Version of 13.3.08
Appendix to Volume 3
Useful Facts

This volume assumes a fairly wide-ranging competence in analysis, a solid understanding of elementary
set theory and some straightforward Boolean algebra. As in previous volumes, I start with a few pages of
revision in set theory, but the absolutely essential material is in §3A2, on commutative rings, which is the
basis of the treatment of Boolean rings in §311. I then give three sections of results in analysis: topological
spaces (§3A3), uniform spaces (§3A4) and normed spaces (§3A5). Finally, I add six sentences on group
theory (§3A6).

Version of 31.10.07
3A1 Set Theory

3A1B Definition Let X be a set. By an enumeration of X I mean a bijection f : kK — X where
k = #(X); more often than not I shall express such a function in the form (z¢)¢<,.. In this case I say that
the function f, or the family (z¢)¢<., enumerates X.

3A1C Calculation of cardinalities

(a) For any sets X and Y, #(X xY) < max(w, #(X), #(Y)).

(b) For any r € N and any family (X;);<, of sets, #([]i_, X;) < max(w, max;<, #(X;)).
(c) For any family (X;);es of sets, #(U,;c; Xi) < max(w, #(1), sup;ec; #(X3)).

(d) For any set X, [X]<“ has cardinal at most max(w, #(X)).

3A1D Cardinal exponentiation For a cardinal x, I write 2% for #(Pk). So 2¥ = ¢, and kT < 2% for
every K.

3A1E Definition wy = w, wei1 = wgr for every &, we = Un<§ wy for non-zero limit ordinals .

3A1F Cofinal sets (a) If P is any partially ordered set, a subset @ of P is cofinal with P if for every
p € P there is a ¢ € @) such that p <gq.

(b) If P is any partially ordered set, the cofinality of P, cf P, is the least cardinal of any cofinal subset
of P. ¢fP=0iff P=0, and cf P =1 iff P has a greatest element.

(c) Observe that if P is upwards-directed and cf P is finite, then cf P is either 0 or 1.

(d) If P is a totally ordered set of cofinality x, then there is a strictly increasing family (p¢)e<, in P such
that {pe : £ < k} is cofinal with P.

(e) In particular, for a totally ordered set P, cf P = w iff there is a cofinal strictly increasing sequence in
P.
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2 Appendix 3A1I

3A1I Definitions (a) If P and @ are lattices, a lattice homomorphism from P to @ is a function
f P = @ such that f(pAD') = f(p) A f(p') and f(pV ') = f(p)V f(p') for all p, p" € P. Such a

homomorphism is order-preserving.

(b) If P is a lattice, a sublattice of P is a set Q C P such that pV ¢ and p A ¢ belong to @ for all p,
q€ Q.
(c)(i) A lattice P is distributive if
PAgVr=@Vr)A(gvr), (VaAr=(@Ar)V(gAr)
for all p, q, 7 € P.
(ii) In a distributive lattice we have a median function of three variables
med(p, q,r) = (pAq)V (pAT)V(gAT).

If P and @ are distributive lattices and f : P — @ is a lattice homomorphism, f(med(p, q,r)) = med(f(p), f(q), f(r))
for all p, ¢, r € P.

(iii) If P is a distributive lattice and I C P is finite, then the sublattice of P generated by I is finite.
3A1J Subsets of given size If X is a set and k is a cardinal, write
(X]" ={A: AC X, #(A) = &},
[X]=r={A: AC X, #(A) <k},
[X]<F = {A: AC X, #(4) < n}.
3A1K Hall’s Marriage Lemma Suppose that X and Y are finite sets and R C X X Y is a relation

such that #(R[I]) > #(I) for every I C X. Then there is an injective function f : X — Y such that
(z, f(x)) € R for every z € X.

Version of 22.11.07
3A2 Rings

I give a very brief outline of the indispensable parts of the elementary theory of (commutative) rings. I
assume that you have seen at least a little group theory.

3A2A Definition A ring is a triple (R, +,.) such that
(R,+) is an abelian group; its identity will be denoted 0 or Og;
(R,.) is a semigroup, that is, ab € R for all a, b € R and a(bc) = (ab)c for all a, b, ¢ € R;
a(b+ c¢) = ab+ ac, (a + b)e = ac+ be for all a, b, ¢ € R.
A commutative ring is one in ab = ba for all a, b € R.

3A2B Elementary facts Let R be a ring.
(a) a0 = 0a = 0 for every a € R.

(b) (—a)b = a(—b) = —(ab) for all a, b € R.

3A2C Subrings If R is a ring, a subring of R is a set S C R such that 0 € S and a + b, ab, —a belong
to S for all a, b € S. In this case S, together with the addition and multiplication induced by those of R, is
a ring in its own right.

(© 1995 D. H. Fremlin
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3A2Hc Rings 3

3A2D Homomorphisms (a) Let R, S be two rings. A function ¢ : R — S is a ring homomorphism
if p(a+b) = d(a) + ¢(b) and ¢(ab) = ¢(a)p(b) for all a, b € R. The kernel of ¢ is {a: a € R, ¢(a) = 0g}.

(b) Note that if ¢ : R — S is a ring homomorphism, then it is also a group homomorphism from (R, +)
to (S,+), so that ¢(0r) = 0s and ¢(—a) = —¢(a) for every a € R; moreover, ¢[R] is a subring of S, and ¢
is injective iff its kernel is {Og}.

(¢) If R, S and T are rings, and ¢ : R — S, ¢ : S — T are ring homomorphisms, then ¢ : R — T is a
ring homomorphism. If ¢ is bijective, then ¢! : S — R is a ring homomorphism.

3A2E Ideals (a) Let R be a ring. An ideal of R is a subring I of R such that ab € I and ba € I
whenever a € I and b € R. In this case we write I < R.

(b) If R and S are rings and ¢ : R — S is a ring homomorphism, then the kernel I of ¢ is an ideal of R.

3A2F Quotient rings (a) Let R be a ring and I an ideal of R. A coset of I is a set of the form
a+I={a+x:2 €1} where a € R. Let R/I be the set of cosets of I in R.
(b) For A, B € R/I, set
A+B={z+y:2€A,yeB}, A-B={azy+z:x€A ye B, zel}
Then A + B, A - B both belong to R/I; moreover, if A=a+ 1 and B=b+ 1, then A+ B=(a+0b)+1
and A-B=ab+ 1.
(c) (R/I,+,") is a ring, with zero 0 4+ I = I and additive inverses —(a + I) = (—a) + I.

(d) Moreover, the map a — a+1: R — R/I is a ring homomorphism.

(e) Note that for a, b € R, the following are equiveridical: (i) a € b+1; (ii) b € a+1I; (iii) (a+1)N(b+1) # 0;
(iv) a+I = b+1; (v) a—b € I. Thus the cosets of I are just the equivalence classes in R under the equivalence
relation a ~ b <= a+ I = b+ I; accordingly I shall generally write a*® for a 4+ I. In particular, the kernel
of the canonical map from R to R/I isjust {a:a+1=1}=1=0°.

(f) If R is commutative so is R/I.

3A2G Factoring homomorphisms through quotient rings: Proposition Let R and S be rings, I
an ideal of R, and ¢ : R — S a homomorphism such that I is included in the kernel of ¢. Then we have a
ring homomorphism 7 : R/I — S such that 7(a*) = ¢(a) for every a € R. 7 is injective iff I is precisely the
kernel of ¢.

3A2H Product rings (a) Let (R;);cr be any family of rings. Set R = [],.; R; and for a, b € R define
a+b, ab € R by setting

(a+b)(i) = a(i) + b(i), (ab)(i) = a(i)b(i)
for every i € I. R is a ring; its zero is given by the formula
Or(i) = 0g, for every i € I,
and its additive inverses by the formula
(—a)(i) = —a(i) for every i € I.

(b) Now let S be any other ring. Then a function ¢ : S — R is a ring homomorphism iff s — ¢(s)(7) :
S — R; is a ring homomorphism for every i € I.

(c) R is commutative iff R; is commutative for every i.

D.H.FREMLIN



4 Appendix

Version of 14.12.07
3A3 General topology

In §2A3, I looked at a selection of topics in general topology in some detail, giving proofs; the point was
that an ordinary elementary course in the subject would surely go far beyond what we needed there, and
at the same time might omit some of the results I wished to quote. It seemed therefore worth taking a bit
of space to cover the requisite material, giving readers the option of delaying a proper study of the subject
until a convenient opportunity arose. In the context of the present volume, this approach is probably no
longer appropriate, since we need a much greater proportion of the fundamental ideas, and by the time you
have reached familiarity with the topics here you will be well able to find your way about one of the many
excellent textbooks on the subject. This time round, therefore, I give most of the results without proofs (as
in §§2A1 and 3A1), hoping that some of the references I offer will be accessible in all senses. I do, however,
give a full set of definitions, partly to avoid ambiguity (since even in this relatively mature subject, there
are some awkward divergences remaining in the usage of different authors), and partly because many of the
proofs are easy enough for even a novice to fill in with a bit of thought, once the meaning of the words is
clear.

3A3A Taxonomy of topological spaces: Definitions Let (X, T) be a topological space.
(a) X is Ty if singleton subsets of X are closed.

(b) X is HausdorfT if for any distinct points x, y € X there are disjoint open sets G, H C X such that
reGandye H.

(c) X is regular if whenever F' C X is closed and « € X \ F there are disjoint open sets G, H C X such
that x € G and F' C H.

(d) X is completely regular if whenever F' C X is closed and x € X \ F' there is a continuous function
f:X —[0,1] such that f(z) =1 and f(y) =0 for every y € F.

(e) X is zero-dimensional if whenever G C X is an open set and x € G then there is an open-and-closed
set H such that x € H C G.

(f) X is extremally disconnected if the closure of every open set in X is open.
(g) X is compact if every open cover of X has a finite subcover.
(h) X is locally compact if for every x € X there is a set K C X such that € int K and K is compact.

(1) If every subset of X is open, we call ¥ the discrete topology on X.

3A3B Elementary relationships (a) A completely regular space is regular.
(b) A locally compact Hausdorff space is completely regular.

(c) A compact Hausdorff space is locally compact.

(d) A regular extremally disconnected space is zero-dimensional.

(e) Any topology defined by pseudometrics is completely regular.

(f) If X is a completely regular Hausdorff space and x, y are distinct points in X, then there is a
continuous function f : X — R such that f(x) # f(y).

(©) 2004 D. H. Fremlin
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3A3Fd General topology 5

(g) An open set in a locally compact Hausdorff space is locally compact in its subspace topology.

(h) Any subspace of a Hausdorff space is Hausdorfl; any subspace of a completely regular space is
completely regular.

3A3C Continuous functions Let (X, %) and (Y, &) be topological spaces.

(a) If f: X — Y is a function and = € X, we say that f is continuous at z if z € int f~![H] whenever
H CY is an open set containing f(z).

(b) Now a function from X to Y is continuous iff it is continuous at every point of X.

(¢) If f: X = Y is continuous at z € X, and A C X is such that z € A, then f(z) € f[A].

(d) If f: X =Y is continuous, then f[A] C f[A] for every A C X.

(e) A function f : X — Y is a homeomorphism if it is a continuous bijection and its inverse is also
continuous.

(f) A function f: X — [—o0, 0] is lower semi-continuous if {z : € X, f(z) > a} is open for every
aeR.

3A3D Compact spaces (a) A family F of sets has the finite intersection property if (] Fy is non-
empty for every finite Fy C F. Now a topological space X is compact iff (| F # 0 whenever F is a family
of closed subsets of X with the finite intersection property.

(b) Let X be a topological space and F a family of closed subsets of X with the finite intersection
property. If F contains a compact set then (| F # 0.

(c) In a Hausdorff space, compact subsets are closed.

(d) If X is compact, Y is Hausdorff and ¢ : X — Y is continuous and injective, then ¢ is a homeomorphism
between X and ¢[X].

(e) Let X be a regular topological space and A a subset of X. Then the following are equiveridical: (i)

A is relatively compact in X; (ii) A is compact; (iii) every ultrafilter on X which contains A has a limit in
X.

3A3E Dense sets (a) If X is a topological space, D C X is dense and G C X is dense and open, then
G N D is dense. Consequently the intersection of finitely many dense open sets is always dense.

(b) If X and Y are topological spaces, D C A C X, D is dense in A and f : X — Y is a continuous
function, then f[D] is dense in f[A].

3A3F Meager sets Let X be a topological space.
(a) A set A C X is nowhere dense if int A = ().

(b) A set M C X is meager if it is expressible as the union of a sequence of nowhere dense sets. A
subset of X is comeager if its complement is meager.

(c) Any subset of a nowhere dense set is nowhere dense; the union of finitely many nowhere dense sets is
nowhere dense.

(d) Any subset of a meager set is meager; the union of countably many meager sets is meager.

D.H.FREMLIN



6 Appendix 3A3G

3A3G Baire’s theorem for locally compact Hausdorff spaces Let X be a locally compact Hausdorff
space and (G, )nen a sequence of dense open subsets of X. Then () G, is dense.  Consequently every
comeager subset of X is dense.

neN

3A3H Corollary (a) Let X be a compact Hausdorff space. Then a non-empty open subset of X cannot
be meager.

(b) Let X be a non-empty locally compact Hausdorff space. If (A4, )nen is a sequence of sets covering X,
then there is some n € N such that int A,, is non-empty.

3A3I Product spaces (a) Definition Let (X;);c; be a family of topological spaces, and X = [],.; X;
their Cartesian product. We say that a set G C X is open for the product topology if for every z € G
there are a finite J C I and a family (G;) ;e such that every G; is an open set in the corresponding X; and

{y:ye X, y(j) € G, for every j € J}

contains x and is included in G.

(b) If (X;)ier is a family of topological spaces, with product X, and Y another topological space, a
function ¢ : Y — X is continuous iff m;¢ is continuous for every ¢ € I, where m;(x) = x(i) for x € X and
iel.

(c) Let (X;);er be any family of non-empty topological spaces, with product X. If F is a filter on X and
x € X, then F — z iff m;[[F]] — «(3) for every i, where m;(y) = y(i) for y € X.

(d) The product of any family of Hausdorff spaces is Hausdorff.

(e) Let (X;)icr be any family of topological spaces. If D; is a dense subset of X for each i, then [],.; D;
is dense in [],c; Xi. .

(f) Let (X;)ier be any family of topological spaces. If F; is a closed subset of X; for each 4, then [[,.; F;
is closed in [];c; Xi.

(g) Let ((X;,%;))icr be a family of topological spaces with product (X,%). Suppose that each T; is
defined by a family P; of pseudometrics on X;. Then ¥ is defined by the family P = {5, : ¢ € I,p € P;} of
pseudometrics on X, where I write p;(x,y) = p(m; (), 7;(y)) whenever ¢ € I, p € P; and z, y € X.

(h) Let (X;);cr be a family of topological spaces with product X, and Y another topological space. Then
a function f : X — Y is separately continuous if for every j € I and z € Hiel\{j} X, the function
t — f(z°<t>) : X; - Y is continuous, where 27~ <t¢> is the member of X extending z and such that
(z7<t>)(4) =t.

3A3J Tychonoff’s theorem The product of any family of compact topological spaces is compact.

3A3K The spaces {0, 1}1, R’ For any set I, we can think of {0,1}' as the product [],.; X; where
X; = {0,1} for each i. If we endow each X; with its discrete topology, the product topology is the usual
topology on {0,1}!. Being a product of Hausdorff spaces, it is Hausdorff; by Tychonoff’s theorem, it is
compact. A subset G of {0,1}! is open iff for every # € G there is a finite J C I such that {y : y €
{0,111, y1J = 27} CG.

Similarly, the ‘usual topology’ of R’ is the product topology when each factor is given its Euclidean
topology.

3A3L Cluster points of filters (a) Let X be a topological space and F a filter on X. A point x of X
is a cluster point of F if z € A for every A € F.

(b) For any topological space X, filter F on X and x € X, x is a cluster point of F iff there is a filter
G D F such that G — z.

MEASURE THEORY (abridged version)



3A4A Uniformities 7

(c) If {(@n)nen is a sequence in R, @ € R and lim,,_,3 a,, = « for every non-principal ultrafilter # on N,
then lim,,_, o o, = .

3A3M Topology bases (a) If X is a set and T is any non-empty family of topologies on X, (T is a
topology on X. So if A is any family of subsets of X, the intersection of all the topologies on X including
A is a topology on X; this is the topology generated by A.

(b) If X is a set and T is a topology on X, a base for T is a set &/ C ¥ such that whenever z € G € ¥
there is a U € U such that x € U C G. In this case U generates ¥.

(c) If X is a set and £ is a family of subsets of X, then £ is a base for a topology on X iff (i) whenever
Eq, B> € € and x € E1 N Ey then there is an F € & such that z € E C By N Ey (i) Y& = X.

3A3N Uniform convergence (a) Let X be a set, (Y,p) a metric space and (f,)nen a sequence of
functions from X to Y. We say that (f,)nen converges uniformly to a function f : X — Y if for every
€ > 0 there is an ng € N such that p(f,(z), f(x)) < € whenever n > ng and = € X.

(b) Let X be a topological space and (Y, p) a metric space. Suppose that (f,)nen is a sequence of
continuous functions from X to Y converging uniformly to f: X — Y. Then f is continuous.

3A30 One-point compactifications Let (X, T) be a locally compact Hausdorff space. Take any object
Zoo Not belonging to X and set X* = X U {xo}. Let T* be the family of those sets H C X* such that
HNX € % and either o, ¢ H or X \ H is compact (for ). Then ¥* is the unique compact Hausdorff
topology on X* inducing ¥ as the subspace topology on X; (X*,%*) is the one-point compactification
of (X,%).

3A3P Topologies defined from a sequential convergence: Proposition (a) Let X be a set and —*
a relation between XN and X such that whenever (z,,)neny € XN, 2 € X, (2,)neny —* o and (z!)peny € XV is
a subsequence of (z,)nen then (2] ),cny —* . Then there is a unique topology on X for which a set FF C X
is closed iff x € F whenever (z,),en is a sequence in F and (x,,)pen —* . Moreover, if (x,)neny —* @ then
(Tn)nen converges to x for this topology.

(b) Let X and Y be sets, and suppose that —% C XN x X, =} C YN x Y are relations with the
subsequence property described in (a). Give X and Y the corresponding topologies. If f : X — Y is a
function such that (f(xy))nen =% f(z) whenever (z,)nen —% =, then f is continuous.

3A3Q Miscellaneous definitions Let X be a topological space.

(a) A subset of X is a zero set if it is of the form f~![{0}] for some continuous function f: X — R. A
subset of X is a cozero set if its complement is a zero set. A subset of X is a Gy set if it is expressible as
the intersection of a sequence of open sets.

(b) An isolated point of X is a point z € X such that the singleton set {z} is open.

Version of 30.1.08
3A4 Uniformities

I continue the work of §3A3 with some notes on uniformities, so as to be able to discuss completeness
and the extension of uniformly continuous functions in non-metrizable contexts (3A4F-3A4H).

3A4A Uniformities (a) Let X be a set. A uniformity on X is a filter YW on X x X such that
(i) (z,z) € W for every z € X, W € W;
(i) for every W e W, W=t = {(y,x) : (z,y) € W} € W;
(iii) for every W € W, there is a V € W such that

VoV ={(z,2):3y, (z,y) e V& (y,z) eV} CW.

It is convenient to allow the special case X = 0, W = {0}.
The pair (X, W) is now a uniform space.

(© 1996 D. H. Fremlin
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8 Appendix 3A4ADb

(b) If W is a uniformity on a set X, it induces a topology on X, the family of sets G C X such that for
every x € G there is a W € W such that W[{z}] is included in G.

(c) We say that a uniformity is Hausdorff if it induces a Hausdorff topology.
(d) If U is a linear topological space, then it has an associated uniformity
W={W:W CU x U, there is an open set G containing 0

such that (u,v) € W whenever u — v € G},

and W induces the topology of U in the sense of (b) above.

3A4B Uniformities and pseudometrics (a) If P is a family of pseudometrics on a set X, then the
associated uniformity is the smallest uniformity on X containing all the sets W (p;e) = {(z,y) : p(z,y) < €}
as p runs over P, € over ]0, oo].

(b) If W is the uniformity defined by a family P of pseudometrics, then the topology induced by W is
the topology defined from P.

(c) A uniformity W is metrizable if it can be defined by a single metric.

(d) If U is a linear space with a topology defined from a family T of F-seminorms, the uniformity defined
from the topology coincides with the uniformity defined from the pseudometrics p,(u,v) = 7(u — v) as 7
runs over T.

3A4C Uniform continuity (a) If (X, W) and (Y,V) are uniform spaces, a function ¢ : X — Y is
uniformly continuous if {(x,y) : (¢(z), #(y)) € V} belongs to W for every V € V.

(b) The composition of uniformly continuous functions is uniformly continuous.

(¢) If uniformities W, V on sets X, Y are defined by non-empty families P, © of pseudometrics, then a
function ¢ : X — Y is uniformly continuous iff for every 8 € ©, ¢ > 0 there are pg,... ,p, € P and § > 0
such that 8(¢(z), ¢(y)) < € whenever z, y € X and max;<, p;i(z,y) < 6.

(d) A uniformly continuous function is continuous for the induced topologies.
(e) Two metrics p, o on a set X are uniformly equivalent if they give rise to the same uniformity

(f) If U and V are linear topological spaces, and T : U — V is a continuous linear operator, then T is
uniformly continuous for the uniformities associated with the topologies of U and V.

3A4D Subspaces (a) If (X, W) is a uniform space and Y is any subset of X, then Wy = {WnN(Y xY):
W € W} is a uniformity on Y; it is the subspace uniformity.

(b) If W defines a topology T on X, then the topology defined by Wy is the subspace topology on Y.

(c) If W is defined by a family P of pseudometrics on X, then Wy is defined by {p Y x Y : p € P}.

3A4E Product uniformities (a) If (X,U) and (Y, V) are uniform spaces, the product uniformity is
the smallest uniformity W on X x Y containing all sets of the form

{((z,9), (@) : (x,2") € U, (y,9') €V}

as U runs over U and V over V.

(b) If U, V are defined from families P, © of pseudometrics, then W will be defined by the family
{p:peP}U{0:0 € O}, writing

A(z,y), (2", y) = p(z,2"), 0((z,y), (2",y)) = 0(y,y)
as in 2A3Th.

MEASURE THEORY (abridged version)



3A41 Uniformities 9

(c) If (X,U), (Y,V) and (Z,W) are uniform spaces, a map ¢ : Z — X x Y is uniformly continuous iff
the coordinate maps ¢1 : Z — X and ¢ : Z — Y are uniformly continuous.

3A4F Completeness (a) If W is a uniformity on a set X, a filter 7 on X is Cauchy if for every
W € W there is an F € F such that FF x F'C W.
Any convergent filter in a uniform space is Cauchy.

(b) A uniform space is complete if every Cauchy filter is convergent.

(c) If W is defined from a family P of pseudometrics, then a filter F on X is Cauchy iff for every p € P
and € > 0 there is an F' € F such that p(x,y) < e for all z, y € F'; equivalently, for every p € P, € > 0 there
is an x € X such that U(x;p;e) € F.

(d) A complete subspace of a Hausdorfl uniform space is closed. A closed subspace of a complete
uniform space is complete under the subspace uniformity (references).

(e) A metric space is complete iff every Cauchy sequence converges.

(f) If (X, p) is a complete metric space, D C X a dense subset, (Y, o) a metric space and f: X — Y is
an isometry (that is, o(f(x), f(2')) = p(x,2’) for all z, 2’ € X), then f[X] is precisely the closure of f[D]
inY.

(g) If U is a linear space with a linear space topology and the associated uniformity, then a filter F on
U is Cauchy iff for every open set G containing 0 there is an F' € F such that FF — F C G.

3A4G Extension of uniformly continuous functions: Theorem If (X, W) is a uniform space,
(Y, V) is a complete uniform space, D C X is a dense subset of X, and ¢ : D — Y is uniformly continuous,
then there is a uniformly continuous (2) : X — Y extending ¢. If Y is Hausdorff, the extension is unique.

In particular, if (X, p) is a metric space, (Y, o) is a complete metric space, D C X is a dense subset, and
¢: D — Y is an isometry, then there is a unique isometry (ﬁ : X — Y extending ¢.

3A4H Completions (a) Theorem If (X,W) is any Hausdorff uniform space, then we can find a
complete Hausdorff uniform space (X, W) in which X is embedded as a dense subspace; moreover, any two
such spaces are essentially unique.

(b) Such a space (X , W) is called a completion of (X, ). Because it is unique up to isomorphism as
a uniform space, we may call it ‘the’ completion.

(c) If W is the uniformity defined by a metric p on a set X, then there is a unique extension of p to a
metric p on X defining the uniformity W.

3A4I A note on metric spaces Let (X, p) be a metric space. If x € X and A C X is non-empty, set
p(x, A) =infyeca p(z,y).
Then p(z, A) = 0 iff z € A. If B C X is another non-empty set, then
p(z, B) < p(z, A) + sup,e 4 p(y, B).

In particular, p(z, A) = p(x, A). If (A, )nen is a non-decreasing sequence of non-empty sets with union A,
then

plx, A) = lim, o p(z, Ay).

D.H.FREMLIN
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Version of 22.5.11
3A5 Normed spaces

I run as quickly as possible over the results, nearly all of them standard elements of any introductory
course in functional analysis, which I find myself calling on in this volume. As in the corresponding section
of Volume 2 (§2A4), a large proportion of these are valid for both real and complex normed spaces, but
as the present volume is almost exclusively concerned with real linear spaces I leave this unsaid, except in
3A5M, and if in doubt you may suppose for the time being that scalars belong to the field R. A couple of
the most basic results will be used in their complex forms in Volume 4.

3A5A The Hahn-Banach theorem: analytic forms (a) Let U be a linear space and p : U — [0, 0]
a functional such that p(u 4+ v) < p(u) + p(v) and p(au) = ap(u) whenever u, v € U and a > 0. Then
for any uo € U there is a linear functional f : U — R such that f(ug) = p(ug) and f(u) < p(u) for every
uecU.

(b) Let U be a normed space and V' a linear subspace of U. Then for any f € V* there is a g € U*,
extending f, with [|g[| = || f]-

(¢) If U is a normed space and u € U there is an f € U* such that || f]| <1 and f(u) = ||u].

(d) If U is a normed space and V' C U is a linear subspace which is not dense, then there is a non-zero
f € U* such that f(v) =0 for every v € V.

(e) If U is a normed space, U* separates the points of U.

3A5B Cones (a) Let U be a linear space. A convex cone (with apex 0) is a set C C U such that
au + fv € C whenever u, v € C and «, § > 0. The intersection of any family of convex cones is a convex
cone, so for every subset A of U there is a smallest convex cone including A.

(b) Let U be a normed space. Then the closure of a convex cone is a convex cone.

3A5C Hahn-Banach theorem: geometric forms (a) Let U be a normed space and C' C U a convex
set such that ||u|| > 1 for every u € C. Then there is an f € U* such that || f|] <1 and f(u) > 1 for every
ueC.

(b) Let U be a normed space and C' C U a non-empty convex set such that 0 ¢ C. Then there is an
f € U* such that inf,cco f(u) > 0.

(c) Let U be a normed space, C' a closed convex subset of U containing 0, and u a point of U \ C. Then
there is an f € U* such that f(u) > 1 and f(v) <1 for every v € C.

3A5D Separation from finitely-generated cones Let U be a linear space over R and u, vg,... , v,
points of U such that u does not belong to the convex cone generated by {vo, ... ,v,}. Then there is a linear
functional f : U — R such that f(v;) > 0 for every 7 and f(u) < 0.

3A5E Weak topologies (a) Let U be any linear space over R and W a subset of the space U’ of all
linear functionals from U to R. Then I write T,(U, W) for the linear space topology defined by the method
of 2A5B from the seminorms u — |f(u)| as f runs over W.

(c) Let U and V be linear spaces over R and T : U — V a linear operator. If W C U’ and Z C V' are
such that ¢T' € W for every g € Z, then T is continuous for T,(U, W) and T5(V, Z).

(d) If U and V are normed spaces and T : U — V is a bounded linear operator then we have an adjoint
operator T” : V* — U* defined by saying that T"g = ¢gT for every g € V*. T’ is linear and is continuous for
the weak™ topologies of U* and V*.

(© 1999 D. H. Fremlin
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3A5M Normed spaces 11

(e) If U is a normed space and A C U is convex, then the closure of A for the norm topology is the same
as the closure of A for the weak topology of U. In particular, norm-closed convex subsets (for instance,
norm-closed linear subspaces) of U are closed for the weak topology.

3A5F Weak* topologies: Theorem If U is a normed space, the unit ball of U* is compact and
Hausdorff for the weak™ topology.

3A5G Reflexive spaces (a) A normed space U is reflexive if every member of U** is of the form
f = f(u) for some u € U.

(b) A normed space is reflexive iff bounded sets are relatively weakly compact.

(c) If U is a reflexive space, (un)nen is a bounded sequence in U and F is an ultrafilter on N, then
lim,,_, r u, is defined in U for the weak topology.

3A5H (a) Uniform Boundedness Theorem Let U be a Banach space, V a normed space, and
A C B(U;V) a set such that {Tu : T € A} is bounded in V for every u € U. Then A is bounded in
B(U; V).

(b) Corollary If U is a normed space and A C U is such that f[A] is bounded for every f € U*, then A

is bounded. Consequently any relatively weakly compact set in U is bounded.

*3A51 Strong operator topologies If U and V are normed spaces, the strong operator topology on
B(U; V) is that defined by the seminorms T+ ||T'u|| as u runs over U. If U is a Banach space, V is a normed
space and A C B(U;V), then A is relatively compact for the strong operator topology iff {Tu : T' € A} is
relatively compact in V for every u € U.

3A5J Completions Let U be a normed space.

(a) U has a metric p associated with the norm, and the topology defined by p is a linear space topology.
This topology defines a uniformity VW which is also the uniformity defined by p. The norm itself is a
uniformly continuous function from U to R.

(b) Let (U, W) be the uniform space completion of (U, W). Then addition and scalar multiplication and
the norm extend uniquely to make U a Banach space.

(¢) If U and V are Banach spaces with dense linear subspaces Uy and Vj, then any norm-preserving
isomorphism between Uy and V extends uniquely to a norm-preserving isomorphism between U and V.

3A5K Normed algebras If U is a normed algebra, its multiplication, regarded as a function from U x U
to U, is continuous.

3A5L Compact operators Let U and V be Banach spaces.

(a) A linear operator T : U — V is compact if {Tu : ||u| < 1} is relatively compact in V for the
topology defined by the norm of V.

(b) A linear operator T : U — V is weakly compact if {Tw : ||u|| < 1} is relatively weakly compact in
V. Of course compact operators are weakly compact; weakly compact operators are bounded.

3A5M Hilbert spaces (a) An inner product space is a linear space U over ?é together with an
operator (| ): U xU — ]5 such that

(ur +uglv) = (ur|v) + (uzlv),  (aulv) = a(ulv), (ulv) = (v]u)
(the complex conjugate of (v|u)),
(ulu) >0, u =0 whenever (ulu) =0

for all u, u1, ug, v € U and o € g

D.H.FREMLIN
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(b) If U is any inner product space, we have a norm on U defined by setting ||u|| = /(u|u) for every
we U, and |(u|v)] < ||ul|||v] for all u, v € U.

(¢) A Hilbert space is an inner product space which is complete in the metric defined from its norm.

(d) If U is a Hilbert space, C C U is a non-empty closed convex set, and u € U, then there is a unique
v € C such that |Ju — v|| = infy,ec |Jlu — w]|.

(e) If U is an inner product space, C C U is a convex set, u, v’ € U and v, v' € C are such that that
lu —v|| = infyee |u —w|| and ||u" — 2’| = infyec ||v' — w]|, then ||[v/ —v| < ||u" — ul|.

R . . . R
*3A5N Bounded sets in linear topological spaces Let U be a linear topological space over .
(a) A set A C U is bounded if for every neighbourhood G of 0 there is an n € N such that A C nG.

(b) If A C U is bounded, then
(i) every subset of A is bounded,;
(ii) the closure of A is bounded;
(iii) @A is bounded for every a € ]5;
(iv) AU B and A + B are bounded for every bounded B C U,
(v) if V is another linear topological space, and T : U — V is a continuous linear operator, then T[A]
is bounded.

(c) If A C U is relatively compact, it is bounded.

(d) If U is a normed space, and A C U, then the following are equiveridical:
(i) A is bounded in the sense of (a) above for the norm topology of U;
(ii) A is bounded in the sense of 2A4Bc;
(iii) A is bounded for the weak topology of U.

Version of 6.8.08

3A6 Group Theory
For Chapter 38 we need four definitions and two results from elementary abstract group theory.

3A6A Definition If GG is a group, an element g of GG is an involution if its order is 2.

3A6B Definition If G is a group, the set Aut G of automorphisms of G (that is, bijective homomor-
phisms from G to itself) is a group. For g € G define § : G — G by writing §(h) = ghg~" for every h € G;
then § € Aut G, and the map g — ¢ is a homomorphism from G onto a normal subgroup J of Aut G. We call

J the group of inner automorphisms of G. Members of (Aut G) \ J are called outer automorphisms.

3A6C Normal subgroups For any group G, the family of normal subgroups of G, ordered by C, is a
Dedekind complete lattice, with HV K = HK and HAK = HNK.
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