequence with supremum
§; we may suppose that {y > 1, so that every X¢ is compact. Then X¢ = (), oy Xe,, so by 447G there is
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a left-translation-invariant partial lower density ¢ : ¥¢ — ¥¢ extending every ¢, , and therefore extending
¢y, whenever n < &.

(iv) Inductive step to a limit ordinal of uncountable cofinality Suppose we have defined (¢,)),<¢, where

¢ <k is a limit ordinal of uncountable cofinality. Then for every E € X¢ there are an n < & and an F € X
such that EAF is negligible. B (Cf. part (b) of the proof of 447G.) Because X is o-compact, there are
non-decreasing sequences (K;)ien, (Li)ien of compact subsets of E, X \ E respectively such that E\{J;c; K;
and (X \ E)\ U,cy Li are negligible. For each i € N, K; XN L; C EX¢ \ E is empty; by 4A5Eh again, there
is an 7; < & such that K;X,, N L; is empty. Set n = sup;ey 7, F = J;cn KiXy; this works. Q

Accordingly we have a function ¢¢ : 3¢ — 3¢ defined by writing ¢¢(E) = ¢, (F) whenever E € X¢, n < &,
F €%, and EAF is negligible. P If <7/ <€ and F € ¥,, F' € %, are such that EAF and EAF' are
both negligible, then FAF’ is negligible so ¢, (F) = ¢, (F) = ¢y (F'). Q It is easy to check that ¢¢ is a
left-translation-invariant partial lower density (cf. part (A-d) of the proof of 341H), and of course it extends
¢ for every n < &.

(c) On completing the induction, we see that X,, = X, so that ¢, : ¥ — 3 is a left-translation-invariant
lower density. B

(d) For the general case, recall that X certainly has an open o-compact subgroup Y say (4A5El). If ¥
is the algebra of Haar measurable subsets of X, and T is the algebra of Haar measurable subsets of Y, then
Tisjust ENPY ={ENY : E € ¥}, and the Haar negligible subsets of Y are just sets of the form ENY
where F is a Haar negligible subset of X (443F).

Let ¢ : T — T be a left-translation-invariant lower density. For F € ¥ set

oE={z:zeX,ecy(YNnz'E)},
where e is the identity of X. It is easy to check that
oh =10,

¢F = ¢F if EAF is negligible,

QENF)=¢EN¢F forall £, F € X,
directly from the corresponding properties of . If E' € ¥ and a € X, then
r€PE < eccp(YNa'E) < eec (Y N(azx) 'aE) < azx € ¢(aFE),

so p(aE) = apE.
I have not yet checked that EA@FE is always negligible. But if E' € X, then

ENQE ={z:ecy(Y Nz 'E)A(Y Nz~ 'E)},

SO

(EAYE)NY ={z:z€Y, ez (ENY))IA(ENY)
={z:zeY, eca WENY)IA(ENY)=¢(ENY)A(ENY)
is negligible. Moreover, for any a € X,
(EAQE)NaY =a((a ' EAP(a™E))NY)

because ¢ is translation-invariant, so (EA¢E) N aY is negligible. Since {aY : a € X} is an open cover of
X, EAQE is negligible (412Jb again). In particular, ¢FE € ¥. So ¢ : ¥ — ¥ is a left-translation-invariant
lower density, as required.

4471 Theorem (IoNEscu TULCEA & IONESCU TULCEA 67) Let X be a locally compact Hausdorff
topological group. Then it has a left-translation-invariant lifting for its Haar measures.

proof (Cf. 345B-345C.) Write ¥ for the algebra of Haar measurable subsets of X, and let ¢ : ¥ — ¥ be a
left-translation-invariant lower density (447H). Let ¢g : ¥ — ¥ be any lifting such that ¢oFE 2 ¢FE for every
E € ¥ (341Jb). For E € %, set
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OE ={x:e € ¢po(x™1E)},
where e is the identity of X. It is easy to check that ¢ : ¥ — PX is a Boolean homomorphism. Also
r€PE = e€ ¢(x 'E) = e € ¢po(z7'E) = x € ¢E.

So ¢ is a lifting (341Ib). Finally, ¢ is left-translation-invariant by the argument used in (d) of the proof of
447H (and also in (e) of the proof of 345B).

447J Corollary Let X be any topological group carrying Haar measures. Then it has a left-translation-
invariant lifting for its left Haar measures.

proof Let u be a left Haar measure on X. By 443L, we have a locally compact Hausdorff topological group
Z and a continuous homomorphism f : X — Z, inverse-measure-preserving for p and an appropriate left
Haar measure v on Z, such that for every E in the domain X of p there is an F' in the domain T of v
such that f~1[F] C E and E\ f~![F] is negligible. Let ¢ be a left-translation-invariant lifting for v. Since
F* — f~1[F]* is an isomorphism between the measure algebras of u and v, we have a lifting ¢ : ¥ — X
given by saying that ¢FE = f~1[¢)F] whenever F € T and EAf~1[F] is negligible (346D). Now ¢ is left-
translation-invariant because f is a group homomorphism and 1 is left-translation-invariant.

447X Basic exercises >(a) Let X = R x {—1,1}, with its usual topology, and define a multiplication
on X by setting (z,0)(y,€) = (x + dy, de). Show that X is a locally compact topological group. Show that
there is no lifting for the Haar measure algebra of X which is both left- and right-translation-invariant.
(Hint: 345Xc.)

(b) Let X be a topological group carrying Haar measures which has a B-sequence. Show that it has a
B-sequence (V;,)nen such that sup,,cy #(VaV,, 1) /uV;, is finite for any Haar measure p on X, whether left
or right.

(c) Let X be a topological group with a left Haar measure u, and (V;,),en a B-sequence for X. Show
that if f € £9(u) is locally integrable, then f(z) = lim, oo #LV fo fdu for almost every z.

447Y Further exercises (a) Describe a compact Hausdorff topological group such that its Haar measure
has no lifting which is both left- and right-translation-invariant.

(b) Let (X, X, 1) be a measure space, with measure algebra 2(, and 6 : 2 — X a lower density. Show that
we have a function ¢ : L (20)" — L>°(X)* such that {z : q(u)(z) > a} = Us., 0[u > B] for every a >0
and u € L% (A)T. Show that q(u)* = u, q(au) = aq(u), glu Av) = q(u) A qg(v) and q(xa) = x(0a) for every
u,v€ L®RA)T, a>0and a €.

447 Notes and comments The structure of the proof of 4471 is exactly that of the proof of the ordinary
Lifting Theorem in §341; the lifting is built from a lower density which is constructed inductively on a family
of sub-o-algebras. To get a translation-invariant lifting it is natural to look for a translation-invariant lower
density, and a simple trick (already used in §345) ensures that this is indeed enough. The refinements we
need here are dramatic but natural. To make the final lower density ¢ (in 447H) translation-invariant, it is
clearly sensible (if we can do it) to keep all the partial lower densities ¢¢ translation-invariant. This means
that their domains 3¢ should be translation-invariant. It does not quite follow that they have to be of the
form ¢ = {E : EX¢ = X¢} for closed subgroups X¢, but if we look at the leading example of {0, 1}/
(345C) this also is a reasonable thing to try first. So now we have to consider what extra hypotheses will be
needed to make the induction work. The inductive step to limit ordinals of uncountable cardinality remains
elementary, at least if the X, are compact (part (b-iv) of the proof of 447H). The inductive step to limit
ordinals of countable cofinality (447G) is harder, but can be managed with ideas already presented. Indeed,
compared with the version in 341G, we have the advantage of a formula for the auxiliary functions gg,,
which is very helpful when we come to translation-invariance. We have to do something about the fact that
we are no longer working with a probability space — that is the point of the uy in part (c) of the proof of
447G. (Another expression of the manoeuvre here is in 369Xq.)
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Where we do need a new idea is in the inductive step to a successor ordinal. If 3¢, is to be translation-
invariant, it must be much bigger than the o-algebra generated by ¥ U {E}, as discussed in 341F. To make
the step a small one (and therefore presumably easier), we want X¢,1 to be a large subgroup of X¢ in some
sense; as it turns out, a helpful approach is to ask for X¢y; to be a normal subgroup of X, and for X¢/X¢ 14
to be small. At this point we have to know something of the structure theory of locally compact topological
groups. The right place to start is surely the theory of compact Hausdorff groups. Such a group X actually
has a continuous decreasing chain (X¢)e<, of closed normal subgroups, from Xy = X to X, = {e}, such
that all the quotients X¢/X¢;1 are Lie groups. I do not define ‘Lie group’ here, because for our purposes
it is enough to know that the quotients have faithful finite-dimensional representations, and therefore have
‘B-sequences’ in the sense of 446L. Having identified this as a relevant property, it is not hard to repeat
arguments from §221 and §261 to prove versions of Vitali’s theorem and Lebesgue’s Density Theorem in
such groups (447C-447D). This will evidently provide translation-invariant lower densities for groups of this
special type, just as Lebesgue lower density is a translation-invariant lower density on R” (345B).

Of course we still have to find a way of combining this construction with a translation-invariant lower
density on ¢ to produce a translation-invariant lower density on ¢4, and this is what I do in 447F. The
argument [ offer is essentially that of IoNESCU TULCEA & IONESCU TULCEA 67, §7, and is the deepest
part of this section.

For compact groups, these ideas are all we need, and indeed the step to a limit ordinal of countable
cofinality is a little easier, since we have a Haar probability measure on the whole group. The next step, to
general o-compact locally compact groups, demands much deeper ideas from the structure theory, but from
the point of view of the present section the modifications are minor. The subgroups X, are now not always
normal subgroups of X, which means that we have to be more careful in the description of the quotient
spaces X/X¢ (they must consist of left cosets), and we have to watch the modular functions of the X in
order to be sure that there are invariant measures on the quotients. An extra obstacle at the beginning is
that we may have to start the chain with a proper subgroup Xy of X, but since Xy can be taken to be
open, it is pretty clear that this will not be serious, and in fact it gives no trouble (part (b-i) of the proof
of 447H). For ¢ > 1, the X, are compact, so the inductive steps to limit ordinals are nearly the same.

The step to a general locally compact Hausdorff topological group (part (d) of the proof of 447H) is
essentially elementary. And finally I note that the whole thing applies to general topological groups with
Haar measures (447J), for the usual reasons. There is an implicit challenge here: find expressions of the
arguments used in this section which will be valid in the more general context. The measure-theoretic part
of such a programme might be achievable, but I do not see any hope of a workable structure theory to match
that of §446 which does not use 443L or something like it.

Version of 12.4.13

448 Polish group actions

I devote this section to two quite separate theorems. The first is an interesting result about measures
on Polish spaces which are invariant under actions of Polish groups. In contrast to §441, we no longer have
a strong general existence theorem for such measures, but instead have a natural necessary and sufficient
condition in terms of countable dissections: there is an invariant probability measure on X if and only if
there is no countable dissection of X into Borel sets which can be rearranged, by the action of the group,
into two copies of X (448P).

The principal ideas needed here have already been set out in §395, and in many of the proofs I allow
myself to direct you to the corresponding arguments there rather than write the formulae out again. I do
not think you need read through §395 before embarking on this section; I will try to give sufficiently detailed
references so that you can take them one paragraph at a time, and many of the arguments referred to are
in any case elementary. But unless you are already familiar with this topic, you will need a copy of §395 to
hand to fully follow the proofs below.

The second theorem concerns the representation of group actions on measure algebras in terms of group
actions on measure spaces. If we have a locally compact Polish group G (so that we do have Haar measures),
and a Borel measurable action of G on the measure algebra of a Radon measure p on a Polish space X,

(© 1997 D. H. Fremlin
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then it can be represented by a Borel measurable action of G on X (448S). The proof is mostly descriptive
set theory based on §§423-424, but it also uses some interesting facts about L spaces (448Q-448R).

448A Definitions (Compare 395A.) Let 2 be a Dedekind o-complete Boolean algebra, and G a subgroup
of Aut®. For a, b € 2 I will say that an isomorphism ¢ : 2, — % between the corresponding principal
ideals belongs to the countably full local semigroup generated by G if there are a countable partition
of unity (a;);cs in A, and a family (m;);cr in G such that ¢c = m;¢c whenever ¢ € I and ¢ C a;. If such an
isomorphism exists I will say that a and b are G-o-equidecomposable.

I write @ <7 b to mean that there is a b’ C b such that a and I/ are G-o-equidecomposable.

As in §395, I will say that a function f with domain 2 is G-invariant if f(wa) = f(a) whenever a € 2
and 7 € G.

I have expressed these definitions, and most of the work below, in terms of abstract Dedekind o-complete
Boolean algebras. The applications I have in mind for this section are to c-algebras of sets. If you have
already worked through §395, the version here should come very easily; but even if you have not, I think
that the extra abstraction clarifies some of the ideas.

448B I begin with results corresponding to 395B-395D; there is hardly any difference, except that we
must now occasionally pause to check that a partition of unity is countable.

Lemma Let 2 be a Dedekind o-complete Boolean algebra and G a subgroup of Aut2(. Write G for the
countably full local semigroup generated by G.

(a) If a, b € A and ¢ : A, — 2Ap belongs to G, then ¢~ : A, — 2A, also belongs to G=.

(b) Suppose that a, b, a’, b’ € 2 and that ¢ : A, — Ay, P : Ay — Ay belong to G%. Then o € G%; its
domain is 2. where ¢ = ¢~1(bna’), and its set of values is 2. where ¢/ = ¥ (bna’).

(c) Ifa, be A and ¢ : A, — Ay, belongs to G, then ¢[2A. € G for any ¢ C a.

(d) Suppose that a, b € 2 and that 9 : A, — 2 is an isomorphism such that there are a countable
partition of unity (a;);er in 2, and a family (¢;);er in G such that ¢ = ¢;c whenever i € I and ¢ C a;.
Then ¢ € G}.

proof (a) As 395Bb.
(b) As 395Bc.
(c) As 395Bd.

(d) For each i € I, let (ai;)jcs), (mij)jesu) Witness that ¢; € Gj; then (a;naj)icr jesu) and
(mij)ier,jesq) Witness that ¢ € G

448C Lemma Let 2 be a Dedekind o-complete Boolean algebra and G a subgroup of Aut2(. Write G
for the countably full local semigroup generated by G.

(a) For a, b € A, a <7 b iff there is a ¢ € G such that a € dom ¢ and ¢a C b.

(b)(i) X% is transitive and reflexive;

(i) if @ <% b and b <& a then a and b are G-o-equidecomposable.

(¢) G-o-equidecomposability is an equivalence relation on 2.

(d) If (a;)icr and (b;)ier are countable families in 2, of which (b;);cr is disjoint, and a; < b; for every
i € I, then sup;c; a; SE sup;ey bi-

proof The arguments of 395C apply unchanged, calling on 448B in place of 395B.

448D Theorem Let 2 be a Dedekind o-complete Boolean algebra and GG a subgroup of Aut®l. Then
the following are equiveridical:

(i) there is an a # 1 such that a is G-o-equidecomposable with 1;

(ii) there is a disjoint sequence (a,)nen of non-zero elements of 2 which are all G-o-equidecomposable;

(iii) there are non-zero G-o-equidecomposable a, b, ¢ € 2 such that anb =0 and aub C ¢;

(iv) there are G-o-equidecomposable a, b € 2 such that a c b.

proof As 395D.
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448E Definition (Compare 395E.) Let 2 be a Dedekind o-complete Boolean algebra and G a subgroup

of Aut®l. I will say that G is countably non-paradoxical if the statements of 448D are false; that is, if
one of the following equiveridical statements is true:

(i) if a is G-o-equidecomposable with 1 then a = 1;

(ii) there is no disjoint sequence (a,)nen of non-zero elements of 2A which are all G-o-equide-

composable;
(iii) there are no non-zero G-o-equidecomposable a, b, ¢ € 2 such that anb =0 and aub C ¢;
(iv) if a, b € A are G-o-equidecomposable and a C b then a = b.

448F We now come to one of the points where we need to find a new path because we are looking at
algebras which need not be Dedekind complete. Provided the original group G is countable, we can still
follow the general line of §395, as follows.

Lemma (Compare 395G.) Let 2 be a Dedekind o-complete Boolean algebra and G a countable subgroup
of Aut®(. Let € be the fixed-point subalgebra of G.
(a) For any a € 2, upr(a, €) (313S) is defined, and is given by the formula

upr(a,®) = sup{ma : 7 € G}.

(b) If G% is the countably full local semigroup generated by G, then ¢(cna) = ¢n ¢a whenever ¢ € G,
a € dom ¢ and c € €.

(¢) upr(¢a, €) = upr(a, ) whenever ¢ € GX and a € dom ¢; consequently, upr(a,®) C upr(b, €) whenever
a g b.

(d)Ifa <% band c € €thenanc <% bne. So ancand bnc are G-o-equidecomposable whenever a and
b are G-o-equidecomposable and ¢ € €.

proof (a) As remarked in 395Ga, € is order-closed. Because G is countable and 2 is Dedekind o-complete,
c¢* =sup{ma: ™ € G} is defined in A If ¢ € G, then

¢c* =sup{¢ma: 7T € G} C c*
because ¢ is order-continuous and ¢m € G for every 7 € G. Similarly ¢~'c* C ¢* and ¢* C ¢c*. Thus
¢c* = c*; as ¢ is arbitrary, ¢* € €.
If ¢ € €, then
a Cc < ma C wc for every m € G
<= ma C c for every m € G
<~ ¢ Cec,
so ¢* =inf{c: a C ¢ € €}, taking the infimum in €, as required in the definition of upr(a, €).
(b) Suppose that (a;)icr, (mi)icr witness that ¢ € G%. Then

¢(anc) =sup;ermi(a; nanc) =sup;e;mi(a; Na)ne=cnga.

(c) For ce €,

aCc < anc=a <= ¢(anc)=¢a < cnda=da < ¢aCc.

(d) There is a ¢ € G* such that ¢a C b; now

anc=<% ¢planc)=cnga Cbnec.

448G With this support, we can now continue with the ideas of 395H-395L, adding at each step the
hypothesis ‘G is countable’ to compensate for the weakening of the hypotheses ‘A is Dedekind complete, G
is fully non-paradoxical’ to ‘2 is Dedekind o-complete, G is countably non-paradoxical’.

Lemma (Compare 395H.) Let 2 be a Dedekind o-complete Boolean algebra and G a countable countably
non-paradoxical subgroup of Aut2l. Write € for the fixed-point subalgebra of G. Take any a, b € 2. Then
co =sup{c:c€ €, anc <% b} is defined in A and belongs to €; ancy <& b and b\ ¢y & a.
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proof Let (m,)nen be a sequence running over G. Define (a,)nen, (bn)nen inductively, setting
a, = (a\ sup;., a;) N (b Sup;p, bi), bn = Tpan.

Then (an)nen is a disjoint sequence in A, and (b, ),en is a disjoint sequence in 2y, and sup,,cy an is G-0-
equidecomposable with sup,,cy bn. Set

a' =a\ sup,ey @n, U =0\ sup,enbn, o =1\ upr(a’,€) C sup,cy an-
Then
ancy C SUP, ey an & b.

Now V' C ¢y. PP? Otherwise, because ¢y = 1\ sup,,cy 7', there must be an n € N such that b’ nm,a’ #

0. But in this case d = o’ n 7, 1t # 0, and we have
d C (a\ sup;<, ai) N erl (b\ sup; <, bi),
so that d C a,, which is absurd. XQ Consequently
b\co C b\ =sup,cybn SE a.

Now take any ¢ € € such that anc <% b, and consider ¢ = ¢\ ¢y. Then b'n¢’ = 0, that is, bnc =

sup,,en bn N ¢, which is G-o-equidecomposable with sup, cya, N¢ = (a\ a’)n¢’. But now
and =ancond KL bnd K% (and)\ (' nc);

because G is countably non-paradoxical, a’ n ¢’ must be 0, that is, ¢’ C ¢g and ¢ C ¢p. So ¢ has the required
properties.

448H Lemma (Compare 3951.) Let 2 be a Dedekind o-complete Boolean algebra, not {0}, and G a
countable countably non-paradoxical subgroup of Aut 2. Let € be the fixed-point subalgebra of G. Suppose
that a, b € A and that upr(a,®) = 1. Then there are non-negative u, v € L°(¢€) such that

[u > n] = max{c: c € €, there is a disjoint family (d;);<n

such that anc <& d; C b for every i < n},

[v <n] = max{c: c € €, there is a family (d;)i<n
such that d; <% a for every i <n and bnc C supd;}
i<n
for every n € N. Moreover, we have
(i) ueN] =[veN] =1,
(ii) v > 0] = upr(b, €),
(iii) u < v <wu+ x1.

proof The argument of 3951 applies unchanged, except that every <7, must be replaced with a <7, and
we use 448F and 448G in place of 395G and 395H. € is Dedekind o-complete because it is order-closed in
the Dedekind o-complete algebra 2 (314Eb).

4481 Notation (Compare 395].) In the context of 448H, T will write |[b: a| for u, [b: a] for v.

448J Lemma (Compare 395K-395L.) Let 2 be a Dedekind o-complete Boolean algebra, not {0}, and G
a countable countably non-paradoxical subgroup of Aut®l with fixed-point subalgebra €. Suppose that a,
ai, az, b, by, ba € A and that

upr(a, ) = upr(as, €) = upr(ag, €) = 1.
Then
(a) |0:a]=[0:a] =0and |1:a] > x1.
(b) If by KT b then |by :a] < |be:a] and [by : a] < [by: al.
(c) [byuby:a]l < [by:al+[be:al.
(d) If by nbe =0, then by : a] + |ba:a| < [byjubs:al.
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(e) If ¢ € € is such that anc is a relative atom over €, then ¢ C [[b:a] — [b:a] = 0].
(f) Lb:azJ > |_b (LlJ X |_CL1 : a2J7 |—b : aﬂ < |_b10,1~| X (U,l : CLQ—l.
proof As in 395K-395L.

448K For the result corresponding to 395Mb, we again need to find a new approach; I deal with it by
adding a further hypothesis to the list which has already accreted.

Definition Let 2l be a Dedekind o-complete Boolean algebra and G a countable subgroup of Aut2l with
fixed-point subalgebra €. I will say that G has the o-refinement property if for every a € 2 there is a
d C a such that d X% a\ d and o’ = a\ upr(d, €) is a relative atom over €, that is, every b C a’ is expressible
as a’ nc for some c € €.

(If we replace <% with <7, as used in §395, we see that 395Ma could be read as ‘if 2 is a Dedekind
complete Boolean algebra, then any subgroup of Aut®l has the 7-refinement property’.)

448L 1 give the principal case in which the ‘o-refinement property’ just defined arises.

Proposition Let 2 be a Dedekind o-complete Boolean algebra with countable Maharam type (definition:
331F). Then any countable subgroup of Aut® has the o-refinement property.

proof (a) Let E be a countable subset of 2 which 7-generates 2(, and & the subalgebra of 2 generated by
E; then € is countable (331Gc), and the smallest order-closed subset of 2 including € is a subalgebra of 2
(313Fc¢), so must be A itself.

(b) Suppose that b € 2\ {0} and 7 € Aut 2 are such that bnwb = 0. Then there is an e € € such that
bne\mwe # 0. P? Otherwise, set

D={d:de® bnd\nd=0}.

Then € C D, but b ¢ D. So D cannot be order-closed. case 1 If Dy C D is a non-empty upwards-directed
set with supremum dy ¢ D, then bndg\ wdy # 0, so there is a d € Dy such that bnd\ wdy # 0; but now
d ¢ D, which is impossible. case 2 If Dy C D is a non-empty downwards-directed subset of D with infimum
do ¢ D, then bndy \ mdy # 0. But 7 is order-continuous, so there is a d € Dy such that bndg\ nd # 0; and
now d ¢ D, which is impossible. Thus in either case we have a contradiction. XQ

(c) Now let G be a countable subgroup of Aut 2, with fixed-point subalgebra €, and let ((m,,, en))nen be
a sequence running over G x €. Take any a € 2. For k € N set

ar = aneg m7r,;1(a\ek)7

aj, = ay \ sup; . upr(aj, €).
Then
ap, Nmal, C ag Nmrag =0
for every k € N, and whenever j < k in N we have

/ /o 7 I
a;nap =0, mia;na =0,

aj Nmpay, = 7rk(7rk_1a;» nay) =0, ma}nmay = mg(ay, ﬂﬂk_lﬂ'ja;) =0.
So, setting d = supyeyaj, and d° = suppey mra), d and d' are disjoint and G-o-equidecomposable and
included in a, and d <Z a\ d.
Consider a’ = a\ upr(d, ). Since aj, = aj \ sup;, upr(a}, €) for each k,
upr(d, €) = supy,cy upr(aj, €) = supycy upr(ag, €).

? Suppose, if possible, that a’ is not a relative atom over €; that is, that there is a b C a’ such that b # o' nc¢
for any ¢ € €. Then, in particular, b # o’ n upr(b, €), and there is a m € G such that b’ = a’ n7b\ b # 0. Then
bV un=t Ca, while b’ n7=10 =0, so b/ nb’ = 0. By (b), there is an e € & such that v = b’ ne\ me # 0.
Let k be such that 7—! = 11, and e = ey, so that

b = b’mek\ﬂk_lek C amekmﬂ',:l(a\ek) = ay,.
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(Because 71 C a, V' C W,?la.) Since also
" n upr(aj, €) € @’ nupr(d, €) =0

for every j, V" C aj, C d, which is impossible, because v C a’. X
Thus a’ is a relative atom over €, as required.

448M Lemma Let 2 be a Dedekind o-complete Boolean algebra, not {0}, and G a countable countably
non-paradoxical subgroup of Aut 2l with fixed-point subalgebra €. If G has the o-refinement property, then
for any € > 0 there is an a* € A such that upr(a*,€) =1 and [b:a*] < |b:a*| +€[l:a*] for every b € .

proof As part (b) of the proof of 395M.

448N Theorem (Compare 395N.) Let 2 be a Dedekind o-complete Boolean algebra and G a countable
countably non-paradoxical subgroup of Aut2f with fixed-point subalgebra €. Suppose that G has the o-
refinement property of 448K. Then there is a function 6 : 2 — L°°(€) such that

(i) 0 is additive, non-negative and sequentially order-continuous;

(ii) fa =0 iff a = 0, 01 = x1;

(iii) O(anc) = Oa x xc for every a € A, ¢ € €; in particular, 8¢ = xc for every c € €;

(iv) if a, b € A are G-o-equidecomposable, then fa = 0b; in particular, 6 is G-invariant.

proof The arguments of the proof of 395N apply here also, though we have to take things in a slightly
different order. As in 395N, set

[b:al 0
0,(b) = L (¢
) = o € 1)
whenever upr(a, €) = 1 and b € 2. This time, turn immediately to part (c) of the proof to see that if e, is
chosen (using 448M) such that upr(e,,€) = 1 and [b:e,] < [b:e,] +27"|1 : e,] for every b € 2, then
0c,b < 0,b+27"[1: a] whenever upr(a,®) =1 and b € 2. So we can write

0b = infneN He”b = infupr(a’g)zl 9ab

for every b € 2, and we have a function 6 : 2 — L° as before. The rest of the proof is unchanged, except
that we have a simplification in (h), since we need consider only the case kK = w.

4480 This concludes the adaptations we need from §395. I now return to the specific problem addressed
in the present section. The first step is a variation on 448N.

Theorem Let 2 be a Dedekind o-complete Boolean algebra, not {0}, and G a countable subgroup of
Aut 2 with the o-refinement property. Let € be the fixed-point subalgebra of G. Then the following are
equiveridical:

(i) there are a Dedekind o-complete Boolean algebra ©, not {0}, and a G-invariant sequentially order-
continuous non-negative additive function 6 : 2 — L>°(D) such that 01 = x1;

(ii) if a € A and 1 K a, then upr(l\ a,€) # 1;

(iil) if @ € A and 1 <& a, then 1 4% 1\ a.

proof (a)(i)=-(iii) Take 6 : A — L*°(®) as in (i). If 1 <% a, then there is a b C a which is G-o-
equidecomposable with 1, so that b = x1, just as in 395N(v)/448N(iv). But this means that fa = x1; so
that 8(1\a) # x1 and 1 £Z 1\ a.

(b)not-(ii)=not-(iii) Suppose that (ii) is false; that there is an a € 2 such that 1 <% a and upr(1\a,€) =
1. Let G% be the countably full local semigroup generated by G; then there is a ¢ € G, such that 1 C a.
Set by = 1\ ¢1 and b,, = ¥"by for every n > 1; then

bonb, Cbgnyl =0
for every n > 1, so
b N by, = ™ (bg Nbp—py) =0

whenever m < n.
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Let (m;)ien be a sequence running over G; then
sup;ey mibo = upr(bo, €) 2 upr(l\a, ) = 1.
Set
aj = mjbo \ sup;; mibo
for every j € N, so that (a;);en is a partition of unity in 2. Define 1)1, ¥ : A — 2 by setting
P1d = sup;en V2 N (dnag),  Pad = sup;en ¥ (dnag)

for every d € 2. Because ¢%'7r; *a; C by; for every i, (%7 a;)ien is disjoint, so 11 € G% (448Bd); similarly,
Yo € GL. Thus

1<% Y11 C sup;ep b2is

1 <G Y2l C supjen b2ip1 € 1\ 91l
and (iii) is false.
(¢) For the rest of this proof I will suppose that (ii) is true and seek to prove (i).
Let Z be the o-ideal of 2 generated by {1\a : a € A, 1 X% a}. Then 1 ¢ Z. P? Otherwise, there
is a sequence (an)nen such that 1 <% a, for every n and sup,cy1\a, = 1. Choose 9, € G} such that

¥nl C ap, and set ¢, = upr(1\¥,1, ) for each n, so that sup,cycn = 1. Set ¢, = ¢, \ sup;.,, ¢; for each
n, and write

¢d = sup,ey Pn(dnc,)
for each d € 2. Because every ¢, belongs to €, (¢¥,¢} )nen = (¢}, )nen is disjoint, and ¢ € G%.
By (ii), ¢ = upr(1\¥1,€) is not 1; let n be such that ¢/ = ¢}, \ ¢ # 0. Because ¢’ C ¢}, ¢\ ¥,1 =\ ¥1;
because ¢’ € €,
0#dnd, ccdnupr(l1\¢¥,1,€) =upr(d\¥,1,<)
=upr(c' \¢1,€) = nupr(1\%1,&) =0
which is absurd. XQ

Let B be the quotient Boolean algebra 2(/Z; then 9B is Dedekind o-complete and the canonical homo-
morphism a — a*® : A — B is sequentially order-continuous (314C, 313Qb).

(d) Next, mb € Z whenever b € Z and 7 € G. PP The sets {a : 1 <% a} and {1\a : 1 <% a} are both
invariant under the action of G, so Z also must be invariant. @ We can therefore define, for each m € G,
a Boolean automorphism 7 : 8 — B, setting 7a® = (wa)* for every a € 2. Because (7w¢)~ = 7?(5 for all
T, 6eq, G = {7 : m € G} is a subgroup of AutB; of course it is countable. Let © be the fixed-point
subalgebra of G in 8. Because B is not {0}, nor is D.

(e) G is countably non-paradoxical. B Suppose that b is G-o-equidecomposable with 1 in B. Let (b, )nen
be a partition of unity in 8B and (7, )nen a sequence in G such that (7,b,)nen is disjoint and has supremum
b. For each n € N, let a,, € 2 be such that a; = b,. We have

(am Nanp)® = (Tmam NTha,)® =0
whenever m # n, so
d = Sup,, 2, (Am N @n) U SUDP,,, 4, (@m0 L

belongs to Z, while {(ay \ d)nen, (mn(an \ d))nen are disjoint.
Because sup,,cy b, =11in B, d' =1\ sup,cyan € Z. Because 7 is a o-ideal and G is countable,

¢ =upr(dud,€) =sup,cqgm(dud)

belongs to Z, while {¢*} U {a, \ ¢* : n € N} is a partition of unity in 2L.
Define ¢ € G% by setting

tha = sup, ey Th(anay \ ¢*) U (anc)
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for every a € 2. Then 1\ ¢1 € Z, by the definition of Z, so (¢)1)* =1 in B. But

(¥1)* = sup(my(an \ ¢*))* = sup(mnan,)*
neN neN

= sup 7,b, = b.
neN
So b =1. As b is arbitrary, G is countably non-paradoxical. Q

(f) G has the o-refinement property. P Let b € 9. Then there is an a € 2 such that a® = b. Because G
is supposed to have the o-refinement property, there is a d C a such that d <% a\d and a\ upr(d, ) is a
relative atom over €. Set e = d* C b.

We know that there are a partition of unity (d,)nen in 20y and a sequence (m,)nen in G such that
Tndy, C a\ d for every n and (m,d,)nen is disjoint. Now (d?)nen is a partition of unity in B, 7,ds, C b\ e
for every n, and (7, dy,)nen is disjoint; so e <% b\ e.

Suppose that by C b\ upr(e,®). Then it is expressible as a§ where ag C a and

(apnmd)* =byn7e =0

for every m € G. So if we set a1 = ag\ sup,cq 7d, we shall have a; C a\ upr(d,€) and a} = by. Now
a\ upr(d, €) is supposed to be a relative atom over €, so a; = anc for some ¢ € €. In this case,

7c* = (me)* =c¢*
for every m € G, so ¢* € ©, while by = bn¢*. As by is arbitrary, b\ upr(e, D) is a relative atom over D.
Thus e has both the properties required by the definition 448K. As b is arbitrary, G has the o-refinement
property. Q
(g) 448N now tells us that there is a sequentially order-continuous non-negative additive functional
By : B — L°(D) such that 651 = x1 and 6y (7b) = Oyb whenever b € B and m € G. If we set fa = fpa* for

a € 2, it is easy to see that 6 has all the properties required by (i) of this theorem. Thus (ii)=-(i), and the
proof is complete.

448P At last we come to Polish spaces.

Theorem (NADKARNI 90, BECKER & KECHRIS 96) Let G be a Polish group acting on a non-empty Polish
space (X,¥) with a Borel measurable action «. For Borel sets E, FF C X say that E <7 F if there are a
countable partition (F;);c; of E into Borel sets, and a family (g;);c; in G, such that g;+F; C F for every i
and (g;*F;)icr is disjoint. Then the following are equiveridical:

(i) there is a G-invariant Radon probability measure p on X;

(ii) if FF C X is a Borel set such that X <& F, then [, cy gnF # 0 for any sequence (gn)nen in G;

(iii) there are no disjoint Borel sets E, F' C X such that X % E and X < F.

proof (a) Let us start with the easy parts.

(i)=(ii) Let p be a G-invariant Radon probability measure on X, and suppose that X <% F. Let
(E;)iecr be a countable partition of X into Borel sets and (h;);ecs a family in G such that (h;«E;);c; is disjoint
and h;eE; C F for every ¢. Then

pE 23 e phisEs) = 3 nEi = pX,
so I is conegligible. Consequently [,y gn*F must be conegligible and cannot be empty, for any sequence
(gn)nen in G. As F and (g, )nen are arbitrary, (ii) is true.
(ii)=-(iii) Assume (ii). ? If there are disjoint £, F' such that X <% F and X <Z F, then we have a
countable partition (E;);c; of X into Borel sets and a family (g;);cr in G such that g;+E; C E for every i € I.

But there is an x € [;¢; g;l-F, by (ii). In this case there is a j € I such that v € E; and gjex € ENF,
which is impossible. X So (iii) must be true.

(b) For the rest of the proof, therefore, I shall assume (iii) and seek to prove (i).

Let T be the topology of X, and B = B(X) its Borel o-algebra. For g € G define 7, : B — B by writing
mgE = geF for every E € B. Then 7y, = mgmy, for all g, h € G, so G= {my : g € G} is a subgroup of Aut B.
Observe that for E, F' € B, E <7 F, in the sense here, iff £ 40@ F in the sense of 448A.
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By the Becker-Kechris theorem (424H), there is a Polish topology T; on X, giving rise to the same Borel
o-algebra B as the original topology, for which the action of G is continuous. Let U be a countable base for
%1 closed under finite unions. (We are going to have three Polish topologies on X in this proof, so watch
carefully.)

(c) For the time being (down to the end of (f) below) let us suppose that G, and therefore G, are
countable. In this case, because B is countably generated, G has the o-refinement property, by 448L. We
can therefore apply 4480 to see that (iii) implies that

(i)’ there are a Dedekind o-complete Boolean algebra @, not {0}, and a G-invariant sequentially
order-continuous non-negative additive functional § : B — L (D) such that X = x1.

Express © as ¥/J where X is a o-algebra of subsets of a set Z and J is a o-ideal of ¥ (314N). Then we
can identify L>° (D) with the quotient £>°/W, where £ is the space of bounded X-measurable real-valued
functions on Z and W is the set {f : f € L=, {z: f(2) # 0} € J} (363Hb). For each F € B, let fg € L™
be a representative of 0E € L>(D); because 0(1E) = 0F whenever E € B and 7 € G, we may suppose that
fxe = fg whenever E € B and 7 € G.

Let B be the subalgebra of B generated by {wU : U € U, 7 € C;’} Then B is countable and 7FE € 9 for
every B € B, 7 € G. By 4A3I, there is yet another Polish topology & on X which is zero-dimensional and
such that every member of 95 is open-and-closed for &. Of course & 2 U, so B is still the algebra of G-Borel
sets (423Fb). Let W be a countable base for & consisting of sets which are open-and-closed for &, and let
81 be the subalgebra of B generated by W U ‘B; then B, is countable and consists of open-and-closed sets
for &. Let (W, )nen be a sequence running over W. Let p be a complete metric on X defining the topology
S, and for m, n € N set

Winn = U{W; 1 i < n, diam,(W;) <27™};
then for each m € N, (W,,,,)nen is a non-decreasing sequence in 87 with union X.
(d) Consider the subsets of Z of the following types:
Pg ={z: fg(z) <0}, where E € B,

Qrr ={z: feur(2) # fE(2) + fr(2)}, where E, F € B; and ENF = 0,
R={z:fx(2) # 1},

Sm = {z 1 sup,en fw,,,. (2) # 1}, where m € N.
Because

fy=0E >0 for every E € B,
foop =0(EUF)=0E+0F = f3, + fp whenever ENF = 0,
[ =0X =Xx1,

SUup,,eN fI’an = sup,ey Wmn = e(UnGN Winn) = 80X = x1
for every m € N, all the sets Pg, Qrr, R and S, belong to J. Since © # {0}, Z ¢ J; so there is a 29 € Z
not belonging to R or Pg or Qgp or S, whenever m € N and E, F' € 8, are disjoint.
Set vE = fp(z) for every E € B,. If E, F' € 9B, are disjoint, then v(F U F') = vE + vF because
20 ¢ Qpr; thus v : B; — R is additive. If E € B, then vE > 0 because zg ¢ Pg, so v is non-negative.
vX =1 because zy ¢ R. For each m € N, sup,,cy ¥Win,, = 1 because zy ¢ S,

(e) For any € > 0 there is an G-compact set K C X such that vE > 1 — ¢ whenever F € 8, and £ DO K.
P For each m € N we have a k(m) € N such that vW,, pm) > 1 — 27" le. Set K = Mnen Wink(m)-
Because every Wy, i(m) is G-closed, K is G-closed, therefore p-complete; because every Wy, i) is a finite
union of sets of diameter at most 2=™, K is p-totally bounded, therefore G-compact (4A2Je).  Suppose,
if possible, that E € 9 is such that K C F and vE <1 —e. For every m € N,

V(Micom Wik() 21 =22 v(X\ Wig@y) 21 =202 e >1—e>vE
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because v is non-negative and finitely additive. So (,.,, W x(;) \ £ must be non-empty. There is therefore

an ultrafilter 7 on X containing W; 1;) \ E for every i € N. Now for each 7 there must be a j < k(i) such

that diam W; < 27" and W; € F, so F is a p-Cauchy filter, and &-converges to x say. Because every W; 1)

is G-closed, = € ();cy Wi ki) = K because E € &, x ¢ E; but K is supposed to be included in . X
Thus inf{vE : K CF € B} > 1—e€. As € is arbitrary, we have the result. Q

(f) By 4160, there is an &-Radon measure pu on X extending v. Because p is just the completion of its
restriction to B, it is also T-Radon and T;-Radon (433Ch).

Now p is G-invariant. I Take any g € G. Set uyE = pu(gsE) whenever E C X and g+E € domp. The
map z — gex is a homeomorphism for Ty, so u4 also is a T1-Radon measure. (Setting ¢(z) = g ez, fg
is the image measure u¢—1.) Again because T and T; have the same Borel o-algebras, g is T-Radon. If
FE €8, then F and g+F belong to B C B4, so

poE = p(g-E) = v(g-E) = v(7yE) = fr,6(20) = f&(20)
(because fr,r = fg, as declared in (c) above)
=vE =ukb.

In particular, pusF = pkE for every E in the algebra generated by U. But p, and p are both T-Radon
measures, and U is a base for Ty closed under finite unions, so py = p (415H(iv)). As g is arbitrary, u is
G-invariant. Q

Thus we have found a G-invariant Radon probability measure, and (i) is true.

(g) Thus (iii)=-(i) if G is countable. Now let us consider the general case. Because G is a Polish group,
it has a countable dense subgroup H. (Take H to be the subgroup generated by any countable dense subset
of G.) Of course there can be no disjoint E, F' € B such that X <% F and X <% F, so there must be an
H-invariant Radon probability measure 1 on X, by the arguments of (b)-(f). (H need not be a Polish group
in its subspace topology. But if we give it its discrete topology, then x — hez is still a ¥;-homeomorphism
for every h € H, so the action of H on X is still continuous if H is given its discrete topology and X is
given T;.)

Now g is G-invariant. B For any g € G, let g, be the Radon probability measure defined by setting
tgE = p(geE) whenever this is defined. (As in (f) above, this formula does define a probability measure
which is Radon for either ¥ or T;.) Let f: X — R be any bounded ¥;-continuous function. Then

[ fdpg = [ (g~ ex)p(dx)

(applying 235G with ¢(z) = g~ lex). Now there is a sequence (h,)nen in H converging to g. In this case,
because G is a topological group, g~! = lim, ,o h;,!. Because the action of G on X is T;-continuous,
g~ tex = lim,, o0 hy, Lex, for Ty, for every x € X. Because f is Ti-continuous, f(g~tex) = lim,, o0 f(h, o)

in R for every z € X. By Lebesgue’s Dominated Convergence Theorem,

ffdug = ff(g_l-x)u(dac) =lim, oo f(h, tex)p(dr) = limnﬁooffd,uhn = ffd,u
because p is H-invariant, so up, = p for every n. As f is arbitrary, uy = u, by 4151. As g is arbitrary, p is
G-invariant. Q
Thus (iii)=-(i) in all cases, and the proof is complete.

448Q I turn now to Mackey’s theorem. I pave the way with a couple of lemmas which are of independent
interest.

Lemma Let (X, X, 1) be a o-finite measure space with countable Maharam type. Write L°(X) for the set
of ¥-measurable functions from X to R. Then there is a function 7' : L(u) — L°(X) such that

() u= (Tw)* for every u € L,

(B) (u,x) = (Tu)(z) : L° x X — R is (BRYX)-measurable,
where B = B(L") is the Borel o-algebra of L° with its topology of convergence in measure.

proof (a) Consider first the case in which u is a probability measure.
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(1) Let (B}, )nen be a sequence in ¥ such that the measure algebra 2 of p is 7-generated by {Ey : n € N}.
For n € N let 3,, be the finite subalgebra of ¥ generated by {E; : i <n}, and for n € N, u € L>® = L>®(u)
and x € X set

(Spu)(x) = M%/ u if E is the atom of ¥,, containing x and pE > 0,
E

= 0 if the atom of ¥,, containing x is negligible.

Then (u,z) — (Spu)(z) is (B&X)-measurable, because u — Jiu: L™ — R is continuous (for the topology
of convergence in measure) for every E € . So if we set Su = limsup,,_, ., Spu for u € L™, (u,z) — (Su)(z)
will be (B®X)-measurable.

On the other hand, if f € £°°, S, f°* is a conditional expectation of f on 3, for each n. So Lévy’s
martingale theorem (2751) tells us that if f € £ then (S, f*)nen converges a.e. to a conditional expectation
g of f on the o-algebra ¥, generated by (J, cy Xn. But we chose (Ej,)nen to generate 2, so 2A = {E*: E ¢
Yoo} f now E € X, there is an F' € 3, such that EAF is negligible, so

ng:ng:fFf:fEf'

As F is arbitrary,
[ =ae g =ae limsup, . Snf*=Sf°.
Turning this round, (Su)* = u for every u € L.
(ii) Now define R : L® — L by setting
Rf* = (arctan f)*

for f € L9 (see 241I). Then R is continuous for the topology of convergence in measure (245Dd), so
(u,z) = (SRu)(z) : L x X — R is (B®X)-measurable. Note that if u € L, then —% < (S, Ru)(z) < % for
every x and n, so —5 < (SRu)(z) < § for every x; also, if u = f*, then —§ < arctan f(x) < § whenever
f(x) is defined, so =5 < (SRu)(x) < § for almost every . If now we set

tangt = tant for —g <t<g,
™
—Ofort—:tg7

and Tu = tang SRu, we shall have Tu € L°(X) and (Tu)* = u for every u € L%, while (u,z) — (Tu)(x) is
(B®Y)-measurable.

(b) For the general case, if uX = 0 the result is trivial, as we can just set (T'u)(z) = 0 for all v and z. So
suppose otherwise. Let v be a probability measure with the same domain and the same negligible sets as p
(215B(vii)). Then the measure algebra of v, regarded as a Boolean algebra, is the same as that of u, so v
also has countable Maharam type; similarly, L° = L°(v). Moreover, the topology of convergence in measure
on LY is the same, whichever measure we take to define it (245Xm, 367T). So we can apply (a) to (X, 3, v).

448R Lemma Let (X, X, 1) be a o-finite measure space with countable Maharam type.

(a) LY = LY(u), with its topology of convergence in measure, is a Polish space.

(b) Let 2 be the measure algebra of y, and 2/ the set {a : a € 2, fia < 0o}. Then the Borel o-algebra
B = B(L) is the o-algebra of subsets of LY generated by sets of the form {u : ji(an [u € F]) > a}, where
a €A, F CRis Borel, and a € R.

proof (a) By 245Eb, L° is metrizable, and complete when regarded as a linear topological space; so by
4A4Bj there is a metric on L, defining its topology, under which L is complete. By 367Rb, L is separable,
so it is a Polish space.

(b) Write T for the o-algebra of subsets of L? generated by sets of the form {u : ji(an [u € F]) > a},
where a € A/, F C R is Borel, and a € R.
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(i) Ifac A ac€Rand HC Risopen, then U = {u: fi(an [u € H]) > a} is open in LO. P Ifu € U,
there are a compact set K C H and a § > 0 such that G(an[u € K]) > a+4. Now there is an 7 € |0, 1] such
that |a — 3| > 1 whenever a € K and 3 € R\ H. In this case, V = {v:v € L% f(an[lu—v|>n]) <4} is
a neighbourhood of w in L° (367L). If v € V, then

[ve H[ 2 u e K]n[lu—vl <nl,
filanve H]) > lanfu € K]) — p(an [lu — v > n])

>
>fhlanfue K]) -0 > a.

Thus V C U and U is a neighbourhood of u; as u is arbitrary, U is open. Q

(ii) Thus u + fi(an [u € H]) is B-measurable for every a € 2 and open H C R. Now the set
{F : F CRis Borel, u+ ji(an [u € F]) is B-measurable for every a € A/}

is a Dynkin class containing all open sets, so is the Borel o-algebra of R (136B), and v — fi(anfu € F]) is
B-measurable for every a € A and Borel F CR. Thus Y C B.

(iii) In the other direction, we know that 2 is separable, by 3310; let {ck)ren run over a dense subset
of 2. We also know that there is a sequence (a,)nen in A/ with supremum 1. Set

Enkgy ={u:uec L flannepnu>q])>4¢}eT

for n, k € Nand ¢, ¢ € Q. If u, v € L? are different, there are n, k, ¢ and ¢’ such that E,., contains
one of u, v and not the other. P Choose g € Q such that [u > ¢] # [v > ¢]. Suppose for the moment that
c=Ju>q]\[v>gq]#0. Let n € N be such that ji(a, nc) > 0. Let k € N be such that f(a, n(cAcg)) <
fi(an, nc). Then

flanp negnv>q]) < flan, neg )\ c)
< flan ne) — plan ne\eg) < pflan neg N u > q]),

so there is a ¢’ € Q such that u € Eppeq and v ¢ Eppqq . Similarly, if [v > ¢] & [u > ¢] there are n, k € N
and ¢’ € Q such that v € Eppqq and v ¢ Eppgq - Q

By 423J, the o-algebra generated by {Enkqqy : 1, k € N, ¢, ¢ € Q} is the whole of B, and T must be
equal to B, as claimed.

448S Mackey’s theorem (MACKEY 62) Let G be a locally compact Polish group, (X, ¥) a standard
Borel space and u a o-finite measure with domain . Let (2, ) be the measure algebra of p with its
measure-algebra topology. Let o be a Borel measurable action of G on 2l such that a — goa is a Boolean
automorphism for every g € G. Then we have a (B(G)®X, ¥)-measurable action » of G on X such that

goE* = (g-E)*

for every g € G and E € ¥, writing g«F for {gex : € E} as usual.
proof (a) To begin with (down to the end of (j) below) suppose that X = R, with ¥ = B(R) its Borel
o-algebra, and that p is totally finite. The first thing to note is that for every g € G the automorphism
a — goa can be represented by a Borel automorphism f; : R — R such that goE® = f;l[E]' for every
E € B(R) (425Ac). Of course f, belongs to the space L°(X) of $-measurable functions from R to itself, so
we can speak of its equivalence class f; € LO(u). If we give L°(u) its topology of convergence in measure,
it is a Polish space (448Ra).

The function g — f5 : G — L°(u) is Borel measurable. P If E € B(R), a € 2 and « € R, then, setting
b= FE°,

[fs € E] = f; ' [E]* = gob

for every g € G, so

{g:p(an(f; € E]) > o} = {g: plan(ged)) > a}
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is a Borel set in G, because o is Borel measurable and {c: fi{(anc) > a} is open in 2A. Thus B(G) contains
the inverse images of the sets generating B(L°(11)) described in 448Rb, and therefore the inverse image of
every set in B(L"(u)), as required. Q

(b) By 448Q, there is a function T : L%(u) — L°(X) such that (Tu)* = u for every u € L°(u) and
(u,z) — (Tu)(x) is (B(LO(1))®B(R))-measurable. Define ¢ : G x R — R by setting

P9, ) = (Tf5)(x)

for g € G and € R. Then ¢ is a composition of the Borel measurable functions (g,z) — (fg°,gc) and

(u,z) = (Tu)(z), so is Borel measurable; and if g € G then ¢(g,x) = f,(z) for p-almost every z, because
Jg =ae. Tf;. Now

goB* = (f'[E])" = {x: é(g,2) € E}*
for every g € G and E € B(R).

(c) Let X\ be a Haar measure on G. Because G is a Polish space and X is a Radon measure on G, A is
o-finite (411Ge) and L°()\), with its topology of convergence in measure, is a Polish space (448Ra again).
For x € R, set ¢,(9) = ¢(g,x) for g € G; then ¢, : G — R is Borel measurable. Set 0(x) = ¢2 in LO(\).
Then 6 : R — L°()) is Borel measurable. P Again I use the characterization of the Borel o-algebra of L(\)
in 448Rb. Let (€, ) be the measure algebra of . If ¢ € €, Ac < oo, E C R is Borel, and o € R, take a

Borel set F' C G such that ¢ = F'*; then

{z: XMcen[b(z) € E]) > a} ={z: \(FN¢, ' [E]) > a}
={z:Mg:9€F du(9) € E} >}
={z:Mg:9€F, ¢(g9,2) € E} > a}
={z: \WW[{z}] > a}

where W = {(g,z) : ¢ € F, 2 € R, ¢(g,2) € E} is a Borel subset of G x R. But this means that
W € B(G)®&B(R) (4A3Ga) and z +— AW ~![{z}] is Borel measurable (252P), so {z : A(cn[0(z) € E]) > a}
is a Borel subset of R. Thus the inverse image of every set in the generating family for the Borel o-algebra
of L°()\) is a Borel set, and we have a Borel measurable function. Q

Let v be the totally finite Borel measure on LY()\) defined by setting vF = uf~![F] for every Borel set
FC LY.

(d) If E C R is Borel, there is a set A C L°()\) such that EAO~'[A] is p-negligible. P Let fi, © be
the completions of u and v, so that € is inverse-measure-preserving for ji and 7 (234Ba). Because E is a
Borel subset of R, §[E] is an analytic subset of LY(\) (423Gb), therefore Souslin-F (423Eb); accordingly #
measures 0[E] (431B). Let Ty be the o-algebra of subsets of L°(\) generated by the Souslin-F subsets of
L°()\). By 423Q, there is a To-measurable function ¢’ : [E] — E such that 66’ is the identity on 6[E]. Now
Ty is included in the domain T of ¥, so @ is T-measurable, and there is a Borel set Fy C [E] such that
0’| Fy is Borel measurable and §[E] \ Fy is p-negligible (212Fa). Since 6’ is surely injective, Ey = 0'[Fp] is a
Borel subset of E (423Ib) and 0] Ey is a bijection from FEy to Fy with inverse 6’. Note that

p(EN\ 07 Fo]) < (0~ HO[E]] \ 07 [Fo]) = 2(0[E] \ Fo) = 0.

Define ¥ : R — R by setting
Y(x) = 0'0(x) if 2 € 07 [Fy),
= x otherwise.

Then ¢ is a Borel measurable function and v = 6, that is, ¢3 = ¢:p(z) for every z € R. Consequently
{(9,2) : 9 € G,z €R, ¢(g,2) # d(g,¥(2))}

has A-negligible horizontal sections. Since it is a Borel set, it must have many p-negligible vertical sections;

let go € G be such that {z : ¢(go, ) # ¢(g0,¥(x))} is p-negligible. By (b), we also have ¢(go,z) = fq,(x)
for p-almost every . So the Borel set H = {z : fy,(z) = ¢(g0, ) = (g0, ¥(x))} is p-conegligible.
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Set A =0[ENO1[Fy]N H]. Of course A C Fy. If x € 071[A] \ E, then there isay € ENO 1 [F]NH
such that 0(y) = 0(x); now ¢¥(y) = ¢¥(x) and x # y, so
$(90,¥(x)) = ¢(90, ¥ (¥) = fao (y) # Foo ()
and z ¢ H. Thus 0~[A] \ E C R\ H is p-negligible. On the other hand, E\ =[A] C E\ (07[Fy] N H) is
also p-negligible. So EAO71[A] is u-negligible, as required. Q

(e) There is a p-conegligible Borel set H C R such that 0] H is injective. B Let (E,,)nen be a sequence
of Borel sets in R such that whenever z, y € R are distinct there is an n such that « € E,, and y ¢ E,,. For
each n € N let A, C LY\) be such that E,A071[A,] is p-negligible; let H be a u-conegligible Borel set
disjoint, from | J,,cn(En A0 1AL]). If 2, y € H are distinct, there is an n € N such that = € E,, and y ¢ Ey;
now x € 071[A,] and y ¢ 071[A,], so O(x) # 0(y). Q

(f) Of course [H] is now a Borel subset of L°(\), and must be P-conegligible. Let B be the measure
algebra of v, and 7 : B — 2 the measure-preserving homomorphism defined by setting 7F* = = 1[F]* for
every Borel set F. If E C R is Borel, then E* = 7(0[E N H])* belongs to 7[B], so 7 is surjective and is an
isomorphism.

(g) Recall that we have a continuous action «; of G on L°(\) defined as in 443G. If g € G, then
g0(x) = 0(¢(g™", @) = 0(f4-1(x))
for p-almost every x € R. P Consider the set {(h,z) : ¢(g th,z) = ¢(h,é(g7 %, x))} € G x R. Because
h — g~1h is continuous, it is Borel measurable, so (h,z) + ¢(g~1h,x) is Borel measurable; the same is true
of (h,z) = ¢(h, (g7, 1)), so {(h,z) : p(g7 h,x) = ¢(h,¢(g1,2))} is a Borel set. For given h € G and
E € B(R), set F'={z: ¢(h,x) € E}; then
{z:¢(g7'h,x) € E}* = (g7 'h)oE* =g 'o(hoE*) = g~ 'o{x : ¢(h,z) € E}*
=g loF* ={z:¢9(gx) e F}* ={z: ¢(h,0(¢g" ', z)) € E}*

so {z : ¢(g7th,x) € E}AN{z : ¢(h,¢(g7 ,x)) € E} is p-negligible. As E is arbitrary, ¢(g~1h,z) =
é(h, ¢(g~1, 1)) for p-almost every .

This is true for every h € G. So there is a u-conegligible Borel set H C R such that if x € H' then
#(g7th,x) = ¢(h,p(g71, z)) for A-almost every h. But this means that if z € H’' then

(9°192)(h) = ¢u(97'h) = (g~ h,2) = ¢(h, ¢(97", %)) = Pg(g-1,2)(h)
for A-almost every h, and
go0(x) = gu1ds = (94162)* = ¢} (y-1 .y = 0(8(97", 2)).

Thus g«0(z) = 0(¢(g~*, x)) for almost every x. And of course we already know from (b) that ¢(g~1,z) =
Jg-1(x) for almost every =. Q

(h) We have a function o; : G x B — B defined by setting
gorF* = (g1 F)*
for every Borel set FF C L°(\) and g € G, writing ge;F = {goju : u € F} as in 4A5Bc. P Take any g € G.
By (g) just above, applied to g=t, g7'«0(z) = 6(f,(x)) for u-almost every x. Because the shift operator

u > gou : LY(\) — L)) is a homeomorphism, it is a Borel automorphism, and ge;F is a Borel set for
every Borel set F' C LO(\). If vF = 0, then

V(guF) = pla : 0(x) € guF} = pfa : g of(a) € F
— p{x 0(f,(x) € F} = (f; [0~ [F]])) = 0

because 67 [F] is p-negligible and f,, represents an automorphism of the measure algebra 2 of p. It follows
that (goiFo)A(geiF1) = goi(FoAFy) is v-negligible and (ge;Fp)® = (goF1)® whenever F§ = Fy, which is
what we need to know. Q

(i) For any b € B and g € G, gorrb = m(go;b). P Let FF C L°()\) be a Borel set such that b = F*, and set
E =07'F], a= E* = 7b. Then go;b = (g+,F)*, so

D.H.FREMLIN



134 Topological groups 4488

m(goh) = {x : 0(z) € g F}* = {x: g of(z) € F}* = {z: 0(fy(2)) € F}*
={z: fy(z) e E}* = (f;l[E])‘ = goa = gomb,

as required. Q
(j) Now observe that because A is a Haar measure, \G > 0, so L%(\) # {0}, L°()\) is uncountable and

#(L°(N\)) = ¢ = #(R) (423L). By 425Ad, there is a Borel isomorphism 6 : R — L°()\) which represents 7.
Set

g = 67" (goib())
for g € G and x € R. Then « : G x R — R is a composition of the Borel measurable functions (g, ) —

(9,0(2)), (g,u) — goyu and u — 61 (u), so is Borel measurable. Because ¥ = B(R) and B(G x R) =
B(G)RB(R) (4A3Ga again), « is (B(G)®Y, X)-measurable. If g, h € G and z € R,
)

ghea = 07" (gh=f(2)) = 6~ (ge1(hwi0(x))) = 0~ (g+10(hex)) = g+ (he),
and if e is the identity of G and z € R,
eo =0 (es0(z)) = 0710(2) = z.
Thus « is an action of G on R. If g € G and E € B(R), set F = §[E]. Then F* = 7~ '[E*], so
(07 [gmF))* = m((go1F)*) = w(gorF*) = gomF* = goE*.
As
gE={gx:xe€E} ={0(go0(x)): x € E} = {0 (goyu) : u € F} = 0 [ge,F),
we see that
gob*® = (g-E)°
as required in the statement of this theorem.

(k) Thus the result is true if (X,X) = (R, B(R)) and p is totally finite. As for non-totally-finite x, there
will always be a totally finite measure pq with the same domain and the same null ideal (215B again), in
which case the measure algebra of u; will have the same Boolean algebra 2, though with a different measure
fi1. However the measure-algebra topology of 2 is unchanged (324H), so o is still Borel measurable, and we
can use the Borel measurable action of G on R found by the method of (a)-(j) above. Since we are assuming
that (X, X) is a standard Borel space, this covers all the cases in which X is uncountable, by 424C-424D.

(1) We are left with the case of countable X. This is of course essentially trivial. ¥ = PX and p is
a point-supported measure. Let Y be the set of atoms of p, that is, the set {z : p{z} > 0}. Then we
can identify the measure algebra 2 = PX/P(X \ Y) with PY, in which case the equivalence class E* of
any E C X becomes identified with ENY. As in part (a) of the proof above, we can represent each
automorphism a — goa : A — A by a permutation f; : X — X, and we must have fg’l[Y] =Y. Try
gox = fg_l(:r) ifx ey,
=zifre X\Y

forevery ge G. If g he Gandz €Y,

{ghex} = {f,,} (x)} = ghe{z} = go(ho{x}) = gof; ' [{x}]
= 1 el = A @)Y = fy Hhea} = {ge(hex)}

and ghex = ge(hex); if € X \ 'Y, then ghex = x = ge(hex). Of course esx = x for every z € X. So « is
an action of G on X. To see that it is (B(G)®Y, ¥)-measurable, note that the measure-algebra topology of
A = PY is the discrete topology. If y € Y, then {g: gy = 2z} = {g : go{y} = {z}} is a Borel set for every
z€X;ifx € X\Y, then {g: gex = 2} is either G or () for every z € X. So

{(g:2) : gox € W} = U.ewpex{g s gox = 2} x {z}
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belongs to B(G)®Y for every subset W of X, and « is (B(G)®X, ¥)-measurable. Finally, if g € G,
(9°E)* = (¢=E)NY =Y N f71E] = (f; ' [E])® = goE*

for every E C X. So again we have a suitable action of G on X.
This completes the proof.

448T Corollary Let G be a o-compact locally compact Hausdorff group, X a Polish space, u a o-finite
Borel measure on X, and (2, i) the measure algebra of u, with its measure-algebra topology. Let o be a
continuous action of G on 2 such that a — goa is a Boolean automorphism for every g € G. Then we have
a Borel measurable action « of G on X such that

goE® = (g-E)*
for every g € G and E € B(X).

proof We know that 2 is separable (3310 again) and metrizable (323Gb); let {(a,)nen Tun over a topo-
logically dense subset of 2 and (U,,),en over a base for its topology. For each (m,n) such that a,, € U,,
Vinn = {9 : goanm € U,} is a neighbourhood of the identity e of G. By 4A5S, there is a compact normal
subgroup H of G such that H C ({Viun : m, n € N, a,,, € U,} and G/H is Polish. Now we have a
continuous action 5 of G/H on 2 such that g*sa = gea for every g € G and a € A. P If g, h € G are such
that ¢* = h*, m € N, and a,,, € U,,, then g~ 'h € V,,,,, so g~ hoa,, € U,. As n is arbitrary, g~ 'hoa,, = am;
as a — g~ thoa is continuous, and m is arbitrary, g 'hoa = a and hoa = goa for every a € 2. This shows
that the given formula defines a function s from (G/H) x A to 2. It is easy to check that © is an action of
G/H on 2.

Now suppose that v € G/H, a € 2 and U is a neighbourhood of v3a in 2. Let g € G be such that g* = v;
then goa = vsa, so there are open sets V C G and U’ C 2 such that g € V, a € U’ and hob € U whenever
heVandbeU' By4AbJa, W ={h*: h € V}isopenin G/H; now v € W and wsb € U whenever w € W
and b € U’. As v, a and U are arbitrary, 5 is continuous. Q

There is therefore a Borel measurable action = : (G/H) x X — X such that vsE* = (vsE)* whenever
v € G/H and E € B(X) (448S). Set gex = g*sx for g € G and = € X. Tt is elementary to check that o is
an action of G on X. Also it is Borel measurable, because (g,x) — (g*, ) is continuous, therefore Borel
measurable, and (g°, x) — g*sx is Borel measurable. If g € G and E € B(X), then

goE‘ = g‘BE’ = (g'iE)‘ = (g.E)"
so ¢ is an action of the kind we seek.

448X Basic exercises (a) Show that the results in 448Fb and 448Fd remain true if G is not assumed
to be countable.

(b) In part (c) of the proof of 4480, show that Z is just the set of those d € 2 such that d € upr(1\ a, €)
for some a such that 1 <% a.

(c) Show that, in part (c) of the proof of 448P, we can if we wish take Z = X and ¥ = B.

>(d) Let (X,X) be a standard Borel space and ¥, a countable subalgebra of X. Show that there is
a sequence ((Ep;)ien)nen of partitions of unity in ¥ such that whenever v : ¥ — R is a finitely additive
functional and vX = Z?io vE,; for every n € N, then v[Y is countably additive.

>(e) Set X =[0,1]\ Q, G = Q and define « : G x X — X by requiring that gex — g — 2z € Z for g € G
and x € X. Show that this is a Borel measurable action and that Lebesgue measure on X is G-invariant.
Find a metric on X, inducing its topology, for which all the maps = +— gex are isometries.

>(f) Show that a Polish group carries Haar measures iff it is locally compact. (Hint: 443E.)

(g) Give Z" its usual (product) topology and abelian group structure. Show that it is a Polish group,
and has no Haar measure.
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>(h) Let (X,p) be a metric space, G a group and « an action of G on X such that z — gex is an
isometry for every g € G. (i) Show that if u is a G-invariant quasi-Radon probability measure on X then
{gez : g € G} is totally bounded for every z in the support of y. (ii) Show that if the action is transitive
and there is a non-zero G-invariant quasi-Radon measure on X, then X is covered by totally bounded open
sets. (iil) Suppose that X has measure-free weight (see §438; for instance, X could be separable). Show
that if the action is transitive and there is a G-invariant topological probability measure on X then X is
totally bounded.

(i) Let (2, 1) be a measure algebra, with the operation A and the measure-algebra topology. (i) Show
that 20 is a topological group. (ii) Show that if & is o-finite and 2 has countable Maharam type, it is a
Polish group. (iii) Show that if (A, &) is semi-finite and not purely atomic, then 2 has no Haar measure.

(J) Let (2, 1) be the measure algebra of Lebesgue measure on [0, 1], with its measure metric, and G =
Autz 2 the group of measure-preserving automorphisms on 2. (i) Show that if we give G the topology
induced by the topology of pointwise convergence on the isometry group of 2, then it is a Polish group.
(Hint: 441Xq.) (ii) Show that if v is a G-invariant topological probability measure on 2, then v{0,1} = 1.

448Y Further exercises (a) Let 2 be a Dedekind o-complete Boolean algebra, and G' a subgroup of
Aut; let G be the countably full local semigroup generated by G, and write H for the union of all the
full local semigroups generated by countable subgroups of G (following the definition in 395A as written,
without troubling about whether 2 is Dedekind complete). (i) Show that G C H. (ii) Find an example in
which H # G}. (iii) Show that if 2 is Dedekind complete then G} = H. (iv) Show that if 2 is ccc then
G* = H is the full local semigroup generated by G.

(b) In 448N, show that # is uniquely defined.

(c) Let (X,X) be a standard Borel space, Y any set, T a o-algebra of subsets of Y and J a o-ideal of
subsets of T. Let 6 : ¥ — L°°(T/J) be a non-negative, sequentially order-continuous additive function.
Show that there is a non-negative, sequentially order-continuous additive function ¢ : ¥ — L (T) such that
(identifying L>°(T/J) with a quotient space of L>°(T)) 0E = (¢E)* for every E € X.

448 Notes and comments The keys to the first part of the section are in 448F, 448G and 448L. Even
though we no longer have a Dedekind complete algebra, the fact that we are working with countable groups
means that the suprema we actually need are defined. The final step, however, uses yet another idea. In
a standard Borel space, given a finitely additive functional on the o-algebra, we can sometimes confirm an
adequate approximation to countable additivity by looking at only countably many sequences (448Xd). This
enables us to pass from a G-invariant map 6 : 2 — L (D) to a G-invariant Radon measure (parts (d)-(f)
of the proof of 448P), without needing to know anything about the algebra ® except that it is Dedekind
o-complete. In particular (and in contrast to the corresponding step in 395P) we do not need to suppose
that © is a measurable algebra. I do not know whether there is a useful ergodicity condition which could
be added to the hypotheses of 4480 to ensure that © there becomes {0,1}.

448P was proved in the case G = Z by NADKARNI 90; the extension to general Borel actions by Polish
groups is due to BECKER & KECHRIS 96. (See NADKARNI 90 for notes on the history of the problem, and
KECHRIS 95 for the basic general theory of Polish groups and Borel actions.) It is a remarkable result, but
its application is limited by the difficulty of determining whether either condition (ii) or condition (iii) is
satisfied. Much commoner situations are those like 448Xe-448Xj, where either there is no invariant measure
or we can find one easily.

The second main theorem makes no reference to the first. But it has something in common. It is an
example of the power of descriptive set theory to dramatically extend a result on group actions, which
is comparatively straightforward when the group in question is Z, to arbitrary Polish groups. Nadkarni’s
theorem is not obvious, but it is a lot easier than the general result here. Mackey’s theorem for countable
groups also requires a little care, but is essentially covered (in usefully greater generality) by 344C. The
descriptive set theory the theorem here relies on does not go as deep as the Becker-Kechris theorem, but in
exchange it calls on a kind of lifting theorem quite different from those in Chapter 34. Looked at from the
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standpoint of Chapter 34, 448Q) is a rank impossibility (see 341Xg); but the point is that we have abandoned
the ordinary algebraic requirements on a lifting and replaced them by a strong measurability property.

Of course a lifting was used in 344C as well, but in a quite different way. There the hypotheses were
adjusted to give a slightly more general context in which we could be sure that individual homomorphisms
from the measure algebra to itself were representable by functions from the measure space to itself; and I
relied indirectly on the lifting theorem 341K to set up the functions. For the context of the present section,
this step was done in 425A with no mention of liftings, but using the classification of standard Borel spaces
in 424D. In view of 424Yf, it is plain that we do not get much extra generality by using the argument
through 341K. The real difference in 344B-344C is that we can deal with semigroups of homomorphisms as
well as groups of automorphisms.

The proof of Mackey’s theorem is based on there being a Haar measure on G, so that we can use Fubini’s
theorem (three times, in parts (c), (d) and (g) of the proof). There are non-locally-compact groups G
for which a corresponding result is true (KWIATOWSKA & SOLECKI 11); it remains quite unclear when to
expect this.

Version of 13.6.13
449 Amenable groups

I end this chapter with a brief introduction to ‘amenable’ topological groups. I start with the definition
(449A) and straightforward results assuring us that there are many amenable groups (449C). At a slightly
deeper level we have a condition for a group to be amenable in terms of a universal object constructible
from the group, not invoking ‘all compact Hausdorff spaces’ (449E). I give some notes on amenable locally
compact groups, concentrating on a long list of properties equivalent to amenability (449J), and a version of
Tarski’s theorem characterizing amenable discrete groups (449M). I end with Banach’s theorem on extending
Lebesgue measure in one and two dimensions.

449 A Definition A topological group G is amenable if whenever X is a non-empty compact Hausdorff
space and e is a continuous action of G on X, then there is a G-invariant Radon probability measure on X.

Warning: other definitions have been used, commonly based on conditions equivalent to amenability for
locally compact Hausdorff groups, such as those listed in 449J(ii)-449J(xiv). In addition, many authors use
the phrase ‘amenable group’ to mean a group which is amenable in its discrete topology. The danger of this
to the non-specialist is that many theorems concerning amenable discrete groups do not generalize in the
ways one might expect.

449B Lemma Let G be a topological group, X a locally compact Hausdorff space, and « a continuous
action of G on X.

(a) Writing Cj for the Banach space of continuous real-valued functions on X vanishing at oo (4361I), the
map a — a~tef : Cy — Cp (definition: 4A5Cc) is uniformly continuous for the right uniformity on G' and
the norm uniformity of Cjy, for any f € Cj.

(b) If 41 is a G-invariant Radon measure on X and 1 < p < oo, then a +— a~teu : G — LP (definition:
441Kc) is uniformly continuous for the right uniformity on G and the norm uniformity of LP = LP(u), for
any u € LP.

proof (a)(i) Note first that if « € G and f € Cp, then = + aex : X — X is a homeomorphism (4A5Bd), so
2+ f(az) belongs to Cp; but this is just the function a=1ef.

(ii) For any € > 0 and f € Cj there is a neighbourhood V of the identity e of G such that ||f —
ateif|loe < € for every a € V. P? Suppose, if possible, otherwise. For each symmetric neighbourhood V
of e set

Qv ={(a,z):aeV,ze X, |f(z)] > ; |f(z) = f(asx)| > €}.

(©) 2003 D. H. Fremlin
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We are supposing that there are a € V and = € X such that |f(z) — f(asz)| > e. If |f(z)| > 1€ then
(a,z) € Qv. Otherwise, |f(asz)| > J¢, a™' € V and |f(asz) — f(a"tasz)| > €, so (7!, asz) € Qy. Thus
Qv is never empty. Since Qy C Qv+ whenever V' C V’| there is an ultrafilter 7 on G x X such that Qy € F
for every neighbourhood V' of e. Setting m1(a,x) = a and ma(a,z) = x for (a,z) € G x X, we see that the
image filter 7 [[F]] contains every neighbourhood of e, so converges to e, while 72 [[F]] contains the compact
set {z : |f(z)| > %€}, so must have a limit o in X. So F — (e, ) in G x X. Next, because the action
is continuous, [[F]] — esz = o, and there must be an F' € F such that |f(zo) — f(asz)| < L€ for every
(a,z) € F. Also, of course, there is an F’ € F such that |f(zo) — f(2)| < 3¢ whenever (a,z) € F’. But now
there is an (a,z) € Qe N F N F’, and we have

[f(@) = fla=2)| > ¢, |f(zo) = flasz)| < 3¢, [f(wo) — f(@)] <

simultaneously, which is impossible. X Q
Now we find that if a, b € G, ab™! € V and = € X, then

(@™t f)(x) = (b7 e f)(@)] = [flasz) — fbox)| = |flab"e(bow)) — f(bex)| < €.
As x is arbitrary, |la=tef — b7 lef||oo < € as € is arbitrary, a — a~lef is uniformly continuous for the right
uniformity.

€

W=

(b) (i) Suppose that f: X — R is continuous and has compact support K = {z : f(z) #0}. Let H D K
be an open set of finite measure. Then Vy = {a : a € G, asx € H for every x € K} is a neighbourhood of e.
P If we take a continuous function fy with compact support such that YK < fo < xH (4A2G(e-1)), then
Vo 2 {a: | fo—a tefolloc <1}, which is a neighbourhood of e by (a). Q Let € > 0. By (a) again, there is
a symmetric neighbourhood V; of e such that (||f — a e f||o)PuH < €P for every a € Vi; we may suppose
that Vi C V. If a € Vi, f(x) = f(aex) =0 for every z € X \ H, so that

1f = a bl = [y |f —a e flPdp < (If = ™ e flloo) 1 < €.

Now suppose that a, b € G and that ab~' € V4. Then

Jatef = b7 1esl = [ 1fans) = f (bl ()
= [ 1567 ) = 06 ) Pl

(because p is G-invariant, see 441L)

= [ates = ppan <

and [[a=tef —b7lef||, <e. As e is arbitrary, a — (a='ef)* is uniformly continuous for the right uniformity.

(ii) In general, given v € LP(u1) and € > 0, there is an f € Cj(X) such that ||u— f*]|, < € (416I). Let V
be a neighbourhood of e such that [la™'ef —a™'ef||oc < € whenever ab™" € V; then [[a™teu — (a7 e f)*||, =
[lu — f*|l, (because u is G-invariant), so

la™ o — b eull, < fla™tou —aT e fo |y + lla7tef = b7 eflp + [[D7Heft — b7 eul|, < 3e

whenever ab™! € V (using 441Kc). As € is arbitrary, a — a~!

uniformity. This completes the proof.

oy is uniformly continuous for the right

449C Theorem (a) Let G and H be topological groups such that there is a continuous surjective
homomorphism from G onto H. If G is amenable, so is H.

(b) Let G be a topological group and suppose that there is a dense subset A of G such that every finite
subset of A is included in an amenable subgroup of G. Then G is amenable.

(c) Let G be a topological group and H a normal subgroup of G. If H and G/H are both amenable, so
is G.

(d) Let G be a topological group with two amenable subgroups Hy and H; such that Hy is normal and
HyH, = G. Then G is amenable.
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(e) The product of any family of amenable topological groups is amenable.
(f) Any abelian topological group is amenable.
(g) Any compact Hausdorff topological group is amenable.

proof (a) Let ¢ : G — H be a continuous surjective homomorphism. Let X be a non-empty compact
Hausdorff space and « : H x X — X a continuous action. For a € G and = € X, set a1z = ¢(a)ex. Then
+1 is a continuous action of G on X, so there is a G-invariant Radon probability measure p on X. Because
¢|G] = H, p is also H-invariant; as X and e are arbitrary, H is amenable.

(b)(i) Let X be a non-empty compact Hausdorff space and « a continuous action of G on X. Let

= Pr(X) be the set of Radon probability measures on X with the narrow topology (437Jd), so that
P is a compact Hausdorff space (437R(f-ii)); recall that in this context the vague and narrow topologies
coincide (437Kc). For a € G and =z € X, set T,(z) = aex, so that T, : X — X is a homeomorphism. For
a € G and pu € P write asu for the image measure T, !, so that asu € P (418I); it is easy to check that
(a,p) — asp : G x P — P is an action. The point is that it is continuous. B Let f € C(X), ag € G, ug € P
and € > 0. By 449Ba, there is a neighbourhood V of ag in G such that [la= ef — ag'efle < 1€ for every
a € V. Next, there is a neighbourhood W of ug in P such that \faal-fdu — faglofd,uo| < %e for every
weW. But now,ifa € V and p € W,

| [ st - [ sdtageno)l =1 [ fudu [ T
)

| [atesin— [ g sdl
<| [atesdn= [ag'esdl ] [agtesdi— [ el

_ — 1
<lla™tef —ag efllee + 56 <€

(235J

As €, ag and pg are arbitrary, (a,p) — [ fd(asp) is continuous; as f is arbitrary, « is continuous. Q

(ii) Because the topology of P is Hausdorff, it follows that Q, = {p : p € P, aspt = p} is closed in P
for any a € G, and that G, = {a: a € G, aep = p} is closed in G for any p € P. Now for any finite subset
I of A there is an amenable subgroup H; of G including I. The restriction of the action to Hy x X is a
continuous action of Hy on X, so has an H;-invariant Radon probability measure, and (,c; Qo 2 naGHI Qa

is non-empty. Because P is compact, there is a u € [),.4 Qa- Since G, includes the dense set A, it is the
whole of G, and p is G-invariant. As X and « are arbitrary, G is amenable.

(c) Let X be a compact Hausdorff space and « a continuous action of G on X. Let P be the space of
Radon probability measures on X with its narrow topology. Define asp, for @« € G and p € P, as in (b-i)
above, so that this is a continuous action of G on P. Set Q@ = {u: p € P, aspp = pu for every a € H}; then @
is a closed subset of P and, because H is amenable, is non-empty, since it is the set of H-invariant Radon
probability measures on X. Next, bepy € @ for every p € Q and b € G. PP If a € H, then

as(bepr) = (ab)ep = (bb~ " ab)eps = bo((b™"ab)ops) = bop,

because H is normal, so b~ 'ab € H. As a is arbitrary, bepr € Q. Q Accordingly we have a continuous action
of G on the compact Hausdorff space Q.

If a € H and b € G, then bep = (ba)ep for every p € Q. We therefore have a map o : G/H x Q — Q
defined by setting b*cp = bep whenever b € G and p € Q. It is easy to check that this is an action.
Moreover, it is continuous, because if W C @ is relatively open then {(b, ) : bep € W} is open in G x Q, so
its image {(b*, u) : b*op € W} is open in (G/H) x Q (using 4A2B(f-iv)). Because G/H is amenable, there
is a (G/H)-invariant Radon probability measure A on Q.

Now consider the formula p(f) = [,([x f(z)u(dz))A(dp). If f € C(X), then p = [y f(z)u(dz) is

continuous for the vague topology on @, so p(f) is well-defined. Clearly p is a linear functional, p(f) > 0 if
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f >0, and p(xX) = 1; so there is a Radon probability measure v on X such that p(f) = [ fdv for every
feC(X) (436J/436K). If b € G, then, in the language of (b) above,

[ tier) = [ 1w = pir) - / ([ T an)
//fdb-u (dps) = //fd o)A (d) = //fdmdm

(because A is G/H-invariant)

:/fdu

for every f € C(X), so that bev = v. Thus v is G-invariant. As X and « are arbitrary, G is amenable.

(d) The canonical map from H; to G/Hj is a continuous surjective homomorphism. By (a), G/Hj is
amenable; by (c), G is amenable.

(e) By (c) or (d), the product of two amenable topological groups is amenable, since each can be regarded
as a normal subgroup of the product. It follows that the product of finitely many amenable topological groups
is amenable. Now let (G;);cr be any family of amenable topological groups with product G. For finite J C I
let H; be the set of those a € G such that a(7) is the identity in G; for every i € I'\J. Then H is isomorphic
(as topological group) to [, ; Gi, so is amenable. Since {H; : J € [I]<“} is an upwards-directed family of
subgroups of G with dense union, (b) tells us that G is amenable.

(£)(i) The first step is to observe that the group Z, with its discrete topology, is amenable. I Let X be a
compact Hausdorff space and « a continuous action of Z on X. Set ¢(x) = lex for x € X. Then ¢ : X — X
is continuous, so by 437T there is a Radon probability measure 1 on X such that p is equal to the image
measure p¢ 1. Because ¢ is bijective, we see that, for E C X, E € dom p iff ¢[E] € dom(u¢p~t) = dom p,
and in this case u¢|[E] = pE; that is, ¢!, like ¢, is inverse-measure-preserving. Now we can induce on n to
see that u(¢™)~1 and p(¢~")~! are equal to u for every n. Since nex = ¢"(z) for every x € X and n € Z,
1 is Z-invariant. As X and e are arbitrary, Z is amenable. Q

(ii) Now let G be any abelian topological group. For each finite set I C G let ¢7 : Z! — G be the
continuous homomorphism defined by setting ¢;(z) = [[,c; @@ for z € ZI. By (i) just above and (e),
we know that Z! (with its discrete topology) is amenable, so (a) tells us that the subgroup G; = ¢;[Z'] is
amenable. But now {G; : I € [G]<“} is an upwards-directed family of amenable subgroups of G with union
G, so from (b) we see that G is amenable.

(g) This is immediate from 443Ub. (See also 449Xe.)

449D Theorem Let G be a topological group.

(a) Write U for the set of bounded real-valued functions on G which are uniformly continuous for the
right uniformity of G. Then U is an M-space, and we have an action ¢; of G on U defined by the formula
(a1 f)(y) = f(a=ty) fora, y € G and f € U.

(b) Let Z C RY be the set of Riesz homomorphisms z : U — R such that z(xyG) = 1. Then Z is a compact
Hausdorff space, and we have a continuous action of G on Z defined by the formula (a«z)(f) = z(a"te,f)
foraeG,ze€ Zand feU.

(c) Setting a(f) = f(a) for a € G and f € U, the map a — a : G — Z is a continuous function from G
onto a dense subset of Z. If a, b € G then ash = ab.

(d) Now suppose that X is a compact Hausdorff space, (a,x) — asz is a continuous action of G on X, and
xo € X. Then there is a unique continuous function ¢ : Z — X such that ¢(é) = o and ¢(asz) = asd(z)
for every a € G and z € Z.

(e) If G is Hausdorff then the action of G on Z is faithful and the map a — & is a homeomorphism
between G and its image in Z.

proof (a) Because U is a norm-closed Riesz subspace of Cy(G) containing the constant functions (4A2Jh),
it is an M-space. To see that the given formula defines an action, we need to check that ae;f belongs to U
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whenever a € G and f € U. Of course ae; f is continuous and ||ae; f|lcc = || f|lco is finite. If € > 0 there is a
neighbourhood V' of the identity e in G such that |f(b) — f(c)| < € whenever b, ¢ € G and be™! € V; now
a~'Va is a neighbourhood of e, and if bc=! € aVa~! then (a=!b)(a"1c)™t € V, so |(as;f)(b) — (a1 f)(c)| =
|f(a=tb) — f(a=tc)| < e. Aseis arbitrary, as; f is uniformly continuous with respect to the right uniformity.
Now ¢; is an action, just as in 4A5Cc.

(b)(i) Because U is an M-space with standard order unit xG, Z is a compact Hausdorff space and U
can be identified, as normed Riesz space, with C'(Z) (354L). For any a € G, the map f — a+;f : U - U is a
Riesz homomorphism leaving the constant functions fixed. So we can define aez, for z € Z, by saying that
(as2)(f) = z(a=tef) for any f € U, and aez will belong to Z for any a € G and z € Z. As usual, it is easy
to check that this formula defines an action of G on Z.

(ii) (a,z) — aez is continuous. P Take ag € G, zp € Z and any neighbourhood W of agezo in Z.
Because U corresponds to the whole of C(Z), and Z is completely regular, there is an f € U such that
(ag*z0)(f) = 1 and z(f) = 0 for every z € Z\ W. Set Wy = {z : z(ay '+1f) > 4}. Observe that zo(ag '«.f) =
1, so Wy is an open subset of Z containing 2. Next, set Vo = {a:a € G, |la™ o;f —ag '+ f|lsc < 5}. There
is a neighbourhood V' of e such that |f(b) — f(c)| < 2 whenever b, ¢ € G and bc™! € V. If a € Vag then
ab(aph) ™! = aay ' € V so

(@™ o0 )(b) = (ag™ 1) )] = | (ab) — Flaob)| < &

for every b € G, and a € V. Thus V) O Vag is a neighbourhood of ag.
Now if a € V and z € Wy we shall have

_ _ 1
(@2)(f) = 2(a= o f) > (g uf) = £ > 0
and asz € W. As ag, zo and W are arbitrary, the action of G on Z is continuous. Q

(c) Of course a, as defined, is a Riesz homomorphism taking the correct value at xG, so belongs to Z.
Because U C C(X), the map a — a is continuous. ? If {a : a € G} is not dense in Z, there is a non-zero
h € C(Z) such that h(a) = 0 for every a € G; but as U is identified with C(Z), there is an f € U such that
z(f) = h(z) for every z € Z. In this case, f cannot be the zero function, but f(a) = a(f) = h(a) = 0 for
every a € G. X Thus the image of G is dense, as claimed.

Ifa,be G and f € U then

(asd)(f) = bla™"e1f) = (@™ o1 f)(b) = f(ab) = ab(f),
s0 ash = ab.

(d) We have a Riesz homomorphism 7' : C(X) — R defined by setting (T'g)(a) = g(asxo) for every
g€ C(X) and a € G. Now Tg € U for every g € C(X). P Tg(a) = (a=teg)(z0); since the map a > a~leg
is uniformly continuous (449Ba), so is T'g. ||T¢||cc < ||gllco is finite, so Tg € U. Q

Of course T(xX) = xG. Soif z € Z, 2T : C(X) — R is a Riesz homomorphism such that (27)(xX) = 1.
There is therefore a unique ¢(z) € X such that (27)(g) = g(¢(z)) for every g € C(X) (354L again). Since

the function z — g(¢(2)) = z(Tg) is continuous for every g € C'(X), ¢ is continuous.
Now suppose that a € G. Then ¢(a) = asxg. P If g € C(X), then

9(6(a)) = a(Tg) = (Tg)(a) = glasz0). Q
So if a, b € G, then
$ash) = ¢(ab) = (ab)=zo = as(bemo) = asg(b).

Since {b: b € G} is dense in Z, and all the functions here are continuous, ¢(asz) = as¢(2) for all a € G and
z € Z.

To see that ¢ is unique, observe that if @ € G then ¢(a) = ¢(ae) = ¢(aé) must be as¢(é) = aszy; since
{a:a € G} is dense in Z, X is Hausdorff and ¢ is declared to be continuous, ¢ is uniquely defined.

(e) Now suppose that the topology of G is Hausdorff. Then it is defined by the bounded uniformly
continuous functions (4A2Ja); the map a +— a is therefore injective and is a homeomorphism between G and
its image in Z. If a, b € G are distinct, then aeé = @ # b = b€, so the action is faithful.
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Definition Following BROOK 70, the space Z, together with the canonical action of G on it and the map
a— a:G — Z,is called the greatest ambit of the topological group G.

449E Corollary Let G be a topological group. Then the following are equiveridical:

(i) G is amenable;

(ii) there is a G-invariant Radon probability measure on the greatest ambit of G;

(iii) writing U for the space of bounded real-valued functions on G which are uniformly continuous for
the right uniformity, there is a positive linear functional p : U — R such that p(xG) = 1 and p(a<; f) = p(f)
for every f € U and a € G.

proof Let Z be the greatest ambit of G.

(i)=-(ii) As soon as we know that Z is a compact Hausdorff space and the action of G on Z is continuous
(449Db), this becomes a special case of the definition of ‘amenable topological group’.

(ii)=(i) Let u be a G-invariant Radon probability measure on Z. Given any continuous action of G on
a non-empty compact Hausdorff space X, fix g € X and let ¢ : Z — X be a continuous function such that
d(az) = as¢(z) for every a € G and z € Z, as in 449Dd. Let v be the image measure pu¢—!. Then v is a
Radon probability measure on X (4181 again). If F' € domv and a € G, then
v(asF) = pé~aeF] = p(as¢™'[F]) = po~'[F] = vF.
As a and F are arbitrary, v is G-invariant; as X and « are arbitrary, G is amenable.

(ii)<(iii) The identification of U with C(Z) (see (b-i) of the proof of 449D) means that we have a
one-to-one correspondence between Radon probability measures p on Z and positive linear functionals p on
U such that p(xG) = 1, given by the formula p(f) = [ 2(f)u(dz) for f € U (436J/436K again). Now

W is G-invariant
= /(a-z)(f)u(dz) = /z(f)u(dz) for every fe U, a € G
(441L)

= /z(a_lolf)u(dz) = /z(f)u(dz) for every f € U, a € G

= /z(aolf),u(dz) = /z(f),u(dz) for every f €U, a € G
< plasf) =p(f) for every f €U, a € G.

So there is a G-invariant p, as required by (ii), iff there is a G-invariant p as required by (iii).

449F Corollary Let G be a topological group.
(a) If G is amenable, then
(i) every open subgroup of G is amenable;
(ii) every dense subgroup of G is amenable.
(b) Suppose that for every sequence (V,,),en of neighbourhoods of the identity e of G there is a normal
subgroup H of G such that H C (), .y Vi and G/H is amenable. Then G is amenable.

proof Write Ug for the set of bounded real-valued functions on G which are uniformly continuous for
the right uniformity of Gj; if H is a subgroup of G, let Uy the set of bounded real-valued functions on H
which are uniformly continuous for the right uniformity of H; and if H <1 G, let Ug g the set of bounded
real-valued functions on the quotient G/H which are uniformly continuous for the right uniformity of G/H.

(a)(i) (@) Let H be an open subgroup of G. Take a set A C G meeting each right coset of H in just one
point, so that each member of G is uniquely expressible as ya where y € H and a € A. Define T : Uy — R®
by setting (T'f)(ya) = f(y) whenever f € Uy, y € H and a € A. Then T is a positive linear operator.
Also T[Ug) C Ug. P Let f € Uy. Of course T'f is bounded. If € > 0, there is a neighbourhood W of the
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identity in H such that |f(z) — f(y)| < € whenever z, y € H and xy~! € W. Because H is open, W is also
a neighbourhood of the identity in G. Now suppose that z, y € G and zy~' € W. Express z as zoa and y
as yob where xg, yo € H and a, b € A. Then

zoab~ly,t € W C H,
soab™' € H and a € Hb and a = b and z¢y, ' € W and

(T ) = (THY) = [f(xo) = flyo)l <€

As € is arbitrary, T'f is uniformly continuous and belongs to Ug. Q

(B) Next, bey(T'f) = T(be1f) whenever f € Uy and b€ H. P If z € G, express it as ya where y € H
and a € A. Then

(b Tf)(x) = (T~ ) = (T)(b" ya) = f(0~y) = (b f)(y) = T(b=1f)(2). Q

() By 449E, there is a positive linear functional p : Ug — R such that p(xG) = 1 and p(ae; f) = p(f)
whenever f € Ug and a € G. Set q(f) = p(Tf) for f € Uy; then ¢ is a positive linear operator, q(xH) = 1
and ¢ is H-invariant, by (ii). So by 449E in the other direction, H is amenable.

(ii) Now suppose that H is a dense subgroup of G. It is easy to see that the right uniformity of H is
the subspace uniformity induced by the right uniformity of G (3A4D), so that f[H € Uy for every f € Ug.
In the other direction, if g € Uy, then g extends uniquely to a member of Ug, by 3A4G; write T'g for the
extension. In this case, be;T'g = T'(be;g) for every g € Ug and b € H. P be;T'g and T'(be;g) are continuous,
and for a € H,

(b1 Tg)(a) = Tg(b~'a) = g(b~"a) = (barg)(a) = T(b=1g)(a);
as H is dense in G, be;T'g = T'(b1g). Q
Now we can use the same argument as in (i-y) above to see that H is amenable.

(b)(i) Let H be the family of normal subgroups H of G such that G/H is amenable.

() For H € H, let 7y : G — G/H be the canonical homomorphism and py : Ug g — R a positive
linear functional such that py (x(G/H)) = 1 and pg(co1g) = pu(g) whenever g € Ug g and ¢ € G/H. Let
Uly be {f: f € Ug, f(x) = f(y) whenever z, y € G and xy~! € H}. Then U} is a linear subspace of Ug
containing xG.

If f € Uy then there is a unique g € Ug/y such that f = gry. P Because f(z) = f(y) whenever
mgr = wpy, and 7wy is surjective, there is a unique function g : G/H — R such that f = grp; because f is
bounded, so is g. Given € > 0, there is an open neighbourhood W of e such that |f(x) — f(y)| < € whenever
xy~! € W. In this case, 75 [W] is a neighbourhood of the identity in G/H (4A5J(a-i)). Suppose that c,
¢y € G/H are such that cocl_1 € my[W]. Then there are xg, 1 € G and x € W such that mgzo = co,
wgx1 = c1 and Tgr = cocfl. As WH(xoxfl) = g, there is a y € H such that yxoxfl = x belongs to W;
so that 7y (yzo) = ¢ and

|9z (co) — gu(cr)| = |f(ywo) = fz1)] < e

As e is arbitrary, g € Ug/n- Q
We therefore have a functional p; : Uy — R defined by setting p; (97m) = pr(g) whenever g € Ug/p.
Of course g > 0 whenever gnyg > 0, so p/y is a positive linear functional, and p; (xG) = 1.

(B) If f € Uy and a € G then ae f € Uy and py(asf) = py(f). P Let g € Ug/p be such that
f=gmg. Then
(auf)(@) = fla™'w) = grr(a'2) = g(ru(a) 'mu(2)) = (7r(a)ug)(7u(z))
for every x € G; so ae;f = (7w (a)eg)my belongs to Uy, and
Pulaaf) =pu(ru(a)ug) =pu(g) = ryu(f) Q
(ii) For any family V of neighbourhoods of e, set Hy = {H : H € H, H C (V}. Now for any
f € Ug there is a countable family V of neighbourhoods of e such that f € U}, for every H € Hy. P For
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each n € N choose a neighbourhood V;, of e such that |f(z) — f(y)| < 27" whenever zy~! € V,,, and set
V={V,:neN}. Q

(iii) We are supposing that Hy is non-empty for every countable family V of neighbourhoods of e.
There is therefore an ultrafilter F on A containing Hy for every countable V. Now we see from (ii) that
for any f € Ug the set {H : H € H, f € Uy} belongs to F, while |p(f)] < || flleo for any H such that
f € Up; so we can set p(f) = limpy_, r py (f) for every f € Ug. In this case, of course, p is a positive linear
functional and p(xG) = 1. Also, given f € Ug and a € G, then py(f) = py(asif) whenever f € Uy, by
(i-8), so p(f) = p(as f). Thus p satisfies (iii) of 449E and G is amenable.

449G Example Let F5 be the free group on two generators, with its discrete topology. Then F5 is
a o-compact unimodular locally compact Polish group. But it is not amenable. B Let a and b be the
generators of F5. Then every element of Fy is uniquely expressible as a word (possibly empty) in the letters
a, b, a=', b~! in which the letters a, a~! are never adjacent and the letters b, b~' are never adjacent.
Write A for the set of elements of Fy for which the canonical word does not begin with either b or b1,
and B for the set of elements of F, for which the canonical word does not begin with either a or a=!.
Then AUB = F; and AN B = {e}. T Suppose, if possible, that F» is amenable. Every member of
¢ (F%y) is uniformly continuous with respect to the right uniformity. So there is an Fh-invariant positive
linear functional p : £>°(F») — R such that p(xF2) = 1. Let v be the corresponding non-negative additive
functional on PF,, so that vC = p(xC) for every C C Fy. For ¢ € Fy and C C Fy, coyxC = x(cC), so
v(cC) = vC for every C' C Fy and ¢ € Fy. In particular, v(b"A) = vA for every n € Z; but as all the b™ A,
for n € Z, are disjoint, A = 0. Similarly vB = 0 and

0=v(AUB) =vF, =p(xF) = 1,

which is absurd. X Thus F5 is not amenable, as claimed. Q

449H In this section so far, I have taken care to avoid assuming that groups are locally compact. Some
of the most interesting amenable groups are very far from being locally compact (e.g., 449Xh). But of course
a great deal of work has been done on amenable locally compact groups. In particular, there is a remarkable
list of equivalent properties, some of which I will present in the next theorem. It will be useful to have the
following facts to hand.

Lemma Let G be a locally compact Hausdorff topological group, and U the space of bounded real-valued
functions on G which are uniformly continuous for the right uniformity, as in 449D-449E. Let p be a left
Haar measure on G, and * the corresponding convolution on £°(y) (4440).

(a) If h € LY(p) and f € £°°(u) then hx f € U.

(b) Let p : U — R be a positive linear functional such that p(ae;f) = p(f) whenever f € U and a € G.
Then p(h* f) = p(f) [ hdp for every h € L*(u) and f € U.

proof (a) Recall that we know from 444Rc that h * f is defined everywhere in G and is continuous. For
any x € G,

(hx f)(x) = [ h(zy) flyu(dy) = [z k) x f,

where ?(y) = f(y~') whenever y~! € dom f (4A5C(c-ii)). By 449Bb, applied to the left action of G on
itself,  — (z7te;h)* : G — L'(p) is uniformly continuous for the right uniformity of G and the norm
uniformity of L'(u). Since w — [u x v : L'(u) — R is uniformly continuous for every v € L>(u),
z = (hx f)(z) = [(z7tqh)* x ?' is uniformly continuous for the right uniformity (3A4Cb). Of course
sup,cq |(h f)(@)] < [[hl[1]| flloo is finite, so b f € U.

(b) Let € > 0. Then there are a compact set K C G such that fG\K |h|dp < € (412Je) and a symmetric
open neighbourhood Vj of e such that |f(z) — f(y)| < € whenever zy~! € V. Let ag,... ,a, € G be such
that K C {J,<,, a;Vo, and set E; = a;Vo \ U, .; a;Vo, o; = fE hdp for each i <n and F = G\ U<, a;Vo. If
€ Gand y € E;, then y~'a(a; 'z)~! = (a; 'y)~! belongs to Vo, so |f(y~'a) — f(a; 'z)| < e. So, for any
T €QG,
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Zazfa x)
(dy) — Y st ()
—| / LIRS |
= | [ m 1 et + > /| ) () - o )|
< £l /F i+ 3 [E B ) ~ fla7 ()

< £l /X 2D /E Ihldu < (|l fl + I]10)-
1=0 i

Thus

1B f =32 g aiainiflloo < €(llflloo + [IA]1)-
Since p(a;+;f) = p(f) for every i, it follows that

lp(h* f) /hdul < e(lflleo + [1Pl)P(XG) +|Zaz /hdu\lp

< e([[flloe + [[2l1)P(XG) +|/thu|||f||oop(xG)

< €2l flloe + Ill1)P(XG).
As e is arbitrary, p(h * f) = p(f) [ hdpu, as claimed.

4491 Notation It will save repeated explanations if I say now that for the next two results, given a
locally compact Hausdorff group G, Y will be the algebra of Haar measurable subsets of G and Ng the
ideal of Haar negligible subsets of G (443A), while B¢ will be the Borel o-algebra of G. Recall that all three
are left- and right-translation-invariant and inversion-invariant, and indeed autohomeomorphism-invariant,
in that if v : G — G is a function of any of the types

T = ar, I+ xa, e

or is a group automorphism which is also a homeomorphism, and E C G, then v[E] belongs to X¢g, Ng or
B iff E does (443Aa).

449J Theorem Let G be a locally compact Hausdorff group; fix a left Haar measure p on G. Write £!
for £1(u) and L for L>=(u), etc. Let C}; be the set of continuous functions h : G — [0, 0o with compact
supports such that [ hdu =1, and suppose that ¢ € [1,00[. Then the following are equiveridical:

(i) G is amenable;

(ii) there is a positive linear functional p : C,(G) — R such that p(xG) = 1 and p(a«;f) = p(f) for every
f € Cy(G) and every a € G;

(iii) there is a finitely additive functional ¢ : Bg — [0, 1] such that ¢G = 1, ¢(aFE) = ¢FE for every E € Bg
and a € G, and ¢FE = 0 for every Haar negligible E € Bg;

(iv) there is a finitely additive functional ¢ : $¢ — [0, 1] such that ¢G = 1, ¢(aF) = ¢(Ea) = ¢(E~) =
¢F for every E € ¥g and a € G, and ¢E = 0 for every E € Ng;

(v) there is a positive linear functional p : L — R such that p(xG*) = 1 and p(asju) = plas,u) =
plascu) = p() = p(u) for every u € L> and every a € G, where o), ., o and ¢ are defined as in 443Af and
443Cc;

(vi) there is a positive linear functional p : L — R such that p(xG*) = 1 and p(as;u) = p(u) for every
u € L* and every a € G;
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(vii) there is a positive linear functional p : L> — R such that p(xG*) = 1 and p(v * u) = vG - p(u) for
every u € L and every totally finite Radon measure v on G, where v * u is defined as in 444Ma;

(viil) there is a positive linear functional p : L> — R such that p(xG*) = 1 and p(v * u) = p(u) [ v for
every v € L' and u € L™

(ix) for every finite set J C L' and € > 0, there is an h € C}; such that ||g*h — ([ gdu)h|1 < € for every
g € J;

(x) for every compact set K C G and € > 0, there is an h € C}}| such that ||as;h — h|j; < € for every
a € K;

(xi) for any finite set I C G and € > 0, there is a u € L7 such that ||u||, = 1 and ||u — aejull, < € for every
a€l;

(xii) for any finite set I C G and e > 0, there is a compact set L C G with non-zero measure such that
uw(LAaL) < epl for every a € I;

(xiii) for every compact set K C G and e > 0, there is a symmetric compact neighbourhood L of the
identity e in G such that u(LAaL) < eulL for every a € K;

(xiv) (EMERSON & GREENLEAF 67) for every compact set K C G and € > 0, there is a compact set
L C G with non-zero measure such that u(KL) < (1 + €)uL.

proof (a)(i)=(vii) Write U for the space of bounded real-valued functions on G which are uniformly
continuous for the right uniformity. Then we have a positive linear functional p : U — R such that p(xG) =1
and p(as; f) = p(f) for every f € U and a € G (449E). Now if f € £, hy, hy € L' and [ hidp = [ hodp,
then p(hq * f) = p(ha * f). P By 449Ha, both hy % f and ho * f belong to U. Set h = hy — ho. By 444T,
there is a neighbourhood V' of e such that ||k * v — h|[; < € whenever v is a quasi-Radon measure on G such
that vV = vG = 1, defining h * v as in 444J. In particular, taking v to be the indefinite-integral measure

over y defined from g = #ivxv, lh % g — h|l1 <€ (using 444Pb). Now

[p(hy * f) = p(ha = )] = [p(h )] < |p((h* g) * f)] + [p((h* g — h) * f)]
< [p(hx (g P+ [(h*g—h)* flleo
(because * is associative, 4440e)

< Ip(g*f)/hdu|+ 1 g — Blla | lloe
(449HD)
< ellflls-

As € is arbitrary, p(hy * f) = p(hs * f), as claimed. Q

Of course p(h * f) = 0 whenever h € L', f € £L> and f = 0 a.e. (4440b). We can therefore define a
functional p : L> — R by saying that p(f*) = p(h = f) whenever f € L, h € L' and [hdu = 1. p is
positive and linear because p is. It follows that p(h * f) = p(f*) [ hdpu whenever h € L' and f € £>°. Also
P(xG*) = p(xG) = 1 because h * xG = ([ hdu)xG for every h € L1.

If u € L™ and v is a totally finite Radon measure on G, express u as f* where f € L, so that
vku = (vx[f)* (444Ma). Taking any non-negative h € L' such that [ hdu = 1, we have

hx (v f)=huxvx*f)
(444Pa; here hy is the indefinite-integral measure, as in 444J)

= (hu*v)* f
(4441c)

= (hxv)uxf
(444K)

=(h*xv)xf

(444Pa again). So
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B u) = 5w+ )*) = plh x (v + £)
b0 s f) = [ hevdup) = vG ()

(444K). As v and u are arbitrary, p has the required properties.

(b)(vii)=(vi) Take p from (vii). If a € G and u € L*°, consider the Dirac measure J, on G concentrated
at a. Then d, * u = asju. P Take f € £ such that f* = u. Then

(60 % )(@) = [ fly™2)da(dy) = f(a™ z) = (a1 f) (@)
whenever a 'z € dom f, so §, * f = a;f and
0ok u =204 % f* = (0ax f)" = (asf) =anu. Q
Accordingly, using (vii),
plasiu) = p(dq * u) = 6a(G)p(u) = p(u),
as required by (vi).

(c)(vi)=(v) (@) The first step is to note that since there is a left-invariant mean there must also be a right-
invariant mean, that is, a positive linear functional § : L — R such that §(xG*) = 1 and ¢(as,u) = G(u) for
every u € L™ and every a € G. P Set G(u) = p(u) for u € L>°. Evidently ¢ is a positive linear functional
and ¢(xG*) = 1. By 443Gc,

q(asyu) = p((asru)”) = plasii) = p(u) = 4(u)
whenever u € L and a € G. Q

(B) At this point, recall that L' is a Banach algebra under convolution (444Sb), and that L can be
identified with its normed space dual, because u is a quasi-Radon measure, therefore localizable (415A), and
we can use 243Gb. We therefore have an Arens multiplication on (L>°)* = (L')** defined by the formulae
of 4A60. Of course p and ¢ both belong to (L>°)*; write 7o = poq for their Arens product. To see that
7o(xG*) = 1, note that if u, v € L' then, defining yG*ou and GoxG* as in 4A60, we have

f(XG'ou) xv:fXG' x(u*v):fufv
as noted in 444Sb; consequently xG*ou = ([ u)xG"*,
J(@oXxG*) x u=q(xG*ou) = §(([u)xG*) = [u
and goxG* = xG*. Now, of course,
fo(XG*) = p(GoxG*) = p(xG*) = 1.
As noted in 4A60, ||7o]] < |IP]|l|g]] = 1, so 7o must be a positive linear functional.

(v) We find next that 7o(asju) = 7o(u) whenever u € L™ and a € G. P By 443Ge, we have
a bounded linear operator S : L' — L' defined by setting Sv = a~'e;v for every v € L'. By 444Sa,
S(uxv) = (Su)*v for all u, v € L'. Identifying L> with (L!)*, we have the adjoint operator S’ : L> — L

given by saying that
/S’uxv:/uxSv:/ux(a_l-w)

_ /a-l(u X g~ Low) = /(a-lu) X

whenever u € L™ and v € L', so that S’u = aeju for every u € L>. But this means that
(5"p)(u) = plasiu) = p(u)
for every u, so that S”p = p. By 4A60(b-i),
5" = §"(peq) = (5"P)°q = poq = o,
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that is, 7o(asju) = 7o(u) for every u € L™. Q

(8) In the same way, 7o(as,u) = 7o(u) whenever u € L™ and a € G. P This time, define T : L' — L!
by setting Tv = A(a"')a"te,v for every v € L', where A is the left modular function of G; 444Sa tells
us that T(uxv) = uxTo for all u, v € L*. Since [ fdu = A(a) [ as,fdp for every f € L' (442Kc),
Jv=A»A(a) [aev for every v € L', and

/T'u v = /u « Tv = A=) /u « (a=Lor0)
_ / o1 4~ Lor0) = / (astt) X v

whenever v € L™ and v € L'. Thus T'u = ae,u for every u € L. But now we have
(T"3)(u) = dasru) = 4(u)
for every u, so that 7§ = G. By 4A60(b-ii), T"7y = 7o, that is, 7o(as,u) = 7o(u) for every u € L. Q
(€) Thus 7 is both left- and right-invariant. To get reversal-invariance, set

1

Fu) = 5(%(“) + 7o(u))

for u € L. Then 7 is a positive linear functional and 7o(xG*) = 1. Because
as i = (as;u)®,  as .t = (asu)®,
u > To(d) and 7 are also both left- and right-invariant, and of course 7(%) = 7(u) for every u. Finally,
7(ascu) = F(as(asru)) = 7(u)
for every u € L*™ and a € G, so 7 has all the properties required by (v).

(d)(v)=(iv) Take p from (v), and set ¢E = p(xE*) for every E € . Then ¢ : ¢ — [0, 1] is additive
and ¢G = 1; also, if F € Ng, xE* =0in L™ and ¢F = 0. If £ € ¢ and a € G, then x(aFE) = a«(xE)
(4A5C(c-ii)) and

¢(aE) = p(x(aE)*) = p((aa1x E)*) = plasi(xE*)) = p(xE*) = SE.
Next, YE~! = (xE)* and (yE~1)* = (xE*)*~, so
S(E™Y) =p((xE*)") = p(xE*) = ¢E.
Consequently, for £ € ¥ and a € G,
#(Ea) = 6((Ba)™) = 6(a" E-1) = (E1) = oF.
Thus ¢ satisfies the requirements of (iv).
(e)(iv)=-(iii) This is trivial; we have only to take ¢ : ¥ — [0, 1] as in (iv) and consider ¢|Bg.

(f) (iii)=-(ii) Given ¢ : Bg — [0,1] as in (iii), set p(f) = f fd¢ for f € C,(G), where f d¢ is as defined
in 363L, that is, the unique || |/co-continuous linear functional on the space L™ (Bg) of bounded Borel
measurable functions from G to R such that fxEd¢ = ¢F for every E € Bg. p is positive because ¢ is
non-negative (363Lc), and p(xG) = ¢G = 1. If a € G, then

fauxEdd = fx(aB)dp = p(aE) = 6E = f XE d¢

for every E € Bg; because f — § fd¢ and f — fas; fd¢ are both linear and || ||s-continuous, they agree on
L>*(Bg) 2 Cy(G), and

plasif) = fas fdp = f fdp = p(f)
for every f € Cp(G), as required.

(g)(ii)=(i) Given p as in (ii), its restriction to the space of bounded right-uniformly-continuous functions
is positive, linear and G-invariant, so G is amenable, by 449E.

(h) (vii)=(viii) Take p as in (vii). If g € £, f € £ and g > 0, then

MEASURE THEORY



449J Amenable groups 149

plg* ) =plguxf)* =plgu=f*)
— () (G)B([*) = / gdu-5(f*);

translating into terms of L' and L as in 444Sa, we get p(v*u) = [v-p(u) for all u € L> and v € (L')*.
By linearity, the same is true for all v € L', as required by (viii).

(1) (viii)=(ix) Suppose that (viii) is true.
(a) Note first that if J C £ is finite and € > 0, then
A(J,e) ={h:h e CY, |ff x hdp —p(f*)] < e for every f € J}

is non-empty. P It is enough to consider the case in which G € J. Let n € ]0, %[ be such that n +
5nsupey|If*]loe < €. Because p € (L™)* = (L')**, there is a ug € L' such that [lugl, < 1 and [p(f*) —
J f* xug| < nfor every f € J (4A4If). In particular, [ug > p(xG*) —n = 1 —n. By 4161 again, there
is a continuous hy : G — R with compact support such that |lug — k|1 < n. Now [hodp > 1 — 2n and

[ 1holdi < 1+4n. So if we set h =hoV 0, v = [hidu and h = %haﬂ we shall have

1
y<1+m, lhg —holh =35 [ lhol —ho <21, [h=h | = |y —1] < 2n,

s0 |[ug — h*||l1 < 51, while h € C}f;. This will mean that

B(f*) = [ fxhdul <n+5n)fle <e

for every f € J. Q
We therefore have a filter F on C’;‘l containing every A(J,¢), and p(f*) = limp_, 7 [ f x hdp for every
fe L.

(B) Now 0 = limj, (g x h)* — ([ gdu)h* for the weak topology of L', for every g € £'. T Set
v = [gdu. Let f € L. Define ¢’ by setting ¢'(x) = A(z~g(z™1) Whenever this is defined, where A is
the left modular function of G, as before; then ¢’ € L' and [ ¢’dp = v (442K (b-ii)). Set v = (¢')* € L*. If
h e Cljl, then

/ [ x(g*xh)dp= / f(zy)g(x)h(y)p(dz)pu(dy)
(44404)

= /(/A(x‘l)g’(:v‘l)f(wy)u(dw))h(y)u(dy)

= /(g’ « [)(W)h(y)u(dy)
(4440a)

— [+ x han
By (viii), we have

Blg' * £)* =p(ox f*) = (f*) [ v =p(f*
so we get
hm /fx (gxh—~h)du = hm/g x f—~f) x hdu

=blg"* )" —p(f*) = 0.
As f is arbitrary, and (L')* can be identified with L°°, this is all we need. Q
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(7) Now take any finite set J C L' and € > 0. On (L')” let T be the locally convex linear space topology
which is the product topology when each copy of L' is given the norm topology, and & the corresponding
weak topology. Define T': C1,(G) — (L')” by setting

Th={(g*h)* — (fgdﬂ)h.>geJ

for h € Cy(G), where C(G) is the linear space of continuous real-valued functions on G with compact
support. Then T is linear. Moreover, by (3), limj,_,7Th = 0 in (L')” for the product topology, if each
copy of L! is given its weak topology. By 4A4Be, this is just &. In particular, 0 belongs to the G-closure
of T[C}]. But C}; is convex and T is linear, so T[C,,] is convex; by 4A4Ed, 0 belongs to the T-closure of
T[C},]- There is therefore an h € C}; such that |[(g*h)* — ([ gdu)h*||1 < € for every g € J. As J and € are
arbitrary, (ix) is true.

(j) (ix)=>(x) Suppose that (ix) is true and that we are given a compact set K C G and € > 0. Set n = Se.
Fix any ho € Cff;. Let V be a neighbourhood of e such that [ce;hg — holl1 < 1 whenever ¢ € V' (443Gf).
Let I C G be a finite set such that K C IV. By (ix), there is an h; € C’]jl such that

[[betho * by — hql|1 < n for every be I, ||hg*h1 — hi]1 <.

(I omit brackets because (bsjhg) * hy = bej(ho * h1), see 4440f.) Set h = hg * hy. Then h € C}. P h is
continuous, by 444Rc (or otherwise). If we write M; for the support supp(h;) of h; for both i, then h(z) =0
for every x € G\ MyM;, so h has compact support. Of course h > 0, and [hdp = [ hodp [ hidp =1
(444Qb), so h € C}f,. Q

If a € K, there are b € I, ¢ € V such that a = bc, so that

Ha'lh — h”l = Hb'l(C'lho * hl) — ho * h1||1
< Hb'l(C°lh0 — ho) * h1||1 + ||b°lh0 x hyp — h1||1 + ||h1 — hg * h1H1
<lestho = holly + 141 < 3n=c.

So this h will serve.
(k) (x)=-(xiii) Suppose that (x) is true.
(@) 1 show first that for any compact set K C G and € > 0 there is an h € C}} such that
h=h, h(e) = [hllco,
|laeih — h|l1 < € for every a € K.

P By (x), there is an hg € C}; such that ||as;hg — holl1 < € for every a € K. Set v = fﬁod,u; because
ho € Cr(X)* \ {0}, v is finite and not 0. Try h = hg * %7{0, so that h(z) = %fho(y)ho(x_ly)u(dy) for
every © € G. By 444Rc, h € Cy(G) and

1 1
[Alls < ||h0H2||;h0H2 = ;f h2du = h(e).

Because hg > 0, h > 0; by 444Qb, [hdp =1; and (as in (j) above) supp(h) is included in the compact set

supp(ho) supp(ﬁo), so h € Cg‘l. By 444Rb, or otherwise, h = h.
Finally, if a € K, then

llasth = hlly = %”a’l(ho % ho) — ho * ol = %”(a'lho — ho) * holl
(4440f once more)
< %Ha'lho - ho||1Hz0||1
(444Qb again)

= ||astho — holl1 <€,
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as required. Q

(B) Next, for any €, § > 0 and any compact set K C G there are an open symmetric neighbourhood V
of e and a closed set F such that uV < oo, uF < 6 and pu(aVAV) < euV whenever a € K\ F. P Of course
it is enough to deal with the case in which uK > 0. Set n = ed/uK. By (), there is an h € Cljl such that

h(e) = ||hllco, h = I and |jasth — k|1 < n for every a € K.
Set Ky = supp(h) and K* = Ky U KKj, so that K* C G is compact. Set
Q={(a,z,t):a€ K,z €G,tER,
either h(z) <t < h(a'z) or h(a ') <t < h(z)}.

Then @ is a Borel subset of G x G x R included in the compact set K x K* x [0, h(e)]. Let ur, be Lebesgue
measure on R, and let u x p X pz, be the 7-additive product measure on G x G x R (417D). (Of course this
is actually a Radon measure.) For t € R let V; be the open set {x : h(z) > t}. Now 417G tells us that

(o x )@ = [ pafts (@n,t) € QHux wld(a. )

GxG
(where px u is the 7-additive product measure on G x G, so that we can identify px px py, with (puxp) X pr),

as in 417Db)

= [ [ ha™0) = hie) uldoutaa)
KJa
(we can use 417G again because {z : h(a~'z) # h(z)} C K* if a € K, and pK* is finite)

= / l|asth — hll1p(da) < nuK
K
(by the choice of h)

- nuK/hdu =nuK(px p){(z,t) : 0 <t < h(z)}

he)
= nuk / 1Vi pur(dt)
0

as in 252N. (The c.l.d. and 7-additive product measures on G x R coincide, by 417T.) On the other hand,

(MXMXML)(Q):/

Kx

Ru{x t(a,@,t) € QX pr)(d(at))
(again, we can use 417G because © € K* whenever (a,z,t) € Q)

_ / n(VibsaV) (u x p)(d(a, 1))
K xR

-/ h [ ntvisaviutdays
0 K

because V; = aV; = G whenever ¢t < 0 and a € G. So there must be some ¢ € |0, h(e)[ such that
[ 1(VirsaVy)p(da) < npKpV, = eduV;.
Set V=V, and F ={a:a € K, pn(V;AaV;) > euV;}; then V is open, F is closed (443C) and p(VAaV) <

<~

epV for every a € K\ F; also 0 < uV < oo, V' is symmetric (because h = h) and e € V' (because t < h(e)).
Q

(7) Now let K C G be a compact set and ¢ > 0, as in the statement of (xiii); enlarging K and
lowering € if necessary, we may suppose that K > 0 and ¢ < 1. Set K1 = K U KK, so that K; is
still compact. By (8), we have a symmetric open neighbourhood V' of e, of finite measure, such that
W ={a:a€ Ky, n(aVAV) > 2euV} has measure less than 1uK. If a € K, then W Ua™'W cannot cover
K, so there is a b € K \ W such that ab ¢ W; thus b and ab both belong to K; \ W, and
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p(aVAV) < p(aV DabV) + p(abV AV) < p(VABV) + zepV < ZepV.

We can now find a compact symmetric neighbourhood L of e, included in V', with 8u(V \ L) < euL. In
this case, we shall have uL > 0 and

w(aLAL) < p(aV \ aL) + p(aVAV) + p(V \ L)

<2V L)+ 2e(ul + p(V \ L)) < epl

for every a € K, as required.

(D) (xiii)=(xiv) Suppose that (xiii) is true, and that K C G is compact and € > 0. Enlarging K if
necessary, we may suppose that it includes a neighbourhood of e. Of course we may also suppose that ¢ < 1.

() The first thing to note is that there is a set I C G such that KI = G and m = sup,cq #({ :

x € I,y € Kx}) is finite. P Let V be an open neighbourhood of e such that VV ! C K. Let I C G be

maximal subject to 27!V Ny~'V = () for all distinct , y € I. If 2 € G, there must be a y € I such that

W Ny tV # 0, so that ! € y"'VV !t and x € VV 1y C Ky C KI; as x is arbitrary, G C KI. If

yeGand [, ={z:z€l, ye Kz}, then I, C K~ 'y, so that {z7'V : x € I} is a disjoint family of subsets
WEV)

of y7'KV. But this means that #(I,)uV < u(y'KV) = u(KV). Accordingly sup,cq #(I,) < v is
finite. Q
(B) Set v =sup,c Ala), K* = KKK~'. Let § > 0 be such that
dym < e(pK — 07),
and let n > 0 be such that

oym n «
1+“K_67 <(1+¢(1 K ).

By (xiii), there is a non-negligible compact set L* C G such that u(aL*AL*) < nuL* for every a € K*. Set
L={z:xzeL* u(K*\ L*z~') < §}; note that L is closed (because z — p(K* N L*z~1) is continuous, see
443C), therefore compact.

(v) pL > (1 — guK*),uL*. PSet W={(z,y) :x € K*, ye L*\ L, xzy ¢ L*}. Then W is a relatively
compact Borel subset of G x G, so we may apply Fubini’s theorem (in the form 417G, as usual) to see that

AR

[ sy ) = [ o)

= [uiatntan) = [ p(@ D)\ (o)
< [ na ) = [ el \ L )u(d) < L
by the choice of L*. Accordingly
pL=pL* —p(L*\L) > (1 - JpK*)ul*. Q

In particular, pL > 0.

(0) Set J={x:x eI, LN Kz # 0}. For each x € J, choose z, € Kz N L. Then A(z;) < vA(z) and
A(z)(uK —v6) < u(Kz N L*) for every z € J. P A(z,) = A(zz2 1) A(x) < yA(x) because z,27 ' € K.
Next, because z, € L,

WK 20\ 1) = Az (K" \ L25) < 9A(z2).
Since x € K2, Ko C KK 'z, C K*z,,
Kz \ L") < p(K*zp \ L) < 0A(22) < 67A(x)
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and
p(Kx N L*) = p(Kz) — p(Ka \ L*) = Alz)uK — 7A(z) = Alz)(nK - 67). Q
(€) Now recall that >~ _; x(Kz) < mxG, by the definition of m, so that
(K = 07))qes A@) <3 pe s (Kx N LT) < mpl”.
Since KI =G, L C KJ and

KL C U KKz C U KKK 'z, = U K*z,,
zeJ zeJ zeJ

WELNLY) < S a2\ L) = 3 Al )u(K* \ L2, )

rzeJ zeJ

5 .
<OY Alz) <0vY A) < Mfgji"f'uL -

xzeJ xeJ

Accordingly

dym
1+ uK—oy

) 1—g,uK*

* 1
H(KL) < pL* (14 2270) < pl

(by () above)
< (T4 e)ulL,
by the choice of § and 1. Thus we have found an appropriate set L.

(m)(xiv)=(xii) If ] C G is finite and € > 0, I U {e} is compact, so there is a compact set L C G, of
non-zero measure, such that 4(IL U L) < (1 + 3€)uL. Consequently

u(LAaL) = 2l \ L) < 2u(TL\ L) < el
for every a € I, as required by (xii).

(n)(xii)=(ii) Write £ for the family of all compact subsets of G with non-zero measure. For L € L,
define pr, : Cp(G) — R by setting pr(f) = ;%L [}, fdp for f e Cy(G). Of course |pr(f)] < ||f]loo- For finite
I CG, e>0set

A(I,e)={L:Le L, p(aLAL) < euL for every a € I}.

By (xii), no A(I,€) is empty. So we have an ultrafilter F on £ containing every A(I,€). Set p(f) =
limy_, 7pr(f) for f € Cp(G); then p: Cp(G) — R is a positive linear functional and p(xG) = 1.
Ifae@, feCy(G) and L € A({a},¢), then

prfans) =00 = 77| [ S antaa) = [ fap(a)
= A an= [ gl < Loy < il

Since F contains A({a},e€) for every € > 0,
Ip(asif) = p(f)| = limp 7 [pr(as f) — po(f)| = 0.
As f and a are arbitrary, p witnesses that (ii) is true.
(o) (xii)=-(xi) Given a finite set I C G and € > 0, (xii) tells us that there is a compact set L C G of

1
W(XL). Then ||qu 1. If

non-zero measure such that pu(aLAL) < elulL for every a € I. Try u =

a € I, then aeju = W){(@L)', &)
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_ paLAL)
=

[ u— asul? = f((“Ll)l/qX(aLAL)')q < e

and ||u — a+jul|q < €, as required by (xi).

(p) (xi)=(xii) Now assume that (xi) is true. Let I C G be a finite set, and € > 0. Set § = i, and let

1 > 0 be such that that (14 n#(1))? <1+494.

Take u € L? such that |lullq = 1 and [Ju — a~ullq < 5 for every a € I. Setting v = |u|, we see that
asv = |asul, so v — asw] < |u — aqu| and ||jv — asvlly, < n for every a € I, while ||v||, = 1. Let
f: G — [0,00[ be a function such that f* = v in LY; then ||f||, = 1 while ||f — as; f||; < n for every a € I.
Set g = sup,erugey asf; then

f SQS f+ZaGI(a"lf_f)+7
S0
lgllg <1+ 0es llasf = fllg S L+n#(D), [ g%dp < (L+n#(I))? < 1+6.
For t >0, set By = {x: f(x)? > t}, Fy, = {t: g(x)? > t}. Then

[y nEdt = [ frdp=1, [ pFdt= [ g%dp <146,

where the integrals here are with respect to Lebesgue measure (2520). There must therefore be a ¢ > 0 such
that uEy > 0 and pFy < (14 0)uFE:.

If a € I, then as;f < g, so aEy = {z : (as;f)(x) > t} is included in Fy; also, of course, E; C F;. We
therefore have

ILL(EtAClEt) = Zﬂ(aEt \Et) S 2/~‘L(Ft \Et) S 2(SILLEt
There is no reason why E; should be compact, so it may not itself be the L we seek. However, puFE; is
certainly finite, so there must be a compact L C E such that pL > (1 — §)uE;. In this case, uL > 0 and
p(aLAL) < p(aLAaEy) + waE AE) + p(EyAL)

< 2u(Ey\ L) + 20pE; < A0pE; < l%uL = epl

for every a € I. So this L will serve.

Remark Of course there are many variations possible in the conditions listed above, some of which are in
449Xk-449Xm.

449K Proposition Let G be an amenable locally compact Hausdorff group, and H a subgroup of G.
Then H is amenable.

proof (PATERSON 88, 1.12) (a) For most of the proof (down to the end of (g) below), suppose that H is
closed. Let V be a compact neighbourhood of the identity in G. Let I C G be a maximal set such that
VzHNVz'H = () for all distinct z, 2’ € I. Then V"'VIH = G. P If x € G, there is a z € I such that
VeHNVzH # (0, that is,

e eV WHH ' =V-WW:HCV-VIH. Q

(b) If z € G then
INViaH={z:2z€l,zeVa2H}={2:2€l,2€ V2zH ' =VzH}

has at most one element. If K C G is compact, then there is a finite set J C G such that K C V~1J, and
now

INKH C,c, INV~'zH
is finite.

(c) Let h € Cr(X)* be such that h > x(V~1V); write W for the support of h. Set g(x) = >
forz € G.

vel h(xz=1)
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If K C G is compact, then

{z:2€1, h(zxyz—') #0 for some x € K and y € H}
CIn{z:KHz""NnW # 0}
=In{z:zH 'K 'nW 40} =InW'KH
is finite. In particular, {z : z € I, h(zz71) # 0} and g(x) are finite for every # € G. Next, if z¢p € G, then

J={z:h(zz"") # 0 for some x € x(V} is finite, and g(x) = Y, ; h(zz~!) for z € oV, so g is continuous
at xo; as x is arbitrary, g € C(G). Of course g > 0 because h > 0.

(d)(i) For = € G, set g.(y) = g(x~y) for y € H. Then g, € Cx(H). P g, is continuous because g is.

Now J={z:2 €1, h(z7lyz=1) # 0 for some y € H} is finite, and
{y:9.(y) #0} C {y: thereis a z € I such that h(z 'yz~') # 0}
C {y: thereis a z € J such that 2 'yz~' € W} = aWJ
which is compact. Q
(ii) Moreover, for any z¢ € G there is a compact set L C H such that {z : |gs — gz,| < exL} is a
neighbourhood of zqy for every ¢ > 0. P
J={z:z€lI, h(z7tyz71) # 0 for some z € 2oV and y € H}

is finite, by (c) in its full strength. Let L be the compact set H N aoVIWJ.

Take any ¢ > 0. If 2 € xV, then g,(y) = > .o, h(z~'yz"') for every y € H, and g,(y) = 0 for
y € H\ L. Moreover, setting ¢,.(y) = >, ., h(z " 'yz"") for 2 € G and y € H, (x,y) — g, (y) is continuous,
so x — g+ G — C(H) is continuous if we give C(H) the topology of uniform convergence on compact

subsets of H (4A2G(g-i)). In particular,  +— g/ [L is continuous for the norm topology of C(L), and
U={z:xcxV, ||g,IL— g, [ Ll < €} is a neighbourhood of z¢. But if 2 € U, then

92(y) = 9oy (y) =0 fory € H\ L,

192(y) = 9o ()] = 192(y) = g2, (W)| < € for y € L,

S0 [go — guo| < exL. Q
(e) Now take a left Haar measure v on H. (This is where it really matters whether H is closed.) Define

T : Cy(H) — RY by setting

(TH)(@) = [ gz x fdv = [, 9@ y)f(y)v(dy)
for f € Cy(H) and z € G. Then T'f € C(G) for every f € Cp(H). P Given 29 € Gand € > 0,let L C H
be a compact set as in (d-ii). Let § > 0 be such that ¢ [, |f|dv < e. Then

{z: [(Th)(@) = (TF)(xo)| < €} 2{x 2 [ga — gao| < OxL}

is a neighbourhood of zy. As zy and € are arbitrary, T'f is continuous. Q
Clearly, T : Cp(H) — C(G) is a positive linear operator. Next, if f € Cy,(H)and b € H, T (be;f) = bey(Tf).
P

T(omf)e) = [

H

g(zy) (b f) () (dy) = / oz ") F (b~ ) (dy)

H
- /H o(a~ by) [ (w)w(dy) = (TF) (b~ z) = (mT ) (z)

for every z € G. Q
We need to know that T'(xH)(z) > 0 for every z € G. P There is a z € I such that 7! € V-1VzH, as
remarked in (a). Now 27 Hz"! meets V1V, so there is a y € H such that

1< h(z tyz1) < g(z7ty) = g2 (v)

and T(xH)(z) = [;; g=dv > 0 because g, is continuous and non-negative and v is strictly positive. Q
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Tf

TOH) for

(f) We therefore have a positive linear operator S : Cy(H) — C(G) defined by setting Sf =
f € Cy(H). Since S(xH) = xG, S[Cy(H)] C Cy(G); moreover, for f € Cp(H) and b € H,

S(pmuf) = TO) _ Tuif)

T T(xH)  T(beixH)

_bTH TS
" be(TxH) =b TvH = buSf.

(g) At this point, recall that by 449J(ii) there is a positive linear functional p : Cp(G) — R such that
p(xG) = 1 and p(ae;f) = p(f) whenever f € Cp(G) and a € G. Set ¢ = pS : Cp(H) — R; then g is a
positive linear functional, g(xH) = 1 and q(be;f) = ¢(f) whenever f € C,(H) and b € H. So ¢ witnesses
that 449J(ii) is true for H, and H is amenable.

(h) All this has been on the assumption that H is closed. But in general H is a closed subgroup of G,
therefore amenable by (a)-(g) here, and H is dense in H, therefore amenable by 449F (a-ii).

449L If we make a further step back towards the origin of this topic, and suppose that our group is
discrete, then we have a striking further condition to add to the lists above. I give this as a corollary of a
general result on group actions recalling the main theorems of §§395 and 448.

Tarski’s theorem Let G be a group acting on a non-empty set X. Then the following are equiveridical:
(i) there is an additive functional v : PX — [0, 1] such that vX =1 and v(asA) = vA whenever A C X
and a € G,
(ii) there are no Ag,...,A,, ag,... ,an, bo,...,by, such that Ag,..., A, are subsets of X covering X,
ag,--- ,0n, b, ... by, belong to G, and ageAg, bgeAg, a1°A1, bieA1, ... ,by*A, are all disjoint.

proof (a)(i)=-(ii) This is elementary, for if v : PX — [0, 1] is a non-zero additive functional and Ay, ..., 4,
cover X and aq,...,b, € G, then

St ov(aicAi) + X g v(bieAy) =250 (vA; > 20X > vX,
and ag*Ao, ... ,by*A, cannot all be disjoint.

(b)(ii)=(i) Now suppose that (ii) is true.

(a) Suppose that cg, ... ,c¢, € G. Then there is a finite set I C X such that #({cex:i <n,z € I}) <
2#4(I). P? Otherwise, by the Marriage Lemma in the form 4A1H, applied to the set

R={((z,j),ciez) :x € X, j €{0,1}, 1 <n} € (X x{0,1}) x X,
there is an injective function ¢ : X x {0,1} — X such that ¢(z,j) € {cisx : ¢ < n} for every z € X
and j € {0,1}. Now set B;; = {z : ¢(2,0) = ¢;ox, ¢(x,1) = ¢jex} for i, j < n, so that X = Ui,jﬁn Bi;.
Let A;; C B;j; be such that (A4;;); j<n is a partition of X, and set a;; = ¢;, bj; = ¢; for i, j < n; then
a;joAi; C ¢lAi; x {0}], bijeAi; C @[Ai; x {1}] are all disjoint, which is supposed to be impossible. XQ

(B) Suppose that J C G is finite and € > 0. Then there is a non-empty finite set I C X such that
#(IAcel) < e#(I) for every c € J. P It is enough to consider the case in which the identity e of G belongs
to J. ? Suppose, if possible, that there is no such set I. Let m > 1 be such that (1 + %e)m > 2. Set
K=J"={ciea...cm : C1,... ,em € J}. By (), there is a finite set Iy C X such that #(I}) < 2#(lo),
where I} = {aex :a € K, x € Ip}. Choose ¢1,... ¢y and I, ... , I, inductively such that

given that I is a non-empty finite subset of X, where 0 < k < m, take cx+1 € J such that

#(IkACkJrl.Ik) > 6#(Ik) and set Iyy1 = I U cpy1ody.

Then I}, C {asz :a € J’“, x € Iy} for each k < m, and in particular I,,, C I5. But also

#(Ikt1) = #(Ie) + #((crr120r) \ 1)
= #(I) + 3 # (el ALy) > (1+50)# (1)

for every k < m, so
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#IG) = #(In) = (1+ 5™ #(lo) > 2#(ko),
contrary to the choice of Iy. XQ
(v) There is therefore an ultrafilter F on [X]<“ \ {0} such that
Ace ={1: T € [X]=*\ {0}, #(TAcel) < e#(I)}

belongs to F for every ¢ € G and € > 0. For I € [X]<“\ {0} and A C X set v;(A) = #(ANI)/#(I), and
set vA =lim;_, vy A for every A C X, so that v : PX — [0,1] is an additive functional and vX = 1.
Now v is G-invariant. PP If A C X and c € G and € > 0, then A.-» . € F. If I € A.-1 , then

1

vi(e=d) —vi(A)] = 5 [#I N (o A)) — #(I N A)]
- -1, _
= IS D)0 A) = (10 A)
1 -1
< (e DAD < €
As € is arbitrary, lim;, z vy(ceA) —vi(A) = 0, and v(ceA) = vA. As A and c are arbitrary, v is G-invariant.

Q

So v witnesses that (i) is true, and the proof is complete.

449M Corollary Let G be a group with its discrete topology. Then the following are equiveridical:

(i) G is amenable;

(ii) there are no Ag,..., Ay, ag,... ,an, bo,... b, such that G = |
to G, and agAo, boAg, a1A1, b1Aq,... b, A, are disjoint.

i<n A; ag,...,an,bg,...,b, belong

proof All we have to observe is that (o) every function from G to R is uniformly continuous for the right
uniformity of G, so that G is amenable iff there is an invariant positive linear functional p : £*°(G) — R such
that p(xG) =1 () that a positive linear functional on £°°(G) is G-invariant iff the corresponding additive
functional on PG is G-invariant. So (i) of 449L is equivalent to amenability of G as defined in 449A.

449N Theorem Let G be a group which is amenable in its discrete topology, X a set, and « an action
of G on X. Let £ be a subring of PX and v : £ — [0, 0] a finitely additive functional which is G-invariant
in the sense that geE € £ and v(geE) = vE whenever E € £ and g € G. Then there is an extension of v
to a G-invariant non-negative finitely additive functional  defined on the ideal Z of subsets of X generated
by £.

proof (a) There is a non-negative finitely additive functional 6 : Z — R extending v. P Let V be the
linear subspace of £>°(X) generated by {xE : E € £}, so that V can be identified with the Riesz space S(&)
(361L). Let U be the solid linear subspace of £>°(X) generated by V. For u € U set q(u) = inf{fvdv:v eV,
lu] < v}, where f dv : S() — R is the positive linear functional corresponding to v : & — [0,00[ as in
361F-361G. Then ¢ is a seminorm, and [fvdv| < ¢(v) for every v € V. So there is a linear functional
f: U — R such that f(v) = fvdv for every v € V and |f(u)| < g(u) for every u € U (4A4D(a-i)). Set
0A = f(xA) for A€ Z. Then 0 : 7 — R is additive and extends v. If A € Z, there is an E € £ including A.
Now we have

0(E\ A) = f(XE — xA) < q(xE — xA) < f xEdv = vE = 0E,
so #A > 0. So 6 is non-negative. Q

(b) As in the proof of 449M, we have a positive G-invariant linear functional p : ¢*°(G) — R such
that p(xG) = 1. For A € T, set fa(a) = 6(a"1eA) for a € G, and 7A = p(fa). Then ¥ : T — [0, 00|
is additive. If E € & then fa(a) = vE for every a, so v extends v. If A € 7 and a, b € G, then
faA(b) = o(bilaA) = fA(CLilb), SO fqa = as;fa and

v(aA) = p(faa) = p(fa) = VA

Thus v is G-invariant, as required.
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4490 Corollary (BANACH 1923) If r = 1 or r = 2, there is a functional § : PR" — [0, c0] such that
(i) (AU B) = A+ 0B whenever A, B C R" are disjoint (ii) 0F is the Lebesgue measure of E whenever
E C R" is Lebesgue measurable (iii) 6(g[A]) = 6 A whenever A CR" and g : R” — R” is an isometry.

proof (a) The point is that the group G of all isometries of R", with its discrete topology, is amenable.
P Let Gy C G be the subgroup consisting of rotations about 0; because r < 2, this is abelian, therefore
amenable (449Cf). Let G; C G be the subgroup consisting of isometries keeping 0 fixed; then Gy is a normal
subgroup of G1, and G1/Gy is abelian, so G; is amenable (449Cc). Let G2 C G be the normal subgroup
consisting of translations; then (9 is abelian, therefore amenable. Now G = G1G2, so G is amenable
(449Cd). Q

(b) Let & be the ring of subsets of R" with finite Lebesgue measure, and let v be the restriction of
Lebesgue measure to £. Then v is G-invariant. By 449N, there is a G-invariant extension & of v to the ideal
T generated by €. Setting A = VA for A € Z, 0o for A € PR" \ Z, we have a suitable functional 6.

449X Basic exercises >(a) Let G be a topological group. On G define a binary operation ¢ by saying
that z oy = yx for all z, y € G. Show that (G, ) is a topological group isomorphic to G, so is amenable iff
G is.

(b) Show that any finite topological group is amenable.

>(c) Show that, for any r € N, the isometry group of R”, with the topology of pointwise convergence, is
amenable. (Hint: 443Xw, 449Cd.)

(d) Find a locally compact Polish group which is amenable but not unimodular. (Hint: 442Xf, 449Cd.)
(e) Prove 449Cg directly from 441C, without mentioning Haar measure.

(f) Let G be a topological group and U the space of bounded real-valued functions on G which are
uniformly continuous for the right uniformity of G. Show that »,., as defined in 4A5Cc, gives an action of G
on U.

(g) Let « be an action of a group G on a set X, and U a Riesz subspace of £>°(X), containing the constant
functions, such that a«f € U whenever f € U and a € G. Show that the following are equiveridical: (i) there
is a G-invariant positive linear functional p : U — R such that p(xX) = 1; (ii) sup,cx > orq fi(x)— fi(aez) >
0 whenever fo,...,f, € U and ag, ... ,a, € G. (Hint: if (ii) is true, let V be the linear subspace generated
by {f —asf: f €U, a € G} and show that inf,cy ||g — xX |0 = 1.)

>(h) Let X be a set and G the group of all permutations of X. (i) Give X the zero-one metric, so that G
is the isometry group of X. Show that G, with the topology of pointwise convergence (441G), is amenable.
(Hint: for any I € [X]<%, {a : a € G, a(z) = x for every x € X \ I} is amenable.) (ii) Show that if X
is infinite then G, with its discrete topology, is not amenable. (Hint: the left action of Fy on itself can be
regarded as an embedding of F, in G.)

(i) Let G be a Hausdorff topological group, and G its completion with respect to its bilateral uniformity
(definition: 4A5Hb). Show that G is amenable iff G is.

(§)(i) Let G be the group with generators a, b and relations a®> = b®> = e (that is, the quotient of the
free group on two generators a and b by the normal subgroup generated by {a?,b®}). Show that G, with its
discrete topology, is not amenable. (ii) Let G be the group with generators a, b and relations a? = b* = e.
Show that G, with its discrete topology, is amenable. (Hint: we have a function length : G — N such that

length(ab) < length(a) + length(b) for all a, b € G and limsup,,_, . %#({a : length(a) < n}) is finite. See
also 449YT.)

(k) Let G be a locally compact Hausdorfl group, and p a left Haar measure on G. Show that G is
amenable iff for every finite set I C G, finite set J C £°°(u) and € > 0, there is an h € Ci1(G)™ (definition:

4497J) such that | [ f(az)h(z)p(dz) — [ f(z)h(z)u(dz)| < € for every a € I and f € J. (Hint: the image of
the unit ball in L' is weak* dense in the unit ball of (L>)*.)
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(1) Let G be a locally compact Hausdorff group, and p a left Haar measure on G. Show that the following
are equiveridical: (i) G is amenable; (ii) there is a positive linear functional p# : L>(u) — R such that
p*”(xG*) = 1 and p* (as,u) = p¥(u) for every u € L>(u) and every a € G; (iii) for every ﬁnite set I C G,
finite set J C £>°(u) and € > 0, there is an h € C}| such that | [ f(za)h( — [ f@)h(z)u(dx)| < e
for every a € I and f € J.

(m) Let G be a locally compact Hausdorff group and Bag its Baire o-algebra. Show that G is amenable
iff there is a non-zero finitely additive ¢ : Bag — [0, 1] such that ¢(aE) = vE for every a € G and E € Bag.

(n) A symmetric Fglner sequence in a group G is a sequence (L, )nen of non-empty finite symmetric
#(LoLaL,)

#(Ln)
Folner sequence iff it is countable and amenable when given its discrete topology.

subsets of G such that lim,,_, = 0 for every a € G. Show that a group G has a symmetric

>(0) Let G be a group which is amenable when given its discrete topology. Let ¢ : PG — [0,1] be
an additive functional such that ¢G = 1 and ¢(aE) = ¢F whenever E C G and a € G. For E C G
set YE = f¢p(Ex)p(dx). Show that ¢ : PG — [0,1] is an additive functional, that )G = 1 and that
Y(aE) =y (Ea) = YFE for every E C G and a € G.

(p) Let X be a non-empty set, G a group and « an action of G on X. Suppose that G is an amenable
group when given its discrete topology. Show that there is an additive functional v : PX — [0, 1] such that
vX =1 and v(asA) = vA for every A C X and every a € G.

(q) Let G be a locally compact Hausdorff group and p a left Haar measure on G. Show that if G,
with its discrete topology, is amenable, then there is a functional ¢ : PG — [0, 00|, extending u, such that
d(AU B) = pA + ¢B whenever A, B C G are disjoint and ¢(zA) = ¢pA for every x € G and A C G.

(r) Let X be a compact metrizable space, ¢ : X — X a continuous function and p a Radon probability

Y F(6 (@) s

measure on X such that pu¢~! = p. Show that for p-almost every x € X, hmnﬁoo

defined for every f € C(X). (Hint: 4A2Pe, 372J.)

449Y Further exercises (a) If S is a semigroup with identity e and X is a set, an action of S on

X is a map (s,x) = sex : S x X — X such that se(tex) = (st)ex and eex = zx for every s, t € S and
x € X. A topological semigroup S with identity is amenable if for every non-empty compact Hausdorff
space X and every continuous action of S on X there is a Radon probability measure g on X such that
J f(ssx)p = [ f(x)u(dz) for every s € S and f € C(X). Show that

(1) (N +) with its dlscrete topology, is amenable;

(ii) if S is a topological semigroup and S is an upwards-directed family of amenable sub-semigroups of
S with dense union in S, then S is amenable;

(iii) if (S;)ser is a family of amenable topological semigroups with product S then S is amenable;

(iv) if S is an amenable topological semigroup, S’ is a topological semigroup, and there is a continuous
multiplicative surjection from S onto S’, then S’ is amenable;

(v) if S is an abelian topological semigroup, then it is amenable.

(b) Give an example of a topological semigroup S with identity such that S is amenable in the sense of
449Ya but (S, ) is not, where a ©b = ba for a, b € S.

(c) Let G be a topological group and U the space of bounded real-valued functions on G which are
uniformly continuous for the right uniformity. Let M, ;R be the space of totally finite quasi-Radon measures
on G. (i) Show that if v € M;R then v * f (definition: 444H) belongs to U for every f € U. (ii) Show that
v, f)—uv*f: M;R x U — U is continuous if M:R is given its narrow topology and U is given its norm
topology. (iii) Show that if p : U — R is a continuous linear functional such that p(ae; f) = p(f) for every

f €U and ae€ G, then p(v* f) = vG - p(f) for every f € U and every totally finite quasi-Radon measure v
on G.
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(d) Re-work 449J for general groups carrying Haar measures.

(e) Let G be a group with a symmetric Fglner sequence (Lp)nen (449Xn), and « an action of G on

a reflexive Banach space U such that u — aeu is a linear operator of norm at most 1 for every a € G.

For n € N set T,,u = ﬁ ZaeLn asu for u € U. Show that for every u € U the sequence (T, u)nen is

norm-convergent to a v € U such that aev = v for every a € G. (Hint: 372A. See also 461Yg below.)

(f) Let G be a locally compact Hausdorff group and p a left Haar measure on G. Suppose that G is
exponentially bounded, that is, limsup,, ,._(u(K™))Y"™ <1 for every compact set K C G. Show that G
is amenable.

(g) Let G be a group and « an action of G on a set X. Let T be an algebra of subsets of X such that
geE € T for every E € T and g € G, and H a member of T; write Ty for {E : E € T, E C H}. Let
v : Ty — [0,00] be a functional which is additive in the sense that vf) = 0 and ¥(E U F) = vE 4+ vF
whenever E, F € Tp are disjoint, and locally G-invariant in the sense that geF € T and v(gE) = vE
whenever E € Ty, g € G and geE C H. Show that there is an extension of v to a G-invariant additive
functional v : T — [0, o0].

(h) Let X be a set, A a subset of X, and « an action of a group G on X. Show that the following are
equiveridical: (i) there is a functional 6 : PX — [0, o0] such that 04 =1, §(BUC) = §B+6C and 0(a+B) =
6B for all disjoint B, C C X and a € Gj (ii) there are no Ag,...,A4,, ao,...,an, bo,...,b, such that
Ap, ..., A, are subsets of G covering A, ag, ... , b, belong to G, and ageAq, bgeAg, a1sAy, bieAy,... ,bpeA,
are disjoint subsets of A.

il

(i) (SwiErRczZKOWSKI 58) Let G be the group of orthogonal 3 x 3 matrices. Set S =

[SE
O Utk
jan}

o

1 0

and T = [0 2

=

Sromign2Tms - SM2k can be the identity), so that G is not amenable in its discrete topology. (Hint: let
3 40 0 0 0

R be the ring of 3 x 3 matrices over the field Z5s. In Rsetc =1 3 0], 7=|0 3 4 ]. Show that
0 0 0 01 3

. Now suppose p € R is defined as a non-trivial product of the elements o, 7 and their transposes

in which ¢ and o' are never adjacent, 7 and 7' are never adjacent, and the last term is . Set

. Show that S and T are free in G (that is, no non-trivial product of the form

glwuls O

T
a 1
b|=p|0]. Show that if the first term in the product is o or o', then ¢ = 0 and b # 0, and otherwise
c

a=0

(j) Let F5 be the free group on two generators a, b. (i) Show that there is a partition (A4, B, C, D) of F,
such that aA = AUBUC and bB = AUBUD. (ii) Let Sy be the unit sphere in R®. Show that if S, T" are
the matrices of 449Yi, there is a partition (A4, B,C, D, E) of S? such that E is countable, S[A] = AUBUC
and T[B] = AUBUD. (This is a version of the Hausdorff paradox.) (iii) Show that there is no non-
zero rotation-invariant additive functional from PSs to [0,1]. (iv) Show that there is no rotation-invariant
additive extension of Lebesgue measure to all subsets of the unit ball B(0,1). (See WAGON 85.)

449 Notes and comments The general theory of amenable groups is outside the scope of this book. Here
I have tried only to indicate some of the specifically measure-theoretic arguments which are used in the
theory. Primarily we have the Riesz representation theorem, enabling us to move between linear functionals
and measures. Since the invariant measures considered in the definition of ‘amenable group’ are all Radon
measures on compact Hausdorff spaces, they can equally well be thought of as linear functionals on spaces
of continuous functions. What is striking is that the definition in terms of continuous actions on arbitrary
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compact Hausdorff spaces can be reduced to a question concerning an invariant mean on a single space easily
constructed from the group (449E).

The first part of this section deals with general topological groups. It is a remarkable fact that some of
the most important non-locally-compact topological groups are amenable. For most of these we shall have
to wait until we have done ‘concentration of measure’ (§§476, 492) and can approach ‘extremely amenable’
groups (§493). But there is an easy example in 449Xh which already indicates one of the basic methods.

For a much fuller account of the theory of amenable locally compact groups, see PATERSON 88. Theorem
449J here is mostly taken from GREENLEAF 69, where you will find many references to its development.
Historically the subject was dominated by the case of discrete groups, in which combinatorial rather than
measure-theoretic formulations seem more appropriate. In 449J, conditions (ii)-(viii) relate to invariant
means of one kind or another, strengthening that of 449E. Note that the means of 449E(iii) and 449J(ii)-
(viii) are normalized by conditions p(xG) = p(xG*) = ¢G = 1, while the left Haar measure p of 449J
has a degree of freedom; so that when they come together in 449J(viii) the two sides of the equation
plg = f)* = p(f*) [ 9dpu must move together if we change p by a scalar factor. Of course this happens
through the hidden dependence of the convolution operation on u. (The convolutions in 449J(vii) do not
involve ;1.) Between 449J(i) and 449J(viii) there is a double step. First we note that a convolution g x f is a
kind of weighted average of left translates of f, so that if we have a mean which is invariant under translations
we can hope that it will be invariant under convolutions (449H, 449Yc). What is more remarkable is that
an invariant mean on the space U of bounded uniformly continuous functions should in the first place give
rise to a left-invariant mean on the space L™ of (equivalence classes of) bounded Haar measurable functions
(449J(vi)), and then even a two-sided-invariant mean (449J(v)).

Condition (xii) in 449J looks at a different aspect of the phenomenon. In effect, it amounts to saying
that not only is there an invariant mean, but that there is an invariant mean defined by the formula

p(f) = limg_, ]-_MLL J;, [ for a suitable filter 7 on the family of sets of non-zero finite measure. This may

be called a ‘Fglner condition’, following FGLNER 55. (449Xk looks for an invariant mean of the form
p(f) =limp_, 7 [ f x hdp, where F is a suitable filter on £*(p).) In 449J(xi), the case ¢ = 1 is just a weaker
version of condition (x), but the case ¢ = 2 tells us something new.

The techniques developed in §444 to handle Haar measures on groups which are not locally compact can
also be used in 449H-449J, using ‘totally bounded for the bilateral uniformity’ in place of ‘compact’ when
appropriate (449Yd). 443L provides another route to the same generalization.

In 449K, it is natural to ask whether the hypothesis ‘locally compact’ is necessary. It certainly cannot
be dropped completely; there is an important amenable Polish group with a closed subgroup which is not
amenable (493Xf).

The words ‘right’ and ‘left” appear repeatedly in this section, and it is not perhaps immediately clear
which of the ordinary symmetries we can expect to find. The fact that the operation z — 2~! : G — G
always gives us an isomorphism between a group and the same set with the multiplication reversed (449Xa)
means that we do not have to distinguish between ‘left amenable’ and ‘right amenable’ groups, at least if
we start from the definition in 449A. In 449C also there is nothing to break the symmetry between left
and right. In 449B and 449D-449E, however, we must commit ourselves to the left action of the group on
the space of functions which are uniformly continuous with respect to the right uniformity. If we wish to
change one, we must also expect to change the other. In the list of conditions in 449J, some can be reflected
straightforwardly (see 449X1), but in groups which are not unimodular there seem to be difficulties. For
semigroups we do have a difference between ‘left’ and ‘right’ amenability (449Yb).

It is not surprising that in the search for invariant means we should repeatedly use averaging and limiting
processes. The ‘finitely additive integrals’ f d¢, f dv in part (f) the proof of 449J and part (a) of the proof
of 449N are an effective way of using one invariant additive functional ¢ or v to build another. Similarly,
because we are looking only for finite additivity, we can be optimistic about taking cluster points of families
of almost-invariant functionals, as in the proofs of 449F, 449J and 449L.

In the case of discrete groups, in which all considerations of measurability and continuity evaporate, we
have a completely different technique available, as in 449L. Here we can go directly from a non-paradoxicality
condition, a weaker version of conditions already introduced in 395E and 448E, to a Fglner condition ((3)
in part (b) of the proof of 449L) which easily implies amenability. I remind you that I still do not know how
far these ideas can be applied to other algebras than PX (395Z). The difficulty is that the unscrupulous use
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of the axiom of choice in the infinitary Marriage Lemma seems to give us no control over the nature of the
sets A;; described in (b-a) of the proof of 449L; moreover, the structure of the proof depends on having a
suitable invariant measure (counting measure on X) to begin with. For more on amenable discrete groups
and their connexions with measure theory see LACZKOVICH 02.

Version of 31.7.09

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

441 A Shift actions The definition of shift actions in 441Ac of the 2003 and 2006 editions, called on in
the 2008 edition of Volume 5, has been moved to 4A5Cc.

444Xn Orthonormal bases The sketch of a construction of an orthonormal basis in L? consisting of
equivalence classes of continuous functions, referred to in BOGACHEV 07, is now 444Ym.

6445 Convolutions The material mentioned in the notes to §257 in the May 2001 edition of Volume 2
has been moved to §444. The particular result referred to as ‘445K’ is now 444R.

445X q The exercise 445Xq, referred to in the May 2002 edition of Volume 3, has been moved to 445Xp.

4491, 449J Tarski’s theorem The proof of Tarski’s theorem, referred to in the 2002 and 2004 editions
of Volume 3, is now in 449L.
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