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Chapter 42

Descriptive set theory

At this point, I interpolate an auxiliary chapter, in the same spirit as Chapters 31 and 35 in the last
volume. As with Boolean algebras and Riesz spaces, it is not just that descriptive set theory provides
essential tools for modern measure theory; it also offers deep intuitions, and for this reason demands study
well beyond an occasional glance at an appendix. Several excellent accounts have been published; the closest
to what we need here is probably Rogers 80; at a deeper level we have Moschovakis 80, and an admirable
recent treatment is Kechris 95. Once again, however, I indulge myself by extracting those parts of the
theory which I shall use directly, giving proofs and exercises adapted to the ideas I am trying to emphasize
in this volume and the next.

The first section describes Souslin’s operation and its basic set-theoretic properties up to first steps in the
theory of ‘constituents’ (421N-421Q), mostly steering away from topological ideas, but with some remarks
on σ-algebras and Souslin-F sets. §422 deals with usco-compact relations and K-analytic spaces, working
through the topological properties which will be useful later, and giving a version of the First Separation
Theorem (422I-422J). §423 looks at ‘analytic’ or ‘Souslin’ spaces, treating them primarily as a special kind
of K-analytic space, with the von Neumann-Jankow selection theorem (423P). §424 is devoted to ‘standard
Borel spaces’; it is largely a series of easy applications of results in §423, but there is a substantial theorem
on Borel measurable actions of Polish groups (424H). Finally, I add a note on A.Törnquist’s theorem on
representation of groups of automorphisms of quotient algebras (425D).

Version of 14.12.07

421 Souslin’s operation

I introduce Souslin’s operation S (421B) and show that it is idempotent (421D). I describe alternative
characterizations of members of S(E), where E ⊆ PX, as projections of sets in N

N×X (421G-421J). I briefly
mention Souslin-F sets (421J-421L) and a special property of ‘inner Souslin kernels’ (421M). At the end of
the section I set up an abstract theory of ‘constituents’ for kernels of Souslin schemes and their complements
(421N-421Q).

421A Notation S will always be the set
⋃
k∈N

N
k, and S∗ = S \ {∅} the set

⋃
k≥1 N

k; for σ ∈ S, Iσ will

be {φ : φ ∈ N
N, φ ⊇ σ}. If σ ∈ N

k and i ∈ N I write σa<i> for the member τ of Nk+1 such that τ(k) = i
and τ(j) = σ(j) for j < k.

421B Definition If E is a family of sets, I write S(E) for the family of sets expressible in the form

⋃

φ∈NN

⋂

k≥1

Eφ↾k

for some family 〈Eσ〉σ∈S∗ in E .
A family 〈Eσ〉σ∈S∗ is called a Souslin scheme; the corresponding set

⋃
φ∈NN

⋂
k≥1Eφ↾k is its kernel;

the operation

〈Eσ〉σ∈S∗ 7→
⋃

φ∈NN

⋂

k≥1

Eφ↾k

is Souslin’s operation or operation A. Thus S(E) is the family of sets obtainable from sets in E by
Souslin’s operation. If E = S(E), we say that E is closed under Souslin’s operation.
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2 Descriptive set theory 421C

421C Elementary facts (a) It is worth noting straight away that if E is any family of sets, then⋃
n∈N

En and
⋂
n∈N

En belong to S(E) for any sequence 〈En〉n∈N in E .
In particular, E ⊆ S(E).

(b) Let X and Y be sets, and f : X → Y a function. Let 〈Fσ〉σ∈S∗ be a Souslin scheme in PY , with
kernel B. Then f−1[B] is the kernel of the Souslin scheme 〈f−1[Fσ]〉σ∈S∗ .

(c) Let X and Y be sets, and f : X → Y a function. Let F be a family of subsets of Y . Then

{f−1[B] : B ∈ S(F)} = S({f−1[F ] : F ∈ F}).

(d) Let X and Y be sets, and f : X → Y a surjective function. Let F be a family of subsets of Y . Then

S(F) = {B : B ⊆ Y, f−1[B] ∈ S({f−1[F ] : F ∈ F})}.

(e) Let 〈Eσ〉σ∈S∗ be a Souslin scheme with kernel A. Set

R =
⋂
n≥1

⋃
σ∈Nn Iσ × Eσ.

Then R[NN] = A.

(f)(i) I will say that a Souslin scheme 〈Eσ〉σ∈S∗ is fully regular if Eσ ⊆ Eτ whenever σ, τ ∈ S∗,
#(τ) ≤ #(σ) and σ(i) ≤ τ(i) for every i < #(σ).

(ii) Let E be a family of sets such that E ∪ F and E ∩ F belong to E for all E, F ∈ E . Then every
member of S(E) can be expressed as the kernel of a regular Souslin scheme in E .

421D Theorem For any family E of sets, S(E) is closed under Souslin’s operation.

421E Corollary For any family E of sets, S(E) is closed under countable unions and intersections.

421F Corollary Let X be a set and E a family of subsets of X. Suppose that X and ∅ belong to S(E)
and that X \ E ∈ S(E) for every E ∈ E . Then S(E) includes the σ-algebra of subsets of X generated by E .

421G Proposition Let E be a family of sets such that ∅ ∈ E . Then

S(E) = {R[NN] : R ∈ S({Iσ × E : σ ∈ S∗, E ∈ E})}

= {R[NN] : R ∈ S({Iσ × E : σ ∈ S∗, E ∈ E}), R−1[{x}] is closed for every x}.

421H Proposition Let X be a set, and Σ a σ-algebra of subsets of X. Let B be the algebra of Borel
subsets of NN. Then

S(Σ) = {R[NN] : R ∈ B⊗̂Σ}

= {R[NN] : R ∈ S({Iσ × E : σ ∈ S∗, E ∈ Σ})}

= {R[NN] : R ∈ S(B⊗̂Σ)}.

421I Lemma Let X be a topological space and R ⊆ N
N ×X a closed set. Then

R[A] =
⋃
φ∈A

⋂
n≥1R[Iφ↾n].

for any A ⊆ N
N. In particular, R[NN] is the kernel of the Souslin scheme 〈R[Iσ]〉σ∈S∗ .

421J Proposition Let X be a topological space, and F the family of closed subsets of X. Then a set
A ⊆ X belongs to S(F) iff there is a closed set R ⊆ N

N ×X such that A is the projection of R on X.

Measure Theory (abridged version)



*421P Souslin’s operation 3

421K Definition Let X be a topological space. A subset of X is a Souslin-F set in X if it is obtainable
from closed subsets of X by Souslin’s operation.

421L Proposition Let X be any topological space. Then every Baire subset of X is Souslin-F.

421M Proposition Let E be any family of sets such that ∅ ∈ E and E ∪ E′,
⋂
n∈N

En belong to E for

every E, E′ ∈ E and all sequences 〈En〉n∈N in E . Let 〈Eσ〉σ∈S∗ be a Souslin scheme in E , and K ⊆ N
N a

set which is compact for the usual topology on N
N. Then

⋃
φ∈K

⋂
n≥1Eφ↾n ∈ E .

*421N Trees and derived trees (a) Let T be the family of subsets T of S∗ such that σ↾k ∈ T whenever
σ ∈ T and 1 ≤ k ≤ #(σ). Note that the intersection and union of any non-empty family of members of T
again belong to T .

(b) For T ∈ T , set

∂T = {σ : σ ∈ S∗, ∃ i ∈ N, σa<i> ∈ T},

so that ∂T ∈ T and ∂T ⊆ T . ∂T0 ⊆ ∂T1 whenever T0, T1 ∈ T and T0 ⊆ T1.

(c) For T ∈ T , define 〈∂ξT 〉ξ<ω1
inductively by setting ∂0T = T and, for ξ > 0, ∂ξT =

⋂
η<ξ ∂(∂

ηT ).

∂ξT ∈ T , ∂ξT ⊆ ∂ηT and ∂ξ+1T = ∂(∂ξT ) whenever η ≤ ξ < ω1.

(d) For any T ∈ T , there is a ξ < ω1 such that ∂ξT = ∂ηT whenever ξ ≤ η < ω1.

(e) For T ∈ T , its rank is the first ordinal r(T ) < ω1 such that ∂r(T )T = ∂r(T )+1T ; ∂r(T )T = ∂ηT
whenever r(T ) ≤ η < ω1, and ∂(∂

r(T )T ) = ∂r(T )T .

(f) For T ∈ T , the following are equiveridical: (α) ∂r(T )T 6= ∅; (β) there is a φ ∈ N
N such that φ↾n ∈ T

for every n ≥ 1.

(g) Now suppose that 〈Aσ〉σ∈S∗ is a Souslin scheme. For any x we have a tree Tx ∈ T defined by saying
that

Tx = {σ : σ ∈ S∗, x ∈
⋂

1≤i≤#(σ)Aσ↾i}.

Now the kernel of 〈Aσ〉σ∈S∗ is just

A = {x : ∃ φ ∈ N
N, x ∈

⋂

n≥1

Aφ↾n}

= {x : ∃ φ ∈ N
N, φ↾n ∈ Tx ∀ n ≥ 1} = {x : ∂r(T )T 6= ∅}.

The sets

{x : x ∈ X \A, r(Tx) = ξ} = {x : x ∈ X, r(Tx) = ξ, ∂ξTx = ∅},

for ξ < ω1, are called constituents of X \A.

*421O Theorem Let X be a set and Σ a σ-algebra of subsets of X. Let 〈Aσ〉σ∈S∗ be a Souslin scheme
in Σ with kernel A, and for x ∈ X set

Tx = {σ : σ ∈ S∗, x ∈
⋂

1≤i≤#(σ)Aσ↾i}.

(a) For every ξ < ω1 and σ ∈ S∗, {x : x ∈ X, σ ∈ ∂ξTx} ∈ Σ.
(b) For every ξ < ω1, {x : x ∈ A, r(Tx) ≤ ξ} and {x : x ∈ X \ A, r(Tx) ≤ ξ} belong to Σ. In particular,

all the constituents of X \A belong to Σ.

*421P Corollary Let X be a set and Σ a σ-algebra of subsets of X. If A ∈ S(Σ) then both A and X \A
can be expressed as the union of at most ω1 members of Σ.

D.H.Fremlin



4 Descriptive set theory *421Q

*421Q Lemma LetX be a set and 〈Aσ〉σ∈S∗ and 〈Bσ〉σ∈S∗ two Souslin schemes of subsets ofX. Suppose
that whenever φ, ψ ∈ N

N there is an n ≥ 1 such that
⋂

1≤i≤nAφ↾i ∩Bψ↾i = ∅. For x ∈ X set

Tx =
⋃
n≥1{σ : σ ∈ N

n, x ∈
⋂

1≤i≤nAσ↾i}

and let B be the kernel of 〈Bσ〉σ∈S∗ . Then supx∈B r(Tx) < ω1.

Version of 12.4.16

422 K-analytic spaces

I introduce K-analytic spaces, defined in terms of usco-compact relations. The first step is to define the
latter (422A) and give their fundamental properties (422B-422E). I reach K-analytic spaces themselves in
422F, with an outline of the most important facts about them in 422G-422K.

422A Definition Let X and Y be Hausdorff spaces. A relation R ⊆ X × Y is usco-compact if

(α) R[{x}] is a compact subset of Y for every x ∈ X,

(β) R−1[F ] is a closed subset of X for every closed set F ⊆ Y .

422B Lemma Let X and Y be Hausdorff spaces and R ⊆ X×Y an usco-compact relation. If x ∈ X and
H is an open subset of Y including R[{x}], there is an open set G ⊆ X, containing x, such that R[G] ⊆ H.

422C Proposition Let X and Y be Hausdorff spaces. Then a subset R of X × Y is an usco-compact
relation iff whenever F is an ultrafilter on X ×Y , containing R, such that the first-coordinate image π1[[F ]]
of F has a limit in X, then F has a limit in R.

422D Lemma (a) Let X and Y be Hausdorff spaces. If R ⊆ X × Y is an usco-compact relation, then
R is closed in X × Y .

(b) Let X and Y be Hausdorff spaces. If R ⊆ X × Y is an usco-compact relation and R′ ⊆ R is a closed
set, then R′ is usco-compact.

(c) Let X and Y be Hausdorff spaces. If f : X → Y is a continuous function, then its graph is an
usco-compact relation.

(d) Let 〈Xi〉i∈I and 〈Yi〉i∈I be families of Hausdorff spaces, and Ri ⊆ Xi × Yi an usco-compact relation
for each i. Set X =

∏
i∈I Xi, Y =

∏
i∈I Yi and

R = {(x, y) : x ∈ X, y ∈ Y, (x(i), y(i)) ∈ Ri for every i ∈ I}.

Then R is usco-compact in X × Y .
(e) Let X and Y be Hausdorff spaces, and R ⊆ X × Y an usco-compact relation. Then (i) R[K] is a

compact subset of Y for any compact subset K of X (ii) R[L] is a Lindelöf subset of Y for any Lindelöf
subset L of X.

(f) Let X, Y and Z be Hausdorff spaces, and R ⊆ X × Y , S ⊆ Y × Z usco-compact relations. Then the
composition

S ◦R = {(x, z) : there is some y ∈ Y such that (x, y) ∈ R and (y, z) ∈ S}

is usco-compact in X × Z.
(g) Let X and Y be Hausdorff spaces and Y0 any subset of Y . Then a relation R ⊆ X×Y0 is usco-compact

when regarded as a relation between X and Y0 iff it is usco-compact when regarded as a relation between
X and Y .

(h) Let Y be a Hausdorff space and R ⊆ N
N × Y an usco-compact relation. Set

R′ = {(α, y) : α ∈ N
N, y ∈ Y and there is a β ≤ α such that (β, y) ∈ R}.

Then R′ is usco-compact.

422E Lemma Let X and Y be Hausdorff spaces, and R ⊆ X × Y an usco-compact relation. If X is
regular, so is R.

Measure Theory (abridged version)



423A Analytic spaces 5

422F Definition Let X be a Hausdorff space. Then X is K-analytic if there is an usco-compact relation
R ⊆ N

N ×X such that R[NN] = X.
If X is a Hausdorff space, we call a subset of X K-analytic if it is a K-analytic space in its subspace

topology.

422G Theorem (a) Let X be a Hausdorff space. Then a subset A of X is K-analytic iff there is an
usco-compact relation R ⊆ N

N ×X such that R[NN] = A.
(b) NN is K-analytic.
(c) Compact Hausdorff spaces are K-analytic.
(d) If X and Y are Hausdorff spaces and R ⊆ X×Y is an usco-compact relation, then R[A] is K-analytic

whenever A ⊆ X is K-analytic. In particular, a Hausdorff continuous image of a K-analytic Hausdorff space
is K-analytic.

(e) A product of countably many K-analytic Hausdorff spaces is K-analytic.
(f) A closed subset of a K-analytic Hausdorff space is K-analytic.
(g) A K-analytic Hausdorff space is Lindelöf, so a regular K-analytic Hausdorff space is completely regular.

422H Theorem (a) If X is a Hausdorff space, then any K-analytic subset of X is Souslin-F in X.
(b) If X is a K-analytic Hausdorff space, then a subset of X is K-analytic iff it is Souslin-F in X.
(c) For any Hausdorff space X, the family of K-analytic subsets of X is closed under Souslin’s operation.

422I Lemma Let X be a Hausdorff space. Let E be a family of subsets of X such that (i)
⋃
n∈N

En
and

⋂
n∈N

En belong to E whenever 〈En〉n∈N is a sequence in E (ii) whenever x, y are distinct points of X,
there are disjoint E, F ∈ E such that x ∈ intE and y ∈ intF . Then whenever A, B are disjoint non-empty
K-analytic subsets of X, there are disjoint E, F ∈ E such that A ⊆ E and B ⊆ F .

422J Corollary Let X be a Hausdorff space and A, B disjoint K-analytic subsets of X. Then there is
a Borel set which includes A and is disjoint from B.

*422K Theorem Let X be a Hausdorff space.
(i) Suppose that X is regular. Let A ⊆ X be a K-analytic set. Then there is a non-decreasing family

〈Eξ〉ξ<ω1
of Borel sets in X, with union X \ A, such that every Souslin-F subset of X disjoint from A is

included in some Eξ.
(ii) Suppose that X is regular. Let A ⊆ X be a Souslin-F set. Then there is a non-decreasing family

〈Eξ〉ξ<ω1
of Borel sets in X, with union X \ A, such that every K-analytic subset of X \ A is included in

some Eξ.
(iii) Let A ⊆ X be a K-analytic set. Then there is a non-decreasing family 〈Eξ〉ξ<ω1

of Borel sets in X,
with union X \A, such that every K-analytic subset of X \A is included in some Eξ.

Version of 28.11.16

423 Analytic spaces

We come now to the original class of K-analytic spaces, the ‘analytic’ spaces. I define these as continuous
images of NN (423A), but move as quickly as possible to their characterization as K-analytic spaces with
countable networks (423C), so that many other fundamental facts (423E-423G) can be regarded as simple
corollaries of results in §422. I give two versions of Lusin’s theorem on injective images of Borel sets
(423I), and a form of the von Neumann-Jankow measurable selection theorem (423P). I end with notes on
constituents of coanalytic sets (423R-423S).

423A Definition A Hausdorff space is analytic or Souslin if it is either empty or a continuous image
of NN.

c© 2002 D. H. Fremlin
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6 Descriptive set theory 423B

423B Proposition (a) A Polish space is analytic.
(b) A Hausdorff continuous image of an analytic Hausdorff space is analytic.
(c) A product of countably many analytic Hausdorff spaces is analytic.
(d) A closed subset of an analytic Hausdorff space is analytic.
(e) An analytic Hausdorff space has a countable network consisting of analytic sets.

423C Theorem A Hausdorff space is analytic iff it is K-analytic and has a countable network.

423D Corollary (a) An analytic Hausdorff space is hereditarily Lindelöf.
(b) In a regular analytic Hausdorff space, closed sets are zero sets and the Baire and Borel σ-algebras

coincide.
(c) A compact subset of an analytic Hausdorff space is metrizable.
(d) A metrizable space is analytic iff it is K-analytic.

423E Theorem (a) For any Hausdorff space X, the family of subsets of X which are analytic in their
subspace topologies is closed under Souslin’s operation.

(b) Let (X,T) be an analytic Hausdorff space. For a subset A of X, the following are equiveridical:

(i) A is analytic;
(ii) A is K-analytic;
(iii) A is Souslin-F;
(iv) A can be obtained by Souslin’s operation from the family of Borel subsets of X.

In particular, all Borel sets in X are analytic.

423F Proposition Let (X,T) be an analytic Hausdorff space.
(a) A set E ⊆ X is Borel iff both E and X \ E are analytic.
(b) If S is a coarser Hausdorff topology on X, then S and T have the same Borel sets.

423G Lemma Let X and Y be analytic Hausdorff spaces and f : X → Y a Borel measurable function.
(a) f is an analytic set.
(b) f [A] is an analytic set in Y for any analytic set A ⊆ X.
(c) f−1[B] is an analytic set in X for any analytic set B ⊆ Y .

423H Lemma Let (X,T) be an analytic Hausdorff space, and 〈En〉n∈N any sequence of Borel sets in X.
Then the topology T′ generated by T ∪ {En : n ∈ N} is analytic.

423I Theorem Let X be a Polish space, E ⊆ X a Borel set, Y a Hausdorff space and f : E → Y an
injective function.

(a) If f is continuous, then f [E] is Borel.
(b) If Y has a countable network and f is Borel measurable, then f [E] is Borel.

423J Proposition Let (X,T) be an analytic Hausdorff space, and Σ a countably generated σ-subalgebra
of the Borel σ-algebra B(X,T) which separates the points of X. Then Σ = B(X,T).

423K Lemma If X is an uncountable analytic Hausdorff space, it has subsets homeomorphic to {0, 1}N

and N
N.

423L Corollary Any uncountable Borel set in any analytic Hausdorff space has cardinal c.

423M Proposition Let X be an uncountable analytic Hausdorff space. Then it has a non-Borel analytic
subset.

423N Theorem Let X be an analytic Hausdorff space, Y a set, and C ⊆ PY . Write T for the σ-algebra
of subsets of Y generated by S(C), where S is Souslin’s operation, and V for S({F × C : F ⊆ X is closed,
C ∈ C}). If W ∈ V, then W [X] ∈ S(C) and there is a T-measurable function f : W [X] → X such that
(f(y), y) ∈W for every y ∈W [X].

Measure Theory (abridged version)



§424 intro. Standard Borel spaces 7

423O Corollary Let X be an analytic Hausdorff space, Y a set and T a σ-algebra of subsets of Y which
is closed under Souslin’s operation. Suppose that W ∈ S(B(X)⊗̂T) where B(X) is the Borel σ-algebra of
X. Then W [X] ∈ T and there is a T-measurable function f :W [X] → X such that (f(y), y) ∈W for every
y ∈W [X].

423P Corollary Let X be an analytic Hausdorff space and Y any topological space. Let T be the σ-
algebra of subsets of Y generated by S(B(Y )), where B(Y ) is the Borel σ-algebra of Y . IfW ∈ S(B(X×Y )),
then W [X] ∈ T and there is a T-measurable function f : W [X] → X such that (f(y), y) ∈ W for every
y ∈W [X].

423Q Corollary Let X and Y be analytic Hausdorff spaces, A an analytic subset of X and f : A → Y
a Borel measurable function. Let T be the σ-algebra of subsets of Y generated by the Souslin-F subsets of
Y . Then f [A] ∈ T and there is a T-measurable function g : f [A] → A such that fg is the identity on f [A].

*423R Constituents of coanalytic sets: Theorem Let X be a Hausdorff space, and A ⊆ X an
analytic subset of X. Then there is a non-decreasing family 〈Eξ〉ξ<ω1

of Borel subsets of X, with union
X \A, such that every analytic subset of X \A is included in some Eξ.

*423S Remarks (a) Let A be an analytic set in an analytic space X and 〈Eξ〉ξ<ω1
a family of Borel

sets as in 423R. There is nothing unique about the Eξ. But if 〈E′
ξ〉ξ<ω1

is another such family, then there

is a cofinal closed set C in ω1 such that
⋃
η<ξ Eη =

⋃
η<ξ E

′
η for every ξ ∈ C.

Another way of expressing the result in 423R is to say that if we write I = {B : B ⊆ X \A is analytic},
then {E : E ∈ I, E is Borel} is cofinal with I and cf I ≤ ω1.

(b) It is a remarkable fact that, in some models of set theory, we can have non-Borel coanalytic sets in
Polish spaces such that all their constituents are countable. But in ‘ordinary’ cases we shall have, for any
family 〈Gξ〉ξ<ω1

of Borel constituents of X \A, uncountable Gξ.

*423T Coanalytic and PCA sets Let X be a Polish space.

(a) A subset A of X is coanalytic if X \A is analytic, and PCA if there is a coanalytic set R ⊆ N
N×X

such that R[NN] = A.

(b) Every PCA set A ⊆ X can be expressed as the union of at most ω1 Borel sets.

(c) A subset of X is Borel iff it is both analytic and coanalytic. The union and intersection of a sequence
of coanalytic subsets of X are coanalytic. If Y is another Polish space and h : X → Y is Borel measurable,
then h−1[B] is coanalytic in X for every coanalytic B ⊆ Y . If Y is a Gδ subset of X and B ⊆ Y is coanalytic
in Y then B is coanalytic in X.

(d) If X and Y are Polish spaces, A ⊆ Y is PCA and f : X → Y is Borel measurable, then f−1[A] is a
PCA set in X.

Version of 21.3.08

424 Standard Borel spaces

This volume is concerned with topological measure spaces, and it will come as no surprise that the
topological properties of Polish spaces are central to the theory. But even from the point of view of unadorned
measure theory, not looking for topological structures on the underlying spaces, it turns out that the Borel
algebras of Polish spaces have a very special position. It will be useful later on to be able to refer to some
fundamental facts concerning them.

c© 1998 D. H. Fremlin
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8 Descriptive set theory 424A

424A Definition Let X be a set and Σ a σ-algebra of subsets of X. We say that (X,Σ) is a standard
Borel space if there is a Polish topology on X for which Σ is the algebra of Borel sets.

424B Proposition (a) If (X,Σ) is a standard Borel space, then Σ is countably generated as σ-algebra
of sets.

(b) If 〈(Xi,Σi)〉i∈I is a countable family of standard Borel spaces, then (
∏
i∈I Xi,

⊗̂
i∈IΣi) is a standard

Borel space.
(c) Let (X,Σ) and (Y,T) be standard Borel spaces and f : X → Y a (Σ,T)-measurable surjection. Then

(i) if E ∈ Σ is such that f [E] ∩ f [X \ E] = ∅, then f [E] ∈ T;
(ii) T = {F : F ⊆ Y, f−1[F ] ∈ Σ};
(iii) if f is a bijection it is an isomorphism.

(d) Let (X,Σ) and (Y,T) be standard Borel spaces and f : X → Y a (Σ,T)-measurable injection. Then
Z = f [X] ∈ T and f is an isomorphism between (X,Σ) and (Z,TZ), where TZ is the subspace σ-algebra.

424C Theorem Let (X,Σ) be a standard Borel space.
(a) If X is countable then Σ = PX.
(b) If X is uncountable then (X,Σ) is isomorphic to (NN,B(NN)), where B(NN) is the algebra of Borel

subsets of NN.

424D Corollary (a) If (X,Σ) and (Y,T) are standard Borel spaces and #(X) = #(Y ), then (X,Σ) and
(Y,T) are isomorphic.

(b) If (X,Σ) is an uncountable standard Borel space then #(X) = #(Σ) = c.

424E Proposition Let X be a set and Σ a σ-algebra of subsets of X; suppose that (X,Σ) is countably
separated in the sense that there is a countable set E ⊆ Σ separating the points of X. If A ⊆ X is such that
(A,ΣA) is a standard Borel space, where ΣA is the subspace σ-algebra, then A ∈ Σ.

424F Corollary Let X be a Polish space and A ⊆ X any set which is not Borel. Let B(A) be the Borel
σ-algebra of A. Then (A,B(A)) is not a standard Borel space.

424G Proposition Let (X,Σ) be a standard Borel space. Then (E,ΣE) is a standard Borel space for
every E ∈ Σ.

*424H Theorem Let G be a Polish group, (X,T) a Polish space and • a Borel measurable action of G
on X. Then there is a Polish topology T′ on X, yielding the same Borel sets as T, such that the action is
continuous for T′ and the given topology of G.
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Version of 9.8.13

*425 Realization of automorphisms

In §344 I presented some results on the representation of a countable semigroup of Boolean homomor-
phisms in a measure algebra by a semigroup of functions on the measure space underlying the algebra. §424
provides us with the tools needed for a remarkable extension, in the case of the Lebesgue measure algebra,
to groups with cardinal ω1 (Theorem 425D). The expression of the ideas is made smoother by using the
language of group actions.

425A I begin with what amounts to a special case of the main theorem, with some refinements which
will be useful elsewhere.

Proposition (a) Let (X,Σ) and (Y,T) be non-empty standard Borel spaces, and I, J σ-subalgebras of Σ,
T respectively; write A = Σ/I and B = T/J for the quotient algebras. For E ∈ Σ, F ∈ T write ΣE , TF
for the subspace σ-algebras on E, F respectively.

(a) If π : A → B is a sequentially order-continuous Boolean homomorphism, there is a (T,Σ)-measurable
f : Y → X which represents π in the sense that πE• = f−1[E]• for every E ∈ Σ.

(b) If π : A → B is a Boolean isomorphism, there are G ∈ I, H ∈ J and a bijection h : Y \H → X \G
which is an isomorphism between (Y \ H,TY \H) and (X \ G,ΣX\G), and represents π in the sense that

πE• = h−1[E \G]• for every E ∈ Σ.
(c) If π : A → A is a Boolean automorphism, there is a bijection h : X → X which is an automorphism

of (X,Σ) and represents π in the sense of (a).
(d) If #(X) = #(Y ) = c, A and B are ccc, and π : A → B is a Boolean isomorphism, there is a bijection

h : Y → X which is an isomorphism between (Y,T) and (X,Σ), and represents π in the sense of (a).

425B Lemma Let G be a group, G0 a subgroup of G, H another group, and X, Z sets; let •r be the right
shift action of H on ZH . Suppose we are given a group homomorphism θ : G → H, an injective function
f : N × ZH → X and an action •0 of G0 on X such that π•0f(n, z) = f(n, θ(π)•rz) whenever n ∈ N and
z ∈ ZH .

(a) If #(X \ f [N× ZH ]) ≤ #(Z), there is an action • of G on X extending •0.
(b) Suppose moreover that H is countable, X and Z are Polish spaces, and f is Borel measurable when

N × ZH is given the product topology. If x 7→ π•0x is Borel measurable for every π ∈ G0, then • can be
chosen in such a way that x 7→ ψ•x is Borel measurable for every ψ ∈ G.

425C Master actions (a) For each R ⊆ N
2, consider the family FR of injective functions f from

countable ordinals to N such that

for every β ∈ dom f , f(β) is the unique member of N such that R[{f(β)}] = f [β].

fR =
⋃
FR is the unique maximal element of FR.

For a countable ordinal α, let Rα be the set of those R ⊆ N
2 such that α ≤ dom fR. Note that if

f : α→ N is injective, then there is an R ∈ Rα such that f = fR↾α.

(b) Let z be the family of group operations ⋆ on N. We are going to need the natural Borel structure
on z corresponding to the identification of each ⋆ ∈ z, which is a function from N× N to N, with the set

{(i, j, k) : i ⋆ j = k} ⊆ N
3.

For ⋆ ∈ z, let •
⋆
r be the corresponding right shift action of N on R

N, so that (m•
⋆
rz)(i) = z(i ⋆m) whenever

z ∈ R
N and i, m ∈ N.

(c) Let G be a group, with cardinal ω1, with identity ι; let 〈πα〉α<ω1
enumerate G, with π0 = ι. Let

F ⊆ ω1 be the set of those α such that Gα = {πβ : β < α} is a subgroup of G. For α ∈ F , set

Sα = {(R, ⋆) : R ∈ Rα, ⋆ ∈ z and fR(β) ⋆ fR(γ) = fR(δ)

whenever β, γ, δ < α and πβπγ = πδ}.

c© 2009 D. H. Fremlin
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(d) For α ∈ F , set

Mα = {(R, ⋆, z) : (R, ⋆) ∈ Sα, z ∈ R
N}.

Then we have an action •
′
α of Gα on Mα defined by saying that

πβ•
′
α(R, ⋆, z) = (R, ⋆, fR(β)•

⋆
rz)

whenever (R, ⋆) ∈ Sα, z ∈ R
N and β < α.

(e) If α, β ∈ F and α ≤ β, then Rβ ⊆ Rα, Sβ ⊆ Sα, Mβ ⊆ Mα and π•
′
β(R, ⋆, z) = π•

′
α(R, ⋆, z) whenever

(R, ⋆, z) ∈ Mβ and π ∈ Gα. If β ∈ F and β = sup(β ∩F ), then Rβ =
⋂
α∈β∩F Rα and Mβ =

⋂
α∈β∩F Mα.

(f)(i) For α < ω1, Rα belongs to the Borel σ-algebra B(PN
2), and {(R,m) : R ⊆ N

2, (β,m) ∈ fR} ∈
B(PN

2 × N) whenever m ∈ N and β < α.

(ii) z is a Borel subset of P(N3), Sα is a Borel subset of P(N2)×P(N3), and Mα is a Borel subset of
P(N2)×P(N3)×R

N, for every α ∈ F . (R, ⋆, z) 7→ π•
′
α(R, ⋆, z) : Mα → Mα is Borel measurable whenever

α ∈ F and π ∈ Gα.

425D Törnquist’s theorem Let (X,Σ) be a standard Borel space and I a σ-ideal of Σ containing an
uncountable set. Let A be the quotient algebra Σ/I, and G ⊆ AutA a subgroup with cardinal at most
ω1. Then there is an action • of G on X which represents G in the sense that π•E belongs to Σ, and
(π•E)• = π(E•), for every E ∈ Σ and π ∈ G.

425E Scholium The theorem here applies to groups with cardinal at most ω1. So it is worth noting
that in the context of 425D the whole group AutA has cardinal at most c.

We therefore have

Suppose the continuum hypothesis is true. Let (X,Σ) be a standard Borel space and I a
σ-ideal of subsets of Σ containing an uncountable set. Then there is an action • of Aut(Σ/I) on
X such that πE• = (π•E)• whenever E ∈ Σ and π ∈ Aut(Σ/I).

425Z Problems (a) Suppose that (X,Σ) is an uncountable standard Borel space and I the ideal [X]≤ω.
Which subgroups G of Aut(Σ/I) can be represented by actions of G on X?

(b) Let (A, µ̄) be the measure algebra of Lebesgue measure µ on [0, 1], and G a semigroup of measure-
preserving Boolean homomorphisms from A to itself with #(G) = ω1. Must there be a family 〈fπ〉π∈G
of inverse-measure-preserving functions from [0, 1] to itself such that fπφ = fφfπ for all π, φ ∈ G and fπ
represents π, in the sense of 425A, for every π ∈ G?

(c) Let (Bω1
, ν̄ω1

) be the measure algebra of the usual measure on {0, 1}ω1 , and G a group of measure-
preserving automorphisms of Bω1

with #(G) = ω1. Must there be a family 〈fπ〉π∈G of inverse-measure-
preserving functions from {0, 1}ω1 to itself such that fπφ = fφfπ for all π, φ ∈ G and fπ represents π for
every π ∈ G?

Version of 30.11.16

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

423J Extra results have been interpolated into §423, so the second half of that section (423J-423R),
referred to in the 2008 and 2015 editions of Volume 5, is now 423K-423T.
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