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Chapter 39

Measurable algebras

In the final chapter of this volume, I present results connected with the following question: which algebras
can appear as the underlying Boolean algebras of measure algebras? Put in this form, there is a trivial answer
(391A). The proper question is rather: which algebras can appear as the underlying Boolean algebras of
semi-finite measure algebras? This is easily reducible to the question: which algebras can appear as the
underlying Boolean algebras of probability algebras? Now in one sense Maharam’s theorem (§332) gives us
the answer exactly: they are the countable simple products of the measure algebras of {0, 1}κ for cardinals
κ. But if we approach from another direction, things are more interesting. Probability algebras share a very
large number of very special properties. Can we find a selection of these properties which will be sufficient
to force an abstract Boolean algebra to be a probability algebra when endowed with a suitable functional?

No fully satisfying answer to this question is known. But in exploring the possibilities we encounter some
interesting and important ideas. In §391 I discuss algebras which have strictly positive additive real-valued
functionals; for such algebras, weak (σ,∞)-distributivity is necessary and sufficient for the existence of a
measure; so we are led to look for conditions sufficient to ensure that there is a strictly positive additive
functional. A slightly different approach lies through the concept of ‘submeasure’. Submeasures arise
naturally in the theories of topological Boolean algebras (393J), topological Riesz spaces (393K) and vector
measures (394P), and on any given algebra there is a strictly positive ‘uniformly exhaustive’ submeasure iff
there is a strictly positive additive functional; this is the Kalton-Roberts theorem (392F).

Submeasures in general are common, but correspondingly limited in what they can tell us about a
structure in the absence of further properties. Uniformly exhaustive submeasures are not far from additive
functionals. An intermediate class, the ‘exhaustive’ submeasures, has been intensively studied, originally in
the hope that they might lead to characterizations of measurable algebras, but more recently for their own
sake. Just as additive functionals lead to measurable algebras, totally finite exhaustive submeasures lead
to ‘Maharam algebras’ (§393). For many years it was not known whether every exhaustive submeasure was
uniformly exhaustive (equivalently, whether every Maharam algebra was a measurable algebra); an example
was eventually found by M.Talagrand, and is presented in §394.

In §395, I look at a characterization of measurable algebras in terms of the special properties which the
automorphism group of a measure algebra must have (Kawada’s theorem, 395Q). §396 complements the
previous section by looking briefly at the subgroups of an automorphism group AutA which can appear as
groups of measure-preserving automorphisms.

Version of 5.9.07

391 Kelley’s theorem

In this section I introduce the notion of ‘measurable algebra’ (391B), which will be the subject of the
whole chapter once the trivial construction of 391A has been dealt with. I show that for weakly (σ,∞)-
distributive algebras countable additivity can be left to look after itself, and all we need to find is a strictly
positive finitely additive functional (391D). I give Kelley’s criterion for the existence of such a functional
(391H-391J).

391A Proposition Let A be any Dedekind σ-complete Boolean algebra. Then there is a function
µ̄ : A → [0,∞] such that (A, µ̄) is a measure algebra.
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2 Measurable algebras 391B

391B Definition (a) I will call a Boolean algebra A measurable if there is a functional µ̄ : A → [0,∞[
such that (A, µ̄) is a totally finite measure algebra.

(b) I will call a Boolean algebra A chargeable if there is an additive functional ν : A → [0,∞[ which is
strictly positive, that is, νa > 0 for every non-zero a ∈ A.

(c) I will call a Boolean algebra nowhere measurable if none of its non-zero principal ideals are
measurable algebras.

391C Proposition Let A be a Boolean algebra.
(a) The following are equiveridical: (i) there is a functional µ̄ : A → [0,∞] such that (A, µ̄) is a semi-finite

measure algebra; (ii) A is Dedekind σ-complete and {a : a ∈ A, Aa is measurable} is order-dense in A.
(b) The following are equiveridical: (i) there is a functional µ̄ : A → [0,∞] such that (A, µ̄) is a localizable

measure algebra; (ii) A is Dedekind complete and {a : a ∈ A, Aa is measurable} is order-dense in A.

391D Theorem Let A be a Boolean algebra. Then the following are equiveridical:
(i) A is measurable;
(ii) A is Dedekind σ-complete, weakly (σ,∞)-distributive and chargeable.

391E Theorem Let A be a Boolean algebra, not {0}, and φ : A → [0, 1] a functional. Then the following
are equiveridical:

(i) there is a finitely additive functional ν : A → [0, 1] such that ν1 = 1 and νa ≤ φa for every a ∈ A;
(ii) whenever 〈ai〉i∈I is a finite indexed family in A, m ∈ N and

∑
i∈I χai ≥ mχ1 in S = S(A), then∑

i∈I φai ≥ m.

391F Theorem Let A be a Boolean algebra, not {0}, and ψ : A → [0, 1] a functional, where A ⊆ A.
Then the following are equiveridical:

(i) there is a finitely additive functional ν : A → [0, 1] such that ν1 = 1 and νa ≥ ψa for every a ∈ A;
(ii) whenever 〈ai〉i∈I is a finite indexed family in A, there is a set J ⊆ I such that #(J) ≥ ∑

i∈I ψai and
infi∈J ai 6= 0.

391G Corollary Let A be a Boolean algebra, B a subalgebra of A, and ν0 : B → R a non-negative
finitely additive functional. Then there is a non-negative finitely additive functional ν : A → R extending
ν0.

391H Definition Let A be a Boolean algebra, and A ⊆ A \ {0} any non-empty set. The intersection
number of A is the largest δ ≥ 0 such that whenever 〈ai〉i∈I is a finite family in A, with I 6= ∅, there is a
J ⊆ I such that #(J) ≥ δ#(I) and infi∈J ai 6= 0.

391I Proposition Let A be a Boolean algebra and A ⊆ A \ {0} any non-empty set. Write C for the set
of non-negative finitely additive functionals ν : A → [0, 1] such that ν1 = 1. Then the intersection number
of A is precisely maxν∈C infa∈A νa.

391J Theorem Let A be a Boolean algebra. Then the following are equiveridical:
(i) A is chargeable;
(ii) either A = {0} or A\{0} is expressible as a countable union of sets with non-zero intersection numbers.

391K Corollary Let A be a Boolean algebra. Then A is measurable iff it is Dedekind σ-complete and
weakly (σ,∞)-distributive and either A = {0} or A \ {0} is expressible as a countable union of sets with
non-zero intersection numbers.

391L Proposition (a) If A is a measurable algebra, all its principal ideals and σ-subalgebras are, in
themselves, measurable algebras.

(b) The simple product of countably many measurable algebras is a measurable algebra.
(c) If A is a measurable algebra, B is a Boolean algebra and π : A → B is a surjective order-continuous

Boolean homomorphism, then B is a measurable algebra, isomorphic to a principal ideal of A.
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Version of 11.2.08

392 Submeasures

In §391 I looked at what we can deduce if a Boolean algebra carries a strictly positive finitely additive
functional. There are important contexts in which we find ourselves with subadditive, rather than additive,
functionals, and these are what I wish to investigate here. It turns out that, once we have found the right
hypotheses, such functionals can also provide a criterion for measurability of an algebra (392G below). The
argument runs through a new idea, using a result in finite combinatorics (392D).

At the end of the section I include notes on metrics associated with submeasures (392H) and on products
of submeasures (392K).

392A Definition Let A be a Boolean algebra. A submeasure on A is a functional ν : A → [0,∞] such
that

ν0 = 0,
νa ≤ νb whenever a ⊆ b,
ν(a ∪ b) ≤ νa+ νb for all a, b ∈ A.

392B Definitions Let A be a Boolean algebra and ν : A → [0,∞] a submeasure.
(a) ν is strictly positive if νa > 0 for every a 6= 0.
(b) ν is exhaustive if limn→∞ νan = 0 for every disjoint sequence 〈an〉n∈N in A.
(c) ν is uniformly exhaustive if for every ǫ > 0 there is an n ∈ N such that there is no disjoint family

a0, . . . , an with νai ≥ ǫ for every i ≤ n.
(d) ν is totally finite if ν1 <∞.
(e) ν is unital if ν1 = 1.
(f) ν is atomless if whenever a ∈ A and νa > 0 there is a b ⊆ a such that νb > 0 and ν(a \ b) > 0.
(g) If ν ′ is another submeasure on A, then ν ′ is absolutely continuous with respect to ν if for every

ǫ > 0 there is a δ > 0 such that ν ′a ≤ ǫ whenever νa ≤ δ.

392C Proposition Let A be a Boolean algebra.
(a) If there is an exhaustive strictly positive submeasure on A, then A is ccc.
(b) A uniformly exhaustive submeasure on A is exhaustive.
(c) Any non-negative additive functional on A is a uniformly exhaustive submeasure.

392D Lemma Suppose that k, l, m ∈ N are such that 3 ≤ k ≤ l ≤ m and 18mk ≤ l2. Let L, M be
sets with l, m members respectively. Then there is a set R ⊆ M × L such that (i) each vertical section of
R has just three members (ii) #(R[E]) ≥ #(E) whenever E ∈ [M ]≤k; so that for every E ∈ [M ]≤k there is
an injective function f : E → L such that (x, f(x)) ∈ R for every x ∈ E.

392E Lemma Let A be a Boolean algebra and ν : A → [0,∞] a uniformly exhaustive submeasure. Then
for any ǫ ∈ ]0, ν1] the set A = {a : νa ≥ ǫ} has intersection number greater than 0.

392F Theorem Let A be a Boolean algebra with a strictly positive uniformly exhaustive submeasure.
Then A is chargeable.

392G Corollary Let A be a Boolean algebra. Then it is measurable iff it is weakly (σ,∞)-distributive
and Dedekind σ-complete and has a strictly positive uniformly exhaustive submeasure.

392H Metrics from submeasures: Proposition Let A be a Boolean algebra and ν a strictly positive
totally finite submeasure on A.

(a) We have a metric ρ on A defined by the formula

ρ(a, b) = ν(a△ b)

c© 2008 D. H. Fremlin
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4 Measurable algebras 392H

for all a, b ∈ A.
(b) The Boolean operations ∪ , ∩ , △ , \ and the function ν : A → R are all uniformly continuous for ρ.

(c) The metric space completion (Â, ρ̂) of (A, ρ) is a Boolean algebra under the natural continuous

extensions of the Boolean operations, and ν has a unique continuous extension ν̂ to Â which is again a
strictly positive submeasure.

(d) If ν is additive, then (Â, ν̂) is a totally finite measure algebra.

392I Corollary Let A be a Boolean algebra and ν a non-negative additive functional on A. Then there
are a totally finite measure algebra (C, µ̄) and a Boolean homomorphism π : A → C such that νa = µ̄(πa)
for every a ∈ A.

392J Proposition Let A be a Boolean algebra, ν an exhaustive submeasure on A, and 〈an〉n∈N a sequence
in A such that infn∈N νan > 0. Then there is an infinite I ⊆ N such that ν(infi∈I∩n ai) > 0 for every n ∈ N.

*392K Products of submeasures (a) Let A and B be Boolean algebras with submeasures µ, ν
respectively. On the free product A ⊗ B, we have a functional µ ⋉ ν defined by saying that whenever
c ∈ A⊗B is of the form supi∈I ai ⊗ bi where 〈ai〉i∈I is a finite partition of unity in A, then

(µ⋉ ν)(c) = min
J⊆I

max({µ(sup
i∈J

ai)} ∪ {νbi : i ∈ I \ J})

= min{ǫ : ǫ ∈ [0,∞], µ(sup{ai : i ∈ I, νbi > ǫ}) ≤ ǫ}.
(µ⋉ ν)(a⊗ b) = min(µa, νb) for all a ∈ A and b ∈ B.

(b) In the context of (a), µ⋉ ν is a submeasure.

(c) I note that only in exceptional cases will µ⋉ ν be matched with ν ⋉ µ by the canonical isomorphism
between A⊗B and B⊗ A; this product is not ‘commutative’. It is however ‘associative’, in the following
sense. Let (A1, µ1), (A2, µ2), (A3, µ3) be Boolean algebras endowed with submeasures. Set

λ12 = µ1 ⋉ µ2, λ(12)3 = λ12 ⋉ µ3, λ23 = µ2 ⋉ µ3, λ1(23) = µ1 ⋉ λ23.

Then the canonical isomorphisms between (A1 ⊗A2)⊗A3, A1 ⊗A2 ⊗A3 and A1 ⊗ (A2 ⊗A3) identify λ(12)3
with λ1(23).

(d) If µ, µ′ are submeasures on A, ν and ν ′ are submeasures on B, µ is absolutely continuous with respect
to µ′ and ν is absolutely continuous with respect to ν ′, then µ⋉ ν is absolutely continuous with respect to
µ′ ⊗ ν ′.

(e) If µ and ν are exhaustive, so is µ⋉ ν.

(f) We can extend the construction to infinite products, as follows. Let I be a totally ordered set and
〈(Ai, µi)〉i∈I a family of Boolean algebras endowed with unital submeasures. For a finite set J = {i0, . . . , in}
where i0 < . . . < in in I, let λJ be the product submeasure (.(µi0 ⋉ µi1) ⋉ . . . ) ⋉ µin on CJ =

⊗
j∈J Aj ;

for definiteness, on C∅ = {0, 1} take λ∅ to be the unital submeasure, while C{i} = Ai and λ{i} = µi for
each i ∈ I. Using (c) repeatedly, we see that if J , K ∈ [I]<ω and j < k for every j ∈ J , k ∈ K, then the
identification of CJ∪K with CJ ⊗ CK matches λJ∪K with λJ ⋉ λK . Moreover, if K ∈ [I]<ω and J is any
subset of K and εJK : CJ → CK is the canonical embedding corresponding to the identification of CK with
CJ ⊗ CK\J , then λJ = λKεJK ; this also is an easy induction on #(K). What this means is that for any
subset M of I we have a submeasure λM on CM =

⋃{εJMCJ : J ∈ [M ]<ω}, being the unique functional
such that λMεJM = λJ for every J ∈ [M ]<ω. Finally, if L, M are subsets of I with l < m for every l ∈ L

and m ∈M , then λL∪M can be identified with λL ⋉ λM .

(g) I should perhaps have remarked already that if µ and ν, in (a), are additive and unital, then we have
an additive function λ′ on A ⊗ B such that λ′(a ⊗ b) = µa · νb for every a ∈ A and b ∈ B. Now, setting
λ = µ⋉ ν, each of λ, λ′ is absolutely continuous with respect to the other.

Measure Theory (abridged version)
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Version of 11.5.08

393 Maharam submeasures

Continuing our exploration of variations on the idea of ‘measurable algebra’, we come to sequentially
order-continuous submeasures. These are associated with ‘Maharam algebras’ (393E), which share a great
many properties with measurable algebras; for instance, the existence of a standard topology defined by the
algebraic structure (393G). This topology is intimately connected with the order*-convergence of sequences
introduced in §367 (393L). We can indeed characterize Maharam algebras in terms of properties of the
order-sequential topology defined by this convergence (393Q).

393A Definition Let A be a Boolean algebra. A Maharam submeasure or continuous outer
measure on A is a totally finite submeasure ν : A → [0,∞[ such that limn→∞ νan = 0 whenever 〈an〉n∈N

is a non-increasing sequence in A with infimum 0.

393B Lemma Let A be a Boolean algebra and ν a Maharam submeasure on A.
(a) ν is sequentially order-continuous.
(b) ν is ‘countably subadditive’, that is, whenever 〈an〉n∈N is a sequence in A and a ∈ A is such that

a = supn∈N a ∩ an, then νa ≤ ∑∞
n=0 νan.

(c) If A is Dedekind σ-complete, then ν is exhaustive.

393C Proposition Let A be a Dedekind σ-complete Boolean algebra and ν a strictly positive Maharam
submeasure on A. Then A is ccc, Dedekind complete and weakly (σ,∞)-distributive, and ν is order-
continuous.

393D Theorem Let A be a Boolean algebra. Then it is measurable iff it is Dedekind σ-complete and
carries a uniformly exhaustive strictly positive Maharam submeasure.

393E Maharam algebras (a) Definition A Maharam algebra is a Dedekind σ-complete Boolean
algebra A such that there is a strictly positive Maharam submeasure on A.

(b) Every measurable algebra is a Maharam algebra, while every Maharam algebra is ccc and weakly
(σ,∞)-distributive, therefore Dedekind complete. A Maharam algebra A is measurable iff there is a strictly
positive uniformly exhaustive submeasure on A.

(c)(i) A principal ideal in a Maharam algebra is a Maharam algebra; an order-closed subalgebra of a
Maharam algebra is a Maharam algebra.

(ii) The simple product of a countable family of Maharam algebras is a Maharam algebra.

393F Lemma Let A be a Dedekind σ-complete Boolean algebra and ν, ν ′ two Maharam submeasures
on A such that νa = 0 whenever ν ′a = 0. Then ν is absolutely continuous with respect to ν ′.

393G Proposition Let A be a Maharam algebra, and ν and ν ′ two strictly positive Maharam sub-
measures on A. Then the metrics they induce on A are uniformly equivalent, so we have a topology and
uniformity on A which we may call the Maharam-algebra topology and the Maharam-algebra uni-
formity.

393H Proposition Let A be a Boolean algebra, and ν an exhaustive strictly positive totally finite

submeasure on A. Let Â be the metric completion of A, and ν̂ the continuous extension of ν to Â. Then ν̂

is a Maharam submeasure, so Â is a Maharam algebra.

c© 2007 D. H. Fremlin
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6 Measurable algebras 393I

393I Proposition Let A be a Dedekind σ-complete Boolean algebra and ν an atomless Maharam sub-
measure on A. Then for every ǫ > 0 there is a finite partition C of unity in A such that νc ≤ ǫ for every
c ∈ C.

393J Lemma Let A be a ccc Boolean algebra with a T1 topology T such that (i) ∪ : A × A → A is
continuous at (0, 0) (ii) whenever 〈an〉n∈N is a non-increasing sequence in A with infimum 0, then 〈an〉n∈N → 0
for T. Then A has a strictly positive Maharam submeasure.

*393K Theorem Let A be a ccc Dedekind complete Boolean algebra. Then A is a Maharam algebra iff
there is a Hausdorff linear space topology T on L0(A) such that for every neighbourhood G of 0 there is a
neighbourhood H of 0 such that u ∈ G whenever v ∈ H and |u| ≤ |v|.

393L Definition Let P be a lattice, and consider the relation ‘〈pn〉n∈N order*-converges to p’ as a relation
between PN and P . There is a unique topology on P for which a set F ⊆ P is closed iff a ∈ F whenever
〈an〉n∈N is a sequence in F which order*-converges to a in P . I will call this topology the order-sequential
topology of P .

393M Lemma Let A be a Boolean algebra.
(a) A sequence 〈an〉n∈N order*-converges to a ∈ A iff there is a partition B of unity in A such that

{n : n ∈ N, (an △ a) ∩ b 6= 0} is finite for every b ∈ B.
(b) If 〈an〉n∈N order*-converges to a and c ∈ A, then 〈an ∪ c〉n∈N, 〈an ∩ c〉n∈N and 〈an △ c〉n∈N order*-

converge to a ∪ c, a ∩ c and a△ c respectively.
(c) The operations ∩ , ∪ and △ are separately continuous for the order-sequential topology.
(d) Every disjoint sequence in A is order*-convergent to 0.

393N Proposition Let A be a Maharam algebra. Then the Maharam-algebra topology on A is the
order-sequential topology.

393O Proposition Let A be a ccc Dedekind σ-complete Boolean algebra, with its order-sequential
topology, and B a subalgebra of A. Then the topological closure of B is the smallest order-closed set
including B; B is order-closed iff it is topologically closed.

393P Lemma Let A be a ccc weakly (σ,∞)-distributive Boolean algebra, endowed with its order-
sequential topology.

(a) If 〈amn〉m,n∈N, 〈am〉m∈N and a are such that 〈amn〉n∈N order*-converges to am for each m, while
〈am〉m∈N order*-converges to a, then there is a sequence 〈k(m)〉m∈N in N such that 〈am,k(m)〉m∈N order*-
converges to a.

(b) If A ⊆ A and a ∈ A, there is a sequence in A which order*-converges to a.
(c) If G is a neighbourhood of 0 in A then there is an open neighbourhood H of 0, included in G, such

that [0, a] ⊆ H for every a ∈ H.
(d) For A ⊆ A, set

∨
0(A) = {0} and

∨
n+1(A) = {a ∪ b : a ∈ ∨

n(A), b ∈ A} for n ∈ N.
(i) If A ⊆ A is such that [0, a] ⊆ A for every a ∈ A, and n ∈ N, then [0, a] ⊆ ∨

n(A) for every a ∈ ∨
n(A).

(ii) If H ⊆ A is an open set containing 0 such that [0, a] ⊆ H for every a ∈ H, then
∨

n+1(H) is open

and
∨

n(H) ⊆ ∨
n+1(H) for every n ∈ N.

(e) Suppose that A is Dedekind σ-complete. Then for every open set G containing 0 there is an open set
H containing 0 such that

∨
3(H) ⊆ ∨

2(G).

393Q Theorem Let A be a Dedekind σ-complete Boolean algebra. Then the following are equiveridical:
(i) A is a Maharam algebra;
(ii) A is ccc and the order-sequential topology is Hausdorff;
(iii) A is weakly (σ,∞)-distributive and {0} is a Gδ set for the order-sequential topology of A;
(iv) A is ccc and there is a T1 topology on A such that (α) ∪ : A × A → A is continuous at (0, 0) (β)

whenever 〈an〉n∈N is a non-decreasing sequence in A with infimum 0, then 〈an〉n∈N → 0.

Measure Theory (abridged version)



394Bf Talagrand’s example 7

393R Definition Let A be a Boolean algebra. Then A is σ-finite-cc if A can be expressed as
⋃

n∈N
An

where no An includes any infinite disjoint set.

393S Theorem Let A be a Boolean algebra. Then A is a Maharam algebra iff it is σ-finite-cc, weakly
(σ,∞)-distributive and Dedekind σ-complete.

Version of 13.6.11/30.8.18

394 Talagrand’s example

I rewrite the construction in Talagrand 08 of an exhaustive submeasure which is not uniformly exhaus-
tive, generalized as in Perović & Veličković 18.

394A PV norms (a) I will say that a PV norm is a function ‖ ‖ : [N]<ω → N such that

—– ‖∅‖ = 0, ‖I‖ = 1 if #(I) = 1,
—– ‖I ∪ J‖ ≤ ‖I‖+ ‖J‖ for all I, J ∈ [N]<ω,
—– ‖I‖ ≤ ‖J‖ whenever I, J ∈ [N]<ω and #(I ∩ n) ≤ #(J ∩ n) for every n ∈ N,
—– limn→∞ ‖A ∩ n‖ = ∞ for every infinite A ⊆ N

(Perović & Veličković 18, 2.2).

(b) Note that if ‖ ‖ is a PV norm then ‖I‖ ≤ ‖J‖ ≤ #(J) whenever I ⊆ J ∈ [N]<ω. We see also that if
I ∈ [N]<ω and k < ‖I‖ there is an n ∈ I such that ‖I ∩ n‖ = k.

(c) The version of Talagrand’s example in the 2012 edition of Volume 3 corresponds to the case in which
‖I‖ = #(I) for every I ∈ [N]<ω. For the work of this section there is no need to consider any other, and
some of the formulae in 394D become more readable if you make this simplification; but it makes no real
difference to the ideas required.

394B Definitions (a) I shall work throughout with X =
∏

n∈N
Tn where 〈Tn〉n∈N is a sequence of

non-empty finite sets and supn∈N #(Tn) is infinite. X may be regarded as a compact Hausdorff space with
the product of the discrete topologies on the Tn. For each n ∈ N, Bn will be the algebra of subsets of X
determined by coordinates less than n and An the set of its atoms. B will be the algebra of open-and-closed
subsets of X. For I ⊆ N and z ∈ ∏

n∈I Tn, Yz will be {x : z ⊆ x ∈ X}. Finally, ‖ ‖ will be a PV norm on
[N]<ω.

(b) We shall need a sequence 〈αk〉k∈N in R and a sequence 〈Nk〉k∈N in N. I declare the properties they
must have.

(i) αk > 0 and (2k+4)αk ≤ 2 for every k ∈ N, 〈αk〉k∈N is non-increasing, and
∑∞

k=0 αk ≤ 1
2 .

(ii) Nk ∈ N and 2−k(2−2k−12Nk)
αk ≥ 24 for every k ∈ N.

(c) For a set I ⊆ PX × PN× [0,∞[, define spr I to be
⋃

(E,I,w)∈I E and wt I to be
∑

(E,I,w)∈I w.

(d) For any family E ⊆ PX × PN× [0,∞[ define φE : B → [0,∞] by setting

φEE = inf{wt I : I ⊆ E is finite, E ⊆ spr I},
counting inf ∅ as ∞.

(e) For D ⊆ X and I ⊆ N set

θI(D) = {y : y ∈ X, y↾I = x↾I for some x ∈ D}.

(f)(i) If m < n in N, φ : B → [0,∞] is a function and E ∈ B, then E is φ-thin between m and n if
φ(X \ θn\m(A ∩ E)) ≥ 1 for every A ∈ Am.

(ii) If I ⊆ N, φ : B → [0,∞] is a function and E ∈ B, then E is φ-thin along I if it is φ-thin between
m and n whenever m, n ∈ I and m < n.

c© 2017 D. H. Fremlin
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8 Measurable algebras 394Bg

(g) For k ≤ p ∈ N define Ckp and νkp by downwards induction on k. Cpp = ∅ for every p. νkp = φCkp
.

Given that k < p and Ck+1,p and νk+1,p = φCk+1,p
have been defined, set

Ekp = {(E, I, w) : E ∈ B, I ∈ [N]<ω, 1 ≤ ‖I‖ ≤ Nk,

w ≥ 2−k
(Nk

‖I‖

)αk
, E is νk+1,p-thin along I},

Ckp = Ekp ∪ Ck+1,p

and continue.

(h) Define 〈ck〉k∈N by setting c0 = 8, ck+1 = 22αkck for every k.

394C Very elementary facts (a) φE : B → [0,∞] is a submeasure for any E ⊆ PX × PN× [0,∞[.

(b) If I, J ⊆ N then θIθJ = θI∩J . If I ⊆ J ⊆ N then θI(D) = θIθJ(D) ⊇ θJ(D) for all D ⊆ X. If I ⊆ N

then θI(D ∩ θI(E)) = θI(E ∩ θI(D)) for all D, E ⊆ X. For any I ⊆ N and any family D of subsets of X,
θI(

⋃D) =
⋃

D∈D θI(D).
For n ∈ N and D ⊆ X, D ∈ Bn iff θn(D) = D. If E ∈ B and I ⊆ N, θI(E) ∈ B. If m ≤ n in N, A ∈ Am

and A1 ∈ An, then A ∩ θn\m(A1) ∈ An. If m ∈ N and A ∈ Am then E 7→ θN\m(A ∩ E) : B → B is a
Boolean homomorphism.

(c) If m < n, φ : B → [0,∞] is a non-decreasing function, E ∈ B is φ-thin between m and n and E′ ∈ B

is included in E, then E′ is φ-thin between m and n′ for every n′ ≥ n.

(d) Ekp, Ckp are closed under increases in the scalar variable and decreases in the first variable, that is,
—– if k < p, (E, I, w) ∈ Ekp, E′ ∈ B, E′ ⊆ E and w′ ≥ w then (E′, I, w′) ∈ Ekp,
—– if k ≤ p, (E, I, w) ∈ Ckp, E′ ∈ B, E′ ⊆ E and w′ ≥ w then (E′, I, w′) ∈ Ckp.

(e) If k ≤ p, Ckp =
⋃

k≤l<p Elp.

(f) If k < p, νkp ≤ νk+1,p.

(g) 8 ≤ ck ≤ 16 for every k ∈ N.

(h) If k < p, then νkpX ≤ 2−kNαk

k and νkp is totally finite.

394D Lemma Suppose that K is a non-empty finite family of subsets of N and r ∈ N is such that
‖K‖ ≥ r#(K) for every K ∈ K. Then we have an enumeration 〈Ki〉i<s of K and a non-decreasing family
〈ni〉i≤s such that ‖Ki ∩ ni+1 \ ni‖ = r for every i < s.

(b) Suppose that 〈Ki〉i<s is a family of finite subsets of N such that ‖Ki‖ ≥ n ≥ 3 for every i < s and
maxKi < minKi+1 for i ≤ s − 2, and that A ∈ [N]<ω is such that ‖A‖ ≤ 1. Let J be a finite subset of
PX × ([N]<ω \ {∅}) × [0,∞[. Then we can find 〈ui〉i<s and 〈vi〉i<s such that ui, vi ∈ Ki and ui < vi for
each i < s and, setting W =

⋃
i<s vi \ ui, A ∩W = ∅ and

wt{(E, I, w) : (E, I,W ) ∈ J , ‖I \W‖ < 1
2‖I‖} ≤ 1

n−2
wtJ .

394E Lemma Suppose that k ≤ p, m < n, A ∈ Am, (E, I, w) ∈ Ckp and I ′ = I ∩ n \m is non-empty. If

E′ = θn\m(E ∩A) and w′ ≥
( ‖I‖

‖I′‖

)αk
w, then (E′, I ′, w′) ∈ Ckp.

394F Corollary (a) Suppose that n ∈ N and k ≤ p and that I ⊆ Ckp is a finite set such that ‖I ∩ n‖ ≥
1
4‖I‖ whenever (E, I, w) ∈ I. Then νkp(θn(spr I)) ≤ 2wt I.

(b) Suppose that m ∈ N, k ≤ p and A ∈ Am. Let I be a finite subset of Ckp such that ‖I \m‖ ≥ 1
4‖I‖

whenever (E, I, w) ∈ I. Then νkp(θN\m(A ∩ spr I)) ≤ 2wt I.
(c) Suppose that m < n in N, k ≤ p and A ∈ Am. Let I be a finite subset of Ckp such that ‖I ∩n \m‖ ≥

2−k−4‖I‖ whenever (E, I, w) ∈ I. Then νkp(θn\m(A ∩ spr I)) ≤ 2wt I.
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394Z Talagrand’s example 9

394G Lemma Suppose that L ∈ [N]<ω is such that ‖L‖ ≤ 1, and z ∈ ∏
r∈L Tr. Then νkpYz ≥ ck

whenever k ≤ p in N.

394H Definitions Fix on a non-principal ultrafilter F on N. For k ∈ N, set

νkE = limp→F νkpE ∈ [0,∞]

for every E ∈ B; write ν for ν0.

394I Proposition (a) For every k ∈ N, νk is a totally finite submeasure and νkX ≥ 8.
(b) ν is not uniformly exhaustive.

394J Lemma Suppose that k ∈ N, E ∈ B, I ∈ [N]<ω and E is 1
2νk-thin along I. Then

{p : p ≥ k, E is νkp-thin along I} ∈ F .

If k ≥ 1 and ‖I‖ = Nk−1, then νk−1E ≤ 2−k+1.

394K Lemma Let m, k ∈ N and let 〈Ei〉i∈N be a sequence in B such that

every Ei is determined by coordinates in N \m,
νk(

⋃
i≤nEi) < 2 for every n ∈ N.

Then for every η > 0 there is a C ∈ B, determined by coordinates in N \ m, such that νkC ≤ 4 and
νk(Ei \ C) ≤ η for each i.

394L Lemma Suppose that k ∈ N, ǫ > 0, m ∈ N, B ∈ Bm and that 〈Ei〉i∈N is a disjoint sequence
in B. Then there are n > m and B′ ∈ Bn such that B′ ⊆ B, B′ is 1

2νk-thin between m and n and
lim supi→∞ νk(Ei ∩B \B′) ≤ ǫ.

394M Theorem ν is exhaustive.

394N Remarks (a) Note that the whole construction is invariant under the action of the group
∏

n∈N
Gn

where Gn is the group of all permutations of Tn for each n. In particular, if we give each Tn a group structure
and X the product group structure, then ν is translation-invariant.

(b) ν is strictly positive.

(c) We can form the metric completion B̂ of B, and B̂ will be a Maharam algebra, with a strictly positive

Maharam submeasure ν̂ continuously extending ν. B̂ is not measurable.

*394O Control measures Let A be a Dedekind σ-complete Boolean algebra and U a Hausdorff linear
topological space. A function θ : A → U is a vector measure if

∑∞
n=0 θan = limn→∞

∑n
i=0 θai is defined

in U and equal to θ(supn∈N an) for every disjoint sequence 〈an〉n∈N in A. In this case, a non-negative
countably additive functional µ : A → [0,∞[ is a control measure for θ if θa = 0 whenever µa = 0.

*394P Example There are a metrizable linear topological space U and a vector measure θ : Σ → U ,
where Σ is a σ-algebra of sets, such that θ has no control measure.

*394Q Theorem Let A be a Dedekind σ-complete Boolean algebra, U a normed space and θ : A → U

a vector measure. Then θ has a control measure.

394Z Problems Suppose that ‖ ‖, 〈Tn〉n∈N, B, 〈αk〉k∈N and 〈Nk〉k∈N satisfy the conditions of 394Ba-

394Bb. Let ν be the exhaustive submeasure on B constructed by the method of 394B and 394H, and B̂ the
corresponding Maharam algebra.

D.H.Fremlin



10 Measurable algebras 394Za

(a) Does B̂ have an order-closed subalgebra isomorphic to the measure algebra of Lebesgue measure? In
particular, if we take C ⊆ B to be the algebra of sets generated by sets of the form {x : x ∈ X, x(n) = 0}
for n ∈ N, is ν↾C uniformly exhaustive?

(b) Suppose that instead of taking large sets Tn, we simply set Tn = {0, 1} for every n, but otherwise
used the same construction. Should we then find that ν was uniformly exhaustive?

(c) Is the Boolean algebra B̂ homogeneous?

Version of 15.6.08

395 Kawada’s theorem

I now describe a completely different characterization of (homogeneous) measurable algebras, based on
the special nature of their automorphism groups. The argument depends on the notion of ‘non-paradoxical’
group of automorphisms; this is an idea of great importance in other contexts, and I therefore aim at a fairly
thorough development, with proofs which are adaptable to other circumstances.

395A Definitions Let A be a Dedekind complete Boolean algebra, and G a subgroup of AutA. For a,
b ∈ A I will say that an isomorphism φ : Aa → Ab between the corresponding principal ideals belongs to the
full local semigroup generated by G if there are a partition of unity 〈ai〉i∈I in Aa and a family 〈πi〉i∈I

in G such that φc = πic whenever i ∈ I and c ⊆ ai. If such an isomorphism exists I will say that a and b
are G-τ-equidecomposable.

I will write a 4τ
G b to mean that there is a b′ ⊆ b such that a and b′ are G-τ -equidecomposable.

For any function f with domain A, I will say that f is G-invariant if f(πa) = f(a) whenever a ∈ A and
π ∈ G.

395B Lemma Let A be a Dedekind complete Boolean algebra and G a subgroup of AutA. Write G∗
τ

for the full local semigroup generated by G.
(a) Suppose that a, b ∈ A and that φ : Aa → Ab is an isomorphism. Then the following are equiveridical:

(i) φ ∈ G∗
τ ;

(ii) for every non-zero c0 ⊆ a there are a non-zero c1 ⊆ c0 and a π ∈ G such that φc = πc for every
c ⊆ c1;

(iii) for every non-zero c0 ⊆ a there are a non-zero c1 ⊆ c0 and a ψ ∈ G∗
τ such that φc = ψc for every

c ⊆ c1.
(b) If a, b ∈ A and φ : Aa → Ab belongs to G∗

τ , then φ
−1 : Ab → Aa also belongs to G∗

τ .
(c) Suppose that a, b, a′, b′ ∈ A and that φ : Aa → Aa′ , ψ : Ab → Ab′ belong to G∗

τ . Then ψφ ∈ G∗
τ ; its

domain is Ac where c = φ−1(b ∩ a′), and its set of values is Ac′ where c
′ = ψ(b ∩ a′).

(d) If a, b ∈ A and φ : Aa → Ab belongs to G∗
τ , then φ↾Ac ∈ G∗

τ for any c ⊆ a.
(e) Suppose that a, b ∈ A and that ψ : Aa → Ab is an isomorphism such that there are a partition of

unity 〈ai〉i∈I in Aa and a family 〈φi〉i∈I in G∗
τ such that ψc = φic whenever i ∈ I and c ⊆ ai. Then ψ ∈ G∗

τ .

395C Lemma Let A be a Dedekind complete Boolean algebra and G a subgroup of AutA. Write G∗
τ

for the full local semigroup generated by G.
(a) For a, b ∈ A, a 4τ

G b iff there is a φ ∈ G∗
τ such that a ∈ domφ and φa ⊆ b.

(b)(i) 4τ
G is transitive and reflexive;

(ii) if a 4τ
G b and b 4τ

G a then a and b are G-τ -equidecomposable.
(c) G-τ -equidecomposability is an equivalence relation on A.
(d) If 〈ai〉i∈I and 〈bi〉i∈I are families in A, of which 〈bi〉i∈I is disjoint, and ai 4

τ
G bi for every i ∈ I, then

supi∈I ai 4
τ
G supi∈I bi.

395D Theorem Let A be a Dedekind complete Boolean algebra and G a subgroup of AutA. Then the
following are equiveridical:

c© 1996 D. H. Fremlin
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(i) there is an a 6= 1 such that a is G-τ -equidecomposable with 1;
(ii) there is a disjoint sequence 〈an〉n∈N of non-zero elements of A which are all G-τ -equidecomposable;
(iii) there are non-zero G-τ -equidecomposable a, b, c ∈ A such that a ∩ b = 0 and a ∪ b ⊆ c;
(iv) there are G-τ -equidecomposable a, b ∈ A such that a ⊂ b.

395E Definition Let A be a Dedekind complete Boolean algebra and G a subgroup of AutA. I will
say that G is fully non-paradoxical if the statements of 395D are false; that is, if one of the following
equiveridical statements is true:

(i) if a is G-τ -equidecomposable with 1 then a = 1;

(ii) there is no disjoint sequence 〈an〉n∈N of non-zero elements of A which are all G-τ -equide-
composable;

(iii) there are no non-zero G-τ -equidecomposable a, b, c ∈ A such that a ∩ b = 0 and a ∪ b ⊆ c;

(iv) if a ⊆ b ∈ A and a, b are G-τ -equidecomposable then a = b.

Note that if G is fully non-paradoxical, and H is a subgroup of G, then H also is fully non-paradoxical.

395F Proposition Let (A, µ̄) be a totally finite measure algebra, and G = Autµ̄A the group of all
measure-preserving automorphisms of A. Then G is fully non-paradoxical.

395G The fixed-point subalgebra of a group Let A be a Boolean algebra and G a subgroup of
AutA.

(a) By the fixed-point subalgebra of G I mean

C = {c : c ∈ A, πc = c for every π ∈ G}.
This is a subalgebra of A, and is order-closed.

(b) Now suppose that A is Dedekind complete. In this case C is Dedekind complete, and we have, for
any a ∈ A, an upper envelope upr(a,C) of C, defined by setting

upr(a,C) = inf{c : a ⊆ c ∈ C}.
Now upr(a,C) = sup{πa : π ∈ G}.

(c) Again supposing that A is Dedekind complete, write G∗
τ for the full local semigroup generated by G.

Then φ(a ∩ c) = φa ∩ c whenever φ ∈ G∗
τ , a ∈ domφ and c ∈ C.

upr(φa,C) = upr(a,C) whenever φ ∈ G∗
τ and a ∈ domφ.

upr(a,C) ⊆ upr(b,C) whenever a 4τ
G b.

(d) Still supposing that A is Dedekind complete, we also find that if a 4τ
G b and c ∈ C then a ∩ c 4τ

G b ∩ c.
Hence a ∩ c and b ∩ c are G-τ -equidecomposable whenever a and b are G-τ -equidecomposable and c ∈ C.

(e) I will say that G is ergodic if supπ∈G πa = 1 for every non-zero a ∈ A.

(f) If G is ergodic, then C = {0, 1}. If A is Dedekind complete and C = {0, 1} then G is ergodic.

395H Lemma Let A be a Dedekind complete Boolean algebra and G a fully non-paradoxical subgroup of
AutA. Write C for the fixed-point subalgebra of G. Take any a, b ∈ A. Set c0 = sup{c : c ∈ C, a ∩ c 4τ

G b};
then a ∩ c0 4τ

G b and b \ c0 4τ
G a.

395I Lemma Let A be a Dedekind complete Boolean algebra, not {0}, and G a fully non-paradoxical
subgroup of AutA. Let C be the fixed-point subalgebra of G. Suppose that a, b ∈ A and that upr(a,C) = 1.
Then there are u, v ∈ L0 = L0(C) such that

D.H.Fremlin



12 Measurable algebras 395I

[[u ≥ n]] = max{c : c ∈ C, there is a disjoint family 〈di〉i<n

such that c ∩ a 4τ
G di ⊆ b for every i < n},

[[v ≤ n]] = max{c : c ∈ C, there is a family 〈di〉i<n

such that di 4
τ
G a for every i < n and b ∩ c ⊆ sup

i<n

di}

for every n ∈ N. Moreover, we can arrange that
(i) [[u ∈ N]] = [[v ∈ N]] = 1,
(ii) [[v > 0]] = upr(b,C),
(iii) u ≤ v ≤ u+ χ1.

395J Notation Observe that the specification of [[u ≥ n]] and [[v ≤ n]], together with the declaration that
[[u ∈ N]] = [[v ∈ N]] = 1, determine u and v uniquely. So we can write ⌊b : a⌋ for u and ⌈b : a⌉ for v.

395K Lemma Let A be a Dedekind complete Boolean algebra, not {0}, and G a fully non-paradoxical
subgroup of AutA with fixed-point subalgebra C. Suppose that a, b, b1, b2 ∈ A and that upr(a,C) = 1.

(a) ⌊0 : a⌋ = ⌈0 : a⌉ = 0, ⌊1 : a⌋ ≥ χ1 and ⌊1 : 1⌋ = χ1.
(b) If b1 4τ

G b2 then ⌊b1 : a⌋ ≤ ⌊b2 : a⌋ and ⌈b1 : a⌉ ≤ ⌈b2 : a⌉.
(c) ⌈b1 ∪ b2 : a⌉ ≤ ⌈b1 : a⌉+ ⌈b2 : a⌉.
(d) If b1 ∩ b2 = 0, ⌊b1 : a⌋+ ⌊b2 : a⌋ ≤ ⌊b1 ∪ b2 : a⌋.
(e) If c ∈ C is such that a ∩ c is a relative atom over C, then c ⊆ [[⌈b : a⌉ − ⌊b : a⌋ = 0]].

395L Lemma Let A be a Dedekind complete Boolean algebra, not {0}, and G a fully non-paradoxical
subgroup of AutA with fixed-point subalgebra C. Suppose that a1, a2, b ∈ A and that upr(a1,C) =
upr(a2,C) = 1. Then

⌊b : a2⌋ ≥ ⌊b : a1⌋ × ⌊a1 : a2⌋, ⌈b : a2⌉ ≤ ⌈b : a1⌉ × ⌈a1 : a2⌉.

395M Lemma Let A be a Dedekind complete Boolean algebra, not {0}, and G a subgroup of AutA
with fixed-point subalgebra C.

(a) For any a ∈ A, there is a b ⊆ a such that b 4τ
G a \ b and a \ upr(b,C) is a either 0 or a relative atom

over C.
(b) Now suppose that G is fully non-paradoxical. Then for any ǫ > 0 there is an a ∈ A such that

upr(a,C) = 1 and ⌈b : a⌉ ≤ ⌊b : a⌋+ ǫ⌊1 : a⌋ for every b ∈ A.

395N Theorem Let A be a Dedekind complete Boolean algebra and G a fully non-paradoxical subgroup
of AutA with fixed-point subalgebra C. Then there is a unique function θ : A → L∞(C) such that

(i) θ is additive, non-negative and order-continuous;
(ii) [[θa > 0]] = upr(a,C) for every a ∈ A; in particular, θa = 0 iff a = 0;
(iii) θ1 = χ1;
(iv) θ(a ∩ c) = θa× χc for every a ∈ A, c ∈ C; in particular, θc = χc for every c ∈ C;
(v) If a, b ∈ A are G-τ -equidecomposable, then θa = θb; in particular, θ is G-invariant.

395O Theorem Let A be a Dedekind complete Boolean algebra, not {0}, and G a fully non-paradoxical
subgroup of AutA. Then there is a G-invariant additive functional ν : A → [0, 1] such that ν1 = 1.

395P Theorem Let A be a Dedekind complete Boolean algebra and G a fully non-paradoxical subgroup
of AutA with fixed-point subalgebra C. Then the following are equiveridical:

(i) A is a measurable algebra;
(ii) C is a measurable algebra;
(iii) there is a strictly positive G-invariant countably additive real-valued functional on A.
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395Q Corollary: Kawada’s theorem Let A be a Dedekind complete Boolean algebra such that AutA
has a subgroup which is ergodic and fully non-paradoxical. Then A is measurable.

395R Proposition If (A, µ̄) is a homogeneous totally finite measure algebra, Autµ̄A is ergodic.

395Z Problem Suppose that A is a Dedekind complete Boolean algebra, not {0}, and G a subgroup of
AutA such that whenever 〈ai〉i≤n is a finite partition of unity in A and we are given πi, π

′
i ∈ G for every

i ≤ n, then the elements π0a0, π
′
0a0, π1a1, π

′
1a1, . . . , π

′
nan are not all disjoint. Must there be a non-zero

non-negative G-invariant finitely additive functional θ on A?

Version of 15.8.08

396 The Hajian-Ito theorem

In the notes to the last section, I said that the argument there short-circuits if we are told that we are
dealing with a measurable algebra. The point is that in this case there is a much simpler criterion for the
existence of a G-invariant measure (396B(ii)), with a proof which is independent of §395 in all its non-trivial
parts, which makes it easy to prove that non-paradoxicality is sufficient as well as necessary.

396A Lemma Let (A, µ̄) be a localizable measure algebra.
(a) Let π ∈ AutA be a Boolean automorphism, and Tπ the corresponding Riesz homomorphism from

L0 = L0(A) to itself. Then there is a unique wπ ∈ (L0)+ such that
∫
wπ × v =

∫
Tπv for every v ∈ (L0)+.

(b) If φ, π ∈ AutA then wπφ = wφ × Tφ−1wπ.
(c) For each π ∈ AutA we have a norm-preserving isomorphism Uπ from L2 = L2(A, µ̄) to itself defined

by setting

Uπv = Tπv ×
√
wπ−1

for every v ∈ L2, and Uπφ = UπUφ for all π, φ ∈ AutA.

396B Theorem Let A be a measurable algebra and G a subgroup of AutA. Then the following are
equiveridical:

(i) there is a G-invariant functional ν̄ such that (A, ν̄) is a totally finite measure algebra;
(ii) whenever a ∈ A \ {0} and 〈πn〉n∈N is a sequence in G, 〈πna〉n∈N is not disjoint;
(iii) G is fully non-paradoxical.

c© 1997 D. H. Fremlin
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Version of 21.10.07

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

393B The association of a metric with a strictly positive submeasure, used in the 2003 and 2006 editions
of Volume 4, is now in 392H and 393H.

393C The result that a non-negative additive functional on a Boolean algebra can be factored through
a measure algebra, used in the 2003 and 2006 editions of Volume 4, is now in 392I.

393O The note on control measures for vector measures, referred to in the 2003 and 2006 editions of
Volume 4, is now in 394Q.

§394 Kawada’s theorem, referred to in the 2003 and 2006 editions of Volume 4, is now in §395.
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