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Chapter 39
Measurable algebras

In the final chapter of this volume, I present results connected with the following question: which algebras
can appear as the underlying Boolean algebras of measure algebras? Put in this form, there is a trivial answer
(391A). The proper question is rather: which algebras can appear as the underlying Boolean algebras of
semi-finite measure algebras? This is easily reducible to the question: which algebras can appear as the
underlying Boolean algebras of probability algebras? Now in one sense Maharam’s theorem (§332) gives us
the answer exactly: they are the countable simple products of the measure algebras of {0,1}" for cardinals
k. But if we approach from another direction, things are more interesting. Probability algebras share a very
large number of very special properties. Can we find a selection of these properties which will be sufficient
to force an abstract Boolean algebra to be a probability algebra when endowed with a suitable functional?

No fully satisfying answer to this question is known. But in exploring the possibilities we encounter some
interesting and important ideas. In §391 I discuss algebras which have strictly positive additive real-valued
functionals; for such algebras, weak (o, c0)-distributivity is necessary and sufficient for the existence of a
measure; so we are led to look for conditions sufficient to ensure that there is a strictly positive additive
functional. A slightly different approach lies through the concept of ‘submeasure’. Submeasures arise
naturally in the theories of topological Boolean algebras (393J), topological Riesz spaces (393K) and vector
measures (394P), and on any given algebra there is a strictly positive ‘uniformly exhaustive’ submeasure iff
there is a strictly positive additive functional; this is the Kalton-Roberts theorem (392F).

Submeasures in general are common, but correspondingly limited in what they can tell us about a
structure in the absence of further properties. Uniformly exhaustive submeasures are not far from additive
functionals. An intermediate class, the ‘exhaustive’ submeasures, has been intensively studied, originally in
the hope that they might lead to characterizations of measurable algebras, but more recently for their own
sake. Just as additive functionals lead to measurable algebras, totally finite exhaustive submeasures lead
to ‘Maharam algebras’ (§393). For many years it was not known whether every exhaustive submeasure was
uniformly exhaustive (equivalently, whether every Maharam algebra was a measurable algebra); an example
was eventually found by M.Talagrand, and is presented in §394.

In §395, I look at a characterization of measurable algebras in terms of the special properties which the
automorphism group of a measure algebra must have (Kawada’s theorem, 395Q)). §396 complements the
previous section by looking briefly at the subgroups of an automorphism group Aut®l which can appear as
groups of measure-preserving automorphisms.

Version of 5.9.07
391 Kelley’s theorem

In this section I introduce the notion of ‘measurable algebra’ (391B), which will be the subject of the
whole chapter once the trivial construction of 391A has been dealt with. I show that for weakly (o, 00)-
distributive algebras countable additivity can be left to look after itself, and all we need to find is a strictly
positive finitely additive functional (391D). I give Kelley’s criterion for the existence of such a functional
(391H-391J).

391A Proposition Let 2 be any Dedekind o-complete Boolean algebra. Then there is a function
i A — [0,00] such that (2, i) is a measure algebra.

proof Set 10 =0, fia = oo for a € A\ {0}.
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2 Measurable algebras 391B

391B Definition (a) I will call a Boolean algebra 20 measurable if there is a functional fi : 2 — [0, 00|
such that (2(, 1) is a totally finite measure algebra.

In this case, if i # 0, then it has a scalar multiple with total mass 1. So a Boolean algebra 2l is measurable
iff either it is {0} or there is a functional fi such that (2, ) is a probability algebra.

(b) I will call a Boolean algebra 2l chargeable if there is an additive functional v : 2 — [0, co[ which is
strictly positive, that is, va > 0 for every non-zero a € 2.
Of course a measurable algebra is chargeable.

(¢) T will call a Boolean algebra nowhere measurable if none of its non-zero principal ideals are
measurable algebras.

391C Proposition Let 2 be a Boolean algebra.

(a) The following are equiveridical: (i) there is a functional fi : 2 — [0, oo] such that (2, fi) is a semi-finite
measure algebra; (i) 2 is Dedekind o-complete and {a : a € 2, A, is measurable} is order-dense in 2,
writing 2, for the principal ideal generated by a.

(b) The following are equiveridical: (i) there is a functional i : 2 — [0, oo] such that (2, ) is a localizable
measure algebra; (ii) 2 is Dedekind complete and {a : a € A, A, is measurable} is order-dense in 2.

proof (a) (i)=(ii): if (A, z) is a semi-finite measure algebra, then A/ = {a : jia < oo} is order-dense in A
and 2, is measurable for every a € 7.

(il)=(i): setting D = {a : a € A, A, is measurable}, D is order-dense, so there is a partition of unity
C C D (313K). For each ¢ € C, choose fi. such that (2, fi.) is a totally finite measure algebra. Set
pa =3 .o fic(anc) for every a € 2; then it is easy to check that (2, i) is a semi-finite measure algebra.

(b) Follows immediately.

391D Theorem (KANTOROVICH VULIKH & PINSKER 50) Let 2 be a Boolean algebra. Then the
following are equiveridical:

(i) A is measurable;

(ii) 2 is Dedekind o-complete, weakly (o, 0o)-distributive and chargeable.

proof (i)=(ii) Put the definition together with 322C(b)-(c) (for Dedekind completeness) and 322F (for
weak (o, 00)-distributivity).

(ii)=(i) Given that (ii) is satisfied, let M be the L-space of bounded additive functionals on 2, M, C M
the band of completely additive functionals, and P, : M — M, the band projection (362Bd). Let v : A —
[0, 00 be a strictly positive additive functional, and set i = P(v). Then [ is strictly positive. P If ¢ € 2
is non-zero, there is an upwards-directed set A, with supremum ¢, such that fic = sup,c 4 vc (362D); as v
is strictly positive and A contains a non-zero element, jic > 0. Q Of course i is countably additive, so
witnesses that 2 is measurable.

391E Thus we are led naturally to the question: which Boolean algebras carry strictly positive finitely
additive functionals? The Hahn-Banach theorem, suitably applied, gives some sort of answer to this question.
For the sake of applications later on, I give two general results on the existence of additive functionals related
to given functionals.

Theorem Let 2 be a Boolean algebra, not {0}, and ¢ : A — [0,1] a functional. Then the following are
equiveridical:

(i) there is a finitely additive functional v : 2 — [0, 1] such that 1 =1 and va < ¢a for every a € 2;

(ii) whenever (a;)ic; is a finite indexed family in 4, m € Nand ), .; xa; > mx1 in S = S(2) (definition:
361A), then . ; da; > m.

proof (a)(i)=-(ii) If v : A — [0,1] is a finitely additive functional such that ¥1 =1 and va < ¢a for every
a € 2, let h: S — R be the positive linear functional corresponding to v (361G). Now if {(a;);cr is a finite
family in 21 and ), ; xa; > mx1, then
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391F Kelley’s theorem 3

Z¢ai > ZVai = Zh(xai)

iel iel iel
= h(z xai) > h(myxl) = m.
iel

As (a;)ieq is arbitrary, (ii) is true.

(b)(ii)=(i) Now suppose that ¢ satisfies (ii). For u € S, set

p(u) =nf{} ], aigpa; : ag,... ,an €A, ag,... ,an >0, >0 a;xa; > u}.

Then it is easy to check that p(u + v) < p(u) + p(v) for all u, v € S, and that p(au) = ap(u) for all u € S,
a > 0. Also p(x1) > 1. P? If not, there are ao, ... ,a, € A and «ag, ... ,a, > 0 such that y1 < Z?:o QX a;
but Y"1, a;ha; < 1. Increasing each «; slightly if necessary, we may suppose that every «; is rational; let
m > 1 and ko, ..., k, € N be such that o; = k;/m for each i < n.

Set K ={(4,7) : 0<i<mn,1<j<k;}, and for (i,j) € K set a;; = a;. Then

2 (i g)ek Xij = Dz kixai =m3 7 aixa; > mxl,

but

Yipek Pais = Yo kidai = mY_g aida; <m,

which is supposed to be impossible. XQ

By the Hahn-Banach theorem, in the form 3A5Aa, there is a linear functional h : S — R such that
h(x1) = p(x1) > 1 and h(u) < p(u) for every u € S. In particular, h(xa) < ¢b whenever a C b € . Set
va = h(xa) for a € A; then v : A — [0,00[ is an additive functional, v1 > 1 and va < ¢b whenever a C b
in 2l. We do not know whether v is positive, but if we define v as in 362Ab, we shall have a non-negative
additive functional such that

vt

a=sup,c,vb < ¢a
for every a € 2, and
1<vl1<vt1<¢1 <1,

so v witnesses that (i) is true.

391F Theorem Let 2 be a Boolean algebra, not {0}, and ¢ : A — [0,1] a functional, where A C 2.
Then the following are equiveridical:

(i) there is a finitely additive functional v : 2 — [0, 1] such that v1 =1 and va > a for every a € A;

(ii) whenever (a;)icr is a finite indexed family in A, there is a set J C I such that #(J) > 3, ¥a; and
infieJ a; 7é 0.

Remark In (ii) here, we may have to interpret the infimum of the empty set in 2 as 1.
proof (a) We apply 391E to ¢, where

pa=1—1(1\a)ifaeAand 1\a € A,
=1 for other a € 2.

(b) Suppose that (i) here is true of ¢. Then 391E(i) is true of ¢. I Let v : A — [0,1] be an additive
functional such that v1 =1 and va > a for every a € /. If a € A and 1\ a € A, then

va=1-—v(1\a) <1—=19(1\a)= da;
for other a € A, va <1 = ¢a. Q

(c) Suppose that 391E(i) is true of ¢. Then (i) here is true of ¢». ¥ There is an additive functional
v:2A — [0,1] such that v1 =1 and va < ¢a for every a € 2; in this case, for a € A,

va=1—v(l\a)>1—-¢(1\a)=va. Q
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4 Measurable algebras 391F

(d) Suppose that (ii) here is true of 1, and that (a;);cs is a finite family in 2 such that » . ; xa; > mx1,

while Y ., ¢a; = . Set K ={i:icl,1\a; € A}.
Diiex V(AN ai) =3 e (1= dai) = #(K) = 3 iep ¢ai + #(I\ K) = #(I) = 5,
so there is a set J C K such that #(J) > #(I) — 8 and inf;c;(1\ a;) = c# 0. Now ¢na; =0 for i € J, so
mxe < 3 ierx(aine) =2 ep g x(aine) < #(I\ J)xe

and m < #(I) — #(J) < 8. As (a;)ie; is arbitrary, 391E(ii) is true of ¢.

(e) Suppose that 391E(ii) is true of ¢, and that (a;);cs is a family in A. Set

B =72 icr®(I\a;) = #I) = > ;e va;
and let k be the least integer greater than 8. Since ), ;¢(1\a;) < k, > .oy x(1\a;) 2 kxl1, that is,
Y icr Xai £ (#(I) — k)x1. But this means that there must be some J C I such that #(J) > #(I) — k and
inf;cya; # 0. Now
dierbai =#(I) — B < #(I) — (k= 1) < #(J).

As (a;)ier is arbitrary, (ii) here is true of .

(f) Since we know that 391E(i)<391E(ii), we can conclude that (i) and (ii) here are equiveridical.

391G Corollary Let 2 be a Boolean algebra, B a subalgebra of 2, and vy : B — R a non-negative
finitely additive functional. Then there is a non-negative finitely additive functional v : % — R extending
vg.
proof (a) Suppose first that 191 = 1. Set b = vyb for every b € B. Then ) must satisfy the condition (ii)
of 391F when regarded as a functional defined on a subset of B; but this means that it satisfies the same
condition when regarded as a functional defined on a subset of 2. So there is a non-negative finitely additive
functional v : % — R such that v1 =1 and vb > vyb for every b € B. In this case

vb=1—-v(1\b) <1—1y(1\b) =1vpb<vbd
for every b € B, so v extends 1.

(b) For the general case, if vyl = 0 then vy must be the zero functional on B, so we can take v to be the
1

zero functional on 2; and if v91 =~ > 0, we apply (a) to v~ vp.

391H Definition Let 2 be a Boolean algebra, and A C A\ {0} any non-empty set. The intersection
number of A is the largest § > 0 such that whenever (a;);cs is a finite family in A, with I # (0, there is a
J C I such that #(J) > d#(I) and inf;c s a; # 0.

Remarks (a) It is essential to note that in the definition here the (a;);e; are indexed families, with
repetitions allowed; see 391Xi.

(b) I spoke perhaps rather glibly of ‘the largest § such that ...’; you may prefer to write
. #(J
J = 1nf{sup@¢Jg{07,.. n}infje s a;#£0 ﬁ L ag,... ,0n € A}

3911 Proposition Let 2 be a Boolean algebra and A C 2\ {0} any non-empty set. Write C for the set
of non-negative finitely additive functionals v : 20 — [0, 1] such that v1 = 1. Then the intersection number
of A is precisely max,cc inf,e 4 va.

proof Write § for the intersection number of A, and ¢’ for sup, . infaea va.

(a) For any v < ¢, we can find a v € C such that va > « for every a € A. So if we set va = v for every
a € A, 1 satisfies condition (i) of 391F. But this means that if (a;);cs is any finite family in A, there must
be a J C I such that inf;cya; # 0 and #(J) > v#(I). Accordingly v < §; as v is arbitrary, ¢’ < 4.

(b) Define ¥ : A — [0,1] by setting »a = § for every a € A. If {a;);cs is a finite indexed family in A,
there is a J C I such that #(.J) > 0#(I) and inficya; # 0; but 6#(I) = >,.; ®a;, so this means that
condition (ii) of 391F is satisfied. So there is a v € C such that va > 0 for every a € A; and v witnesses not
only that ¢’ > ¢, but that the supremum is a maximum.
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391Xe Kelley’s theorem 5

391J Theorem Let 2 be a Boolean algebra. Then the following are equiveridical:
(i) 2 is chargeable;
(ii) either A = {0} or A\ {0} is expressible as a countable union of sets with non-zero intersection numbers.

proof (i)=-(ii) If there is a strictly positive finitely additive functional v on 2, and 2 # {0}, set A, =
{a : va > 27"v1} for every n € N; then (applying 3911 to the functional %l/) we see that every A, has
intersection number at least 27", while 20\ {0} = |, . An because v is strictly positive, so (ii) is satisfied.

(ii)=-(i) If 2\ {0} is expressible as | J,, .y An, Where each A, has intersection number 6, > 0, then for
each n choose a finitely additive functional v, on % such that v,1 = 1 and v,a > §, for every a € A,.
Setting va = ZZO:O 27 "ypa for every a € 2, v is a strictly positive additive functional on 2, and (i) is true.

neN

391K Corollary Let 2 be a Boolean algebra. Then 2l is measurable iff it is Dedekind o-complete and
weakly (o, 00)-distributive and either 2 = {0} or 2\ {0} is expressible as a countable union of sets with
non-zero intersection numbers.

proof Put 391D and 391J together.

391L When we come to study the structure of measurable algebras in later volumes, it will be convenient
to have the following facts on the table.

Proposition (a) If 2 is a measurable algebra, all its principal ideals and o-subalgebras are, in themselves,
measurable algebras.

(b) The simple product of countably many measurable algebras is a measurable algebra.

(c) If 2 is a measurable algebra, % is a Boolean algebra and 7 : 2l — B is a surjective order-continuous
Boolean homomorphism, then 8 is a measurable algebra, isomorphic to a principal ideal of 2.

proof (a) Use 322H and 322Na.

(b) Let (;);er be a countable family of measurable algebras with simple product 2(. For each i € I let fi;
be such that (2;, ii;) is a measure algebra and fi;1yq, < 1. Let f : I — N be an injection. For a = (a;);er € 2,
set fla = ) g 27/ fi;a;. Then (2, i) is a measure algebra (see 322La); as fily < 2, A is a measurable
algebra.

(c) Consider the kernel I = {a : ma = 0} of . By 313Pa, I is order-closed. Because 2 is Dedekind
complete, ¢ = sup [ is defined in ; as I is upwards-directed, ¢ € I and I is the principal ideal generated by
c. Let ;.. be the principal ideal generated by 1\ ¢. Then I N2As. = {0} so 7[As. is injective. We are
supposing that

B={ra:acA} ={m(anc)un(a\c):ac U} ={n(a\c):ac A} =7[As.]

So w[A1\¢ is an isomorphism between ;.. and B. But 2. is a measurable algebra, by (a), so B is a
measurable algebra.

391X Basic exercises (a) Show that a chargeable Boolean algebra is ccc, so is Dedekind complete iff
it is Dedekind o-complete.

(b) Show (i) that any subalgebra of a chargeable Boolean algebra is chargeable (ii) that a countable
simple product of chargeable Boolean algebras is chargeable (iii) that any free product of chargeable Boolean
algebras is chargeable.

(c)(i) Let 2 be a Boolean algebra with a chargeable order-dense subalgebra. Show that 2 is chargeable.
(ii) Show that the Dedekind completion of a chargeable Boolean algebra is chargeable.

(d)(i) Show that the algebra of open-and-closed subsets of {0,1} is chargeable for any set I. (ii) Show
that the regular open algebra of R is chargeable.

(e)(i) Show that any principal ideal of a chargeable Boolean algebra is chargeable. (ii) Let 2 be a
chargeable Boolean algebra and Z an order-closed ideal of 2. Show that 2/Z is chargeable.

D.H.FREMLIN



6 Measurable algebras 391Xf

>(f) Show that a Boolean algebra is chargeable iff it is isomorphic to a subalgebra of a measurable
algebra. (Hint: 3240, 392H.)

(g) Let 2 be a Boolean algebra. Show that the following are equiveridical: (i) 2 is chargeable and weakly
(0, 00)-distributive; (ii) there is a strictly positive countably additive functional on 2; (iii) there is a strictly
positively completely additive functional on 2.

(h) Explain how to use the Hahn-Banach theorem to prove 391G directly, without passing through 391F.
(Hint: S(B) can be regarded as a subspace of S(2).)

>(i) Take X = {0,1,2,3}, A = PX, A = {{0,1},{0,2},{0,3},{1,2,3}}. Show that the intersection
number of A is 2. (Hint: use 391L.) Show that if ao, ... ,a, are distinct members of A then there is a set

J CH{0,...,n}, with #(J) > 2(n+ 1), such that inf;c;a; # 0.

(j) Let 2 be a Boolean algebra. For non-empty A C 2\ {0} write §(A) for the intersection number of A.
Show that for any non-empty A C A\ {0}, 6(A) = inf{d(I) : I is a non-empty finite subset of A}.

(k) Let 2 be a Boolean algebra, not {0}. For aq,...,a, € A set t(ag,...,a,) = max{m : m € N,
mxl <> ,xa;}. Let A C 2 be non-empty. Show that

1
sup{n—+1t(ao7 ceeyQp) tag, ... 0, € A}

= min{sup va : v is a non-negative additive functional on 2, v1 = 1}.
acA

(This is the Kelley covering number of A.)

(1) Let A be a Boolean algebra. (i) Show that the following are equiveridical: («) there is a functional f
such that (2, ) is a localizable measure algebra; (8) L>°(2l) is a perfect Riesz space (definition: 356J). (ii)
Show that in this case 2 is a measurable algebra iff it is ccc.

391Y Further exercises (a) Show that in 391D and 391K we can replace ‘weakly (o, 0o)-distributive’
by ‘weakly o-distributive’.

(b) Show that PN is chargeable but that the quotient algebra PN/[N]<“ is not ccc, therefore not charge-
able.

(c)(i) Show that if X is a separable topological space, then its regular open algebra is chargeable. (ii) Let
(X;)ier be any family of topological spaces with chargeable regular open algebras. Show that their product
has a chargeable regular open algebra.

(d) Let p be Lebesgue measure on [0,1], and ¥ its domain. Let A be a non-empty family of non-empty
subsets of X, with intersection number §, and let W be the family of those sets W € PX®Y such that
W{t}] € A for every t € [0,1]. Set o = infyew sup,cx pW[{z}]. (i) Show that o < §. (ii) Give an
example in which a < 4.

(e) Let A be a Boolean algebra, B a subalgebra of 2, U a linear space and vy : 8 — U an additive
functional. Show that there is an additive functional v : 2 — U extending vo. (Hint: 361F.)

391 Notes and comments By the standards of this volume, this is an easy section; I note that I have
hardly called on anything after Chapter 32, except for a reference to the construction S(2) in §361. I do
ask for a bit of functional analysis (the Hahn-Banach theorem) in 391E.

391J-391K are due to KELLEY 59; condition (ii) of 391J is called Kelley’s criterion. It provides some
sort of answer to the question ‘which Boolean algebras carry strictly positive finitely additive functionals?’,
but leaves quite open the possibility that there is some more abstract criterion which is also necessary and
sufficient. It is indeed a non-trivial exercise to find any ccc Boolean algebra which does not carry a strictly
positive finitely additive functional. The first example published seems to have been that of GAIFMAN 64,
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392D Submeasures 7

which is described in COMFORT & NEGREPONTIS 82. But for the purposes of this book Gaifman’s example
has been superseded by Talagrand’s example, presented in §394.

Kelley’s criterion is a little unsatisfying. It is undoubtedly important (see 392F below), but at the same
time the structure of the criterion — a special sequence of subsets of 2 — is rather close to the structure of
the conclusion; after all, one is, or can be represented by, a function from 24\ {0} to N, while the other is a
function from 2 to R. Also the actual intersection number of a family A C 2\ {0} can be hard to calculate;
as often as not, the best method is to look at the additive functionals on 2 (see 391Xi).

Version of 11.2.08

392 Submeasures

In §391 I looked at what we can deduce if a Boolean algebra carries a strictly positive finitely additive
functional. There are important contexts in which we find ourselves with subadditive, rather than additive,
functionals, and these are what I wish to investigate here. It turns out that, once we have found the right
hypotheses, such functionals can also provide a criterion for measurability of an algebra (392G below). The
argument runs through a new idea, using a result in finite combinatorics (392D).

At the end of the section I include notes on metrics associated with submeasures (392H) and on products
of submeasures (392K).

392A Definition Let 2 be a Boolean algebra. A submeasure on 2 is a functional v : 2 — [0, 0o] such
that
v0 =0,
va < vb whenever a C b,
v(aub) <wva+vbfor all a, b e .

392B The following list mostly repeats ideas we have already used in the context of measures; but (b)
and (c) are new, and will be the basis of this section.

Definitions Let 2 be a Boolean algebra and v : 20 — [0, oo] a submeasure.
(a) v is strictly positive if va > 0 for every a # 0.
(b) v is exhaustive if lim,,_,, va, = 0 for every disjoint sequence {(a,),en in 2.
(¢) v is uniformly exhaustive if for every € > 0 there is an n € N such that there is no disjoint family
ag, - .. ,an With va; > € for every i < n.
(d) v is totally finite if v1 < co.
(e) v is unital if v1 = 1.
(f) v is atomless if whenever ¢ € 2 and va > 0 there is a b C a such that vb > 0 and v(a\ b) > 0.
(g) If v/ is another submeasure on 2, then v’ is absolutely continuous with respect to v if for every
€ > 0 there is a § > 0 such that v’a < € whenever va < 4.
392C Proposition Let 2 be a Boolean algebra.
(a) If there is an exhaustive strictly positive submeasure on 2, then 2l is ccc.
(b) A uniformly exhaustive submeasure on 2l is exhaustive.
(¢) Any non-negative additive functional on 2 is a uniformly exhaustive submeasure.

proof These are all elementary. If v : 20 — [0,00] is an exhaustive strictly positive submeasure, and
(a;)ier is a disjoint family in 20\ {0}, then {i : va; > 27"} must be finite for each n, so I is countable.
(Cf. 322G.) If v : 2 — [0,00] is a uniformly exhaustive submeasure and (a,)nen is disjoint in 2, then
{i : va; > 27"} is finite for each n, so lim;, ,cva; = 0. If v : A — [0,00[ is a non-negative additive
functional, it is a submeasure, by 326Ba and 326Bf. If ¢ > 0, then take n > %1/1; if ag, ... ,a, are disjoint,
then Y7 ,va; < vl, so min;<, va; < €.

392D Lemma Suppose that &k, I, m € N are such that 3 < k <1 < m and 18mk < [?. Let L, M be
sets with [, m members respectively. Then there is a set R C M x L such that (i) each vertical section of

(©) 2008 D. H. Fremlin
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8 Measurable algebras 392D
R has just three members (ii) #(R[E]) > #(E) whenever E € [M]=*; so that for every E € [M]<F there is
an injective function f : E — L such that (z, f(z)) € R for every z € E.

Recall that [M]SF = {I: 1 C M, #(I) <k}, [M)* ={I:1C M, #(I) =k} (3A1J).

proof (a) We need to know that n! > 37"n" for every n € N; this is immediate from the inequality

Yo gIng > flnlnxda: =nlnn—n+1 for every n > 2.

(b) Let © be the set of those R C M x L such that each vertical section of R has just three members, so
that

#(Q) = #(LI)™ = ()™

Let us regard €2 as a probability space with the uniform probability.
If F € [L]™, where 3 <n <k, and z € M, then

Pr(Rl{a}] € F) = 2020

(because R[{z}] is a random member of [L]?)

asn <l. Soif E € [M]" and F € [L]", then

Pr(R| =[] Pr(R{=}] C F)
zeE
(because the sets R[{x}] are chosen independently)
< n371
— l3n

Accordingly

Pr(there is an E C M such that #(R[E]) < #(F) < k)
< Pr(there is a non-empty £ C M such that #(R[E]) < #(F) < k)
= Pr(there is an £ C M such that 3 < #(R[FE]) < #(F) < k)
(because if E # () then #( [E]) > 3)

k
ST Y PHRIEIC P < 3 HIM

n=3 Ee[M]" Fe[L]" n=3

:Z mnln'(lnll?:n

3_ 3

3_?

=

w

3 w
3
cf:
l\J

(using (a))

There must therefore be some R € € such that #(R[E]) > #(E) whenever E C M and #(E) < k.

(c) If now E € [M]=F, the restriction Rg = RN (E x L) has the property that #(Rg[I]) > #(I) for
every I C E. By Hall’'s Marriage Lemma (3A1K) there is an injective function f : F — L such that
(z, f(z)) € Rg C R for every z € E.

Remark Of course this argument can be widely generalized; see references in KALTON & ROBERTS 83.
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392E Submeasures 9

392E Lemma Let 2 be a Boolean algebra and v : 2 — [0, 0] a uniformly exhaustive submeasure. Then
for any € € ]0,v1] the set A = {a : va > €} has intersection number greater than 0.

proof (a) To begin with (down to the end of (d) below), suppose that ¥1 = 1. Because v is uniformly
exhaustive, there is an r > 1 such that whenever (¢;)ie; is a disjoint family in 2 then #({i : ve; > e}) <7,
so that Y ,c;ve; <7+ Le#t(I). Set § = €/5r, n = 6%, so that

§—1> 15(6 —n)? > 35(6% — 2) = 4.
(b) Let {(a;)iesr be a non-empty finite family in A. Let m be any multiple of #(I) greater than or equal

to 1/n. Then there are integers k, [ such that
k

L3 L5—n2 _
< <dn< p(6-n)7 d-n< <9,

L
m
in which case
3<k<I<m, 18mk<m?(—n)? <%
(c) Take a set M of the form I x S where #(S) = m/#(I), so that #(M) = m. For x = (i,s) € M set
d, = a;. Let L be a set with [ members. By 392D, there is a set R C M x L such that every vertical section
of R has just three members and whenever E € [M]=F there is an injective function fg : E — L such that

(z, fe(x)) € R for every x € E.
For E C M set

bg = infﬂceE dy \ SUPzem\E daca
so that (bg)pcam is a partition of unity in A. For x € M and j € L set
czj =sup{bp : x € E € [M|=F, fr(z) = j}.
If x, y are distinct members of M and j € L then
cojney; =suplbp 1 a,y € B € M=, fp(z) = fr(y) = j} =0,
because every fg is injective. Set
m; =#({z:x € M, cz; #0})
for each j € L. Note that c,; = 0 if (z,j) € R, so 3, m; < #(R) = 3m.
We have
1
Dwenm Verj ST+ €my
for each j, by the choice of r; so
1 3
Z veg; <rl +§€ij < Tl+gme
zeM,jeL jEL
3 4
<(réo+ ge)m = cem < em
by the choice of [ and §. There must therefore be some x € M such that
V(SUpjer Caj) < D ep Veaj < € < vdy,
and d, cannot be included in
SUpcp, Coj = sup{bp : © € E € [M]=F}.

But as sup{bg : © € E C M} is just d,, there must be an E C M, with cardinal greater than k, such that

bg # 0.
Recall now that M =1 x S, and that

k > 3nm = 3n#(I1)#(S).
The set J = {i:3 s, (i,s) € E} must therefore have more than 3n#(I) members, since E C J x S. But also
d(i,s) = a; for each (i,s) € E, so that inficya; 2 bp # 0.

D.H.FREMLIN



10 Measurable algebras 392E

(d) As {a;)ier is arbitrary, the intersection number of A is at least 3n > 0.

(e) This completes the proof in the case in which v1 = 1. If v1 = 0 the result is vacuous. If v1 > 0,

set v'a = % for each a; then it is easy to check that v/ is a uniformly exhaustive submeasure with
min(v1,
v'1=1, and
tva> e} C{a: /o> el
{a:va>e} C{a:vVa> (L)

has non-zero intersection number for any e € ]0,v1]. So the result is true in the generality stated.

392F Theorem Let 2 be a Boolean algebra with a strictly positive uniformly exhaustive submeasure.
Then 2 is chargeable, that is, has a strictly positive finitely additive functional.

proof If 20 = {0} this is trivial. Otherwise, let v : 2 — [0, 00] be a strictly positive uniformly exhaustive
submeasure. For each n, 4, = {a : va > min(27",v1)} has intersection number greater than 0, and
Unen An = 2\ {0} because v is strictly positive; so 2 has a strictly positive finitely additive functional, by
Kelley’s theorem (391J).

392G Corollary Let 2 be a Boolean algebra. Then it is measurable iff it is weakly (o, 0o)-distributive
and Dedekind o-complete and has a strictly positive uniformly exhaustive submeasure.

proof Put 391D and 392F together.

392H This completes the main work of this section. However it will be convenient later to have some
more facts available which belong to the same group of ideas.

Metrics from submeasures: Proposition Let 2l be a Boolean algebra and v a strictly positive totally
finite submeasure on 2.
(a) We have a metric p on 2 defined by the formula

p(a,b) =v(anb)

for all a, b € 2.

(b) The Boolean operations U, n, A, \ and the function v : 20 — R are all uniformly continuous for p.

(¢) The metric space completion (gl, p) of (A, p) is a Boolean algebra under the natural continuous
extensions of the Boolean operations, and v has a unique continuous extension ' to 20 which is again a
strictly positive submeasure.

(d) If v is additive, then (é\[, V) is a totally finite measure algebra.

proof (a)-(b) This is just a generalization of 323A-323B; essentially the same formulae can be used. For
the triangle inequality for p, we have a Ac C (a2 b)u (bAc), so

pla,c) =v(asc) <v(iaab)+v(bac) = pla,b)+ p(bc).
For the uniform continuity of the Boolean operations, we have
(bxc)n (V) c(babd)U(end)
so that
plbxc, b/ xc') < p(b,b') + p(c,c)

for each of the operations x = U, n, \ and A and all b, ¢, b’, ¢’ € 2. For the uniform continuity of the
function v itself, we have

vb <wvec+v(b\c) <ve+ pb,c),
so that |vb — ve| < p(b, c).

(c) A x A is a dense subset of A x QAl, so the Boolean operations on 2, regarded as uniformly continuous

functions from 2A x 2 to A C QAl, have unique extensions to continuous binary operations on A (3A4G). If we
look at

MEASURE THEORY



392J Submeasures 11

A={(a,b,c):anr(brc)=(arb)rc},

this is a closed subset of 2 x A x A, because the maps (a,b,c) — a A (bAc), (a,b,c) — (aAb)Ac are
continuous and the topology of A is Hausdorff; since A includes the dense set 2 x 20 x 2, it is the whole of
A x A x A, that is, a A (bac)=(anb)scforalla,b, ce 2. All the other identities we need to show that
2 is a Boolean algebra can be confirmed by the same method. Of course 2 is now a subalgebra of 2A.

Because v : 21 — [0, oo is uniformly continuous, it has a unique continuous extension ¥ : A [0, 00[. We
have

v0=0, va<v(audb)<da+0bb, va=p(a,0)
for every a, b € A and therefore for every a, b € é\l, so ¥ is a submeasure on §l, and
va=0= p(a,0) =0=a=0,
so I is strictly positive.

(d) We have v(aub) + v(anb) = va + vb for all a, b € A; because all the operations are continuous,
v(aub) + v(anb) = va + b for all a, b € A. In particular, since 70 = 0, ¥ is additive. Next, if (an)nen
is a non-decreasing sequence in A, p(am, A ap) = |Pay, — Pay,| for all m, n € N, and (a,)nen is p-Cauchy,
therefore convergent to some a € 2. Since

ana, = lim,,_ o Gy Na, = a,
for each n, a D a, for every n. If b € A is any upper bound for {a, : n € N}, then
bna=1lm, . bna, =lim, . a, =a
and b D a; thus a is the least upper bound of {a, : n € N}.

So, first, if (b, )nen is any sequence in A, and we set a,, = sup,;<,, b; for each n, sup,,cy a,, is defined and
must be equal to sup,,cy by; accordingly 2 is Dedekind o-complete. Next, if (b, ),en is a disjoint sequence
in 2, and again we set a, = sup,<,, b; for each n, a = sup,,cy an = sup,, ¢y by, we shall have

~ . ~ . n A~ o0 A~
va = limy, o0 Dan = limy o0 ;g Vb = 3" o Uby;

which means that ¥ is countably additive, and (QAl, V) is a measure algebra.

3921 Corollary Let 2 be a Boolean algebra and v a non-negative additive functional on 2. Then there
are a totally finite measure algebra (€, i) and a Boolean homomorphism 7 : 2 — € such that va = fi(wa)
for every a € 2.

proof Set I = {a : va = 0}; then I < 2, so we can form the quotient algebra B = /I (312L); let
7w : A — B be the canonical map. As in part (b) of the proof of 321H, we have an additive functional
u: B — [0, 00[ such that u(wa) = va for every a € 2, and (as in 321H) p is strictly positive. Take (€, ) to
be (B, /i) as in 392Hd, so that (€, i) is a totally finite measure algebra. If we now think of = as a map from
2 to €, it will still be a Boolean homomorphism, and

va = (ra) = fi(ra)
for every a € 2.

392J Proposition Let 2 be a Boolean algebra, v an exhaustive submeasure on 2, and (a,, ) ey & sequence
in 2 such that inf,en va, > 0. Then there is an infinite I C N such that v(inf;c;ny, a;) > 0 for every n € N.

Remark In the formula I Nn I am identifying n with the set of its predecessors, as in 3A1H.

proof For finite J C Nset by = inf;c; a;. Let J be the family of those J € [N]<“ such that lim sup,,_, ., v(a, nby) >
0.

? Suppose, if possible, that there is no strictly increasing sequence in 7. Then J must have a maximal
element J say. Set a,, = a, nby for n € N and 6 = limsup,,_,, val, > 0. For any n € N\ J, JU{n} ¢ J so

. , , .
limy, 00 Ay, N Ay, = limy, 00 @m N bJU{n} =0.

D.H.FREMLIN



12 Measurable algebras 392J

We can therefore choose inductively a sequence (k,)nen such that
ky > sup J, Va;% > 25, u(a;n n aﬁﬂ) < 27725 for every i < n
for each n € N. Now set b,, = ax,, \ sup,.,, ax, for each n. Then (b,)nen is disjoint. Also

2(5 <vag, <vb,+ Z;:Ol viag, Nay,) < vb, + Zg} 271725 < pb,, + %5

and vb,, > ié for every n; which is impossible. X
There must therefore be a strictly increasing sequence (J,)pen in J. Set I = UneN Jn. If n € N, there
is an m € N such that I Nn C J,, and v(inf;crn, a;) > vby,, > 0. So we have an appropriate I.

*392K Products of submeasures There seems to be no fully satisfying general construction for prod-
ucts of submeasures. However the following method has some interesting features.

(a) Let 2 and B be Boolean algebras with submeasures p, v respectively. On the free product 2A ® B
(§315), we have a functional p x v defined by saying that whenever ¢ € A ® B is of the form sup;c;a; ® b;
where (a;);er is a finite partition of unity in 2, then

(pxv)(e) = I}lglIll max({u(su? a;)}U{vb; i eI\ J})

1S
= min{e: € € [0,00], pu(supf{a; : i € I, vb; > €}) < €}.

P Every ¢ € 2A® 9B can be expressed in this form (3150a). Of course this can be done in many different
ways. But if ¢ = sup, ; a; ® b; is another expression of the same kind, then b; = b’ whenever a; na’; # 0.

So

sup{a; : i € I, vb; > ¢} =sup{a;naj:i€l,je€J, ainay #0,vb > e}
=sup{a;na):iel, jeJ ana;#0,vb; > e}

=sup{a : j € J, vb; > €}

for any €, and the two calculations for u X v give the same result. Q
Note that (p x v)(a ® b) = min(pa, vd) for all @ € A and b € B.

(b) In the context of (a), p x v is a submeasure.

P By definition, (x4 X v)c > 0 for every c € A® B; and if ¢ =0 then ¢ =1® 0 and (p x v)c = 0.

If ¢, ¢’ are two members of % ® 9B, express them in the forms ¢ = sup;c; a; ® b; and ¢ = sup;¢; a; @ b
where (a;)icr and (a});jes are partitions of unity in 2. Set K = {(4,j) : a;na; # 0} C I x J, a}; = a;na;
for (i,7) € K; then (a}}) ;s j)ex is a partition of unity in 2, ¢ = sup(; ;e ai; @bi and ¢’ = sup; j ek ai; @b
Set a = (ux v)e, B = (uxv)d, L ={(,j):(j) € K, vb; > a}, L' = {(i,j) : (i,j) € K, vb; > B},
e =sup{a;; : (i,j) € L} and € = sup{a;; : (i,j) € L'}; then pe < o and pe’ < 5. So p(eue’) < a+ f§; but
eue =sup(; nerur a;; and

v(b;ub}) <vb +vb; <a+p
for all (4,5) € K\ (LUL). So (ux v)(cuc) <a+p.

If c C ¢, then b; C b} for every (i,7) € K. So vb; < 8 for every (i,7) € K\ L' and (u x v)c < S.
Thus p x v is subadditive and order-preserving and is a submeasure. Q

(c) I note that only in exceptional cases will o x v be matched with v x p by the canonical isomorphism
between 2 ® B and B @ 2; this product is not ‘commutative’. (See 392Yc.) It is however ‘associative’, in
the following sense. Let (1, p1), (A, u2), (As, 13) be Boolean algebras endowed with submeasures. Set

A2 = p1 X p2,  Aa2)z = A2 X 3, Aoz = fla X p3,  Are3) = p1 X Ags.

Then the canonical isomorphisms between (2; ® ) @ A3, A; R A2 @ A3 and Aq @ (A @Az) (315L) identify
)\(12)3 Wlth )\1(23).

P Take any d € ; ® Ay ® As. Express d as sup,;c;a; @ e; where (a;);cr is a partition of unity in 2y
and e; € ™Ay @ A3 for each i; express each e; as sup;¢ ;, bij ® c¢;; where (bij)jeg; is a partition of unity in
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392Xc Submeasures 13

Ay and ¢;; € Uz for i € I, j € J;. In this case, (a; ® bij)icr jes, is a partition of unity in 2; ® 2, and
d = sup;er je g, @i @ bij © Cij.

Let € > 0. For i € I, set J, ={j:j € Ji, uscij > €}, e, = sup;e s bij. Then A23(supje g, bij ® cij) < €
iff pge} < e Set I' = {i : pse] > e}; then Ay(a3)d < € iff py(sup;epr a;) < e From the other direction, set
[ =supl{a; ® b : i € I, j € Jj}; then A\1g)sd < € iff \iof < e. But f = sup;cra; ® €}, so Ao f < eiff
p1(sup;ep a;) < e

As € and d are arbitrary, A\(12)3 = Ai(23), as claimed. Q

(d) If p, p are submeasures on 2, v and v’ are submeasures on B, i is absolutely continuous with respect
to p’ and v is absolutely continuous with respect to v/, then p X v is absolutely continuous with respect to
1w @v'. PP For any € > 0 there is a § > 0 such that ua < € whenever p/a < ¢ and vb < € whenever v'b < §.
If now ¢ € A® B and (1’ x v’')(c) < 0, we have an expression ¢ = sup;c;a; ® b; and a set J C I such that
(a;)icr is a partition of unity, p'(sup;e; a;) < 0 and v'b; < ¢ for every i € I'\ J; so pu(sup;cya;) <€ vb; <e
for every i € I'\ J and (u X v)(c) <e. Q

(e) If p and v are exhaustive, so is p X v. P Let (¢, )nen be a sequence in 2A® B such that (u x v)e, >
€ > 0 for every n. For each n, express ¢, as sup,¢ 1, @ni @ bp; where (ani)ier, is a partition of unity; set
Il ={i:i€ L, vby > €}, a, = SUPjerr Qi then pa, > e. By 392J, there is an infinite J C N such that
inf;cjnn a; # 0 for every n € N. Let Z be the Stone space of 2, and write a C Z for the open-and-closed
set corresponding to a € 2; then there is a z € [, ; @n. For every n € J there is an i, € I, such that
Z € Gp,;,. But now observe that vb, ; > € for every n € J, so there must be distinct m, n € J such that
bin,i,, N, 7 0; 8S G i, Ny, i also non-zero, ¢, N ¢, # 0. As (c,)nen is arbitrary, u x v is exhaustive.

(f) We can extend the construction to infinite products, as follows. Let I be a totally ordered set and
((2;, p;i)Yier a family of Boolean algebras endowed with unital submeasures. For a finite set J = {ig,... ,in}
where 49 < ... <1, in I, let A; be the product submeasure (.(fi, X f1i;) X ... ) X p1, on €5 = @ ; A;; for
definiteness, on €3 = {0, 1} take Ay to be the unital submeasure, while €y = A and Ay = p; foreachi € 1.
Using (c) repeatedly, we see that if J, K € [I|<¥ and j < k for every j € J, k € K, then the identification
of € uk with €5 ® €k (315L) matches Ay i with Ay X Ag. Moreover, if K € [I|<% and J is any subset of
K (not necessarily an initial segment) and €k : €; — €k is the canonical embedding corresponding to the
identification of €y with €; ® €k ;, then A\; = Agesk; this also is an easy induction on #(K). What this
means is that for any subset M of I we have a submeasure Ay; on €y = (J{en €y : J € [M]<¥}, being
the unique functional such that Apejp = Ay for every J € [M]<“. Finally, if L, M are subsets of I with
Il < m for every [ € L and m € M, then Apuy can be identified with Ay x Aps.

(g) I should perhaps have remarked already that if u and v, in (a), are additive and unital, then we
have an additive function X' on 2 ® B such that X (a ® b) = ua - vb for every a € A and b € B (326E).
Now, setting A = pu X v, each of A\, ) is absolutely continuous with respect to the other. P If ¢ € A ® B,
express ¢ as sup,c; a; ® b; where (a;);er is a finite partition of unity. Then p(sup{a; : vb; > Ac}) < Ac, so
Ne =3 ,crpa; - vb; is at most 2Ac. On the other hand, p(sup{a; : vb; > VX)) <V Ne, s0 de < Ve Q

392X Basic exercises (a) Show that the first two clauses of the definition 392A can be replaced by
‘va <v(aub) < va+ vb whenever anb=10".

(b) Let 2 be any Boolean algebra and v a finite-valued submeasure on 2. (i) Show that v is order-
continuous iff whenever A C 2{ is non-empty, downwards-directed and has infimum 0, then inf,c 4 va = 0.
(ii) Show that in this case v is exhaustive. (Hint: if (ap)nen is disjoint, then |, {0 : b2 a; for every i > n}
has infimum 0.)

neN

(c) Let 2 be a Boolean algebra and p, v two strictly positive submeasures on 2, each of which is absolutely
continuous with respect to the other. Show that they induce uniformly equivalent metrics on 21 (392H), so
that both give the same metric completion of 2.
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14 Measurable algebras 392Xd

(d) Let A, B be Boolean algebras with uniformly exhaustive submeasures u, v respectively. Show that
1 X v is uniformly exhaustive.

392Y Further exercises (a) Let 2 be a Boolean algebra and A : 2 — [0,1] a functional such that
A0 =0 and Aa < A(aub) < 2max(Aa, Ab) for all a, b € 2. Show that there is a submeasure v on 2 such
that %)\ <v<A

(b) (T.Jech) Show that a Boolean algebra 2l is chargeable iff there are sequences (A, )nen and (k,)nen
such that (a) U, ey An = 2\ {0} () whenever a, b € 2, n € N and aub € A, then at least one of a, b
belongs to Ap4+1 (7) if n € N then k,, € N and if ag, ... ,ag, € A are disjoint then some a; does not belong
to A,.

(c) I will say that a submeasure v on a Boolean algebra 2l is properly atomless if for every € > 0 there
is a finite partition A of unity in 2 such that va < € for every a € A. (Compare 326F.) (i) Show that if
and B are Boolean algebras with submeasures p, v respectively, we have a functional pxv : A® 9B — [0, 0]
defined by saying that

(1 % V)(supser as © bs) = min e max({v(sup,e; bi)} U{pa; i € 1\ J})
whenever (b;);er is a finite partition of unity in B and a; € 2 for each ¢ € I. (ii) Show that if u is a non-zero

properly atomless submeasure, v is a submeasure, and p X v is absolutely continuous with respect to u x v,
then v is uniformly exhaustive.

(d) (See 328H.) Let (I, <) be a non-empty upwards-directed partially ordered set, and ((2;, fi;))icr a
family of probability algebras; suppose that 7j; : ; — 2; is a measure-preserving Boolean homomorphism
whenever ¢ < j, and that m; = my;7;; whenever ¢ < j < k. (i) Let F be the filter

{A: A C I, there is some ¢ € [ such that j € A whenever i < j},

and set v(a;)icr = limsup,_, z fi;a; for (a;)icr € [[;c; Ui Show that v is a submeasure on 2 = [[, ., ;. (ii)
Let J be the ideal {d : vd = 0} of 2, and D the quotient algebra /7. Show that we have a strictly positive
unital submeasure 7 on ® such that vd® = vd for every d € 2, and that ® is complete under the metric
defined by . (iii) Show that for each i € I we have a Boolean homomorphism 7; : ; — © defined by setting
mia = (aj>;el, where a; = mj;a if j > 4, Oy, otherwise, and that ¥m; = fi;. Show that m; = m;¢;; whenever
i < j. (iv) Show that D¢ = (J;c; mi[2li] is a subalgebra of ©, and that v[® is additive. (v) Let € be the
closure of D in D, and set A = [ €. Show that (€, \) is a probability algebra. (vi) Now suppose that (B, 7)
is a probability algebra, and that for each ¢ € I we are given a measure-preserving Boolean homomorphism
@i + A; — B such that ¢; = ¢;m;; whenever ¢ < j. Show that there is a unique measure-preserving Boolean
homomorphism ¢ : € — B such that ¢m; = ¢; for every i € I.

(e) Let A be a Boolean algebra and v : 2l — [0, oo] a submeasure. Show that the following are equiverid-
ical: (i) v is uniformly exhaustive; (ii) whenever {(a,)nen is a sequence in 2 such that inf, ey va, > 0, there
is a set I C N, not of zero asymptotic density, such that a; na; # 0 for all ¢, j € I; (iii) whenever (an)nen
is a sequence in 2 such that inf, ey va, > 0, there is a set I C N, not of zero asymptotic density, such that
v(infier i<na;) > 0 for every n € N.

392 Notes and comments Much of the first part of this section is a matter of generalizing earlier argu-
ments. Thus 392C ought by now to be very easy, while 392Xb recalls the elementary theory of 7-additive
functionals.

The new ideas are in the combinatorics of 392D-392E. I have cast 392D in the form of an argument
in probability theory. Of course there is nothing here but simple counting, since the probability measure
simply puts the same mass on each point of €2, and every statement of the form ‘Pr(R ...) < ...’ is just
a matter of counting the elements R of ) with the given property. But I think many of us find that the
probabilistic language makes the calculations more natural; in particular, we can use intuitions associated
with the notion of independence of events. Indeed I strongly recommend the method. It has been used to
very great effect in the last sixty years in a wide variety of combinatorial problems. 392F and 392G together
constitute the Kalton-Roberts theorem (KALTON & ROBERTS 83).
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Version of 11.5.08

393 Maharam submeasures

Continuing our exploration of variations on the idea of ‘measurable algebra’, we come to sequentially
order-continuous submeasures. These are associated with ‘Maharam algebras’ (393E), which share a great
many properties with measurable algebras; for instance, the existence of a standard topology defined by the
algebraic structure (393G). This topology is intimately connected with the order*-convergence of sequences
introduced in §367 (393L). We can indeed characterize Maharam algebras in terms of properties of the
order-sequential topology defined by this convergence (393Q).

393A Definition Let 2 be a Boolean algebra. A Maharam submeasure or continuous outer
measure on 2 is a totally finite submeasure v : 2 — [0, oo[ such that lim,_, va, = 0 whenever (a,)nen
is a non-increasing sequence in 20 with infimum 0.

393B Lemma Let 2 be a Boolean algebra and v a Maharam submeasure on 2.

(a) v is sequentially order-continuous.

(b) v is ‘countably subadditive’, that is, whenever (a,)nen is a sequence in 2 and a € 2 is such that
a = Sup,cy @ N ay, then va < 37 (va,.

(c) If 2 is Dedekind o-complete, then v is exhaustive.

proof (a) (Of course v is an order-preserving function, by the definition of ‘submeasure’; so we can apply the
ordinary definition of ‘sequentially order-continuous’ in 313Hb.) (i) If (a,,)nen is a non-decreasing sequence in
2 with supremum a, then (a,, \ a),en is a non-increasing sequence with infimum 0, so lim,,— ., v(a, \ a) = 0;
but as

va, <va <va, +v(a\ay,)

for every n, it follows that va = lim,, o va,. (ii) If (a,)nen is a non-increasing sequence in 2 with infimum
a, then

va <va, <va+v(a,\a) = va
as n — o0o.
(b) Set by, = sup;<,, ana;; then vb, < 3"  va; for each n (inducing on n), so that

va =lim, o vb, <Y o0 va;.

(c) If (an)nen is a disjoint sequence in A, set b, = sup;s,, a; for each n; then inf,enb, = 0, so

lim sup,,_, o Vayn < lim,_,o vb, = 0.

393C Proposition Let 2 be a Dedekind o-complete Boolean algebra and v a strictly positive Maharam
submeasure on 2. Then 2 is ccc, Dedekind complete and weakly (o, oco)-distributive, and v is order-
continuous.

proof By 393Bc, v is exhaustive; by 392Ca, 2 is ccc; by 316Fa, 2 is Dedekind complete; by 316Fc and
393Ba, v is order-continuous

Now suppose that we have a sequence (A,,),en of non-empty downwards-directed subsets of 2, all with
infimum 0. Let B be the set

{b:beA,VneNITae A, such that a C b}.
As v is order-continuous, inf,¢c 4, ¥a = 0 for each n. Given e > 0, we can choose (a,)nen such that a,, € A,
and va, < 27"¢ for each n; now b = sup,,cy an belongs to B and vb < ZZOZO va, < 2¢. Thus infyc g vb = 0.
Since v is strictly positive, inf B = 0. As (4, )nen is arbitrary, 2 is weakly (o, 0o)-distributive.

(©) 2007 D. H. Fremlin
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16 Measurable algebras 393D

393D Theorem Let 2 be a Boolean algebra. Then it is measurable iff it is Dedekind o-complete and
carries a uniformly exhaustive strictly positive Maharam submeasure.

proof If 2 is measurable, it surely satisfies the conditions, since any totally finite measure on 2l is also a
uniformly exhaustive strictly positive Maharam submeasure. If 2 satisfies the conditions, then it is weakly
(o, 00)-distributive, by 393C, so 392G gives the result.

393E Maharam algebras (a) Definition A Maharam algebra is a Dedekind o-complete Boolean
algebra 2 such that there is a strictly positive Maharam submeasure on 2.

(b) Every measurable algebra is a Maharam algebra, while every Maharam algebra is ccc and weakly
(0, 00)-distributive (393C), therefore Dedekind complete. A Maharam algebra 2l is measurable iff there is a
strictly positive uniformly exhaustive submeasure on 2(. (Put 393C and 392G together again.)

(c)(i) A principal ideal in a Maharam algebra is a Maharam algebra; an order-closed subalgebra of a
Maharam algebra is a Maharam algebra. * Let 2 be a Maharam algebra and 9B either a principal ideal of
2 or an order-closed subalgebra of 2. Because 2l is Dedekind complete, so is B (314Ea). Let v : 2 — [0, o0]
be a strictly positive Maharam submeasure. Then v[‘B is a strictly positive Maharam submeasure on 2, so
5 is a Maharam algebra. Q

(ii) The simple product of a countable family of Maharam algebras is a Maharam algebra. P Let
(;)icr be a countable family of Maharam algebras and 2 its simple product. Then 2 is Dedekind complete
(315De). For each i € I, let v; be a strictly positive Maharam submeasure on 2;. Let (¢;);er be a family of
strictly positive real numbers such that ), €; is finite. Set va = ), ; min(e;, v;a(i)) for a € A; then v is
a strictly positive Maharam submeasure on 2, so 2 is a Maharam algebra. Q

393F Lemma Let 2 be a Dedekind o-complete Boolean algebra and v, v’ two Maharam submeasures
on 2 such that va = 0 whenever v’a = 0. Then v is absolutely continuous with respect to v'.

proof (Compare 232Ba.) ? Otherwise, we can find a sequence (a,)nen in 2 such that v’a,, < 2™ for every
n, but € = inf,enva, > 0. Set b, = sup;s,, a; for each n, b = inf ey by. Then v'b, < 3777 270 < 277

for each n (393Bb), so v’'b = 0; but vb, > € for each n, so vb > € (393Ba), contrary to the hypothesis. X

393G Proposition Let 2 be a Maharam algebra, and v and v’ two strictly positive Maharam sub-
measures on 2. Then the metrics they induce on 2 are uniformly equivalent, so we have a topology and
uniformity on 2 which we may call the Maharam-algebra topology and the Maharam-algebra uni-
formity.

proof By 393F, v and v/ are mutually absolutely continuous; translating this with the formula of 392Ha,
we see that the metrics are uniformly equivalent, so induce the same topology and uniformity. As 2 does
have a strictly positive Maharam submeasure, we may use it to define the Maharam-algebra topology and
uniformity of 2.

393H Proposition Let 2 be a Boolean algebra, and v an exhaustive strictly positive totally finite
submeasure on 2A. Let 2 be the metric completion of A, as described in 392H, and © the continuous
extension of v to 2. Then ¥ is a Maharam submeasure, so 2 is a Maharam algebra.

proof (Compare 392Hd.)

(a) The point is that any non-increasing sequence (a,)nen in 20 is a Cauchy sequence for the metric p.
P Let € > 0. For each n € N, choose b,, € 2 such that j(a,,b,) < 27 "¢, and set ¢, = inf,<,, b;. Then

pan, cn) = p(infi<p, a;,infi<, b)) < D00 plai, b;) < 2e
for every n. Choose (n(k))ren inductively so that, for each k € N, n(k + 1) > n(k) and
V(Cn(k') \Cn(k-i-l)) > SUP;>n (k) V(Cn(k) \Cz) — €.

Then (cp(k) \ Cn(k+1))ken is a disjoint sequence in 2, so
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393J Maharam submeasures 17

limsup sup p(an),a;) < 4e+limsup sup p(c ), )
k—oo i>n(k) k—oo i>n(k)

= 4e +limsup sup v(c,m) \ i)
k—oo i>n(k)

< de 4 limsup v(cpr) \ Cn(p41)) + € = Se.

k—o0

As € is arbitrary, (a,)nen is Cauchy. Q

(b) It follows that 2l is Dedekind o-complete. P If (a,,)nen is any sequence in §l, (bn)nen = (infi<p @i)nen
is a Cauchy sequence with a limit b € 2. For any k € N,

D(b\ ar) = lim, o0 P(by \ ag) = 0,
so b C ag, because I is strictly positive. While if ¢ € 2l is a lower bound for {a, : n € N}, we have ¢ C b,
for every n, so
(c\ b) = limy, 00 P(c\ by) =0
and ¢ C b. Thus b = inf,,cn ayn; as {ay,)nen is arbitrary, 2A is Dedekind o-complete (314Bc). Q

(c) We find also that 7 is a Maharam submeasure, because if (a,)nen is a non-increasing sequence in

2 with infimum 0, it must have a limit a which (as in (b) above) must be its infimum, that is, a = 0;
consequently

lim,, o Pa, = va = 0.

(d) It follows at once that ¥ is exhaustive (393Bc), so that 2 is cce (392Ca) and Dedekind complete
(316Fa).

3931 Proposition Let 2 be a Dedekind o-complete Boolean algebra and v an atomless Maharam sub-
measure on 2A. Then for every € > 0 there is a finite partition C of unity in 2 such that ve < e for every
ceC.

proof Let A C 2 be a maximal disjoint set such that 0 < va < e for every a € A. As v is exhaustive (393Bc),
A is countable. Set ¢ = 1\ sup A. ? If vc > 0, then (because v is atomless) we can choose inductively a
sequence (b, )nen such that by = ¢, byy1 C by, Vb1 > 0 and v(by, \ byy1) > 0 for every n € N. But now
by \ bt1)nen is a disjoint sequence of elements of non-zero submeasure, so one of them has submeasure in
10, €] and ought to have been added to A. X

If A is finite, we can set C = AU{c} and stop. Otherwise, enumerate A as (a,)nen and set ¢, = sup;s.,, a;
for each n; then lim,,_, o, vc,, = 0, so there is an n such that ve, < €, and we can set C' = {a; : i < n}U{c, Uc}.

393J Lemma (MAHARAM 1947) Let 2 be a ccc Boolean algebra with a T; topology ¥ such that (i)
U A x 2 — 2 is continuous at (0,0) (ii) whenever (a,)nen is a non-increasing sequence in 20 with infimum
0, then (a,)nen — 0 for T. Then 2 has a strictly positive Maharam submeasure.

proof (a) For any e € 2\ {0}, there is a Maharam submeasure v on 2 such that ve > 0.

P (i) Choose a sequence (G, )nen of neighbourhoods of 0, as follows. Because T is Ty, Go = 2\ {0} is a
neighbourhood of 0 not containing e. Given G,,, choose a neighbourhood G,,4+1 of 0 such that G,,+1 C G,
and aubuc € G,, whenever a, b, ¢ € G,,+1. (Take neighbourhoods H, H' of 0 such that aub € G,, for a,
be H,buce H for b, c € H' and set G,1 = HN H' NG,.) Define 1y : A — [0, 1] by setting

voa =11if a ¢ Go,
=2"ifaeG,\Gpt1,
=0ifac [ Gn.

neN
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18 Measurable algebras 393J

Then whenever ag, ... ,a, € A, n € Nand Y.|_ voa; < 27", Sup,;<, a; € Gy. To see this, induce on r. If
r = 0 then we have vyag < 27" so ag € Gp41 € G,. For the inductive step to r > 1, there must be a k < r
such that ), _, voa; < 277=1 and Y hcicn Yol < 277~ (allowing k = 0 or k = n, in which case one of the
sums will be zero). (If Y7_ voa; < 27" 1, take k = n; otherwise, take k to be the least number such that
Zf:o voa; > 27""1) By the inductive hypothesis, and because 0 certainly belongs to G,41, b = Sup; ., @;
and ¢ = supy ;< a; both belong to G, 11; but also vpar < 27" so ar € Gpy1. Accordingly, by the choice of
Gn+17
Sup;<, a; =buaguc
belongs to G,,, and the induction continues.
(ii) Set
via =inf{}7/_ voa; : ap,...,ar €A, a =sup;c, a;}
for every a € 2. It is easy to see that v1(aub) < wvia+14b for all a, b € ; also a € G,, whenever via < 27",
so, in particular, v1e > 1, because e ¢ Gy.
Set
va=inf{mnb:anecCbCe}
for every a € 2. Then of course 0 < va < vb whenever a C b, and
v0 < V10 < 1/00 = 07
sov0=0. If a, b € A and € > 0, there are a/, b’ such that ane Ca’ Ce, bne Cb Ce, vid < va+ € and
b’ <vb+e; sothat (aub)ne Ca'ub Ceand
viaub) <wvi(a ub) <wva + b <va+ vb+ 2e.
As ¢, a and b are arbitrary, v is a submeasure. Next, if (a;);en is any non-increasing sequence in 20 with

infimum 0, (a; Ne);en is another, so converges to 0 for T. If n € N there is an m such that a; ne € G,, for
every ¢ > m, so that

va; <vi(a;ne) <ypla;ne) <277
for every i > m. As n is arbitrary, lim;_,. va; = 0; as (a;);en is arbitrary, v is a Maharam submeasure.
Finally,

ve=rve>1,

sove#0. Q

(b) Write C for the set of those ¢ € 2 such that there is a strictly positive Maharam submeasure on
the principal ideal .. Then C is order-dense in 2. I Take any e € 2\ {0}. By (a), there is a Maharam
submeasure v such that ve > 0. Set A = {e\a : va = 0}. Because v is a submeasure, A is downwards-
directed. ? If inf A = 0 then, because 2 is ccc, there is a non-increasing sequence (a, )nen in A with infimum
0; because v is a Maharam submeasure,

ve <inf,enva, +v(e\ay,) = inf,enva, =0. X
Thus A has a non-zero lower bound ¢, and v[%,. is a strictly positive Maharam submeasure, while ¢ C e. Q

(c) Because 2 is ccc, there is a sequence (¢, )nen in C' with supremum 1. For each n, let v, be a strictly
positive Maharam submeasure on 2. ; multiplying by a scalar if necessary, we may suppose that v,c, < 27",
We can therefore define v : 2 — [0,2] by setting va = >~ v,(anc,) for every a € 2, and it is easy to
check that v is a strictly positive Maharam submeasure on 2.

*393K Theorem Let 2 be a ccc Dedekind complete Boolean algebra. Then 2 is a Maharam algebra iff
there is a Hausdorff linear space topology ¥ on L°(2() such that for every neighbourhood G of 0 there is a
neighbourhood H of 0 such that v € G whenever v € H and |u| < |v|.

proof (a) Suppose that 2 is a Maharam algebra; let v be a strictly positive Maharam submeasure on 2.

(i) For u € LY = LO(A) set
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7(u) = inf{a:a >0, vlul > o] < a}.
Then 7 is an F-seminorm (definition: 2A5B'). P (i) It will save a moment if we observe that whenever
B > 7(u) there is an o < 8 such that v[ju| > o] < «, so that
Vlu| > B] < v[ju| > a] <a < B.
Also, because v is sequentially order-continuous,
v[ul > 7(w)] = limpy—eo v[Jul > 7(u) + 27" < limpy—yoo 7(u) + 27" = 7(u).
(ii) So

V[lu+o| > 7(u) + 7(0)] < vyl + [v] > 7(u) + 7(v)])
< v([lul > r(@)]u[lv] > 7(v)])
(364Ea)
< V[lu| > ()] + v[Jv] > ()] < 7(u) +7(v),

and 7(u+v) < 7(u) + 7(v). (iii) If |a] <1 then

v[lau| > 7(w)] < vllu] > r(w)] < 7(u),
and 7(au) < 7(w). (iv) lim, o v[Ju| > n] = 0 because ([|u| > n])nen is a non-increasing sequence with
infimum 0. So if € > 0, there is an n > 1 such that v[|u| > ne] < ¢, in which case v[|au| > €] < € whenever

la| < L, so that 7(au) < e whenever || < 1. As € is arbitrary, lima—o 7(ou) = 0. Thus all the conditions
of 2A5B are satisfied and 7 is an F-seminorm. Q

(ii) Accordingly we have a pseudometric (u,v) — 7(u — v) which defines a linear space topology ¥ on
LY (2A5B). In fact this is a metric, because if 7(u — v) = 0 then v[Ju — v| > 0] = 0 and (since v is strictly
positive) u = v. So T is Hausdorff. Now let G be an open set containing 0. Then there is an € > 0 such
that H = {u: 7(u) < €} is included in G. If v € H and |u| < |v|, then

V[lul > 7(v)] < v[lv] > 7(v)] < 7(v),
so 7(u) < 7(v) and u € H C G. So ¥ satisfies all the conditions.

(b) Given such a topology T on L?, let & be the topology on 2 induced by T and the function y : 2 — LY
that is, & = {x"![G] : G € T}. Then & satisfies the conditions of 393J. P (i) Because T is Hausdorff and x
is injective, & is Hausdorff, therefore Ty. (ii) If 0 € G € &, there is an H € T such that G = x~'[H]. Now
0 (the zero of L°) belongs to H, so there is an open set H; containing 0 such that v € H whenever v € H;
and |u| < |v|. Next, addition on L° is continuous for T, so there is an open set Ha containing 0 such that
u+v € Hy whenever u, v € Hy. Consider G’ = x~![Hs]. This is an open set in 2 containing Oy, and if a,
b € G’ then

Ix(aub)| < xa+xbe Hy + Hy C Hiy,
so x(aub) € Hand aub € G. As G is arbitrary, U is continuous at (0,0). (iii) If {(a,)nen is & non-increasing
sequence in 2 with infimum 0, ug = sup, ey nxay, is defined in L (use the criterion of 364L(a-i):
infmensup, ey [nxan > m] = infpen ame1 =0.)

If0 € G € G, take H € T such that G = y " ![H]|, and H; € T such that 0 € H; and u € H whenever v € H;
and |u| < |v|. Because scalar multiplication is continuous for T, there is a k > 1 such that tug € Hy. For
any n > k, ya, < %uo so xan, € H and a,, € G. As G is arbitrary, (an)neny — 0 for &. As (an)nen is
arbitrary, condition (ii) in the statement of 393J is satisfied. Q

So 393J tells us that 2 has a strictly positive Maharam submeasure, and is a Maharam algebra.

393L I now turn to some very remarkable ideas relating the order*-convergence of §367 to the questions
here.

ILater editions only.
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20 Measurable algebras 393L

Definition Let P be a lattice, and consider the relation ‘(p,)nen order*-converges to p’ as a relation between
PY and P. By 367Bc, this satisfies the hypothesis of 3A3Pa, so there is a unique topology on P for which a
set F' C P is closed iff a € F' whenever (a,)nen is a sequence in F' which order*-converges to a in P. T will
call this topology the order-sequential topology of P.

Warning! For the next few paragraphs I shall be closely following the papers BALCAR GLOWCZYNSKI &
JECH 98 and BALCAR JECH & PAZzAK 05. I should therefore note explicitly that if 2/ is a Boolean algebra
which is neither Dedekind o-complete nor ccc, my ‘order-sequential topology’ on 2 may not be identical to
theirs.

393M Lemma Let 2 be a Boolean algebra.

(a) A sequence (an)nen order*-converges to a € 2 iff there is a partition B of unity in 2 such that
{n:n €N, (a, &ra)nb#0} is finite for every b € B.

(b) If (ay)nen order*-converges to a and ¢ € 2, then (a, Uc)nen, {(an NC)nen and {a, A ¢)pen order™-
converge to aUc, anc and a A c respectively.

(c) The operations N, U and A are separately continuous for the order-sequential topology.

(d) Every disjoint sequence in 2 is order*-convergent to 0.
proof (a) Let (a,)nen be a sequence in 2 and a € 2; set

C={c:IneN, cca; for every i > n},
D={d:3neN,aqa; Cdforevery i > n}.

(1) If (an)nen order*-converges to a, then a = sup C' = inf D (367Be). Since
inf{d\a:de€ D} =inf{a\c:ce C} =0,

E={(d\a)u(a\c):ceC,de D}

also has infimum 0 (313A, 313B). So there is a partition B of unity such that for every b € B there is an
e € E such that bne = 0. Now, given b € B, there are ¢ € C and d € D such that bn (d \ ¢) = 0; there are
ny, ng € N such that ¢ C a, for n > ny and a, C d for n > na; so that {n : (a, Aa)nb # 0} is bounded
above by max(ni,ns) and is finite. So B witnesses that the condition is satisfied.

(ii) Now suppose that B is a partition of unity such that {n : (a, Aa)nb # 0} is finite for every
be B. Then au(1\b) € D for every b € B, because {n : a, Zau(1\b)} C {n: (an & a)nb# 0} is finite.
So any lower bound for D is also a lower bound for {au(1\b) : b € B} and is included in a. Similarly,
any upper bound for C includes a; as ¢ C d whenever ¢ € C and d € D, a = supC = inf D and (a,)nen
order*-converges to a.

(b) These are all immediate from (a), because
(apuc)r(auc) CayLa, (apnc)a(anc) Cay, A a,
(an D) D(anc)=a,Da
for every n.

(c) By (b), we can apply 3A3Pb to each of the functions a — anb = bna, a = aub = bua and
a+— ab=>bAa to see that these are all continuous for every b € 2.

(d) If {(ay,)nen is a disjoint sequence in 2, there is a partition B of unity in 2 containing every a,, (311Gd);
now B witnesses that the condition of (a) is satisfied.

393N Proposition Let 2 be a Maharam algebra. Then the Maharam-algebra topology on 2 is the
order-sequential topology.

proof Let T, be the order-sequential topology on 2, v a strictly positive Maharam submeasure on 2, p the
metric defined from v (392H) and T, the Maharam-algebra topology induced by p (393G).
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(a) If {an)nen is a sequence in A such that {(a,)neny —* @ in 2, then lim,,_, p(an,a) = 0. P By 393Mb,
(an A a)nenw —* 0; by 367Bf, 0 = inf,en sup; >, (a; A a), so

p(an,a) < v(sup;s, a; Aa) =0

asn — o0o. Q
It follows that every T s-closed set is €,-closed, and T, C ¥),;.

(b) Conversely, suppose that {a,),en is a sequence in 2 converging for Ty, to a € 2. Then (a,)nen has a
subsequence (al,)nen such that p(al,,a) < 27" for every n € N. In this case, setting b, = sup,,>,, al, & a for
each m, vb,, <27 for every m (393Bb), so inf,,en b = 0, and (@), A a)peny —* 0, that is, <(;;L>n€N —* a.

Thus every T ,s-convergent sequence has an order*-convergent subsequence with the same limit; it follows
that every T,-closed set is Tjps-closed, that is, Ty C T,,.

3930 Proposition Let 2 be a ccc Dedekind o-complete Boolean algebra, with its order-sequential
topology, and 8 a subalgebra of 2. Then the topological closure of B is the smallest order-closed set
including 93; in particular, 9 is order-closed iff it is topologically closed.

proof (a) Let B be the topological closure of B, and B~ the smallest order-closed set including 9.

(i) Suppose that (b, )nen is a non-decreasing sequence in B with supremum b in 2/; then {bn)nen = b,

by 367Bf or 367Xa. So b € B. Similarly, inf,cn b, € B for every non-increasing sequence in B. Thus B is
sequentially order-closed. But this means that it is order-closed, by 316Fb. So B D B™.

(ii) By 313Fc, 8™ is a subalgebra of 2. Now suppose that (b,)nen iS a sequence in B~ which
order*-converges to a € 2. Then ¢, = SUp,,<;<, b belongs to B~ whenever m < n; as (Cyn)n>m is non-
decreasing, ¢,, = sup;,, b; = sup,;>,, Cmn belongs to B~ for every m € N; as (¢,,)men 18 non-increasing,
inf,,en em € B, But ¢ = b (367Bf). As (b, )nen is arbitrary, 8™ is closed for the order-sequential topology,
and must include B.

Thus B = B~ as claimed.

(b) Now

B is order-closed <= B =B~ <= B =B <= B is topologically closed.

393P Lemma Let 2 be a ccc weakly (o,o00)-distributive Boolean algebra, endowed with its order-
sequential topology.

(a) If (amn)mnen, (@m)men and a are such that (am,)nen order*-converges to a,, for each m, while
(@m)men order*-converges to a, then there is a sequence (k(1m))men in N such that (am, k(m))men order*-
converges to a.

(b) If A C 2 and a € A, there is a sequence in A which order*-converges to a.

(¢) If G is a neighbourhood of 0 in A then there is an open neighbourhood H of 0, included in G, such
that [0,a] C H for every a € H.

(d) For A C 2, set \/((A) = {0} and \/,,;(A) ={avb:acV,(A),be A} forn € N.

(i) If A C A is such that [0,a] C A for every a € A, and n € N, then [0,a] C V/,, (A) for every a € \/,,(A).
(ii) If H C 20 is an open set containing 0 such that [0,a] C H for every a € H, then \/, , ,(H) is open

and \/, (H) €V, (H) for every n € N.
(e) Suppose that 2 is Dedekind o-complete. Then for every open set G containing 0 there is an open set
H containing 0 such that \/,(H) C \/,(G).

n+1

proof (a) Let Cy,, for m € N, be partitions of unity in 2 such that
{m : (am & a) nc # 0} is finite for every ¢ € Cy,

{n: (@amn A& am) N c # 0} is finite whenever m € N and ¢ € Cyp11

(393Ma). Because 2 is weakly (o, 0o)-distributive, there is a partition B of unity such that {c : ¢ € C,,,
c¢nb # 0} is finite whenever m € N and b € B (316H(ii)). Because 2 is ccc, there is a sequence (b,)nen
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running over BU{0}. Now, for each m, any sufficiently large k(m) will be such that (a,, k(m) A @m) N b; =0
for every i < m. In this case, for any i,

{m (@ pm) 2 a)nb; # 0} C{m:m <ifU{m: (am Aa)Nb; # 0}
is finite, so B witnesses that (@, k(m))men —" a (393Ma, in the other direction).

(b) Let A™ be the set of order*-limits of sequences in A. Of course A~ must be included in A. But from
(a) we see that the limit of any order*-convergent sequence in A™ belongs to A~. So A™ is closed and is
equal to A. Turning this round, we see that A is just the set of order*-limits of sequences in A, as claimed.

(c)Set D={d:d e, [0,d € G}, H=2A\D. Since D 2 2\ G, H is an open subset of G.

? If 0 € D, then (b) tells us that there is a sequence (d,,)nen in D order*-converging to 0. Now there
is for each n € N a ¢, C d,, such that ¢, ¢ G. By 367Be or 393Ma, (¢, )nen order*-converges to 0, and
0 € A\ G; but G is supposed to be a neighbourhood of 0. X Thus 0 € H and H is a neighbourhood of 0.

? Ifae H and b € [0,a]\ H, then b € D, so there is a sequence (d,,)nen in D order*-converging to b. In
this case, (d,, Ua)nen order*-converges to bua = a, by 393Mb. But also [0,d, ua] 2 [0,d,] is not included
in G, so d, ua € D for each n, and a € D; which is impossible. X Thus [0,a] C H for every a € H, and H
has the properties declared.

(d)(i) This is an elementary induction on n.

(ii) The point is that \/,  (H) = {aab:a €V, (H), b€ H}. Plfac\/, (H)and b € H, then
a\b €\, (H), by (i), and b\ a € H, so anb €\, ,(H). On the other hand, if c € \/, ,(H), it is
expressible as aub = a A (b\ a) where a € \/, (H) and b and b\ a belong to H. Q
Since A is separately continuous, it follows at once that

\/n—i-l(H) S U(IEVH(H){aAb 0 b S H} ES U(levn(H){b talb c H}

is open, because A is separately continuous (393Mc). Next, if d € \/, (H), then there is a sequence (d,,)nen
in \/,,(H) order*-converging to d, by (b). Now (d,, A d),en —* 0, by 393Mb, so (d, A d)nen converges
topologically to 0, by 3A3Pa, and there is an n € N such that d,, A d € H; in which case d = d,, A (d, A d)
belongs to \/, ., (H). As d is arbitrary, \/, (H) €\, ,(H).

(e) ? Suppose, if possible, otherwise.

(i) Choose H,,, an, b, and ¢, inductively, as follows. Hy C G is to be an open neighbourhood of 0 such
that [0,a] € Hp whenever a € Hy ((c) above). Given that H,, is an open set containing 0 and including
[0, a] whenever it contains a, we are supposing that \/;(H,) € V,(G); choose ay, by, ¢, € H, such that
an Ub, Uc, ¢ \/5(G), and set

Hpi1={a:a,aua,, aub, and auc, all belong to H,},
so that H,,41 is an open set containing 0, and [0,a] C H,,4+1 for every a € H, ;1. Continue.

(ii) At the end of the induction, set F' = [, .y Hn and a* = inf,cysup;>,, a;. Then a* ud € F for every
de F. P Form <n €N, sup,,c;<,a;ud € Hy, for every d € H,; (induce downwards on m). Because

U is separately continuous, sup,,<;<, a; ud € H,, for every d € F. Letting n — oo, dU sup;s,, a; € Hp,
whenever d € F and m € N. Next, for any b € 2, {a : anb € H,,} is a closed set including H,,, so
anb € H,, for every a € H,,; that is, [0,a] € H,, for every a € H,,. As a* C sup;s,, a;, dua* € H,, for
every d € F. As m is arbitrary, dua* € F for every d € F. Q B

Similarly, setting b* = inf, ey sup;s,, b; and ¢* = inf, ey sup;s,, ¢;, dub* and duc* belong to F' for every
d € F; and of course 0 € F. So e = a* ub* Uc* belongs to F. For each n € N, a, ub, uc, & \/,(Hop);
but [0,a] € \/,(Hy) for every a € \/,(Hy), by (d-i), so sup;~,a;ub;uc; ¢ \/5(Hp). Accordingly e =
inf,en Sup;>, a; Ub; Uc; does not belong to the open set \/,(Ho), and e ¢ Hy, by (d-ii). So e € F\ Hy;
which is impossible. X

393Q Theorem (BALCAR GLOWCZYNSKI & JECH 98, BALCAR JECH & PAZAK 05) Let 2 be a Dedekind
o-complete Boolean algebra. Then the following are equiveridical:
(1) 2 is a Maharam algebra;
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(ii) A is ccc and the order-sequential topology is Hausdorff;

(iil) A is weakly (o, co)-distributive and {0} is a Gs set for the order-sequential topology of 2;

(iv) 2 is ccc and there is a T topology on 2 such that (o) u : 2 x 20 — 2 is continuous at (0,0) (5)
whenever (a,)nen is a non-decreasing sequence in 20 with infimum 0, then (a,),en — 0.

proof (a)(i)=-(ii) By 393Eb, A is ccc. By 393N, the order-sequential topology is metrizable, therefore
Hausdorff.

(b)(ii)=-(iii) Suppose that the conditions of (ii) are satisfied. In the following argument, all topological
terms will refer to the order-sequential topology on 2.

(a) 2 is weakly (o, 00)-distributive. I Let (A,,),en be a sequence of partitions of unity in 2, and set
D={d:de {a:a€ A,, and# 0} is finite for every n € N}.

Take any ¢ € 2T. Let G, H be disjoint open sets containing 0, ¢ respectively. Choose {(c,)nen inductively,
as follows. ¢y = ¢. Given ¢, € H, let (ani)ien be a sequence running over A,, and set ¢,; = SUD; < j Cn N Ay
then (cp ) jen order*-converges to ¢, (367Bf/367Xa), so there is a j, such that c,;, € H; set c,41 = cnj,,»
and continue.

This gives us a non-increasing sequence (Cn)nen in H. Set d = inf,ency; then d ¢ G so d # 0, while
d C sup,;<; an; for each n, sod € D.

As ¢ is arbitrary, D is order-dense in 2 and includes a partition of unity. As (A, ),en is arbitrary, 2 is
weakly (o, co)-distributive (316H). Q

(B) For any a € AT there is a sequence (H,)nen of neighbourhoods of 0 such that a ¢ sup((,,cy Hn)-
P For A C A and n € N, define \/, (A) as in 393Pd. Let G, G’ be disjoint neighbourhoods of 0 and a
respectively, and set Go = GN{aAb : b € G'}; then Gy is a neighbourhood of 0 (393Mc). By 393Pc,
we can find a neighbourhood Hy of 0 such that Hy C Gy and [0,b] C Hy for every b € Hp, in which case
[0,b] C \/,(Ho) for every b € \/,(Hy), while a ¢ \/,(Hy). By 393Pe, we can choose neighbourhoods H,, of 0
such that H,, C H,_1 and \/5(H,) € \/5(Hy,—1) for every n > 1; by 393Pc, we can suppose that [0,b] C H,
whenever b € H,,. But this will ensure that \/,(Hy,+42) € \/5(H,) for every n, so that \/,. (Hax) C Vo (H2)
for every k > 1. Set F =), cn Hn- Then

\/Qk(F) c VQk(HQk) - \/2(H2)

for every k > 1. Since sup F is the limit of a sequence in (J;,~; Vor (F),

sup F € \/,(H2) € V3(H2) € V,(Ho)
(using 393P(d-ii) for the first inequality) and cannot include a. Q

neN

() Now consider the set D of those d € 2 such that there is a sequence (Hp)nen of neighbourhoods
of 0 such that dn sup(ﬂneN n) = 0. By (8), D is order-dense, so includes a partition of unity A. A is
countable, so there is a sequence (Hp,)nen of neighbourhoods of 0 such that dn sup((),,.y Hrn) = 0 for every
d € A; but this means that (), . H, = {0}. So (iii) is true.

neN
neN

(c)(iii)=(iv) Now suppose that the conditions in (iii) are satisfied. As in (b), all topological terms will
refer to the order-sequential topology on 2.

(a) There is a non-increasing sequence (G, )nen of open neighbourhoods of 0 such that (), .y G = {0}.
P Let (U,)nen be a sequence of open sets with intersection {0}. Set Gy = 2, and for n € N choose an
open neighbourhood G,,11 of 0, included in U, N G, such that [0,a] C G, for every a € G,41 (393P).
TIHO0#AdE N,y G, then for each n € N we can find a sequence (a,;);en in G, order*-converging to d
(393Pc). By 393Pa, there is a sequence (k(n))nen in N such that (a, g(n))nen order*-converges to d. Now
d = sup,, ey infi>n a; ;) (367Bf), so there is an n € N such that ¢ = inf;>,, a; 4(;) is non-zero. But in this
case we must have ¢ < a; ;) € G; and ¢ € G; € U; whenever i > max(n,j + 1), so ¢ = 0. X Thus
Nnen Gn = {0}, as required. Q

(B) For every neighbourhood G of 0 there is a neighbourhood H of 0 such that aub € G for all q,
b€ H. P? Otherwise, choose (Hy)nen, (@n)nen and (b, )nen inductively, as follows. Start with an open
neighbourhood Hy of 0 such that Hy C G and [0,a] C Hy for every a € Hy. Given that H, is an open
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24 Measurable algebras 393Q

neighbourhood of 0, let a,,, b, € H, be such that a,, ub,, ¢ G. Because the maps a — auUa, and a — aUb,
are continuous, there is an open neighbourhood H, ;i of 0 such that aua, and aub, belong to H,, for
every a € H,11; and we may suppose that H,1 € G,. Continue.

An easy induction on k shows that au sup,<;<, 1 a; and au sup, ;<,, . b; belong to H, whenever
k € Nand a € Hyii11- In particular, supné_ig_mr,g a; € H, for every k; since (SUD, <i<nik @i)keN 18
order*-convergent to sup;s,, @;, SUp;s, @; € H, C G, for every n. Set a* = inf,ey SUp;>, @;. Then
(SUp;>,, @i)neny —* a*, and sup;s,, a; € G, whenever n > m, so a* € G,, for every m, and a* = 0.

In the same way, inf,cy supi;n b; = 0. It follows that inf, ey ¢, = 0, where ¢, = sup;~,, @; U sup;-,, b; for
each n. But now (¢,)nen is a non-increasing sequence with infimum 0, so order*-converges to 0, and there
must be an n such that ¢, € Hy. Since a, Ub, C ¢,, a, Ub, € Hy C G, contrary to the choice of a,, and b,.

XQ

(7) A is ccc. P Let (Up)nen be a sequence of open sets with intersection {0}, and A C 2\ {0} a
partition of unity. If {(a;);cn is a sequence of distinct elements of A, then (a;);en —* 0 (393Md); so A\ U,
is finite for every n, and A is countable. Q

(6) (B) means just that U is continuous at (0,0). Also a non-increasing sequence with infimum 0
order*-converges to 0, so converges topologically to 0 (3A3Pa); and the topology is certainly T;. So all the
conditions of (iv) are satisfied by the order-sequential topology.

(d)(iv)=(i) By 393J, there is a strictly positive Maharam submeasure on 2; as 2l is Dedekind o-complete,
it is a Maharam algebra.

393R Definition Let 2 be a Boolean algebra. Then 2 is o-finite-cc if 2 can be expressed as |J,,cy An
where no A,, includes any infinite disjoint set.

393S Theorem (TODORCEVIC 04) Let 2 be a Boolean algebra. Then 2 is a Maharam algebra iff it is
o-finite-cc, weakly (o, co)-distributive and Dedekind o-complete.

proof (B.Balcar)(a) If 2 is a Maharam algebra, then of course it is Dedekind o-complete, and we have known
since 393C that it is weakly (o, 0co)-distributive. Also it carries a strictly positive exhaustive submeasure, so
is o-finite-cc.

Of course {0} is a Maharam algebra. For the rest of the proof, therefore, I suppose that 2l is a non-trivial
algebra satisfying the conditions, and seek to show that it is a Maharam algebra.

(b)(i) Let (A,)nen be a sequence of sets, with union 2, such that no A,, includes any infinite disjoint
set. For each n, set B, = U,,<,, Uaea, [a,1], so that B, includes no infinite disjoint subset. Now there is
an n such that 1 is in the interior of B,, for the order-sequential topology. *? Otherwise, of course 2 is ccc,
so there is for each n € N a sequence (b;);en in 2\ B,, which is order*-convergent to 1 (393Pb). By 393Pa,
there is a sequence (k(n))nen in N such that (b, x(n))nen order*-converges to 1. As 1 # 0, there must be an
m € N such that ¢ = inf;>,, b; sy # 0. There is an n such that ¢ € A,,, in which case b; ;) € B, C B; for
every i > max(m,n). XQ

(ii) Set H = int B,,. Then there is a ¢ € H such that for every d € 2 one of ¢cnd, c\d ¢ H. P
? Otherwise, we can choose a sequence (c;);en in H such that ¢g = 1 and, for each i € N, ¢;11 C ¢; and
¢i\ ¢i+1 € H. But in this case (¢; \ ¢;+1):en s a disjoint sequence in B,,, which is impossible. XQ

(iii) 0 and 1 can be separated by open sets. I Take H and c¢ from (ii). Then Gy = {d : ¢\ d € H} and
Gy ={d:cnd e H} are disjoint open sets containing 0 and 1 respectively. Q

(b) It follows that 2 is actually Hausdorff in the order-sequential topology. P Let ag, a; € 2 be such
that b = aj \ ag is non-zero. Consider the principal ideal 2. Like 2, this is o-finite-cc, weakly (o, c0)-
distributive and Dedekind o-complete. By (a), there are disjoint subsets U, V of 2, open for the order-
sequential topology of 2, such that 0 € U and b € V. The function a — anb : A — A is continuous for
the order-sequential topologies (3A3Pb), so G ={a:anbe U} and H = {a:anb € V} are open. Now G
and H are disjoint open sets in 2l containing ag, a1 respectively. As ag and a; are arbitrary, 2 is Hausdorff.

Q
By 393Q, 2 is a Maharam algebra.
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393X Basic exercises >(a) Let 2 be the finite-cofinite algebra on an uncountable set (316Y1). (i)
Set 110 = 0, v1a = 1 for a € A\ {0}. Show that v; is a strictly positive Maharam submeasure but is not
exhaustive. (ii) Set voa = 0 for finite a, 1 for cofinite a. Show that v is a uniformly exhaustive Maharam
submeasure but is not order-continuous.

>(b) Let 2 be a Boolean algebra and v a submeasure on 2. Set I = {a : va = 0}. Show that (i) I is
an ideal of 2 (ii) there is a submeasure 7 on 2(/I defined by setting va® = va for every a € 2 (iii) if v is
exhaustive, so is  (iv) if v is uniformly exhaustive, so is 7 (v) if v is a Maharam submeasure, I is a o-ideal
(vi) if v is a Maharam submeasure and 2 is Dedekind o-complete, 7 is a Maharam submeasure.

(c) Let 2 be a Dedekind complete Boolean algebra and v an order-continuous submeasure on 2. Show
that v has a unique support a €  such that v, is strictly positive and v %\, is identically zero.

(d) Let 2 be a Boolean algebra and v an exhaustive submeasure on 2 such that va = lim,,, o va, when-
ever {an)nen I8 a non-decreasing sequence in 2 with supremum a. Show that v is a Maharam submeasure.

(e) Let 2 be a Dedekind o-complete Boolean algebra and v a uniformly exhaustive Maharam submeasure
on 2. Show that there is a non-negative countably additive functional x on A such that {a : pa =0} = {a:
va = 0}. (Hint: 393Xb(vi).)

(f) Let %A be a Maharam algebra with its Maharam-algebra topology and uniformity. (i) Let B C 2 be
a non-empty upwards-directed set. For b € B set F, = {c: b C ¢ € B}. Show that {F}, : b € B} generates
a Cauchy filter F(B1) on 2 which converges to sup B. (ii) Show that closed subsets of 2l are order-closed.
(iii) Show that an order-dense subalgebra of 20 must be dense in the topological sense.

(g) Let A be a Maharam algebra. Show that it is a measurable algebra iff for every A C 2 including
antichains of all finite sizes there is a sequence in A which is order*-convergent to 0.

(h) Let 2 be a Boolean algebra. Suppose that (a,)nen, (bn)nen are sequences in 2 order*-converging to
a, b respectively. Show that (a,,Ob,)neny —* aOb when O is any of the operations U, N, A or \.

(i) Let (2, ) be a semi-finite measure algebra. Write T, for the order-sequential topology on 2l and %y,
for the measure-algebra topology. Show that Tos D Tina, with equality iff (2, i) is o-finite.

(j) (JECH 08) Let 2 be a Dedekind o-complete Boolean algebra and (A, ),en a sequence of subsets of 2
such that («) for every n € N, any antichain in A, has at most n elements (8) a sequence (aj)ren in 2 is
order*-convergent to 0 iff {k : a;, € A, } is finite for every n € N. (i) Show that 2 is ccc. (ii) Show that 2 is
weakly (o, co)-distributive. (Hint: if C,, is non-empty and downwards-directed with infimum 0 for each n,
show that there is a sequence (an)nen —* 0 such that a,, € C,, for every n.) (iii) Show that 2 is a Maharam
algebra. (Hint: 393S.) (iv) Show that any Maharam submeasure on 2 is uniformly exhaustive. (v) Show
that 2l is a measurable algebra.

393Y Further exercises (a) Let 2 be any Boolean algebra with a strictly positive Maharam submeasure.
Show that 2( is weakly o-distributive.

(b) Let U be a Riesz space, with its order-sequential topology. (i) Show that addition and subtraction
are separately continuous. (ii) Show that U is Archimedean iff scalar multiplication is separately continuous
as a function from R x U to U, and that in this case scalar multiplication is actually continuous.

(c) Let 2 be a Dedekind o-complete Boolean algebra, and give L° = L(2) its order-sequential topology.
Suppose b : R — R is continuous, and let h : L% — L® be the corresponding function as defined in 364H.
Show that h is continuous.

(d) Let 2l be a Maharam algebra. Show that a topology T on L°(2() defined by the method of 393K must
be the order-sequential topology on L°(1).
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(e) Let U be a weakly (o, 00)-distributive Riesz space with the countable sup property, with its order-
sequential topology, and A a subset of U. Show that A is the set of order*-limits of sequences in A.

(f) Let U be a weakly (o, 0o)-distributive Dedekind complete Riesz space with the countable sup property,
endowed with its order-sequential topology, and 2l its band algebra. Show that the following are equiveridical:
(i) A is a Maharam algebra; (ii) U is Hausdorff; (iii) addition on U is continuous at (0,0); (iv) V: UxU — U
is continuous at (0, 0).

(g) Let & be the regular open algebra of R, with its order-sequential topology. (i) Show that if U, V'
are open sets in & containing O = (} and 1 = R respectively, then U NV #£ . (ii) Show that if U is an
open set in & containing @) then there are G, H € U such that H = R\ G. (iii) Show that {} is a Gs set
in ®. (iv) Show that there is no non-zero Maharam submeasure on ®. (v) Show that there is no non-zero
countably additive functional on &.

(h) In 393Xj, show that each of the sets A,, must have non-zero intersection number.

(i) Let 2 be an atomless Boolean algebra with countable Maharam type. Show that there is a submeasure
p on A, order-continuous on the left, such that whenever a € 20\ {0} there is a b C a such that ub < pa.

393 Notes and comments For many years it was not known whether there were any Maharam algebras
which were not measurable algebras; this was the famous ‘control measure problem’; eventually solved by
M.Talagrand. I will present his example in the next section. We now know that we have a larger class, but it
remains very poorly understood, and the material presented here must be regarded as work in progress. As
in §8391-392, the stimulus for these ideas has been the attempt to characterize measurable algebras in more
or less algebraic terms. If we are prepared to allow order*-convergence of sequences to be an ‘algebraic’
notion, then 393Xj is such a characterization; but it shares with Kelley’s criterion 391K the need for a
sequence (A, )nen, covering AT, with defined properties. The advance, if any, is that the properties (a) and
(8) of 393Xj are a good deal farther from any formula for a measure.

The first few results of this section, down to 393G, are concerned with checking that Maharam alge-
bras share properties with measurable algebras, and the proofs use the same ideas, with occasional minor
modifications. In 393H we have to think a little, since exhaustivity is less familiar, and harder to apply,
than additivity. From this proposition we see that exhaustive submeasures are to uniformly exhaustive
submeasures something like what Maharam algebras are to measurable algebras. 393K is a further example
of a well-known construction — this time, convergence in measure — which has a version based on Maharam
algebras.

In §367 I examined order*-convergence in Riesz spaces, without explicitly discussing the associated topol-
ogy, and in 393L-393Q here I look at Boolean algebras. In both cases the usefulness of the idea starts
with the fact that the algebraic operations are separately continuous (367Ca, 393M), which is itself a conse-
quence of the strong distributive laws in 313A-313B and 352E. It is easy to see that in a Maharam algebra
the order-sequential topology is the Maharam-algebra topology (393N). What is remarkable is that natural
questions about the order-sequential topology lead to characterizations of Maharam algebras (393Q). This
leads directly to an astonishing algebraic characterization of Maharam algebras (393S). (But once again we
need to hypothesize the existence of a suitable sequence of sets covering 2AT.)

Version of 13.6.11/30.8.18
394 Talagrand’s example

I rewrite the construction in TALAGRAND 08 of an exhaustive submeasure which is not uniformly exhaus-
tive, generalized as in PEROVIC & VELICKOVIC 18.

394A PV norms (a) I will say that a PV norm is a function || || : [N]<* — N such that
— 0l =0, [l =1if #(I) = 1,

(©) 2017 D. H. Fremlin
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U < )+ 1] for all 1, J € [N]<,
— || < ||J]] whenever I, J € [N]<¥ and #(I Nn) < #(J Nn) for every n € N,
— lim,, 0 ||[A N || = co for every infinite A C N

(PEROVIC & VELICKOVIC 18, 2.2).

(b) Note that if || || is a PV norm then ||I|| < ||J|| < #(J) whenever I C J € [N]<¥. We see also that if
I € [N]<¥ and k < ||I|]| there is an n € I such that ||[I Nn| = k.

(c) The version of Talagrand’s example in the 2012 edition of Volume 3 corresponds to the case in which
lI]| = #(I) for every I € [N]<“. For the work of this section there is no need to consider any other, and
some of the formulae in 394D become more readable if you make this simplification; but it makes no real
difference to the ideas required.

394B Definitions We are ready to begin work. The construction is complex and demands a large volume
of special notation.

(a) I shall work throughout with X = [] .7, where (T},),en is a sequence of non-empty finite sets
and sup,,cy #(T5) is infinite. X may be regarded as a compact Hausdorff space with the product of the
discrete topologies on the T,,. For each n € N, 8, will be the algebra of subsets of X determined by
coordinates less than n and A4, the set of its atoms, that is, the family of sets of the form {z: 2z Cz € X}
for some z € [[,_, Ti- B = U,y Bn will be the algebra of open-and-closed subsets of X. For I C N and
z€]],erTn, Yz will be {z: 2 C x € X}. Finally, ||| will be a PV norm on [N]<“.

(b) We shall need a sequence {aj)reny in R and a sequence (Ni)ren in N. It is easy enough to give
appropriate formulae but perhaps the ideas will be clearer if instead I declare the properties they must have.

(i) ax > 0 and (28F4)2r < 2 for every k € N, (ay)ren is non-increasing, and > ;7 o < 3.
(ii) Ny € N and 27F(272k=12 N )2 > 24 for every k € N.
(¢) Now we come to some of the key ideas. For a set Z C PX x PN x [0, 00|, define its ‘spread’ sprZ to
be Up ru)ez £ and its ‘weight” wt Z to be }- g 1 ez W-
(d) For any family £ C PX x PN x [0, 0o define ¢¢ : B — [0, 00] by setting
¢psE =inf{wtZ :Z C £ is finite, E C sprZ},
counting inf @) as 0o. So ¢yl = 0 and ¢ggE = oo for E € B\ {0}.

(e) For D C X and I C N set
01(D)={y:ye X, ylI=z|I for some z € D}.

)@ IEm<ninN, ¢:B — [0,00] is a function and E € B, then E is ¢-thin between m and n if
H(X N\ Op\m(ANE)) > 1 for every A € A,,.

(i) IfICN, ¢:B — [0,00] is a function and E € B, then F is ¢-thin along I if it is ¢-thin between
m and n whenever m, n € I and m < n.

(g) For k < p € N define Cy;, and vy, by downwards induction on k, as follows. Start with C,, = 0 for
every p. Given Cgp, set vgp = ¢c,,. Given that k < p and Cg41, and vgy1, = ¢c,, , have been defined, set

Ewp={(E,I,w): E€B, I[N 1<|I| <Ny,

%)ak, E is vg41 p-thin along I},

w > 27’“(
Crp = Ekp U Cht1,p
and continue.
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(h) Define (cp)ren by setting ¢y = 8, cpr1 = 22%*¢y, for every k.

394C Very elementary facts In the hope of aiding digestion of the definitions here, of which 394Bf
and 394Bg are likely to be wholly obscure to anyone who has not worked through this proof before, I run
over some obvious facts which will be used below.

(a) ¢s : B — [0,00] is a submeasure for any &€ C PX x PN x [0,00[. (Subadditivity and monotonicity
are written into the definition.)

(b) If], J g N then 919J = GIQJ. If I g Jg N then QI(D) = GIGJ(D) 2 QJ(D) for all D g X. It 1 g N
then 0;(D NO;(E)) = 0;(EN6;(D)) for all D, E C X. For any I C N and any family D of subsets of X,
0:(UD) = Upep 01(D).

ForneNand DC X, De®B,iff 6,(D)=D. U EcBand ICN, §;(E)eB. Ifm<ninN, Aec A,
and A; € A,, then AN 0O, (A1) € Ay, If m € Nand A € A, then E — O n(ANE):B — Bisa
Boolean homomorphism.

(c) Ifm < n, ¢:B — [0,00] is a non-decreasing function, E € B is ¢-thin between m and n and E' € B
is included in F, then E’ is ¢-thin between m and n’ for every n’ > n.

(d) All the classes &gy, Ckp are closed under increases in the scalar variable and decreases in the first
variable, that is,

— itk <p, (E,I,w) € Ep, B/ € B, E' C E and w’ > w then (', I,w') € Ep,

— itk <p, (E,I,w) € Cyp, E' € B, E' C E and w’ > w then (', I,w’') € Cgp.

() Ifk<pinN, Crp=Uj<ipEip-
() Ik <pinN, v, < Vgy1,p, because Crp D Cry1 p-
(g) 8 < cx < 16 for every k € N, because >, 20y < 1.

(h) If k < p in N, then (X, {0},27"N2*) € &k s0 vpp X < 27PN and vy, is totally finite.

394D Moving up a gear, we have the following.

Lemma Suppose that K is a non-empty finite family of subsets of N and r € N is such that ||K|| > r#(K)
for every K € K. Then we have an enumeration (K;);<s of K and a non-decreasing family (n;);<, such that
1K Nnigq \ ng| = r for every i < s.

(b) Suppose that (K;);<s is a family of finite subsets of N such that || K;|| > n > 3 for every ¢ < s and
max K; < min K;44 for i < s — 2, and that A € [N]<“ is such that ||4| < 1. Let J be a finite subset of
PX x (IN]J<«¥\ {@}) x [0,00[. Then we can find (u;);<s and (v;);<s such that u;, v; € K; and u; < v; for
each i < s and, setting W = |J, ., vi \ us, ANW =0 and

wt{(B, Lw) : (B, ,W) € 7, [I\W| < 1]} < = wt J.

proof (a) If r = 0 we can take any enumeration of K and set n; = 0 for every i. Otherwise, write s for
#(K) and choose n;, K; inductively, as follows. Start with ng = 0. Given j < s, n; € N and (Kj;);<; such
that || K \ n;|| > r(s—j) for every K € K; = K\ {K, : i < j}, set

nj+1 = min{n : [|[K Nn\ n;|| > r for some K € K;}
and choose K; € IC; such that ||[K; Nnjyq \ nj|| > r. Observe that
1K O \ngll < KN (g = DA ngll + [{njp - < (r =1+ 1=7
for every K € I;, so in fact ||K; Nn;y1 \ n;|| = r and also
K\ njall = 1K\ nyll = [ K N nja \njll 2 r(s =) —r=r(s = (i + 1))

for every K € K, so the induction will continue.
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(b) For i < s and k € K; \ {min K;} write £~ for the greatest member of K; less than k. Set
K/ ={k:ke K;\{minK;}, Ank\ k™ #0}, K/=K;\ (K,U{minK,}).
Then ||K}|| <1. P For k € K| set g(k) = min(ANk\ k™). Then g : K — A is injective and g(k) < k for
every k € K. So #(K!\'m) < #(g[K{]\ m) < #(A\m) for every m € N, and || K[| < || 4] < 1. Q
Consequently

#(KG) 2 1K' = ([ K| = [[KG]] = [[{min K5}| > n — 2
and we have a family (ki;)j<n—2 of distinct elements of K;’, so that AN k;; \ k;; = 0 for every j <n —2.
For j <n —2, set
Wj = Ui<skij \k;y *7J = {(E,I,w) : (E7I7w) eJ, HI\WJ” < %HIH}
Then Wy, ..., W,,_3 are disjoint and none of them meet A. Since || || is subadditive and I = (I\W;)U(I\W;)

whenever j, 7/ are distinct, Jo, ... , J,_3 are disjoint. So wt . J > Z;L:_?’ wt J; and there is a j < n — 2 such
that wt J; < ﬁ wt J. Take u; = k;; and v; = k;; for each 4, so that W = Uics vi \ u; is W;, and we have

an appropriate pair of sequences.

394E Lemma Suppose that k <p, m <n, A€ A, (E,I,w) € Cxp and I’ = I Nn\ m is non-empty. If

E' =0, n(ENA)and w' > (||||II'||||)MU}’ then (B, I',w’) € Cpp.

proof There is an [ such that k¥ <! < p and (E,I,w) € &,. Now E’ is ;11 p-thin along I’. I Suppose
that i, j € I’ and i < j, so that m < i < j <n. Take any A; € A;, and set Ay = AN 0\ (A1), so that Ao
also belongs to A;. Then, using the list in 394Cb,

9\1(E/ NA) = 9]\1

J

AL N O\ (£ N A))

Gn\m (A1 n en\m (E N A)))
O\ (BN AN Op\m(A1)))
O\ (B N A2)) = 0;\;(E N Az).

=0\
=05

o~ o~ o~ —~

=0\
So
Vig1p(X\ O a(E" N AL)) = v p(X\ 0 (BN Ag)) > 1

because E is 141 p-thin between ¢ and j. As ¢, j and A; are arbitrary, E’ is vj41 p-thin along I’. Q
Of course ||I’|| < ||| < N,. Finally, because a; < a, we have

W (ot oty Ne ey oty N o
w2 () e 2 Gpp) ™ 2 ™ =27 )™

and (E',I',w') € &, C Cip.

394F Corollary (a) Suppose that n € N and k < p and that Z C Cy,, is a finite set such that |[|[I Nn|| >
111]] whenever (E,I,w) € Z. Then vy, (6, (sprZ)) < 2wt L.

(b) Suppose that m € N, k < p and A € A,,. Let T be a finite subset of Cy, such that ||I\ m| > 1|/1||
whenever (E, I,w) € Z. Then vy (O, (ANsprZ)) <2wtZ.

(c) Suppose that m < nin N, k < p and A € A,,. Let Z be a finite subset of Cy, such that |[INn\m| >
27%=4||I|| whenever (E,I,w) € Z. Then vjy(0,\m(ANsprI)) < 2wtZ.

proof (a) For each (E,I,w) € Zset E' =6,(E) € B,, I'=INn and

w' = (dhH) ™ w < 47w < 2w,

By 394E, with m =0 and A = X, (E',I',w') € Cyp. Set J = {(E',I',w') : (E,I,w) € T} and B =sprJ.
Then
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B = U(E,I,w)ez On(E) = 0 (sprI)
and
VipB < wt J = Z(EJ)w)ezw’ <2wtZ,
as required.

(b) This time, take n > m so large that I C n whenever (E,I,w) € Z. For (E,I,w) € Z, set

4]
11l

Then 394E tells us that (E', I',w’) € Cyp. Setting J = {(E',I',w’') : (E,I,w) € I},
Onym (A NsprZ) = U(E,I,w)ez Onym (AN E) C U(E,I,w)GI E' =sprJ,

E' =0, m(ANE), I'=I\m=InNn\m, ' = )akaZw.

SO

Vkp(On\m(ANsprZ)) <wtJ < 2wtZ.

(c) For (E,I,w) € T set

11
(g

Then (E',I',w") € Cgp. Setting J = {(E',I',w') : (E,I,w) € T},
an\m(A n SpI‘I) = U(E,I,w)EI on\m(A N E) = U(E,I,w)EI E' = spr ja

E =0,m(ANE), I'=Inn\m, w' = (i-)"w< @)%y <2w.

SO

Vkp (O \m (A NsprZ)) <wtJ < 2wt T

394G We are at the centre of the argument.

Lemma Suppose that L € [N]<“ is such that || L|| <1, and z € [], o, T\. Then v4,Y. > ¢, whenever k < p
in N.

proof Induce on p — k.
(a) If k = p then
Cop =0, 1Y, = 0.

For the downwards step to k < p, given that vy41,Y. > cr11, take a finite set Z C Cy,, such that wtZ < cy.
The rest of this proof is devoted to showing that Y, ¢ sprZ.

(b) It will help to get a trivial case out of the way. If Z C Cy41,p, then we have
wWtZ < cp < cpy1 S Vpr1,pYs

by the inductive hypothesis, so certainly Y, ¢ sprZ. Accordingly we may suppose henceforth that Z ¢
Crt1,p-

A second elementary point is that ||| > 22¥+12 whenever (E,I,w) € Z. P We have an [ such that
k<l<pand (E,I,w) € &, so

_1¢ Ny 4
— <w< <
) swses?

and || I > 22412 > 22k+12 by the choice of N;. Q

(c) Express Z as J UK where J C Cpi1,p and K C &p. Set s = #(K) > 0. For (E,I,w) € K we
have w > 27% so s < 2F¢;, < 2F+4 (394Cg). Consequently |I]| > 22612 > 2k+85 whenever (E, I,w) €
K. By 394Da, we can find myp < m; < ... < my and an enumeration ((F;, K;, w;));<s of K such that
| Ki Nmq \ my|| = 2548 for i < s. By 394Db we can find members u;, v; of K; N'm;.; \ m; such that
u; < v;, for i < s, and setting W = {J,_, vi \ ui, LNW =0 and

MEASURE THEORY



394G Talagrand’s example 31

S =wt{(E, Lw) : (B,L,w) € J, [I\W] < ||}

1

S m wt j S 27k76Ck S 27k72.

(d) Set
Ji={(B,Lw): (B, LLw) € T, [I\W| <JIII}, =T\
then

wtJp =S <27k2<

=

and [INW| > 3|I|| whenever (E,I,w) € Ji. For i < s set
Ji = (B, I, w) : (B, I,w) € T, [T Nvi \wi|| =272 1]}
Since s < 28 7 =, _, Jui-

(e) Suppose that ¢ < s and A € A,,. Then there is an A’ € A,, such that A’ C A\ (E; Uspr J1;). P Set
C = Oy, \u, (AN spr J1;) € B,,. By 394Fc, applied in Cp 1,

Vk+17PC < 2wt jli < 2wt jl < 1.

As (B, Ki,w;) € Exp, By is vpy1,p-thin between u; and vy, vpy1,5(X \ 04,00, (AN E;)) > 1 and C does not
include X \ 0,,\4, (A N E;). Since these sets both belong to B, there is an A; € A,, disjoint from both C'
and 0,,,\,, (AN E;), that is, disjoint from 6,,,\,,, (AN (E; Uspr J1;)). Now A" = AN6,,\,, (A1) belongs to A,,,
is included in A and is disjoint from F; Uspr J1;. Q

(f) We can therefore find a function I' : X — X such that I'[X] is disjoint from spr(K U Jp), while
T(z)[m is determined by x[m for every m € N. PP By (e) just above, we have for each i < s a function
qi + Ay, = Ay, such that ¢;(A) C A\ (E; Uspr Jy;) for every A € A,,. We can re-interpret ¢; as a function
hi : Ilhew, Tn = Tlucy, Tn defined by saying that if A = {z : x[u; = y} then ¢;(A) = {z : x[v; = hi(y)};
note that y = h;(y)u; for every y € [] T,.. Now, for x € X, define I'(x)(n) inductively by saying that

n<u;

I'(z)(n) =xz(n) f n e N\ W,
= h;(T(x)u;)(n) if i < s and u; <n < v;.
Of course this ensures that I'(x)[m is determined by z[m for every m. If i < s, x € X, and A € A,,

is such that I'(x) € A, then I'(x) € ¢;(A), which is disjoint from F; U spr Jy;. Thus T'[X] is disjoint from
Ui<s E;Uspr J1; =spr(KUT). Q

(g) Take (E,I,w) € J> and consider vg11,,(IE]).
(i) There is an { such that k <1 < p and (E,I,w) € &,. Now if m, n € I are such that m < n and

n'\ m is disjoint from W, I'"}[E] is 141 ,-thin between m and n. P Take any A € A,,. Because I'(z)[m is
determined by x[m, we can find an A’ € A,, such that T'[A] C A’. In this case,

ANTHE|CT'IAINE| CTHA' NE] C 0,\m(A' NE)
because I'(x)(i) = x(i) whenever z € X and i € n\ m. So 0\, (ANT[E]) C 0,0\, (A’ N E) and
Vi1 p(X\ O\ (ANTTHE]) 2 vy p (X \ O\ (A" N E)) > 1
because E is vj41 ,-thin between m and n. Q
(ii) As noted in (b), ||I|| > 2%*12 > 4s. For each i < s such that min < wu;, let u; be the largest
element of I which is less than or equal to w;. Set I' =T\ (W U{u; :i<s, minl <w,;}). Then
L]

| 1]
2

/ —
72 B -5 > B
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Now I'"'[E] is v41,p-thin along I’. P Suppose that m, n € I’ and m < n. Let m™ be the least element
of I such that m < m™*. Then m™ <n. T If WNm* \ m # 0, there is an i < s such that m™ \ m meets
v; \ w;, that is, m < v; and u; < m*. Since m € I' C N\ W, m < u; and u; is defined; now m # u; so
m <u; €1 and m™ <wu; <wu;. X Thus WNm™* \ m is empty and (i) tells us that T~ [E] is 141 ,-thin
between m and m™, therefore v;41 ,-thin between m and n (394Cc). As m and n are arbitrary, I ![E] is
Vi1 p-thin along I’. Q

(iii) If we now set w’ = 4% w, we see that

PSP < < Ny w2 2t ()™ = 27 ()
SO
(DB I w') € &y C Criny
and

Vi1,p(TTHE]) < w' = 4%w < 4%,

(h) We are nearly done. Applying (g) to each member of 75,
Vit1,p(T 7 spr Jo]) < 4% wt Jo < 4% wtZ < 4% cp = cjp1 < Vgg1,pYz

by the inductive hypothesis in its full strength. So there is a y € Y, \ I'~![spr J2]. With (f), this means that
I'(y) does not belong to

spr(K U J1) Uspr(Jz) = sprZ.

On the other hand, I'(y) € Y, because LNW = @. As T was arbitrary, VipY, must be at least ¢y, which is
what we need to know to proceed with the induction.

394H Definitions I present the last two definitions required. Fix on a non-principal ultrafilter F on N.
For k € N, set

v E =lim, , r v E € [0, 0]

for every E € *B; finally, write v for vy.

3941 Proposition (a) For every k € N, v, is a totally finite submeasure and vy X > 8.
(b) v is not uniformly exhaustive.

proof (a) It follows directly from the definition in 392A that vy, being a limit of submeasures, is a submea-
sure. By 394Ch, 1, X < 27FN2* is finite. By 394G and 394Cg,

I/kX = 1imp_)]: VkpX Z Ck Z 8.

(b) For any n € N and ¢ € Ty,
VY = hmpﬁ]—' VOpYnt >3

by 394G. As sup,,cy #(T7) is infinite, and (Yy¢)ier, is disjoint for every n, v is not uniformly exhaustive.

394J Lemma Suppose that k € N, E € B, I € [N]<* and E is vj-thin along /. Then
{p:p >k, Eis vy,-thin along I} € F.
If k> 1 and ||I|| = Np_1, then v, E < 27F+1,
proof If m,n eI, m <nand A€ Ay, then (X \ 0\ (ANE)) > 2. So
Uan ={p:p >k, vip(X \ O\ (AN E)) > 1}

belongs to F. Setting U = (..., in r.4ea,, Uan, U € F and E'is vy,-thin along I for every p € U.
If k> 1 and |I|| = Ng_1, then (E,I,27%1) € & 1, for every p € U, so vp_1,E < 27%*1 for every
peU and v E < 27k+1,
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394K Lemma Let m, k € N and let (E;);cn be a sequence in B such that
every E; is determined by coordinates in N\ m,
V(U <, Ei) < 2 for every n € N.

Then for every n > 0 there is a C € B, determined by coordinates in N \ m, such that v,C < 4 and
vp(E; \ C) < n for each 1.

proof (a) For each n > m, set
E,=U{Ei:i<n, E; € %B,},
so that F,, is determined by coordinates in n \ m and B, < 2. Set
U,={p:p>k, Vkan<2}€]:.

For p € U,, we can find a finite Z,,,, C Cj), such that E, C spr L, and wtZ,, < 2. For r > m set
Lopr ={(E, I,w) : (E,I,w) € Ly,

1
110 (e =D\ ml| < S| < [T\ m]},

and set
1
Ly ={(E, Liw) : (B, L,w) € Tnp, [T 0m|| = |1}

Set Bpp = 0 (sprZy,,); then
VipBnp < 2wt Z;, , < 4,
by 394Fa. Since v, X > ¢ > 8 (394G, 394Cg again), By, # X and there is an A,,, € A, disjoint from
sprZ,,. Next, for m <r <n and p € U, set
Tnpr = {Op\m(Anp NE), TN\ m,2w) : (E,I,w) € Lypr},  Fupr = Spr Tnpr-
By 394E, Jnpr C Cip, 50 VipFrpr < Wt Tppr < 2WtZ,,,. Note that F),p, is determined by coordinates in

r\ m and includes A,, NsprZ,,. Now if m < j < n and p € U,, Ej - Um<r<j Fopr. PT Otherwise, since

both sets are determined by coordinates in j \ m, and since A,,, € A,,, there is an A € A; with
AC Anp NE\ Upcyej Frpr € Anp N E; \ U, << 5P T

Since A is also disjoint from sprZ;,, and A C Ej Csprl,py, A CsprZ, where

I=Zu\ TV |J Zowr)

m<r<j

. 1
CH{(E, Lw) : (E,I,w) € Lnp, [T\ jll = (1[I}

Since Z C Cy,p,

8 < UppX = Vkp (O (A)) = vip(On;(ANsprZ)) < 2wt T
(394Fb)
<4.XQ

(b) For r > m we can find F,. € B such that
Z(:'inz—&-l VkFT S 47

E; C Upn<r<j Fr for every j >m,
F,. is determined by coordinates in 7\ m.
P If n > r > m, then, because B, is finite, there is a set F,, € B, such that {p : p € Uy, Fopr = Fur}

belongs to F. Next, if r > m there is an F, € 9B, such that {n:n >r, F,, = F,} belongs to F. Now
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v F, = li_{r}._uanr
n

(because {n : v F,, =i F.} 2 {n: F. = F,.} € F)

= lim lim vppFp, = lim lim v, Frpr <2 lim lim wt Z,,),.
n—F p—F n—F p—F n—F p—F

So, for s > m,

S

> wF. <2 Z lim lm wt Z,,,,

n—F p—F
r=m-1 r=m-+1
s
=2 lim lim Wt Lppr <2 lim lim wtZ,, < 4.
n—F p—F n—F p—F

r=m-41
As s is arbitrary, > 07 . < 4.

If n > j > m, then we saw in (a) that Ej cy F,pr for every p € U,,. Since there are many p such

m<r<j
that I, = Fyp, whenever m <r < j, E; C Um<r<j F,.. Now, given j > m, there are many n such that
F,,. = F,. whenever m <r < j, so Ej - Um<T<j F,.

Finally, take any r > m. Since F,,, is determined by coordinates in r \ m whenever n > r and p € U,,
F,, is determined by coordinates in r \ m whenever n > r, and F,. also is determined by coordinates in

r\m. Q

(c) Let 79 > m be such that > °7 veF. < mn. Set C =

r=rot1 F.. Then C is determined by

m<r<ro
coordinates in N\ m and

I/kc < Z:():m—i-l I/kFr S 4.
For any ¢ € N, there is some j > 7o such that E; C E'j, in which case
E\NCCU E

ro<r<j ="

and

Vk(Ei \ C) < Zi:roJrl v <,

as required.

394L Lemma Suppose that k € N, e > 0, m € N, B € 9B,, and that (E;);cn is a disjoint sequence
in 8. Then there are n > m and B’ € B,, such that B’ C B, B’ is %Vk—thin between m and n and
limsup,_, vk(E; N B\ B’) <e.

€

A (This is where we need to know that all the T,, are finite.) For those A € A,
included in B define C’; C A as follows.

proof Set n =

case 1 If there is some r such that vi(Ow,m (A N U<, Bi) > 2, set Cy = A\ U<, Ei, so that
e (Om (AN C)) > 1 and E; N A\ C)y =0 for i > 7.

case 2 If v (Onm (AN U<, Ei)) < 2 for every r, then by 394K, applied to the sequence (fn\,, (A N
F;))ien, we can find a C' € 9B, determined by coordinates in N \ m, such that v,C' < 4 and U (Onym (AN
E;)\ C) < n for every i. Set Cy = C'N A. Because C' is determined by coordinates in N\ m and A € A,,,
Uk(Onm (CY)) = 1.C < 4. Also B; N A\ C) C O (AN E;)\ C so v (E; N AN\ CY) <n for every i.

Set
B'={C,: A€ A,, AC B}.
Then B’ € 8, B’ C B and
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limsup vgx(E; N B\ B') < Z limsup vg(E; N A\ C%)

i—00 A€A,,,ACB i—00
< E n < e
A€A,,,ACB

Let n > m be such that C’, € B,, whenever A € A,, and A C B. Then B’ is %Vk—thin between m and n.
P Take any A € A, and set C' = Op\m(ANB'). If AZ B then AN B’ and C are empty and v(X \ C) > 8
(394Ia). Otherwise, ANB' = C’, € B, so C = O\ (C7y) is disjoint from O, (A\ C’y) (see the last remark
in 394Cb). If C, was chosen as in case 1 above,

(X \C) > Uk (Onm (AN CY)) > 2.
If C’; was chosen as in case 2,
Vk<X \ é) = Vk(X \ HN\m(CA)) Z VkX - Vk(eN\m<C:4)) Z 8 — 4.

So in all three cases we have v (X \ C) > 1, as required. Q
Thus we have an appropriate B’.

394M Theorem v is exhaustive.

proof Let (E;);en be a disjoint sequence in B. Take any £ € N and € > 0, and choose (B;)jen and (n;) en
inductively, as follows. By = X and ng = 0. Given that B; € B,,,, take nj 1 > n; and B;j1 € B, , such
that Bj11 € Bj, Bjy1 is %V;H_l—thin between n; and n;y1, and limsup,_, . vk+1(E; N B;j \ Bjy1) < 277
(394L). Continue. Note that limsup,_, ., vk+1(E; \ B;j) < 2¢ for every j.
Let [ be so large that I = {n; : j <1} has ||I|| = Nj. (This is where we need to know that lim;_,, ||ANI|| =
oo for every infinite A C N.) Set B = B;_;. Then B is %I/k+1-thin along I (use 394Cc). By 394J, v, B < 27*.
Of course v < vy, < vpqq (394Cf). So

limsup,_, ., vE; < v B+ limsup,_, . Vg1 (E; \ B) < 27% + 2¢.

As k, e and (E;);en are arbitrary, v is exhaustive.

394N Remarks (a) Note that the whole construction is invariant under the action of the group [, .y Gn
where G, is the group of all permutations of T;, for each n. In particular, if we give each T}, a group structure
and X the product group structure, then v is translation-invariant.

(b) It follows that v is strictly positive. I For each n € N, v is constant on A,,, so vE > vX/#(A,) >0
for every non-empty F € %5,,. Q

(c) We can therefore form the metric completion B of %, as in 392H, and % will be a Maharam algebra,
with a strictly positive Maharam submeasure # continuously extending v (393H). Now B is not measurable.
P? Otherwise, let i be such that (%, ii) is a probability algebra. Then i and © are strictly positive Maharam
submeasures on ‘B, so 1 is absolutely continuous with respect to i (393F). Let n > 1 be such that 0b < 8
whenever b < 1/#(T;,). Then there must be a t € T;, such that aY,,; < 1/#(T,); but ©Y,,; = vY,; > 8 (see
the proof of 394Ib). XQ

In fact, B is nowhere measurable (394Ya).

*3940 Control measures One of the original reasons for studying Maharam submeasures was their
connexion with the following notion. Let 2 be a Dedekind o-complete Boolean algebra and U a Hausdorff
linear topological space. (The idea is intended to apply, in particular, when 2l is a o-algebra of subsets of a
set.) A function 6 : A — U is a vector measure if >~ fa,, = lim, .o > . 0a; is defined in U and equal
to f(sup,,cy an) for every disjoint sequence (an)nen in 2. In this case, a non-negative countably additive
functional p : 2 — [0, 00[ is a control measure for 0 if fa = 0 whenever pa = 0.

*394P Example There are a metrizable linear topological space U and a vector measure 6 : ¥ — U,
where ¥ is a o-algebra of sets, such that 6 has no control measure.
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proof As in 394Nc, let 9B be the metric completion of B, and ¥ the continuous extension of v to B. Give
L0 = LO(‘%) the topology defined from © as in 393K, so that LY is a metrizable linear topological space.
By 314M, we can identify B with a quotient algebra /N where ¥ is a o-algebra of subsets of a set Q
and N is a o-ideal in ¥. Set 0FE = yE* € L° for E € ¥. Then 6 is a vector measure. P If (E,),cn is
a disjoint sequence in ¥ with union E, set F,, = |J,-,, i, so that xF); = Z?:o xE; for each n. We have
v(E*\ Fy) — 0, so that N

T(0E — 0F,) = 7(xE* — xF?)) = min(1,2(E* \ F2)) = 0,

where 7 is the functional of the proof of 393K, and 0E = }".° 0FE; in . Q
If i is a totally finite measure with domain ¥, set

Aa=inf{pE:E€X, E*=a}

for every a € 9. Note that the infimum is always attained. P If (E,),cn is a sequence in ¥ such that
E? = a for every n € N and Aa = lim,,_,oo ploy,, set B = ﬂnEN E,; then E* = a and uF = Aa. Q Next, A

is countably additive. B If (a,),ecn is a disjoint sequence in B with supremum a, take E,, € ¥ such that
E: = a, and pE, = Aa, for each n, and E € ¥ such that E* = a and uE = Aa. Set F,, = ENE, \ UKn E;
for each n, and F = UneN F,. Then F; = a, and F,, C E,, so uF, = Aa, for each n; similarly, F'* = a and
F CE,so uF = Xa. Also (F,,)nen is disjoint and has union F'. Accordingly

Aa=pF =32 puF, =5 a,. Q

Since B is not a measurable algebra, A cannot be strictly positive, and there is a non-zero a € B such
that Aa = 0. Let E € ¥ be such that E* = a and pFE = 0; then 0F = xa # 0. So pu is not a control measure
for 6.

*394Q This is not a book about vector measures, but having gone so far I ought to note that the
generality of the phrase ‘metrizable linear topological space’ in 394P is essential. If we look only at normed
spaces the situation is very different.

Theorem Let 2 be a Dedekind o-complete Boolean algebra, U a normed space and 6 : 21 — U a vector
measure. Then 0 has a control measure.

proof (a) Since U can certainly be embedded in a Banach space U (3A5Jb), and as 6 will still be a vector
measure when regarded as a map from 2 to U, we may assume from the beginning that U itself is complete.

(b) 6 is bounded (that is, sup,cq ||fa| is finite). IPP? (Cf. 326M.) Suppose, if possible, otherwise.
Choose (a,)nen inductively, as follows. ag = 1. Given that sup,, ||fal| = co, choose b C a, such that
[166]] = [|fan|| + 1. Then [|0(an \b)|| = 1. Also

SUD, ¢ q,, [10al] < sup, c 4, [10(anb)|| + [|0(a\ D),

so at least one of sup, -, [|0al|, sup, c,, s |fa| must be infinite. We may therefore take a, 41 to be either b
or a, \ b and such that sup, ,, ., [|fa]| = co. Observe that in either case we shall have [|f(a, \ an+1)]| > 1.
Continue.

At the end of the induction we shall have a disjoint sequence (ay, \ ¢n+1)nen such that ||0(an \ ant1)|| > 1
for every n, so that Y~ ,6(an \ an41) cannot be defined in U; which is impossible. XQ

(c) Accordingly we have a bounded linear operator T : L> — U, where L = L*>(2l), such that Tx = 6
(363Ea).

Now the key to the proof is the following fact: if {u,)nen is a disjoint order-bounded sequence in (L*°)T,
(Tup)neny — 0 in U. P Let v be such that u, < vx1 for every n. Let € > 0, and let k be the integer
part of v/e. For n € N, i < k set an; = [un, > €(i + 1)]; then (ani)nen is disjoint for each 4, and if we set
Uy, = 62?:0 XQni, We get vy, < up, < v, + exl, 50 [|un — vplloo < €

Because (an;)nen is disjoint, ZZO:O Oay,; is defined in U, and (fay,;)neny — 0, for each ¢ < k. Consequently

Tv, = 52?:0 Oan,; — 0

as n — oo. But
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[Tun = Top|| < | T[[un = valloo < €T
for each n, so limsup,,_, ||Tun| < €||T]|. As € is arbitrary, lim,_, || Tus|| = 0. Q

(d) Consider the adjoint operator T” : U* — (L*)*. Recall that L is an M-space (363Ba) so that its
dual is an L-space (356N). Write

A={T"g:g U, gl <1} C (L=)" = (L>)~.
If u € L*°, then
SUPreca | f(uw)] = Sup|g/<1 (T g)(u)] = Sup|g)<1 |9(Tu)| = [|Tul|.
Now A is uniformly integrable. * I use the criterion of 3560. Of course || f|| < ||T”|| for every f € A, s0 A
is norm-bounded. If (u,)nen is an order-bounded disjoint sequence in (L°°)T, then
sup e |f(un)| = [|Tun| — 0

as n — 00. So A is uniformly integrable. Q

(e) Next, A C (L>®)>. P If f € A, it is of the form T"g for some g € U*, that is,

f(xa) = (T"g)(xa) = 9T (xa) = g(fa)

for every a € 2. If now (a,)nen is a disjoint sequence in 2 with supremum a,

F(xa) = g(0(supnen an)) = 903020 ban) = 32020 9(0an) = 32,20 £ (xan).
So fx is countably additive. By 363K, f € (L*°)>. Q
(f) Because A is uniformly integrable, there is for each m € N an f,, > 0 in (L*°)* such that ||(|f] —

fm) Tl £ 27™ for every f € A; moreover, we can suppose that f, is of the form sup; <y, |fmi| where every
fmi belongs to A (354R(b-iii)), so that f,,, € (L) and pm = fmx is countably additive. Set
1
=3 P () Hm

then p : 2 — [0, 00[ is a non-negative countably additive functional.
Now u is a control measure for §. P If pa = 0, then p,,a = 0, that is, f,,,(xa) = 0, for every m € N. But
this means that if g € U* and ||g|| < 1,

lg(Ba)| = [(T"g)(xa)| < fm(xa) + I(1T"g] = fm)F <277

for every m, by the choice of f,,; so that g(fa) = 0. As g is arbitrary, fa = 0; as a is arbitrary, u is a control
measure for 0. Q

394X Basic exercises (a) Show that the metric completion B of B, as defined in 394N, always has
many involutions (definition: 3820).

394Y Further exercises (a)(i) Show that if r € N, k < p and E € B,41 are such that vy, E < ¢,

then vy, (0, (E)) < iﬁ vipE. (i1) Show that if E € B, then v(E NY,;) > min(8, %Z/E) for every t € T,.. (iii)
k

Let B be the metric completion of B and ¥ the continuous extension of v to B. Show that for every a € B

and n € N there is a disjoint family (¢;);<n such that ¢; C a and 2¢; > min(7, t0a) for every i < n. (iv)

Show that the only countably additive real-valued functional on B is the zero functional. (v) Show that B

is nowhere measurable. (vi) Show that if v/ is a uniformly exhaustive submeasure on 8 which is absolutely
continuous with respect to v, then v/ = 0.

394Z Problems Suppose that |||, (Th)nen, B, (ar)reny and (Ny)ren satisty the conditions of 394Ba-

394Bb. Let v be the exhaustive submeasure on B constructed by the method of 394B and 394H, and B the
corresponding Maharam algebra.

(a) Does B have an order-closed subalgebra isomorphic to the measure algebra of Lebesgue measure? In
particular, if we take € C B to be the algebra of sets generated by sets of the form {x : z € X, z(n) = 0}
for n € N, is v[€ uniformly exhaustive?
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38 Measurable algebras 394Zb

(b) Suppose that instead of taking large sets T;,, we simply set T,, = {0, 1} for every n, but otherwise
used the same construction. Should we then find that v was uniformly exhaustive? (This might be relevant
to (a) above.)

(c) Is the Boolean algebra B homogeneous?

394 Notes and comments ‘Maharam’s problem’; or the ‘control measure problem’, was for fifty years one
of the most vexing questions in abstract measure theory. To begin with, there were reasonable hopes that
there was a positive answer — in the language of this book, that every Maharam algebra was a measurable
algebra. If this had been the case, there would have been consequences all over the theories of topological
Boolean algebras, topological Riesz spaces and vector measures. In the 1970s, it began to seem too much to
ask for. In 1983 the Kalton-Roberts theorem gave new life to the conjecture for a moment, but ROBERTS
93 demonstrated a major obstacle, which Talagrand (building on some further ideas of I.Farah) eventually
developed into the construction above. The ideas which for a generation were collected together by their
association with the control measure problem no longer have this as a unifying principle, and (as after any
successful revolution) are now more naturally grouped in other ways. There is a relic of this era in 394P.

Now that we know for sure that there are non-measurable Maharam algebras, it becomes possible to ask
questions about their structure. Frustratingly, practically none of these questions has yet been answered
even for the examples constructed by Talagrand’s original method, in which ||I]] = #(I) for every I. (Of
course this allows variations in the parameters (T, )nen, (@k)reny and (Ng)ren and the filter F, and there is
every reason to suppose that ¢ non-isomorphic examples can be constructed by the formulae set out above.)
I will return briefly to such questions in Volumes 4 and 5, as I come to further properties of measure algebras
which can be interpreted in Maharam algebras. In particular, following PEROVI¢ & VELICKOVIC 18, T will
show in §539 how different PV norms can give rise to distinguishable Maharam algebras.

Version of 15.6.08

395 Kawada’s theorem

I now describe a completely different characterization of (homogeneous) measurable algebras, based on
the special nature of their automorphism groups. The argument depends on the notion of ‘non-paradoxical’
group of automorphisms; this is an idea of great importance in other contexts, and I therefore aim at a fairly
thorough development, with proofs which are adaptable to other circumstances.

395A Definitions Let 2 be a Dedekind complete Boolean algebra, and G a subgroup of Aut2(. For a,
b € A I will say that an isomorphism ¢ : %, — 2(; between the corresponding principal ideals belongs to the
full local semigroup generated by G if there are a partition of unity (a;);cr in A, and a family (m;);er
in G such that ¢c = m;c whenever ¢ € I and ¢ C a;. If such an isomorphism exists I will say that a and b
are G-T-equidecomposable.

I will write a <7 b to mean that there is a b’ C b such that a and ' are G-T-equidecomposable.

For any function f with domain 2, I will say that f is G-invariant if f(7a) = f(a) whenever a € 2 and
m™eQG.

395B The notion of ‘full local semigroup’ is of course an extension of the idea of ‘full subgroup’ (381Be;
see also 381YDb). The word ‘semigroup’ is justified by (c) of the following lemma, and the word ‘full’ by (e).

Lemma Let 2 be a Dedekind complete Boolean algebra and G a subgroup of Aut 2. Write G for the full
local semigroup generated by G.

(a) Suppose that a, b € 2 and that ¢ : 2, — 2 is an isomorphism. Then the following are equiveridical:
(i) ¢ € G7;

(ii) for every non-zero c¢o C a there are a non-zero ¢; C ¢y and a m € G such that ¢c = 7e for every
c C cy;

(© 1996 D. H. Fremlin
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(iii) for every non-zero ¢y C a there are a non-zero ¢; C ¢p and a 1 € G£ such that ¢c = ¢ for every

cCc.

(b) If a, b € A and ¢ : A, — Ay belongs to G, then ¢~ : A, — A, also belongs to G*.

(c) Suppose that a, b, a’, ¥’ € 2 and that ¢ : Ay — War, P 0 Ap — Ay belong to GE. Then ¢ € G%; its
domain is 2. where ¢ = ¢~} (bna’), and its set of values is 2 where ¢’ = ¢(bna’).

(d) Ifa, b € A and ¢ : A, — Ap belongs to G, then ¢[A. € G for any ¢ C a.

(e) Suppose that a, b € A and that ¢ : A, — A, is an isomorphism such that there are a partition of
unity (a;);er in A, and a family (¢;);cr in GZ such that ¢ = ¢;c whenever ¢ € I and ¢ C a;. Then ¢ € G%.

proof (a) (Compare 3811I.)
(1)=-(iii) is trivial, since of course G C G=.

(iii)=(ii) Suppose that ¢ satisfies (iii), and that 0 # c¢o C a. Then we can find a ¢ € G and a non-zero
c1 C ¢o such that ¢ agrees with ¥ on 2A.,. Suppose that dom = 204, where necessarily d 2 ¢;. Then there
are a partition of unity (d;);er in 24 and a family (m;);cr such that ¢ = m;c whenever ¢ C d;. There is
some ¢ € I such that co = ¢; nd; # 0, and we see that ¢c = ¥c = m;c for every ¢ C co. As ¢y is arbitrary, ¢
satisfies (ii).

(ii)=-(i) If ¢ satisfies (ii), set
D ={d:d C a, there is some 7 € G such that wc = ¢c for every ¢ C d}.

The hypothesis is that D is order-dense in 2, so there is a partition of unity (a;);cs; of 2, lying within D
(313K); for each ¢ € I take m; € G such that ¢c = m;c for ¢ C a;; then (a;)icr and (m;);c; witness that
¢ Gy

(b) This is elementary; if (a;)icr, (mi)ics Witness that ¢ € G, then (¢a;)icr = (miai)ier, (7, ')icr witness

that ¢~! € G.

(c) I ought to start by computing the domain of ¥ ¢:

d € dom(v¢) <= d € dom ¢, ¢d € dom)
= dCa, pdCb < dC ¢ '(dnb)=c

So the domain of ¥¢ is indeed 2.; now ¢| 2, is an isomorphism between 2. and 2., where ¢pc = a’' nb € Ay,
so ¢ is an isomorphism between A, and Aype = Ao Let (ai)ier, (bj)jes be partitions of unity in 2,,
2, respectively, and (m;);cr, (8;),es families in G such that ¢d = m;d for d C a;, e = ;e for e C b;. Set
Cij = a; ﬁﬂ';lbj; then (c¢ij)icr,jes is a partition of unity in . and ¥¢d = 0;m;d for d C ¢;5, so Yo € G
(because all the 6;m; belong to G).

(d) This is nearly trivial; use the definition of G or the criteria of (a), or apply (c) with the identity
map on 2. as one of the factors.

(e) This follows at once from the criterion (a-iii) above, or otherwise.

395C Lemma Let 2 be a Dedekind complete Boolean algebra and G a subgroup of Aut2l. Write G
for the full local semigroup generated by G.

(a) For a, b € A, a 7 b iff there is a ¢ € G% such that a € dom ¢ and ¢a C b.

(b)(1) X7 is transitive and reflexive;

(ii) if @ <% b and b X7, a then a and b are G-T-equidecomposable.

(¢) G-T-equidecomposability is an equivalence relation on 2.

(d) If {(@i)ier and (b;);cr are families in A, of which (b;)icr is disjoint, and a; <7 b; for every ¢ € I, then
SUD;er @i SG SUPser bi-
proof (a) This is immediate from the definition of ‘G-T-equidecomposable’ and 395Bd.

(b)(i) a <% a because the identity homomorphism belongs to G%. If a <7, b <7 ¢ there are ¢, ¥ € G
such that ¢a C b, ¥b C ¢ so that Y¢a C ¢; as Yé € GE (395Bc¢), a <F c.
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(ii) (This is of course a Schréder-Bernstein theorem, and the proof is the usual one.) Take ¢, ¢ € G
such that ¢a C b, ¥b C a. Set ag = a, by = b, an4+1 = Yb, and b,11 = ¢a, for each n. Then (a,)nen,
(bn)nen are non-increasing sequences; set ao, = inf,en @, boo = infuen by For each n,

¢r91a2n\a2n+1 : 2[(l2n\a2n+1 — mb2n+1\b2n+27

wrmbzn\bzwﬂ : 2Zlbzn\l72n+1 - Qla2'n.+1\a2n+2

are isomorphisms, while
Ol Aq Ao, — s,

is another. So we can define an isomorphism 6 : 2, — 2, by setting

Oc = ¢c if ¢ C aso U sup agy, \ a2n+1,
neN

—1 .
= cif ¢ C supagpy1 \ aania-
neN

By 395Be, 0 € G%, so a and b are G-T-equidecomposable.

(c) This is easy to prove directly from the results in 3958, but also follows at once from (b); any transitive
reflexive relation gives rise to an equivalence relation.

(d) We may suppose that I is well-ordered by a relation <. For i € I, set aj = a;\ sup,;; a;. Set
a = SUp;c; @; = SUP,¢; @), b = sup;c; b;. For each i € I, we have a b, C b; and a ¢; € G such that ¢;a] = b;.
Set b' = sup;c; b} C b; then we have an isomorphism ¢ : A, — Ay defined by setting ¢d = ¢;d if d C a},
and ¢ € G%, so a and V' are G-T-equidecomposable and a <7, b.

395D Theorem Let 2 be a Dedekind complete Boolean algebra and G a subgroup of Aut 2. Then the
following are equiveridical:

(i) there is an a # 1 such that a is G-T-equidecomposable with 1;

(ii) there is a disjoint sequence (a,)nen of non-zero elements of 2 which are all G-T-equidecomposable;

(iii) there are non-zero G-r-equidecomposable a, b, ¢ € 2 such that anb =0 and aub C ¢;

(iv) there are G-t-equidecomposable a, b € 2 such that a c b.

proof Write G for the full local semigroup generated by G.

(i)=-(ii) Assume (i). There is a ¢ € G* such that ¢1 = a. Set a,, = ¢"(1\ a) for each n € N; because
every ¢" belongs to G (counting ¢° as the identity operator on 2l, and using 395Bc), with dom ¢" = A, a,,
is G-T-equidecomposable with ag = 1\ a for every n. Also a,, = ¢"1\ ¢" 11 for each n, while (¢"1),¢y is
non-increasing, so (an)nen is disjoint. Thus (ii) is true.

(ii)=(iii) Assume (ii). Set a = sup, ey @2n, b = SUP,cyn A2n41, ¢ = SUP, ey Un, SO that anb = 0 and
aub = c. For each n we have a ¢,, € G such that ¢,a0 = a,. So if we set

Yd = sup,,cy Gndan (AN azy,) for d C a,

1 belongs to G (using 395B) and witnesses that a and ¢ are G-m-equidecomposable. Similarly, b and ¢ are
G-T-equidecomposable, so (iii) is true.

(iii)=(iv) is trivial.
(iv)=-(i) Take ¢ € G such that ¢b = a. Set
vd = ¢(dnb)u(d\b)
for d € ; then ¢ € G witnesses that 1 is G-t-equidecomposable with a U (1\b) # 1.
395E Definition Let 21 be a Dedekind complete Boolean algebra and G a subgroup of Aut®(. T will
say that G is fully non-paradoxical if the statements of 395D are false; that is, if one of the following

equiveridical statements is true:
(i) if a is G-T-equidecomposable with 1 then a = 1;
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(ii) there is no disjoint sequence {(a,)nen of non-zero elements of 2 which are all G-r-equide-
composable;

(iii) there are no non-zero G-7-equidecomposable a, b, ¢ € 2 such that anb =0 and aub C ¢;
(iv) if a € b € A and a, b are G-T-equidecomposable then a = b.

Note that if G is fully non-paradoxical, and H is a subgroup of G, then H also is fully non-paradoxical,
because if a <7 b then a <7, b, so that a and b are G-T-equidecomposable whenever they are H-r-equide-
composable.

395F Proposition Let (2, i) be a totally finite measure algebra, and G = Aut;2 the group of all
measure-preserving automorphisms of 2. Then G is fully non-paradoxical.

proof If ¢ : A — 2, belongs to the full local semigroup generated by G, then we have a partition of unity
(a;)icr and a family (m;);er in G such that ¢a; = m;a; for every i; but this means that

fia =3 iep BPiti = ) iep it = ) e Hai = fil.
As il < oo, we can conclude that a = 1, so that G satisfies the condition (i) of 395E.

395G The fixed-point subalgebra of a group Let 2 be a Boolean algebra and G a subgroup of
Aut 2.

(a) By the fixed-point subalgebra of G I mean
C={c:ce, mc=cforevery m € G}.

(Ilooked briefly at this construction in 333R, and in the special case of a group generated by a single element
it appeared at various points in Chapter 38.) This is a subalgebra of 2, and is order-closed, because every
m € G is order-continuous.

(b) Now suppose that 2 is Dedekind complete. In this case € is Dedekind complete (314Ea), and we
have, for any a € 2, an upper envelope upr(a, €) of €, defined by setting

upr(a,®) =inf{c:a Cce €}

(313S). Now upr(a,€) = sup{ma : 7 € G}. P Set ¢; = upr(a,€), co = sup{wa : # € G}. (i) Because
aCc €C aCmep = ¢ for every m € G, and ¢o C ¢p. (ii) For any ¢ € G,

PCo = SUP,cq PTTa = SUP,cq TA = C2
because G = {¢7 : m € G}. So ¢z € €; since also a C ¢a, ¢1 C ¢2, and ¢1 = ¢, as claimed. Q
(c) Again supposing that 2 is Dedekind complete, write G for the full local semigroup generated by

G. Then ¢(anc) = ¢anc whenever ¢ € G%, a € dom¢ and ¢ € €. I We have ¢a = sup;c; m;a;, where
a = sup,cya; and 7; € G for every i. Now

dlanc) =sup;e;mi(a; Ne) = supjey ma;Ne = ganc. Q
Consequently upr(¢a, €) = upr(a, €) whenever ¢ € G£ and a € dom¢. P For c € €,
aCc <= anc=a < ¢(anc)=da < Panc=¢da < ¢a Cc. Q
It follows that upr(a,€) C upr(b, €) whenever a <7, b.
(d) Still supposing that 2 is Dedekind complete, we also find that if a <7, band ¢ € €thenanc <z bne.

P There is a ¢ € G such that ¢a C b; now ¢p(anc) = panc C bne. Q Hence, or otherwise, anc and bne
are G-T-equidecomposable whenever a and b are G-T-equidecomposable and ¢ € €.

(e) By analogy with the notion of ‘ergodic automorphism’, I will say that G is ergodic if sup,cgma =1
for every non-zero a € 2. Thus an automorphism 7 is ergodic in the sense of 3720a iff the group {#" : n € Z}

it generates is ergodic (372Pb).
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(f) If G is ergodic, then € = {0,1}. (If c € €\ {0}, then 1 = sup, g 7mc = c.) If A is Dedekind complete
and € = {0,1} then G is ergodic. (If a € A\ {0}, then 1 = upr(a,€) = sup,cq ma, by (b) above.) (Cf.
392Sa, 392Sc.)

395H I now embark on a series of lemmas leading to the main theorem (395N).

Lemma Let 2 be a Dedekind complete Boolean algebra and G a fully non-paradoxical subgroup of Aut 2.
Write € for the fixed-point subalgebra of G. Take any a, b € A. Set ¢ = sup{c: ¢ € €, anc <7 b}; then
ancy < band b\ cy ST a.

proof Enumerate G as (m¢)e<y, Where k = #(G). Define (ag)ecw, (be)e<w inductively, setting
ag = (a\ sup, ¢ ay)n ng(b\ sup, ¢ by), b = meae.
Then (ag)e<y is a disjoint family in A, and (b¢)e<, is a disjoint family in 20, and sup,_, a¢ is G-7-
equidecomposable with sup,_, be. Set @’ = a\ sup_, ag, b' = b\ supg_,, be,
¢o =1\ upr(a/,€) =sup{c:ce €, cna =0}.
Then
anéy C supec, ag < b,
S0 ¢g C cg-
Now b' C éo. PP? Otherwise, because ¢y = 1\ sup;, mea’ (395Gb), there must be a { < x such that
mea’ nb # 0. But in this case d = a'n ngb’ # 0, and we have
dc(a\ SUp, ¢ an) N ng(b\ SUp, ¢ by),
so that d C a¢, which is absurd. X@Q Consequently
b\ ¢y C supe.,, be <G a.
Now take any ¢ € € such that anc <7 b, and consider ¢/ = ¢\ é&. Then ¥'n¢ = 0, that is, bnc’ =
sup ., be ¢/, which is G-7-equidecomposable with sup;_, agne’ = (a\ a')ne' (395Gd). But now
and =ancend KL bnd % (and)\ (¢ nd);

because G is fully non-paradoxical, a’ n¢’ must be 0, that is, ¢/ C ¢y and ¢ = 0. As ¢’ is arbitrary, ¢y C ¢
and ¢g = ¢y. So ¢ has the required properties.

Remark By analogy with the notation I used in discussing the Hahn decomposition of countably additive
functionals (326S-326T), we might denote ¢ as ‘[a <7 b]’, or perhaps ‘[a <% b]e’, ‘the region (in €) where
a <% b. The same notation would write upr(a, €) as ‘[a # 0]¢’.

3951 The construction I wish to use depends essentially on L° spaces as described in §364. The next
step is the following.

Lemma Let 2 be a Dedekind complete Boolean algebra, not {0}, and G a fully non-paradoxical subgroup
of Aut2(. Let € be the fixed-point subalgebra of G. Suppose that a, b € 2 and that upr(a,€) = 1. Then
there are u, v € L° = L°(€) such that

[u > n] = max{c: c € €, there is a disjoint family (d;);<n
such that cna ¢ d; C b for every i < n},
[v < n] =max{c:c € €, there is a family (d;)i<n

such that d; <7 a for every i <n and bnc C supd;}
i<n
for every n € N. Moreover, we can arrange that
(i) [ueN] =[veN] =1,
(ii) [v > 0] = upr(b, €),
(iii) uw < v < w4+ x1.
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Remark By writing ‘max’ in the formulae above, I mean to imply that the elements [u > n], [v < n] belong
to the sets described.

proof (a) Choose (¢, )nen, (bn)nen as follows. Given (b;)i<n, set b), = b\ sup,,, b;,
cpn =sup{c:ce € anc=<G b},

so that a n¢, <% b, (395H); choose b,, C b}, such that a n ¢, is G-T-equidecomposable with b,,, and continue.
Then (b,,)nen is a disjoint sequence in 2, and (¢, )nen is & non-increasing sequence in €.

For each n, we have b/, \ ¢, <% a, by 395H; while a nc £7 b, whenever ¢ € € and ¢ ¢ ¢,,. Note also that,
because upr(a,€) =1,

¢n, = upr(an ey, €) = upr(b,, €) C upr(d), )
(using 395Gc for the second equality).

(b) Now inf,enc, = 0. P Setting co, = inf, ey cn, (b N o dnen 18 a disjoint sequence, all G-m-equide-
composable with an ¢, 80 a N ey = 0, because G is fully non-paradoxical; because upr(a, €) = 1, it follows
that coo = 0. Q Accordingly, if we set u = sup,,cy(n + 1)x¢n, u € L? and [u > n] = ¢, for n > 1. The
construction ensures that Ju € N], as defined in 364G, is equal to 1.

(c) Consider next ¢f, = upr(b,€), ¢, = c¢p—1 N upr(d),,) for n > 1. Then (c,)nen is a non-increasing
sequence with zero infimum, so again we can define v € L° by setting v = sup,en(n + 1)xc,. Once again,
[veN]=1,and [v <n] =1\c, for each n.

Of course [v > 0] = ¢}, = upr(b, €). Because ¢, C ¢}, C ¢p—1,
(n+1)xen < (n+1)xc;, < nxep—1+ x1

foreachn > 1, and u < v <wu+ x1.

(d) Now set

Cp,, ={c:ce €, there is a disjoint family (d;);<n

such that cna ¢ d; C b for every i < n}.
Then ¢, = max Cj,41.

P(a) Because ¢, Ccpo1 C ... Cco, ane, < b; for every ¢ < n, so that (b;)i<, witnesses that ¢, €
Crii-

(B) Suppose that ¢ € Cp41; let (d;);<, be a disjoint family such that cna <7 d; C b for every i. Set
¢ =c\cp. Foreach i <n, b <% a, so

bind L and L d;nd,
while also
b,nd xLand L d,nd.
Take d C d,, n¢’ such that b, n¢’ is G-T-equidecomposable with d. Then
bnd = (b, nc)usup,,(b;nc’) K% du sup;,,(d;nc’) Cbndc.

Because G is fully non-paradoxical, du sup;.,,(d; n¢’) must be exactly bn¢c’, so d must be the whole of
d,nc, and

and L dond =d <30,

But this means that ¢’ € ¢,. Thus ¢/ =0 and ¢ C ¢,. So ¢, =supCpy1 =maxC, 1. Q
Accordingly

[u>n] =cn—1 =maxC,
for n > 1. For n = 0 we have Ju > 0] = 1 = max Cy. So [u > n] = maxC,, for every n, as required.

(e) Similarly, if we set
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Cl, ={c:ce €, thereis a family (d;);<n
such that d; < a for every i <n and bne C supd;}
<n
then 1\ ¢/, = max C), for every n.

P(a) If n = 0, then of course (interpreting sup @ as 0) 1\ ¢{, € C{, because b C ¢{. For each n € N, set

B = by U (B, \ ) = (bn 1) U (B, \ ).

Because b, <7 @ and ), \ ¢, X7 a, we have b, ne¢, <G anc, and b, \ ¢, X% a\ ¢p, SO by, <z a (395Cd). If
we look at

SUP; <y, b; 2 sUP; ., b; U (by,_1\ Cn—1),

we see that, for n > 1,

b\ sup;., bi C b, Nep1 C cl,
so that b\ ¢, C sup,_, b; and {b; : i < n} witnesses that 1\ ¢/, € C"..

(B) Now take any ¢ € CJ, and a corresponding family (d;);<, such that d; <7 a for every ¢ < n and
bnc C sup; ., d;.
Set ¢ = cnd),. For each i < n,
dnd; L dna <G b

because ¢’ C ¢;. So (by 395Cd, as usual)

dnb=xz dnsup;, b Cnb,
and (again because G is fully non-paradoxical) ¢’ nb = ¢’ n sup;, b;, that is, ¢ nd), = 0. But ¢ C ¢, C

upr(b/,, €), so ¢ must be 0, which means that ¢ C 1\ ¢,,. As ¢ is arbitrary, 1\ ¢}, = supC/, = maxC/,. Q
Thus [v < n] = max C},, as declared.

395J Notation Observe that the specification of [u > n] and [v < n], together with the declaration
that Ju € N] = [v € N] = 1, determine u and v uniquely, because (Ju = n])nen and ([v = n])neny must be
partitions of unity. So, in the context of 3951, we can write |b: a] for u and [b: a] for v.

395K Lemma Let 2 be a Dedekind complete Boolean algebra, not {0}, and G a fully non-paradoxical
subgroup of Aut 2l with fixed-point subalgebra €. Suppose that a, b, by, bs € 2 and that upr(a, ) = 1.

() |0:a]=[0:a]=0,[l:a] >xland |1:1]=x1.

(b) If by X bo then |by :a] < |be:a] and [by : a] < [bs:al.

(¢) [byuby:al < [by:al+[be:al.

(d) If by nby =0, I_b1 : ClJ + I_bQ : CLJ < I_b1Ub2 : (IJ.

(e) If ¢ € € is such that anc is a relative atom over € (definition: 331A), then ¢ C [[b:a] — [b:a] =0].

proof (a)-(b) are immediate from the definitions and the basic properties of <7, [...] and [... ], as listed
in 395C and 3951.

(c) For j, k € N, set ¢jp, = [[b1 : a] = j]n[[b2 : a] = k]. Then
Cik C[[bruby:al <j+Ek[n[[b1:a]l+[be:a]l =7+k].
P We may suppose that c;, # 0. Of course
cjk C[[b1:a] 4+ [be:a] =j+kJ.

Next, there are sets J, J C A such that d <7, a for every d € JU J', #(J) < j, #(J') <k, supJ D b1 ncjx
and sup J' D by N¢jg. So sup(J U J") D (b ubs) neji and J U J" witnesses that ¢ji C [[b1ubs :a] < j+k].

Q
Accordingly

cik C[[b1:al+[b2:a] —[brubs:al > 0].
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Now as sup; ey ¢jr = 1, we must have [by Uby : a] < [by :a] + [b2: al.
(d) This time, set ¢ji = [|b1 : a] = j]n[|b2: a| = k] for j, k € N. Then
cik Cbiubs:al >j+Ek[n[|br:al+ [bz:a] =7+k]
for every j, k € N. I* Once again, we surely have
cjk C b1 :a]l + b2 :al =j+k].
Next, we can find a family (d;)i<;+r such that

(di)i<; is disjoint, ancjr K& d; € by for every i < k,

<d/i>j§i<j+k is disjoint, ancjk #6 d; Cbg for j <i<j+k.

As by nby = 0, the whole family (d;);<;+x is disjoint and witnesses that c;i C [[b1ubs:a| > j+k]. Q
So

cjk C[[biubs:a) — b1 :al — [ba:a] >0]
Since sup; yen ¢jx = 1, as before, we must have |by Uby : a] > [by 2 a| + [b2 : a].
(e) 7 Otherwise, there must be some k € N such that
co=cn[lb:a] =k]n[[b:a] > k] #O0.

Let (d;)i<k be a disjoint family in 2, such that a nco <7 d; for each ¢; cutting the d; down if necessary, we
may suppose that a n ¢y is G-T-equidecomposable with d; for each i. As co Z[[b:a] < k], bnco € sup;y, di;
set d = bncy\ sup;, d; # 0. By 395H, there is a ¢; € € such that dnc; <7 a and a\c; <7 d. Setting
dr = d, {d;)i<k witnesses that ¢o C 1 C[|b:a] > k+1], so cg C c; must be 0 and dnecy <z a. There is
therefore a non-zero @ C ancy such that @ <z d. But now remember that a nc is supposed to be a relative
atom over €, so @ = an ¢ for some ¢ € € such that ¢ C ¢g. In this case, an¢ <7 d; for every i < k and also
ané =<y d,so0#¢C[|b:al >k+ 1], which is absurd. X

395L Lemma Let 2 be a Dedekind complete Boolean algebra, not {0}, and G a fully non-paradoxical
subgroup of Aut2l with fixed-point subalgebra €. Suppose that a;, as, b € 2 and that upr(a;,€) =
upr(ag, €) = 1. Then

[b:ag] > [b:ar] X |ag:az], [b:az] <[b:ai] x [a;:az].

proof I use the same method as in 395K. As usual, write G for the full local semigroup generated by G.
(a) For j, k € N set
ik =[lb:ar] =jln[lar : az] = k].
Then
cik CIlb:ar] X a1 az] = k] [b: az] = jE[.
P Write ¢ for ¢; . As in parts (c) and (d) of the proof of 395K, the fact that ¢ C [[b: a1] x |a1 : az] = jk]

is elementary; what we need to check is that ¢ C [|b: az] > jk]. Again, we may suppose that ¢ # 0. There
are families (d;)i<;, (d])i<x such that

(di)i<; is disjoint, a1 nec <G d; C b for every i < j,

(d} )i<r is disjoint, ag nc <7 df C aq for every [ < k.
For each i < j, let ¢; € G be such that ¢;(a1 nc) C d;. If i < j and | < k, then
asne =G dfne G di(dfne) C ¢i(arnce) Cd; CO.

Also (¢;(df n¢))icji<k is disjoint because (¢;(a1 N ¢))i<; and (d} )<k are, so witnesses that ¢ C [|b: az] > jkK].
Q
Now, just as in 395K, it follows from the fact that sup; yencjr = 1 that [b: a1 x [a1 1 ag] < [b:az].

(b) For j, k € N set
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Cjk = [”b : aﬂ :j]] N [Hal : aﬂ = k]]
Then
Cjk C [Hb : (Zl—l X [al : a2—| :jk]] N [”b : a2—| < jk]]

P Write ¢ for ¢j . Then ¢ C[[b:a1]| X [a1 : ag] = jk]. There are families (d;)i<;, (df)i<x such that
d; g a1 for every @ < j, dj g az for every | <k, bnc C sup,.;d; and ayne C sup,, d;. For each i < j,
let d; C a1 be G-T-equidecomposable with d;, and take ¢; € G* such that ¢;d; = d;. Then

¢i(d;ndf) XL df <% ag for every i < j, 1 <k,

sup  ¢;(d; ndy) = sup ¢;(d; n supdy) 2 sup ¢i(d; nec)
i<jl<k i<y I<k i<j

=supd;ncdbne.
i<y
So (¢i(d}; nd}))icji<k witnesses that ¢ C [[b: as] < jk]. Q
Once again, it follows easily that [b:a1] X [ay : az] > [b: az2].

395M Lemma Let 2 be a Dedekind complete Boolean algebra, not {0}, and G a subgroup of Aut2
with fixed-point subalgebra €.

(a) For any a € 2, there is a b C a such that b <7 a\ b and a\ upr(b, €) is a either 0 or a relative atom
over C.

(b) Now suppose that G is fully non-paradoxical. Then for any ¢ > 0 there is an a € 2 such that
upr(a,€) =1and [b:a| < |[b:a]|+¢€|l:a] for every b € .
proof(a) Set B={d:d C a, d <% a\d}andlet D C B be a maximal subset such that upr(d, €) n upr(d’, €)
= 0 for all distinct d, d' € ©. Set b=sup D. For any d € D, d <7, a\ d, so

bn upr(d,€) = sup d’ n upr(d,€) = sup d' n upr(d’, €) n upr(d, €) = dn upr(d, €)
d'eD d'eD
<5 (a\d) 1 upr(d, ©) = (a\b) 1 upr(d, €) € a\ b

by 395Ge. By 395H,
b = supyep bn upr(d, €) <7 a\b.

? Suppose, if possible, that ¢’ = a\ upr(b, €) is neither 0 nor a relative atom over €. Let dy C a’ be an
element not expressible as a’ n¢ for any ¢ € €; then dy # an upr(dy, €) and there must be a 7 € G such
that d; = mdg na\ dy is non-zero (395Gb). In this case

di <5 7ty Cdy Ca\dy,
so di; € B; but also
dy n upr(d,€) € dy n upr(b, €) =0,

so upr(dy, €) n upr(d, €) = 0, for every d € D, and we ought to have put d; into D. X
Thus b has the required properties.

(b)(i) For every n € N we can find a,, € 2 and ¢, € € such that upr(a,,€) = 1, a, \ ¢, is either 0 or
a relative atom over €, and |1 : a,,] > 2"xc,. P Induce on n. The induction starts with ag = ¢ = 1,
because |1 : 1| = x1. For the inductive step, having found a, and ¢,, let d C a, nc, be such that
d <% anne, \dand a, ne, \ upr(d, €) is either 0 or a relative atom over €, as in (a). Set ¢y41 = upr(d, @),
an+1 = (an \ ¢nt1) Ud; then

upr(an41, €) = upr(ay \ ¢pt1, €) U upr(d, €)
= (upr(an, €)\ ent1) Ucny1 = (1\ eng1) Ucpy1 =1

by 313Sb-313Sc and the inductive hypothesis.
We have ¢, 11 Nd <G cpq1 Nay \ d, sO
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Cnt1NOpy1 = A C Ap,  Cpgl NOpg1 ¢ A \ d,
and |ay, @ ant1] > 2xCny1; by 3951,
[1:ant1] > [1:an] X [an : ane1] > 2"xcn X 2XCna1 = 2" xCpy-
If
bCant1\cnt1 = (an\cn)U(anncy\ Cnt),

then, because both terms on the right are either 0 or relative atoms over €, there are ¢/, ¢’/ € € such that

b= (bnap\cy)u(bna,nep\ cnr)
= (' nap\cr)u (" Napney \ eni1) = cNaps \ Crit

where ¢ = (' \ ¢,) U (¢” ney) belongs to €. S0 an41 \ ¢pt1 is either 0 or a relative atom over €.
Thus the induction continues. Q

(ii) Now suppose that € > 0. Take n such that 27" < ¢, and consider ay,, ¢, taken from (i) above.
Let b € . Set
c=[[b:an] —|b:an] —€l:a,] >0] €cC.
Since we know that
€ll:an] >27"2"xe, = xCn, [b:ian] < [b:an]+x1,
we must have cn¢, = 0. But this means that a, nc is either 0 or a relative atom over €. By 395Ke, c is

included in [[b: an] — |b:an] =0]; as also |1 : a,| > x1 (395Ka), ¢ must be zero, that is, [b: a,]| < |b:
an] +€ll:ay].

395N We are at last ready for the theorem.

Theorem Let 2 be a Dedekind complete Boolean algebra and G a fully non-paradoxical subgroup of Aut 2l
with fixed-point subalgebra €. Then there is a unique function 6 : 2 — L*°(€) such that

(i) € is additive, non-negative and order-continuous;

(ii) [#a > 0] = upr(a, €) for every a € 2; in particular, fa = 0 iff a = 0;

(iii) 01 = x1;

(iv) 8(anc) = Ba x xc for every a € 2, ¢ € €; in particular, fc = yc for every ¢ € €;

(v) If a, b € A are G-T-equidecomposable, then fa = 6b; in particular, 8 is G-invariant.

proof If 20 = {0} this is trivial; so I suppose henceforth that 21 # {0}.
(a) Set A* ={a:a e upr(a,€) =1} and for a € A*, b € A set

0.(b) = [11) Z] e L0 = L(e);

the first thing to note is that because |1 : a] > x1, we can always do the divisions to obtain elements 6,(b)
of LO(2A) (364N). Set

0b = inf,c a4+ 0,0
for b € 2. (Note that L°(€) is Dedekind complete, by 364M, so the infimum is defined.)
(b) The formulae of 395K tell us that, for a € A* and by, b € 2,
eao = 07 eabl < aabQ if bl - b27
Oa (b1 Ubs) < 0,01 + 04ba,

0,1 > x1.
It follows at once that
00 = 0, by < 0by if by C bg,
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01 > x1.

(c) For each n € N there is an e, € A* such that [b: e,] < |[b:ey] +277[1: e,] for every b € A
(395MDb). Now 0., b <0,b+27"[b:a] foreverya € A*, be 2. Pla:e,] <|a:e,] +27"[1:e,], s0

[a:e,] x|1:a] <|a:e,|x|[l:a]+27"[1:e,] x|1:a]

<
<|l:ep]+27"|1:e,] x|1:al

(by 395L); accordingly

[b:ep] x|1:a] <[b:a]l xJa:e,] x|1:a]
(by the other half of 395L)
<[b:alx|l:iey]+27"[b:a]l x[l:ey] x|1:al

and, dividing by [1:a] x |1:e,], we get 0. b <0,b+27"[b:a]. Q
(d) Now 6 is additive. B Taking (e, )nen from (c), observe first that

infrenbe, b < 0.+ infpen27"[b: a] =0,

for every a € A*, b € A, so that 0b = inf, ey 0., b for every b. Now suppose that by, ba € A and by nby = 0.
Then, for any n € N,

|b1:en| + b2 :en] +27" 1 e,
Lbl Ubsg : enJ + gl U : €nJ

[b1:en] +[b2:e,] <
<

(by 395Kd)
< [byuby ey, +27" 1 e,

Dividing by |1 : e,,], we have
by + Oby < O, by + b, ba < O, (by Uby) 4+ 2711,
Taking the infimum over n, we get
0by + 6by < 6(by U by).
In the other direction, if a, a’ € A* and n € N,

9(1)1 U] bg) S 9% (bl U bg) S Hen (bl) + een (bg)
S Ga(bl) + 2—"n |—b1 : CL.| + Ga/ (bg) + 27" |—b2 : a’] .
As n is arbitrary, 6(by Ubs) < 0,(b1) + 0,/ (b2); as a and a’ are arbitrary, 6(by Ubs) < 6by +6by (using 351Dc).
As by and by are arbitrary, 6 is additive. Q

We see also that [1:e,] < (14+27™)|1:e,], sothat 6., 1 < (14 27")x1 for each n; since we already
know that 81 > x1, we have 01 = x1 exactly.

(e) If ¢ € € then
[6c > 0] € [61¢ > 0] € [[c:1] > 0] = upr(c,€) =¢
(3951(ii)). It follows that
O(bnc) <ObAbe < 0bx xe

for any b € 2, ¢ € €. Similarly, 8(b\¢) < 0b x x(1\¢); adding, we must have equality in both, and
O(bnc)=0bx xc.
Rather late, I point out that

0<6a<0l=xlel®=L%C)
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for every a € 2, so that 6a € L for every a.

(f) If b € A\ {0}, then
[0b > 0] C [61b > 0] € [[b: 1] > 0] = upr(b, €)
by 395I(ii) again. ? Suppose, if possible, that [0b > 0] # upr(b,€). Set ¢y = upr(b,€)\ [6b > 0], ag =
bu(1\ upr(b,€)) € A*. Let k > 1 be such that ¢; = con[[1:ag] < k] #0. Then agnecy =bney, so
Oag x xc1 =0(apncy) =60(bner) =0b x xep = 0.
By 364L(b-ii), there is an a € A* such that ¢; € [0,a0 X xc1 > %}], that is, ca = ¢1 N [0a0 < %]] # 0. Now
ca C[l1:a]l —k[ag:a]l >0] C[[1:ao] x [ao:a] —kfap:a] >0] C[[1:a0] > k],

which is impossible, as co C ¢;. X

Thus [0b > 0] = upr(b, €). In particular, 8b = 0 iff b = 0.

(g) If b, b ¢ Aand b <7 , then 6b < 6b'. P For every a € A*, [b:a] < [V : a] (395KD) so 0,0 < 6,b'.
Q Soif b, VY € A and ¢ = [0b— 00 > 0], ¥ nc <% b. P? Otherwise, by 395H, there is a non-zero ¢ C ¢
such that bn ¢ <7 b'. But in this case 6b x x¢’ = 60(bn¢c’) <0 and ¢ C [0V’ —0b > 0]. XQ

(h) If {(ai)icr is any disjoint family in 2 with supremum a, fa = ), ; 0a;, where the sum is to be
interpreted as SUp ;c; is finite 2_icy 0ai- P Induce on #(I). If #(I) is finite, this is just finite additivity ((d)
above). For the inductive step to #(I) = k > w, we may suppose that I is actually equal to the cardinal k.
Of course

Oa > 9(sup§€!, ag) = Z&J fae

for every finite J C &, so (because L*°(€) is Dedekind complete) u =3, _, fac is defined, and u < fa.
For ¢ < k, set b = supg_. ag. By the inductive hypothesis,

0be = E§<< bae = SUP yC¢ is finite deJ fag < u.

At the same time, if J C & is finite, there is some ¢ < & such that J C (, so that deJ fae < 0b¢; accordingly
Sup; <, 0b¢ = u.

? Suppose, if possible, that u < fa; set v = fa — u. Take § > 0 such that ¢o = [v > ] #0. Let ( < x
be such that ¢; = ¢ \ [u — 0be > 6] is non-zero (cf. 364L(b-ii)). Now v = fa —u < 6(a\ b¢), so

c1 Cv>d] clb(a\be) > 0] =upr(a\be, ),

and ¢1 N (a\bc) # 0; there is therefore an 1’ > ¢ such that d = ¢; na,y # 0. Since 6d < u — 0b; and ¢; is
included in Ju — 6b: < 8] n v > 6], [v —0d > 0] 2 1.

Choose (d¢)e<r inductively, as follows. Given that (d,),<¢ is a disjoint family in 2, q such that d,, is G-

T-equidecomposable with a, n¢; for every n < &, then e¢ = sup, ., d,, is G-T-equidecomposable with bg N c1,
so that fes < 0be, and

[6(a\ (dueg)) — bOag > 0] = [fa — 0d — feg — Bag > 0] D [fa — 6d — Obe — Bae > 0]
= [6a — 0d — Obey > 0] 2 v —6d > 0] 2 ¢1.

By (g), agnei <G a\ (dueg); take de C a\ (dueg) G-T-equidecomposable with a¢ N ¢, and continue.

At the end of this induction, we have a disjoint family (d¢)e<, in Aq g such that de is G-T-equidecom-
posable with ag ne¢y for every &. But this means that o’ = SUpP¢ <, d¢ is G-T-equidecomposable with an ey,
while a’ C (a\ d)ney; since dnane; # 0, G cannot be fully non-paradoxical. X

Thus fa =u =3, _, fac and the induction continues. Q

(i) It follows that @ is order-continuous. P («) If B C 2 is non-empty and upwards-directed and has
supremum e, then (J,.p % is order-dense in 2l., so includes a partition of unity A of 2l.; now (h) tells us
that

e =3 ,caba < supyep b,

Since of course 6b < fe for every b € B, fe = sup,c 6b. (3) If B C 2 is non-empty and downwards-directed
and has infimum e, then, using («), we see that
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01 —fe =0(1\ e) = supycp 0(1\b) = sup,cp 01 — 6b,
so that fe = inf,cp 0b. Q

(j) Istill have to show that 0 is unique. Let 6’ : 2 — L be any non-negative order-continuous G-invariant
additive function such that 6’c = yc for every c € €.

(1) Just as in (e) of this proof, but more easily, we see that 6'(bnc) = 0'b x xc whenever b € 2 and
ced.

(ii) If (a;)ier is a disjoint family in 2 with supremum a, then (sup,c; @i)Jscr is finite 18 an upwards-
directed family with supremum a, so that

/ _ / ) — [ /.
0'a = SUDP jC7 is finite ¢ (sup;es a;) = SUDP jC7 is finite Zie] 0'a; = Zie] 0'a;.

(iii) 0'a = ¢’b whenever a and b are G-T-equidecomposable. PP Take a partition (a;);c; of a and a
family (m;);er in G such that (m;a;);cr is a partition of b. Then
0a= ZiEI 9/0,1' = Zie[ Glﬂ'iai =6'b. Q
Consequently 6'a < 6'b whenever a <7, b.
(iv) Take a € A*, be A and for j, k € Nset cjr =[|1:a] =j]n[[b:a] =k]. Then
[b:a] x xcjx > 60'bx|1:al x xcjg.

P If ¢;;, = 0 this is trivial; suppose ¢;p # 0. Now we have sets I, J such that #(I) = j, #(J) < k,
ancjr ¢ dfor every d € I, e Sz a for every e € J, I is disjoint, and bncj, € supJ. So

0'b x [1:a] x xcjr = 70'b x xcjp = jO' (bncjg) szgl(eﬁcjk)
ecJ
< jk0'(ancp) kY 0/ (dnejr) < k0
del

= kxcjr = [b:a] X xcji. Q
Summing over j and k, [b:a] > b x |1:a], that is, 8,b > €’b. Taking the infimum over a, 6b > 6'b. But
also

0b=x1—0(1\b) < x1—0'(1\b) =0,

so 0b = 0'b. As b is arbitrary, # = 6’. This completes the proof.

3950 We have reached the summit. The rest of the section is a list of easy corollaries.

Theorem Let 2 be a Dedekind complete Boolean algebra, not {0}, and G a fully non-paradoxical subgroup
of Aut2(. Then there is a G-invariant additive functional v : 20 — [0, 1] such that v1 = 1.

proof Let € be the fixed-point subalgebra of G, and 6 : 2 — L°°(€) the function of 395N. By 311D, there
is a ring homomorphism 7y : € — {0,1} such that 191 = 1; now 1 can also be regarded as an additive
functional from € to R. Let fy : L°°(€) — R be the corresponding positive linear functional (363K). Set
v = fof. Then v is order-preserving and additive because fo and 6 are, v1 = fo(x1) = 191 > 0, and v is
G-invariant because 6 is.

395P Theorem Let 2 be a Dedekind complete Boolean algebra and G a fully non-paradoxical subgroup
of Aut 2l with fixed-point subalgebra €. Then the following are equiveridical:

(i) 20 is a measurable algebra;

(ii) € is a measurable algebra;

(iil) there is a strictly positive G-invariant countably additive real-valued functional on 2L.

proof (iii)=-(i)=(ii) are trivial. For (ii)=-(iii), let § : A — L°°(&) be the function of 395N, and 7 : € — R
a strictly positive countably additive functional. Let f : L°°(€) — R be the corresponding linear operator;
then f is sequentially order-continuous (363K again). Set i = f6. Then [ is additive and order-preserving
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and sequentially order-continuous because f and 6 are. It is also strictly positive, because if a € 2\ {0}
then fa > 0 (395N(ii)), that is, there is some ¢ > 0 such that [fa > ] # 0, so that

pa > 6vffa > 8] > 0.

Finally, i1 is G-invariant because 6 is.

395Q Corollary: Kawada’s theorem Let 2 be a Dedekind complete Boolean algebra such that Aut 2l
has a subgroup which is ergodic and fully non-paradoxical. Then 2 is measurable.

proof By 395G, this is the case € = {0,1} of 395P.

395R Thus the existence of an ergodic fully non-paradoxical subgroup is a sufficient condition for a
Dedekind complete Boolean algebra to be measurable. It is not quite necessary, because if a measure
algebra 2l is not homogeneous then its automorphism group is not ergodic. But for homogeneous algebras
the condition is necessary as well as sufficient, by the following result.

Proposition If (2, i) is a homogeneous totally finite measure algebra, Aut;2 is ergodic.

proof If A = {0, 1} this is trivial. Otherwise, 2 is atomless. If a, b € A\ {0, 1}, set v = min(fa, ib); then
there are @’ C a and b’ C b such that fia’ = b’ = v. By 383FDb, there is a m € G such that wa’ =¥, so that
mana # 0. As b is arbitrary, sup,cg ma = 1; as a is arbitrary, G is ergodic.

395X Basic exercises (a) Re-write the section on the assumption that every group G is ergodic, so
that L°(€) may be identified with R, the functions [...] and |... | become real-valued, the functionals 6,
(395N) become submeasures and § becomes a measure.

(b) Let 2 be a Dedekind complete Boolean algebra and G a subgroup of Aut 2l with fixed-point subalgebra
€. Suppose that (c;);er is a partition of unity in € and that a, b € 2 are such that anc¢; <7 b for every
1 € I. Show that a <7, 0.

(c) Let 2 be a Dedekind complete Boolean algebra and G a subgroup of Aut 2 with fixed-point subalgebra
€. Show that 2 is relatively atomless over € iff the full subgroup generated by G has many involutions
(definition: 3820).

(d) Let A be a Dedekind complete Boolean algebra and G a fully non-paradoxical subgroup of Aut 2l
with fixed-point subalgebra €. Show that the following are equiveridical: (i) 2 is chargeable (definition:
391Bb); (ii) € is chargeable; (iii) there is a strictly positive G-invariant real-valued additive functional on 2.

(e) Let A be a Dedekind complete Boolean algebra and G a fully non-paradoxical subgroup of Aut 2l
with fixed-point subalgebra €. Show that the following are equiveridical: (i) there is a non-zero completely
additive functional on 2; (ii) there is a non-zero completely additive functional on €; (iii) there is a non-zero
G-invariant completely additive functional on 2.

(f) Let A be a ccc Dedekind complete Boolean algebra. Show that it is a measurable algebra iff there is
a fully non-paradoxical subgroup G of Aut®l such that the fixed-point subalgebra of G is purely atomic.

(g) Let (A, i) be a localizable measure algebra. Show that the following are equiveridical: (i) Autz2 is
ergodic; (ii) 2 is quasi-homogeneous in the sense of 374G.

(h) Let (A, z) be a localizable measure algebra. Show that Aut;2 is fully non-paradoxical iff (i) for
every infinite cardinal k, the Maharam-type-+ component of 2 (definition: 332Gb) has finite measure (ii)

for every v € ]0, 0o there are only finitely many atoms of measure ~.

(i) Let 2 be a Boolean algebra, G a subgroup of Aut®, and G* the full subgroup of Aut 2l generated by
G. Show that G* is ergodic iff G is ergodic.
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395Y Further exercises (a) Let 2 be a Dedekind complete Boolean algebra, G a subgroup of Aut 2,
and G the full local semigroup generated by G. For ¢, ¥ € G%, say that ¢ < v if ¢ extends ¢. (i) Show that
every member of G% can be extended to a maximal member of G%. (ii) Show that G is fully non-paradoxical
iff every maximal member of G% is actually a Boolean automorphism of 2.

(b) Let A be a ccc Dedekind complete Boolean algebra and G a subgroup of Aut2. Show that G is
fully non-paradoxical iff (7, a,)nen order*-converges to 0 whenever (a,)nen is a disjoint sequence in 2 and
(Tn)nen is a sequence in G.

(c) Let 2 be a Dedekind complete Boolean algebra and G a fully non-paradoxical subgroup of Aut 2 with
fixed-point subalgebra €. (i) Show that 2( is ccc iff € is cce. (Hint: if € is cce, L>°(€) has the countable sup
property.) (ii) Show that 2 is weakly (o, co)-distributive iff € is. (iii) Show that 2 is a Maharam algebra iff
¢ is.

(d) Let 2 be a Dedekind complete Boolean algebra, G an ergodic subgroup of Aut®, and G* the full
local semigroup generated by G. Suppose that there is a non-zero a € 2 for which there is no ¢ € G% such
that ¢a c a. Show that there is a measure & such that (2, i) is a localizable measure algebra. (Hint: show
that 2, is a measurable algebra.)

(e) Show that there are a semi-finite measure algebra (2, /1) and a subgroup G of Aut; 2 such that G is
not ergodic but has fixed-point algebra {0, 1}.

395Z Problem Suppose that 2 is a Dedekind complete Boolean algebra, not {0}, and G a subgroup of
Aut 2 such that whenever (a;);<, is a finite partition of unity in 2 and we are given m;, 7, € G for every
i < m, then the elements mgag, m\ao, a1, T a,...,m,a, are not all disjoint. Must there be a non-zero
non-negative G-invariant finitely additive functional 6 on 2?

(See ‘Tarski’s theorem’ in the notes below.)

395 Notes and comments Regarded as a sufficient condition for measurability, Kawada’s theorem suffers
from the obvious defect that it is going to be rather rarely that we can verify the existence of an ergodic
fully non-paradoxical group of automorphisms without having some quite different reason for supposing that
our algebra is measurable. If we think of it as a criterion for the existence of a G-invariant measure, rather
than as a criterion for measurability in the abstract, it seems to make better sense. But if we know from
the start that the algebra 2 is measurable, the argument short-circuits, as we shall see in §396.

I take the trouble to include the ‘7’ in every ‘G-T-equidecomposable’, ‘G}’ and ‘<7’ because there are
important variations on the concept, in which the partitions (a;);e; of 395A are required to be finite or
countable. Indeed Tarski’s theorem relies on one of these. I spell it out because it is close to Kawada’s in
spirit, though there are significant differences in the ideas needed in the proof:

Let X be a set and G a subgroup of Aut PX. Then the following are equiveridical: (i) there is

a G-invariant additive functional 6 : PX — [0, 1] such that §A = 1; (ii) there are no Ao,... , A,

TOs -« s Tny Ty -« 5Ty such that Ag, ..., A, are subsets of X covering X, m,...,m, belong to

G, and mo[Ao], m[Ao], m1[A1], 71 [A1], ... , 7 [Ay] are all disjoint.
For a proof, see 449L in Volume 4; for an illuminating discussion of this theorem, see WAGON 85, Chapter
9. But it seems to be unknown whether the natural translation of this result is valid in all Dedekind
complete Boolean algebras (395Z). Note that we are looking for theorems which do not depend on any
special properties of the group G or the Boolean algebra 2. For abelian or ‘amenable’ groups, or weakly
(0, 00)-distributive algebras, for instance, much more can be done, as described in 396Ya and §449.

The methods of this section can, however, be used to prove similar results for countable groups of automor-
phisms on Dedekind o-complete Boolean algebras; I will return to such questions in §448. The presentation
here owes a good deal to NADKARNI 90 and something to BECKER & KECHRIS 96.

As noted, Kawada (KAwADA 1944) treated the case in which the group G of automorphisms is ergodic,
that is, the fixed-point subalgebra € is trivial. Under this hypothesis the proof is of course very much
simpler. (You may find it useful to reconstruct the original version, as suggested in 395Xa.) I give the more
general argument partly for the sake of 3950, partly to separate out the steps which really need ergodicity
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from those which depend only on non-paradoxicality, partly to prepare the ground for the countable version
in the next volume, partly to show off the power of the construction in §364, and partly to get you used
to ‘Boolean-valued’ arguments. A bolder use of language could indeed simplify some formulae slightly by
writing (for instance) [k[ao : a] < |1:a]] in place of [|1: a| — k[ag : a] > 0] (see part (f) of the proof of
395N). As in §388, the differences involved in the extension to non-ergodic groups are, in a sense, just a
matter of technique; but this time the technique is more obtrusive. In §556 of Volume 5 I will try to explain
a general approach to questions of this kind, using metamathematical ideas.

Version of 15.8.08
396 The Hajian-Ito theorem

In the notes to the last section, I said that the argument there short-circuits if we are told that we are
dealing with a measurable algebra. The point is that in this case there is a much simpler criterion for the
existence of a G-invariant measure (396B(ii)), with a proof which is independent of §395 in all its non-trivial
parts, which makes it easy to prove that non-paradoxicality is sufficient as well as necessary.

396A Lemma Let (2, i) be a localizable measure algebra.

(a) Let m € Aut2 be a Boolean automorphism (not necessarily measure-preserving), and T} the corre-
sponding Riesz homomorphism from L° = LO(2l) to itself (364P). Then there is a unique w, € (L°)* such
that [wr x v = [Tyrv for every v € (LY)*.

(b) If ¢, m € Aut A then wry = wy X Ty-1wy.

(c) For each m € Aut 2 we have a norm-preserving isomorphism U, from L? = L?(2, 1) to itself defined
by setting

Urv=Trv X JWr—1

for every v € L?, and Ury = U, Uy for all 7, ¢ € Aut 2.

proof (a) Set va = fi(ma) for a € A. Then (A, 7) is a semi-finite measure algebra. P 0 = a0 = 0; if
{an)nen 1s a disjoint sequence in 2 with supremum a, then (7a, )nen is digjoint and (because 7 is sequentially
order-continuous) a = Sup,,cy Tan, S0 va = Y, vay; if a # 0 then ma # 0 so va > 0. Thus (2, 7) is a
measure algebra. If a # 0 there is a b C 7a such that 0 < jib < oo, and now 7~ 1b C @ and 0 < (7~ 1b) < oo;
thus 7 is semi-finite. Q

By 3658, there is a unique w, € (L°)* such that [ w, = ii(ma) for every a € 2. If we look at
W:{U:UG(LO)+,fvwa:fT,rv},

we see that W contains ya for every a € 2, that v + v’ € W and av € W whenever v, v’ € W and a > 0,
and that sup,cy v, € W whenever (v,)nen is a non-decreasing sequence in W which is bounded above in
LY. By 364Jd, W = (L°)*, as required.

(b) For any v € (LY)T,

/ww xv:/va:/TﬂT(z)v

= /wﬂ, x Tyv = /T¢(T¢*1wﬂ X V)

(364Pe)

(recalling that T} is multiplicative)
= /w¢ X Ty-1wr X 0.
As v is arbitrary (and (2, i) is semi-finite), wry = wy X Ty-1wr.
(© 1997 D. H. Fremlin
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(c)(i) For any v € L°,

f(Tﬂv X \fWr1)? = fTﬂUQ X Wr—1 = fwalT,rv2 = va.
So Urv € L? and |U,v||2 = ||v]|2 whenever v € L?, and U, is a norm-preserving operator on L?.

(ii) Now consider Uy 4. For any v € L?, we have

UrUgv = T (Tyv X \J/Wy—1) X \/Wr—1
= TTFT¢U X \/Tﬂ’w¢71 X Wr—1

= dzpU X \/Wy-17-1

(using 364Pd)

(by (b) above)

= Urgv.

So Uﬂ—¢ = UTrU¢.

(iii) Writing ¢ for the identity operator on 2, we see that T, is the identity operator on L% w, = x1
and U, is the identity operator on L?. Since U, 1U; = U U,-1 = U,, U, : L? — L? is an isomorphism,
with inverse U, -1, for every m € Aut 2.

396B Theorem (HaJIAN & ITO 69) Let 2 be a measurable algebra and G a subgroup of Aut2l. Then
the following are equiveridical:

(i) there is a G-invariant functional 7 such that (2, 7) is a totally finite measure algebra,

(ii) whenever a € A\ {0} and (7, )nen is a sequence in G, (m,a)nen is not disjoint;

(iii) G is fully non-paradoxical (definition: 395E).

proof (a) (i)=-(iii) by the argument of 395F, and (iii)=-(ii) by the criterion (ii) of 395E. So for the rest of
the proof I assume that (ii) is true and seek to prove (i).

(b) Let fi be such that (A, it) is a totally finite measure algebra. If ¢ € 2\ {0}, then inf,cq f(ma) > 0.
P? Otherwise, let (m,)nen be a sequence in G such that fm,a < 27" for each n € N. Set b,, = SUDPg>y, TEA
for each n; then inf, ¢y b, = 0, so that

inf,enmb, =0, lim, o g(7ma) =0
for every m € Aut 2. Choose (n;);en inductively so that
ﬂ(ﬂ';}ﬂ'nja) <2797 2%[q
whenever i < j. Set
c=a)\ sup,.; W;}?Tnj&.
Because
S50 S i, a) < ia,
¢ # 0, while m,,cnm,,c =0 whenever i < j, contrary to the hypothesis (ii). XQ
(c) For each m € G, define w, € L° = L%(A) and U, : L? — L? as in 396A, where L? = L?(2, f1).
If a € A\ {0}, then infreq [, /wr > 0. P? Otherwise, there is a sequence (m,)nen in G such that
[, vn < 47" 2[1a for every n, where v, = \/Wr, . In this case, i(an [v, > 27"]) < 27" 2fa for every n, so
that b = a\ sup,cy [vn > 27"] is non-zero. But now
f(mnb) = fb Wy, = fb v2 <47"[b — 0
as n — oo, contradicting (b) above. XQ

(d) Write e = x1 for the standard weak order unit of L° or L?. Let C' C L? be the convex hull of
{Ure : m € G}. Then C and its norm closure C are G-invariant in the sense that U,v € C, Uyv' € C
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whenever v € C, v' € C and m € G. By 3A5Md, there is a unique ug € C such that ||Jugl|2 < [Jul|2 for every
u € C. Now if m € G, Urup € C, while ||Urug|l2 = ||uol|2; so Urug = ug. Also, if a € 2A\ {0},

/uo >inf [ u=inf | u
a ueC Jq ueC J,

(because u +— [ w is || ||2-continuous)

= in

weg ane:;relg/aTﬁe X\ We—1
= inf /\/w,rq = inf /«/w7T >0
a meG J,

TeG
by (c). So Jug > 0] = 1.
(e) For a € A, set va = [, uj. Because ug € L?, ¥ is a non-negative countably additive functional on 2;
because [ug > 0] = [ug > 0] = 1, ¥ is strictly positive, and (2, ) is a totally finite measure algebra. Finally,
U is G-invariant. P If ¢ € 2 and 7 € G, then

v(ra) :/ ul = /u% x x(ma) = /Tﬂ(Tﬂflug X Xa)
= /w,r x Trrug x xa = /(Tﬂfluo X /Wy )?

— /a(Uﬂ,luo)2 = /aug =va. Q

396C Remark If 2 is a Boolean algebra and G a subgroup of Aut 2, a non-zero element a of 2 is called
weakly wandering if there is a sequence (7, )necn in G such that (m,a),en is disjoint. Thus condition (ii)
of 396B may be read as ‘there is no weakly wandering element of 2[’.

So (i) is true.

396X Basic exercises (a) Let (2, 1) be a totally finite measure algebra, and 7 : 2 — 2 an order-
continuous Boolean homomorphism. Let Ty : LO(2) — L°(A) be the corresponding Riesz homomorphism.
Show that there is a unique w, € L*(2, i) such that [T,v = [v x w, for every v € LO(A) ™.

(b) In 396A, show that the map 7 +— U, : Aut A — B(L?; L?) is injective.

(c) Let 2 be a measurable algebra and G a subgroup of Aut2(. Suppose that there is a strictly positive
G-invariant finitely additive functional on 2. Show that there is a G-invariant & such that (2, i) is a totally
finite measure algebra.

396Y Further exercises (a) Let 2 be a weakly (o, co)-distributive Dedekind complete Boolean algebra
and G a subgroup of Aut®l. For a, b € A, say that a and b are G-equidecomposable if there are finite
partitions of unity (a;);cs in A, and (b;);cr in Ap, and a family (m;);cr in G, such that m;a; = b; for every
1 € 1. Show that the following are equiveridical: (i) G is fully non-paradoxical in the sense of 395E; (ii) if
{an)nen is a disjoint sequence of mutually G-equidecomposable elements of 2, they must all be 0.

396 Notes and comments I have separated these few pages from §395 partly because §395 was already
up to full weight and partly in order that the ideas here should not be entirely overshadowed by those of
the earlier section. It will be evident that the construction of the U, in 396A, providing us with a faithful
representation, acting on a Hilbert space, of the whole group Aut#|, is a basic tool for the study of that

group.
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Version of 21.10.07

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

393B The association of a metric with a strictly positive submeasure, used in the 2003 and 2006 editions
of Volume 4, is now in 392H and 393H.

393C The result that a non-negative additive functional on a Boolean algebra can be factored through
a measure algebra, used in the 2003 and 2006 editions of Volume 4, is now in 392I.

3930 The note on control measures for vector measures, referred to in the 2003 and 2006 editions of
Volume 4, is now in 394Q).

6394 Kawada’s theorem, referred to in the 2003 and 2006 editions of Volume 4, is now in §395.

(©) 2007 D. H. Fremlin
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