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Appendix to Volume 3

Useful Facts

This volume assumes a fairly wide-ranging competence in analysis, a solid understanding of elementary
set theory and some straightforward Boolean algebra. As in previous volumes, I start with a few pages of
revision in set theory, but the absolutely essential material is in §3A2, on commutative rings, which is the
basis of the treatment of Boolean rings in §311. I then give three sections of results in analysis: topological
spaces (§3A3), uniform spaces (§3A4) and normed spaces (§3A5). Finally, I add six sentences on group
theory (§3A6).

Version of 31.10.07

3A1 Set Theory

3A1A The axioms of set theory This treatise is based on arguments within, or in principle reducible
to, ‘ZFC’, meaning ‘Zermelo-Fraenkel set theory, including the Axiom of Choice’. For discussions of this
system, see, for instance, Krivine 71, Jech 03 or Kunen 80. As I remarked in §2A1, I believe that it is
helpful, as a matter of general principle, to distinguish between results dependent on the axiom of choice
and those which can be proved without it, or with some relatively weak axiom such as ‘countable choice’.
(See 134C. I will go much more deeply into this in Chapter 56 of Volume 5.) In Volumes 1 and 2, such a
distinction is useful in appreciating the special features of different ideas. In the present volume, however,
most of the principal theorems require something close to the full axiom of choice, and there are few areas
where it seems at present appropriate to work with anything weaker. Indeed, at many points we shall
approach questions which are, or may be, undecidable in ZFC; but with very few exceptions I postpone
discussion of these to Volume 5. In particular, I specifically exclude, for the time being, results dependent
on such axioms as the continuum hypothesis.

3A1B Definition Let X be a set. By an enumeration of X I mean a bijection f : κ → X where
κ = #(X)is the initial ordinal equipollent with X (2A1Kb); more often than not I shall express such a
function in the form 〈xξ〉ξ<κ. In this case I say that the function f , or the family 〈xξ〉ξ<κ, enumerates X.
You will see that I am tacitly assuming that #(X) is always defined, that is, that the axiom of choice is
true.

3A1C Calculation of cardinalities The following formulae are basic.

(a) For any sets X and Y , #(X × Y ) ≤ max(ω,#(X),#(Y )). (Enderton 77, p. 64; Jech 03, p. 51;
Krivine 71, p. 33; Kunen 80, 10.13.)

(b) For any r ∈ N and any family 〈Xi〉i≤r of sets, #(
∏r

i=0
Xi) ≤ max(ω,maxi≤r #(Xi)). (Induce on r.)

(c) For any family 〈Xi〉i∈I of sets, #(
⋃

i∈I Xi) ≤ max(ω,#(I), supi∈I #(Xi)). (Jech 03, p. 52; Krivine

71, p. 33; Kunen 80, 10.21.)

(d) For any set X, the set [X]<ω of finite subsets of X has cardinal at most max(ω,#(X)). (There is a
surjection from

⋃

r∈N
Xr onto [X]<ω. For the notation [X]<ω see 3A1J below.)
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2 Appendix 3A1D

3A1D Cardinal exponentiation For a cardinal κ, I write 2κ for #(Pκ). So 2ω = c, and κ+ ≤ 2κ for
every κ. (Enderton 77, p. 132; Lipschutz 64, p. 139; Jech 03, p. 29; Krivine 71, p. 25; Halmos 60,
p. 93.)

3A1E Definition The class of infinite initial ordinals, or cardinals, is a subclass of the class On of
all ordinals, so is itself well-ordered; being unbounded, it is a proper class; consequently there is a unique
increasing enumeration of it as 〈ωξ〉ξ∈On. We have ω0 = ω, ωξ+1 = ω+

ξ for every ξ (compare 2A1Fc),

ωξ =
⋃

η<ξ ωη for non-zero limit ordinals ξ. (Enderton 77, pp. 213-214; Jech 03, p. 30; Krivine 71, p.

31.)

3A1F Cofinal sets (a) If P is any partially ordered set (definition: 2A1Aa), a subset Q of P is cofinal
with P if for every p ∈ P there is a q ∈ Q such that p ≤ q.

(b) If P is any partially ordered set, the cofinality of P , cfP , is the least cardinal of any cofinal subset
of P . Note that cfP = 0 iff P = ∅, and that cfP = 1 iff P has a greatest element.

(c) Observe that if P is upwards-directed and cfP is finite, then cfP is either 0 or 1; for if Q is a finite,
non-empty cofinal set then it has an upper bound, which must be the greatest element of P .

(d) If P is a totally ordered set of cofinality κ, then there is a strictly increasing family 〈pξ〉ξ<κ in P such
that {pξ : ξ < κ} is cofinal with P . PPP If κ = 0 then P = ∅ and this is trivial. Otherwise, let Q be a cofinal
subset of P with cardinal κ, and {qξ : ξ < κ} an enumeration of Q. Define 〈pξ〉ξ<κ inductively, as follows.
Start with p0 = q0. Given 〈pη〉η<ξ, where ξ < κ, then if pη < qξ for every η < ξ, take pξ = qξ; otherwise,
because #(ξ) ≤ ξ < κ, {pη : η < ξ} cannot be cofinal with P , so there is a pξ ∈ P such that pξ 6≤ pη for
every η < ξ, that is, pη < pξ for every η < ξ. Note that there is some η < ξ such that qξ ≤ pη, so that
qξ ≤ pξ. Continue.

Now 〈pξ〉ξ<κ is a strictly increasing family in P such that qξ ≤ pξ for every ξ; it follows at once that
{pξ : ξ < κ} is cofinal with P . QQQ

(e) In particular, for a totally ordered set P , cfP = ω iff there is a cofinal strictly increasing sequence in
P .

3A1G Zorn’s Lemma In Volume 2 I used Zorn’s Lemma only once or twice, giving the arguments in
detail. In the present volume I feel that continuing in such a manner would often be tedious; but nevertheless
the arguments are not always quite obvious, at least until you have gained a good deal of experience. I
therefore take a paragraph to comment on some of the standard forms in which they appear.

The statement of Zorn’s Lemma, as quoted in 2A1M, refers to arbitrary partially ordered sets P . A large
proportion of the applications can in fact be represented more or less naturally by taking P to be a family
P of sets ordered by ⊆; in such a case, it will be sufficient to check that (i) P is not empty (ii)

⋃

Q ∈ P

for every non-empty totally ordered Q ⊆ P. More often than not, this will in fact be true for all non-empty
upwards-directed sets Q ⊆ P, and the line of the argument is sometimes clearer if phrased in this form.

Within this class of partially ordered sets, we can distinguish a special subclass. If A is any set and ⊥
any relation on A, we can consider the collection P of sets I ⊆ A such that a ⊥ b for all distinct a, b ∈ I.
In this case we need look no farther before declaring ‘P has a maximal element’; for ∅ necessarily belongs
to P, and if Q is any upwards-directed subset of P, then

⋃

Q ∈ P. PPP If a, b are distinct elements of
⋃

Q,
there are I1, I2 ∈ Q such that a ∈ I1, b ∈ I2; because Q is upwards-directed, there is an I ∈ Q such that
I1 ∪ I2 ⊆ I, so that a, b are distinct members of I ∈ P, and a ⊥ b. QQQ So

⋃

Q is an upper bound of Q in P;
as Q is arbitrary, P satisfies the conditions of Zorn’s Lemma, and must have a maximal element.

Another important type of partially ordered set in this context is a family Φ of functions, ordered by
saying that f ≤ g if g is an extension of f . In this case, for any non-empty upwards-directed Ψ ⊆ Φ, we
shall have a function h defined by saying that

domh =
⋃

f∈Ψ
dom f , h(x) = f(x) whenever f ∈ Ψ, x ∈ dom f ,

and the usual attack is to seek to prove that any such h belongs to Φ.
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3A1J Set Theory 3

I find that at least once I wish to use Zorn’s Lemma ‘upside down’: that is, I have a non-empty partially
ordered set P in which every non-empty totally ordered subset has a lower bound. In this case, of course,
P has a minimal element. The point is that the definition of ‘partial order’ is symmetric, so that (P,≥) is
a partially ordered set whenever (P,≤) is; and we can seek to apply Zorn’s Lemma to either.

3A1H Natural numbers and finite ordinals I remarked in 2A1De that the first few ordinals

∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, . . .

may be identified with the natural numbers 0, 1, 2, 3, . . . ; the idea being that n = {0, 1, . . . , n−1} is a set
with n elements. If we do this, then the set N of natural numbers becomes identified with the first infinite
ordinal ω. This convention makes it possible to present a number of arguments in a particularly elegant
form. A typical example is in 344H. There I wish to describe an inductive construction for a family 〈Kσ〉σ∈S

where S =
⋃

n∈N
{0, 1}n. If we think of n as the set of its predecessors, then σ ∈ {0, 1}n becomes a function

from n to {0, 1}; since the set n has just n members, this corresponds well to the idea of σ as the list of
its n coordinates, except that it would now be natural to list them as σ(0), . . . , σ(n − 1) rather than as
x1, . . . , xn, which was the language I favoured in Volume 2. An extension of σ to a member of {0, 1}n+1 is
of the form τ = σa<i> where τ(k) = σ(k) for k < n (‘τ↾n = σ’) and τ(n) = i. If w ∈ {0, 1}N, then we can
identify the initial segment (w(0), w(1), . . . , w(n − 1)) of its first n coordinates with the restriction w↾n of
w to the set n = {0, . . . , n− 1}.

3A1I Definitions (a) If P and Q are lattices (2A1Ad), a lattice homomorphism from P to Q is a
function f : P → Q such that f(p ∧ p′) = f(p) ∧ f(p′) and f(p ∨ p′) = f(p) ∨ f(p′) for all p, p′ ∈ P . Such
a homomorphism is surely order-preserving (313H), for if p ≤ p′ in P then f(p′) = f(p ∨ p′) = f(p) ∨ f(p′)
and f(p) ≤ f(p′).

(b) If P is a lattice, a sublattice of P is a set Q ⊆ P such that p ∨ q and p ∧ q belong to Q for all p,
q ∈ Q.

(c)(i) A lattice P is distributive if

(p ∧ q) ∨ r = (p ∨ r) ∧ (q ∨ r), (p ∨ q) ∧ r = (p ∧ r) ∨ (q ∧ r)

for all p, q, r ∈ P .

(ii) In a distributive lattice we have a median function of three variables

med(p, q, r) = (p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r)

= ((p ∧ (q ∨ r)) ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r) ∧ (q ∨ r).

If P andQ are distributive lattices and f : P → Q is a lattice homomorphism, f(med(p, q, r)) = med(f(p), f(q), f(r))
for all p, q, r ∈ P .

(iii) If P is a distributive lattice and I ⊆ P is finite, then the sublattice of P generated by I is finite.
PPP If J = {sup I0 : ∅ 6= I0 ⊆ I} and K = {inf J0 : ∅ 6= J0 ⊆ J} then K is a sublattice of P . QQQ

3A1J Subsets of given size The following concepts are used often enough for a special notation to be
helpful. If X is a set and κ is a cardinal, write

[X]κ = {A : A ⊆ X, #(A) = κ},

[X]≤κ = {A : A ⊆ X, #(A) ≤ κ},

[X]<κ = {A : A ⊆ X, #(A) < κ}.

Thus

[X]0 = [X]≤0 = [X]<1 = {∅},

[X]2 is the set of doubleton subsets of X, [X]<ω is the set of finite subsets of X, [X]≤ω is the set of countable
subsets of X, and so on.

D.H.Fremlin



4 Appendix 3A1K

3A1K The next result is one of the fundamental theorems of combinatorics. In this volume it is used
in the proofs of Ornstein’s theorem (§387) and the Kalton-Roberts theorem (§392).

Hall’s Marriage Lemma Suppose that X and Y are finite sets and R ⊆ X × Y is a relation such that
#(R[I]) ≥ #(I) for every I ⊆ X. Then there is an injective function f : X → Y such that (x, f(x)) ∈ R for
every x ∈ X.

Remark Recall that R[I] is the set {y : ∃ x ∈ I, (x, y) ∈ R} (1A1Bc). If we identify a function with its
graph, then ‘(x, f(x)) ∈ R for every x ∈ X’ becomes ‘f ⊆ R’.

proof Bollobás 79, p. 54, Theorem 7; Anderson 87, 2.2.1; Bose & Manvel 84, §10.2.

Version of 22.11.07

3A2 Rings

I give a very brief outline of the indispensable parts of the elementary theory of (commutative) rings. I
assume that you have seen at least a little group theory.

3A2A Definition A ring is a triple (R,+, .) such that

(R,+) is an abelian group; its identity will always be denoted 0 or 0R;

(R, .) is a semigroup, that is, ab ∈ R for all a, b ∈ R and a(bc) = (ab)c for all a, b, c ∈ R;

a(b+ c) = ab+ ac, (a+ b)c = ac+ bc for all a, b, c ∈ R.

A commutative ring is one in which multiplication is commutative, that is, ab = ba for all a, b ∈ R.

3A2B Elementary facts Let R be a ring.

(a) a0 = 0a = 0 for every a ∈ R. PPP

a0 = a(0 + 0) = a0 + a0, 0a = (0 + 0)a = 0a+ 0a;

because (R,+) is a group, we may subtract a0 or 0a from each side of the appropriate equation to see that
0 = a0, 0 = 0a. QQQ

(b) (−a)b = a(−b) = −(ab) for all a, b ∈ R. PPP

ab+ ((−a)b) = (a+ (−a))b = 0b = 0 = a0 = a(b+ (−b)) = ab+ a(−b);

subtracting ab from each term, we get (−a)b = −(ab) = a(−b). QQQ

3A2C Subrings If R is a ring, a subring of R is a set S ⊆ R such that 0 ∈ S and a+ b, ab, −a belong
to S for all a, b ∈ S. In this case S, together with the addition and multiplication induced by those of R, is
a ring in its own right.

3A2D Homomorphisms (a) Let R, S be two rings. A function φ : R→ S is a ring homomorphism
if φ(a+ b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b) for all a, b ∈ R. The kernel of φ is {a : a ∈ R, φ(a) = 0S}.

(b) Note that if φ : R → S is a ring homomorphism, then it is also a group homomorphism from (R,+)
to (S,+), so that φ(0R) = 0S and φ(−a) = −φ(a) for every a ∈ R; moreover, φ[R] is a subring of S, and φ
is injective iff its kernel is {0R}.

(c) If R, S and T are rings, and φ : R → S, ψ : S → T are ring homomorphisms, then ψφ : R → T is a
ring homomorphism, because

(ψφ)(a ∗ b) = ψ(φ(a ∗ b)) = ψ(φ(a) ∗ φ(b)) = ψ(φ(a)) ∗ ψ(φ(b))

for all a, b ∈ R, taking ∗ to be either addition or multiplication. If φ is bijective, then φ−1 : S → R is a ring
homomorphism, because

φ−1(c ∗ d) = φ−1(φ(φ−1(c)) ∗ φ(φ−1(d))) = φ−1φ(φ−1(c) ∗ φ−1(d)) = φ−1(c) ∗ φ−1(d)

for all c, d ∈ S, again taking ∗ to be either addition or multiplication.

c© 1995 D. H. Fremlin
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3A2Fe Rings 5

3A2E Ideals (a) Let R be a ring. An ideal of R is a subring I of R such that ab ∈ I and ba ∈ I
whenever a ∈ I and b ∈ R. In this case we write I ⊳ R.

Note that R and {0} are always ideals of R.

(b) If R and S are rings and φ : R→ S is a ring homomorphism, then the kernel I of φ is an ideal of R.
PPP (i) Because φ is a group homomorphism, I is a subgroup of (R,+). (ii) If a ∈ I, b ∈ R then

φ(ab) = φ(a)φ(b) = 0Sφ(b) = 0S , φ(ba) = φ(b)φ(a) = φ(b)0S = 0S

so ab, ba ∈ I. QQQ

3A2F Quotient rings (a) Let R be a ring and I an ideal of R. A coset of I is a set of the form
a + I = {a + x : x ∈ I} where a ∈ R. (Because + is commutative, we do not need to distinguish between
‘left cosets’ a+ I and ‘right cosets’ I + a.) Let R/I be the set of cosets of I in R.

(b) For A, B ∈ R/I, set

A+B = {x+ y : x ∈ A, y ∈ B}, A ·B = {xy + z : x ∈ A, y ∈ B, z ∈ I}.

Then A + B, A · B both belong to R/I; moreover, if A = a + I and B = b + I, then A + B = (a + b) + I
and A ·B = ab+ I. PPP (i)

A+B = (a+ I) + (b+ I)

= {(a+ x) + (b+ y) : x, y ∈ I}

= {(a+ b) + (x+ y) : x, y ∈ I}

(because addition is associative and commutative)

⊆ {(a+ b) + z : z ∈ I} = (a+ b) + I

(because I + I ⊆ I)

= {(a+ b) + (z + 0) : z ∈ I}

⊆ (a+ I) + (b+ I) = A+B

because 0 ∈ I. (ii)

A ·B = {(a+ x)(b+ y) + z : x, y, z ∈ I}

= {ab+ (ay + xb+ z) : x, y, z ∈ I}

⊆ {ab+ w : w ∈ I} = ab+ I

(because ay, xb ∈ I for all x, y ∈ I, and I is closed under addition)

= {(a+ 0)(b+ 0) + w : w ∈ I}

⊆ A ·B. QQQ

(c) It is now an elementary exercise to check that (R/I,+, ·) is a ring, with zero 0 + I = I and additive
inverses −(a+ I) = (−a) + I.

(d) Moreover, the map a 7→ a+ I : R→ R/I is a ring homomorphism.

(e) Note that for a, b ∈ R, the following are equiveridical: (i) a ∈ b+I; (ii) b ∈ a+I; (iii) (a+I)∩(b+I) 6= ∅;
(iv) a+I = b+I; (v) a−b ∈ I. Thus the cosets of I are just the equivalence classes in R under the equivalence
relation a ∼ b ⇐⇒ a + I = b + I; accordingly I shall generally write a• for a + I, if there seems no room
for confusion. In particular, the kernel of the canonical map from R to R/I is just {a : a+ I = I} = I = 0•.

D.H.Fremlin



6 Appendix 3A2Ff

(f) If R is commutative so is R/I, since

a•b• = (ab)• = (ba)• = b•a•

for all a, b ∈ R.

3A2G Factoring homomorphisms through quotient rings: Proposition Let R and S be rings, I
an ideal of R, and φ : R → S a homomorphism such that I is included in the kernel of φ. Then we have a
ring homomorphism π : R/I → S such that π(a•) = φ(a) for every a ∈ R. π is injective iff I is precisely the
kernel of φ.

proof If a, b ∈ R and a• = b• in R/I, then a−b ∈ I (3A2Fe), so φ(a)−φ(b) = φ(a−b) = 0, and φ(a) = φ(b).
This means that the formula offered does indeed define a function π from R/I to S. Now if a, b ∈ R and ∗
is either multiplication or addition,

π(a• ∗ b•) = π((a ∗ b)•) = φ(a ∗ b) = φ(a) ∗ φ(b) = π(a•) ∗ π(b•).

So π is a ring homomorphism.
The kernel of π is {a• : φ(a) = 0}, which is {0} iff φ(a) = 0 ⇐⇒ a• = 0 ⇐⇒ a ∈ I.

3A2H Product rings (a) Let 〈Ri〉i∈I be any family of rings. Set R =
∏

i∈I Ri and for a, b ∈ R define
a+ b, ab ∈ R by setting

(a+ b)(i) = a(i) + b(i), (ab)(i) = a(i)b(i)

for every i ∈ I. It is easy to check from the definition in 3A2A that R is a ring; its zero is given by the
formula

0R(i) = 0Ri
for every i ∈ I,

and its additive inverses by the formula

(−a)(i) = −a(i) for every i ∈ I.

(b) Now let S be any other ring. Then it is easy to see that a function φ : S → R is a ring homomorphism
iff s 7→ φ(s)(i) : S → Ri is a ring homomorphism for every i ∈ I.

(c) Note that R is commutative iff Ri is commutative for every i.

Version of 14.12.07

3A3 General topology

In §2A3, I looked at a selection of topics in general topology in some detail, giving proofs; the point was
that an ordinary elementary course in the subject would surely go far beyond what we needed there, and
at the same time might omit some of the results I wished to quote. It seemed therefore worth taking a bit
of space to cover the requisite material, giving readers the option of delaying a proper study of the subject
until a convenient opportunity arose. In the context of the present volume, this approach is probably no
longer appropriate, since we need a much greater proportion of the fundamental ideas, and by the time you
have reached familiarity with the topics here you will be well able to find your way about one of the many
excellent textbooks on the subject. This time round, therefore, I give most of the results without proofs (as
in §§2A1 and 3A1), hoping that some of the references I offer will be accessible in all senses. I do, however,
give a full set of definitions, partly to avoid ambiguity (since even in this relatively mature subject, there
are some awkward divergences remaining in the usage of different authors), and partly because many of the
proofs are easy enough for even a novice to fill in with a bit of thought, once the meaning of the words is
clear. In fact this happens so often that I will mark with a ∗ those points where a proof needs an idea not
implicit in the preceding work.

c© 2004 D. H. Fremlin
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3A3Ca General topology 7

3A3A Taxonomy of topological spaces I begin with the handful of definitions we need in order to
classify the different types of topological space used in this volume. A couple have already been introduced
in Volume 2, but I repeat them because the list would look so odd without them.

Definitions Let (X,T) be a topological space.

(a) X is T111 if singleton subsets of X are closed.

(b) X is Hausdorff if for any distinct points x, y ∈ X there are disjoint open sets G, H ⊆ X such that
x ∈ G and y ∈ H.

(c) X is regular if whenever F ⊆ X is closed and x ∈ X \F there are disjoint open sets G, H ⊆ X such
that x ∈ G and F ⊆ H. (Note that in this definition I do not require X to be Hausdorff, following James

87 but not Engelking 89, Bourbaki 66, Dugundji 66, Schubert 68 or Gaal 64.)

(d) X is completely regular if whenever F ⊆ X is closed and x ∈ X \F there is a continuous function
f : X → [0, 1] such that f(x) = 1 and f(y) = 0 for every y ∈ F . (Note that many authors restrict the
phrase ‘completely regular’ to Hausdorff spaces.)

(e) X is zero-dimensional if whenever G ⊆ X is an open set and x ∈ G then there is an open-and-closed
set H such that x ∈ H ⊆ G.

(f) X is extremally disconnected if the closure of every open set in X is open.

(g) X is compact if every open cover of X has a finite subcover.

(h) X is locally compact if for every x ∈ X there is a set K ⊆ X such that x ∈ intK and K is compact
(in its subspace topology, as defined in 2A3C).

(i) If every subset of X is open, we call T the discrete topology on X.

3A3B Elementary relationships (a) A completely regular space is regular. (Engelking 89, p. 39;
Dugundji 66, p. 154; Schubert 68, p. 104.)

(b) A locally compact Hausdorff space is completely regular, therefore regular. ∗ (Engelking 89, 3.3.1;
Dugundji 66, p. 238; Gaal 64, p. 149.)

(c) A compact Hausdorff space is locally compact, therefore completely regular and regular.

(d) A regular extremally disconnected space is zero-dimensional. (Engelking 89, 6.2.25.)

(e) Any topology defined by pseudometrics (2A3F), in particular the weak topology of a normed space
(2A5I), is completely regular, therefore regular. (Bourbaki 66, IX.1.5; Dugundji 66, p. 200.)

(f) If X is a completely regular Hausdorff space (in particular, if X is (locally) compact and Hausdorff),
and x, y are distinct points in X, then there is a continuous function f : X → R such that f(x) 6= f(y).
(Apply 3A3Ad with F = {y}, which is closed because X is Hausdorff.)

(g) An open set in a locally compact Hausdorff space is locally compact in its subspace topology. (En-
gelking 89, 3.3.8; Bourbaki 66, I.9.7.)

(h) Any subspace of a Hausdorff space is Hausdorff; any subspace of a completely regular space is
completely regular. (Engelking 89, 2.1.6).

3A3C Continuous functions Let (X,T) and (Y,S) be topological spaces.

(a) If f : X → Y is a function and x ∈ X, we say that f is continuous at x if x ∈ int f−1[H] whenever
H ⊆ Y is an open set containing f(x).

D.H.Fremlin



8 Appendix 3A3Cb

(b) Now a function from X to Y is continuous iff it is continuous at every point of X. (Bourbaki 66,
I.2.1; Dugundji 66, p. 80; Schubert 68, p. 24; Gaal 64, p. 183; James 87, p. 26.)

(c) If f : X → Y is continuous at x ∈ X, and A ⊆ X is such that x ∈ A, then f(x) ∈ f [A]. (Bourbaki

66, I.2.1; Schubert 68, p. 23.)

(d) If f : X → Y is continuous, then f [A] ⊆ f [A] for every A ⊆ X. (Engelking 89, 1.4.1; Bourbaki

66, I.2.1; Dugundji 66, p. 80; Schubert 68, p. 24; Gaal 64, p. 184; James 87, p. 27.)

(e) A function f : X → Y is a homeomorphism if it is a continuous bijection and its inverse is also
continuous; that is, if S = {f [G] : G ∈ T} and T = {f−1[H] : H ∈ S}.

(f) A function f : X → [−∞,∞] is lower semi-continuous if {x : x ∈ X, f(x) > α} is open for every
α ∈ R. (Cf. 225H.)

3A3D Compact spaces Any extended series of applications of general topology is likely to involve some
new features of compactness. I start with the easy bits, continuing from 2A3Nb.

(a) The first is just a definition of compactness in terms of closed sets instead of open sets. A family F of
sets has the finite intersection property if

⋂

F0 is non-empty for every finite F0 ⊆ F . Now a topological
space X is compact iff

⋂

F 6= ∅ whenever F is a family of closed subsets of X with the finite intersection
property. (Engelking 89, 3.1.1; Bourbaki 66, I.9.1; Dugundji 66, p., 223; Schubert 68, p. 68; Gaal

64, p. 127.)

(b) A marginal generalization of this is the following. Let X be a topological space and F a family of
closed subsets of X with the finite intersection property. If F contains a compact set then

⋂

F 6= ∅. (Apply
(a) to {K ∩ F : F ∈ F} where K ∈ F is compact.)

(c) In a Hausdorff space, compact subsets are closed. (Engelking 89, 3.1.8; Bourbaki 66, I.9.4;
Dugundji 66, p. 226; Schubert 68, p. 70; Gaal 64, p. 138; James 87, p. 77.)

(d) IfX is compact, Y is Hausdorff and φ : X → Y is continuous and injective, then φ is a homeomorphism
between X and φ[X] (where φ[X] is given the subspace topology). (Engelking 89, 3.1.13; Bourbaki 66,
I.9.4; Dugundji 66, p. 226; Schubert 68, p. 71; Gaal 64, p. 207.)

(e) Let X be a regular topological space and A a subset of X. Then the following are equiveridical: (i)
A is relatively compact in X (that is, A is included in some compact subset of X, as in 2A3Na); (ii) A is
compact; (iii) every ultrafilter on X which contains A has a limit in X. PPP(ii)⇒(i) is trivial, and (i)⇒(iii)
is a consequence of 2A3R; neither of these requires X to be regular. Now assume (iii) and let F be an
ultrafilter on X containing A. Set

H = {B : B ⊆ X, there is an open set G ∈ F such that A ∩G ⊆ B}.

Then H does not contain ∅ and B1 ∩ B2 ∈ H whenever B1, B2 ∈ H, so H is a filter on X, and it contains
A. Let H∗ ⊇ H be an ultrafilter (2A1O). By hypothesis, H∗ has a limit x say. Because A ∈ H∗, X \ A is
an open set not belonging to H∗, and cannot be a neighbourhood of x; thus x must belong to A. Let G be
an open set containing x. Then there is an open set H such that x ∈ H ⊆ H ⊆ G (this is where I use the
hypothesis that X is regular). Because H∗ → x, H ∈ H∗ so X \H does not belong to H∗ and therefore does
not belong to H. But X \H is open, so by the definition of H it cannot belong to F . As F is an ultrafilter,
H ∈ F and G ∈ F . As G is arbitrary, F → x. As F is arbitrary, A is compact (2A3R). Thus (iii)⇒(ii). QQQ

3A3E Dense sets Recall that a set D in a topological space X is dense if D = X, and that X is
separable if it has a countable dense subset (2A3Ud).

(a) If X is a topological space, D ⊆ X is dense and G ⊆ X is dense and open, then G ∩ D is dense.
(Engelking 89, 1.3.6.) Consequently the intersection of finitely many dense open sets is always dense.

Measure Theory



3A3Ig General topology 9

(b) If X and Y are topological spaces, D ⊆ A ⊆ X, D is dense in A and f : X → Y is a continuous
function, then f [D] is dense in f [A]. (Use 3A3Cd.)

3A3F Meager sets Let X be a topological space.

(a) A set A ⊆ X is nowhere dense if intA = ∅, that is, int(X \A) = X \A is dense, that is, for every
non-empty open set G there is a non-empty open set H ⊆ G \A.

(b) A set M ⊆ X is meager if it is expressible as the union of a sequence of nowhere dense sets. A
subset of X is comeager if its complement is meager.

(c) Any subset of a nowhere dense set is nowhere dense; the union of finitely many nowhere dense sets is
nowhere dense. (3A3Ea.)

(d) Any subset of a meager set is meager; the union of countably many meager sets is meager. (314L.)

3A3G Baire’s theorem for locally compact Hausdorff spaces Let X be a locally compact Hausdorff
space and 〈Gn〉n∈N a sequence of dense open subsets of X. Then

⋂

n∈N
Gn is dense. ∗ (Engelking 89,

3.9.4; Bourbaki 66, IX.5.3; Dugundji 66, p. 249; Schubert 68, p. 148.) Consequently every comeager
subset of X is dense.

3A3H Corollary (a) Let X be a compact Hausdorff space. Then a non-empty open subset of X cannot
be meager. (Dugundji 66, p. 250; Schubert 68, p. 147.)

(b) Let X be a non-empty locally compact Hausdorff space. If 〈An〉n∈N is a sequence of sets covering X,
then there is some n ∈ N such that intAn is non-empty. (Dugundji 66, p. 250.)

3A3I Product spaces (a) Definition Let 〈Xi〉i∈I be a family of topological spaces, and X =
∏

i∈I Xi

their Cartesian product. We say that a set G ⊆ X is open for the product topology if for every x ∈ G
there are a finite J ⊆ I and a family 〈Gj〉j∈J such that every Gj is an open set in the corresponding Xj and

{y : y ∈ X, y(j) ∈ Gj for every j ∈ J}

contains x and is included in G.
(Of course we must check that this does indeed define a topology; see Engelking 89, 2.3.1; Bourbaki

66, I.4.1; Schubert 68, p. 38; Gaal 64, p. 144.)

(b) If 〈Xi〉i∈I is a family of topological spaces, with product X, and Y another topological space, a
function φ : Y → X is continuous iff πiφ is continuous for every i ∈ I, where πi(x) = x(i) for x ∈ X and
i ∈ I. (Engelking 89, 2.3.6; Bourbaki 66, I.4.1; Dugundji 66, p. 101; Schubert 68, p. 62; James 87,
p. 31.)

(c) Let 〈Xi〉i∈I be any family of non-empty topological spaces, with product X. If F is a filter on X and
x ∈ X, then F → x iff πi[[F ]] → x(i) for every i, where πi(y) = y(i) for y ∈ X, and πi[[F ]] is the image
filter on Xi (2A1Ib). (Bourbaki 66, I.7.6; Schubert 68, p. 61; James 87, p. 32.

(d) The product of any family of Hausdorff spaces is Hausdorff. (Engelking 89, 2.3.11; Bourbaki 66,
I.8.2; Schubert 68, p. 62; James 87, p. 87.)

(e) Let 〈Xi〉i∈I be any family of topological spaces. If Di is a dense subset of Xi for each i, then
∏

i∈I Di

is dense in
∏

i∈I Xi. (Engelking 89, 2.3.5.).

(f) Let 〈Xi〉i∈I be any family of topological spaces. If Fi is a closed subset of Xi for each i, then
∏

i∈I Fi

is closed in
∏

i∈I Xi. (Engelking 89, 2.3.4; Bourbaki 66, I.4.3.)

(g) Let 〈(Xi,Ti)〉i∈I be a family of topological spaces with product (X,T). Suppose that each Ti is defined
by a family Pi of pseudometrics on Xi (2A3F). Then T is defined by the family P = {ρ̃i : i ∈ I, ρ ∈ Pi} of
pseudometrics on X, where I write ρ̃i(x, y) = ρ(πi(x), πi(y)) whenever i ∈ I, ρ ∈ Pi and x, y ∈ X, taking
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πi to be the coordinate map from X to Xi, as in (b)-(c). PPP (Compare 2A3Tb). (i) It is easy to check that
every ρ̃i is a pseudometric on X. Write TP for the topology generated by P. (ii) If x ∈ G ∈ TP, let P′ ⊆ P
and δ > 0 be such that P′ is finite and {y : τ(y, x) ≤ δ for every τ ∈ P′} is included in G. Express P′ as
{ρ̃j : j ∈ J, ρ ∈ P′

j} where J ⊆ I is finite and P′
j ⊆ Pj is finite for each j ∈ J . Set

Gj = {t : t ∈ Xj , ρ(t, πj(x)) < δ for every ρ ∈ P′
j}

for every j ∈ J . Then G′ = {y : πj(y) ∈ Gj for every j ∈ J} contains x, belongs to T and is included in G.
As x is arbitrary, G ∈ T; as G is arbitrary, TP ⊆ T. (iii) Every πi is (TP,Ti)-continuous, by 2A3H; by (b)
above, the identity map from X to itself is (TP,T)-continuous, that is, TP ⊆ T and TP = T, as claimed. QQQ

(h) Let 〈Xi〉i∈I be a family of topological spaces with product X, and Y another topological space. Then
a function f : X → Y is separately continuous if for every j ∈ I and z ∈

∏

i∈I\{j}Xi the function

t 7→ f(za<t>) : Xj → Y is continuous, where za<t> is the member of X extending z and such that
(za<t>)(j) = t.

3A3J Tychonoff’s theorem The product of any family of compact topological spaces is compact.

proof Engelking 89, 3.2.4; Bourbaki 66, I.9.5; Dugundji 66, p. 224; Schubert 68, p. 72; Gaal 64,
p. 146 and p. 272; James 87, p. 67.

3A3K The spaces {0, 1}I , R
I For any set I, we can think of {0, 1}I as the product

∏

i∈I Xi where
Xi = {0, 1} for each i. If we endow each Xi with its discrete topology, the product topology is the usual
topology on {0, 1}I . Being a product of Hausdorff spaces, it is Hausdorff; by Tychonoff’s theorem, it is
compact. A subset G of {0, 1}I is open iff for every x ∈ G there is a finite J ⊆ I such that {y : y ∈
{0, 1}I , y↾J = x↾J} ⊆ G.

Similarly, the ‘usual topology’ of R
I is the product topology when each factor is given its Euclidean

topology (cf. 2A3Tc).

3A3L Cluster points of filters (a) Let X be a topological space and F a filter on X. A point x of X
is a cluster point of F if x ∈ A for every A ∈ F .

(b) For any topological space X, filter F on X and x ∈ X, x is a cluster point of F iff there is a filter
G ⊇ F such that G → x. (Engelking 89, 1.6.8; Bourbaki 66, I.7.2; Gaal 64, p. 260; James 87, p. 22.)

(c) If 〈αn〉n∈N is a sequence in R, α ∈ R and limn→H αn = α for every non-principal ultrafilter H
on N (definition: 2A3Sb), then limn→∞ αn = α. PPP??? If 〈αn〉n∈N 6→ α, there is some ǫ > 0 such that
I = {n : |αn − α| ≥ ǫ} is infinite. Now F0 = {F : F ⊆ N, I \ F is finite} is a filter on N, so there is an
ultrafilter F ⊇ F0. But now α cannot be limn→F αn. XXXQQQ

3A3M Topology bases (a) If X is a set and T is any non-empty family of topologies on X,
⋂

T is a
topology on X. So if A is any family of subsets of X, the intersection of all the topologies on X including
A is a topology on X; this is the topology generated by A.

(b) If X is a set and T is a topology on X, a base for T is a set U ⊆ T such that whenever x ∈ G ∈ T

there is a U ∈ U such that x ∈ U ⊆ G; that is, such that T = {
⋃

G : G ⊆ U}. In this case, of course, U
generates T.

(c) If X is a set and E is a family of subsets of X, then E is a base for a topology on X iff (i) whenever
E1, E2 ∈ E and x ∈ E1 ∩E2 then there is an E ∈ E such that x ∈ E ⊆ E1 ∩E2 (ii)

⋃

E = X. (Engelking
89, p. 12.)

3A3N Uniform convergence (a) Let X be a set, (Y, ρ) a metric space and 〈fn〉n∈N a sequence of
functions from X to Y . We say that 〈fn〉n∈N converges uniformly to a function f : X → Y if for every
ǫ > 0 there is an n0 ∈ N such that ρ(fn(x), f(x)) ≤ ǫ whenever n ≥ n0 and x ∈ X.

Measure Theory
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(b) Let X be a topological space and (Y, ρ) a metric space. Suppose that 〈fn〉n∈N is a sequence of
continuous functions from X to Y converging uniformly to f : X → Y . Then f is continuous. ∗ (Engelking
89, 1.4.7/4.2.19; Gaal 64, p. 202.)

3A3O One-point compactifications Let (X,T) be a locally compact Hausdorff space. Take any object
x∞ not belonging to X and set X∗ = X ∪ {x∞}. Let T∗ be the family of those sets H ⊆ X∗ such that
H ∩ X ∈ T and either x∞ /∈ H or X \ H is compact (for T). Then T∗ is the unique compact Hausdorff
topology on X∗ inducing T as the subspace topology on X; (X∗,T∗) is the one-point compactification
of (X,T). (Engelking 89, 3.5.11; Bourbaki 66, I.9.8; Dugundji 66, p. 246.)

3A3P Topologies defined from a sequential convergence: Proposition (a) Let X be a set and →∗

a relation between XN and X such that whenever 〈xn〉n∈N ∈ XN, x ∈ X, 〈xn〉n∈N →∗ x and 〈x′n〉n∈N ∈ XN is
a subsequence of 〈xn〉n∈N then 〈x′n〉n∈N →∗ x. Then there is a unique topology on X for which a set F ⊆ X
is closed iff x ∈ F whenever 〈xn〉n∈N is a sequence in F and 〈xn〉n∈N →∗ x. Moreover, if 〈xn〉n∈N →∗ x then
〈xn〉n∈N converges to x for this topology.

(b) Let X and Y be sets, and suppose that →∗
X ⊆ XN × X, →∗

Y ⊆ Y N × Y are relations with the
subsequence property described in (a). Give X and Y the corresponding topologies. If f : X → Y is a
function such that 〈f(xn)〉n∈N →∗

Y f(x) whenever 〈xn〉n∈N →∗
X x, then f is continuous.

proof (a)(i) Let F be the family of those F ⊆ X which are closed under *-convergence, that is, such that
x ∈ F whenever 〈xn〉n∈N is a sequence in F and 〈xn〉n∈N →∗ x. Of course ∅ and X belong to F ; also the
intersection of any non-empty subset of F belongs to F . The point is that the union of two members of F
belongs to F . PPP Suppose that F1, F2 ∈ F and that 〈xn〉n∈N is a sequence in F1 ∪ F2 *-converging to x.
Then there is a subsequence 〈x′n〉n∈N of 〈xn〉n∈N which lies entirely in one of the sets; say x′n ∈ Fj for every
n. By hypothesis, 〈x′n〉n∈N →∗ x, so x ∈ Fj ⊆ F1 ∪ F2. As 〈xn〉n∈N and x are arbitrary, F1 ∪ F2 ∈ F . QQQ
Taking complements, we see that {X \ F : F ∈ F} is a topology on X for which F is the family of closed
sets; and of course there can be only one such topology.

(ii) Now suppose that 〈xn〉n∈N →∗ x. ??? If 〈xn〉n∈N does not converge topologically to x, then there
is an open set G containing x such that {n : xn /∈ G} is infinite, that is, there is a subsequence 〈x′n〉n∈N

of 〈xn〉n∈N such that x′n /∈ G for every n. Now 〈x′n〉n∈N →∗ x; but X \ G is supposed to be closed under
*-convergence, so this is impossible. XXX

(b) Let H ⊆ Y be open; set F = Y \H and let 〈xn〉n∈N be a sequence in f−1[F ] such that 〈xn〉n∈N →∗
X x.

Then 〈f(xn)〉n∈N →∗
Y f(x), so f(x) ∈ F and x ∈ f−1[F ], As 〈xn〉n∈N and x are arbitrary, f−1[F ] is closed

and f−1[H] is open; as H is arbitrary, f is continuous.

3A3Q Miscellaneous definitions Let X be a topological space.

(a) A subset of X is a zero set if it is of the form f−1[{0}] for some continuous function f : X → R. A
subset of X is a cozero set if its complement is a zero set. A subset of X is a Gδ set if it is expressible as
the intersection of a sequence of open sets.

(b) An isolated point of X is a point x ∈ X such that the singleton set {x} is open.

Version of 30.1.08

3A4 Uniformities

I continue the work of §3A3 with some notes on uniformities, so as to be able to discuss completeness
and the extension of uniformly continuous functions in non-metrizable contexts (3A4F-3A4H). As in §3A3,
most of the individual steps are elementary; I mark exceptions with a ∗.

3A4A Uniformities (a) Let X be a set. A uniformity on X is a filter W on X ×X such that

c© 1996 D. H. Fremlin
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12 Appendix 3A4A

(i) (x, x) ∈W for every x ∈ X, W ∈ W;
(ii) for every W ∈ W, W−1 = {(y, x) : (x, y) ∈W} ∈ W;
(iii) for every W ∈ W, there is a V ∈ W such that

V ◦V = {(x, z) : ∃ y, (x, y) ∈ V & (y, z) ∈ V } ⊆W .

It is convenient to allow the special case X = ∅, W = {∅}, even though this is not properly speaking a filter.
The pair (X,W) is now a uniform space.

(b) If W is a uniformity on a set X, it induces a topology on X, the family of sets G ⊆ X such that
for every x ∈ G there is a W ∈ W such that W [{x}] = {y : (x, y) ∈W} is included in G. (Engelking 89,
8.1.1; Bourbaki 66, II.1.2; Gaal 64, p. 48; Schubert 68, p. 115; James 87, p. 101.)

(c) We say that a uniformity is Hausdorff if it induces a Hausdorff topology.

(d) If U is a linear topological space, then it has an associated uniformity

W = {W : W ⊆ U × U, there is an open set G containing 0

such that (u, v) ∈W whenever u− v ∈ G},

and W induces the topology of U in the sense of (b) above (Schaefer 66, I.1.4).

3A4B Uniformities and pseudometrics (a) If P is a family of pseudometrics on a set X, then the
associated uniformity is the smallest uniformity on X containing all the sets W (ρ; ǫ) = {(x, y) : ρ(x, y) < ǫ}
as ρ runs over P, ǫ over ]0,∞[. (Engelking 89, 8.1.18; Bourbaki 66, IX.1.2.)

(b) If W is the uniformity defined by a family P of pseudometrics, then the topology induced by W is
the topology defined from P (2A3F). (Dugundji 66, p. 203.)

(c) A uniformity W is metrizable if it can be defined by a single metric.

(d) If U is a linear space with a topology defined from a family T of F-seminorms (definition: 2A5B1), the
uniformity defined from the topology (3A4Ad) coincides with the uniformity defined from the pseudometrics
ρτ (u, v) = τ(u− v) as τ runs over T. (Immediate from the definitions.)

3A4C Uniform continuity (a) If (X,W) and (Y,V) are uniform spaces, a function φ : X → Y is
uniformly continuous if {(x, y) : (φ(x), φ(y)) ∈ V } belongs to W for every V ∈ V.

(b) The composition of uniformly continuous functions is uniformly continuous. (Bourbaki 66, II.2.1;
Schubert 68, p. 118.)

(c) If uniformities W, V on sets X, Y are defined by non-empty families P, Θ of pseudometrics, then a
function φ : X → Y is uniformly continuous iff for every θ ∈ Θ, ǫ > 0 there are ρ0, . . . , ρn ∈ P and δ > 0
such that θ(φ(x), φ(y)) ≤ ǫ whenever x, y ∈ X and maxi≤n ρi(x, y) ≤ δ. (Elementary verification.)

(d) A uniformly continuous function is continuous for the induced topologies. (Bourbaki 66, II.2.1;
Schubert 68, p. 118; James 87, p. 102.)

(e) Two metrics ρ, σ on a set X are uniformly equivalent if they give rise to the same uniformity;
that is, if for every ǫ > 0 there is a δ > 0 such that

ρ(x, y) ≤ δ ⇒ σ(x, y) ≤ ǫ, σ(x, y) ≤ δ ⇒ ρ(x, y) ≤ ǫ.

(f) If U and V are linear topological spaces, and T : U → V is a continuous linear operator, then T is
uniformly continuous for the uniformities associated with the topologies of U and V (3A4Ad). (Schaefer
66, ).

1Later editions only.
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3A4D Subspaces (a) If (X,W) is a uniform space and Y is any subset of X, then WY = {W ∩(Y ×Y ) :
W ∈ W} is a uniformity on Y ; it is the subspace uniformity. (Bourbaki 66, II.2.4; Schubert 68, p.
122.)

(b) If W defines a topology T on X, then the topology defined by WY is the subspace topology on Y , as
defined in 2A3C. (Schubert 68, p. 122; James 87, p. 103.)

(c) If W is defined by a family P of pseudometrics on X, then WY is defined by {ρ ↾ Y × Y : ρ ∈ P}.
(Elementary verification.)

3A4E Product uniformities (a) If (X,U) and (Y,V) are uniform spaces, the product uniformity is
the smallest uniformity W on X × Y containing all sets of the form

{((x, y), (x′, y′)) : (x, x′) ∈ U, (y, y′) ∈ V }

as U runs over U and V over V. (Engelking 89, §8.2; Bourbaki 66, II.2.6; Schubert 68, p. 124; James
87, p. 93.)

(b) If U , V are defined from families P, Θ of pseudometrics, then W will be defined by the family
{ρ̃ : ρ ∈ P} ∪ {θ̄ : θ ∈ Θ}, writing

ρ̃((x, y), (x′, y′)) = ρ(x, x′), θ̄((x, y), (x′, y′)) = θ(y, y′)

as in 2A3Tb. (Elementary verification.)

(c) If (X,U), (Y,V) and (Z,W) are uniform spaces, a map φ : Z → X×Y is uniformly continuous iff the
coordinate maps φ1 : Z → X and φ2 : Z → Y are uniformly continuous. (Engelking 89, 8.2.1; Bourbaki

66, II.2.6; Schubert 68, p. 125; James 87, p. 93.)

3A4F Completeness (a) If W is a uniformity on a set X, a filter F on X is Cauchy if for every
W ∈ W there is an F ∈ F such that F × F ⊆W .

Any convergent filter in a uniform space is Cauchy. (Bourbaki 66, II.3.1; Gaal 64, p. 276; Schubert
68, p. 134; James 87, p. 109.)

(b) A uniform space is complete if every Cauchy filter is convergent.

(c) If W is defined from a family P of pseudometrics, then a filter F on X is Cauchy iff for every ρ ∈ P
and ǫ > 0 there is an F ∈ F such that ρ(x, y) ≤ ǫ for all x, y ∈ F ; equivalently, for every ρ ∈ P, ǫ > 0 there
is an x ∈ X such that U(x; ρ; ǫ) ∈ F . (Elementary verification.)

(d) A complete subspace of a Hausdorff uniform space is closed. (Engelking 89, 8.3.6; Bourbaki 66,
II.3.4; Schubert 68, p. 135; James 87, p. 148.) A closed subspace of a complete uniform space is complete
under the subspace uniformity (references).

(e) A metric space is complete iff every Cauchy sequence converges (cf. 2A5H). (Schubert 68, p. 141;
Gaal 64, p. 276; James 87, p. 150.)

(f) If (X, ρ) is a complete metric space, D ⊆ X a dense subset, (Y, σ) a metric space and f : X → Y is
an isometry (that is, σ(f(x), f(x′)) = ρ(x, x′) for all x, x′ ∈ X), then f [X] is precisely the closure of f [D]
in Y . (For f [X] must be complete, and we can use (d).)

(g) If U is a linear space with a linear space topology and the associated uniformity (3A4Ad), then a
filter F on U is Cauchy iff for every open set G containing 0 there is an F ∈ F such that F − F ⊆ G (cf.
2A5F). (Immediate from the definitions.)

3A4G Extension of uniformly continuous functions: Theorem If (X,W) is a uniform space,
(Y,V) is a complete uniform space, D ⊆ X is a dense subset of X, and φ : D → Y is uniformly continuous

(for the subspace uniformity of D), then there is a uniformly continuous φ̂ : X → Y extending φ. If Y
is Hausdorff, the extension is unique. ∗ (Engelking 89, 8.3.10; Bourbaki 66, II.3.6; Gaal 64, p. 300;
Schubert 68, p. 137; James 87, p. 152.)

In particular, if (X, ρ) is a metric space, (Y, σ) is a complete metric space, D ⊆ X is a dense subset, and

φ : D → Y is an isometry, then there is a unique isometry φ̂ : X → Y extending φ.
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3A4H Completions (a) Theorem If (X,W) is any Hausdorff uniform space, then we can find a

complete Hausdorff uniform space (X̂, Ŵ) in which X is embedded as a dense subspace; moreover, any two
such spaces are essentially unique. ∗ (Engelking 89, 8.3.12; Bourbaki 66, II.3.7; Gaal 64, p. 297 & p.
300; Schubert 68, p. 139; James 87, p. 156.)

(b) Such a space (X̂, Ŵ) is called a completion of (X,W). Because it is unique up to isomorphism as
a uniform space, we may call it ‘the’ completion.

(c) If W is the uniformity defined by a metric ρ on a set X, then there is a unique extension of ρ to a

metric ρ̂ on X̂ defining the uniformity Ŵ. (Bourbaki 66, IX.1.3.)

3A4I A note on metric spaces I mention some elementary facts. Let (X, ρ) be a metric space. If
x ∈ X and A ⊆ X is non-empty, set

ρ(x,A) = infy∈A ρ(x, y).

Then ρ(x,A) = 0 iff x ∈ A (2A3Kb). If B ⊆ X is another non-empty set, then

ρ(x,B) ≤ ρ(x,A) + supy∈A ρ(y,B).

In particular, ρ(x,A) = ρ(x,A). If 〈An〉n∈N is a non-decreasing sequence of non-empty sets with union A,
then

ρ(x,A) = limn→∞ ρ(x,An).

Version of 22.5.11

3A5 Normed spaces

I run as quickly as possible over the results, nearly all of them standard elements of any introductory
course in functional analysis, which I find myself calling on in this volume. As in the corresponding section
of Volume 2 (§2A4), a large proportion of these are valid for both real and complex normed spaces, but
as the present volume is almost exclusively concerned with real linear spaces I leave this unsaid, except in
3A5M, and if in doubt you may suppose for the time being that scalars belong to the field R. A couple of
the most basic results will be used in their complex forms in Volume 4.

3A5A The Hahn-Banach theorem: analytic forms The Hahn-Banach theorem is one of the central
ideas of functional analysis, both finite- and infinite-dimensional, and appears in a remarkable variety of
forms. I list those formulations which I wish to quote, starting with those which are more or less ‘analytic’,
according to the classification of Bourbaki 87. Recall that if U is a normed space I write U∗ for the Banach
space of bounded linear functionals on U .

(a) Let U be a linear space and p : U → [0,∞[ a functional such that p(u + v) ≤ p(u) + p(v) and
p(αu) = αp(u) whenever u, v ∈ U and α ≥ 0. Then for any u0 ∈ U there is a linear functional f : U → R

such that f(u0) = p(u0) and f(u) ≤ p(u) for every u ∈ U . (Rudin 91, 3.2; Dunford & Schwartz 57,
II.3.10.)

(b) Let U be a normed space and V a linear subspace of U . Then for any f ∈ V ∗ there is a g ∈ U∗,
extending f , with ‖g‖ = ‖f‖. (363R; Bourbaki 87, II.3.2; Rudin 91, 3.3; Dunford & Schwartz 57,
II.3.11; Lang 93, p. 69; Wilansky 64, p. 66; Taylor 64, 3.7-B & 4.3-A.)

(c) If U is a normed space and u ∈ U there is an f ∈ U∗ such that ‖f‖ ≤ 1 and f(u) = ‖u‖. (Bourbaki

87, II.3.2; Rudin 91, 3.3; Dunford & Schwartz 57, II.3.14; Wilansky 64, p. 67; Taylor 64, 3.7-C &
4.3-B.)

(d) If U is a normed space and V ⊆ U is a linear subspace which is not dense, then there is a non-zero
f ∈ U∗ such that f(v) = 0 for every v ∈ V . (Rudin 91, 3.5; Dunford & Schwartz 57, II.3.12; Taylor
64, 4.3-D.)
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(e) If U is a normed space, U∗ separates the points of U . (Rudin 91, 3.4; Lang 93, p. 70; Dunford &

Schwartz 57, II.3.14.)

3A5B Cones (a) Let U be a linear space. A convex cone (with apex 0) is a set C ⊆ U such that
αu + βv ∈ C whenever u, v ∈ C and α, β ≥ 0. The intersection of any family of convex cones is a convex
cone, so for every subset A of U there is a smallest convex cone including A.

(b) Let U be a normed space. Then the closure of a convex cone is a convex cone. (Bourbaki 87, II.2.6;
Dunford & Schwartz 57, V.2.1.)

3A5C Hahn-Banach theorem: geometric forms (a) Let U be a normed space and C ⊆ U a convex
set such that ‖u‖ ≥ 1 for every u ∈ C. Then there is an f ∈ U∗ such that ‖f‖ ≤ 1 and f(u) ≥ 1 for every
u ∈ C. (Dunford & Schwartz 57, V.1.12.)

(b) Let U be a normed space and C ⊆ U a non-empty convex set such that 0 /∈ C. Then there is an
f ∈ U∗ such that infu∈C f(u) > 0. (Bourbaki 87, II.4.1; Rudin 91, 3.4; Lang 93, p. 70; Dunford &

Schwartz 57, V.2.12.)

(c) Let U be a normed space, C a closed convex subset of U containing 0, and u a point of U \C. Then
there is an f ∈ U∗ such that f(u) > 1 and f(v) ≤ 1 for every v ∈ C. (Apply (b) to C − u to find a g ∈ U∗

such that g(u) < infv∈C g(v) and now set f = − 1

α
g where g(u) < α < infv∈C g(v)).

3A5D Separation from finitely-generated cones Let U be a linear space over R and u, v0, . . . , vn
points of U such that u does not belong to the convex cone generated by {v0, . . . , vn}. Then there is a linear
functional f : U → R such that f(vi) ≥ 0 for every i and f(u) < 0.

proof (a) If U is finite-dimensional this is covered by Gale 60, p. 56.

(b) For the general case, let V be the linear subspace of U generated by u, v0, . . . , vn. Then there is
a linear functional f0 : V → R such that f0(u) < 0 ≤ f0(vi) for every i. By Zorn’s Lemma, there is a
maximal linear subspace W ⊆ U such that W ∩ V = {0}. Now W + V = U (for if u /∈ W + V , the linear
subspace W ′ generated by W ∪ {u} still has trivial intersection with V ), so we have an extension of f0 to
a linear functional f : U → R defined by setting f(v + w) = f0(v) whenever v ∈ V and w ∈ W . Now
f(u) < 0 ≤ mini≤n f(vi), as required.

3A5E Weak topologies (a) Let U be any linear space over R and W a subset of the space U ′ of all
linear functionals from U to R. Then I write Ts(U,W ) for the linear space topology defined by the method
of 2A5B from the seminorms u 7→ |f(u)| as f runs over W . (Bourbaki 87, II.6.2; Rudin 91, 3.10;
Dunford & Schwartz 57, V.3.2; Taylor 64, 3.81.)

(b) I note that the weak topology of a normed space U (2A5Ia) is Ts(U,U
∗), while the weak* topology

of U∗ (2A5Ig) is Ts(U
∗,W ) where W is the canonical image of U in U∗∗. (Rudin 91, 3.14.)

(c) Let U and V be linear spaces over R and T : U → V a linear operator. If W ⊆ U ′ and Z ⊆ V ′ are
such that gT ∈W for every g ∈ Z, then T is continuous for Ts(U,W ) and Ts(V,Z). (Bourbaki 87, II.6.4.)

(d) If U and V are normed spaces and T : U → V is a bounded linear operator then we have an adjoint
operator T ′ : V ∗ → U∗ defined by saying that T ′g = gT for every g ∈ V ∗. T ′ is linear and is continuous
for the weak* topologies of U∗ and V ∗. (Bourbaki 87, II.6.4; Dunford & Schwartz 57, §VI.2; Taylor
64, 4.5.)

(e) If U is a normed space and A ⊆ U is convex, then the closure of A for the norm topology is the same
as the closure of A for the weak topology of U . In particular, norm-closed convex subsets (for instance,
norm-closed linear subspaces) of U are closed for the weak topology. (Rudin 91, 3.12; Lang 93, p. 88;
Dunford & Schwartz 57, V.3.13.)
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3A5F Weak* topologies: Theorem If U is a normed space, the unit ball of U∗ is compact and
Hausdorff for the weak* topology. (Rudin 91, 3.15; Lang 93, p. 71; Dunford & Schwartz 57, V.4.2;
Taylor 64, 4.61-A.)

3A5G Reflexive spaces (a) A normed space U is reflexive if every member of U∗∗ is of the form
f 7→ f(u) for some u ∈ U .

(b) A normed space is reflexive iff bounded sets are relatively weakly compact. (Dunford & Schwartz

57, V.4.8; Taylor 64, 4.61-C.)

(c) If U is a reflexive space, 〈un〉n∈N is a bounded sequence in U and F is an ultrafilter on N, then
limn→F un is defined in U for the weak topology. (Use (b) and 2A3Se.)

3A5H (a) Uniform Boundedness Theorem Let U be a Banach space, V a normed space, and
A ⊆ B(U ;V ) a set such that {Tu : T ∈ A} is bounded in V for every u ∈ U . Then A is bounded in B(U ;V ).
(Rudin 91, 2.6; Dunford & Schwartz 57, II.3.21; Taylor 64, 4.4-E.)

(b) Corollary If U is a normed space and A ⊆ U is such that f [A] is bounded for every f ∈ U∗, then A
is bounded. (Wilansky 64, p. 117; Taylor 64, 4.4-AS.) Consequently any relatively weakly compact set
in U is bounded. (Rudin 91, 3.18.)

*3A5I Strong operator topologies If U and V are normed spaces, the strong operator topology on
B(U ;V ) is that defined by the seminorms T 7→ ‖Tu‖ as u runs over U . If U is a Banach space, V is a normed
space and A ⊆ B(U ;V ), then A is relatively compact for the strong operator topology iff {Tu : T ∈ A} is
relatively compact in V for every u ∈ U . (Put 3A5Ha and 2A3R together.)

3A5J Completions Let U be a normed space.

(a) Recall that U has a metric ρ associated with the norm (2A4Bb), and that the topology defined by ρ
is a linear space topology (2A5D, 2A5B). This topology defines a uniformity W (3A4Ad) which is also the
uniformity defined by ρ (3A4Bd). The norm itself is a uniformly continuous function from U to R (because
|‖u‖ − ‖v‖| ≤ ‖u− v‖ for all u, v ∈ U).

(b) Let (Û , Ŵ) be the uniform space completion of (U,W) (3A4H). Then addition and scalar multi-

plication and the norm extend uniquely to make Û a Banach space. (Schaefer 66, I.1.5; Lang 93, p.
78.)

(c) If U and V are Banach spaces with dense linear subspaces U0 and V0, then any norm-preserving
isomorphism between U0 and V0 extends uniquely to a norm-preserving isomorphism between U and V (use
3A4G).

3A5K Normed algebras If U is a normed algebra (2A4J), its multiplication, regarded as a function
from U × U to U , is continuous. (Wilansky 64, p. 259.)

3A5L Compact operators Let U and V be Banach spaces.

(a) A linear operator T : U → V is compact if {Tu : ‖u‖ ≤ 1} is relatively compact in V for the
topology defined by the norm of V .

(b) A linear operator T : U → V is weakly compact if {Tu : ‖u‖ ≤ 1} is relatively weakly compact in
V . Of course compact operators are weakly compact; because weakly compact sets must be norm-bounded
(3A5Hb), weakly compact operators are bounded.

3A5M Hilbert spaces I mentioned the phrases ‘inner product space’, ‘Hilbert space’ briefly in 244N
and 244P, without explanation, as I did not there rely on any of the abstract theory of these spaces. For
the main result of §396 we need one of their fundamental properties, so I now skim over the definitions.
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(a) An inner product space is a linear space U over R

C
together with an operator ( | ) : U × U → R

C

such that

(u1 + u2|v) = (u1|v) + (u2|v), (αu|v) = α(u|v), (u|v) = (v|u)

(the complex conjugate of (v|u)),

(u|u) ≥ 0, u = 0 whenever (u|u) = 0

for all u, u1, u2, v ∈ U and α ∈ R

C
.

(b) If U is any inner product space, we have a norm on U defined by setting ‖u‖ =
√

(u|u) for every
u ∈ U , and |(u|v)| ≤ ‖u‖‖v‖ for all u, v ∈ U . (Taylor 64, 3.2-B.)

(c) A Hilbert space is an inner product space which is a Banach space under the norm of (b) above,
that is, is complete in the metric defined from its norm.

(d) If U is a Hilbert space, C ⊆ U is a non-empty closed convex set, and u ∈ U , then there is a unique
v ∈ C such that ‖u− v‖ = infw∈C ‖u− w‖. (Taylor 64, 4.81-A; compare 244Yn.)

(e) If U is an inner product space, C ⊆ U is a convex set, u, u′ ∈ U and v, v′ ∈ C are such that that
‖u − v‖ = infw∈C ‖u − w‖ and ‖u′ − v′‖ = infw∈C ‖u′ − w‖, then ‖v′ − v‖ ≤ ‖u′ − u‖. PPP If v′ = v this is
trivial. Otherwise, set γ = ‖v′ − v‖ and e = 1

γ
(v′ − v). If 0 < α ≤ γ, v + αe ∈ C so

‖u− v‖2 ≤ ‖u− v − αe‖2 = ‖u− v‖2 − 2αRe(u− v|e) + α2

and 2Re(u− v|e) ≤ α; it follows that Re(u− v|e) ≤ 0. Similarly, Re(u′ − v′|e) ≥ 0, and

‖v′ − v‖ = (v′ − v|e) ≤ Re(u′ − u|e) ≤ ‖u′ − u‖‖e‖ = ‖u′ − u‖

as claimed. QQQ

*3A5N Bounded sets in linear topological spaces There is a point in §377 where a concept from
the general theory of linear topological spaces helps an idea to flow more freely. Let U be a linear topological

space over R

C
.

(a) A set A ⊆ U is bounded if for every neighbourhood G of 0 there is an n ∈ N such that A ⊆ nG.

(b) If A ⊆ U is bounded, then
(i) every subset of A is bounded;
(ii) the closure of A is bounded;

(iii) αA is bounded for every α ∈ R

C
;

(iv) A ∪B and A+B are bounded for every bounded B ⊆ U ;
(v) if V is another linear topological space, and T : U → V is a continuous linear operator, then T [A]

is bounded.

(c) If A ⊆ U is relatively compact, it is bounded.

(d) If U is a normed space, and A ⊆ U , then the following are equiveridical:
(i) A is bounded in the sense of (a) above for the norm topology of U ;
(ii) A is bounded in the sense of 2A4Bc, that is, {‖u‖ : u ∈ A} is bounded above in R;
(iii) A is bounded for the weak topology of U .

proof Schaefer 66, §I.5; Köthe 69, §15.6. For (d-iii), use 3A5Hb.

Version of 6.8.08

3A6 Group Theory

For Chapter 38 we need four definitions and two results from elementary abstract group theory.

c© 1996 D. H. Fremlin
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3A6A Definition If G is a group, I will say that an element g of G is an involution if its order is 2,
that is, g2 = e, the identity of G, but g 6= e.

3A6B Definition If G is a group, the set AutG of automorphisms of G (that is, bijective homo-
morphisms from G to itself) is a group. For g ∈ G define ĝ : G → G by writing ĝ(h) = ghg−1 for every
h ∈ G; then ĝ ∈ AutG, and the map g 7→ ĝ is a homomorphism from G onto a normal subgroup J of AutG
(Rotman 84, p. 130). We call J the group of inner automorphisms of G. Members of (AutG) \ J are
called outer automorphisms.

3A6C Normal subgroups For any group G, the family of normal subgroups of G, ordered by ⊆, is a
Dedekind complete lattice, with H ∨K = HK and H ∧K = H ∩K. (Davey & Priestley 90, 2.8 & 2.19.)
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Version of 5.3.08

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

3A3P Definitions This paragraph, referred to in the 2003 edition of Volume 4, is now 3A3Q.

3A5K Compact operators This paragraph, referred to in the 2003 and 2006 editions of Volume 4, is
now 3A5L.

3A5L Inner product spaces This paragraph, referred to in the 2003 and 2006 editions of Volume 4, is
now 3A5M.

Version of 25.8.17
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Štěpánek P. & Rubin M. [89] ‘Homogeneous Boolean algebras’, pp. 679-715 in Monk 89. [382S, §382
notes .]

Talagrand M. [82a] ‘Closed convex hull of set of measurable functions, Riemann-measurable functions
and measurability of translations’, Ann. Institut Fourier (Grenoble) 32 (1982) 39-69. [§346 notes .]
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