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Chapter 42
Descriptive set theory

At this point, I interpolate an auxiliary chapter, in the same spirit as Chapters 31 and 35 in the last
volume. As with Boolean algebras and Riesz spaces, it is not just that descriptive set theory provides
essential tools for modern measure theory; it also offers deep intuitions, and for this reason demands study
well beyond an occasional glance at an appendix. Several excellent accounts have been published; the closest
to what we need here is probably ROGERS 80; at a deeper level we have MOSCHOVAKIS 80, and an admirable
recent treatment is KECHRIS 95. Once again, however, I indulge myself by extracting those parts of the
theory which I shall use directly, giving proofs and exercises adapted to the ideas I am trying to emphasize
in this volume and the next.

The first section describes Souslin’s operation and its basic set-theoretic properties up to first steps in the
theory of ‘constituents’ (421N-421Q), mostly steering away from topological ideas, but with some remarks
on c-algebras and Souslin-F sets. §422 deals with usco-compact relations and K-analytic spaces, working
through the topological properties which will be useful later, and giving a version of the First Separation
Theorem (4221-422J). §423 looks at ‘analytic’ or ‘Souslin’ spaces, treating them primarily as a special kind
of K-analytic space, with the von Neumann-Jankow selection theorem (423P). §424 is devoted to ‘standard
Borel spaces’; it is largely a series of easy applications of results in §423, but there is a substantial theorem
on Borel measurable actions of Polish groups (424H). Finally, T add a note on A.Térnquist’s theorem on
representation of groups of automorphisms of quotient algebras (425D).

Version of 14.12.07

421 Souslin’s operation

I introduce Souslin’s operation S (421B) and show that it is idempotent (421D). I describe alternative
characterizations of members of S(£), where £ C P X, as projections of sets in N x X (421G-421J). I briefly
mention Souslin-F sets (421J-421L) and a special property of ‘inner Souslin kernels’ (421M). At the end of
the section I set up an abstract theory of ‘constituents’ for kernels of Souslin schemes and their complements
(421N-421Q).

421 A Notation Throughout this chapter, and frequently in the next, I shall regard a member of N as
the set of its predecessors, so that a finite power X* can be identified with the set of functions from k to
X, and if ¢ € XY and k € N, we can speak of the restriction ¢[k € X*. In the same spirit, identifying
functions with their graphs, I can write ‘c C ¢’ when o € X*, ¢ € X~ and ¢ extends 0. On occasion I may
write #(o) for the ‘length’ of a finite function o — again identifying o with its graph — so that #(o) = k if
o € X*. And if k = 0, identified with @), then the only function from k to X is the empty function, so X°
becomes {0}.

I shall sometimes refer to the ‘usual topology of NY’: this is the product topology if each copy of N is
given its discrete topology. S will always be the set [ J, .y N¥, and S* = S\ {0} the set [J,~, N*; for o € 5,
I, will be {¢: ¢ € NN, ¢ D o}. Then Iy = N and {I, : 0 € S*} is a base for the topology of N¥ consisting
of open-and-closed sets. If o € N*¥ and i € N I write 0~ <i> for the member 7 of N*+! such that 7(k) = i
and 7(j) = o(j) for j < k.

421B Definition If £ is a family of sets, I write S(€) for the family of sets expressible in the form
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2 Descriptive set theory 421B

U N Ea

peNN k>1

for some family (F,),es+ in E.
A family (Ey),es+ is called a Souslin scheme; the corresponding set U¢>eNN Ne>1 Eorr is its kernel;
the operation B

(Eg)oes U ﬂ Eg

HENN E>1

is Souslin’s operation or operation A. Thus S(€) is the family of sets obtainable from sets in £ by
Souslin’s operation. If £ = S§(&), we say that £ is closed under Souslin’s operation.

Remark I should perhaps warn you that some authors use ( J; .y N * here in place of S*; so that their Souslin
kernels are of the form (J,cyn (Vgso B © Ep. Consequently, for such authors, any member of S(£) is
included in some member of £. If £ has a greatest member (or, fractionally more generally, if any sequence
in & is bounded above in &) this makes no difference; but if, for instance, £ is the family of compact subsets
of a topological space, the two definitions of S may not quite coincide. I believe that on this point, for once,
I am following the majority.

421C Elementary facts (a) It is worth noting straight away that if £ is any family of sets, then
Unen En and ),y By belong to S(€) for any sequence (Ey)nen in €. B Set

Fy; = E4) for every o € S*,

G, = Ej, whenever k € N, o € NF+1,

then
Unen En = Upen i1 Forr € S(E),

Nnen En = Upen Ni>1 Gorr € S(€). Q
In particular, £ C §(€). But note that there is no reason why E \ F' should belong to S(€) for E, F € €.

(b) Let X and Y be sets, and f : X — Y a function. Let (F,),ecs be a Souslin scheme in PY, with
kernel B. Then f~![B] is the kernel of the Souslin scheme (f~![F,])scs-. P

1Bl = fﬁl[UqbeNN Nas1 Fornl = Ugenn Nusi F Fern] Q

(c) Let X and Y be sets, and f: X — Y a function. Let F be a family of subsets of Y. Then
{f7'Bl: BeS(F)}=S{f'[F]: FeTF}
P Foraset AC X, Ae S({f'[F]: F € F}) iff there is some Souslin scheme (E,),cs- in {f}[F]: F € F}
such that A is the kernel of (E,),es+, that is, iff there is some Souslin scheme (Fy,),es+ in F such that A is
the kernel of (f~![F,])scs+, that is, iff A= f~![B] where B is the kernel of some Souslin scheme in F. Q
(d) Let X and Y be sets, and f: X — Y a surjective function. Let F be a family of subsets of Y. Then
S(F)={B:BCY, f'[Ble S{f '[F]: F e F})}.

P If B € S(F), then f~1[B] € S({f![F]: F € F}), by (c) above. If BC Y and f~1[B] € S{f'[F]:
F € F}), then there is a Souslin scheme (F,),cs+ in F such that f~1[B] is the kernel of (f~![F,])scs*,
that is, f~1[B] = f~1[C] where C is the kernel of (F,),cs+. Because f is surjective, B = C € S(F). Q

(e) Souslin’s operation can be thought of as a projection operator, as follows. Let (E,),cs+ be a Souslin
scheme with kernel A. Set

R = ﬂnZl UO'EN" Io‘ X EJ.
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421D Souslin’s operation 3

Then R[NY] = A. P For any z, and any ¢ € NN,

(¢p,2) € R < for every n > 1 there is a 0 € N" such that « € E,, ¢ € I,
= x € Ey}y, for every n > 1.

But this means that

z € RNY] <= there is a ¢ € N such that (¢,2) € R

<= there is a ¢ € NY such that = € ﬂEdﬁn — €A Q
n>1

(£)(i) T will say that a Souslin scheme (E,),ecs+ is fully regular if E, C E, whenever o, 7 € S*,
#(1) < #(0) and o (i) < 7(7) for every i < #(0).

(ii) Let &€ be a family of sets such that EU F and E N F belong to £ for all E, F' € £. Then every
member of S(€) can be expressed as the kernel of a regular Souslin scheme in €. P Let (E,),cs+ be a
Souslin scheme in £ with kernel A. Set F, = ﬂlgkgn Esk, Go = UreN",rga F. forn > 1 and o € N"; then

F,, G, € & for every o € S*. Write B, C for the kernels of (F,),cs+, (Gy)ocs- respectively. If ¢ € NN,
then ,5, Forn = N> Eorn, s0 A" = A. Because Iy C G, for every o, A" C A". If x € A", let ¢ € NN
be such that = € (),,~; Ggn. Then for each k > 1 there is a 7, € N* such that 7, < ¢k and z € F,, . For
k>1, set B

’(/)k(l) = Tk(i) for i < k,
= 0 otherwise;
then 1, belongs to the compact set [T,y #(i) + 1 for every n, so ()r>1 has a cluster point ¢ in N¥. For

any n > 1, there are infinitely many k such that ¢ [n = ¥ [n, so there is such a k with £ > n, in which case
Pn =1, [n and

re 7, CEqn=Eymn.
Thus z € (),,>1 Eypin € A. As x is arbitrary, A” C A and A” = A.
On the other hand, if o, 7 € S*, m = #(7) < #(0) = n and o[m < 7, then take any ¢’ € N” such that
o' < o; in this case o'|m < 7T so
Fa’ g Fo’[m g GT'
As o' is arbitrary, G, C G,; as 0 and 7 are arbitrary, (G,)s,es+ is fully regular.
Thus A = A” is the kernel of a fully regular Souslin scheme in £. Q

421D The first fundamental theorem is that the operation S is idempotent.
Theorem (SOUSLIN 1917) For any family £ of sets, S(€) is closed under Souslin’s operation.

proof (a) Let (4,),es+ be a family in S(&), and set A = (J ey [g>1 Agpr; I have to show that A € S(E).
For each o € S, let (Ey.)rcs+ be a family in £ such that A, = UweNN ﬂle Eo ptm- Then

A= U ﬂ U m Egtkptm = U m Eg 1k 1ms

GENN k>1 peNN m>1 peNy k,m>1
Pe (NN}

writing ¢ = (Y5 )g>1 for P € (NV)N MO The idea of the proof is simply that NN x (NN)N\{0} is essentially
identical to NY, so that all we have to do is to organize new names for the E,.. But as it is by no means a
trivial matter to devise a coding scheme which really works, I give the details at length.

(b) The first step is to note that S* and (S*)? are countable, so there is a sequence (H,,)nen running
over {E,; : 0, 7 € S*}. Next, choose any injective function ¢ : N x N — N\ {0} such that ¢(0,0) = 1 and
q(0,1) = 2. For k, m > 1 set Jm = {(4,0) : ¢ < k} U{(i,k) : i < m}, so that J1; = {(0,0),(0,1)}, and
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4 Descriptive set theory 421D

choose a family ((ky,mn))n>3 running over (N\ {0})? such that g[Jk, m,] C n for every n > 3. (The pairs
(kn, my) need not all be distinct, so this is easy to achieve.)
Now, for v € N, where n > 3, set I}, = E,, where

oc Nk", o(t1) = v(q(i,0)) for i < ky,

T €N 7(i) = v(q(i, kn)) for i < mpy;
these are well-defined because q[Jx,, m,] € n. For v € N'UN?, set F,, = H,(q).

(c) This defines a Souslin scheme (F,),cs+ in €. Let A’ be its kernel, so that A’ € S(£). The point is
that A" = A.

P (i) If 2 € A, there must be ¢ € NV, ¢ € (NV)NMO} guch that 2 € Mk.m>1 Eork,prm- Choose 0 € NN
such that -

Hoo) = Eg1,9111,
0(q(i,0)) = ¢(i) for every i € N,
0(q(i,k)) = (i) for every k > 1, ¢ € N.
(This is possible because ¢ : N2> — N\ {0} is injective.) Now
Fyr1 = For2 = Hyo) = Epr1,un11

certainly contains z. And for n > 3, Fy;, = E,r where o(i) = 6(q(i,0)) for i < ky, 7(i) = 0(q(i, ky,)) for
i < my, that is, 0 = ¢[k,, and 7 = Yy, [m,,, so again x € Fy;,,. Thus

x € ngl Fg(n Cc A
As z is arbitrary, A C A'.

(ii) Now take any x € A’. Let § € NY be such that = € Nn>1 Forn. Define ¢ € NN, 9 € (NV)NO} by

setting
8(i) =
V(i)
If K, m > 1, let n > 3 be such that & = k,,, m = m,,. Then x € Fy,, = E,r, where
o(i) = 0(q(i,0)) for i < ky, 7(i) = 0(q(i, ky)) for i < my,

(¢(i,0)) for ¢ € N|

0(q(i
0(q(i,k)) for k> 1,4 e N.

that is, 0 = ¢k, = ¢k and 7 = ¢, [my, = Y [m. As m and n are arbitrary,
2 € Npnz1 Bothatm € A

As z is arbitrary, A’ C A. Q
Accordingly we must have A € §(€), and the proof is complete.

421E Corollary For any family £ of sets, S(€) is closed under countable unions and intersections.

proof For 421Ca tells us that the union and intersection of any sequence in S(€) will belong to SS(€) =
S(€).

421F Corollary Let X be a set and £ a family of subsets of X. Suppose that X and @) belong to S(&)
and that X \ E € S(€) for every E € £. Then S(€) includes the o-algebra of subsets of X generated by &.
proof The set

YS={F:FeS€), X\FeS§S¢&)}

is closed under complements (necessarily), contains @ (because @) and X belong to S(£)), and is also closed
under countable unions, by 421E. So it is a o-algebra; but the hypotheses also ensure that £ C ¥, so that
the o-algebra generated by £ is included in ¥ and in S(&).

MEASURE THEORY



421H Souslin’s operation 5

421G Proposition Let £ be a family of sets such that # € £. Then

SE)={RNY:ReS({l, xE:0€ 8 Ec&)})}
={RINY:RecS({I, x E: 0 € S*, E<c&}), R™'[{x}] is closed for every x}.

proof Set F={I, xE:0€ 5" Ec&}.
(a) Suppose first that A € S(&). Let (Ey),es+ be a Souslin scheme in £ with kernel A. Set
R =Niz1 Usenr o X Eo.
Then R € S(F), by 421E, and R[NY] = A, by 421Ce. Also
R'{a}] = Mjs1 U{Ls s o eNF, v € By}
is closed, for every x.

(b) Now suppose that A = R[N"] for some R € S(F). Let (I,(») X Eq)ses+ be a Souslin scheme in F
with kernel R. For k> 1, 0 € NF set

Fa = Ea if n I‘r(a[n) 7é (2)7
1<n<k

= () otherwise.

Then (F,)scs+ is a Souslin scheme in &, so its kernel A’ belongs to S(&).
The point is that A’ = A. P (i) If € A, there are a ¢ € NY such that (¢,z) € R and a ¢ € NY such
that (¢,z) € ngl I (1ny X Eyin. Now, for any k > 1, we have
¢ € Micn<k Lr@win) = Nicn<r Ir(@i)1n)
so that Fypx = Eyp, contains x; thus « € (5, Fyre © A’. As @ is arbitrary, A C A" (ii) If v € A, take
¢ € N¥ such that = € Nps1 Fyin- In this case we must have Fy, # 0, s0 ()<, <p Lr(pin) # 0, for every
k > 1. But what this means is that, setting 7, = 7(¢[n) for each n > 1, 7,,(¢) = 7,,(¢) whenever i € N is

such that both are defined. So {7, : n > 1} must have a common extension ¢ € N¥, and ¢ € =1 Lr(pn)-
Now a

(¢,2) € Nys1 Lr(pin) X Eypin € R,

sox € A. Thus A’ C A and the two are equal. Q
This shows that

{RINY]: R e S(F)} C S(€),

and the proof is complete.

421H When the class £ is a o-algebra, the last proposition can be extended.

Proposition Let X be a set, and X a g-algebra of subsets of X. Let B be the algebra of Borel subsets of
NN, Then

S(%) = {R|NY]: R € B&%}
={RNY:RecS({I, x E:0€ 5%, EcX})}
= {R|N"]: R € S(B&X)}.

Notation Recall that B&Y. is the o-algebra of subsets of NN x X generated by {H x E: H € B, E € ©}.

proof (a) Suppose first that A € S(X). As in 421G, let (E,)scs+ be a Souslin scheme in ¥ with kernel A,
and set

R= ﬂk21 Usent Io X Es,
so that A = R[NN] (421Ce again). Because every I, is an open-and-closed set in N¥, R € B®Y. Thus

D.H.FREMLIN



6 Descriptive set theory 421H
S(X) C {RINN]: R € B&X}.

(b) Set F={I, x E:0 € S*, E€X}. Then S(BEL) = S(F). Pt E € ¥ and o € N* then
(NYx X)\ (Io x E) = (I x (X \ E)) UU enp rpo Ir X X € S(F).
Also
NY%x X =U,ep Lo x X, 0=1Ix0

(where 7 is any member of S*) belong to S(F). By 421F, S(F) includes the o-algebra A of sets generated

by F. Now if £ € ¥ and H C NV is open, H = UUGT I, for some T' C S§*; as T is necessarily countable,
HxE= .1, x E€A.

oeT ~o

Since {F : F C NY F x E € A} is a o-algebra of subsets of N, and we have just seen that it contains all
the open sets, it must include B; thus F x E € A for every F € B, E € ¥. So B®X C A C S(F), and

S(F) C S(B®X) C SS(F) = S(F)
(421D). Q

(c) Now we have

S(¥) C {RINY]: R € B&X}

(by (a))

C{RIN"]: R € S(B&Y)} = {RIN"] : R € S(F)}
(by (b))

=S5(%)
by 421G.

Remark A more general form of this result is in 4230 below.

4211 There is a particularly simple description of sets obtainable by Souslin’s operation from closed sets
in a topological space.

Lemma Let X be a topological space and R C NN x X a closed set. Then

R[A] = UqbeA ﬂnZl R[I¢Tn]~
for any A C NN, In particular, R]NY] is the kernel of the Souslin scheme (R[I,]),cs*-

proof Set

B = U¢eA mnz1 R[I¢Tn]~
(i) If = € R[A], there is a ¢ € A such that (¢,z) € R. In this case, ¢ € I}, so

z € RlIyn] C R[Ip1n]

for every n, and € B. Thus R[A] C B. (ii) If z € B, let ¢ € A be such that = € R[I4,] for every n € N.
? If (¢, ) ¢ R, then (because R is closed) there are a o € S* and an open G C X such that ¢ € I,, x € G
and (I, x G) N R = (. But this means that G N R[I,] = 0 so G N R[I,] = 0 and x ¢ R[I,]; which is absurd,
because 0 = ¢[n for some n > 1. X Thus (¢,z) € R and = € R[A]. As x is arbitrary, B C R[A] and

B = R[A], as required.

421J Proposition Let X be a topological space, and F the family of closed subsets of X. Then a set
A C X belongs to S(F) iff there is a closed set R C NY x X such that A is the projection of R on X.

proof (a) Suppose that A € S(F). Let (F,),es+ be a Souslin scheme in F with kernel A. Set
R = ﬂnZl Usenn Lo X Fo.

MEASURE THEORY



421Nb Souslin’s operation 7

For each n > 1,
Upenn Lo X Fo = (NN x X)\ U, en Lo X (X \ Fy)
is closed in NN x X, so R is closed; and the projection R[N"] is A, by 421Ce.

(b) Suppose that R C NV is a closed set with projection A. Then A is the kernel of the Souslin scheme
(R[I,])secs+, by 4211, so belongs to S(F).

421K Definition Let X be a topological space. A subset of X is a Souslin-F set in X if it is obtainable
from closed subsets of X by Souslin’s operation; that is, is the projection of a closed subset of NN x X.

For a subset of R", or, more generally, of any Polish space, it is common to say ‘Souslin set’ for ‘Souslin-F
set’; see 421X1.

421L Proposition Let X be any topological space. Then every Baire subset of X is Souslin-F.

proof Let Z be the family of zero sets in X. If FF € Z then X \ F is a countable union of zero sets
(4A2C(b-vi)), so belongs to S(Z). By 421F, the o-algebra generated by Z is included in S(Z) C S(F),
where F is the family of closed subsets of X; that is, every Baire set is Souslin-F.

421M Proposition Let £ be any family of sets such that §) € £ and EU E’, N,y En belong to £ for
every E, E' € £ and all sequences (F,)nen in €. (For instance, £ could be the family of closed subsets of a
topological space, or a o-algebra of sets.) Let (E,),cs- be a Souslin scheme in £, and K C NV a set which
is compact for the usual topology on NY. Then U¢6K Nis1 Egin €E.

proof Set A = cr (51 Epin- For k € N, set K = {¢[k : ¢ € K}; note that K, C N¥ is compact,
because ¢ — ¢ [k is continuous, therefore finite, because the topology of N¥ is discrete. Set

H= ﬂk21 U¢€Kk ﬂ1§n§k E¢rn-

Because £ is closed under finite unions and countable intersections, H € £&. Now A = H. P (i) If x € A,
take ¢ € K such that x € Eg, for every n > 1; then ¢[k € Kj and = € (i<« E(¢1r)n for every k > 1,
sox € H. Thus A C H. (ii) If z € H, then for each k € N we have a o}, € K}, such that 2 € Mi<n<k Eowin-
Choose ¢}, € K such that ¢k = oy, for each k. Now K is supposed to be compact, so the sequence (Pk) ken
has a cluster point ¢ in K.

If n > 1, then Iy}, is a neighbourhood of ¢ in N¥, so must contain ¢y, for infinitely many k; let k > n be
such that ¢ [n = ¢[n. In this case

T € Egyin = Egyin = Egpan
As n is arbitrary,
S ngl E,;g[n C A.

As x is arbitrary, H C A and H = A, as claimed. Q
So Aek.

*421N I now embark on preparations for the theory of ‘constituents’ of analytic and coanalytic sets. It
turns out that much of the work can be done in the abstract context of this section.

Trees and derived trees (a) Let 7 be the family of subsets 7' of S* =J,», N" such that o[k € T
whenever o € T and 1 < k < #(0). Note that the intersection and union of any non-empty family of
members of T again belong to 7. Members of T are often called trees.
(b) For T € T, set
T ={oc:0€ 5", F3ieN o"<i>eT},
so that 0T € T and 0T C T. Of course 0Ty C 917 whenever Ty, T7 € T and Ty C T3.
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8 Descriptive set theory 421Nc

(c) For T € T, define (3°T)¢<., inductively by setting 0°T = T and, for £ > 0, 05T = (< 0(0"T). An
easy induction shows that 0T € T, 0T C 9"T and 0T = 9(0T) whenever n < & < w;.

(d) For any T € T, there is a ¢ < wy such that 9T = 9"T whenever £ <7 < w;. P Set T} = Ne<ion 04T

For each o € S* \ T}, there is a &, < w; such that o ¢ 9% T. Set £ = sup{&, : 0 € S*\ T1}; because S* is
countable, ¢ < wy, and we must now have 9T = T}, so that T = 9"T whenever £ < n < w;. Q

(e) For T € T, its rank is the first ordinal r(T) < w; such that "7 = 9"T)+1T; of course 9"(1T =
O"T whenever 7(T) < n < wy, and (0" 1)T) = o7,

(f) For T € T, the following are equiveridical: (a) 9"")T # §); (3) there is a ¢ € NN such that ¢[n € T
for every n > 1. P (i) If 0 € ")T then o € 9(0"T)T) so there is an i € N such that o~ <i> € 9"(1)T.
We can therefore choose (0, )nen inductively so that o, € 0"")T and 0,4, properly extends o,, for every
n. At the end of the induction, ¢ = (J,,cy 0n belongs to NN and

dn=op,lned T CT
for every n > 1. (ii) If ¢ € NN is such that ¢[n € T for every n > 1, then an easy induction shows that
éln € 0T for every £ < wy and every n > 1, so that 9"(1)T is non-empty. Q

(g) Now suppose that (A, )ses+ is a Souslin scheme. For any x we have a tree T,, € T defined by saying
that

T, = {0’ o€ St x e ﬂlgif#(a) Ag“'}.
Now the kernel of (A,),es+ is just

A={z:3¢eN" 2 () Agn}

n>1

={z:3¢eNY gpneT,Vn>1}={z:0"DT £ 0}

by (f).
The sets

{z:0e X\Ar(Ty) =¢={z:xc X, r(T,) =¢ 0T, =0},

for € < wy, are called constituents of X \ A. (Of course they should properly be called ‘the constituents of
the Souslin scheme (A,)y,es5+".)

*4210 Theorem Let X be a set and ¥ a o-algebra of subsets of X. Let (A,)scs+ be a Souslin scheme
in ¥ with kernel A, and for z € X set

T,={c:0€S8* x¢€ ﬂlgig#(g) Agriy €T

as in 421Ng.

(a) For every ¢ <wj and o € S*, {z:2 € X, 0 € 0°T,} € &

(b) For every £ <wiy, {z:x € A, r(Ty) <&} and {z:2 € X \ A, r(T;) < &} belong to ¥. In particular,
all the constituents of X \ A belong to X.

proof (a) Induce on £. For £ = 0, we have
{r:2eX,0€d T} ={r:2€X,0€Te}=Nicicp@) Aoti €.
For the inductive step to £ > 0, we have

{z:0€ 0Ty} ={z:0€()00"T)}

n<€

= Ufz:07<i>€0'Tu} ex

n<&ieN

because € is countable and all the sets {x : 07 <i> € "T,} belong to ¥ by the inductive hypothesis.

MEASURE THEORY



421Xd Souslin’s operation 9

(b) Now, given ¢ < wi, we see that r(T,) < ¢ iff 05T, D 05T, so that if we set Ec={z:2 ¢
X, r(T;) <&} then

Ee=Nyes{z:x € X, 0€ 0T, or o ¢ O°T,}
belongs to ¥. If € Eg, so that oI T, = 98T, 421Ng tells us that z € A iff 95T, # 0; so that

EgnA:Eg ﬁuaes*{f 10 € 8ETI}

and E¢ \ A both belong to X.
Now the constituents of X \ A are the sets (E¢ \ A) \ U, ¢ Ey for £ < w1, which all belong to X.

*421P Corollary Let X be a set and ¥ a o-algebra of subsets of X. If A € §(X) then both A and X\ 4
can be expressed as the union of at most w; members of X.

proof In the language of 4210, we have
A:U£<w1E§ﬁA, X\A:U€<w1E§\A.

*421Q Lemma Let X be a set and (A, ),cs+ and (B, )scs+ two Souslin schemes of subsets of X. Suppose
that whenever ¢, 1 € NY there is an n > 1 such that (\,.;-, Aeri N Bypi = 0. For z € X set

T, = UnZl{U :oeN" z e mlgz‘gn Az}
as in 421Ng, and let B be the kernel of (By)scs-. Then sup,cpr(Ty) < wi.
proof For o € 5" set Ay = (N1<icp(o) Aotis Bo = i<icy(o) Boti- Then Ty = {o : 0 € 5%, 2 € AL}
for each z € X, B is the kernel of (B!),cs+, and for every ¢, 1» € NV there is an n € N such that
Al N By, = 0.
Define (Q¢)¢<w, inductively by setting
Qo ={(o,7):0, 7€ S*, A NB.#0},
and, for 0 < € < wy,
Qe =Ny<ello,m) 10, 7€ 5%, 34, jEN, (67<i>,77<j>) € Qn}-

Then the same arguments as in 421Na-421Nd show that there is a ( < wy such that Q¢11 = Q¢. 7 If
Q¢ # 0, then, just as in 421Nf, there must be ¢, ¢» € NN such that (¢[m,¥|n) € Q: C Qo for every m,
n > 1; but this means that Aibm N prrn # ) for every n > 1, which is supposed to be impossible. X

Now suppose that € B. Then there is a ¢ € NV such that = € B;Mn for every n > 1. But this
means that (o,%[n) € Qg for every o € T, and every n > 1. An easy induction shows that (0,9 [n) € Q¢
whenever £ < wy, o € 0T, and n > 1. But as Q¢ = () we must have 9T, = () and r(7,) < (. Thus
sup,cpr(Tz) < ¢ < wi, and the proof is complete.

421X Basic exercises (a) Let X be a set and £ a family of subsets of X. (i) Show that § € S(&) iff
there is a sequence in £ with empty intersection. (ii) Show that X € S(&) iff there is a sequence in £ with
union X.

(b) Let £ be a family of sets and F' any set. Show that
SH{ENF:Eec&})={ANF:AecS€)},

S{EUF:Eec&})={AUF:AeS(&)}.
(c) Suppose that £ is a family of sets with #(£) < ¢. Show that #(S(£)) < ¢. (Hint: #(£5") <
#((PN)®") = #(P(N x 5%)).)

(d) Let € be the family of half-open intervals [27"k,27"(k + 1)[, where n € N, k € Z; let G be the set of
open subsets of R; let F be the set of closed subsets of R; let I be the set of compact subsets of R; let B be
the Borel o-algebra of R. Show that S(€) = S(F) = S(G) = S(K) = S(B). (Hint: 421F.)
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10 Descriptive set theory 421Xe

(e) Let T be the family {I, : 0 € U,y N¥} (421A); let G be the set of open subsets of N¥; let F be the
set of closed subsets of N; let K be the set of compact subsets of NY; let B be the Borel o-algebra of NN,
Show that S(Z) = S(F) = S(G) = S(B), but that S(K) is strictly smaller than these. (Hint: if (K,)nen
is any sequence in IC, set ¢(i) = 1 + sup,,cg, (i) for each i € N, so that ¢ ¢ (J,, oy Kn; hence show that

N ¢ S(K).)

(f) Let X be a separable metrizable space with at least two points; let U be any base for its topology, and
B its Borel o-algebra. Show that S(U) = S(B). What can happen if #(X) < 17 What about hereditarily
Lindelof spaces?

neN

(g) Let X be a topological space; let Z be the set of zero sets in X, G the set of cozero sets, and Ba the
Baire o-algebra. Show that S(Z) = S§(G) = S(Ba).

(h) Let X be a set, £ a family of subsets of X, and ¥ the o-algebra of subsets of X generated by &.
Show that if #(£) < ¢ then #(X) < ¢. (Hint: #(c) = #(P(NxN))=cand X C S(EU{X\E: E € &}).)

(i) Let X be a topological space such that every open set is Souslin-F. Show that every Borel set is
Souslin-F.

(j) Let X be a topological space and B(X) its Borel o-algebra. Show that S(B(X)) is just the set of
projections on X of Borel subsets of NN x X. (Hint: 4A3G.)

(k) Let X and Y be topological spaces, f : X — Y a continuous function and F' C Y a Souslin-F set.
Show that f~1[F] is a Souslin-F set in X.

(1) Let X be any perfectly normal topological space (e.g., any metrizable space); let G be the set of open
subsets of X, F the set of closed subsets, and B the Borel o-algebra. Show that S(G) = S(F) = S(B).

>(n) Let X be a Hausdorff topological space and (K,)scs+ a Souslin scheme in which every K, is a
compact subset in X. Show that U¢EK N,,>1 Ks1n is compact for any compact K C NN,

421Y Further exercises (a) Let X be a topological space, Y a Hausdorff space and f : X — Y a
continuous function. Let I be the family of closed countably compact subsets of X. Show that for any
ECKsuchthat ENF e & forall E, Fe&,

{flA]: A€ S(€)} =SHS[E): E € &}).

(b) Let £ be a family of sets and F any set. Show that

S(EU{F}) = {FYU{ANF:AcS(E)}U{BUF:BeSE)}
U{(ANF)UB: A, B S(E))}.

(c) Let X be a topological space, and Ba its Baire o-algebra. Show that S(Ba) is just the family of sets
expressible as f~1[B] where f is a continuous function from X to some metrizable space Y and B C Y is
Souslin-F.

(d) Let X be a set, £ a family of subsets of X, and ¥ the smallest o-algebra of subsets of X including
€ and closed under Souslin’s operation. Show that if #(€) < ¢ then #(X) < ¢. (Hint: define (E¢)ecw,
by setting & = S{X \ E : B € EU, ¢ &}) for each . Show that #(&) < ¢ for every { and that

2= U, &)

(e) Let X be a compact space and A a Souslin-F set in X. Show that there is a family (F¢)e<,,, of Borel
sets such that X \ A = (J,_,, F¢ and whenever B C X \ A is a Souslin-F set there is a { < w; such that
B C Fe. (Hint: take Fe = {z : r(T,) < &} \ A as in 4210b, and apply 421Q.)
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421 Notes and comments In 111G, I defined the Borel sets of R to be the members of the smallest
o-algebra containing every open set. In 114E, I defined a set to be Lebesgue measurable if it behaves in
the right way with respect to Lebesgue outer measure. The latter formulation, at least, provides some sort
of testing principle to determine whether a set is Lebesgue measurable. But the definition of ‘Borel set’
does not. The only tool so far available for proving that a set £ C R is not Borel is to find a o-algebra
containing all open sets and not containing F; conversely, the only method we have for proving properties
of Borel sets is to show that a property is possessed by every member of some o-algebra containing every
open set. The revolutionary insight of SOUSLIN 1917 was a construction which could build every Borel set
from rational intervals. (See 421Xd.) For fundamental reasons, no construction of this kind can provide
all Borel sets without also producing other sets, and to actually characterize the Borel o-algebra a further
idea is needed (423Fa); but the class of analytic sets, being those constructible by Souslin’s operation from
rational intervals (or open sets, or closed sets, or Borel sets — the operation is robust under such variations),
turns out to have remarkable properties which make it as important in modern real analysis as the Borel
algebra itself.

The guiding principle of ‘descriptive set theory’ is that the properties of a set may be analysed in the
light of a construction for that set. Thus we can think of a closed set FF C R as

R\U(q,q/)el]%q/[

where I C Q x Q. The principle can be effective because we often have such descriptions in terms of objects
fundamentally simpler than the set being described. In the formula above, for instance, Q x Q is simpler
than the set F, being a countable set with a straightforward description from N. The set P(Q x Q) is
relatively complex; but a single subset I of Q x Q can easily be coded as a single subset of N (taking some
more or less natural enumeration of Q2 as a sequence {(gn, ¢, ))nen, and matching I with {n : (¢,,q,) € I}).
So, subject to an appropriate coding, we have a description of closed subsets of R in terms of subsets of N.
At the most elementary level, this shows that there are at most ¢ closed subsets of R. But we can also set
out to analyse such operations as intersection, union, closure in terms of these descriptions. The details are
complex, and I shall go no farther along this path until Chapter 56 in Volume 5; but investigations of this
kind are at the heart of some of the most exciting developments of twentieth-century real analysis.

The particular descriptive method which concerns us in the present section is Souslin’s operation. Starting
from a relatively simple class £, we proceed to the larger class S(€). The most fundamental property of S
is 421D: SS(€) = S(&). This means, for instance, that if £ C S(F) and F C S(E), then S(€) will be equal
to S(F); consequently, different classes of sets will often have the same Souslin closures, as in 421Xd-421Xg.
After a little practice you will find that it is often easy to see when two classes £ and F are at the same
level in this sense; but watch out for traps like the class of compact subsets of NV (421Xe) and odd technical
questions (421Xf).

Souslin’s operation, and variations on it, will be the basis of much of the next chapter; it has dramatic
applications in general topology and functional analysis as well as in real analysis and measure theory. An
important way of looking at the kernel of a Souslin scheme (E,),cs+ is to regard it as the projection on
the second coordinate of the corresponding set R = (1 U, et Io X B (421Ce). We find that many other
sets R C NN x X will also have projections in S(€) (421G, 421H). Let me remark that it is essential here
that the first coordinate should be of the right type. In one sense, indeed, N¥ is the only thing that will do;
but its virtue transfers to analytic spaces, as we shall see in 423N-423Q below. We shall often want to deal
with members of S(€) which are most naturally defined in terms of some such auxiliary space.

I have moved into slightly higher gear for 421N-421Q because these are not essential for most of the work
of the next chapter. From the point of view of this section 421P is very striking but the significance of 421Q
is unlikely to be apparent. It becomes important in contexts in which the condition

Vo, €NV In>1, Nigie, Apri NV Bypi =0

is satisfied for natural reasons. I will expand on these in the next two sections. In the meantime, I offer
421Ye as an example of what 4210 and 421Q together can tell us.
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Version of 12.4.16
422 K-analytic spaces

I introduce K-analytic spaces, defined in terms of usco-compact relations. The first step is to define the
latter (422A) and give their fundamental properties (422B-422E). I reach K-analytic spaces themselves in
422F, with an outline of the most important facts about them in 422G-422K.

422A Definition Let X and Y be Hausdorff spaces. A relation R C X x Y is usco-compact if
(o) R[{z}] is a compact subset of Y for every z € X,
(B) R7Y[F] is a closed subset of X for every closed set F C Y.
(Relations satisfying condition (8) are sometimes called ‘upper semi-continuous’.)

422B The following elementary remark will be useful.

Lemma Let X and Y be Hausdorff spaces and R C X X Y an usco-compact relation. If x € X and H is
an open subset of Y including R[{z}], there is an open set G C X, containing x, such that R[G] C H.
proof Set G = X \ R7}[Y \ H]. Because Y \ H is closed, so is R~}[Y \ H], and G is open. Of course
R[G] C H, and z € G because R[{z}] C H.

422C Proposition Let X and Y be Hausdorff spaces. Then a subset R of X x Y is an usco-compact
relation iff whenever F is an ultrafilter on X X Y| containing R, such that the first-coordinate image 71 [[F]]
of F has a limit in X, then F has a limit in R.

proof Recall that, writing 7 (z,y) = z and 7 (z,y) = y for (z,y) € X XY,
m[F]={A:ACX, n{' [A]e F}={A:AC X, AxY € F}
(2A1Ib), and that F — (z,y) iff m1[[F]] — = and m2[[F]] — v (3A3Ic).

(a) Suppose that R is usco-compact and that F is an ultrafilter on X x Y, containing R, such that 7 [[F]]
has a limit z € X. ? If F has no limit in R, then, in particular, it does not converge to (z,y) for any
y € R[{x}]; that is, mo[[F]] does not converge to any point of R[{x}], that is, every point of R[{z}] belongs
to an open set not belonging to ma[[F]]. Because R[{z}] is compact, it is covered by a finite union of open
sets not belonging to m2[[F]]; but as ma[[F]] is an ultrafilter (2A1N), there is an open set H D R[{z}] such
that Y\ H € mo[[F]].

Now 422B tells us that there is an open set G containing x such that R[G] C H. In this case, G € 7 [[F]]
so G XY € F; at the same time, X x (Y \ H) € F. So

RN(GxY)N(X x(Y\H)) eF.
But this is an empty set, by the choice of G; which is intolerable. X
Thus F has a limit in R, as required.
(b) Now suppose that R has the property described.
(i) Let = € X, and suppose that G is an ultrafilter on Y containing R[{x}]. Set h(y) = (x,y) for
y € Y; then F = h[[G]] is an ultrafilter on X x Y containing R. The image 7 [[F]] is just the principal filter
generated by {z}, so certainly converges to z; accordingly F must converge to some point (z,y) € R, and
mo[[F]] = meh[[G]] = G
converges to y € R[{z}]. As G is arbitrary, R[{z}] is compact (2A3R).

(ii) Let FF C Y be closed, and take z € R~1[F] C X. Consider
E={R, X xF}U{GxY :GC X is open, z € G}.
Then & has the finite intersection property. P If Gy, ... , G, are open sets containing x, then R~![F] meets
GoN...N Gy in 2z say, and now (z,y) € RN (X x F)N(,.,(Gi xY) for some y € F. Q Let F be an
ultrafilter on X x Y including £ (4A1la). Because G x Y € £ C F for every open set G containing z,
m1[[F]] = z, so F converges to some point (z,y) of R. Because X x F is a closed set belonging to £ C F,

y € F and z € R7[F]. As z is arbitrary, R™![F] is closed; as F is arbitrary, R satisfies condition (3) of
422A, and is usco-compact.
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422D Lemma (a) Let X and Y be Hausdorff spaces. If R C X x Y is an usco-compact relation, then
R is closed in X x Y.

(b) Let X and Y be Hausdorff spaces. If R C X x Y is an usco-compact relation and R’ C R is a closed
set, then R’ is usco-compact.

(c) Let X and Y be Hausdorff spaces. If f : X — Y is a continuous function, then its graph is an
usco-compact relation.

(d) Let (X;)ier and (Y;);er be families of Hausdorff spaces, and R; C X; X Y; an usco-compact relation
for each i. Set X = [[,c; Xi, Y =[],c; Yi and

R={(z,y):x € X,y €Y, (x(i),y(i)) € R; for every i € I'}.

Then R is usco-compact in X X Y.

(e) L