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Chapter 39

Measurable algebras

In the final chapter of this volume, I present results connected with the following question: which algebras
can appear as the underlying Boolean algebras of measure algebras? Put in this form, there is a trivial answer
(391A). The proper question is rather: which algebras can appear as the underlying Boolean algebras of
semi-finite measure algebras? This is easily reducible to the question: which algebras can appear as the
underlying Boolean algebras of probability algebras? Now in one sense Maharam’s theorem (§332) gives us
the answer exactly: they are the countable simple products of the measure algebras of {0, 1}κ for cardinals
κ. But if we approach from another direction, things are more interesting. Probability algebras share a very
large number of very special properties. Can we find a selection of these properties which will be sufficient
to force an abstract Boolean algebra to be a probability algebra when endowed with a suitable functional?

No fully satisfying answer to this question is known. But in exploring the possibilities we encounter some
interesting and important ideas. In §391 I discuss algebras which have strictly positive additive real-valued
functionals; for such algebras, weak (σ,∞)-distributivity is necessary and sufficient for the existence of a
measure; so we are led to look for conditions sufficient to ensure that there is a strictly positive additive
functional. A slightly different approach lies through the concept of ‘submeasure’. Submeasures arise
naturally in the theories of topological Boolean algebras (393J), topological Riesz spaces (393K) and vector
measures (394P), and on any given algebra there is a strictly positive ‘uniformly exhaustive’ submeasure iff
there is a strictly positive additive functional; this is the Kalton-Roberts theorem (392F).

Submeasures in general are common, but correspondingly limited in what they can tell us about a
structure in the absence of further properties. Uniformly exhaustive submeasures are not far from additive
functionals. An intermediate class, the ‘exhaustive’ submeasures, has been intensively studied, originally in
the hope that they might lead to characterizations of measurable algebras, but more recently for their own
sake. Just as additive functionals lead to measurable algebras, totally finite exhaustive submeasures lead
to ‘Maharam algebras’ (§393). For many years it was not known whether every exhaustive submeasure was
uniformly exhaustive (equivalently, whether every Maharam algebra was a measurable algebra); an example
was eventually found by M.Talagrand, and is presented in §394.

In §395, I look at a characterization of measurable algebras in terms of the special properties which the
automorphism group of a measure algebra must have (Kawada’s theorem, 395Q). §396 complements the
previous section by looking briefly at the subgroups of an automorphism group AutA which can appear as
groups of measure-preserving automorphisms.

Version of 5.9.07

391 Kelley’s theorem

In this section I introduce the notion of ‘measurable algebra’ (391B), which will be the subject of the
whole chapter once the trivial construction of 391A has been dealt with. I show that for weakly (σ,∞)-
distributive algebras countable additivity can be left to look after itself, and all we need to find is a strictly
positive finitely additive functional (391D). I give Kelley’s criterion for the existence of such a functional
(391H-391J).

391A Proposition Let A be any Dedekind σ-complete Boolean algebra. Then there is a function
µ̄ : A → [0,∞] such that (A, µ̄) is a measure algebra.

proof Set µ̄0 = 0, µ̄a = ∞ for a ∈ A \ {0}.
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2 Measurable algebras 391B

391B Definition (a) I will call a Boolean algebra A measurable if there is a functional µ̄ : A → [0,∞[
such that (A, µ̄) is a totally finite measure algebra.

In this case, if µ̄ 6= 0, then it has a scalar multiple with total mass 1. So a Boolean algebra A is measurable
iff either it is {0} or there is a functional µ̄ such that (A, µ̄) is a probability algebra.

(b) I will call a Boolean algebra A chargeable if there is an additive functional ν : A → [0,∞[ which is
strictly positive, that is, νa > 0 for every non-zero a ∈ A.

Of course a measurable algebra is chargeable.

(c) I will call a Boolean algebra nowhere measurable if none of its non-zero principal ideals are
measurable algebras.

391C Proposition Let A be a Boolean algebra.
(a) The following are equiveridical: (i) there is a functional µ̄ : A → [0,∞] such that (A, µ̄) is a semi-finite

measure algebra; (ii) A is Dedekind σ-complete and {a : a ∈ A, Aa is measurable} is order-dense in A,
writing Aa for the principal ideal generated by a.

(b) The following are equiveridical: (i) there is a functional µ̄ : A → [0,∞] such that (A, µ̄) is a localizable
measure algebra; (ii) A is Dedekind complete and {a : a ∈ A, Aa is measurable} is order-dense in A.

proof (a) (i)⇒(ii): if (A, µ̄) is a semi-finite measure algebra, then Af = {a : µ̄a < ∞} is order-dense in A

and Aa is measurable for every a ∈ Af .
(ii)⇒(i): setting D = {a : a ∈ A, Aa is measurable}, D is order-dense, so there is a partition of unity

C ⊆ D (313K). For each c ∈ C, choose µ̄c such that (Ac, µ̄c) is a totally finite measure algebra. Set
µ̄a =

∑
c∈C µ̄c(a ∩ c) for every a ∈ A; then it is easy to check that (A, µ̄) is a semi-finite measure algebra.

(b) Follows immediately.

391D Theorem (Kantorovich Vulikh & Pinsker 50) Let A be a Boolean algebra. Then the
following are equiveridical:

(i) A is measurable;
(ii) A is Dedekind σ-complete, weakly (σ,∞)-distributive and chargeable.

proof (i)⇒(ii) Put the definition together with 322C(b)-(c) (for Dedekind completeness) and 322F (for
weak (σ,∞)-distributivity).

(ii)⇒(i) Given that (ii) is satisfied, let M be the L-space of bounded additive functionals on A, Mτ ⊆M
the band of completely additive functionals, and Pτ : M → Mτ the band projection (362Bd). Let ν : A →
[0,∞[ be a strictly positive additive functional, and set µ̄ = Pτ (ν). Then µ̄ is strictly positive. PPP If c ∈ A

is non-zero, there is an upwards-directed set A, with supremum c, such that µ̄c = supa∈A νc (362D); as ν
is strictly positive and A contains a non-zero element, µ̄c > 0. QQQ Of course µ̄ is countably additive, so
witnesses that A is measurable.

391E Thus we are led naturally to the question: which Boolean algebras carry strictly positive finitely

additive functionals? The Hahn-Banach theorem, suitably applied, gives some sort of answer to this question.
For the sake of applications later on, I give two general results on the existence of additive functionals related
to given functionals.

Theorem Let A be a Boolean algebra, not {0}, and φ : A → [0, 1] a functional. Then the following are
equiveridical:

(i) there is a finitely additive functional ν : A → [0, 1] such that ν1 = 1 and νa ≤ φa for every a ∈ A;
(ii) whenever 〈ai〉i∈I is a finite indexed family in A, m ∈ N and

∑
i∈I χai ≥ mχ1 in S = S(A) (definition:

361A), then
∑
i∈I φai ≥ m.

proof (a)(i)⇒(ii) If ν : A → [0, 1] is a finitely additive functional such that ν1 = 1 and νa ≤ φa for every
a ∈ A, let h : S → R be the positive linear functional corresponding to ν (361G). Now if 〈ai〉i∈I is a finite
family in A and

∑
i∈I χai ≥ mχ1, then
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391F Kelley’s theorem 3

∑

i∈I

φai ≥
∑

i∈I

νai =
∑

i∈I

h(χai)

= h(
∑

i∈I

χai) ≥ h(mχ1) = m.

As 〈ai〉i∈I is arbitrary, (ii) is true.

(b)(ii)⇒(i) Now suppose that φ satisfies (ii). For u ∈ S, set

p(u) = inf{∑n
i=0 αiφai : a0, . . . , an ∈ A, α0, . . . , αn ≥ 0,

∑n
i=0 αiχai ≥ u}.

Then it is easy to check that p(u+ v) ≤ p(u) + p(v) for all u, v ∈ S, and that p(αu) = αp(u) for all u ∈ S,
α ≥ 0. Also p(χ1) ≥ 1. PPP??? If not, there are a0, . . . , an ∈ A and α0, . . . , αn ≥ 0 such that χ1 ≤ ∑n

i=0 αiχai
but

∑n
i=0 αiφai < 1. Increasing each αi slightly if necessary, we may suppose that every αi is rational; let

m ≥ 1 and k0, . . . , kn ∈ N be such that αi = ki/m for each i ≤ n.
Set K = {(i, j) : 0 ≤ i ≤ n, 1 ≤ j ≤ ki}, and for (i, j) ∈ K set aij = ai. Then

∑
(i,j)∈K χaij =

∑n
i=0 kiχai = m

∑n
i=0 αiχai ≥ mχ1,

but
∑

(i,j)∈K φaij =
∑n
i=0 kiφai = m

∑n
i=0 αiφai < m,

which is supposed to be impossible. XXXQQQ
By the Hahn-Banach theorem, in the form 3A5Aa, there is a linear functional h : S → R such that

h(χ1) = p(χ1) ≥ 1 and h(u) ≤ p(u) for every u ∈ S. In particular, h(χa) ≤ φb whenever a ⊆ b ∈ A. Set
νa = h(χa) for a ∈ A; then ν : A → [0,∞[ is an additive functional, ν1 ≥ 1 and νa ≤ φb whenever a ⊆ b
in A. We do not know whether ν is positive, but if we define ν+ as in 362Ab, we shall have a non-negative
additive functional such that

ν+a = supb⊆a νb ≤ φa

for every a ∈ A, and

1 ≤ ν1 ≤ ν+1 ≤ φ1 ≤ 1,

so ν+ witnesses that (i) is true.

391F Theorem Let A be a Boolean algebra, not {0}, and ψ : A → [0, 1] a functional, where A ⊆ A.
Then the following are equiveridical:

(i) there is a finitely additive functional ν : A → [0, 1] such that ν1 = 1 and νa ≥ ψa for every a ∈ A;
(ii) whenever 〈ai〉i∈I is a finite indexed family in A, there is a set J ⊆ I such that #(J) ≥ ∑

i∈I ψai and
infi∈J ai 6= 0.

Remark In (ii) here, we may have to interpret the infimum of the empty set in A as 1.

proof (a) We apply 391E to φ, where

φa = 1 − ψ(1 \ a) if a ∈ A and 1 \ a ∈ A,

= 1 for other a ∈ A.

(b) Suppose that (i) here is true of ψ. Then 391E(i) is true of φ. PPP Let ν : A → [0, 1] be an additive
functional such that ν1 = 1 and νa ≥ ψa for every a ∈ A. If a ∈ A and 1 \ a ∈ A, then

νa = 1 − ν(1 \ a) ≤ 1 − ψ(1 \ a) = φa;

for other a ∈ A, νa ≤ 1 = φa. QQQ

(c) Suppose that 391E(i) is true of φ. Then (i) here is true of ψ. PPP There is an additive functional
ν : A → [0, 1] such that ν1 = 1 and νa ≤ φa for every a ∈ A; in this case, for a ∈ A,

νa = 1 − ν(1 \ a) ≥ 1 − φ(1 \ a) = ψa. QQQ
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4 Measurable algebras 391F

(d) Suppose that (ii) here is true of ψ, and that 〈ai〉i∈I is a finite family in A such that
∑
i∈I χai ≥ mχ1,

while
∑
i∈I φai = β. Set K = {i : i ∈ I, 1 \ ai ∈ A}.

∑
i∈K ψ(1 \ ai) =

∑
i∈K(1 − φai) = #(K) −∑

i∈I φai + #(I \K) = #(I) − β,

so there is a set J ⊆ K such that #(J) ≥ #(I) − β and infi∈J(1 \ ai) = c 6= 0. Now c ∩ ai = 0 for i ∈ J , so

mχc ≤ ∑
i∈I χ(ai ∩ c) =

∑
i∈I\J χ(ai ∩ c) ≤ #(I \ J)χc

and m ≤ #(I) − #(J) ≤ β. As 〈ai〉i∈I is arbitrary, 391E(ii) is true of φ.

(e) Suppose that 391E(ii) is true of φ, and that 〈ai〉i∈I is a family in A. Set

β =
∑
i∈I φ(1 \ ai) = #(I) −∑

i∈I ψai

and let k be the least integer greater than β. Since
∑
i∈I φ(1 \ ai) < k,

∑
i∈I χ(1 \ ai) 6≥ kχ1, that is,∑

i∈I χai 6≤ (#(I) − k)χ1. But this means that there must be some J ⊆ I such that #(J) > #(I) − k and
infi∈J ai 6= 0. Now

∑
i∈I ψai = #(I) − β ≤ #(I) − (k − 1) ≤ #(J).

As 〈ai〉i∈I is arbitrary, (ii) here is true of ψ.

(f) Since we know that 391E(i)⇔391E(ii), we can conclude that (i) and (ii) here are equiveridical.

391G Corollary Let A be a Boolean algebra, B a subalgebra of A, and ν0 : B → R a non-negative
finitely additive functional. Then there is a non-negative finitely additive functional ν : A → R extending
ν0.

proof (a) Suppose first that ν01 = 1. Set ψb = ν0b for every b ∈ B. Then ψ must satisfy the condition (ii)
of 391F when regarded as a functional defined on a subset of B; but this means that it satisfies the same
condition when regarded as a functional defined on a subset of A. So there is a non-negative finitely additive
functional ν : A → R such that ν1 = 1 and νb ≥ ν0b for every b ∈ B. In this case

νb = 1 − ν(1 \ b) ≤ 1 − ν0(1 \ b) = ν0b ≤ νb

for every b ∈ B, so ν extends ν0.

(b) For the general case, if ν01 = 0 then ν0 must be the zero functional on B, so we can take ν to be the
zero functional on A; and if ν01 = γ > 0, we apply (a) to γ−1ν0.

391H Definition Let A be a Boolean algebra, and A ⊆ A \ {0} any non-empty set. The intersection
number of A is the largest δ ≥ 0 such that whenever 〈ai〉i∈I is a finite family in A, with I 6= ∅, there is a
J ⊆ I such that #(J) ≥ δ#(I) and infi∈J ai 6= 0.

Remarks (a) It is essential to note that in the definition here the 〈ai〉i∈I are indexed families, with
repetitions allowed; see 391Xi.

(b) I spoke perhaps rather glibly of ‘the largest δ such that . . . ’; you may prefer to write

δ = inf{sup∅6=J⊆{0,... ,n},infj∈J aj 6=0
#(J)

n+1
: a0, . . . , an ∈ A}.

391I Proposition Let A be a Boolean algebra and A ⊆ A \ {0} any non-empty set. Write C for the set
of non-negative finitely additive functionals ν : A → [0, 1] such that ν1 = 1. Then the intersection number
of A is precisely maxν∈C infa∈A νa.

proof Write δ for the intersection number of A, and δ′ for supν∈C infa∈A νa.

(a) For any γ < δ′, we can find a ν ∈ C such that νa ≥ γ for every a ∈ A. So if we set ψa = γ for every
a ∈ A, ψ satisfies condition (i) of 391F. But this means that if 〈ai〉i∈I is any finite family in A, there must
be a J ⊆ I such that infi∈J ai 6= 0 and #(J) ≥ γ#(I). Accordingly γ ≤ δ; as γ is arbitrary, δ′ ≤ δ.

(b) Define ψ : A → [0, 1] by setting ψa = δ for every a ∈ A. If 〈ai〉i∈I is a finite indexed family in A,
there is a J ⊆ I such that #(J) ≥ δ#(I) and infi∈J ai 6= 0; but δ#(I) =

∑
i∈I ψai, so this means that

condition (ii) of 391F is satisfied. So there is a ν ∈ C such that νa ≥ δ for every a ∈ A; and ν witnesses not
only that δ′ ≥ δ, but that the supremum is a maximum.

Measure Theory



391Xe Kelley’s theorem 5

391J Theorem Let A be a Boolean algebra. Then the following are equiveridical:
(i) A is chargeable;
(ii) either A = {0} or A\{0} is expressible as a countable union of sets with non-zero intersection numbers.

proof (i)⇒(ii) If there is a strictly positive finitely additive functional ν on A, and A 6= {0}, set An =
{a : νa ≥ 2−nν1} for every n ∈ N; then (applying 391I to the functional 1

ν1ν) we see that every An has
intersection number at least 2−n, while A \ {0} =

⋃
n∈N

An because ν is strictly positive, so (ii) is satisfied.

(ii)⇒(i) If A \ {0} is expressible as
⋃
n∈N

An, where each An has intersection number δn > 0, then for
each n choose a finitely additive functional νn on A such that νn1 = 1 and νna ≥ δn for every a ∈ An.
Setting νa =

∑∞
n=0 2−nνna for every a ∈ A, ν is a strictly positive additive functional on A, and (i) is true.

391K Corollary Let A be a Boolean algebra. Then A is measurable iff it is Dedekind σ-complete and
weakly (σ,∞)-distributive and either A = {0} or A \ {0} is expressible as a countable union of sets with
non-zero intersection numbers.

proof Put 391D and 391J together.

391L When we come to study the structure of measurable algebras in later volumes, it will be convenient
to have the following facts on the table.

Proposition (a) If A is a measurable algebra, all its principal ideals and σ-subalgebras are, in themselves,
measurable algebras.

(b) The simple product of countably many measurable algebras is a measurable algebra.
(c) If A is a measurable algebra, B is a Boolean algebra and π : A → B is a surjective order-continuous

Boolean homomorphism, then B is a measurable algebra, isomorphic to a principal ideal of A.

proof (a) Use 322H and 322Na.

(b) Let 〈Ai〉i∈I be a countable family of measurable algebras with simple product A. For each i ∈ I let µ̄i
be such that (Ai, µ̄i) is a measure algebra and µ̄i1Ai

≤ 1. Let f : I → N be an injection. For a = 〈ai〉i∈I ∈ A,
set µ̄a =

∑
i∈I 2−f(i)µ̄iai. Then (A, µ̄) is a measure algebra (see 322La); as µ̄1A ≤ 2, A is a measurable

algebra.

(c) Consider the kernel I = {a : πa = 0} of π. By 313Pa, I is order-closed. Because A is Dedekind
complete, c = sup I is defined in A; as I is upwards-directed, c ∈ I and I is the principal ideal generated by
c. Let A1\c be the principal ideal generated by 1 \ c. Then I ∩ A1\c = {0} so π↾A1\c is injective. We are
supposing that

B = {πa : a ∈ A} = {π(a ∩ c) ∪ π(a \ c) : a ∈ A} = {π(a \ c) : a ∈ A} = π[A1\c].

So π↾A1\c is an isomorphism between A1\c and B. But A1\c is a measurable algebra, by (a), so B is a
measurable algebra.

391X Basic exercises (a) Show that a chargeable Boolean algebra is ccc, so is Dedekind complete iff
it is Dedekind σ-complete.

(b) Show (i) that any subalgebra of a chargeable Boolean algebra is chargeable (ii) that a countable
simple product of chargeable Boolean algebras is chargeable (iii) that any free product of chargeable Boolean
algebras is chargeable.

(c)(i) Let A be a Boolean algebra with a chargeable order-dense subalgebra. Show that A is chargeable.
(ii) Show that the Dedekind completion of a chargeable Boolean algebra is chargeable.

(d)(i) Show that the algebra of open-and-closed subsets of {0, 1}I is chargeable for any set I. (ii) Show
that the regular open algebra of R is chargeable.

(e)(i) Show that any principal ideal of a chargeable Boolean algebra is chargeable. (ii) Let A be a
chargeable Boolean algebra and I an order-closed ideal of A. Show that A/I is chargeable.

D.H.Fremlin



6 Measurable algebras 391Xf

>>>(f) Show that a Boolean algebra is chargeable iff it is isomorphic to a subalgebra of a measurable
algebra. (Hint : 324O, 392H.)

(g) Let A be a Boolean algebra. Show that the following are equiveridical: (i) A is chargeable and weakly
(σ,∞)-distributive; (ii) there is a strictly positive countably additive functional on A; (iii) there is a strictly
positively completely additive functional on A.

(h) Explain how to use the Hahn-Banach theorem to prove 391G directly, without passing through 391F.
(Hint : S(B) can be regarded as a subspace of S(A).)

>>>(i) Take X = {0, 1, 2, 3}, A = PX, A = {{0, 1}, {0, 2}, {0, 3}, {1, 2, 3}}. Show that the intersection
number of A is 3

5 . (Hint : use 391I.) Show that if a0, . . . , an are distinct members of A then there is a set

J ⊆ {0, . . . , n}, with #(J) ≥ 2
3 (n+ 1), such that infj∈J aj 6= 0.

(j) Let A be a Boolean algebra. For non-empty A ⊆ A \ {0} write δ(A) for the intersection number of A.
Show that for any non-empty A ⊆ A \ {0}, δ(A) = inf{δ(I) : I is a non-empty finite subset of A}.

(k) Let A be a Boolean algebra, not {0}. For a0, . . . , an ∈ A set t(a0, . . . , an) = max{m : m ∈ N,
mχ1 ≤ ∑n

i=0 χai}. Let A ⊆ A be non-empty. Show that

sup{ 1

n+1
t(a0, . . . , an) : a0, . . . , an ∈ A}

= min{sup
a∈A

νa : ν is a non-negative additive functional on A, ν1 = 1}.

(This is the Kelley covering number of A.)

(l) Let A be a Boolean algebra. (i) Show that the following are equiveridical: (α) there is a functional µ̄
such that (A, µ̄) is a localizable measure algebra; (β) L∞(A) is a perfect Riesz space (definition: 356J). (ii)
Show that in this case A is a measurable algebra iff it is ccc.

391Y Further exercises (a) Show that in 391D and 391K we can replace ‘weakly (σ,∞)-distributive’
by ‘weakly σ-distributive’.

(b) Show that PN is chargeable but that the quotient algebra PN/[N]<ω is not ccc, therefore not charge-
able.

(c)(i) Show that if X is a separable topological space, then its regular open algebra is chargeable. (ii) Let
〈Xi〉i∈I be any family of topological spaces with chargeable regular open algebras. Show that their product
has a chargeable regular open algebra.

(d) Let µ be Lebesgue measure on [0, 1], and Σ its domain. Let A be a non-empty family of non-empty
subsets of X, with intersection number δ, and let W be the family of those sets W ∈ PX⊗̂Σ such that
W−1[{t}] ∈ A for every t ∈ [0, 1]. Set α = infW∈W supx∈X µW [{x}]. (i) Show that α ≤ δ. (ii) Give an
example in which α < δ.

(e) Let A be a Boolean algebra, B a subalgebra of A, U a linear space and ν0 : B → U an additive
functional. Show that there is an additive functional ν : A → U extending ν0. (Hint : 361F.)

391 Notes and comments By the standards of this volume, this is an easy section; I note that I have
hardly called on anything after Chapter 32, except for a reference to the construction S(A) in §361. I do
ask for a bit of functional analysis (the Hahn-Banach theorem) in 391E.

391J-391K are due to Kelley 59; condition (ii) of 391J is called Kelley’s criterion. It provides some
sort of answer to the question ‘which Boolean algebras carry strictly positive finitely additive functionals?’,
but leaves quite open the possibility that there is some more abstract criterion which is also necessary and
sufficient. It is indeed a non-trivial exercise to find any ccc Boolean algebra which does not carry a strictly
positive finitely additive functional. The first example published seems to have been that of Gaifman 64,
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392D Submeasures 7

which is described in Comfort & Negrepontis 82. But for the purposes of this book Gaifman’s example
has been superseded by Talagrand’s example, presented in §394.

Kelley’s criterion is a little unsatisfying. It is undoubtedly important (see 392F below), but at the same
time the structure of the criterion – a special sequence of subsets of A – is rather close to the structure of
the conclusion; after all, one is, or can be represented by, a function from A \ {0} to N, while the other is a
function from A to R. Also the actual intersection number of a family A ⊆ A \ {0} can be hard to calculate;
as often as not, the best method is to look at the additive functionals on A (see 391Xi).

Version of 11.2.08

392 Submeasures

In §391 I looked at what we can deduce if a Boolean algebra carries a strictly positive finitely additive
functional. There are important contexts in which we find ourselves with subadditive, rather than additive,
functionals, and these are what I wish to investigate here. It turns out that, once we have found the right
hypotheses, such functionals can also provide a criterion for measurability of an algebra (392G below). The
argument runs through a new idea, using a result in finite combinatorics (392D).

At the end of the section I include notes on metrics associated with submeasures (392H) and on products
of submeasures (392K).

392A Definition Let A be a Boolean algebra. A submeasure on A is a functional ν : A → [0,∞] such
that

ν0 = 0,
νa ≤ νb whenever a ⊆ b,
ν(a ∪ b) ≤ νa+ νb for all a, b ∈ A.

392B The following list mostly repeats ideas we have already used in the context of measures; but (b)
and (c) are new, and will be the basis of this section.

Definitions Let A be a Boolean algebra and ν : A → [0,∞] a submeasure.
(a) ν is strictly positive if νa > 0 for every a 6= 0.
(b) ν is exhaustive if limn→∞ νan = 0 for every disjoint sequence 〈an〉n∈N in A.
(c) ν is uniformly exhaustive if for every ǫ > 0 there is an n ∈ N such that there is no disjoint family

a0, . . . , an with νai ≥ ǫ for every i ≤ n.
(d) ν is totally finite if ν1 <∞.
(e) ν is unital if ν1 = 1.
(f) ν is atomless if whenever a ∈ A and νa > 0 there is a b ⊆ a such that νb > 0 and ν(a \ b) > 0.
(g) If ν ′ is another submeasure on A, then ν ′ is absolutely continuous with respect to ν if for every

ǫ > 0 there is a δ > 0 such that ν ′a ≤ ǫ whenever νa ≤ δ.

392C Proposition Let A be a Boolean algebra.
(a) If there is an exhaustive strictly positive submeasure on A, then A is ccc.
(b) A uniformly exhaustive submeasure on A is exhaustive.
(c) Any non-negative additive functional on A is a uniformly exhaustive submeasure.

proof These are all elementary. If ν : A → [0,∞] is an exhaustive strictly positive submeasure, and
〈ai〉i∈I is a disjoint family in A \ {0}, then {i : νai ≥ 2−n} must be finite for each n, so I is countable.
(Cf. 322G.) If ν : A → [0,∞] is a uniformly exhaustive submeasure and 〈an〉n∈N is disjoint in A, then
{i : νai ≥ 2−n} is finite for each n, so limi→∞ νai = 0. If ν : A → [0,∞[ is a non-negative additive
functional, it is a submeasure, by 326Ba and 326Bf. If ǫ > 0, then take n ≥ 1

ǫ
ν1; if a0, . . . , an are disjoint,

then
∑n
i=0 νai ≤ ν1, so mini≤n νai < ǫ.

392D Lemma Suppose that k, l, m ∈ N are such that 3 ≤ k ≤ l ≤ m and 18mk ≤ l2. Let L, M be
sets with l, m members respectively. Then there is a set R ⊆ M × L such that (i) each vertical section of

c© 2008 D. H. Fremlin
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8 Measurable algebras 392D

R has just three members (ii) #(R[E]) ≥ #(E) whenever E ∈ [M ]≤k; so that for every E ∈ [M ]≤k there is
an injective function f : E → L such that (x, f(x)) ∈ R for every x ∈ E.

Recall that [M ]≤k = {I : I ⊆M, #(I) ≤ k}, [M ]k = {I : I ⊆M, #(I) = k} (3A1J).

proof (a) We need to know that n! ≥ 3−nnn for every n ∈ N; this is immediate from the inequality
∑n
i=2 ln i ≥

∫ n
1

lnx dx = n lnn− n+ 1 for every n ≥ 2.

(b) Let Ω be the set of those R ⊆M ×L such that each vertical section of R has just three members, so
that

#(Ω) = #([L]3)m =
( l!

3!(l−3)!

)m
.

Let us regard Ω as a probability space with the uniform probability.
If F ∈ [L]n, where 3 ≤ n ≤ k, and x ∈M , then

Pr(R[{x}] ⊆ F ) =
#([F ]3)

#([L]3)

(because R[{x}] is a random member of [L]3)

=
n(n−1)(n−2)

l(l−1)(l−2)
≤ n3

l3

as n < l. So if E ∈ [M ]n and F ∈ [L]n, then

Pr(R[E] ⊆ F ) =
∏

x∈E

Pr(R[{x}] ⊆ F )

(because the sets R[{x}] are chosen independently)

≤ n3n

l3n
.

Accordingly

Pr(there is an E ⊆M such that #(R[E]) < #(E) ≤ k)

≤ Pr(there is a non-empty E ⊆M such that #(R[E]) ≤ #(E) ≤ k)

= Pr(there is an E ⊆M such that 3 ≤ #(R[E]) ≤ #(E) ≤ k)

(because if E 6= ∅ then #(R[E]) ≥ 3)

≤
k∑

n=3

∑

E∈[M ]n

∑

F∈[L]n

Pr(R[E] ⊆ F ) ≤
k∑

n=3

#([M ]n)#([L]n)
n3n

l3n

=

k∑

n=3

m!

n!(m−n)!

l!

n!(l−n)!

n3n

l3n
≤

k∑

n=3

mnlnn3n

n!n!l3n
≤

k∑

n=3

mnnn32n

l2n

(using (a))

=

k∑

n=3

(9mn

l2

)n ≤
k∑

n=3

1

2n
< 1.

There must therefore be some R ∈ Ω such that #(R[E]) ≥ #(E) whenever E ⊆M and #(E) ≤ k.

(c) If now E ∈ [M ]≤k, the restriction RE = R ∩ (E × L) has the property that #(RE [I]) ≥ #(I) for
every I ⊆ E. By Hall’s Marriage Lemma (3A1K) there is an injective function f : E → L such that
(x, f(x)) ∈ RE ⊆ R for every x ∈ E.

Remark Of course this argument can be widely generalized; see references in Kalton & Roberts 83.

Measure Theory



392E Submeasures 9

392E Lemma Let A be a Boolean algebra and ν : A → [0,∞] a uniformly exhaustive submeasure. Then
for any ǫ ∈ ]0, ν1] the set A = {a : νa ≥ ǫ} has intersection number greater than 0.

proof (a) To begin with (down to the end of (d) below), suppose that ν1 = 1. Because ν is uniformly
exhaustive, there is an r ≥ 1 such that whenever 〈ci〉i∈I is a disjoint family in A then #({i : νci >

1
5ǫ}) ≤ r,

so that
∑
i∈I νci ≤ r + 1

5ǫ#(I). Set δ = ǫ/5r, η = 1
74δ

2, so that

δ − η ≥ 1
18 (δ − η)2 ≥ 1

18 (δ2 − 2η) = 4η.

(b) Let 〈ai〉i∈I be a non-empty finite family in A. Let m be any multiple of #(I) greater than or equal
to 1/η. Then there are integers k, l such that

3η ≤ k

m
≤ 4η ≤ 1

18
(δ − η)2, δ − η ≤ l

m
≤ δ,

in which case

3 ≤ k ≤ l ≤ m, 18mk ≤ m2(δ − η)2 ≤ l2.

(c) Take a set M of the form I × S where #(S) = m/#(I), so that #(M) = m. For x = (i, s) ∈ M set
dx = ai. Let L be a set with l members. By 392D, there is a set R ⊆M ×L such that every vertical section
of R has just three members and whenever E ∈ [M ]≤k there is an injective function fE : E → L such that
(x, fE(x)) ∈ R for every x ∈ E.

For E ⊆M set

bE = infx∈E dx \ supx∈M\E dx,

so that 〈bE〉E⊆M is a partition of unity in A. For x ∈M and j ∈ L set

cxj = sup{bE : x ∈ E ∈ [M ]≤k, fE(x) = j}.

If x, y are distinct members of M and j ∈ L then

cxj ∩ cyj = sup{bE : x, y ∈ E ∈ [M ]≤k, fE(x) = fE(y) = j} = 0,

because every fE is injective. Set

mj = #({x : x ∈M, cxj 6= 0})

for each j ∈ L. Note that cxj = 0 if (x, j) /∈ R, so
∑
j∈Lmj ≤ #(R) = 3m.

We have
∑
x∈M νcxj ≤ r +

1

5
ǫmj

for each j, by the choice of r; so

∑

x∈M,j∈L

νcxj ≤ rl +
1

5
ǫ
∑

j∈L

mj ≤ rl +
3

5
mǫ

≤ (rδ +
3

5
ǫ)m =

4

5
ǫm < ǫm

by the choice of l and δ. There must therefore be some x ∈M such that

ν(supj∈L cxj) ≤
∑
j∈L νcxj < ǫ ≤ νdx,

and dx cannot be included in

supj∈L cxj = sup{bE : x ∈ E ∈ [M ]≤k}.

But as sup{bE : x ∈ E ⊆ M} is just dx, there must be an E ⊆ M , with cardinal greater than k, such that
bE 6= 0.

Recall now that M = I × S, and that

k ≥ 3ηm = 3η#(I)#(S).

The set J = {i : ∃ s, (i, s) ∈ E} must therefore have more than 3η#(I) members, since E ⊆ J ×S. But also
d(i,s) = ai for each (i, s) ∈ E, so that infi∈J ai ⊇ bE 6= 0.

D.H.Fremlin



10 Measurable algebras 392E

(d) As 〈ai〉i∈I is arbitrary, the intersection number of A is at least 3η > 0.

(e) This completes the proof in the case in which ν1 = 1. If ν1 = 0 the result is vacuous. If ν1 > 0,

set ν′a =
min(νa,1)

min(ν1,1)
for each a; then it is easy to check that ν′ is a uniformly exhaustive submeasure with

ν′1 = 1, and

{a : νa ≥ ǫ} ⊆ {a : ν′a ≥ min(ǫ,1)

min(ν1,1)
}

has non-zero intersection number for any ǫ ∈ ]0, ν1]. So the result is true in the generality stated.

392F Theorem Let A be a Boolean algebra with a strictly positive uniformly exhaustive submeasure.
Then A is chargeable, that is, has a strictly positive finitely additive functional.

proof If A = {0} this is trivial. Otherwise, let ν : A → [0,∞] be a strictly positive uniformly exhaustive
submeasure. For each n, An = {a : νa ≥ min(2−n, ν1)} has intersection number greater than 0, and⋃
n∈N

An = A \ {0} because ν is strictly positive; so A has a strictly positive finitely additive functional, by
Kelley’s theorem (391J).

392G Corollary Let A be a Boolean algebra. Then it is measurable iff it is weakly (σ,∞)-distributive
and Dedekind σ-complete and has a strictly positive uniformly exhaustive submeasure.

proof Put 391D and 392F together.

392H This completes the main work of this section. However it will be convenient later to have some
more facts available which belong to the same group of ideas.

Metrics from submeasures: Proposition Let A be a Boolean algebra and ν a strictly positive totally
finite submeasure on A.

(a) We have a metric ρ on A defined by the formula

ρ(a, b) = ν(a△ b)

for all a, b ∈ A.
(b) The Boolean operations ∪ , ∩ , △ , \ and the function ν : A → R are all uniformly continuous for ρ.

(c) The metric space completion (Â, ρ̂) of (A, ρ) is a Boolean algebra under the natural continuous

extensions of the Boolean operations, and ν has a unique continuous extension ν̂ to Â which is again a
strictly positive submeasure.

(d) If ν is additive, then (Â, ν̂) is a totally finite measure algebra.

proof (a)-(b) This is just a generalization of 323A-323B; essentially the same formulae can be used. For
the triangle inequality for ρ, we have a△ c ⊆ (a△ b) ∪ (b△ c), so

ρ(a, c) = ν(a△ c) ≤ ν(a△ b) + ν(b△ c) = ρ(a, b) + ρ(b, c).

For the uniform continuity of the Boolean operations, we have

(b ⋆ c) △ (b′ ⋆ c′) ⊆ (b△ b′) ∪ (c△ c′)

so that

ρ(b ⋆ c, b′ ⋆ c′) ≤ ρ(b, b′) + ρ(c, c′)

for each of the operations ⋆ = ∪ , ∩ , \ and △ and all b, c, b′, c′ ∈ A. For the uniform continuity of the
function ν itself, we have

νb ≤ νc+ ν(b \ c) ≤ νc+ ρ(b, c),

so that |νb− νc| ≤ ρ(b, c).

(c) A×A is a dense subset of Â× Â, so the Boolean operations on A, regarded as uniformly continuous

functions from A×A to A ⊆ Â, have unique extensions to continuous binary operations on Â (3A4G). If we
look at
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392J Submeasures 11

A = {(a, b, c) : a△ (b△ c) = (a△ b) △ c},

this is a closed subset of Â × Â × Â, because the maps (a, b, c) 7→ a△ (b△ c), (a, b, c) 7→ (a△ b) △ c are

continuous and the topology of Â is Hausdorff; since A includes the dense set A× A× A, it is the whole of

Â× Â× Â, that is, a△ (b△ c) = (a△ b) △ c for all a, b, c ∈ Â. All the other identities we need to show that

Â is a Boolean algebra can be confirmed by the same method. Of course A is now a subalgebra of Â.

Because ν : A → [0,∞[ is uniformly continuous, it has a unique continuous extension ν̂ : Â → [0,∞[. We
have

ν̂0 = 0, ν̂a ≤ ν̂(a ∪ b) ≤ ν̂a+ ν̂b, ν̂a = ρ̂(a, 0)

for every a, b ∈ A and therefore for every a, b ∈ Â, so ν̂ is a submeasure on Â, and

ν̂a = 0 =⇒ ρ̂(a, 0) = 0 =⇒ a = 0,

so ν̂ is strictly positive.

(d) We have ν(a ∪ b) + ν(a ∩ b) = νa + νb for all a, b ∈ A; because all the operations are continuous,

ν̂(a ∪ b) + ν̂(a ∩ b) = ν̂a + ν̂b for all a, b ∈ Â. In particular, since ν̂0 = 0, ν̂ is additive. Next, if 〈an〉n∈N

is a non-decreasing sequence in Â, ρ̂(am △ an) = |ν̂am − ν̂an| for all m, n ∈ N, and 〈an〉n∈N is ρ̂-Cauchy,

therefore convergent to some a ∈ Â. Since

a ∩ an = limm→∞ am ∩ an = an

for each n, a ⊇ an for every n. If b ∈ Â is any upper bound for {an : n ∈ N}, then

b ∩ a = limn→∞ b ∩ an = limn→∞ an = a

and b ⊇ a; thus a is the least upper bound of {an : n ∈ N}.

So, first, if 〈bn〉n∈N is any sequence in Â, and we set an = supi≤n bi for each n, supn∈N an is defined and

must be equal to supn∈N bn; accordingly Â is Dedekind σ-complete. Next, if 〈bn〉n∈N is a disjoint sequence

in Â, and again we set an = supi≤n bi for each n, a = supn∈N an = supn∈N bn, we shall have

ν̂a = limn→∞ ν̂an = limn→∞

∑n
i=0 ν̂bi =

∑∞
n=0 ν̂bn;

which means that ν̂ is countably additive, and (Â, ν̂) is a measure algebra.

392I Corollary Let A be a Boolean algebra and ν a non-negative additive functional on A. Then there
are a totally finite measure algebra (C, µ̄) and a Boolean homomorphism π : A → C such that νa = µ̄(πa)
for every a ∈ A.

proof Set I = {a : νa = 0}; then I ⊳ A, so we can form the quotient algebra B = A/I (312L); let
π : A → B be the canonical map. As in part (b) of the proof of 321H, we have an additive functional
µ : B → [0,∞[ such that µ(πa) = νa for every a ∈ A, and (as in 321H) µ is strictly positive. Take (C, µ̄) to

be (B̂, µ̂) as in 392Hd, so that (C, µ̄) is a totally finite measure algebra. If we now think of π as a map from
A to C, it will still be a Boolean homomorphism, and

νa = µ(πa) = µ̄(πa)

for every a ∈ A.

392J Proposition Let A be a Boolean algebra, ν an exhaustive submeasure on A, and 〈an〉n∈N a sequence
in A such that infn∈N νan > 0. Then there is an infinite I ⊆ N such that ν(infi∈I∩n ai) > 0 for every n ∈ N.

Remark In the formula I ∩ n I am identifying n with the set of its predecessors, as in 3A1H.

proof For finite J ⊆ N set bJ = infi∈J ai. Let J be the family of those J ∈ [N]<ω such that lim supn→∞ ν(an ∩ bJ) >
0.

??? Suppose, if possible, that there is no strictly increasing sequence in J . Then J must have a maximal
element J say. Set a′n = an ∩ bJ for n ∈ N and δ = lim supn→∞ νa′n > 0. For any n ∈ N \ J , J ∪ {n} /∈ J so

limm→∞ a′m ∩ a′n = limm→∞ am ∩ bJ∪{n} = 0.
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12 Measurable algebras 392J

We can therefore choose inductively a sequence 〈kn〉n∈N such that

kn > sup J , νa′kn ≥ 3

4
δ, ν(a′kn ∩ a′ki) ≤ 2−i−2δ for every i < n

for each n ∈ N. Now set bn = akn \ supi<n aki for each n. Then 〈bn〉n∈N is disjoint. Also

3

4
δ ≤ νakn ≤ νbn +

∑n−1
i=0 ν(akn ∩ aki) ≤ νbn +

∑n−1
i=0 2−i−2δ ≤ νbn +

1

2
δ

and νbn ≥ 1
4δ for every n; which is impossible. XXX

There must therefore be a strictly increasing sequence 〈Jn〉n∈N in J . Set I =
⋃
n∈N

Jn. If n ∈ N, there
is an m ∈ N such that I ∩ n ⊆ Jm and ν(infi∈I∩n ai) ≥ νbJm > 0. So we have an appropriate I.

*392K Products of submeasures There seems to be no fully satisfying general construction for prod-
ucts of submeasures. However the following method has some interesting features.

(a) Let A and B be Boolean algebras with submeasures µ, ν respectively. On the free product A ⊗ B

(§315), we have a functional µ⋉ ν defined by saying that whenever c ∈ A⊗B is of the form supi∈I ai ⊗ bi
where 〈ai〉i∈I is a finite partition of unity in A, then

(µ⋉ ν)(c) = min
J⊆I

max({µ(sup
i∈J

ai)} ∪ {νbi : i ∈ I \ J})

= min{ǫ : ǫ ∈ [0,∞], µ(sup{ai : i ∈ I, νbi > ǫ}) ≤ ǫ}.
PPP Every c ∈ A ⊗B can be expressed in this form (315Oa). Of course this can be done in many different
ways. But if c = supj∈J a

′
j ⊗ b′j is another expression of the same kind, then bi = b′j whenever ai ∩ a

′
j 6= 0.

So

sup{ai : i ∈ I, νbi > ǫ} = sup{ai ∩ a′j : i ∈ I, j ∈ J, ai ∩ a
′
j 6= 0, νbi > ǫ}

= sup{ai ∩ a′j : i ∈ I, j ∈ J, ai ∩ a
′
j 6= 0, νb′j > ǫ}

= sup{a′j : j ∈ J, νb′j > ǫ}
for any ǫ, and the two calculations for µ⋉ ν give the same result. QQQ

Note that (µ⋉ ν)(a⊗ b) = min(µa, νb) for all a ∈ A and b ∈ B.

(b) In the context of (a), µ⋉ ν is a submeasure.
PPP By definition, (µ⋉ ν)c ≥ 0 for every c ∈ A⊗B; and if c = 0 then c = 1 ⊗ 0 and (µ⋉ ν)c = 0.
If c, c′ are two members of A⊗B, express them in the forms c = supi∈I ai ⊗ bi and c′ = supj∈J a

′
j ⊗ b′j

where 〈ai〉i∈I and 〈a′j〉j∈J are partitions of unity in A. Set K = {(i, j) : ai ∩ a
′
j 6= 0} ⊆ I × J , a′′ij = ai ∩ a

′
j

for (i, j) ∈ K; then 〈a′′ij〉(i,j)∈K is a partition of unity in A, c = sup(i,j)∈K a
′′
ij⊗bi and c′ = sup(i,j)∈K a

′′
ij⊗b′j .

Set α = (µ ⋉ ν)c, β = (µ ⋉ ν)c′, L = {(i, j) : (i, j) ∈ K, νbi > α}, L′ = {(i, j) : (i, j) ∈ K, νb′j > β},
e = sup{aij : (i, j) ∈ L} and e′ = sup{aij : (i, j) ∈ L′}; then µe ≤ α and µe′ ≤ β. So µ(e ∪ e′) ≤ α+ β; but
e ∪ e′ = sup(i,j)∈L∪L′ a′′ij and

ν(bi ∪ b
′
j) ≤ νbi + νb′j ≤ α+ β

for all (i, j) ∈ K \ (L ∪ L′). So (µ⋉ ν)(c ∪ c′) ≤ α+ β.
If c ⊆ c′, then bi ⊆ b′j for every (i, j) ∈ K. So νbi ≤ β for every (i, j) ∈ K \ L′ and (µ⋉ ν)c ≤ β.
Thus µ⋉ ν is subadditive and order-preserving and is a submeasure. QQQ

(c) I note that only in exceptional cases will µ⋉ ν be matched with ν ⋉ µ by the canonical isomorphism
between A ⊗B and B ⊗ A; this product is not ‘commutative’. (See 392Yc.) It is however ‘associative’, in
the following sense. Let (A1, µ1), (A2, µ2), (A3, µ3) be Boolean algebras endowed with submeasures. Set

λ12 = µ1 ⋉ µ2, λ(12)3 = λ12 ⋉ µ3, λ23 = µ2 ⋉ µ3, λ1(23) = µ1 ⋉ λ23.

Then the canonical isomorphisms between (A1⊗A2)⊗A3, A1⊗A2⊗A3 and A1⊗ (A2⊗A3) (315L) identify
λ(12)3 with λ1(23).

PPP Take any d ∈ A1 ⊗ A2 ⊗ A3. Express d as supi∈I ai ⊗ ei where 〈ai〉i∈I is a partition of unity in A1

and ei ∈ A2 ⊗ A3 for each i; express each ei as supj∈Ji bij ⊗ cij where 〈bij〉j∈Ji is a partition of unity in
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A2 and cij ∈ A3 for i ∈ I, j ∈ Ji. In this case, 〈ai ⊗ bij〉i∈I,j∈Ji is a partition of unity in A1 ⊗ A2 and
d = supi∈I,j∈Ji ai ⊗ bij ⊗ cij .

Let ǫ > 0. For i ∈ I, set J ′
i = {j : j ∈ Ji, µ3cij > ǫ}, e′i = supj∈J ′

i
bij . Then λ23(supj∈Ji bij ⊗ cij) ≤ ǫ

iff µ2e
′
i ≤ ǫ. Set I ′ = {i : µ2e

′
i > ǫ}; then λ1(23)d ≤ ǫ iff µ1(supi∈I′ ai) ≤ ǫ. From the other direction, set

f = sup{ai ⊗ bij : i ∈ I, j ∈ J ′
i}; then λ(12)3d ≤ ǫ iff λ12f ≤ ǫ. But f = supi∈I ai ⊗ e′i, so λ12f ≤ ǫ iff

µ1(supi∈I′ ai) ≤ ǫ.

As ǫ and d are arbitrary, λ(12)3 = λ1(23), as claimed. QQQ

(d) If µ, µ′ are submeasures on A, ν and ν ′ are submeasures on B, µ is absolutely continuous with respect
to µ′ and ν is absolutely continuous with respect to ν ′, then µ⋉ ν is absolutely continuous with respect to
µ′ ⊗ ν ′. PPP For any ǫ > 0 there is a δ > 0 such that µa ≤ ǫ whenever µ′a ≤ δ and νb ≤ ǫ whenever ν ′b ≤ δ.
If now c ∈ A⊗B and (µ′

⋉ ν ′)(c) ≤ δ, we have an expression c = supi∈I ai ⊗ bi and a set J ⊆ I such that
〈ai〉i∈I is a partition of unity, µ′(supi∈J ai) ≤ δ and ν ′bi ≤ δ for every i ∈ I \ J ; so µ(supi∈J ai) ≤ ǫ, νbi ≤ ǫ
for every i ∈ I \ J and (µ⋉ ν)(c) ≤ ǫ. QQQ

(e) If µ and ν are exhaustive, so is µ⋉ ν. PPP Let 〈cn〉n∈N be a sequence in A⊗B such that (µ⋉ ν)cn >
ǫ > 0 for every n. For each n, express cn as supi∈In ani ⊗ bni where 〈ani〉i∈In is a partition of unity; set
I ′n = {i : i ∈ In, νbni > ǫ}, an = supi∈I′n ani; then µan > ǫ. By 392J, there is an infinite J ⊆ N such that

infi∈J∩n ai 6= 0 for every n ∈ N. Let Z be the Stone space of A, and write â ⊆ Z for the open-and-closed
set corresponding to a ∈ A; then there is a z ∈ ⋂

n∈J ân. For every n ∈ J there is an in ∈ I ′n such that
z ∈ ân,in . But now observe that νbn,in > ǫ for every n ∈ J , so there must be distinct m, n ∈ J such that
bm,im ∩ bn,in 6= 0; as am,im ∩ an,in is also non-zero, cm ∩ cn 6= 0. As 〈cn〉n∈N is arbitrary, µ⋉ ν is exhaustive.
QQQ

(f) We can extend the construction to infinite products, as follows. Let I be a totally ordered set and
〈(Ai, µi)〉i∈I a family of Boolean algebras endowed with unital submeasures. For a finite set J = {i0, . . . , in}
where i0 < . . . < in in I, let λJ be the product submeasure (.(µi0 ⋉ µi1) ⋉ . . . ) ⋉ µin on CJ =

⊗
j∈J Aj ; for

definiteness, on C∅ = {0, 1} take λ∅ to be the unital submeasure, while C{i} = Ai and λ{i} = µi for each i ∈ I.
Using (c) repeatedly, we see that if J , K ∈ [I]<ω and j < k for every j ∈ J , k ∈ K, then the identification
of CJ∪K with CJ ⊗ CK (315L) matches λJ∪K with λJ ⋉ λK . Moreover, if K ∈ [I]<ω and J is any subset of
K (not necessarily an initial segment) and εJK : CJ → CK is the canonical embedding corresponding to the
identification of CK with CJ ⊗ CK\J , then λJ = λKεJK ; this also is an easy induction on #(K). What this
means is that for any subset M of I we have a submeasure λM on CM =

⋃{εJMCJ : J ∈ [M ]<ω}, being
the unique functional such that λMεJM = λJ for every J ∈ [M ]<ω. Finally, if L, M are subsets of I with
l < m for every l ∈ L and m ∈M , then λL∪M can be identified with λL ⋉ λM .

(g) I should perhaps have remarked already that if µ and ν, in (a), are additive and unital, then we
have an additive function λ′ on A ⊗ B such that λ′(a ⊗ b) = µa · νb for every a ∈ A and b ∈ B (326E).
Now, setting λ = µ ⋉ ν, each of λ, λ′ is absolutely continuous with respect to the other. PPP If c ∈ A ⊗B,
express c as supi∈I ai ⊗ bi where 〈ai〉i∈I is a finite partition of unity. Then µ(sup{ai : νbi > λc}) ≤ λc, so

λ′c =
∑
i∈I µai · νbi is at most 2λc. On the other hand, µ(sup{ai : νbi >

√
λ′c}) ≤

√
λ′c, so λc ≤

√
λ′c. QQQ

392X Basic exercises (a) Show that the first two clauses of the definition 392A can be replaced by
‘νa ≤ ν(a ∪ b) ≤ νa+ νb whenever a ∩ b = 0’.

(b) Let A be any Boolean algebra and ν a finite-valued submeasure on A. (i) Show that ν is order-
continuous iff whenever A ⊆ A is non-empty, downwards-directed and has infimum 0, then infa∈A νa = 0.
(ii) Show that in this case ν is exhaustive. (Hint : if 〈an〉n∈N is disjoint, then

⋃
n∈N

{b : b ⊇ ai for every i ≥ n}
has infimum 0.)

(c) Let A be a Boolean algebra and µ, ν two strictly positive submeasures on A, each of which is absolutely
continuous with respect to the other. Show that they induce uniformly equivalent metrics on A (392H), so
that both give the same metric completion of A.
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14 Measurable algebras 392Xd

(d) Let A, B be Boolean algebras with uniformly exhaustive submeasures µ, ν respectively. Show that
µ⋉ ν is uniformly exhaustive.

392Y Further exercises (a) Let A be a Boolean algebra and λ : A → [0, 1] a functional such that
λ0 = 0 and λa ≤ λ(a ∪ b) ≤ 2 max(λa, λb) for all a, b ∈ A. Show that there is a submeasure ν on A such
that 1

2λ ≤ ν ≤ λ.

(b) (T.Jech) Show that a Boolean algebra A is chargeable iff there are sequences 〈An〉n∈N and 〈kn〉n∈N

such that (α)
⋃
n∈N

An = A \ {0} (β) whenever a, b ∈ A, n ∈ N and a ∪ b ∈ An then at least one of a, b
belongs to An+1 (γ) if n ∈ N then kn ∈ N and if a0, . . . , akn ∈ A are disjoint then some aj does not belong
to An.

(c) I will say that a submeasure ν on a Boolean algebra A is properly atomless if for every ǫ > 0 there
is a finite partition A of unity in A such that νa ≤ ǫ for every a ∈ A. (Compare 326F.) (i) Show that if A
and B are Boolean algebras with submeasures µ, ν respectively, we have a functional µ⋊ν : A⊗B → [0,∞]
defined by saying that

(µ⋊ ν)(supi∈I ai ⊗ bi) = minJ⊆I max({ν(supi∈J bi)} ∪ {µai : i ∈ I \ J})

whenever 〈bi〉i∈I is a finite partition of unity in B and ai ∈ A for each i ∈ I. (ii) Show that if µ is a non-zero
properly atomless submeasure, ν is a submeasure, and µ⋉ ν is absolutely continuous with respect to µ⋊ ν,
then ν is uniformly exhaustive.

(d) (See 328H.) Let (I,≤) be a non-empty upwards-directed partially ordered set, and 〈(Ai, µ̄i)〉i∈I a
family of probability algebras; suppose that πji : Ai → Aj is a measure-preserving Boolean homomorphism
whenever i ≤ j, and that πki = πkjπji whenever i ≤ j ≤ k. (i) Let F be the filter

{A : A ⊆ I, there is some i ∈ I such that j ∈ A whenever i ≤ j},

and set ν〈ai〉i∈I = lim supi→F µ̄iai for 〈ai〉i∈I ∈
∏
i∈I Ai. Show that ν is a submeasure on A =

∏
i∈I Ai. (ii)

Let J be the ideal {d : νd = 0} of A, and D the quotient algebra A/J . Show that we have a strictly positive
unital submeasure ν̄ on D such that ν̄d• = νd for every d ∈ A, and that D is complete under the metric
defined by ν̄. (iii) Show that for each i ∈ I we have a Boolean homomorphism πi : Ai → D defined by setting
πia = 〈aj〉•j∈I , where aj = πjia if j ≥ i, 0Aj

otherwise, and that ν̄πi = µ̄i. Show that πi = πjφji whenever

i ≤ j. (iv) Show that D0 =
⋃
i∈I πi[Ai] is a subalgebra of D, and that ν̄↾D0 is additive. (v) Let C be the

closure of D0 in D, and set λ̄ = ν̄↾C. Show that (C, λ̄) is a probability algebra. (vi) Now suppose that (B, ν̄)
is a probability algebra, and that for each i ∈ I we are given a measure-preserving Boolean homomorphism
φi : Ai → B such that φi = φjπji whenever i ≤ j. Show that there is a unique measure-preserving Boolean
homomorphism φ : C → B such that φπi = φi for every i ∈ I.

(e) Let A be a Boolean algebra and ν : A → [0,∞] a submeasure. Show that the following are equiverid-
ical: (i) ν is uniformly exhaustive; (ii) whenever 〈an〉n∈N is a sequence in A such that infn∈N νan > 0, there
is a set I ⊆ N, not of zero asymptotic density, such that ai ∩ aj 6= 0 for all i, j ∈ I; (iii) whenever 〈an〉n∈N

is a sequence in A such that infn∈N νan > 0, there is a set I ⊆ N, not of zero asymptotic density, such that
ν(infi∈I,i≤n ai) > 0 for every n ∈ N.

392 Notes and comments Much of the first part of this section is a matter of generalizing earlier argu-
ments. Thus 392C ought by now to be very easy, while 392Xb recalls the elementary theory of τ -additive
functionals.

The new ideas are in the combinatorics of 392D-392E. I have cast 392D in the form of an argument
in probability theory. Of course there is nothing here but simple counting, since the probability measure
simply puts the same mass on each point of Ω, and every statement of the form ‘Pr(R . . . ) ≤ . . . ’ is just
a matter of counting the elements R of Ω with the given property. But I think many of us find that the
probabilistic language makes the calculations more natural; in particular, we can use intuitions associated
with the notion of independence of events. Indeed I strongly recommend the method. It has been used to
very great effect in the last sixty years in a wide variety of combinatorial problems. 392F and 392G together
constitute the Kalton-Roberts theorem (Kalton & Roberts 83).
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Version of 11.5.08

393 Maharam submeasures

Continuing our exploration of variations on the idea of ‘measurable algebra’, we come to sequentially
order-continuous submeasures. These are associated with ‘Maharam algebras’ (393E), which share a great
many properties with measurable algebras; for instance, the existence of a standard topology defined by the
algebraic structure (393G). This topology is intimately connected with the order*-convergence of sequences
introduced in §367 (393L). We can indeed characterize Maharam algebras in terms of properties of the
order-sequential topology defined by this convergence (393Q).

393A Definition Let A be a Boolean algebra. A Maharam submeasure or continuous outer
measure on A is a totally finite submeasure ν : A → [0,∞[ such that limn→∞ νan = 0 whenever 〈an〉n∈N

is a non-increasing sequence in A with infimum 0.

393B Lemma Let A be a Boolean algebra and ν a Maharam submeasure on A.
(a) ν is sequentially order-continuous.
(b) ν is ‘countably subadditive’, that is, whenever 〈an〉n∈N is a sequence in A and a ∈ A is such that

a = supn∈N a ∩ an, then νa ≤ ∑∞
n=0 νan.

(c) If A is Dedekind σ-complete, then ν is exhaustive.

proof (a) (Of course ν is an order-preserving function, by the definition of ‘submeasure’; so we can apply the
ordinary definition of ‘sequentially order-continuous’ in 313Hb.) (i) If 〈an〉n∈N is a non-decreasing sequence in
A with supremum a, then 〈an \ a〉n∈N is a non-increasing sequence with infimum 0, so limn→∞ ν(an \ a) = 0;
but as

νan ≤ νa ≤ νan + ν(a \ an)

for every n, it follows that νa = limn→∞ νan. (ii) If 〈an〉n∈N is a non-increasing sequence in A with infimum
a, then

νa ≤ νan ≤ νa+ ν(an \ a) → νa

as n→ ∞.

(b) Set bn = supi≤n a ∩ ai; then νbn ≤ ∑n
i=0 νai for each n (inducing on n), so that

νa = limn→∞ νbn ≤ ∑∞
i=0 νai.

(c) If 〈an〉n∈N is a disjoint sequence in A, set bn = supi≥n ai for each n; then infn∈N bn = 0, so

lim supn→∞ νan ≤ limn→∞ νbn = 0.

393C Proposition Let A be a Dedekind σ-complete Boolean algebra and ν a strictly positive Maharam
submeasure on A. Then A is ccc, Dedekind complete and weakly (σ,∞)-distributive, and ν is order-
continuous.

proof By 393Bc, ν is exhaustive; by 392Ca, A is ccc; by 316Fa, A is Dedekind complete; by 316Fc and
393Ba, ν is order-continuous

Now suppose that we have a sequence 〈An〉n∈N of non-empty downwards-directed subsets of A, all with
infimum 0. Let B be the set

{b : b ∈ A, ∀ n ∈ N ∃ a ∈ An such that a ⊆ b}.

As ν is order-continuous, infa∈An
νa = 0 for each n. Given ǫ > 0, we can choose 〈an〉n∈N such that an ∈ An

and νan ≤ 2−nǫ for each n; now b = supn∈N an belongs to B and νb ≤ ∑∞
n=0 νan ≤ 2ǫ. Thus infb∈B νb = 0.

Since ν is strictly positive, inf B = 0. As 〈An〉n∈N is arbitrary, A is weakly (σ,∞)-distributive.

c© 2007 D. H. Fremlin
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16 Measurable algebras 393D

393D Theorem Let A be a Boolean algebra. Then it is measurable iff it is Dedekind σ-complete and
carries a uniformly exhaustive strictly positive Maharam submeasure.

proof If A is measurable, it surely satisfies the conditions, since any totally finite measure on A is also a
uniformly exhaustive strictly positive Maharam submeasure. If A satisfies the conditions, then it is weakly
(σ,∞)-distributive, by 393C, so 392G gives the result.

393E Maharam algebras (a) Definition A Maharam algebra is a Dedekind σ-complete Boolean
algebra A such that there is a strictly positive Maharam submeasure on A.

(b) Every measurable algebra is a Maharam algebra, while every Maharam algebra is ccc and weakly
(σ,∞)-distributive (393C), therefore Dedekind complete. A Maharam algebra A is measurable iff there is a
strictly positive uniformly exhaustive submeasure on A. (Put 393C and 392G together again.)

(c)(i) A principal ideal in a Maharam algebra is a Maharam algebra; an order-closed subalgebra of a
Maharam algebra is a Maharam algebra. PPP Let A be a Maharam algebra and B either a principal ideal of
A or an order-closed subalgebra of A. Because A is Dedekind complete, so is B (314Ea). Let ν : A → [0,∞[
be a strictly positive Maharam submeasure. Then ν↾B is a strictly positive Maharam submeasure on A, so
B is a Maharam algebra. QQQ

(ii) The simple product of a countable family of Maharam algebras is a Maharam algebra. PPP Let
〈Ai〉i∈I be a countable family of Maharam algebras and A its simple product. Then A is Dedekind complete
(315De). For each i ∈ I, let νi be a strictly positive Maharam submeasure on Ai. Let 〈ǫi〉i∈I be a family of
strictly positive real numbers such that

∑
i∈I ǫi is finite. Set νa =

∑
i∈I min(ǫi, νia(i)) for a ∈ A; then ν is

a strictly positive Maharam submeasure on A, so A is a Maharam algebra. QQQ

393F Lemma Let A be a Dedekind σ-complete Boolean algebra and ν, ν ′ two Maharam submeasures
on A such that νa = 0 whenever ν ′a = 0. Then ν is absolutely continuous with respect to ν ′.

proof (Compare 232Ba.) ??? Otherwise, we can find a sequence 〈an〉n∈N in A such that ν ′an ≤ 2−n for every
n, but ǫ = infn∈N νan > 0. Set bn = supi≥n ai for each n, b = infn∈N bn. Then ν ′bn ≤ ∑∞

i=n 2−i ≤ 2−n+1

for each n (393Bb), so ν ′b = 0; but νbn ≥ ǫ for each n, so νb ≥ ǫ (393Ba), contrary to the hypothesis. XXX

393G Proposition Let A be a Maharam algebra, and ν and ν ′ two strictly positive Maharam sub-
measures on A. Then the metrics they induce on A are uniformly equivalent, so we have a topology and
uniformity on A which we may call the Maharam-algebra topology and the Maharam-algebra uni-
formity.

proof By 393F, ν and ν ′ are mutually absolutely continuous; translating this with the formula of 392Ha,
we see that the metrics are uniformly equivalent, so induce the same topology and uniformity. As A does
have a strictly positive Maharam submeasure, we may use it to define the Maharam-algebra topology and
uniformity of A.

393H Proposition Let A be a Boolean algebra, and ν an exhaustive strictly positive totally finite

submeasure on A. Let Â be the metric completion of A, as described in 392H, and ν̂ the continuous

extension of ν to Â. Then ν̂ is a Maharam submeasure, so Â is a Maharam algebra.

proof (Compare 392Hd.)

(a) The point is that any non-increasing sequence 〈an〉n∈N in Â is a Cauchy sequence for the metric ρ̂.
PPP Let ǫ > 0. For each n ∈ N, choose bn ∈ A such that ρ̂(an, bn) ≤ 2−nǫ, and set cn = infi≤n bi. Then

ρ̂(an, cn) = ρ̂(infi≤n ai, infi≤n bi) ≤
∑n
i=0 ρ̂(ai, bi) ≤ 2ǫ

for every n. Choose 〈n(k)〉k∈N inductively so that, for each k ∈ N, n(k + 1) ≥ n(k) and

ν(cn(k) \ cn(k+1)) ≥ supi≥n(k) ν(cn(k) \ ci) − ǫ.

Then 〈cn(k) \ cn(k+1)〉k∈N is a disjoint sequence in A, so

Measure Theory
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lim sup
k→∞

sup
i≥n(k)

ρ̂(an(k), ai) ≤ 4ǫ+ lim sup
k→∞

sup
i≥n(k)

ρ̂(cn(k), ci)

= 4ǫ+ lim sup
k→∞

sup
i≥n(k)

ν(cn(k) \ ci)

≤ 4ǫ+ lim sup
k→∞

ν(cn(k) \ cn(k+1)) + ǫ = 5ǫ.

As ǫ is arbitrary, 〈an〉n∈N is Cauchy. QQQ

(b) It follows that Â is Dedekind σ-complete. PPP If 〈an〉n∈N is any sequence in Â, 〈bn〉n∈N = 〈infi≤n ai〉n∈N

is a Cauchy sequence with a limit b ∈ Â. For any k ∈ N,

ν̂(b \ ak) = limn→∞ ν̂(bn \ ak) = 0,

so b ⊆ ak, because ν̂ is strictly positive. While if c ∈ Â is a lower bound for {an : n ∈ N}, we have c ⊆ bn
for every n, so

ν̂(c \ b) = limn→∞ ν̂(c \ bn) = 0

and c ⊆ b. Thus b = infn∈N an; as 〈an〉n∈N is arbitrary, Â is Dedekind σ-complete (314Bc). QQQ

(c) We find also that ν̂ is a Maharam submeasure, because if 〈an〉n∈N is a non-increasing sequence in

Â with infimum 0, it must have a limit a which (as in (b) above) must be its infimum, that is, a = 0;
consequently

limn→∞ ν̂an = ν̂a = 0.

(d) It follows at once that ν̂ is exhaustive (393Bc), so that Â is ccc (392Ca) and Dedekind complete
(316Fa).

393I Proposition Let A be a Dedekind σ-complete Boolean algebra and ν an atomless Maharam sub-
measure on A. Then for every ǫ > 0 there is a finite partition C of unity in A such that νc ≤ ǫ for every
c ∈ C.

proof Let A ⊆ A be a maximal disjoint set such that 0 < νa ≤ ǫ for every a ∈ A. As ν is exhaustive (393Bc),
A is countable. Set c = 1 \ supA. ??? If νc > 0, then (because ν is atomless) we can choose inductively a
sequence 〈bn〉n∈N such that b0 = c, bn+1 ⊆ bn, νbn+1 > 0 and ν(bn \ bn+1) > 0 for every n ∈ N. But now
〈bn \ bn+1〉n∈N is a disjoint sequence of elements of non-zero submeasure, so one of them has submeasure in
]0, ǫ] and ought to have been added to A. XXX

If A is finite, we can set C = A∪{c} and stop. Otherwise, enumerate A as 〈an〉n∈N and set cn = supi≥n ai
for each n; then limn→∞ νcn = 0, so there is an n such that νcn ≤ ǫ, and we can set C = {ai : i < n}∪{cn ∪ c}.

393J Lemma (Maharam 1947) Let A be a ccc Boolean algebra with a T1 topology T such that (i)
∪ : A×A → A is continuous at (0, 0) (ii) whenever 〈an〉n∈N is a non-increasing sequence in A with infimum
0, then 〈an〉n∈N → 0 for T. Then A has a strictly positive Maharam submeasure.

proof (a) For any e ∈ A \ {0}, there is a Maharam submeasure ν on A such that νe > 0.

PPP(i) Choose a sequence 〈Gn〉n∈N of neighbourhoods of 0, as follows. Because T is T1, G0 = A \ {0} is a
neighbourhood of 0 not containing e. Given Gn, choose a neighbourhood Gn+1 of 0 such that Gn+1 ⊆ Gn
and a ∪ b ∪ c ∈ Gn whenever a, b, c ∈ Gn+1. (Take neighbourhoods H, H ′ of 0 such that a ∪ b ∈ Gn for a,
b ∈ H, b ∪ c ∈ H for b, c ∈ H ′ and set Gn+1 = H ∩H ′ ∩Gn.) Define ν0 : A → [0, 1] by setting

ν0a = 1 if a /∈ G0,

= 2−n if a ∈ Gn \Gn+1,

= 0 if a ∈
⋂

n∈N

Gn.
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18 Measurable algebras 393J

Then whenever a0, . . . , ar ∈ A, n ∈ N and
∑r
i=0 ν0ai < 2−n, supi≤r ai ∈ Gn. To see this, induce on r. If

r = 0 then we have ν0a0 < 2−n so a0 ∈ Gn+1 ⊆ Gn. For the inductive step to r ≥ 1, there must be a k ≤ r
such that

∑
i<k ν0ai < 2−n−1 and

∑
k<i≤n ν0ai < 2−n−1 (allowing k = 0 or k = n, in which case one of the

sums will be zero). (If
∑r
i=0 ν0ai < 2−n−1, take k = n; otherwise, take k to be the least number such that∑k

i=0 ν0ai ≥ 2−n−1.) By the inductive hypothesis, and because 0 certainly belongs to Gn+1, b = supi<k ai
and c = supk<i≤r ai both belong to Gn+1; but also ν0ak < 2−n so ak ∈ Gn+1. Accordingly, by the choice of
Gn+1,

supi≤r ai = b ∪ ak ∪ c

belongs to Gn, and the induction continues.

(ii) Set

ν1a = inf{∑r
i=0 ν0ai : a0, . . . , ar ∈ A, a = supi≤r ai}

for every a ∈ A. It is easy to see that ν1(a ∪ b) ≤ ν1a+ν1b for all a, b ∈ A; also a ∈ Gn whenever ν1a < 2−n,
so, in particular, ν1e ≥ 1, because e /∈ G0.

Set

νa = inf{ν1b : a ∩ e ⊆ b ⊆ e}
for every a ∈ A. Then of course 0 ≤ νa ≤ νb whenever a ⊆ b, and

ν0 ≤ ν10 ≤ ν00 = 0,

so ν0 = 0. If a, b ∈ A and ǫ > 0, there are a′, b′ such that a ∩ e ⊆ a′ ⊆ e, b ∩ e ⊆ b′ ⊆ e, ν1a
′ ≤ νa + ǫ and

ν1b
′ ≤ νb+ ǫ; so that (a ∪ b) ∩ e ⊆ a′ ∪ b′ ⊆ e and

ν(a ∪ b) ≤ ν1(a′ ∪ b′) ≤ ν1a
′ + ν1b

′ ≤ νa+ νb+ 2ǫ.

As ǫ, a and b are arbitrary, ν is a submeasure. Next, if 〈ai〉i∈N is any non-increasing sequence in A with
infimum 0, 〈ai ∩ e〉i∈N is another, so converges to 0 for T. If n ∈ N there is an m such that ai ∩ e ∈ Gn for
every i ≥ m, so that

νai ≤ ν1(ai ∩ e) ≤ ν0(ai ∩ e) ≤ 2−n

for every i ≥ m. As n is arbitrary, limi→∞ νai = 0; as 〈ai〉i∈N is arbitrary, ν is a Maharam submeasure.
Finally,

νe = ν1e ≥ 1,

so νe 6= 0. QQQ

(b) Write C for the set of those c ∈ A such that there is a strictly positive Maharam submeasure on
the principal ideal Ac. Then C is order-dense in A. PPP Take any e ∈ A \ {0}. By (a), there is a Maharam
submeasure ν such that νe > 0. Set A = {e \ a : νa = 0}. Because ν is a submeasure, A is downwards-
directed. ??? If inf A = 0 then, because A is ccc, there is a non-increasing sequence 〈an〉n∈N in A with infimum
0; because ν is a Maharam submeasure,

νe ≤ infn∈N νan + ν(e \ an) = infn∈N νan = 0. XXX

Thus A has a non-zero lower bound c, and ν↾Ac is a strictly positive Maharam submeasure, while c ⊆ e. QQQ

(c) Because A is ccc, there is a sequence 〈cn〉n∈N in C with supremum 1. For each n, let νn be a strictly
positive Maharam submeasure on Acn ; multiplying by a scalar if necessary, we may suppose that νncn ≤ 2−n.
We can therefore define ν : A → [0, 2] by setting νa =

∑∞
n=0 νn(a ∩ cn) for every a ∈ A, and it is easy to

check that ν is a strictly positive Maharam submeasure on A.

*393K Theorem Let A be a ccc Dedekind complete Boolean algebra. Then A is a Maharam algebra iff
there is a Hausdorff linear space topology T on L0(A) such that for every neighbourhood G of 0 there is a
neighbourhood H of 0 such that u ∈ G whenever v ∈ H and |u| ≤ |v|.
proof (a) Suppose that A is a Maharam algebra; let ν be a strictly positive Maharam submeasure on A.

(i) For u ∈ L0 = L0(A) set
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τ(u) = inf{α : α ≥ 0, ν[[|u| > α]] ≤ α}.

Then τ is an F-seminorm (definition: 2A5B1). PPP (i) It will save a moment if we observe that whenever
β > τ(u) there is an α ≤ β such that ν[[|u| > α]] ≤ α, so that

ν[[|u| > β]] ≤ ν[[|u| > α]] ≤ α ≤ β.

Also, because ν is sequentially order-continuous,

ν[[|u| > τ(u)]] = limn→∞ ν[[|u| > τ(u) + 2−n]] ≤ limn→∞ τ(u) + 2−n = τ(u).

(ii) So

ν[[|u+ v| > τ(u) + τ(v)]] ≤ ν[[|u| + |v| > τ(u) + τ(v)]])

≤ ν([[|u| > τ(u)]] ∪ [[|v| > τ(v)]])

(364Ea)

≤ ν[[|u| > τ(u)]] + ν[[|v| > τ(v)]] ≤ τ(u) + τ(v),

and τ(u+ v) ≤ τ(u) + τ(v). (iii) If |α| ≤ 1 then

ν[[|αu| > τ(u)]] ≤ ν[[|u| > τ(u)]] ≤ τ(u),

and τ(αu) ≤ τ(u). (iv) limn→∞ ν[[|u| > n]] = 0 because 〈[[|u| > n]]〉n∈N is a non-increasing sequence with
infimum 0. So if ǫ > 0, there is an n ≥ 1 such that ν[[|u| > nǫ]] ≤ ǫ, in which case ν[[|αu| > ǫ]] ≤ ǫ whenever
|α| ≤ 1

n
, so that τ(αu) ≤ ǫ whenever |α| ≤ 1

n
. As ǫ is arbitrary, limα→0 τ(αu) = 0. Thus all the conditions

of 2A5B are satisfied and τ is an F-seminorm. QQQ

(ii) Accordingly we have a pseudometric (u, v) 7→ τ(u− v) which defines a linear space topology T on
L0 (2A5B). In fact this is a metric, because if τ(u − v) = 0 then ν[[|u− v| > 0]] = 0 and (since ν is strictly
positive) u = v. So T is Hausdorff. Now let G be an open set containing 0. Then there is an ǫ > 0 such
that H = {u : τ(u) < ǫ} is included in G. If v ∈ H and |u| ≤ |v|, then

ν[[|u| > τ(v)]] ≤ ν[[|v| > τ(v)]] ≤ τ(v),

so τ(u) ≤ τ(v) and u ∈ H ⊆ G. So T satisfies all the conditions.

(b) Given such a topology T on L0, let S be the topology on A induced by T and the function χ : A → L0;
that is, S = {χ−1[G] : G ∈ T}. Then S satisfies the conditions of 393J. PPP (i) Because T is Hausdorff and χ
is injective, S is Hausdorff, therefore T1. (ii) If 0 ∈ G ∈ S, there is an H ∈ T such that G = χ−1[H]. Now
0 (the zero of L0) belongs to H, so there is an open set H1 containing 0 such that u ∈ H whenever v ∈ H1

and |u| ≤ |v|. Next, addition on L0 is continuous for T, so there is an open set H2 containing 0 such that
u+ v ∈ H1 whenever u, v ∈ H2. Consider G′ = χ−1[H2]. This is an open set in A containing 0A, and if a,
b ∈ G′ then

|χ(a ∪ b)| ≤ χa+ χb ∈ H2 +H2 ⊆ H1,

so χ(a ∪ b) ∈ H and a ∪ b ∈ G. As G is arbitrary, ∪ is continuous at (0, 0). (iii) If 〈an〉n∈N is a non-increasing
sequence in A with infimum 0, u0 = supn∈N nχan is defined in L0 (use the criterion of 364L(a-i):

infm∈N supn∈N [[nχan > m]] = infm∈N am+1 = 0.)

If 0 ∈ G ∈ S, take H ∈ T such that G = χ−1[H], and H1 ∈ T such that 0 ∈ H1 and u ∈ H whenever v ∈ H1

and |u| ≤ |v|. Because scalar multiplication is continuous for T, there is a k ≥ 1 such that 1
k
u0 ∈ H1. For

any n ≥ k, χan ≤ 1
k
u0 so χan ∈ H and an ∈ G. As G is arbitrary, 〈an〉n∈N → 0 for S. As 〈an〉n∈N is

arbitrary, condition (ii) in the statement of 393J is satisfied. QQQ
So 393J tells us that A has a strictly positive Maharam submeasure, and is a Maharam algebra.

393L I now turn to some very remarkable ideas relating the order*-convergence of §367 to the questions
here.

1Later editions only.
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Definition Let P be a lattice, and consider the relation ‘〈pn〉n∈N order*-converges to p’ as a relation between
PN and P . By 367Bc, this satisfies the hypothesis of 3A3Pa, so there is a unique topology on P for which a
set F ⊆ P is closed iff a ∈ F whenever 〈an〉n∈N is a sequence in F which order*-converges to a in P . I will
call this topology the order-sequential topology of P .

Warning! For the next few paragraphs I shall be closely following the papers Balcar G lowczyński &

Jech 98 and Balcar Jech & Pazák 05. I should therefore note explicitly that if A is a Boolean algebra
which is neither Dedekind σ-complete nor ccc, my ‘order-sequential topology’ on A may not be identical to
theirs.

393M Lemma Let A be a Boolean algebra.
(a) A sequence 〈an〉n∈N order*-converges to a ∈ A iff there is a partition B of unity in A such that

{n : n ∈ N, (an △ a) ∩ b 6= 0} is finite for every b ∈ B.
(b) If 〈an〉n∈N order*-converges to a and c ∈ A, then 〈an ∪ c〉n∈N, 〈an ∩ c〉n∈N and 〈an △ c〉n∈N order*-

converge to a ∪ c, a ∩ c and a△ c respectively.
(c) The operations ∩ , ∪ and △ are separately continuous for the order-sequential topology.
(d) Every disjoint sequence in A is order*-convergent to 0.

proof (a) Let 〈an〉n∈N be a sequence in A and a ∈ A; set

C = {c : ∃ n ∈ N, c ⊆ ai for every i ≥ n},

D = {d : ∃ n ∈ N, ai ⊆ d for every i ≥ n}.

(i) If 〈an〉n∈N order*-converges to a, then a = supC = inf D (367Be). Since

inf{d \ a : d ∈ D} = inf{a \ c : c ∈ C} = 0,

E = {(d \ a) ∪ (a \ c) : c ∈ C, d ∈ D}
also has infimum 0 (313A, 313B). So there is a partition B of unity such that for every b ∈ B there is an
e ∈ E such that b ∩ e = 0. Now, given b ∈ B, there are c ∈ C and d ∈ D such that b ∩ (d \ c) = 0; there are
n1, n2 ∈ N such that c ⊆ an for n ≥ n1 and an ⊆ d for n ≥ n2; so that {n : (an △ a) ∩ b 6= 0} is bounded
above by max(n1, n2) and is finite. So B witnesses that the condition is satisfied.

(ii) Now suppose that B is a partition of unity such that {n : (an △ a) ∩ b 6= 0} is finite for every
b ∈ B. Then a ∪ (1 \ b) ∈ D for every b ∈ B, because {n : an 6⊆ a ∪ (1 \ b)} ⊆ {n : (an △ a) ∩ b 6= 0} is finite.
So any lower bound for D is also a lower bound for {a ∪ (1 \ b) : b ∈ B} and is included in a. Similarly,
any upper bound for C includes a; as c ⊆ d whenever c ∈ C and d ∈ D, a = supC = inf D and 〈an〉n∈N

order*-converges to a.

(b) These are all immediate from (a), because

(an ∪ c) △ (a ∪ c) ⊆ an △ a, (an ∩ c) △ (a ∩ c) ⊆ an △ a,

(an △ c) △ (a△ c) = an △ a

for every n.

(c) By (b), we can apply 3A3Pb to each of the functions a 7→ a ∩ b = b ∩ a, a 7→ a ∪ b = b ∪ a and
a 7→ a△ b = b△ a to see that these are all continuous for every b ∈ A.

(d) If 〈an〉n∈N is a disjoint sequence in A, there is a partition B of unity in A containing every an (311Gd);
now B witnesses that the condition of (a) is satisfied.

393N Proposition Let A be a Maharam algebra. Then the Maharam-algebra topology on A is the
order-sequential topology.

proof Let To be the order-sequential topology on A, ν a strictly positive Maharam submeasure on A, ρ the
metric defined from ν (392H) and TM the Maharam-algebra topology induced by ρ (393G).
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(a) If 〈an〉n∈N is a sequence in A such that 〈an〉n∈N →∗ a in A, then limn→∞ ρ(an, a) = 0. PPP By 393Mb,
〈an △ a〉n∈N →∗ 0; by 367Bf, 0 = infn∈N supi≥n(ai △ a), so

ρ(an, a) ≤ ν(supi≥n ai △ a) → 0

as n→ ∞. QQQ
It follows that every TM -closed set is To-closed, and To ⊆ TM .

(b) Conversely, suppose that 〈an〉n∈N is a sequence in A converging for TM to a ∈ A. Then 〈an〉n∈N has a
subsequence 〈a′n〉n∈N such that ρ(a′n, a) ≤ 2−n for every n ∈ N. In this case, setting bm = supn≥m a

′
n △ a for

each m, νbm ≤ 2−m+1 for every m (393Bb), so infm∈N bm = 0, and 〈a′n △ a〉n∈N →∗ 0, that is, 〈a′n〉n∈N →∗ a.
Thus every TM -convergent sequence has an order*-convergent subsequence with the same limit; it follows

that every To-closed set is TM -closed, that is, TM ⊆ To.

393O Proposition Let A be a ccc Dedekind σ-complete Boolean algebra, with its order-sequential
topology, and B a subalgebra of A. Then the topological closure of B is the smallest order-closed set
including B; in particular, B is order-closed iff it is topologically closed.

proof (a) Let B be the topological closure of B, and B∼ the smallest order-closed set including B.

(i) Suppose that 〈bn〉n∈N is a non-decreasing sequence in B with supremum b in A; then 〈bn〉n∈N →∗ b,
by 367Bf or 367Xa. So b ∈ B. Similarly, infn∈N bn ∈ B for every non-increasing sequence in B. Thus B is
sequentially order-closed. But this means that it is order-closed, by 316Fb. So B ⊇ B∼.

(ii) By 313Fc, B∼ is a subalgebra of A. Now suppose that 〈bn〉n∈N is a sequence in B∼ which
order*-converges to a ∈ A. Then cmn = supm≤i≤n bi belongs to B∼ whenever m ≤ n; as 〈cmn〉n≥m is non-
decreasing, cm = supi≥m bi = supn≥m cmn belongs to B∼ for every m ∈ N; as 〈cm〉m∈N is non-increasing,
infm∈N cm ∈ B∼. But c = b (367Bf). As 〈bn〉n∈N is arbitrary, B∼ is closed for the order-sequential topology,
and must include B.

Thus B = B∼, as claimed.

(b) Now

B is order-closed ⇐⇒ B = B∼ ⇐⇒ B = B ⇐⇒ B is topologically closed.

393P Lemma Let A be a ccc weakly (σ,∞)-distributive Boolean algebra, endowed with its order-
sequential topology.

(a) If 〈amn〉m,n∈N, 〈am〉m∈N and a are such that 〈amn〉n∈N order*-converges to am for each m, while
〈am〉m∈N order*-converges to a, then there is a sequence 〈k(m)〉m∈N in N such that 〈am,k(m)〉m∈N order*-
converges to a.

(b) If A ⊆ A and a ∈ A, there is a sequence in A which order*-converges to a.
(c) If G is a neighbourhood of 0 in A then there is an open neighbourhood H of 0, included in G, such

that [0, a] ⊆ H for every a ∈ H.
(d) For A ⊆ A, set

∨
0(A) = {0} and

∨
n+1(A) = {a ∪ b : a ∈ ∨

n(A), b ∈ A} for n ∈ N.

(i) If A ⊆ A is such that [0, a] ⊆ A for every a ∈ A, and n ∈ N, then [0, a] ⊆ ∨
n(A) for every a ∈ ∨

n(A).
(ii) If H ⊆ A is an open set containing 0 such that [0, a] ⊆ H for every a ∈ H, then

∨
n+1(H) is open

and
∨
n(H) ⊆ ∨

n+1(H) for every n ∈ N.

(e) Suppose that A is Dedekind σ-complete. Then for every open set G containing 0 there is an open set
H containing 0 such that

∨
3(H) ⊆ ∨

2(G).

proof (a) Let Cm, for m ∈ N, be partitions of unity in A such that

{m : (am △ a) ∩ c 6= 0} is finite for every c ∈ C0,

{n : (amn △ am) ∩ c 6= 0} is finite whenever m ∈ N and c ∈ Cm+1

(393Ma). Because A is weakly (σ,∞)-distributive, there is a partition B of unity such that {c : c ∈ Cm,
c ∩ b 6= 0} is finite whenever m ∈ N and b ∈ B (316H(ii)). Because A is ccc, there is a sequence 〈bn〉n∈N
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running over B∪{0}. Now, for each m, any sufficiently large k(m) will be such that (am,k(m) △ am) ∩ bi = 0
for every i ≤ m. In this case, for any i,

{m : (am,k(m) △ a) ∩ bi 6= 0} ⊆ {m : m < i} ∪ {m : (am △ a) ∩ bi 6= 0}
is finite, so B witnesses that 〈am,k(m)〉m∈N →∗ a (393Ma, in the other direction).

(b) Let A∼ be the set of order*-limits of sequences in A. Of course A∼ must be included in A. But from
(a) we see that the limit of any order*-convergent sequence in A∼ belongs to A∼. So A∼ is closed and is
equal to A. Turning this round, we see that A is just the set of order*-limits of sequences in A, as claimed.

(c) Set D = {d : d ∈ A, [0, d] 6⊆ G}, H = A \D. Since D ⊇ A \G, H is an open subset of G.
??? If 0 ∈ D, then (b) tells us that there is a sequence 〈dn〉n∈N in D order*-converging to 0. Now there

is for each n ∈ N a cn ⊆ dn such that cn /∈ G. By 367Be or 393Ma, 〈cn〉n∈N order*-converges to 0, and

0 ∈ A \G; but G is supposed to be a neighbourhood of 0. XXX Thus 0 ∈ H and H is a neighbourhood of 0.
??? If a ∈ H and b ∈ [0, a] \H, then b ∈ D, so there is a sequence 〈dn〉n∈N in D order*-converging to b. In

this case, 〈dn ∪ a〉n∈N order*-converges to b ∪ a = a, by 393Mb. But also [0, dn ∪ a] ⊇ [0, dn] is not included
in G, so dn ∪ a ∈ D for each n, and a ∈ D; which is impossible. XXX Thus [0, a] ⊆ H for every a ∈ H, and H
has the properties declared.

(d)(i) This is an elementary induction on n.

(ii) The point is that
∨
n+1(H) = {a△ b : a ∈ ∨

n(H), b ∈ H}. PPP If a ∈ ∨
n(H) and b ∈ H, then

a \ b ∈ ∨
n(H), by (i), and b \ a ∈ H, so a△ b ∈ ∨

n+1(H). On the other hand, if c ∈ ∨
n+1(H), it is

expressible as a ∪ b = a△ (b \ a) where a ∈ ∨
n(H) and b and b \ a belong to H. QQQ

Since △ is separately continuous, it follows at once that
∨
n+1(H) =

⋃
a∈

∨
n
(H){a△ b : b ∈ H} =

⋃
a∈

∨
n
(H){b : a△ b ∈ H}

is open, because △ is separately continuous (393Mc). Next, if d ∈ ∨
n(H), then there is a sequence 〈dn〉n∈N

in
∨
n(H) order*-converging to d, by (b). Now 〈dn △ d〉n∈N →∗ 0, by 393Mb, so 〈dn △ d〉n∈N converges

topologically to 0, by 3A3Pa, and there is an n ∈ N such that dn △ d ∈ H; in which case d = dn △ (dn △ d)

belongs to
∨
n+1(H). As d is arbitrary,

∨
n(H) ⊆ ∨

n+1(H).

(e) ??? Suppose, if possible, otherwise.

(i) Choose Hn, an, bn and cn inductively, as follows. H0 ⊆ G is to be an open neighbourhood of 0 such
that [0, a] ⊆ H0 whenever a ∈ H0 ((c) above). Given that Hn is an open set containing 0 and including
[0, a] whenever it contains a, we are supposing that

∨
3(Hn) 6⊆ ∨

2(G); choose an, bn, cn ∈ Hn such that
an ∪ bn ∪ cn /∈

∨
2(G), and set

Hn+1 = {a : a, a ∪ an, a ∪ bn and a ∪ cn all belong to Hn},

so that Hn+1 is an open set containing 0, and [0, a] ⊆ Hn+1 for every a ∈ Hn+1. Continue.

(ii) At the end of the induction, set F =
⋂
n∈N

Hn and a∗ = infn∈N supi≥n ai. Then a∗ ∪ d ∈ F for every
d ∈ F . PPP For m ≤ n ∈ N, supm≤i≤n ai ∪ d ∈ Hm for every d ∈ Hn+1 (induce downwards on m). Because

∪ is separately continuous, supm≤i≤n ai ∪ d ∈ Hm for every d ∈ F . Letting n → ∞, d ∪ supi≥m ai ∈ Hm

whenever d ∈ F and m ∈ N. Next, for any b ∈ A, {a : a ∩ b ∈ Hm} is a closed set including Hm, so
a ∩ b ∈ Hm for every a ∈ Hm; that is, [0, a] ⊆ Hm for every a ∈ Hm. As a∗ ⊆ supi≥m ai, d ∪ a∗ ∈ Hm for
every d ∈ F . As m is arbitrary, d ∪ a∗ ∈ F for every d ∈ F . QQQ

Similarly, setting b∗ = infn∈N supi≥n bi and c∗ = infn∈N supi≥n ci, d ∪ b∗ and d ∪ c∗ belong to F for every
d ∈ F ; and of course 0 ∈ F . So e = a∗ ∪ b∗ ∪ c∗ belongs to F . For each n ∈ N, an ∪ bn ∪ cn /∈ ∨

2(H0);
but [0, a] ⊆ ∨

2(H0) for every a ∈ ∨
2(H0), by (d-i), so supi≥n ai ∪ bi ∪ ci /∈

∨
2(H0). Accordingly e =

infn∈N supi≥n ai ∪ bi ∪ ci does not belong to the open set
∨

2(H0), and e /∈ H0, by (d-ii). So e ∈ F \ H0;
which is impossible. XXX

393Q Theorem (Balcar G lowczyński & Jech 98, Balcar Jech & Pazák 05) Let A be a Dedekind
σ-complete Boolean algebra. Then the following are equiveridical:

(i) A is a Maharam algebra;
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(ii) A is ccc and the order-sequential topology is Hausdorff;
(iii) A is weakly (σ,∞)-distributive and {0} is a Gδ set for the order-sequential topology of A;
(iv) A is ccc and there is a T1 topology on A such that (α) ∪ : A × A → A is continuous at (0, 0) (β)

whenever 〈an〉n∈N is a non-decreasing sequence in A with infimum 0, then 〈an〉n∈N → 0.

proof (a)(i)⇒(ii) By 393Eb, A is ccc. By 393N, the order-sequential topology is metrizable, therefore
Hausdorff.

(b)(ii)⇒(iii) Suppose that the conditions of (ii) are satisfied. In the following argument, all topological
terms will refer to the order-sequential topology on A.

(ααα) A is weakly (σ,∞)-distributive. PPP Let 〈An〉n∈N be a sequence of partitions of unity in A, and set

D = {d : d ∈ A, {a : a ∈ An, a ∩ d 6= 0} is finite for every n ∈ N}.

Take any c ∈ A+. Let G, H be disjoint open sets containing 0, c respectively. Choose 〈cn〉n∈N inductively,
as follows. c0 = c. Given cn ∈ H, let 〈ani〉i∈N be a sequence running over An, and set cnj = supi≤j cn ∩ ani;
then 〈cnj〉j∈N order*-converges to cn (367Bf/367Xa), so there is a jn such that cnjn ∈ H; set cn+1 = cnjn ,
and continue.

This gives us a non-increasing sequence 〈cn〉n∈N in H. Set d = infn∈N cn; then d /∈ G so d 6= 0, while
d ⊆ supi≤jn ani for each n, so d ∈ D.

As c is arbitrary, D is order-dense in A and includes a partition of unity. As 〈An〉n∈N is arbitrary, A is
weakly (σ,∞)-distributive (316H). QQQ

(βββ) For any a ∈ A+ there is a sequence 〈Hn〉n∈N of neighbourhoods of 0 such that a 6⊆ sup(
⋂
n∈N

Hn).
PPP For A ⊆ A and n ∈ N, define

∨
n(A) as in 393Pd. Let G, G′ be disjoint neighbourhoods of 0 and a

respectively, and set G0 = G ∩ {a△ b : b ∈ G′}; then G0 is a neighbourhood of 0 (393Mc). By 393Pc,
we can find a neighbourhood H0 of 0 such that H0 ⊆ G0 and [0, b] ⊆ H0 for every b ∈ H0, in which case
[0, b] ⊆ ∨

2(H0) for every b ∈ ∨
2(H0), while a /∈ ∨

2(H0). By 393Pe, we can choose neighbourhoods Hn of 0
such that Hn ⊆ Hn−1 and

∨
3(Hn) ⊆ ∨

2(Hn−1) for every n ≥ 1; by 393Pc, we can suppose that [0, b] ⊆ Hn

whenever b ∈ Hn. But this will ensure that
∨

4(Hn+2) ⊆ ∨
2(Hn) for every n, so that

∨
2k(H2k) ⊆ ∨

2(H2)
for every k ≥ 1. Set F =

⋂
n∈N

Hn. Then
∨

2k(F ) ⊆ ∨
2k(H2k) ⊆ ∨

2(H2)

for every k ≥ 1. Since supF is the limit of a sequence in
⋃
k≥1

∨
2k(F ),

supF ∈ ∨
2(H2) ⊆ ∨

3(H2) ⊆ ∨
2(H0)

(using 393P(d-ii) for the first inequality) and cannot include a. QQQ

(γγγ) Now consider the set D of those d ∈ A such that there is a sequence 〈Hn〉n∈N of neighbourhoods
of 0 such that d ∩ sup(

⋂
n∈N

Hn) = 0. By (β), D is order-dense, so includes a partition of unity A. A is
countable, so there is a sequence 〈Hn〉n∈N of neighbourhoods of 0 such that d ∩ sup(

⋂
n∈N

Hn) = 0 for every
d ∈ A; but this means that

⋂
n∈N

Hn = {0}. So (iii) is true.

(c)(iii)⇒(iv) Now suppose that the conditions in (iii) are satisfied. As in (b), all topological terms will
refer to the order-sequential topology on A.

(ααα) There is a non-increasing sequence 〈Gn〉n∈N of open neighbourhoods of 0 such that
⋂
n∈N

Gn = {0}.
PPP Let 〈Un〉n∈N be a sequence of open sets with intersection {0}. Set G0 = A, and for n ∈ N choose an
open neighbourhood Gn+1 of 0, included in Un ∩ Gn, such that [0, a] ⊆ Gn+1 for every a ∈ Gn+1 (393P).
??? If 0 6= d ∈ ⋂

n∈N
Gn, then for each n ∈ N we can find a sequence 〈ani〉i∈N in Gn order*-converging to d

(393Pc). By 393Pa, there is a sequence 〈k(n)〉n∈N in N such that 〈an,k(n)〉n∈N order*-converges to d. Now
d = supn∈N infi≥n ai,k(i) (367Bf), so there is an n ∈ N such that c = infi≥n ai,k(i) is non-zero. But in this
case we must have c ≤ ai,k(i) ∈ Gi and c ∈ Gi ⊆ Uj whenever i ≥ max(n, j + 1), so c = 0. XXX Thus⋂
n∈N

Gn = {0}, as required. QQQ

(βββ) For every neighbourhood G of 0 there is a neighbourhood H of 0 such that a ∪ b ∈ G for all a,
b ∈ H. PPP??? Otherwise, choose 〈Hn〉n∈N, 〈an〉n∈N and 〈bn〉n∈N inductively, as follows. Start with an open
neighbourhood H0 of 0 such that H0 ⊆ G and [0, a] ⊆ H0 for every a ∈ H0. Given that Hn is an open
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neighbourhood of 0, let an, bn ∈ Hn be such that an ∪ bn /∈ G. Because the maps a 7→ a ∪ an and a 7→ a ∪ bn
are continuous, there is an open neighbourhood Hn+1 of 0 such that a ∪ an and a ∪ bn belong to Hn for
every a ∈ Hn+1; and we may suppose that Hn+1 ⊆ Gn. Continue.

An easy induction on k shows that a ∪ supn≤i≤n+k ai and a ∪ supn≤i≤n+k bi belong to Hn whenever
k ∈ N and a ∈ Hn+k+1. In particular, supn≤i≤n+k ai ∈ Hn for every k; since 〈supn≤i≤n+k ai〉k∈N is

order*-convergent to supi≥n ai, supi≥n ai ∈ Hn ⊆ Gn for every n. Set a∗ = infn∈N supi≥n ai. Then

〈supi≥n ai〉n∈N →∗ a∗, and supi≥n ai ∈ Gm whenever n ≥ m, so a∗ ∈ Gm for every m, and a∗ = 0.
In the same way, infn∈N supi≥n bi = 0. It follows that infn∈N cn = 0, where cn = supi≥n ai ∪ supi≥n bi for

each n. But now 〈cn〉n∈N is a non-increasing sequence with infimum 0, so order*-converges to 0, and there
must be an n such that cn ∈ H0. Since an ∪ bn ⊆ cn, an ∪ bn ∈ H0 ⊆ G, contrary to the choice of an and bn.
XXXQQQ

(γγγ) A is ccc. PPP Let 〈Un〉n∈N be a sequence of open sets with intersection {0}, and A ⊆ A \ {0} a
partition of unity. If 〈ai〉i∈N is a sequence of distinct elements of A, then 〈ai〉i∈N →∗ 0 (393Md); so A \ Un
is finite for every n, and A is countable. QQQ

(δδδ) (β) means just that ∪ is continuous at (0, 0). Also a non-increasing sequence with infimum 0
order*-converges to 0, so converges topologically to 0 (3A3Pa); and the topology is certainly T1. So all the
conditions of (iv) are satisfied by the order-sequential topology.

(d)(iv)⇒(i) By 393J, there is a strictly positive Maharam submeasure on A; as A is Dedekind σ-complete,
it is a Maharam algebra.

393R Definition Let A be a Boolean algebra. Then A is σ-finite-cc if A can be expressed as
⋃
n∈N

An
where no An includes any infinite disjoint set.

393S Theorem (Todorčević 04) Let A be a Boolean algebra. Then A is a Maharam algebra iff it is
σ-finite-cc, weakly (σ,∞)-distributive and Dedekind σ-complete.

proof (B.Balcar)(a) If A is a Maharam algebra, then of course it is Dedekind σ-complete, and we have known
since 393C that it is weakly (σ,∞)-distributive. Also it carries a strictly positive exhaustive submeasure, so
is σ-finite-cc.

Of course {0} is a Maharam algebra. For the rest of the proof, therefore, I suppose that A is a non-trivial
algebra satisfying the conditions, and seek to show that it is a Maharam algebra.

(b)(i) Let 〈An〉n∈N be a sequence of sets, with union A+, such that no An includes any infinite disjoint
set. For each n, set Bn =

⋃
m≤n

⋃
a∈Am

[a, 1], so that Bn includes no infinite disjoint subset. Now there is
an n such that 1 is in the interior of Bn for the order-sequential topology. PPP??? Otherwise, of course A is ccc,
so there is for each n ∈ N a sequence 〈bni〉i∈N in A \Bn which is order*-convergent to 1 (393Pb). By 393Pa,
there is a sequence 〈k(n)〉n∈N in N such that 〈bn,k(n)〉n∈N order*-converges to 1. As 1 6= 0, there must be an
m ∈ N such that c = infi≥m bi,k(i) 6= 0. There is an n such that c ∈ An, in which case bi,k(i) ∈ Bn ⊆ Bi for
every i ≥ max(m,n). XXXQQQ

(ii) Set H = intBn. Then there is a c ∈ H such that for every d ∈ A one of c ∩ d, c \ d /∈ H. PPP
??? Otherwise, we can choose a sequence 〈ci〉i∈N in H such that c0 = 1 and, for each i ∈ N, ci+1 ⊆ ci and
ci \ ci+1 ∈ H. But in this case 〈ci \ ci+1〉i∈N is a disjoint sequence in Bn, which is impossible. XXXQQQ

(iii) 0 and 1 can be separated by open sets. PPP Take H and c from (ii). Then G0 = {d : c \ d ∈ H} and
G1 = {d : c ∩ d ∈ H} are disjoint open sets containing 0 and 1 respectively. QQQ

(b) It follows that A is actually Hausdorff in the order-sequential topology. PPP Let a0, a1 ∈ A be such
that b = a1 \ a0 is non-zero. Consider the principal ideal Ab. Like A, this is σ-finite-cc, weakly (σ,∞)-
distributive and Dedekind σ-complete. By (a), there are disjoint subsets U , V of Ab, open for the order-
sequential topology of Ab, such that 0 ∈ U and b ∈ V . The function a 7→ a ∩ b : A → Ab is continuous for
the order-sequential topologies (3A3Pb), so G = {a : a ∩ b ∈ U} and H = {a : a ∩ b ∈ V } are open. Now G
and H are disjoint open sets in A containing a0, a1 respectively. As a0 and a1 are arbitrary, A is Hausdorff.
QQQ

By 393Q, A is a Maharam algebra.
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393X Basic exercises >>>(a) Let A be the finite-cofinite algebra on an uncountable set (316Yl). (i)
Set ν10 = 0, ν1a = 1 for a ∈ A \ {0}. Show that ν1 is a strictly positive Maharam submeasure but is not
exhaustive. (ii) Set ν2a = 0 for finite a, 1 for cofinite a. Show that ν2 is a uniformly exhaustive Maharam
submeasure but is not order-continuous.

>>>(b) Let A be a Boolean algebra and ν a submeasure on A. Set I = {a : νa = 0}. Show that (i) I is
an ideal of A (ii) there is a submeasure ν̄ on A/I defined by setting ν̄a• = νa for every a ∈ A (iii) if ν is
exhaustive, so is ν̄ (iv) if ν is uniformly exhaustive, so is ν̄ (v) if ν is a Maharam submeasure, I is a σ-ideal
(vi) if ν is a Maharam submeasure and A is Dedekind σ-complete, ν̄ is a Maharam submeasure.

(c) Let A be a Dedekind complete Boolean algebra and ν an order-continuous submeasure on A. Show
that ν has a unique support a ∈ A such that ν↾Aa is strictly positive and ν↾A1\a is identically zero.

(d) Let A be a Boolean algebra and ν an exhaustive submeasure on A such that νa = limn→∞ νan when-
ever 〈an〉n∈N is a non-decreasing sequence in A with supremum a. Show that ν is a Maharam submeasure.

(e) Let A be a Dedekind σ-complete Boolean algebra and ν a uniformly exhaustive Maharam submeasure
on A. Show that there is a non-negative countably additive functional µ on A such that {a : µa = 0} = {a :
νa = 0}. (Hint : 393Xb(vi).)

(f) Let A be a Maharam algebra with its Maharam-algebra topology and uniformity. (i) Let B ⊆ A be
a non-empty upwards-directed set. For b ∈ B set Fb = {c : b ⊆ c ∈ B}. Show that {Fb : b ∈ B} generates
a Cauchy filter F(B↑) on A which converges to supB. (ii) Show that closed subsets of A are order-closed.
(iii) Show that an order-dense subalgebra of A must be dense in the topological sense.

(g) Let A be a Maharam algebra. Show that it is a measurable algebra iff for every A ⊆ A including
antichains of all finite sizes there is a sequence in A which is order*-convergent to 0.

(h) Let A be a Boolean algebra. Suppose that 〈an〉n∈N, 〈bn〉n∈N are sequences in A order*-converging to
a, b respectively. Show that 〈an©bn〉n∈N →∗ a©b when © is any of the operations ∪ , ∩ , △ or \ .

(i) Let (A, µ̄) be a semi-finite measure algebra. Write Tos for the order-sequential topology on A and Tma

for the measure-algebra topology. Show that Tos ⊇ Tma, with equality iff (A, µ̄) is σ-finite.

(j) (Jech 08) Let A be a Dedekind σ-complete Boolean algebra and 〈An〉n∈N a sequence of subsets of A
such that (α) for every n ∈ N, any antichain in An has at most n elements (β) a sequence 〈ak〉k∈N in A is
order*-convergent to 0 iff {k : ak ∈ An} is finite for every n ∈ N. (i) Show that A is ccc. (ii) Show that A is
weakly (σ,∞)-distributive. (Hint : if Cn is non-empty and downwards-directed with infimum 0 for each n,
show that there is a sequence 〈an〉n∈N →∗ 0 such that an ∈ Cn for every n.) (iii) Show that A is a Maharam
algebra. (Hint : 393S.) (iv) Show that any Maharam submeasure on A is uniformly exhaustive. (v) Show
that A is a measurable algebra.

393Y Further exercises (a) Let A be any Boolean algebra with a strictly positive Maharam submeasure.
Show that A is weakly σ-distributive.

(b) Let U be a Riesz space, with its order-sequential topology. (i) Show that addition and subtraction
are separately continuous. (ii) Show that U is Archimedean iff scalar multiplication is separately continuous
as a function from R× U to U , and that in this case scalar multiplication is actually continuous.

(c) Let A be a Dedekind σ-complete Boolean algebra, and give L0 = L0(A) its order-sequential topology.
Suppose h : R → R is continuous, and let h̄ : L0 → L0 be the corresponding function as defined in 364H.
Show that h̄ is continuous.

(d) Let A be a Maharam algebra. Show that a topology T on L0(A) defined by the method of 393K must
be the order-sequential topology on L0(A).
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(e) Let U be a weakly (σ,∞)-distributive Riesz space with the countable sup property, with its order-
sequential topology, and A a subset of U . Show that A is the set of order*-limits of sequences in A.

(f) Let U be a weakly (σ,∞)-distributive Dedekind complete Riesz space with the countable sup property,
endowed with its order-sequential topology, and A its band algebra. Show that the following are equiveridical:
(i) A is a Maharam algebra; (ii) U is Hausdorff; (iii) addition on U is continuous at (0, 0); (iv) ∨ : U×U → U
is continuous at (0, 0).

(g) Let G be the regular open algebra of R, with its order-sequential topology. (i) Show that if U , V
are open sets in G containing 0G = ∅ and 1G = R respectively, then U ∩ V 6= ∅. (ii) Show that if U is an
open set in G containing ∅ then there are G, H ∈ U such that H = R \G. (iii) Show that {∅} is a Gδ set
in G. (iv) Show that there is no non-zero Maharam submeasure on G. (v) Show that there is no non-zero
countably additive functional on G.

(h) In 393Xj, show that each of the sets An must have non-zero intersection number.

(i) Let A be an atomless Boolean algebra with countable Maharam type. Show that there is a submeasure
µ on A, order-continuous on the left, such that whenever a ∈ A \ {0} there is a b ⊆ a such that µb < µa.

393 Notes and comments For many years it was not known whether there were any Maharam algebras
which were not measurable algebras; this was the famous ‘control measure problem’, eventually solved by
M.Talagrand. I will present his example in the next section. We now know that we have a larger class, but it
remains very poorly understood, and the material presented here must be regarded as work in progress. As
in §§391-392, the stimulus for these ideas has been the attempt to characterize measurable algebras in more
or less algebraic terms. If we are prepared to allow order*-convergence of sequences to be an ‘algebraic’
notion, then 393Xj is such a characterization; but it shares with Kelley’s criterion 391K the need for a
sequence 〈An〉n∈N, covering A+, with defined properties. The advance, if any, is that the properties (α) and
(β) of 393Xj are a good deal farther from any formula for a measure.

The first few results of this section, down to 393G, are concerned with checking that Maharam alge-
bras share properties with measurable algebras, and the proofs use the same ideas, with occasional minor
modifications. In 393H we have to think a little, since exhaustivity is less familiar, and harder to apply,
than additivity. From this proposition we see that exhaustive submeasures are to uniformly exhaustive
submeasures something like what Maharam algebras are to measurable algebras. 393K is a further example
of a well-known construction – this time, convergence in measure – which has a version based on Maharam
algebras.

In §367 I examined order*-convergence in Riesz spaces, without explicitly discussing the associated topol-
ogy, and in 393L-393Q here I look at Boolean algebras. In both cases the usefulness of the idea starts
with the fact that the algebraic operations are separately continuous (367Ca, 393M), which is itself a conse-
quence of the strong distributive laws in 313A-313B and 352E. It is easy to see that in a Maharam algebra
the order-sequential topology is the Maharam-algebra topology (393N). What is remarkable is that natural
questions about the order-sequential topology lead to characterizations of Maharam algebras (393Q). This
leads directly to an astonishing algebraic characterization of Maharam algebras (393S). (But once again we
need to hypothesize the existence of a suitable sequence of sets covering A+.)

Version of 13.6.11/30.8.18

394 Talagrand’s example

I rewrite the construction in Talagrand 08 of an exhaustive submeasure which is not uniformly exhaus-
tive, generalized as in Perović & Veličković 18.

394A PV norms (a) I will say that a PV norm is a function ‖ ‖ : [N]<ω → N such that

—– ‖∅‖ = 0, ‖I‖ = 1 if #(I) = 1,

c© 2017 D. H. Fremlin
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—– ‖I ∪ J‖ ≤ ‖I‖ + ‖J‖ for all I, J ∈ [N]<ω,
—– ‖I‖ ≤ ‖J‖ whenever I, J ∈ [N]<ω and #(I ∩ n) ≤ #(J ∩ n) for every n ∈ N,
—– limn→∞ ‖A ∩ n‖ = ∞ for every infinite A ⊆ N

(Perović & Veličković 18, 2.2).

(b) Note that if ‖ ‖ is a PV norm then ‖I‖ ≤ ‖J‖ ≤ #(J) whenever I ⊆ J ∈ [N]<ω. We see also that if
I ∈ [N]<ω and k < ‖I‖ there is an n ∈ I such that ‖I ∩ n‖ = k.

(c) The version of Talagrand’s example in the 2012 edition of Volume 3 corresponds to the case in which
‖I‖ = #(I) for every I ∈ [N]<ω. For the work of this section there is no need to consider any other, and
some of the formulae in 394D become more readable if you make this simplification; but it makes no real
difference to the ideas required.

394B Definitions We are ready to begin work. The construction is complex and demands a large volume
of special notation.

(a) I shall work throughout with X =
∏
n∈N

Tn where 〈Tn〉n∈N is a sequence of non-empty finite sets
and supn∈N #(Tn) is infinite. X may be regarded as a compact Hausdorff space with the product of the
discrete topologies on the Tn. For each n ∈ N, Bn will be the algebra of subsets of X determined by
coordinates less than n and An the set of its atoms, that is, the family of sets of the form {x : z ⊆ x ∈ X}
for some z ∈ ∏

i<n Ti. B =
⋃
n∈N

Bn will be the algebra of open-and-closed subsets of X. For I ⊆ N and
z ∈ ∏

n∈I Tn, Yz will be {x : z ⊆ x ∈ X}. Finally, ‖ ‖ will be a PV norm on [N]<ω.

(b) We shall need a sequence 〈αk〉k∈N in R and a sequence 〈Nk〉k∈N in N. It is easy enough to give
appropriate formulae but perhaps the ideas will be clearer if instead I declare the properties they must have.

(i) αk > 0 and (2k+4)αk ≤ 2 for every k ∈ N, 〈αk〉k∈N is non-increasing, and
∑∞
k=0 αk ≤ 1

2 .

(ii) Nk ∈ N and 2−k(2−2k−12Nk)αk ≥ 24 for every k ∈ N.

(c) Now we come to some of the key ideas. For a set I ⊆ PX × PN× [0,∞[, define its ‘spread’ spr I to
be

⋃
(E,I,w)∈I E and its ‘weight’ wt I to be

∑
(E,I,w)∈I w.

(d) For any family E ⊆ PX × PN× [0,∞[ define φE : B → [0,∞] by setting

φEE = inf{wt I : I ⊆ E is finite, E ⊆ spr I},

counting inf ∅ as ∞. So φ∅∅ = 0 and φ∅E = ∞ for E ∈ B \ {∅}.

(e) For D ⊆ X and I ⊆ N set

θI(D) = {y : y ∈ X, y↾I = x↾I for some x ∈ D}.

(f)(i) If m < n in N, φ : B → [0,∞] is a function and E ∈ B, then E is φ-thin between m and n if
φ(X \ θn\m(A ∩ E)) ≥ 1 for every A ∈ Am.

(ii) If I ⊆ N, φ : B → [0,∞] is a function and E ∈ B, then E is φ-thin along I if it is φ-thin between
m and n whenever m, n ∈ I and m < n.

(g) For k ≤ p ∈ N define Ckp and νkp by downwards induction on k, as follows. Start with Cpp = ∅ for
every p. Given Ckp, set νkp = φCkp

. Given that k < p and Ck+1,p and νk+1,p = φCk+1,p
have been defined, set

Ekp = {(E, I, w) : E ∈ B, I ∈ [N]<ω, 1 ≤ ‖I‖ ≤ Nk,

w ≥ 2−k
(Nk

‖I‖

)αk , E is νk+1,p-thin along I},

Ckp = Ekp ∪ Ck+1,p

and continue.
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28 Measurable algebras 394Bh

(h) Define 〈ck〉k∈N by setting c0 = 8, ck+1 = 22αkck for every k.

394C Very elementary facts In the hope of aiding digestion of the definitions here, of which 394Bf
and 394Bg are likely to be wholly obscure to anyone who has not worked through this proof before, I run
over some obvious facts which will be used below.

(a) φE : B → [0,∞] is a submeasure for any E ⊆ PX × PN × [0,∞[. (Subadditivity and monotonicity
are written into the definition.)

(b) If I, J ⊆ N then θIθJ = θI∩J . If I ⊆ J ⊆ N then θI(D) = θIθJ(D) ⊇ θJ(D) for all D ⊆ X. If I ⊆ N

then θI(D ∩ θI(E)) = θI(E ∩ θI(D)) for all D, E ⊆ X. For any I ⊆ N and any family D of subsets of X,
θI(

⋃D) =
⋃
D∈D θI(D).

For n ∈ N and D ⊆ X, D ∈ Bn iff θn(D) = D. If E ∈ B and I ⊆ N, θI(E) ∈ B. If m ≤ n in N, A ∈ Am

and A1 ∈ An, then A ∩ θn\m(A1) ∈ An. If m ∈ N and A ∈ Am then E 7→ θN\m(A ∩ E) : B → B is a
Boolean homomorphism.

(c) If m < n, φ : B → [0,∞] is a non-decreasing function, E ∈ B is φ-thin between m and n and E′ ∈ B

is included in E, then E′ is φ-thin between m and n′ for every n′ ≥ n.

(d) All the classes Ekp, Ckp are closed under increases in the scalar variable and decreases in the first
variable, that is,

—– if k < p, (E, I, w) ∈ Ekp, E′ ∈ B, E′ ⊆ E and w′ ≥ w then (E′, I, w′) ∈ Ekp,
—– if k ≤ p, (E, I, w) ∈ Ckp, E′ ∈ B, E′ ⊆ E and w′ ≥ w then (E′, I, w′) ∈ Ckp.

(e) If k ≤ p in N, Ckp =
⋃
k≤l<p Elp.

(f) If k < p in N, νkp ≤ νk+1,p, because Ckp ⊇ Ck+1,p.

(g) 8 ≤ ck ≤ 16 for every k ∈ N, because
∑∞
k=0 2αk ≤ 1.

(h) If k < p in N, then (X, {0}, 2−kNαk

k ) ∈ Ekp so νkpX ≤ 2−kNαk

k and νkp is totally finite.

394D Moving up a gear, we have the following.

Lemma Suppose that K is a non-empty finite family of subsets of N and r ∈ N is such that ‖K‖ ≥ r#(K)
for every K ∈ K. Then we have an enumeration 〈Ki〉i<s of K and a non-decreasing family 〈ni〉i≤s such that
‖Ki ∩ ni+1 \ ni‖ = r for every i < s.

(b) Suppose that 〈Ki〉i<s is a family of finite subsets of N such that ‖Ki‖ ≥ n ≥ 3 for every i < s and
maxKi < minKi+1 for i ≤ s − 2, and that A ∈ [N]<ω is such that ‖A‖ ≤ 1. Let J be a finite subset of
PX × ([N]<ω \ {∅}) × [0,∞[. Then we can find 〈ui〉i<s and 〈vi〉i<s such that ui, vi ∈ Ki and ui < vi for
each i < s and, setting W =

⋃
i<s vi \ ui, A ∩W = ∅ and

wt{(E, I, w) : (E, I,W ) ∈ J , ‖I \W‖ < 1
2‖I‖} ≤ 1

n−2
wtJ .

proof (a) If r = 0 we can take any enumeration of K and set ni = 0 for every i. Otherwise, write s for
#(K) and choose ni, Ki inductively, as follows. Start with n0 = 0. Given j < s, nj ∈ N and 〈Ki〉i<j such
that ‖K \ nj‖ ≥ r(s− j) for every K ∈ Kj = K \ {Ki : i < j}, set

nj+1 = min{n : ‖K ∩ n \ nj‖ ≥ r for some K ∈ Kj}
and choose Kj ∈ Kj such that ‖Kj ∩ nj+1 \ nj‖ ≥ r. Observe that

‖K ∩ nj+1 \ nj‖ ≤ ‖K ∩ (nj+1 − 1) \ nj‖ + ‖{nj+1 − 1}‖ ≤ (r − 1) + 1 = r

for every K ∈ Kj , so in fact ‖Kj ∩ nj+1 \ nj‖ = r and also

‖K \ nj+1‖ ≥ ‖K \ nj‖ − ‖K ∩ nj+1 \ nj‖ ≥ r(s− j) − r = r(s− (j + 1))

for every K ∈ Kj , so the induction will continue.
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(b) For i < s and k ∈ Ki \ {minKi} write k− for the greatest member of Ki less than k. Set

K ′
i = {k : k ∈ Ki \ {minKi}, A ∩ k \ k− 6= ∅}, K ′′

i = Ki \ (K ′
i ∪ {minKi}).

Then ‖K ′
i‖ ≤ 1. PPP For k ∈ K ′

i set g(k) = min(A ∩ k \ k−). Then g : K ′
i → A is injective and g(k) ≤ k for

every k ∈ K ′
i. So #(K ′

i \m) ≤ #(g[K ′
i] \m) ≤ #(A \m) for every m ∈ N, and ‖K ′

i‖ ≤ ‖A‖ ≤ 1. QQQ
Consequently

#(K ′′
i ) ≥ ‖K ′′

i ‖ ≥ ‖Ki‖ − ‖K ′
i‖ − ‖{minKi}‖ ≥ n− 2

and we have a family 〈kij〉j<n−2 of distinct elements of K ′′
i , so that A ∩ kij \ k−ij = 0 for every j < n− 2.

For j < n− 2, set

Wj =
⋃
i<s kij \ k−ij , Jj = {(E, I, w) : (E, I, w) ∈ J , ‖I \Wj‖ < 1

2‖I‖}.

Then W0, . . . ,Wn−3 are disjoint and none of them meet A. Since ‖ ‖ is subadditive and I = (I\Wj)∪(I\Wj′)

whenever j, j′ are distinct, J0, . . . ,Jn−3 are disjoint. So wtJ ≥ ∑n−3
j=0 wtJj and there is a j < n− 2 such

that wtJj ≤ 1

n−2
wtJ . Take ui = k−ij and vi = kij for each i, so that W =

⋃
i<s vi \ ui is Wj , and we have

an appropriate pair of sequences.

394E Lemma Suppose that k ≤ p, m < n, A ∈ Am, (E, I, w) ∈ Ckp and I ′ = I ∩ n \m is non-empty. If

E′ = θn\m(E ∩A) and w′ ≥
( ‖I‖

‖I′‖

)αkw, then (E′, I ′, w′) ∈ Ckp.

proof There is an l such that k ≤ l < p and (E, I, w) ∈ Elp. Now E′ is νl+1,p-thin along I ′. PPP Suppose
that i, j ∈ I ′ and i < j, so that m ≤ i < j < n. Take any A1 ∈ Ai, and set A2 = A ∩ θn\m(A1), so that A2

also belongs to Ai. Then, using the list in 394Cb,

θj\i(E
′ ∩A1) = θj\i(A1 ∩ θn\m(E ∩A))

= θj\i(θn\m(A1 ∩ θn\m(E ∩A)))

= θj\i(θn\m(E ∩A ∩ θn\m(A1)))

= θj\i(θn\m(E ∩A2)) = θj\i(E ∩A2).

So

νl+1,p(X \ θj\i(E′ ∩A1)) = νl+1,p(X \ θj\i(E ∩A2)) ≥ 1

because E is νl+1,p-thin between i and j. As i, j and A1 are arbitrary, E′ is νl+1,p-thin along I ′. QQQ
Of course ‖I ′‖ ≤ ‖I‖ ≤ Nl. Finally, because αl ≤ αk, we have

w′ ≥
( ‖I‖

‖I′‖

)αkw ≥
( ‖I‖

‖I′‖

)αl · 2−l
( Nl

‖I‖
)αl = 2−l

( Nl

‖I′‖

)αl ,

and (E′, I ′, w′) ∈ Elp ⊆ Ckp.

394F Corollary (a) Suppose that n ∈ N and k ≤ p and that I ⊆ Ckp is a finite set such that ‖I ∩ n‖ ≥
1
4‖I‖ whenever (E, I, w) ∈ I. Then νkp(θn(spr I)) ≤ 2 wt I.

(b) Suppose that m ∈ N, k ≤ p and A ∈ Am. Let I be a finite subset of Ckp such that ‖I \m‖ ≥ 1
4‖I‖

whenever (E, I, w) ∈ I. Then νkp(θN\m(A ∩ spr I)) ≤ 2 wt I.
(c) Suppose that m < n in N, k ≤ p and A ∈ Am. Let I be a finite subset of Ckp such that ‖I ∩n \m‖ ≥

2−k−4‖I‖ whenever (E, I, w) ∈ I. Then νkp(θn\m(A ∩ spr I)) ≤ 2 wt I.

proof (a) For each (E, I, w) ∈ I set E′ = θn(E) ∈ Bn, I ′ = I ∩ n and

w′ =
( ‖I‖

‖I′‖

)αkw ≤ 4αkw ≤ 2w.

By 394E, with m = 0 and A = X, (E′, I ′, w′) ∈ Ckp. Set J = {(E′, I ′, w′) : (E, I, w) ∈ I} and B = sprJ .
Then
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B =
⋃

(E,I,w)∈I θn(E) = θn(spr I)

and

νkpB ≤ wtJ =
∑

(E,I,w)∈I w
′ ≤ 2 wt I,

as required.

(b) This time, take n > m so large that I ⊆ n whenever (E, I, w) ∈ I. For (E, I, w) ∈ I, set

E′ = θn\m(A ∩ E), I ′ = I \m = I ∩ n \m, w′ =
( ‖I‖

‖I′‖

)αkw ≤ 2w.

Then 394E tells us that (E′, I ′, w′) ∈ Ckp. Setting J = {(E′, I ′, w′) : (E, I, w) ∈ I},

θN\m(A ∩ spr I) =
⋃

(E,I,w)∈I θN\m(A ∩ E) ⊆ ⋃
(E,I,w)∈I E

′ = sprJ ,

so

νkp(θN\m(A ∩ spr I)) ≤ wtJ ≤ 2 wt I.

(c) For (E, I, w) ∈ I set

E′ = θn\m(A ∩ E), I ′ = I ∩ n \m, w′ =
( ‖I‖

‖I′‖

)αkw ≤ (2k+4)αkw ≤ 2w.

Then (E′, I ′, w′) ∈ Ckp. Setting J = {(E′, I ′, w′) : (E, I, w) ∈ I},

θn\m(A ∩ spr I) =
⋃

(E,I,w)∈I θn\m(A ∩ E) =
⋃

(E,I,w)∈I E
′ = sprJ ,

so

νkp(θn\m(A ∩ spr I)) ≤ wtJ ≤ 2 wt I.

394G We are at the centre of the argument.

Lemma Suppose that L ∈ [N]<ω is such that ‖L‖ ≤ 1, and z ∈ ∏
r∈L Tr. Then νkpYz ≥ ck whenever k ≤ p

in N.

proof Induce on p− k.

(a) If k = p then

Cpp = ∅, νppYz = ∞.

For the downwards step to k < p, given that νk+1,pYz ≥ ck+1, take a finite set I ⊆ Ckp such that wt I < ck.
The rest of this proof is devoted to showing that Yz 6⊆ spr I.

(b) It will help to get a trivial case out of the way. If I ⊆ Ck+1,p, then we have

wt I < ck ≤ ck+1 ≤ νk+1,pYz

by the inductive hypothesis, so certainly Yz 6⊆ spr I. Accordingly we may suppose henceforth that I 6⊆
Ck+1,p.

A second elementary point is that ‖I‖ ≥ 22k+12 whenever (E, I, w) ∈ I. PPP We have an l such that
k ≤ l < p and (E, I, w) ∈ Ekp, so

2−l
( Nl

‖I‖

)αl ≤ w ≤ ck ≤ 24

and ‖I‖ ≥ 22l+12 ≥ 22k+12, by the choice of Nl. QQQ

(c) Express I as J ∪ K where J ⊆ Ck+1,p and K ⊆ Ekp. Set s = #(K) > 0. For (E, I, w) ∈ K we
have w ≥ 2−k, so s ≤ 2kck ≤ 2k+4 (394Cg). Consequently ‖I‖ ≥ 22k+12 ≥ 2k+8s whenever (E, I, w) ∈
K. By 394Da, we can find m0 < m1 < . . . < ms and an enumeration 〈(Ei,Ki, wi)〉i<s of K such that
‖Ki ∩ mi+1 \ mi‖ = 2k+8 for i < s. By 394Db we can find members ui, vi of Ki ∩ mi+1 \ mi such that
ui < vi, for i < s, and setting W =

⋃
i<s vi \ ui, L ∩W = ∅ and
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S = wt{(E, I, w) : (E, I, w) ∈ J , ‖I \W‖ < 1

2
‖I‖}

≤ 1

2k+8−2
wtJ ≤ 2−k−6ck ≤ 2−k−2.

(d) Set

J1 = {(E, I, w) : (E, I, w) ∈ J , ‖I \W‖ < 1

2
‖I‖}, J2 = J \ J1;

then

wtJ1 = S ≤ 2−k−2 ≤ 1

4

and ‖I ∩W‖ > 1
2‖I‖ whenever (E, I, w) ∈ J1. For i < s set

J1i = {(E, I, w) : (E, I, w) ∈ J1, ‖I ∩ vi \ ui‖ ≥ 2−k−5‖I‖}.

Since s ≤ 2k+4, J1 =
⋃
i<s J1i.

(e) Suppose that i < s and A ∈ Aui
. Then there is an A′ ∈ Avi such that A′ ⊆ A \ (Ei ∪ sprJ1i). PPP Set

C = θvi\ui
(A ∩ sprJ1i) ∈ Bvi . By 394Fc, applied in Ck+1,p,

νk+1,pC ≤ 2 wtJ1i ≤ 2 wtJ1 < 1.

As (Ei,Ki, wi) ∈ Ekp, Ei is νk+1,p-thin between ui and vi, νk+1,p(X \ θvi\ui
(A ∩ Ei)) ≥ 1 and C does not

include X \ θvi\ui
(A ∩ Ei). Since these sets both belong to Bvi there is an A1 ∈ Avi disjoint from both C

and θvi\ui
(A∩Ei), that is, disjoint from θvi\ui

(A∩ (Ei ∪ sprJ1i)). Now A′ = A∩ θvi\ui
(A1) belongs to Avi ,

is included in A and is disjoint from Ei ∪ sprJ1i. QQQ

(f) We can therefore find a function Γ : X → X such that Γ[X] is disjoint from spr(K ∪ J1), while
Γ(x)↾m is determined by x↾m for every m ∈ N. PPP By (e) just above, we have for each i < s a function
qi : Aui

→ Avi such that qi(A) ⊆ A \ (Ei ∪ sprJ1i) for every A ∈ Aui
. We can re-interpret qi as a function

hi :
∏
n<ui

Tn → ∏
n<vi

Tn defined by saying that if A = {x : x↾ui = y} then qi(A) = {x : x↾vi = hi(y)};
note that y = hi(y)↾ui for every y ∈ ∏

n<ui
Tn. Now, for x ∈ X, define Γ(x)(n) inductively by saying that

Γ(x)(n) = x(n) if n ∈ N \W,
= hi(Γ(x)↾ui)(n) if i < s and ui ≤ n < vi.

Of course this ensures that Γ(x)↾m is determined by x↾m for every m. If i < s, x ∈ X, and A ∈ Aui

is such that Γ(x) ∈ A, then Γ(x) ∈ qi(A), which is disjoint from Ei ∪ sprJ1i. Thus Γ[X] is disjoint from⋃
i<sEi ∪ sprJ1i = spr(K ∪ J1). QQQ

(g) Take (E, I, w) ∈ J2 and consider νk+1,p(Γ
−1[E]).

(i) There is an l such that k ≤ l < p and (E, I, w) ∈ Elp. Now if m, n ∈ I are such that m < n and
n \m is disjoint from W , Γ−1[E] is νl+1,p-thin between m and n. PPP Take any A ∈ Am. Because Γ(x)↾m is
determined by x↾m, we can find an A′ ∈ Am such that Γ[A] ⊆ A′. In this case,

A ∩ Γ−1[E] ⊆ Γ−1[Γ[A] ∩ E] ⊆ Γ−1[A′ ∩ E] ⊆ θn\m(A′ ∩ E)

because Γ(x)(i) = x(i) whenever x ∈ X and i ∈ n \m. So θn\m(A ∩ Γ−1[E]) ⊆ θn\m(A′ ∩ E) and

νl+1,p(X \ θn\m(A ∩ Γ−1[E])) ≥ νl+1,p(X \ θn\m(A′ ∩ E)) ≥ 1

because E is νl+1,p-thin between m and n. QQQ

(ii) As noted in (b), ‖I‖ ≥ 22k+12 ≥ 4s. For each i < s such that min I ≤ ui, let u−i be the largest
element of I which is less than or equal to ui. Set I ′ = I \ (W ∪ {u−i : i < s, min I ≤ ui}). Then

‖I ′‖ ≥ ‖I‖

2
− s ≥ ‖I‖

4
.
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Now Γ−1[E] is νl+1,p-thin along I ′. PPP Suppose that m, n ∈ I ′ and m < n. Let m+ be the least element
of I such that m < m+. Then m+ ≤ n. ??? If W ∩m+ \m 6= ∅, there is an i < s such that m+ \m meets
vi \ ui, that is, m < vi and ui < m+. Since m ∈ I ′ ⊆ N \W , m ≤ ui and u−i is defined; now m 6= u−i so
m < u−i ∈ I and m+ ≤ u−i ≤ ui. XXX Thus W ∩m+ \m is empty and (i) tells us that Γ−1[E] is νl+1,p-thin
between m and m+, therefore νl+1,p-thin between m and n (394Cc). As m and n are arbitrary, Γ−1[E] is
νl+1,p-thin along I ′. QQQ

(iii) If we now set w′ = 4αlw, we see that

1 ≤ ‖I ′‖ ≤ ‖I‖ ≤ Nl, w′ ≥ 2−l4αl
( Nl

‖I‖

)αl ≥ 2−l
( Nl

‖I′‖

)αl ,

so

(Γ−1[E], I ′, w′) ∈ Elp ⊆ Ck+1,p

and

νk+1,p(Γ
−1[E]) ≤ w′ = 4αlw ≤ 4αkw.

(h) We are nearly done. Applying (g) to each member of J2,

νk+1,p(Γ
−1[sprJ2]) ≤ 4αk wtJ2 ≤ 4αk wt I < 4αkck = ck+1 ≤ νk+1,pYz

by the inductive hypothesis in its full strength. So there is a y ∈ Yz \Γ−1[sprJ2]. With (f), this means that
Γ(y) does not belong to

spr(K ∪ J1) ∪ spr(J2) = spr I.

On the other hand, Γ(y) ∈ Yz because L ∩W = ∅. As I was arbitrary, νkpYz must be at least ck, which is
what we need to know to proceed with the induction.

394H Definitions I present the last two definitions required. Fix on a non-principal ultrafilter F on N.
For k ∈ N, set

νkE = limp→F νkpE ∈ [0,∞]

for every E ∈ B; finally, write ν for ν0.

394I Proposition (a) For every k ∈ N, νk is a totally finite submeasure and νkX ≥ 8.
(b) ν is not uniformly exhaustive.

proof (a) It follows directly from the definition in 392A that νk, being a limit of submeasures, is a submea-
sure. By 394Ch, νkX ≤ 2−kNαk

k is finite. By 394G and 394Cg,

νkX = limp→F νkpX ≥ ck ≥ 8.

(b) For any n ∈ N and t ∈ Tn,

νYnt = limp→F ν0pYnt ≥ 8

by 394G. As supn∈N #(Tn) is infinite, and 〈Ynt〉t∈Tn
is disjoint for every n, ν is not uniformly exhaustive.

394J Lemma Suppose that k ∈ N, E ∈ B, I ∈ [N]<ω and E is 1
2νk-thin along I. Then

{p : p ≥ k, E is νkp-thin along I} ∈ F .

If k ≥ 1 and ‖I‖ = Nk−1, then νk−1E ≤ 2−k+1.

proof If m, n ∈ I, m < n and A ∈ Am, then νk(X \ θn\m(A ∩ E)) ≥ 2. So

UAn = {p : p ≥ k, νkp(X \ θn\m(A ∩ E)) ≥ 1}
belongs to F . Setting U =

⋂
m<n in I,A∈Am

UAn, U ∈ F and E is νkp-thin along I for every p ∈ U .

If k ≥ 1 and ‖I‖ = Nk−1, then (E, I, 2−k+1) ∈ Ek−1,p for every p ∈ U , so νk−1,pE ≤ 2−k+1 for every
p ∈ U and νk−1E ≤ 2−k+1.
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394K Lemma Let m, k ∈ N and let 〈Ei〉i∈N be a sequence in B such that

every Ei is determined by coordinates in N \m,
νk(

⋃
i≤nEi) < 2 for every n ∈ N.

Then for every η > 0 there is a C ∈ B, determined by coordinates in N \ m, such that νkC ≤ 4 and
νk(Ei \ C) ≤ η for each i.

proof (a) For each n > m, set

Ẽn =
⋃{Ei : i ≤ n, Ei ∈ Bn},

so that Ẽn is determined by coordinates in n \m and νkẼn < 2. Set

Un = {p : p ≥ k, νkpẼn < 2} ∈ F .

For p ∈ Un we can find a finite Inp ⊆ Ckp such that Ẽn ⊆ spr Inp and wt Inp ≤ 2. For r > m set

Inpr = {(E, I, w) : (E, I, w) ∈ Inp,

‖I ∩ (r − 1) \m‖ < 1

2
‖I‖ ≤ ‖I ∩ r \m‖},

and set

I ′
np = {(E, I, w) : (E, I, w) ∈ Inp, ‖I ∩m‖ ≥ 1

4
‖I‖}.

Set Bnp = θm(spr I ′
np); then

νkpBnp ≤ 2 wt I ′
np ≤ 4,

by 394Fa. Since νkpX ≥ ck ≥ 8 (394G, 394Cg again), Bnp 6= X and there is an Anp ∈ Am disjoint from
spr I ′

np. Next, for m < r ≤ n and p ∈ Un set

Jnpr = {(θr\m(Anp ∩ E), I ∩ r \m, 2w) : (E, I, w) ∈ Inpr}, Fnpr = sprJnpr.
By 394E, Jnpr ⊆ Ckp, so νkpFnpr ≤ wtJnpr ≤ 2 wt Inpr. Note that Fnpr is determined by coordinates in

r \m and includes Anp ∩ spr Inpr. Now if m < j ≤ n and p ∈ Un, Ẽj ⊆
⋃
m<r≤j Fnpr. PPP??? Otherwise, since

both sets are determined by coordinates in j \m, and since Anp ∈ Am, there is an A ∈ Aj with

A ⊆ Anp ∩ Ẽj \
⋃
m<r≤j Fnpr ⊆ Anp ∩ Ẽj \

⋃
m<r≤j spr Inpr.

Since A is also disjoint from spr I ′
np and A ⊆ Ẽj ⊆ spr Inp, A ⊆ spr I, where

I = Inp \ (I ′
np ∪

⋃

m<r≤j

Inpr)

⊆ {(E, I, w) : (E, I, w) ∈ Inp, ‖I \ j‖ ≥ 1

4
‖I‖}.

Since I ⊆ Ckp,

8 ≤ νkpX = νkp(θN\j(A)) = νkp(θN\j(A ∩ spr I)) ≤ 2 wt I
(394Fb)

≤ 4. XXXQQQ

(b) For r > m we can find Fr ∈ B such that∑∞
r=m+1 νkFr ≤ 4,

Ẽj ⊆
⋃
m<r≤j Fr for every j > m,

Fr is determined by coordinates in r \m.

PPP If n ≥ r > m, then, because Br is finite, there is a set Fnr ∈ Br such that {p : p ∈ Un, Fnpr = Fnr}
belongs to F . Next, if r > m there is an Fr ∈ Br such that {n : n ≥ r, Fnr = Fr} belongs to F . Now
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νkFr = lim
n→F

νkFnr

(because {n : νkFnr = νkFr} ⊇ {n : Fnr = Fr} ∈ F)

= lim
n→F

lim
p→F

νkpFnr = lim
n→F

lim
p→F

νkpFnpr ≤ 2 lim
n→F

lim
p→F

wt Inpr.

So, for s > m,

s∑

r=m+1

νkFr ≤ 2

s∑

r=m+1

lim
n→F

lim
p→F

wt Inpr

= 2 lim
n→F

lim
p→F

s∑

r=m+1

wt Inpr ≤ 2 lim
n→F

lim
p→F

wt Inp ≤ 4.

As s is arbitrary,
∑∞
r=m+1 νkFr ≤ 4.

If n ≥ j > m, then we saw in (a) that Ẽj ⊆
⋃
m<r≤j Fnpr for every p ∈ Un. Since there are many p such

that Fnr = Fnpr whenever m < r ≤ j, Ẽj ⊆
⋃
m<r≤j Fnr. Now, given j > m, there are many n such that

Fnr = Fr whenever m < r ≤ j, so Ẽj ⊆
⋃
m<r≤j Fr.

Finally, take any r > m. Since Fnpr is determined by coordinates in r \m whenever n ≥ r and p ∈ Un,
Fnr is determined by coordinates in r \ m whenever n ≥ r, and Fr also is determined by coordinates in
r \m. QQQ

(c) Let r0 ≥ m be such that
∑∞
r=r0+1 νkFr ≤ η. Set C =

⋃
m<r≤r0

Fr. Then C is determined by

coordinates in N \m and

νkC ≤ ∑r0
r=m+1 νkFr ≤ 4.

For any i ∈ N, there is some j > r0 such that Ei ⊆ Ẽj , in which case

Ei \ C ⊆ ⋃
r0<r≤j

Fr

and

νk(Ei \ C) ≤ ∑j
r=r0+1 νkFr ≤ η,

as required.

394L Lemma Suppose that k ∈ N, ǫ > 0, m ∈ N, B ∈ Bm and that 〈Ei〉i∈N is a disjoint sequence
in B. Then there are n > m and B′ ∈ Bn such that B′ ⊆ B, B′ is 1

2νk-thin between m and n and
lim supi→∞ νk(Ei ∩B \B′) ≤ ǫ.

proof Set η =
ǫ

#(Am)
. (This is where we need to know that all the Tn are finite.) For those A ∈ Am

included in B define C ′
A ⊆ A as follows.

case 1 If there is some r such that νk(θN\m(A ∩ ⋃
i≤r Ei)) ≥ 2, set C ′

A = A \ ⋃
i≤r Ei, so that

1
2νk(θN\m(A \ C ′

A)) ≥ 1 and Ei ∩A \ C ′
A = ∅ for i > r.

case 2 If νk(θN\m(A ∩ ⋃
i≤r Ei)) < 2 for every r, then by 394K, applied to the sequence 〈θN\m(A ∩

Ei)〉i∈N, we can find a C ∈ B, determined by coordinates in N \m, such that νkC ≤ 4 and νk(θN\m(A ∩
Ei) \ C) ≤ η for every i. Set C ′

A = C ∩ A. Because C is determined by coordinates in N \m and A ∈ Am,
νk(θN\m(C ′

A)) = νkC ≤ 4. Also Ei ∩A \ C ′
A ⊆ θN\m(A ∩ Ei) \ C so νk(Ei ∩A \ C ′

A) ≤ η for every i.

Set

B′ =
⋃{C ′

A : A ∈ Am, A ⊆ B}.

Then B′ ∈ B, B′ ⊆ B and
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lim sup
i→∞

νk(Ei ∩B \B′) ≤
∑

A∈Am,A⊆B

lim sup
i→∞

νk(Ei ∩A \ C ′
A)

≤
∑

A∈Am,A⊆B

η ≤ ǫ.

Let n > m be such that C ′
A ∈ Bn whenever A ∈ Am and A ⊆ B. Then B′ is 1

2νk-thin between m and n.

PPP Take any A ∈ Am and set C̃ = θn\m(A∩B′). If A 6⊆ B then A∩B′ and C̃ are empty and νk(X \ C̃) ≥ 8

(394Ia). Otherwise, A∩B′ = C ′
A ∈ Bn so C̃ = θN\m(C ′

A) is disjoint from θN\m(A \C ′
A) (see the last remark

in 394Cb). If C ′
A was chosen as in case 1 above,

νk(X \ C̃) ≥ νk(θN\m(A \ C ′
A)) ≥ 2.

If C ′
A was chosen as in case 2,

νk(X \ C̃) = νk(X \ θN\m(C ′
A)) ≥ νkX − νk(θN\m(C ′

A)) ≥ 8 − 4.

So in all three cases we have 1
2νk(X \ C̃) ≥ 1, as required. QQQ

Thus we have an appropriate B′.

394M Theorem ν is exhaustive.

proof Let 〈Ei〉i∈N be a disjoint sequence in B. Take any k ∈ N and ǫ > 0, and choose 〈Bj〉j∈N and 〈nj〉j∈N

inductively, as follows. B0 = X and n0 = 0. Given that Bj ∈ Bnj
, take nj+1 > nj and Bj+1 ∈ Bnj+1

such

that Bj+1 ⊆ Bj , Bj+1 is 1
2νk+1-thin between nj and nj+1, and lim supi→∞ νk+1(Ei ∩ Bj \ Bj+1) ≤ 2−jǫ

(394L). Continue. Note that lim supi→∞ νk+1(Ei \Bj) ≤ 2ǫ for every j.
Let l be so large that I = {nj : j < l} has ‖I‖ = Nk. (This is where we need to know that liml→∞ ‖A∩l‖ =

∞ for every infinite A ⊆ N.) Set B = Bl−1. Then B is 1
2νk+1-thin along I (use 394Cc). By 394J, νkB ≤ 2−k.

Of course ν ≤ νk ≤ νk+1 (394Cf). So

lim supi→∞ νEi ≤ νkB + lim supi→∞ νk+1(Ei \B) ≤ 2−k + 2ǫ.

As k, ǫ and 〈Ei〉i∈N are arbitrary, ν is exhaustive.

394N Remarks (a) Note that the whole construction is invariant under the action of the group
∏
n∈N

Gn
where Gn is the group of all permutations of Tn for each n. In particular, if we give each Tn a group structure
and X the product group structure, then ν is translation-invariant.

(b) It follows that ν is strictly positive. PPP For each n ∈ N, ν is constant on An, so νE ≥ νX/#(An) > 0
for every non-empty E ∈ Bn. QQQ

(c) We can therefore form the metric completion B̂ of B, as in 392H, and B̂ will be a Maharam algebra,

with a strictly positive Maharam submeasure ν̂ continuously extending ν (393H). Now B̂ is not measurable.

PPP??? Otherwise, let µ̄ be such that (B̂, µ̄) is a probability algebra. Then µ̄ and ν̂ are strictly positive Maharam

submeasures on B̂, so ν̂ is absolutely continuous with respect to µ̄ (393F). Let n ≥ 1 be such that ν̂b < 8
whenever µ̄b ≤ 1/#(Tn). Then there must be a t ∈ Tn such that µ̄Ynt ≤ 1/#(Tn); but ν̂Ynt = νYnt ≥ 8 (see
the proof of 394Ib). XXXQQQ

In fact, B̂ is nowhere measurable (394Ya).

*394O Control measures One of the original reasons for studying Maharam submeasures was their
connexion with the following notion. Let A be a Dedekind σ-complete Boolean algebra and U a Hausdorff
linear topological space. (The idea is intended to apply, in particular, when A is a σ-algebra of subsets of a
set.) A function θ : A → U is a vector measure if

∑∞
n=0 θan = limn→∞

∑n
i=0 θai is defined in U and equal

to θ(supn∈N an) for every disjoint sequence 〈an〉n∈N in A. In this case, a non-negative countably additive
functional µ : A → [0,∞[ is a control measure for θ if θa = 0 whenever µa = 0.

*394P Example There are a metrizable linear topological space U and a vector measure θ : Σ → U ,
where Σ is a σ-algebra of sets, such that θ has no control measure.
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proof As in 394Nc, let B̂ be the metric completion of B, and ν̂ the continuous extension of ν to B̂. Give

L0 = L0(B̂) the topology defined from ν̂ as in 393K, so that L0 is a metrizable linear topological space.

By 314M, we can identify B̂ with a quotient algebra Σ/N where Σ is a σ-algebra of subsets of a set Ω
and N is a σ-ideal in Σ. Set θE = χE• ∈ L0 for E ∈ Σ. Then θ is a vector measure. PPP If 〈En〉n∈N is
a disjoint sequence in Σ with union E, set Fn =

⋃
i≤nEi, so that χF •

n =
∑n
i=0 χE

•
i for each n. We have

ν̂(E• \ F •
n) → 0, so that

τ(θE − θFn) = τ(χE• − χF •
n)) = min(1, ν̂(E• \ F •

n)) → 0,

where τ is the functional of the proof of 393K, and θE =
∑∞
i=0 θEi in L0. QQQ

If µ is a totally finite measure with domain Σ, set

λa = inf{µE : E ∈ Σ, E• = a}
for every a ∈ B̂. Note that the infimum is always attained. PPP If 〈En〉n∈N is a sequence in Σ such that
E•
n = a for every n ∈ N and λa = limn→∞ µEn, set E =

⋂
n∈N

En; then E• = a and µE = λa. QQQ Next, λ

is countably additive. PPP If 〈an〉n∈N is a disjoint sequence in B̂ with supremum a, take En ∈ Σ such that
E•
n = an and µEn = λan for each n, and E ∈ Σ such that E• = a and µE = λa. Set Fn = E ∩En \

⋃
i<nEi

for each n, and F =
⋃
n∈N

Fn. Then F •
n = an and Fn ⊆ En, so µFn = λan for each n; similarly, F • = a and

F ⊆ E, so µF = λa. Also 〈Fn〉n∈N is disjoint and has union F . Accordingly

λa = µF =
∑∞
n=0 µFn =

∑∞
n=0 λan. QQQ

Since B̂ is not a measurable algebra, λ cannot be strictly positive, and there is a non-zero a ∈ B̂ such
that λa = 0. Let E ∈ Σ be such that E• = a and µE = 0; then θE = χa 6= 0. So µ is not a control measure
for θ.

*394Q This is not a book about vector measures, but having gone so far I ought to note that the
generality of the phrase ‘metrizable linear topological space’ in 394P is essential. If we look only at normed
spaces the situation is very different.

Theorem Let A be a Dedekind σ-complete Boolean algebra, U a normed space and θ : A → U a vector
measure. Then θ has a control measure.

proof (a) Since U can certainly be embedded in a Banach space Û (3A5Jb), and as θ will still be a vector

measure when regarded as a map from A to Û , we may assume from the beginning that U itself is complete.

(b) θ is bounded (that is, supa∈A ‖θa‖ is finite). PPP??? (Cf. 326M.) Suppose, if possible, otherwise.
Choose 〈an〉n∈N inductively, as follows. a0 = 1. Given that supa⊆an

‖θa‖ = ∞, choose b ⊆ an such that
‖θb‖ ≥ ‖θan‖ + 1. Then ‖θ(an \ b)‖ ≥ 1. Also

supa⊆an
‖θa‖ ≤ supa⊆an

‖θ(a ∩ b)‖ + ‖θ(a \ b)‖,

so at least one of supa⊆b ‖θa‖, supa⊆an\b ‖θa‖ must be infinite. We may therefore take an+1 to be either b
or an \ b and such that supa⊆an+1

‖θa‖ = ∞. Observe that in either case we shall have ‖θ(an \ an+1)‖ ≥ 1.
Continue.

At the end of the induction we shall have a disjoint sequence 〈an \ an+1〉n∈N such that ‖θ(an \ an+1)‖ ≥ 1
for every n, so that

∑∞
n=0 θ(an \ an+1) cannot be defined in U ; which is impossible. XXXQQQ

(c) Accordingly we have a bounded linear operator T : L∞ → U , where L∞ = L∞(A), such that Tχ = θ
(363Ea).

Now the key to the proof is the following fact: if 〈un〉n∈N is a disjoint order-bounded sequence in (L∞)+,
〈Tun〉n∈N → 0 in U . PPP Let γ be such that un ≤ γχ1 for every n. Let ǫ > 0, and let k be the integer
part of γ/ǫ. For n ∈ N, i ≤ k set ani = [[un > ǫ(i+ 1)]]; then 〈ani〉n∈N is disjoint for each i, and if we set

vn = ǫ
∑k
i=0 χani, we get vn ≤ un ≤ vn + ǫχ1, so ‖un − vn‖∞ ≤ ǫ.

Because 〈ani〉n∈N is disjoint,
∑∞
n=0 θani is defined in U , and 〈θani〉n∈N → 0, for each i ≤ k. Consequently

Tvn = ǫ
∑k
i=0 θani → 0

as n→ ∞. But
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‖Tun − Tvn‖ ≤ ‖T‖‖un − vn‖∞ ≤ ǫ‖T‖
for each n, so lim supn→∞ ‖Tun‖ ≤ ǫ‖T‖. As ǫ is arbitrary, limn→∞ ‖Tun‖ = 0. QQQ

(d) Consider the adjoint operator T ′ : U∗ → (L∞)∗. Recall that L∞ is an M -space (363Ba) so that its
dual is an L-space (356N). Write

A = {T ′g : g ∈ U∗, ‖g‖ ≤ 1} ⊆ (L∞)∗ = (L∞)∼.

If u ∈ L∞, then

supf∈A |f(u)| = sup‖g‖≤1 |(T ∗g)(u)| = sup‖g‖≤1 |g(Tu)| = ‖Tu‖.

Now A is uniformly integrable. PPP I use the criterion of 356O. Of course ‖f‖ ≤ ‖T ′‖ for every f ∈ A, so A
is norm-bounded. If 〈un〉n∈N is an order-bounded disjoint sequence in (L∞)+, then

supf∈A |f(un)| = ‖Tun‖ → 0

as n→ ∞. So A is uniformly integrable. QQQ

(e) Next, A ⊆ (L∞)∼c . PPP If f ∈ A, it is of the form T ′g for some g ∈ U∗, that is,

f(χa) = (T ′g)(χa) = gT (χa) = g(θa)

for every a ∈ A. If now 〈an〉n∈N is a disjoint sequence in A with supremum a,

f(χa) = g(θ(supn∈N an)) = g(
∑∞
n=0 θan) =

∑∞
n=0 g(θan) =

∑∞
n=0 f(χan).

So fχ is countably additive. By 363K, f ∈ (L∞)∼c . QQQ

(f) Because A is uniformly integrable, there is for each m ∈ N an fm ≥ 0 in (L∞)∗ such that ‖(|f | −
fm)+‖ ≤ 2−m for every f ∈ A; moreover, we can suppose that fm is of the form supi≤km |fmi| where every
fmi belongs to A (354R(b-iii)), so that fm ∈ (L∞)∼c and µm = fmχ is countably additive. Set

µ =
∑∞
m=0

1

2m(1+µm1)
µm;

then µ : A → [0,∞[ is a non-negative countably additive functional.
Now µ is a control measure for θ. PPP If µa = 0, then µma = 0, that is, fm(χa) = 0, for every m ∈ N. But

this means that if g ∈ U∗ and ‖g‖ ≤ 1,

|g(θa)| = |(T ′g)(χa)| ≤ fm(χa) + ‖(|T ′g| − fm)+‖ ≤ 2−m

for every m, by the choice of fm; so that g(θa) = 0. As g is arbitrary, θa = 0; as a is arbitrary, µ is a control
measure for θ. QQQ

394X Basic exercises (a) Show that the metric completion B̂ of B, as defined in 394N, always has
many involutions (definition: 382O).

394Y Further exercises (a)(i) Show that if r ∈ N, k ≤ p and E ∈ Br+1 are such that νkpE < ck,

then νkp(θr(E)) ≤ 32

ck
νkpE. (ii) Show that if E ∈ Br then ν(E ∩ Yrt) ≥ min(8, 14νE) for every t ∈ Tr. (iii)

Let B̂ be the metric completion of B and ν̂ the continuous extension of ν to B̂. Show that for every a ∈ B

and n ∈ N there is a disjoint family 〈ci〉i≤n such that ci ⊆ a and ν̂ci ≥ min(7, 15 ν̂a) for every i ≤ n. (iv)

Show that the only countably additive real-valued functional on B̂ is the zero functional. (v) Show that B̂

is nowhere measurable. (vi) Show that if ν′ is a uniformly exhaustive submeasure on B which is absolutely
continuous with respect to ν, then ν′ = 0.

394Z Problems Suppose that ‖ ‖, 〈Tn〉n∈N, B, 〈αk〉k∈N and 〈Nk〉k∈N satisfy the conditions of 394Ba-

394Bb. Let ν be the exhaustive submeasure on B constructed by the method of 394B and 394H, and B̂ the
corresponding Maharam algebra.

(a) Does B̂ have an order-closed subalgebra isomorphic to the measure algebra of Lebesgue measure? In
particular, if we take C ⊆ B to be the algebra of sets generated by sets of the form {x : x ∈ X, x(n) = 0}
for n ∈ N, is ν↾C uniformly exhaustive?
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38 Measurable algebras 394Zb

(b) Suppose that instead of taking large sets Tn, we simply set Tn = {0, 1} for every n, but otherwise
used the same construction. Should we then find that ν was uniformly exhaustive? (This might be relevant
to (a) above.)

(c) Is the Boolean algebra B̂ homogeneous?

394 Notes and comments ‘Maharam’s problem’, or the ‘control measure problem’, was for fifty years one
of the most vexing questions in abstract measure theory. To begin with, there were reasonable hopes that
there was a positive answer – in the language of this book, that every Maharam algebra was a measurable
algebra. If this had been the case, there would have been consequences all over the theories of topological
Boolean algebras, topological Riesz spaces and vector measures. In the 1970s, it began to seem too much to
ask for. In 1983 the Kalton-Roberts theorem gave new life to the conjecture for a moment, but Roberts

93 demonstrated a major obstacle, which Talagrand (building on some further ideas of I.Farah) eventually
developed into the construction above. The ideas which for a generation were collected together by their
association with the control measure problem no longer have this as a unifying principle, and (as after any
successful revolution) are now more naturally grouped in other ways. There is a relic of this era in 394P.

Now that we know for sure that there are non-measurable Maharam algebras, it becomes possible to ask
questions about their structure. Frustratingly, practically none of these questions has yet been answered
even for the examples constructed by Talagrand’s original method, in which ‖I‖ = #(I) for every I. (Of
course this allows variations in the parameters 〈Tn〉n∈N, 〈αk〉k∈N and 〈Nk〉k∈N and the filter F , and there is
every reason to suppose that c non-isomorphic examples can be constructed by the formulae set out above.)
I will return briefly to such questions in Volumes 4 and 5, as I come to further properties of measure algebras
which can be interpreted in Maharam algebras. In particular, following Perović & Veličković 18, I will
show in §539 how different PV norms can give rise to distinguishable Maharam algebras.

Version of 15.6.08

395 Kawada’s theorem

I now describe a completely different characterization of (homogeneous) measurable algebras, based on
the special nature of their automorphism groups. The argument depends on the notion of ‘non-paradoxical’
group of automorphisms; this is an idea of great importance in other contexts, and I therefore aim at a fairly
thorough development, with proofs which are adaptable to other circumstances.

395A Definitions Let A be a Dedekind complete Boolean algebra, and G a subgroup of AutA. For a,
b ∈ A I will say that an isomorphism φ : Aa → Ab between the corresponding principal ideals belongs to the
full local semigroup generated by G if there are a partition of unity 〈ai〉i∈I in Aa and a family 〈πi〉i∈I
in G such that φc = πic whenever i ∈ I and c ⊆ ai. If such an isomorphism exists I will say that a and b
are G-τ-equidecomposable.

I will write a 4τG b to mean that there is a b′ ⊆ b such that a and b′ are G-τ -equidecomposable.
For any function f with domain A, I will say that f is G-invariant if f(πa) = f(a) whenever a ∈ A and

π ∈ G.

395B The notion of ‘full local semigroup’ is of course an extension of the idea of ‘full subgroup’ (381Be;
see also 381Yb). The word ‘semigroup’ is justified by (c) of the following lemma, and the word ‘full’ by (e).

Lemma Let A be a Dedekind complete Boolean algebra and G a subgroup of AutA. Write G∗
τ for the full

local semigroup generated by G.
(a) Suppose that a, b ∈ A and that φ : Aa → Ab is an isomorphism. Then the following are equiveridical:

(i) φ ∈ G∗
τ ;

(ii) for every non-zero c0 ⊆ a there are a non-zero c1 ⊆ c0 and a π ∈ G such that φc = πc for every
c ⊆ c1;

c© 1996 D. H. Fremlin
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(iii) for every non-zero c0 ⊆ a there are a non-zero c1 ⊆ c0 and a ψ ∈ G∗
τ such that φc = ψc for every

c ⊆ c1.
(b) If a, b ∈ A and φ : Aa → Ab belongs to G∗

τ , then φ−1 : Ab → Aa also belongs to G∗
τ .

(c) Suppose that a, b, a′, b′ ∈ A and that φ : Aa → Aa′ , ψ : Ab → Ab′ belong to G∗
τ . Then ψφ ∈ G∗

τ ; its
domain is Ac where c = φ−1(b ∩ a′), and its set of values is Ac′ where c′ = ψ(b ∩ a′).

(d) If a, b ∈ A and φ : Aa → Ab belongs to G∗
τ , then φ↾Ac ∈ G∗

τ for any c ⊆ a.
(e) Suppose that a, b ∈ A and that ψ : Aa → Ab is an isomorphism such that there are a partition of

unity 〈ai〉i∈I in Aa and a family 〈φi〉i∈I in G∗
τ such that ψc = φic whenever i ∈ I and c ⊆ ai. Then ψ ∈ G∗

τ .

proof (a) (Compare 381I.)

(i)⇒(iii) is trivial, since of course G ⊆ G∗
τ .

(iii)⇒(ii) Suppose that φ satisfies (iii), and that 0 6= c0 ⊆ a. Then we can find a ψ ∈ G∗
τ and a non-zero

c1 ⊆ c0 such that φ agrees with ψ on Ac1 . Suppose that domψ = Ad, where necessarily d ⊇ c1. Then there
are a partition of unity 〈di〉i∈I in Ad and a family 〈πi〉i∈I such that ψc = πic whenever c ⊆ di. There is
some i ∈ I such that c2 = c1 ∩ di 6= 0, and we see that φc = ψc = πic for every c ⊆ c2. As c0 is arbitrary, φ
satisfies (ii).

(ii)⇒(i) If φ satisfies (ii), set

D = {d : d ⊆ a, there is some π ∈ G such that πc = φc for every c ⊆ d}.

The hypothesis is that D is order-dense in A, so there is a partition of unity 〈ai〉i∈I of Aa lying within D
(313K); for each i ∈ I take πi ∈ G such that φc = πic for c ⊆ ai; then 〈ai〉i∈I and 〈πi〉i∈I witness that
φ ∈ G∗

τ .

(b) This is elementary; if 〈ai〉i∈I , 〈πi〉i∈I witness that φ ∈ G∗
τ , then 〈φai〉i∈I = 〈πiai〉i∈I , 〈π−1

i 〉i∈I witness
that φ−1 ∈ G∗

τ .

(c) I ought to start by computing the domain of ψφ:

d ∈ dom(ψφ) ⇐⇒ d ∈ domφ, φd ∈ domψ

⇐⇒ d ⊆ a, φd ⊆ b ⇐⇒ d ⊆ φ−1(a′ ∩ b) = c.

So the domain of ψφ is indeed Ac; now φ↾Ac is an isomorphism between Ac and Aφc, where φc = a′ ∩ b ∈ Ab,
so ψφ is an isomorphism between Ac and Aψφc = Ac′ . Let 〈ai〉i∈I , 〈bj〉j∈J be partitions of unity in Aa,
Ab respectively, and 〈πi〉i∈I , 〈θj〉j∈J families in G such that φd = πid for d ⊆ ai, ψe = θje for e ⊆ bj . Set

cij = ai ∩ π
−1
i bj ; then 〈cij〉i∈I,j∈J is a partition of unity in Ac and ψφd = θjπid for d ⊆ cij , so ψφ ∈ G∗

τ

(because all the θjπi belong to G).

(d) This is nearly trivial; use the definition of G∗
τ or the criteria of (a), or apply (c) with the identity

map on Ac as one of the factors.

(e) This follows at once from the criterion (a-iii) above, or otherwise.

395C Lemma Let A be a Dedekind complete Boolean algebra and G a subgroup of AutA. Write G∗
τ

for the full local semigroup generated by G.
(a) For a, b ∈ A, a 4τG b iff there is a φ ∈ G∗

τ such that a ∈ domφ and φa ⊆ b.
(b)(i) 4τG is transitive and reflexive;

(ii) if a 4τG b and b 4τG a then a and b are G-τ -equidecomposable.
(c) G-τ -equidecomposability is an equivalence relation on A.
(d) If 〈ai〉i∈I and 〈bi〉i∈I are families in A, of which 〈bi〉i∈I is disjoint, and ai 4

τ
G bi for every i ∈ I, then

supi∈I ai 4
τ
G supi∈I bi.

proof (a) This is immediate from the definition of ‘G-τ -equidecomposable’ and 395Bd.

(b)(i) a 4τG a because the identity homomorphism belongs to G∗
τ . If a 4τG b 4τG c there are φ, ψ ∈ G∗

τ

such that φa ⊆ b, ψb ⊆ c so that ψφa ⊆ c; as ψφ ∈ G∗
τ (395Bc), a 4τG c.
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(ii) (This is of course a Schröder-Bernstein theorem, and the proof is the usual one.) Take φ, ψ ∈ G∗
τ

such that φa ⊆ b, ψb ⊆ a. Set a0 = a, b0 = b, an+1 = ψbn and bn+1 = φan for each n. Then 〈an〉n∈N,
〈bn〉n∈N are non-increasing sequences; set a∞ = infn∈N an, b∞ = infn∈N bn. For each n,

φ↾Aa2n\a2n+1
: Aa2n\a2n+1

→ Ab2n+1\b2n+2
,

ψ↾Ab2n\b2n+1
: Ab2n\b2n+1

→ Aa2n+1\a2n+2

are isomorphisms, while

φ↾Aa∞ : Aa∞ → Ab∞

is another. So we can define an isomorphism θ : Aa → Ab by setting

θc = φc if c ⊆ a∞ ∪ sup
n∈N

a2n \ a2n+1,

= ψ−1c if c ⊆ sup
n∈N

a2n+1 \ a2n+2.

By 395Be, θ ∈ G∗
τ , so a and b are G-τ -equidecomposable.

(c) This is easy to prove directly from the results in 395B, but also follows at once from (b); any transitive
reflexive relation gives rise to an equivalence relation.

(d) We may suppose that I is well-ordered by a relation ≤. For i ∈ I, set a′i = ai \ supj<i aj . Set
a = supi∈I ai = supi∈I a

′
i, b = supi∈I bi. For each i ∈ I, we have a b′i ⊆ bi and a φi ∈ G∗

τ such that φia
′
i = b′i.

Set b′ = supi∈I b
′
i ⊆ b; then we have an isomorphism ψ : Aa → Ab′ defined by setting ψd = φid if d ⊆ a′i,

and ψ ∈ G∗
τ , so a and b′ are G-τ -equidecomposable and a 4τG b.

395D Theorem Let A be a Dedekind complete Boolean algebra and G a subgroup of AutA. Then the
following are equiveridical:

(i) there is an a 6= 1 such that a is G-τ -equidecomposable with 1;
(ii) there is a disjoint sequence 〈an〉n∈N of non-zero elements of A which are all G-τ -equidecomposable;
(iii) there are non-zero G-τ -equidecomposable a, b, c ∈ A such that a ∩ b = 0 and a ∪ b ⊆ c;
(iv) there are G-τ -equidecomposable a, b ∈ A such that a ⊂ b.

proof Write G∗
τ for the full local semigroup generated by G.

(i)⇒(ii) Assume (i). There is a φ ∈ G∗
τ such that φ1 = a. Set an = φn(1 \ a) for each n ∈ N; because

every φn belongs to G∗
τ (counting φ0 as the identity operator on A, and using 395Bc), with domφn = A, an

is G-τ -equidecomposable with a0 = 1 \ a for every n. Also an = φn1 \ φn+11 for each n, while 〈φn1〉n∈N is
non-increasing, so 〈an〉n∈N is disjoint. Thus (ii) is true.

(ii)⇒(iii) Assume (ii). Set a = supn∈N a2n, b = supn∈N a2n+1, c = supn∈N an, so that a ∩ b = 0 and
a ∪ b = c. For each n we have a φn ∈ G∗

τ such that φna0 = an. So if we set

ψd = supn∈N φnφ
−1
2n (d ∩ a2n) for d ⊆ a,

ψ belongs to G∗
τ (using 395B) and witnesses that a and c are G-τ -equidecomposable. Similarly, b and c are

G-τ -equidecomposable, so (iii) is true.

(iii)⇒(iv) is trivial.

(iv)⇒(i) Take φ ∈ G∗
τ such that φb = a. Set

ψd = φ(d ∩ b) ∪ (d \ b)

for d ∈ A; then ψ ∈ G∗
τ witnesses that 1 is G-τ -equidecomposable with a ∪ (1 \ b) 6= 1.

395E Definition Let A be a Dedekind complete Boolean algebra and G a subgroup of AutA. I will
say that G is fully non-paradoxical if the statements of 395D are false; that is, if one of the following
equiveridical statements is true:

(i) if a is G-τ -equidecomposable with 1 then a = 1;
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(ii) there is no disjoint sequence 〈an〉n∈N of non-zero elements of A which are all G-τ -equide-
composable;

(iii) there are no non-zero G-τ -equidecomposable a, b, c ∈ A such that a ∩ b = 0 and a ∪ b ⊆ c;

(iv) if a ⊆ b ∈ A and a, b are G-τ -equidecomposable then a = b.

Note that if G is fully non-paradoxical, and H is a subgroup of G, then H also is fully non-paradoxical,
because if a 4τH b then a 4τG b, so that a and b are G-τ -equidecomposable whenever they are H-τ -equide-
composable.

395F Proposition Let (A, µ̄) be a totally finite measure algebra, and G = Autµ̄A the group of all
measure-preserving automorphisms of A. Then G is fully non-paradoxical.

proof If φ : A → Aa belongs to the full local semigroup generated by G, then we have a partition of unity
〈ai〉i∈I and a family 〈πi〉i∈I in G such that φai = πiai for every i; but this means that

µ̄a =
∑
i∈I µ̄φiai =

∑
i∈I µ̄πiai =

∑
i∈I µ̄ai = µ̄1.

As µ̄1 <∞, we can conclude that a = 1, so that G satisfies the condition (i) of 395E.

395G The fixed-point subalgebra of a group Let A be a Boolean algebra and G a subgroup of
AutA.

(a) By the fixed-point subalgebra of G I mean

C = {c : c ∈ A, πc = c for every π ∈ G}.

(I looked briefly at this construction in 333R, and in the special case of a group generated by a single element
it appeared at various points in Chapter 38.) This is a subalgebra of A, and is order-closed, because every
π ∈ G is order-continuous.

(b) Now suppose that A is Dedekind complete. In this case C is Dedekind complete (314Ea), and we
have, for any a ∈ A, an upper envelope upr(a,C) of C, defined by setting

upr(a,C) = inf{c : a ⊆ c ∈ C}
(313S). Now upr(a,C) = sup{πa : π ∈ G}. PPP Set c1 = upr(a,C), c2 = sup{πa : π ∈ G}. (i) Because
a ⊆ c1 ∈ C, πa ⊆ πc1 = c1 for every π ∈ G, and c2 ⊆ c1. (ii) For any φ ∈ G,

φc2 = supπ∈G φπa = supπ∈G πa = c2

because G = {φπ : π ∈ G}. So c2 ∈ C; since also a ⊆ c2, c1 ⊆ c2, and c1 = c2, as claimed. QQQ

(c) Again supposing that A is Dedekind complete, write G∗
τ for the full local semigroup generated by

G. Then φ(a ∩ c) = φa ∩ c whenever φ ∈ G∗
τ , a ∈ domφ and c ∈ C. PPP We have φa = supi∈I πiai, where

a = supi∈I ai and πi ∈ G for every i. Now

φ(a ∩ c) = supi∈I πi(ai ∩ c) = supi∈I πiai ∩ c = φa ∩ c. QQQ

Consequently upr(φa,C) = upr(a,C) whenever φ ∈ G∗
τ and a ∈ domφ. PPP For c ∈ C,

a ⊆ c ⇐⇒ a ∩ c = a ⇐⇒ φ(a ∩ c) = φa ⇐⇒ φa ∩ c = φa ⇐⇒ φa ⊆ c. QQQ

It follows that upr(a,C) ⊆ upr(b,C) whenever a 4τG b.

(d) Still supposing that A is Dedekind complete, we also find that if a 4τG b and c ∈ C then a ∩ c 4τG b ∩ c.
PPP There is a φ ∈ G∗

τ such that φa ⊆ b; now φ(a ∩ c) = φa ∩ c ⊆ b ∩ c. QQQ Hence, or otherwise, a ∩ c and b ∩ c
are G-τ -equidecomposable whenever a and b are G-τ -equidecomposable and c ∈ C.

(e) By analogy with the notion of ‘ergodic automorphism’, I will say that G is ergodic if supπ∈G πa = 1
for every non-zero a ∈ A. Thus an automorphism π is ergodic in the sense of 372Oa iff the group {πn : n ∈ Z}
it generates is ergodic (372Pb).
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(f) If G is ergodic, then C = {0, 1}. (If c ∈ C \ {0}, then 1 = supπ∈G πc = c.) If A is Dedekind complete
and C = {0, 1} then G is ergodic. (If a ∈ A \ {0}, then 1 = upr(a,C) = supπ∈G πa, by (b) above.) (Cf.
392Sa, 392Sc.)

395H I now embark on a series of lemmas leading to the main theorem (395N).

Lemma Let A be a Dedekind complete Boolean algebra and G a fully non-paradoxical subgroup of AutA.
Write C for the fixed-point subalgebra of G. Take any a, b ∈ A. Set c0 = sup{c : c ∈ C, a ∩ c 4τG b}; then
a ∩ c0 4τG b and b \ c0 4τG a.

proof Enumerate G as 〈πξ〉ξ<κ, where κ = #(G). Define 〈aξ〉ξ<κ, 〈bξ〉ξ<κ inductively, setting

aξ = (a \ supη<ξ aη) ∩ π−1
ξ (b \ supη<ξ bη), bξ = πξaξ.

Then 〈aξ〉ξ<κ is a disjoint family in Aa and 〈bξ〉ξ<κ is a disjoint family in Ab, and supξ<κ aξ is G-τ -
equidecomposable with supξ<κ bξ. Set a′ = a \ supξ<κ aξ, b

′ = b \ supξ<κ bξ,

c̃0 = 1 \ upr(a′,C) = sup{c : c ∈ C, c ∩ a′ = 0}.

Then

a ∩ c̃0 ⊆ supξ<κ aξ 4
τ
G b,

so c̃0 ⊆ c0.
Now b′ ⊆ c̃0. PPP??? Otherwise, because c̃0 = 1 \ supξ<κ πξa

′ (395Gb), there must be a ξ < κ such that

πξa
′ ∩ b′ 6= 0. But in this case d = a′ ∩ π−1

ξ b′ 6= 0, and we have

d ⊆ (a \ supη<ξ aη) ∩ π−1
ξ (b \ supη<ξ bη),

so that d ⊆ aξ, which is absurd. XXXQQQ Consequently

b \ c̃0 ⊆ supξ<κ bξ 4
τ
G a.

Now take any c ∈ C such that a ∩ c 4τG b, and consider c′ = c \ c̃0. Then b′ ∩ c′ = 0, that is, b ∩ c′ =
supξ<κ bξ ∩ c′, which is G-τ -equidecomposable with supξ<κ aξ ∩ c′ = (a \ a′) ∩ c′ (395Gd). But now

a ∩ c′ = a ∩ c ∩ c′ 4τG b ∩ c′ 4τG (a ∩ c′) \ (a′ ∩ c′);

because G is fully non-paradoxical, a′ ∩ c′ must be 0, that is, c′ ⊆ c̃0 and c′ = 0. As c′ is arbitrary, c0 ⊆ c̃0
and c0 = c̃0. So c0 has the required properties.

Remark By analogy with the notation I used in discussing the Hahn decomposition of countably additive
functionals (326S-326T), we might denote c0 as ‘[[a 4τG b]]’, or perhaps ‘[[a 4τG b]]C’, ‘the region (in C) where
a 4τG b’. The same notation would write upr(a,C) as ‘[[a 6= 0]]C’.

395I The construction I wish to use depends essentially on L0 spaces as described in §364. The next
step is the following.

Lemma Let A be a Dedekind complete Boolean algebra, not {0}, and G a fully non-paradoxical subgroup
of AutA. Let C be the fixed-point subalgebra of G. Suppose that a, b ∈ A and that upr(a,C) = 1. Then
there are u, v ∈ L0 = L0(C) such that

[[u ≥ n]] = max{c : c ∈ C, there is a disjoint family 〈di〉i<n
such that c ∩ a 4τG di ⊆ b for every i < n},

[[v ≤ n]] = max{c : c ∈ C, there is a family 〈di〉i<n
such that di 4

τ
G a for every i < n and b ∩ c ⊆ sup

i<n

di}

for every n ∈ N. Moreover, we can arrange that
(i) [[u ∈ N]] = [[v ∈ N]] = 1,
(ii) [[v > 0]] = upr(b,C),
(iii) u ≤ v ≤ u+ χ1.
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Remark By writing ‘max’ in the formulae above, I mean to imply that the elements [[u ≥ n]], [[v ≤ n]] belong
to the sets described.

proof (a) Choose 〈cn〉n∈N, 〈bn〉n∈N as follows. Given 〈bi〉i<n, set b′n = b \ supi<n bi,

cn = sup{c : c ∈ C, a ∩ c 4τG b′n},

so that a ∩ cn 4τG b′n (395H); choose bn ⊆ b′n such that a ∩ cn is G-τ -equidecomposable with bn, and continue.
Then 〈bn〉n∈N is a disjoint sequence in Ab and 〈cn〉n∈N is a non-increasing sequence in C.

For each n, we have b′n \ cn 4τG a, by 395H; while a ∩ c 64τG b′n whenever c ∈ C and c 6⊆ cn. Note also that,
because upr(a,C) = 1,

cn = upr(a ∩ cn,C) = upr(bn,C) ⊆ upr(b′n,C)

(using 395Gc for the second equality).

(b) Now infn∈N cn = 0. PPP Setting c∞ = infn∈N cn, 〈bn ∩ c∞〉n∈N is a disjoint sequence, all G-τ -equide-
composable with a ∩ c∞, so a ∩ c∞ = 0, because G is fully non-paradoxical; because upr(a,C) = 1, it follows
that c∞ = 0. QQQ Accordingly, if we set u = supn∈N(n + 1)χcn, u ∈ L0 and [[u ≥ n]] = cn−1 for n ≥ 1. The
construction ensures that [[u ∈ N]], as defined in 364G, is equal to 1.

(c) Consider next c′0 = upr(b,C), c′n = cn−1 ∩ upr(b′n,C) for n ≥ 1. Then 〈c′n〉n∈N is a non-increasing
sequence with zero infimum, so again we can define v ∈ L0 by setting v = supn∈N(n + 1)χc′n. Once again,
[[v ∈ N]] = 1, and [[v ≤ n]] = 1 \ c′n for each n.

Of course [[v > 0]] = c′0 = upr(b,C). Because cn ⊆ c′n ⊆ cn−1,

(n+ 1)χcn ≤ (n+ 1)χc′n ≤ nχcn−1 + χ1

for each n ≥ 1, and u ≤ v ≤ u+ χ1.

(d) Now set

Cn = {c : c ∈ C, there is a disjoint family 〈di〉i<n
such that c ∩ a 4τG di ⊆ b for every i < n}.

Then cn = maxCn+1.

PPP(ααα) Because cn ⊆ cn−1 ⊆ . . . ⊆ c0, a ∩ cn 4τG bi for every i ≤ n, so that 〈bi〉i≤n witnesses that cn ∈
Cn+1.

(βββ) Suppose that c ∈ Cn+1; let 〈di〉i≤n be a disjoint family such that c ∩ a 4τG di ⊆ b for every i. Set
c′ = c \ cn. For each i < n, bi 4

τ
G a, so

bi ∩ c
′ 4τG a ∩ c′ 4τG di ∩ c

′,

while also

b′n ∩ c′ 4τG a ∩ c′ 4τG dn ∩ c′.

Take d ⊆ dn ∩ c′ such that b′n ∩ c′ is G-τ -equidecomposable with d. Then

b ∩ c′ = (b′n ∩ c′) ∪ supi<n(bi ∩ c
′) 4τG d ∪ supi<n(di ∩ c

′) ⊆ b ∩ c′.

Because G is fully non-paradoxical, d ∪ supi<n(di ∩ c
′) must be exactly b ∩ c′, so d must be the whole of

dn ∩ c′, and

a ∩ c′ 4τG dn ∩ c′ = d 4τG b′n.

But this means that c′ ⊆ cn. Thus c′ = 0 and c ⊆ cn. So cn = supCn+1 = maxCn+1. QQQ
Accordingly

[[u ≥ n]] = cn−1 = maxCn

for n ≥ 1. For n = 0 we have [[u ≥ 0]] = 1 = maxC0. So [[u ≥ n]] = maxCn for every n, as required.

(e) Similarly, if we set
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C ′
n = {c : c ∈ C, there is a family 〈di〉i<n

such that di 4
τ
G a for every i < n and b ∩ c ⊆ sup

i<n

di}

then 1 \ c′n = maxC ′
n for every n.

PPP(ααα) If n = 0, then of course (interpreting sup ∅ as 0) 1 \ c′0 ∈ C ′
0 because b ⊆ c′0. For each n ∈ N, set

b̃n = bn ∪ (b′n \ cn) = (bn ∩ cn) ∪ (b′n \ cn).

Because bn 4τG a and b′n \ cn 4τG a, we have bn ∩ cn 4τG a ∩ cn and b′n \ cn 4τG a \ cn, so b̃n 4τG a (395Cd). If
we look at

supi<n b̃i ⊇ supi<n bi ∪ (b′n−1 \ cn−1),

we see that, for n ≥ 1,

b \ supi<n b̃i ⊆ b′n ∩ cn−1 ⊆ c′n,

so that b \ c′n ⊆ supi<n b̃i and {b̃i : i < n} witnesses that 1 \ c′n ∈ C ′
n.

(βββ) Now take any c ∈ C ′
n and a corresponding family 〈di〉i<n such that di 4

τ
G a for every i < n and

b ∩ c ⊆ supi<n di.
Set c′ = c ∩ c′n. For each i < n,

c′ ∩ di 4
τ
G c′ ∩ a 4τG bi

because c′ ⊆ ci. So (by 395Cd, as usual)

c′ ∩ b 4τG c′ ∩ supi<n bi ⊆ c′ ∩ b,

and (again because G is fully non-paradoxical) c′ ∩ b = c′ ∩ supi<n bi, that is, c′ ∩ b′n = 0. But c′ ⊆ c′n ⊆

upr(b′n,C), so c′ must be 0, which means that c ⊆ 1 \ c′n. As c is arbitrary, 1 \ c′n = supC ′
n = maxC ′

n. QQQ
Thus [[v ≤ n]] = maxC ′

n, as declared.

395J Notation Observe that the specification of [[u ≥ n]] and [[v ≤ n]], together with the declaration
that [[u ∈ N]] = [[v ∈ N]] = 1, determine u and v uniquely, because 〈[[u = n]]〉n∈N and 〈[[v = n]]〉n∈N must be
partitions of unity. So, in the context of 395I, we can write ⌊b : a⌋ for u and ⌈b : a⌉ for v.

395K Lemma Let A be a Dedekind complete Boolean algebra, not {0}, and G a fully non-paradoxical
subgroup of AutA with fixed-point subalgebra C. Suppose that a, b, b1, b2 ∈ A and that upr(a,C) = 1.

(a) ⌊0 : a⌋ = ⌈0 : a⌉ = 0, ⌊1 : a⌋ ≥ χ1 and ⌊1 : 1⌋ = χ1.
(b) If b1 4τG b2 then ⌊b1 : a⌋ ≤ ⌊b2 : a⌋ and ⌈b1 : a⌉ ≤ ⌈b2 : a⌉.
(c) ⌈b1 ∪ b2 : a⌉ ≤ ⌈b1 : a⌉ + ⌈b2 : a⌉.
(d) If b1 ∩ b2 = 0, ⌊b1 : a⌋ + ⌊b2 : a⌋ ≤ ⌊b1 ∪ b2 : a⌋.
(e) If c ∈ C is such that a ∩ c is a relative atom over C (definition: 331A), then c ⊆ [[⌈b : a⌉ − ⌊b : a⌋ = 0]].

proof (a)-(b) are immediate from the definitions and the basic properties of 4τG, ⌈. . . ⌉ and ⌊. . . ⌋, as listed
in 395C and 395I.

(c) For j, k ∈ N, set cjk = [[⌈b1 : a⌉ = j]] ∩ [[⌈b2 : a⌉ = k]]. Then

cjk ⊆ [[⌈b1 ∪ b2 : a⌉ ≤ j + k]] ∩ [[⌈b1 : a⌉ + ⌈b2 : a⌉ = j + k]].

PPP We may suppose that cjk 6= 0. Of course

cjk ⊆ [[⌈b1 : a⌉ + ⌈b2 : a⌉ = j + k]].

Next, there are sets J , J ′ ⊆ A such that d 4τG a for every d ∈ J ∪ J ′, #(J) ≤ j, #(J ′) ≤ k, sup J ⊇ b1 ∩ cjk
and sup J ′ ⊇ b2 ∩ cjk. So sup(J ∪ J ′) ⊇ (b1 ∪ b2) ∩ cjk and J ∪ J ′ witnesses that cjk ⊆ [[⌈b1 ∪ b2 : a⌉ ≤ j + k]].
QQQ

Accordingly

cjk ⊆ [[⌈b1 : a⌉ + ⌈b2 : a⌉ − ⌈b1 ∪ b2 : a⌉ ≥ 0]].
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Now as supj,k∈N cjk = 1, we must have ⌈b1 ∪ b2 : a⌉ ≤ ⌈b1 : a⌉ + ⌈b2 : a⌉.
(d) This time, set cjk = [[⌊b1 : a⌋ = j]] ∩ [[⌊b2 : a⌋ = k]] for j, k ∈ N. Then

cjk ⊆ [[⌊b1 ∪ b2 : a⌋ ≥ j + k]] ∩ [[⌊b1 : a⌋ + ⌊b2 : a⌋ = j + k]]

for every j, k ∈ N. PPP Once again, we surely have

cjk ⊆ [[⌊b1 : a⌋ + ⌊b2 : a⌋ = j + k]].

Next, we can find a family 〈di〉i<j+k such that

〈di〉i<j is disjoint, a ∩ cjk 4τG di ⊆ b1 for every i < k,

〈di〉j≤i<j+k is disjoint, a ∩ cjk 4τG di ⊆ b2 for j ≤ i < j + k.

As b1 ∩ b2 = 0, the whole family 〈di〉i<j+k is disjoint and witnesses that cjk ⊆ [[⌊b1 ∪ b2 : a⌋ ≥ j + k]]. QQQ
So

cjk ⊆ [[⌊b1 ∪ b2 : a⌋ − ⌊b1 : a⌋ − ⌊b2 : a⌋ ≥ 0]]

Since supj,k∈N cjk = 1, as before, we must have ⌊b1 ∪ b2 : a⌋ ≥ ⌊b1 : a⌋ + ⌊b2 : a⌋.
(e) ??? Otherwise, there must be some k ∈ N such that

c0 = c ∩ [[⌊b : a⌋ = k]] ∩ [[⌈b : a⌉ > k]] 6= 0.

Let 〈di〉i<k be a disjoint family in Ab such that a ∩ c0 4τG di for each i; cutting the di down if necessary, we
may suppose that a ∩ c0 is G-τ -equidecomposable with di for each i. As c0 6⊆ [[⌈b : a⌉ ≤ k]], b ∩ c0 6⊆ supi<k di;
set d = b ∩ c0 \ supi<k di 6= 0. By 395H, there is a c1 ∈ C such that d ∩ c1 4τG a and a \ c1 4τG d. Setting
dk = d, 〈di〉i≤k witnesses that c0 ⊆ c1 ⊆ [[⌊b : a⌋ ≥ k + 1]], so c0 ⊆ c1 must be 0 and d ∩ c0 4τG a. There is
therefore a non-zero ã ⊆ a ∩ c0 such that ã 4τG d. But now remember that a ∩ c is supposed to be a relative
atom over C, so ã = a ∩ c̃ for some c̃ ∈ C such that c̃ ⊆ c0. In this case, a ∩ c̃ 4τG di for every i < k and also
a ∩ c̃ 4τG d, so 0 6= c̃ ⊆ [[⌊b : a⌋ ≥ k + 1]], which is absurd. XXX

395L Lemma Let A be a Dedekind complete Boolean algebra, not {0}, and G a fully non-paradoxical
subgroup of AutA with fixed-point subalgebra C. Suppose that a1, a2, b ∈ A and that upr(a1,C) =
upr(a2,C) = 1. Then

⌊b : a2⌋ ≥ ⌊b : a1⌋ × ⌊a1 : a2⌋, ⌈b : a2⌉ ≤ ⌈b : a1⌉ × ⌈a1 : a2⌉.

proof I use the same method as in 395K. As usual, write G∗
τ for the full local semigroup generated by G.

(a) For j, k ∈ N set

cj,k = [[⌊b : a1⌋ = j]] ∩ [[⌊a1 : a2⌋ = k]].

Then

cj,k ⊆ [[⌊b : a1⌋ × ⌊a1 : a2⌋ = jk]] ∩ [[⌊b : a2⌋ ≥ jk]].

PPP Write c for cj,k. As in parts (c) and (d) of the proof of 395K, the fact that c ⊆ [[⌊b : a1⌋ × ⌊a1 : a2⌋ = jk]]
is elementary; what we need to check is that c ⊆ [[⌊b : a2⌋ ≥ jk]]. Again, we may suppose that c 6= 0. There
are families 〈di〉i<j , 〈d∗l 〉l<k such that

〈di〉i<j is disjoint, a1 ∩ c 4τG di ⊆ b for every i < j,

〈d∗l 〉l<k is disjoint, a2 ∩ c 4τG d∗l ⊆ a1 for every l < k.

For each i < j, let φi ∈ G∗
τ be such that φi(a1 ∩ c) ⊆ di. If i < j and l < k, then

a2 ∩ c 4τG d∗l ∩ c 4τG φi(d
∗
l ∩ c) ⊆ φi(a1 ∩ c) ⊆ di ⊆ b.

Also 〈φi(d∗l ∩ c)〉i<j,l<k is disjoint because 〈φi(a1 ∩ c)〉i<j and 〈d∗l 〉l<k are, so witnesses that c ⊆ [[⌊b : a2⌋ ≥ jk]].
QQQ

Now, just as in 395K, it follows from the fact that supj,k∈N cj,k = 1 that ⌊b : a1⌋ × ⌊a1 : a2⌋ ≤ ⌊b : a2⌋.
(b) For j, k ∈ N set
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cj,k = [[⌈b : a1⌉ = j]] ∩ [[⌈a1 : a2⌉ = k]].

Then

cj,k ⊆ [[⌈b : a1⌉ × ⌈a1 : a2⌉ = jk]] ∩ [[⌈b : a2⌉ ≤ jk]].

PPP Write c for cj,k. Then c ⊆ [[⌈b : a1⌉ × ⌈a1 : a2⌉ = jk]]. There are families 〈di〉i<j , 〈d∗l 〉l<k such that
di 4

τ
G a1 for every i < j, d∗l 4

τ
G a2 for every l < k, b ∩ c ⊆ supi<j di and a1 ∩ c ⊆ supl<k d

∗
l . For each i < j,

let d′i ⊆ a1 be G-τ -equidecomposable with di, and take φi ∈ G∗
τ such that φid

′
i = di. Then

φi(d
′
i ∩ d

∗
l ) 4

τ
G d∗l 4

τ
G a2 for every i < j, l < k,

sup
i<j,l<k

φi(d
′
i ∩ d

∗
l ) = sup

i<j

φi(d
′
i ∩ sup

l<k

d∗l ) ⊇ sup
i<j

φi(d
′
i ∩ c)

= sup
i<j

di ∩ c ⊇ b ∩ c.

So 〈φi(d′i ∩ d∗l )〉i<j,l<k witnesses that c ⊆ [[⌈b : a2⌉ ≤ jk]]. QQQ
Once again, it follows easily that ⌈b : a1⌉ × ⌈a1 : a2⌉ ≥ ⌈b : a2⌉.

395M Lemma Let A be a Dedekind complete Boolean algebra, not {0}, and G a subgroup of AutA
with fixed-point subalgebra C.

(a) For any a ∈ A, there is a b ⊆ a such that b 4τG a \ b and a \ upr(b,C) is a either 0 or a relative atom
over C.

(b) Now suppose that G is fully non-paradoxical. Then for any ǫ > 0 there is an a ∈ A such that
upr(a,C) = 1 and ⌈b : a⌉ ≤ ⌊b : a⌋ + ǫ⌊1 : a⌋ for every b ∈ A.

proof (a) SetB = {d : d ⊆ a, d 4τG a \ d} and letD ⊆ B be a maximal subset such that upr(d,C) ∩ upr(d′,C)
= 0 for all distinct d, d′ ∈ D. Set b = supD. For any d ∈ D, d 4τG a \ d, so

b ∩ upr(d,C) = sup
d′∈D

d′ ∩ upr(d,C) = sup
d′∈D

d′ ∩ upr(d′,C) ∩ upr(d,C) = d ∩ upr(d,C)

4τG (a \ d) ∩ upr(d,C) = (a \ b) ∩ upr(d,C) ⊆ a \ b

by 395Gc. By 395H,

b = supd∈D b ∩ upr(d,C) 4τG a \ b.

??? Suppose, if possible, that a′ = a \ upr(b,C) is neither 0 nor a relative atom over C. Let d0 ⊆ a′ be an
element not expressible as a′ ∩ c for any c ∈ C; then d0 6= a ∩ upr(d0,C) and there must be a π ∈ G such
that d1 = πd0 ∩ a \ d0 is non-zero (395Gb). In this case

d1 4τG π−1d1 ⊆ d0 ⊆ a \ d1,

so d1 ∈ B; but also

d1 ∩ upr(d,C) ⊆ d1 ∩ upr(b,C) = 0,

so upr(d1,C) ∩ upr(d,C) = 0, for every d ∈ D, and we ought to have put d1 into D. XXX
Thus b has the required properties.

(b)(i) For every n ∈ N we can find an ∈ A and cn ∈ C such that upr(an,C) = 1, an \ cn is either 0 or
a relative atom over C, and ⌊1 : an⌋ ≥ 2nχcn. PPP Induce on n. The induction starts with a0 = c0 = 1,
because ⌊1 : 1⌋ = χ1. For the inductive step, having found an and cn, let d ⊆ an ∩ cn be such that
d 4τG an ∩ cn \ d and an ∩ cn \ upr(d,C) is either 0 or a relative atom over C, as in (a). Set cn+1 = upr(d,C),
an+1 = (an \ cn+1) ∪ d; then

upr(an+1,C) = upr(an \ cn+1,C) ∪ upr(d,C)

= (upr(an,C) \ cn+1) ∪ cn+1 = (1 \ cn+1) ∪ cn+1 = 1

by 313Sb-313Sc and the inductive hypothesis.
We have cn+1 ∩ d 4τG cn+1 ∩ an \ d, so
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cn+1 ∩ an+1 = d ⊆ an, cn+1 ∩ an+1 4τG an \ d,

and ⌊an : an+1⌋ ≥ 2χcn+1; by 395L,

⌊1 : an+1⌋ ≥ ⌊1 : an⌋ × ⌊an : an+1⌋ ≥ 2nχcn × 2χcn+1 = 2n+1χcn+1.

If

b ⊆ an+1 \ cn+1 = (an \ cn) ∪ (an ∩ cn \ cn+1),

then, because both terms on the right are either 0 or relative atoms over C, there are c′, c′′ ∈ C such that

b = (b ∩ an \ cn) ∪ (b ∩ an ∩ cn \ cn+1)

= (c′ ∩ an \ cn) ∪ (c′′ ∩ an ∩ cn \ cn+1) = c ∩ an+1 \ cn+1

where c = (c′ \ cn) ∪ (c′′ ∩ cn) belongs to C. So an+1 \ cn+1 is either 0 or a relative atom over C.
Thus the induction continues. QQQ

(ii) Now suppose that ǫ > 0. Take n such that 2−n ≤ ǫ, and consider an, cn taken from (i) above.
Let b ∈ A. Set

c = [[⌈b : an⌉ − ⌊b : an⌋ − ǫ⌊1 : an⌋ > 0]] ∈ C.

Since we know that

ǫ⌊1 : an⌋ ≥ 2−n2nχcn = χcn, ⌈b : an⌉ ≤ ⌊b : an⌋ + χ1,

we must have c ∩ cn = 0. But this means that an ∩ c is either 0 or a relative atom over C. By 395Ke, c is
included in [[⌈b : an⌉ − ⌊b : an⌋ = 0]]; as also ⌊1 : an⌋ ≥ χ1 (395Ka), c must be zero, that is, ⌈b : an⌉ ≤ ⌊b :
an⌋ + ǫ⌊1 : an⌋.

395N We are at last ready for the theorem.

Theorem Let A be a Dedekind complete Boolean algebra and G a fully non-paradoxical subgroup of AutA
with fixed-point subalgebra C. Then there is a unique function θ : A → L∞(C) such that

(i) θ is additive, non-negative and order-continuous;
(ii) [[θa > 0]] = upr(a,C) for every a ∈ A; in particular, θa = 0 iff a = 0;
(iii) θ1 = χ1;
(iv) θ(a ∩ c) = θa× χc for every a ∈ A, c ∈ C; in particular, θc = χc for every c ∈ C;
(v) If a, b ∈ A are G-τ -equidecomposable, then θa = θb; in particular, θ is G-invariant.

proof If A = {0} this is trivial; so I suppose henceforth that A 6= {0}.

(a) Set A∗ = {a : a ∈ A, upr(a,C) = 1} and for a ∈ A∗, b ∈ A set

θa(b) =
⌈b : a⌉
⌊1 : a⌋ ∈ L0 = L0(C);

the first thing to note is that because ⌊1 : a⌋ ≥ χ1, we can always do the divisions to obtain elements θa(b)
of L0(A) (364N). Set

θb = infa∈A∗ θab

for b ∈ A. (Note that L0(C) is Dedekind complete, by 364M, so the infimum is defined.)

(b) The formulae of 395K tell us that, for a ∈ A∗ and b1, b2 ∈ A,

θa0 = 0, θab1 ≤ θab2 if b1 ⊆ b2,

θa(b1 ∪ b2) ≤ θab1 + θab2,

θa1 ≥ χ1.

It follows at once that

θ0 = 0, θb1 ≤ θb2 if b1 ⊆ b2,
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θ1 ≥ χ1.

(c) For each n ∈ N there is an en ∈ A∗ such that ⌈b : en⌉ ≤ ⌊b : en⌋ + 2−n⌊1 : en⌋ for every b ∈ A

(395Mb). Now θenb ≤ θab+ 2−n⌈b : a⌉ for every a ∈ A∗, b ∈ A. PPP⌈a : en⌉ ≤ ⌊a : en⌋ + 2−n⌊1 : en⌋, so

⌈a : en⌉ × ⌊1 : a⌋ ≤ ⌊a : en⌋ × ⌊1 : a⌋ + 2−n⌊1 : en⌋ × ⌊1 : a⌋
≤ ⌊1 : en⌋ + 2−n⌊1 : en⌋ × ⌊1 : a⌋

(by 395L); accordingly

⌈b : en⌉ × ⌊1 : a⌋ ≤ ⌈b : a⌉ × ⌈a : en⌉ × ⌊1 : a⌋
(by the other half of 395L)

≤ ⌈b : a⌉ × ⌊1 : en⌋ + 2−n⌈b : a⌉ × ⌊1 : en⌋ × ⌊1 : a⌋

and, dividing by ⌊1 : a⌋ × ⌊1 : en⌋, we get θenb ≤ θab+ 2−n⌈b : a⌉. QQQ
(d) Now θ is additive. PPP Taking 〈en〉n∈N from (c), observe first that

infn∈N θenb ≤ θab+ infn∈N 2−n⌈b : a⌉ = θab

for every a ∈ A∗, b ∈ A, so that θb = infn∈N θenb for every b. Now suppose that b1, b2 ∈ A and b1 ∩ b2 = 0.
Then, for any n ∈ N,

⌈b1 : en⌉ + ⌈b2 : en⌉ ≤ ⌊b1 : en⌋ + ⌊b2 : en⌋ + 2−n+1⌊1 : en⌋
≤ ⌊b1 ∪ b2 : en⌋ + 2−n+1⌊1 : en⌋

(by 395Kd)

≤ ⌈b1 ∪ b2 : en⌉ + 2−n+1⌊1 : en⌋.

Dividing by ⌊1 : en⌋, we have

θb1 + θb2 ≤ θenb1 + θenb2 ≤ θen(b1 ∪ b2) + 2−n+1χ1.

Taking the infimum over n, we get

θb1 + θb2 ≤ θ(b1 ∪ b2).

In the other direction, if a, a′ ∈ A∗ and n ∈ N,

θ(b1 ∪ b2) ≤ θen(b1 ∪ b2) ≤ θen(b1) + θen(b2)

≤ θa(b1) + 2−n⌈b1 : a⌉ + θa′(b2) + 2−n⌈b2 : a′⌉.
As n is arbitrary, θ(b1 ∪ b2) ≤ θa(b1)+θa′(b2); as a and a′ are arbitrary, θ(b1 ∪ b2) ≤ θb1 +θb2 (using 351Dc).

As b1 and b2 are arbitrary, θ is additive. QQQ
We see also that ⌈1 : en⌉ ≤ (1 + 2−n)⌊1 : en⌋, so that θen1 ≤ (1 + 2−n)χ1 for each n; since we already

know that θ1 ≥ χ1, we have θ1 = χ1 exactly.

(e) If c ∈ C then

[[θc > 0]] ⊆ [[θ1c > 0]] ⊆ [[⌈c : 1⌉ > 0]] = upr(c,C) = c

(395I(ii)). It follows that

θ(b ∩ c) ≤ θb ∧ θc ≤ θb× χc

for any b ∈ A, c ∈ C. Similarly, θ(b \ c) ≤ θb × χ(1 \ c); adding, we must have equality in both, and
θ(b ∩ c) = θb× χc.

Rather late, I point out that

0 ≤ θa ≤ θ1 = χ1 ∈ L∞ = L∞(C)
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for every a ∈ A, so that θa ∈ L∞ for every a.

(f) If b ∈ A \ {0}, then

[[θb > 0]] ⊆ [[θ1b > 0]] ⊆ [[⌈b : 1⌉ > 0]] = upr(b,C)

by 395I(ii) again. ??? Suppose, if possible, that [[θb > 0]] 6= upr(b,C). Set c0 = upr(b,C) \ [[θb > 0]], a0 =
b ∪ (1 \ upr(b,C)) ∈ A∗. Let k ≥ 1 be such that c1 = c0 ∩ [[⌈1 : a0⌉ ≤ k]] 6= 0. Then a0 ∩ c1 = b ∩ c1, so

θa0 × χc1 = θ(a0 ∩ c1) = θ(b ∩ c1) = θb× χc1 = 0.

By 364L(b-ii), there is an a ∈ A∗ such that c1 6⊆ [[θaa0 × χc1 ≥ 1
k

]], that is, c2 = c1 ∩ [[θaa0 <
1
k

]] 6= 0. Now

c2 ⊆ [[⌊1 : a⌋ − k⌈a0 : a⌉ > 0]] ⊆ [[⌈1 : a0⌉ × ⌈a0 : a⌉ − k⌈a0 : a⌉ > 0]] ⊆ [[⌈1 : a0⌉ > k]],

which is impossible, as c2 ⊆ c1. XXX
Thus [[θb > 0]] = upr(b,C). In particular, θb = 0 iff b = 0.

(g) If b, b′ ∈ A and b 4τG b′, then θb ≤ θb′. PPP For every a ∈ A∗, ⌈b : a⌉ ≤ ⌈b′ : a⌉ (395Kb) so θab ≤ θab
′.

QQQ So if b, b′ ∈ A and c = [[θb− θb′ > 0]], b′ ∩ c 4τG b. PPP??? Otherwise, by 395H, there is a non-zero c′ ⊆ c
such that b ∩ c′ 4τG b′. But in this case θb× χc′ = θ(b ∩ c′) ≤ θb′ and c′ ⊆ [[θb′ − θb ≥ 0]]. XXXQQQ

(h) If 〈ai〉i∈I is any disjoint family in A with supremum a, θa =
∑
i∈I θai, where the sum is to be

interpreted as supJ⊆I is finite

∑
i∈J θai. PPP Induce on #(I). If #(I) is finite, this is just finite additivity ((d)

above). For the inductive step to #(I) = κ ≥ ω, we may suppose that I is actually equal to the cardinal κ.
Of course

θa ≥ θ(supξ∈J aξ) =
∑
ξ∈J θaξ

for every finite J ⊆ κ, so (because L∞(C) is Dedekind complete) u =
∑
ξ<κ θaξ is defined, and u ≤ θa.

For ζ < κ, set bζ = supξ<ζ aξ. By the inductive hypothesis,

θbζ =
∑
ξ<ζ θaξ = supJ⊆ζ is finite

∑
ξ∈J θaξ ≤ u.

At the same time, if J ⊆ κ is finite, there is some ζ < κ such that J ⊆ ζ, so that
∑
ξ∈J θaξ ≤ θbζ ; accordingly

supζ<κ θbζ = u.
??? Suppose, if possible, that u < θa; set v = θa − u. Take δ > 0 such that c0 = [[v > δ]] 6= 0. Let ζ < κ

be such that c1 = c0 \ [[u− θbζ > δ]] is non-zero (cf. 364L(b-ii)). Now v = θa− u ≤ θ(a \ bζ), so

c1 ⊆ [[v > δ]] ⊆ [[θ(a \ bζ) > 0]] = upr(a \ bζ ,C),

and c1 ∩ (a \ bζ) 6= 0; there is therefore an η′ ≥ ζ such that d = c1 ∩ aη′ 6= 0. Since θd ≤ u − θbζ and c1 is
included in [[u− θbζ ≤ δ]] ∩ [[v > δ]], [[v − θd > 0]] ⊇ c1.

Choose 〈dξ〉ξ<κ inductively, as follows. Given that 〈dη〉η<ξ is a disjoint family in Aa\d such that dη is G-
τ -equidecomposable with aη ∩ c1 for every η < ξ, then eξ = supη<ξ dη is G-τ -equidecomposable with bξ ∩ c1,
so that θeξ ≤ θbξ, and

[[θ(a \ (d ∪ eξ)) − θaξ > 0]] = [[θa− θd− θeξ − θaξ > 0]] ⊇ [[θa− θd− θbξ − θaξ > 0]]

= [[θa− θd− θbξ+1 > 0]] ⊇ [[v − θd > 0]] ⊇ c1.

By (g), aξ ∩ c1 4τG a \ (d ∪ eξ); take dξ ⊆ a \ (d ∪ eξ) G-τ -equidecomposable with aξ ∩ c1, and continue.
At the end of this induction, we have a disjoint family 〈dξ〉ξ<κ in Aa\d such that dξ is G-τ -equidecom-

posable with aξ ∩ c1 for every ξ. But this means that a′ = supξ<κ dξ is G-τ -equidecomposable with a ∩ c1,
while a′ ⊆ (a \ d) ∩ c1; since d ∩ a ∩ c1 6= 0, G cannot be fully non-paradoxical. XXX

Thus θa = u =
∑
ξ<κ θaξ and the induction continues. QQQ

(i) It follows that θ is order-continuous. PPP (α) If B ⊆ A is non-empty and upwards-directed and has
supremum e, then

⋃
b∈B Ab is order-dense in Ae, so includes a partition of unity A of Ae; now (h) tells us

that

θe =
∑
a∈A θa ≤ supb∈B θb.

Since of course θb ≤ θe for every b ∈ B, θe = supb∈B θb. (β) If B ⊆ A is non-empty and downwards-directed
and has infimum e, then, using (α), we see that
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θ1 − θe = θ(1 \ e) = supb∈B θ(1 \ b) = supb∈B θ1 − θb,

so that θe = infb∈B θb. QQQ

(j) I still have to show that θ is unique. Let θ′ : A → L∞ be any non-negative order-continuous G-invariant
additive function such that θ′c = χc for every c ∈ C.

(i) Just as in (e) of this proof, but more easily, we see that θ′(b ∩ c) = θ′b × χc whenever b ∈ A and
c ∈ C.

(ii) If 〈ai〉i∈I is a disjoint family in A with supremum a, then 〈supi∈J ai〉J⊆I is finite is an upwards-
directed family with supremum a, so that

θ′a = supJ⊆I is finite θ
′(supi∈J ai) = supJ⊆I is finite

∑
i∈J θ

′ai =
∑
i∈I θ

′ai.

(iii) θ′a = θ′b whenever a and b are G-τ -equidecomposable. PPP Take a partition 〈ai〉i∈I of a and a
family 〈πi〉i∈I in G such that 〈πiai〉i∈I is a partition of b. Then

θ′a =
∑
i∈I θ

′ai =
∑
i∈I θ

′πiai = θ′b. QQQ

Consequently θ′a ≤ θ′b whenever a 4τG b.

(iv) Take a ∈ A∗, b ∈ A and for j, k ∈ N set cjk = [[⌊1 : a⌋ = j]] ∩ [[⌈b : a⌉ = k]]. Then

⌈b : a⌉ × χcjk ≥ θ′b× ⌊1 : a⌋ × χcjk.

PPP If cjk = 0 this is trivial; suppose cjk 6= 0. Now we have sets I, J such that #(I) = j, #(J) ≤ k,
a ∩ cjk 4τG d for every d ∈ I, e 4τG a for every e ∈ J , I is disjoint, and b ∩ cjk ⊆ sup J . So

θ′b× ⌊1 : a⌋ × χcjk = jθ′b× χcjk = jθ′(b ∩ cjk) ≤ j
∑

e∈J

θ′(e ∩ cjk)

≤ jkθ′(a ∩ cjk) ≤ k
∑

d∈I

θ′(d ∩ cjk) ≤ kθ′cjk

= kχcjk = ⌈b : a⌉ × χcjk. QQQ

Summing over j and k, ⌈b : a⌉ ≥ θ′b× ⌊1 : a⌋, that is, θab ≥ θ′b. Taking the infimum over a, θb ≥ θ′b. But
also

θb = χ1 − θ(1 \ b) ≤ χ1 − θ′(1 \ b) = θ′b,

so θb = θ′b. As b is arbitrary, θ = θ′. This completes the proof.

395O We have reached the summit. The rest of the section is a list of easy corollaries.

Theorem Let A be a Dedekind complete Boolean algebra, not {0}, and G a fully non-paradoxical subgroup
of AutA. Then there is a G-invariant additive functional ν : A → [0, 1] such that ν1 = 1.

proof Let C be the fixed-point subalgebra of G, and θ : A → L∞(C) the function of 395N. By 311D, there
is a ring homomorphism ν0 : C → {0, 1} such that ν01 = 1; now ν0 can also be regarded as an additive
functional from C to R. Let f0 : L∞(C) → R be the corresponding positive linear functional (363K). Set
ν = f0θ. Then ν is order-preserving and additive because f0 and θ are, ν1 = f0(χ1) = ν01 > 0, and ν is
G-invariant because θ is.

395P Theorem Let A be a Dedekind complete Boolean algebra and G a fully non-paradoxical subgroup
of AutA with fixed-point subalgebra C. Then the following are equiveridical:

(i) A is a measurable algebra;
(ii) C is a measurable algebra;
(iii) there is a strictly positive G-invariant countably additive real-valued functional on A.

proof (iii)⇒(i)⇒(ii) are trivial. For (ii)⇒(iii), let θ : A → L∞(C) be the function of 395N, and ν̄ : C → R

a strictly positive countably additive functional. Let f : L∞(C) → R be the corresponding linear operator;
then f is sequentially order-continuous (363K again). Set µ̄ = fθ. Then µ̄ is additive and order-preserving
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and sequentially order-continuous because f and θ are. It is also strictly positive, because if a ∈ A \ {0}
then θa > 0 (395N(ii)), that is, there is some δ > 0 such that [[θa > δ]] 6= 0, so that

µ̄a ≥ δν̄[[θa > δ]] > 0.

Finally, µ̄ is G-invariant because θ is.

395Q Corollary: Kawada’s theorem Let A be a Dedekind complete Boolean algebra such that AutA
has a subgroup which is ergodic and fully non-paradoxical. Then A is measurable.

proof By 395Gf, this is the case C = {0, 1} of 395P.

395R Thus the existence of an ergodic fully non-paradoxical subgroup is a sufficient condition for a
Dedekind complete Boolean algebra to be measurable. It is not quite necessary, because if a measure
algebra A is not homogeneous then its automorphism group is not ergodic. But for homogeneous algebras
the condition is necessary as well as sufficient, by the following result.

Proposition If (A, µ̄) is a homogeneous totally finite measure algebra, Autµ̄A is ergodic.

proof If A = {0, 1} this is trivial. Otherwise, A is atomless. If a, b ∈ A \ {0, 1}, set γ = min(µ̄a, µ̄b); then
there are a′ ⊆ a and b′ ⊆ b such that µ̄a′ = µ̄b′ = γ. By 383Fb, there is a π ∈ G such that πa′ = b′, so that
πa ∩ a 6= 0. As b is arbitrary, supπ∈G πa = 1; as a is arbitrary, G is ergodic.

395X Basic exercises (a) Re-write the section on the assumption that every group G is ergodic, so
that L0(C) may be identified with R, the functions ⌈. . . ⌉ and ⌊. . . ⌋ become real-valued, the functionals θa
(395N) become submeasures and θ becomes a measure.

(b) Let A be a Dedekind complete Boolean algebra and G a subgroup of AutA with fixed-point subalgebra
C. Suppose that 〈ci〉i∈I is a partition of unity in C and that a, b ∈ A are such that a ∩ ci 4

τ
G b for every

i ∈ I. Show that a 4τG b.

(c) Let A be a Dedekind complete Boolean algebra and G a subgroup of AutA with fixed-point subalgebra
C. Show that A is relatively atomless over C iff the full subgroup generated by G has many involutions
(definition: 382O).

(d) Let A be a Dedekind complete Boolean algebra and G a fully non-paradoxical subgroup of AutA
with fixed-point subalgebra C. Show that the following are equiveridical: (i) A is chargeable (definition:
391Bb); (ii) C is chargeable; (iii) there is a strictly positive G-invariant real-valued additive functional on A.

(e) Let A be a Dedekind complete Boolean algebra and G a fully non-paradoxical subgroup of AutA
with fixed-point subalgebra C. Show that the following are equiveridical: (i) there is a non-zero completely
additive functional on A; (ii) there is a non-zero completely additive functional on C; (iii) there is a non-zero
G-invariant completely additive functional on A.

(f) Let A be a ccc Dedekind complete Boolean algebra. Show that it is a measurable algebra iff there is
a fully non-paradoxical subgroup G of AutA such that the fixed-point subalgebra of G is purely atomic.

(g) Let (A, µ̄) be a localizable measure algebra. Show that the following are equiveridical: (i) Autµ̄A is
ergodic; (ii) A is quasi-homogeneous in the sense of 374G.

(h) Let (A, µ̄) be a localizable measure algebra. Show that Autµ̄A is fully non-paradoxical iff (i) for
every infinite cardinal κ, the Maharam-type-κ component of A (definition: 332Gb) has finite measure (ii)
for every γ ∈ ]0,∞[ there are only finitely many atoms of measure γ.

(i) Let A be a Boolean algebra, G a subgroup of AutA, and G∗ the full subgroup of AutA generated by
G. Show that G∗ is ergodic iff G is ergodic.
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395Y Further exercises (a) Let A be a Dedekind complete Boolean algebra, G a subgroup of AutA,
and G∗

τ the full local semigroup generated by G. For φ, ψ ∈ G∗
τ , say that φ ≤ ψ if ψ extends φ. (i) Show that

every member of G∗
τ can be extended to a maximal member of G∗

τ . (ii) Show that G is fully non-paradoxical
iff every maximal member of G∗

τ is actually a Boolean automorphism of A.

(b) Let A be a ccc Dedekind complete Boolean algebra and G a subgroup of AutA. Show that G is
fully non-paradoxical iff 〈πnan〉n∈N order*-converges to 0 whenever 〈an〉n∈N is a disjoint sequence in A and
〈πn〉n∈N is a sequence in G.

(c) Let A be a Dedekind complete Boolean algebra and G a fully non-paradoxical subgroup of AutA with
fixed-point subalgebra C. (i) Show that A is ccc iff C is ccc. (Hint : if C is ccc, L∞(C) has the countable sup
property.) (ii) Show that A is weakly (σ,∞)-distributive iff C is. (iii) Show that A is a Maharam algebra iff
C is.

(d) Let A be a Dedekind complete Boolean algebra, G an ergodic subgroup of AutA, and G∗
τ the full

local semigroup generated by G. Suppose that there is a non-zero a ∈ A for which there is no φ ∈ G∗
τ such

that φa ⊂ a. Show that there is a measure µ̄ such that (A, µ̄) is a localizable measure algebra. (Hint : show
that Aa is a measurable algebra.)

(e) Show that there are a semi-finite measure algebra (A, µ̄) and a subgroup G of Autµ̄A such that G is
not ergodic but has fixed-point algebra {0, 1}.

395Z Problem Suppose that A is a Dedekind complete Boolean algebra, not {0}, and G a subgroup of
AutA such that whenever 〈ai〉i≤n is a finite partition of unity in A and we are given πi, π

′
i ∈ G for every

i ≤ n, then the elements π0a0, π′
0a0, π1a1, π′

1a1, . . . , π
′
nan are not all disjoint. Must there be a non-zero

non-negative G-invariant finitely additive functional θ on A?
(See ‘Tarski’s theorem’ in the notes below.)

395 Notes and comments Regarded as a sufficient condition for measurability, Kawada’s theorem suffers
from the obvious defect that it is going to be rather rarely that we can verify the existence of an ergodic
fully non-paradoxical group of automorphisms without having some quite different reason for supposing that
our algebra is measurable. If we think of it as a criterion for the existence of a G-invariant measure, rather
than as a criterion for measurability in the abstract, it seems to make better sense. But if we know from
the start that the algebra A is measurable, the argument short-circuits, as we shall see in §396.

I take the trouble to include the ‘τ ’ in every ‘G-τ -equidecomposable’, ‘G∗
τ ’ and ‘4τG’ because there are

important variations on the concept, in which the partitions 〈ai〉i∈I of 395A are required to be finite or
countable. Indeed Tarski’s theorem relies on one of these. I spell it out because it is close to Kawada’s in
spirit, though there are significant differences in the ideas needed in the proof:

Let X be a set and G a subgroup of AutPX. Then the following are equiveridical: (i) there is
a G-invariant additive functional θ : PX → [0, 1] such that θA = 1; (ii) there are no A0, . . . , An,
π0, . . . , πn, π′

0, . . . , π
′
n such that A0, . . . , An are subsets of X covering X, π0, . . . , π

′
n belong to

G, and π0[A0], π′
0[A0], π1[A1], π′

1[A1], . . . , π′
n[An] are all disjoint.

For a proof, see 449L in Volume 4; for an illuminating discussion of this theorem, see Wagon 85, Chapter
9. But it seems to be unknown whether the natural translation of this result is valid in all Dedekind
complete Boolean algebras (395Z). Note that we are looking for theorems which do not depend on any
special properties of the group G or the Boolean algebra A. For abelian or ‘amenable’ groups, or weakly
(σ,∞)-distributive algebras, for instance, much more can be done, as described in 396Ya and §449.

The methods of this section can, however, be used to prove similar results for countable groups of automor-
phisms on Dedekind σ-complete Boolean algebras; I will return to such questions in §448. The presentation
here owes a good deal to Nadkarni 90 and something to Becker & Kechris 96.

As noted, Kawada (Kawada 1944) treated the case in which the group G of automorphisms is ergodic,
that is, the fixed-point subalgebra C is trivial. Under this hypothesis the proof is of course very much
simpler. (You may find it useful to reconstruct the original version, as suggested in 395Xa.) I give the more
general argument partly for the sake of 395O, partly to separate out the steps which really need ergodicity

Measure Theory



396A The Hajian-Ito theorem 53

from those which depend only on non-paradoxicality, partly to prepare the ground for the countable version
in the next volume, partly to show off the power of the construction in §364, and partly to get you used
to ‘Boolean-valued’ arguments. A bolder use of language could indeed simplify some formulae slightly by
writing (for instance) [[k⌈a0 : a⌉ < ⌊1 : a⌋]] in place of [[⌊1 : a⌋ − k⌈a0 : a⌉ > 0]] (see part (f) of the proof of
395N). As in §388, the differences involved in the extension to non-ergodic groups are, in a sense, just a
matter of technique; but this time the technique is more obtrusive. In §556 of Volume 5 I will try to explain
a general approach to questions of this kind, using metamathematical ideas.

Version of 15.8.08

396 The Hajian-Ito theorem

In the notes to the last section, I said that the argument there short-circuits if we are told that we are
dealing with a measurable algebra. The point is that in this case there is a much simpler criterion for the
existence of a G-invariant measure (396B(ii)), with a proof which is independent of §395 in all its non-trivial
parts, which makes it easy to prove that non-paradoxicality is sufficient as well as necessary.

396A Lemma Let (A, µ̄) be a localizable measure algebra.
(a) Let π ∈ AutA be a Boolean automorphism (not necessarily measure-preserving), and Tπ the corre-

sponding Riesz homomorphism from L0 = L0(A) to itself (364P). Then there is a unique wπ ∈ (L0)+ such
that

∫
wπ × v =

∫
Tπv for every v ∈ (L0)+.

(b) If φ, π ∈ AutA then wπφ = wφ × Tφ−1wπ.

(c) For each π ∈ AutA we have a norm-preserving isomorphism Uπ from L2 = L2(A, µ̄) to itself defined
by setting

Uπv = Tπv ×
√
wπ−1

for every v ∈ L2, and Uπφ = UπUφ for all π, φ ∈ AutA.

proof (a) Set ν̄a = µ̄(πa) for a ∈ A. Then (A, ν̄) is a semi-finite measure algebra. PPP ν̄0 = µ̄0 = 0; if
〈an〉n∈N is a disjoint sequence in A with supremum a, then 〈πan〉n∈N is disjoint and (because π is sequentially
order-continuous) a = supn∈N πan, so ν̄a =

∑∞
n=0 ν̄an; if a 6= 0 then πa 6= 0 so ν̄a > 0. Thus (A, ν̄) is a

measure algebra. If a 6= 0 there is a b ⊆ πa such that 0 < µ̄b <∞, and now π−1b ⊆ a and 0 < ν̄(π−1b) <∞;
thus ν̄ is semi-finite. QQQ

By 365S, there is a unique wπ ∈ (L0)+ such that
∫
a
wπ = µ̄(πa) for every a ∈ A. If we look at

W = {v : v ∈ (L0)+,
∫
v × wπ =

∫
Tπv},

we see that W contains χa for every a ∈ A, that v + v′ ∈ W and αv ∈ W whenever v, v′ ∈ W and α ≥ 0,
and that supn∈N vn ∈ W whenever 〈vn〉n∈N is a non-decreasing sequence in W which is bounded above in
L0. By 364Jd, W = (L0)+, as required.

(b) For any v ∈ (L0)+,

∫
wπφ × v =

∫
Tπφv =

∫
TπTφv

(364Pe)

=

∫
wπ × Tφv =

∫
Tφ(Tφ−1wπ × v)

(recalling that Tφ is multiplicative)

=

∫
wφ × Tφ−1wπ × v.

As v is arbitrary (and (A, µ̄) is semi-finite), wπφ = wφ × Tφ−1wπ.

c© 1997 D. H. Fremlin
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(c)(i) For any v ∈ L0,∫
(Tπv ×

√
wπ−1)2 =

∫
Tπv

2 × wπ−1 =
∫
Tπ−1Tπv

2 =
∫
v2.

So Uπv ∈ L2 and ‖Uπv‖2 = ‖v‖2 whenever v ∈ L2, and Uπ is a norm-preserving operator on L2.

(ii) Now consider Uπφ. For any v ∈ L2, we have

UπUφv = Tπ(Tφv ×√
wφ−1) ×√

wπ−1

= TπTφv ×
√
Tπwφ−1 × wπ−1

(using 364Pd)

= Tπφv ×√
wφ−1π−1

(by (b) above)

= Uπφv.

So Uπφ = UπUφ.

(iii) Writing ι for the identity operator on A, we see that Tι is the identity operator on L0, wι = χ1
and Uι is the identity operator on L2. Since Uπ−1Uπ = UπUπ−1 = Uι, Uπ : L2 → L2 is an isomorphism,
with inverse Uπ−1 , for every π ∈ AutA.

396B Theorem (Hajian & Ito 69) Let A be a measurable algebra and G a subgroup of AutA. Then
the following are equiveridical:

(i) there is a G-invariant functional ν̄ such that (A, ν̄) is a totally finite measure algebra;
(ii) whenever a ∈ A \ {0} and 〈πn〉n∈N is a sequence in G, 〈πna〉n∈N is not disjoint;
(iii) G is fully non-paradoxical (definition: 395E).

proof (a) (i)⇒(iii) by the argument of 395F, and (iii)⇒(ii) by the criterion (ii) of 395E. So for the rest of
the proof I assume that (ii) is true and seek to prove (i).

(b) Let µ̄ be such that (A, µ̄) is a totally finite measure algebra. If a ∈ A \ {0}, then infπ∈G µ̄(πa) > 0.
PPP??? Otherwise, let 〈πn〉n∈N be a sequence in G such that µ̄πna ≤ 2−n for each n ∈ N. Set bn = supk≥n πka
for each n; then infn∈N bn = 0, so that

infn∈N πbn = 0, limn→∞ µ̄(ππna) = 0

for every π ∈ AutA. Choose 〈ni〉i∈N inductively so that

µ̄(π−1
ni
πnj

a) ≤ 2−j−2µ̄a

whenever i < j. Set

c = a \ supi<j π
−1
ni
πnj

a.

Because
∑∞
j=1

∑j−1
i=0 µ̄(π−1

ni
πnj

a) < µ̄a,

c 6= 0, while πni
c ∩ πnj

c = 0 whenever i < j, contrary to the hypothesis (ii). XXXQQQ

(c) For each π ∈ G, define wπ ∈ L0 = L0(A) and Uπ : L2 → L2 as in 396A, where L2 = L2(A, µ̄).
If a ∈ A \ {0}, then infπ∈G

∫
a

√
wπ > 0. PPP??? Otherwise, there is a sequence 〈πn〉n∈N in G such that∫

a
vn ≤ 4−n−2µ̄a for every n, where vn =

√
wπn

. In this case, µ̄(a ∩ [[vn ≥ 2−n]]) ≤ 2−n−2µ̄a for every n, so

that b = a \ supn∈N [[vn ≥ 2−n]] is non-zero. But now

µ̄(πnb) =
∫
b
wπn

=
∫
b
v2n ≤ 4−nµ̄b→ 0

as n→ ∞, contradicting (b) above. XXXQQQ

(d) Write e = χ1 for the standard weak order unit of L0 or L2. Let C ⊆ L2 be the convex hull of
{Uπe : π ∈ G}. Then C and its norm closure C are G-invariant in the sense that Uπv ∈ C, Uπv

′ ∈ C
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whenever v ∈ C, v′ ∈ C and π ∈ G. By 3A5Md, there is a unique u0 ∈ C such that ‖u0‖2 ≤ ‖u‖2 for every
u ∈ C. Now if π ∈ G, Uπu0 ∈ C, while ‖Uπu0‖2 = ‖u0‖2; so Uπu0 = u0. Also, if a ∈ A \ {0},

∫

a

u0 ≥ inf
u∈C

∫

a

u = inf
u∈C

∫

a

u

(because u 7→
∫
a
u is ‖ ‖2-continuous)

= inf
π∈G

∫

a

Uπe = inf
π∈G

∫

a

Tπe×
√
wπ−1

= inf
π∈G

∫

a

√
wπ−1 = inf

π∈G

∫

a

√
wπ > 0

by (c). So [[u0 > 0]] = 1.

(e) For a ∈ A, set ν̄a =
∫
a
u20. Because u0 ∈ L2, ν̄ is a non-negative countably additive functional on A;

because [[u20 > 0]] = [[u0 > 0]] = 1, ν̄ is strictly positive, and (A, ν̄) is a totally finite measure algebra. Finally,
ν̄ is G-invariant. PPP If a ∈ A and π ∈ G, then

ν̄(πa) =

∫

πa

u20 =

∫
u20 × χ(πa) =

∫
Tπ(Tπ−1u20 × χa)

=

∫
wπ × Tπ−1u20 × χa =

∫

a

(Tπ−1u0 ×
√
wπ)2

=

∫

a

(Uπ−1u0)2 =

∫

a

u20 = ν̄a. QQQ

So (i) is true.

396C Remark If A is a Boolean algebra and G a subgroup of AutA, a non-zero element a of A is called
weakly wandering if there is a sequence 〈πn〉n∈N in G such that 〈πna〉n∈N is disjoint. Thus condition (ii)
of 396B may be read as ‘there is no weakly wandering element of A’.

396X Basic exercises (a) Let (A, µ̄) be a totally finite measure algebra, and π : A → A an order-
continuous Boolean homomorphism. Let Tπ : L0(A) → L0(A) be the corresponding Riesz homomorphism.
Show that there is a unique wπ ∈ L1(A, µ̄) such that

∫
Tπv =

∫
v × wπ for every v ∈ L0(A)+.

(b) In 396A, show that the map π 7→ Uπ : AutA → B(L2;L2) is injective.

(c) Let A be a measurable algebra and G a subgroup of AutA. Suppose that there is a strictly positive
G-invariant finitely additive functional on A. Show that there is a G-invariant µ̄ such that (A, µ̄) is a totally
finite measure algebra.

396Y Further exercises (a) Let A be a weakly (σ,∞)-distributive Dedekind complete Boolean algebra
and G a subgroup of AutA. For a, b ∈ A, say that a and b are G-equidecomposable if there are finite

partitions of unity 〈ai〉i∈I in Aa and 〈bi〉i∈I in Ab, and a family 〈πi〉i∈I in G, such that πiai = bi for every
i ∈ I. Show that the following are equiveridical: (i) G is fully non-paradoxical in the sense of 395E; (ii) if
〈an〉n∈N is a disjoint sequence of mutually G-equidecomposable elements of A, they must all be 0.

396 Notes and comments I have separated these few pages from §395 partly because §395 was already
up to full weight and partly in order that the ideas here should not be entirely overshadowed by those of
the earlier section. It will be evident that the construction of the Uπ in 396A, providing us with a faithful
representation, acting on a Hilbert space, of the whole group AutA, is a basic tool for the study of that
group.
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Version of 21.10.07

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

393B The association of a metric with a strictly positive submeasure, used in the 2003 and 2006 editions
of Volume 4, is now in 392H and 393H.

393C The result that a non-negative additive functional on a Boolean algebra can be factored through
a measure algebra, used in the 2003 and 2006 editions of Volume 4, is now in 392I.

393O The note on control measures for vector measures, referred to in the 2003 and 2006 editions of
Volume 4, is now in 394Q.

§394 Kawada’s theorem, referred to in the 2003 and 2006 editions of Volume 4, is now in §395.

c© 2007 D. H. Fremlin
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