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Chapter 38
Automorphism groups

As with any mathematical structure, every measure algebra has an associated symmetry group, the group
of all measure-preserving automorphisms. In this chapter I set out to describe some of the remarkable features
of these groups. I begin with elementary results on automorphisms of general Boolean algebras (§381),
introducing definitions for the rest of the chapter. In §382 I give a general theorem on the expression of an
automorphism as the product of involutions (382M), with a description of the normal subgroups of certain
groups of automorphisms (382R). Applications of these ideas to measure algebras are in §383. I continue with
a discussion of circumstances under which these automorphism groups determine the underlying algebras
and/or have few outer automorphisms (§384).

One of the outstanding open problems of the subject is the ‘isomorphism problem’; the classification of
automorphisms of measure algebras up to conjugacy in the automorphism group. I offer two sections on
‘entropy’, the most important numerical invariant enabling us to distinguish some non-conjugate automor-
phisms (§§385-386). For Bernoulli shifts on the Lebesgue measure algebra (385Q-385S), the isomorphism
problem is solved by Ornstein’s theorem (387J, 387L); I present a complete proof of this theorem in §§386-
387. Finally, in §388, I give Dye’s theorem, describing the full subgroups generated by single automorphisms
of measure algebras of countable Maharam type.

Version of 19.7.06

381 Automorphisms of Boolean algebras

I begin the chapter with a preparatory section of definitions (381B) and mostly elementary facts. A
fundamental method of constructing automorphisms is in 381C-381D. The idea of ‘support’ of an endomor-
phism is explored in 381E-381G, a first look at ‘periodic’ and ‘aperiodic’ parts is in 381H, and basic facts
about ‘full subgroups’ are in 3811-381J. We start to go deeper with the notion of ‘recurrence’; treated in
381L-381P. I describe how these phenomena appear when we represent an endomorphism as a map on the
Stone space of an algebra (381Q). I end by introducing a ‘cycle notation’ for certain automorphisms.

381 A The group Aut®l For any Boolean algebra 2, I write Aut®l for the set of automorphisms of 2,
that is, the set of bijective Boolean homomorphisms 7 : 2l — 2. This is a group, being a subgroup of the
group of all permutations of 2 (use 312G). Note that every member of Aut® is order-continuous; this is
because it must be an isomorphism of the order structure of 2 (313Ld).

381B The primary aim of this chapter is to study automorphisms of probability algebras. In the context
of the present section, this means that for a first reading you can take it that all algebras are Dedekind
complete. The methods can however be used in many other contexts, at the price of complicating some of
the statements of the lemmas. It is also interesting, and occasionally important, to apply some of the ideas
to general Boolean homomorphisms. In the following definitions I try to set out a language to make this
possible.

Definitions (a) If 2 is a Boolean algebra and 7 : 2 — 2 is a Boolean homomorphism, I say that a € 2
supports 7 if 7d = d for every d C 1\ a.

(b) Let 2 be a Boolean algebra and 7 : 2 — 2 a Boolean homomorphism. If min{a : a € 2 supports 7}
is defined in %A, I will call it the support supp 7 of 7.

Extract from MEASURE THEORY, by D.H.FREMLIN, University of Essex, Colchester. This material is copyright. It is
issued under the terms of the Design Science License as published in http://dsl.org/copyleft/dsl.txt. This is a de-
velopment version and the source files are mnot permanently archived, but current versions are normally accessible through
https://wwwl.essex.ac.uk/maths/people/fremlin/mt.htm. For further information contact david@fremlin.org.

(©) 2003 D. H. Fremlin
1



2 Automorphism groups 381Bc

c is a Boolean algebra, an automorphism 7 : 2l — 2[ is periodic, with period n > 1, i ,
If A is a Bool lgeb t hi A=A iodi ith iodn>1,if2A 0
7" is the identity operator and 1 is the support of 7 whenever 1 < i < n.

(d) If 2 is a Boolean algebra, a Boolean homomorphism 7 : 24 — 2 is aperiodic if the support of 7™ is
1 for every n > 1. I remark immediately that if 7 is aperiodic, so is 7™ for every n > 1 (see 381Xc). Note
that if 2 = {0} then the trivial automorphism of  is counted as aperiodic.

(e) If 2 is a Boolean algebra, a subgroup G of Aut 2l is full if whenever (a;);cr is a partition of unity in
A, (m;)ier is a family in G, and 7 € Aut 2 is such that 7d = m;d whenever ¢ € I and d C a;, then 7 € G.

(f) If 2 is a Boolean algebra, a subgroup G of Aut 2l is countably full if whenever (a;);c; is a countable
partition of unity in 2L, (m;);cr is a family in G, and 7 € Aut2 is such that 7d = m;d whenever i € I and
d C a;, then T € G.

(g) If A is a Boolean algebra, a € 2 and 7 : 24 — 2 is a Boolean homomorphism, I say that 7 is recurrent
on qa if for every non-zero b C a there is a £ > 1 such that anTkb #0. If 7 € Aut2 and 7 and 71 are
both recurrent on a, I say that 7 is doubly recurrent on a.

381C Before setting out to explore the concepts just listed, I give a fundamental result on piecing
automorphisms together from fragments.

Lemma Let 2 be a Boolean algebra, and (a;);cr, (bi)icr two partitions of unity in 2. Assume

either that I is finite

or that I is countable and 2l is Dedekind o-complete

or that 2 is Dedekind complete.
Suppose that for each ¢ € I we have an isomorphism 7; : A,, — 2, between the corresponding principal
ideals. Then there is a unique 7 € Aut 2l such that 7d = m;d whenever ¢ € I and d C a;.

proof By 315F, we may identify 21 with each of the products [[;c; ®a;, [[;c; 2p,; now 7 corresponds to
the isomorphism between the two products induced by the ;.

381D Corollary Let 2l be a homogeneous Boolean algebra, and A, B two partitions of unity in 2,
neither containing 0. Let 6 : A — B be a bijection. Suppose
either that A, B are finite
or that A, B are countable and 2l is Dedekind o-complete
or that 2 is Dedekind complete.
Then there is an automorphism of 2 extending 6.

proof For every a € A, the principal ideals 2, 21y, are isomorphic to the whole algebra 2, and therefore
to each other; let 7, : ™A, — Ay, be an isomorphism. Now apply 381C.

381E Lemma Let 2 be a Boolean algebra, and m, ¢, ¥ : 2l — 2 Boolean homomorphisms of which 7 is
injective.

(a) If a € 2 supports ¢ then ¢a = a and ¢d C a for every d C a.

(b) If a € A supports both ¢ and v then it supports ¢u.

(c) Let A be the set of elements of 2 supporting ¢. Then A is non-empty and closed under n;also b € A
whenever b2 a € A. If ¢ is order-continuous, then inf B € A whenever B C A has an infimum in 2I.

(d) If a € A supports 7, then ¢a supports we.

(e) If m commutes with ¢, and a € 2 is such that wa supports ¢, then a supports ¢.

(f) If ¢ is supported by a and v is supported by b, where anb = 0, then ¢ = 1.

(g) For any n > 1 and a € 2, a supports 7" iff wa supports 7. Consequently 7(supp 7™) = supp 7" if
7™ has a support.

(h) If 7 € Aut A and a € A supports 7, then a supports 7~ 1.

(i) If 7 € Aut 2 and a € 2, then
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381F Automorphisms of Boolean algebras 3

a supports 1 <= dA nwd C a for every d € A
<= d C a whenever dnnd =0
<= dnnd# 0 whenever 0 #d C 1\ a.

(j) If 7 € Aut®?l and a € A supports ¢, then 7wa supports mom L.
(k) If a € A supports ¢, and 71, T € Aut A agree on A,, then m¢m; t = modm, *.

proof (a) ¢(1\a) =1\ a, so ¢a = a, and if d C a then ¢d C ¢a = a.
(b) If dna =0 then ¢d = d = ¥d so ¢yd = d.

(c) Of course 1 € A, because ¢0 = 0; and it is also obvious that if b>a € A then b€ A. If a, b € A and
dnanb =0, then ¢d = ¢(d\ a) up(d\b) = d. If ¢ is order-continuous, B C A is non-empty and ¢ = inf B
is defined in 2, then for any d C 1\ ¢ we have

d=d\c=supycpd\b,
and
¢d = supyep P(d\ b) = sup,cpd\b=d.
So in this case ¢ supports ¢.
(d) If dn¢a =0 then rdna = ndnrwpa =0, so r¢rd = wd and (because 7 is injective) ¢mrd = d.
(e) If dna =0 then rdnma =0, so 7¢d = ¢prd = wd and ¢d = d.

(f) If d Ca then ¢d C a and ¥d = d so ¥¢d = ¢d = ¢opd; if d C b then Ypd = ¢ibd = pd; and if
d C 1\ (aub) then Yod = ¢pvpd = d.

(g) Because 7 is injective, so is 7"~ 1. So if a supports 7" = 7"~ 17, so does 7a, by (d). On the other
hand, 7 commutes with 7", so if ma supports 7" so does a, by (e).

If ¢ = supp 7" then e supports 7 so ¢ C mc. Consequently wic € wit!c for every i € Nand ¢ C 7e C m"c.
But as "¢ = ¢, by (a), mc = c.

(h) If dna =0 then nd = d so d = 7~ 'd.
(i) (@) If @ supports 7 and d € 2, then ma = a, by (a), so
(dard)\a=(d\a)A (nd\7a) = (d\a)An(d\a)=(d\a)A(d\a)=0
and d A wd C a.
B)LfdandCaand dnwd =0, thend C dAnd C a.
(7) If d € a whenever dnwd =0, and 0 # d’ C 1\ a, then of course d’' n7d’ # 0.

(8) If @ does not support , there is a ¢ C 1\ a such that ¢ # ¢. So one of ¢\ ¢, 7c\ ¢ is non-zero. If
c\ we # 0, take this for d; then d € 1\ a and rdnd C 7c\ me = 0. Otherwise, because 7 is an automorphism,
we can take d = m~1(7c\ ¢); then 0 # d C ¢ C 1\ a, while

dnwd= (c\7 te)n(mc\c) = 0.
() fdnma=0then m~'dna=0so0 ¢n'd =7"'d and mpn'd = d.
(k) For d C a, my 'md = 7y *mod = d, so w5 'my is supported by 1\ a. By (f), ¢y 'm = 75 ', so

—1 —1 —1 —1 —1 —1
Q] = MMy TPT] = MMy MW = TodTy .

381F Corollary If 2 is a Dedekind complete Boolean algebra, then every order-continuous Boolean
homomorphism ¢ : 2l — 2 has a support.

proof By 381Ec, inf{a : a € 2 supports ¢} is the support of ¢.
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4 Automorphism groups 381G

381G Corollary Let 2 be a Boolean algebra, and suppose that 7 € Aut 2l has a support e.
(a) me =e.

(b) e=sup{dand:de A} =sup{d:d e, dnnd = 0}.

(c) e is the support of 771

(d) For any ¢ € Aut A, ¢e is the support of preo~1.

proof (a) 381Ea.
(b) 381Ei
(c) 381EL.

(d) By 381Ej, ¢e supports ¢m¢ L. At the same time, if a € A supports ¢r¢ !, then ¢~1a supports , so
e C ¢ 'a and a D ¢e. Thus ¢e is the smallest element of A supporting ¢m¢ ! and is the support of ¢gmep 1.

381H Proposition Let 2 be a Dedekind o-complete Boolean algebra and 7 : 2 — 2[ an injective Boolean
homomorphism such that 7™ has a support for every n € N. Then there is a partition of unity (¢;)1<i<w
in 2l such that me; C ¢; for every i, w2, is periodic with period n whenever n € N\ {0} and ¢,, # 0, and
[, is aperiodic.

proof Set

cp =1\ suppm,

¢ = inf supp 7 \ supp 7" for n > 2,
<n

¢, = inf supp7™.
neN

Then (¢;)1<i<w is a partition of unity. By 381Eg, me¢, = ¢, for every n, so we, C ¢,. If d C ¢, where
1<neN,thendnsuppr” =0so7n"d=d. If 1 <i<j<wand0#acCc,thenac supp 7’ so there is
a d C a such that (7], )'d = 7'd # d; thus if n € N\ {0} (and ¢,, # 0) 7|2, is periodic with period n,
while 7w[2(.  is aperiodic.

Remark The hypothesis ‘every @™ has a support’ will be satisfied if 2 is Dedekind complete and 7 is
order-continuous (381F). For other sufficient conditions see 382E.

3811 Full and countably full subgroups If 2l is a Boolean algebra, it is obvious that the intersection
of any family of (countably) full subgroups of Aut®l is again (countably) full. We may therefore speak of
the (countably) full subgroup of 2 generated by an element of Aut .

Proposition Let 2 be a Boolean algebra.
(a) Let G be a subgroup of Aut2l. Let H be the set of those 7 € Aut 2 such that for every non-zero
a € 2 there are a non-zero b C a and a ¢ € G such that mc = ¢c for every ¢ C b. Then H is a full subgroup
of Aut 2, the smallest full subgroup of 2 including G.
(b) Suppose that 2 is Dedekind o-complete and 7, ¢ € Aut 2. Then the following are equiveridical:
(i) ¢ belongs to the countably full subgroup of Aut 2l generated by ;
(ii) there is a partition of unity (a,)nez in 2 such that ¢c = 7™c whenever n € Z and ¢ C a,.
(c) Suppose that 2 is Dedekind complete, and 7, ¢ € Aut 2. Then the following are equiveridical:
(i) ¢ belongs to the full subgroup of Aut2l generated by ;
(ii) for every non-zero a € A there are a non-zero b C a and an n € Z such that ¢c = n"c for
every c C b;
(iii) ¢ belongs to the countably full subgroup of Aut 2l generated by m;
(iv) inf,,ez supp(n"¢) = 0.

proof (a)(i) mom; € H for all m, my € H. P Let a € 2 be non-zero; then there are a non-zero b C a and
a ¢1 € G such that m; and ¢; agree on the principal ideal 2. Next, there are a non-zero ¢ C m1b and a
¢ € G such that m and ¢, agree on 2A.. Set d = wflc; then d € 2, \ {0}, and ¢2¢1 is a member of G
agreeing with mom; on 4. As a is arbitrary, mom; € H. Q
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3811 Automorphisms of Boolean algebras 5

(ii) 7! € H for every m € H. P If a € A\ {0}, there are a non-zero b C 7~ 1a and a ¢ € G such that
7 and ¢ agree on Ap; now 0 # 7b C a and 7~ and ¢! agree on Ayp,. As a is arbitrary, 77! € H. Q Of
course H O G, so H is a subgroup of Aut2l.

(iii) Suppose now that (a;);cs is a partition of unity in 2, (m;);cs is a family in H, and 7 € Aut 2 is
such that 7 agrees with 7; on 2, for every i € I. Then 7 € H. P If a € 2\ {0}, there is an ¢ € I such that
b = ana; is non-zero; now 7 agrees with 7; on b. Q So H is a full subgroup of Aut 2.

(iv) If H' is any full subgroup of Aut 2l including G, then H' 2 H. P If 7 € H, then B = {b : there is
a ¢ € G agreeing with m on 2} is an order-dense subset of 2, so there is a partition (a;);cr of unity in 2
such that a; € B for every 4. For each i € I, let m; € G be such that 7 and 7; agree on 2, ; then ((a;, 7;))icr
witnesses that m € H'. As « is arbitrary, H C H'. Q

(b) (ii)=-(i) is trivial. In the other direction, let G be the family of all those automorphisms 1 of 2 such
that there is a partition of unity (a,)necz in 2 such that ¢c¢ = 7™c whenever n € Z and ¢ C a,,. Then G is a
countably full subgroup of Aut®l containing 7.

P Of course 7 € G (set a1 =1, a,, =0 for n # 1).

Take 91, 2 € G. Let (an)nez, (al,)nez be partitions of unity in A such that ¢, ¢ = 7"¢ whenever n € Z
and ¢ C ay,, while ¢3¢ = 7"c whenever n € Z and ¢ C a},. Then (a], N w;lam>,,mez is a partition of unity.
Ifecaln w;lam, then 1oc = "¢ C ay,, S0 Y11Poc = 7™ . So if we set b, = sup,cy a; N w;lan,i for each
n € Z, {bn)nez is a partition of unity in 2 witnessing that 1112 € G. At the same time, (1a_p)nez is a
partition of unity witnessing that ;" 1€ G. As ¢y and 1), are arbitrary, G is a subgroup of Aut 2.

Now suppose that (a;);cr is a countable partition of unity in 2 and that 1) € Aut 2 is such that for every
1 € I there is a 1; € G such that ¢ = ;¢ for every ¢ C a;. For each i € I let (a;,)nez be a partition
of unity such that ;¢ = 7"c whenever ¢ C a;,. Then (a; Nan)icrnez is a partition of unity such that
e = m"c whenever ¢ C ¢; N a;,. So setting b, = sup;c;a; Na;, for each n € Z, (by)nez is a partition of
unity witnessing that ¢» € G. As % is arbitrary, G is countably full. Q

Accordingly G must include (indeed, must coincide with) the countably full subgroup generated by T,
and (i)=-(ii).

(c)(i)=(ii) is a special case of (a).

(ii)=(iii) For n € Z, let B, be the set of those b € 2 such that ¢c = 7"c for every ¢ Cb. Set
b, = sup By, for each n; then if ¢ C by,

pc = ¢p(sup,ep, bnc) =sup,ep, d(bnc) =sup,ep, ©(bnec) =7"c.

Set

an, =b,\ sup b; if n €N,
0<i<n

=b, \ supb; if n € Z\N;

i>n
then {(a,)nez is disjoint,

SUP,cz Gn = SUP,,cz b = sup(UnEZ B,) =1,

and ¢c = 7"c for every ¢ C a,, n € Z. Thus ¢ satisfies condition (ii) of (a) and belongs to the countably
full subgroup generated by .

(iii)=(i) is trivial.
(ii)<(iv) The point is that, for n € Z and b € 2,
¢c=7n"cfor every cC b < 7w "¢c = c for every c C b
<= bn supp(n "¢) =0.

So we have
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6 Automorphism groups 3811

(ii) <= VaeA\ {0} In € Z, bsuch that 0 # b C a and bn supp(r~"¢) =0
—VaeA\{0}IneZ, a\ supp(n "p) #0
< inf supp(m~"¢) =0,
as required.

381J Lemma Let 2 be a Boolean algebra, and m € Aut®2l. Suppose that ¢ belongs to the full subgroup
of Aut 2l generated by .

(a) If ¢ € 2 is such that mc = ¢, then ¢c = c.

(b) If a € A supports 7 then it supports ¢.
proof (a) Let G be the set of all ¢ € Aut2 such that )¢ = ¢. Then G is a subgroup of Aut 2l containing
m. Also G is full. P If {a;);cs is a partition of unity in 2, (¢;)ics is a family in G, and ¢ € Aut2 is such
that ¥d = 1;d whenever d C a;, then

e =sup;c;Y(cna;) = sup;e; Yi(ena;) = sup;c; YicNY;a; = sup;er cNia; = c.
So ¥ € G; as v is arbitrary, G is full. Q So ¢ € G and ¢c = ¢, as claimed.
(b) If cna = 0 then mc = ¢ so ¢c = c.

381K Lemma Let 2l be a Dedekind o-complete Boolean algebra and 7 : 2l — 2 a sequentially order-
continuous Boolean homomorphism.

(a) If a € A and a* = infyey sup;~, 7'a, then ma* = a*.

(b) If @ € A is such that a C sup;~, 7’a, then sup;~;, 7'a = sup;cy 7'a for every k € N.

proof (a) Because 7 is sequentially order-continuous,
na* = inf supn'tla
keN ;>
(313Lc)
= inf sup 7'a = inf sup ‘e = inf sup'a = a*.
kENizk-‘rl k>1 i>k keN i>k

(b) Induce on k. For k = 0 the result is just the hypothesis. For the inductive step to k + 1, because 7
is sequentially order-continuous, so is 7% (313Ic), so

sup 7la = supnFnia = n*(supnia)
i>k+1 i>1 i>1

= ¥ (supna) = sup7la = sup'a,
ieN i>k ieN

and the induction continues.

381L Lemma Let 2 be a Dedekind o-complete Boolean algebra and 7 € Aut®2. Then for any a € 2,

the following are equiveridical:

(i) 7 is recurrent on a;

(ii) @ C sup,,~; ™ "q;

(iii) there is some k > 1 such that a C sup,~, 7~ "a;

(iv) a C sup,,>, 7 "a for every k € N. -
proof (i)=-(ii) If (i) is true, set b = a\ sup,~; 7 "a. Then ana™b = 0 for every n > 1, so b = 0, that is,
a C sup,,>q T "a. -

(ii)=(i) If (ii) is true and 0 # b C a, then there is some n > 1 such that bnw~"a # 0, that is,
m™bna # 0; as b is arbitrary, 7 is recurrent on a.

(iv)=-(ii)« (iii) are trivial.
(ii)=(iv) Apply 381Kb to 7~ 1.
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381N Automorphisms of Boolean algebras 7

381M It is with the idea of ‘recurrence’ that we start to get genuine surprises. The first fundamental
construction is that of ‘induced automorphism’ in the following sense.

Proposition Let 2l be a Dedekind o-complete Boolean algebra and a € 2. Suppose that 7 € Aut is
doubly recurrent on a. Then we have a Boolean automor_phism me ¢ Uy — A, defined by saying that
mod = 7"d whenever n > 1 and d Canm "a\ sup;<;,, 7 ‘a; I will call 7, the induced automorphism
on 2A,.

proof For n > 1 set
dp =anm "a\ supj<;p .

If 1 <m < n then

so d,, nd, = 0. Also
dm Ca, 7 Mdyna=7a""(d,n7"(""™a) =0
S0
mdy, Ny, = 7™ (7" ™d, N dy) = 0.

Finally, sup,,>; d, = an sup,~; 7 "a = a, because 7 is recurrent on a (using (a)).
It follows that (d,)n>1 is a partition of unity in 2,. Since (7"d,),>1 also is a disjoint family in ,, and

sup7"d, = sup(r"ana\ sup 7" ‘a)
n>1 n>1 1<i<n

=ansup(r"a\ sup w'a) =ansup7n’a=a,
n>1 1<i<n n>1

(because 71 is recurrent on a), (7"d,),>1 is another partition of unity. So we have an automorphism

7o g — A, defined by setting 7,d = 7"d if d C d,, (381C).

381N Lemma Let 2 be a Dedekind o-complete Boolean algebra and a € 2. Suppose that 7 € Aut 2 is
doubly recurrent on a. Let m, € Aut2l, be the induced automorphism.

(a) 71 is doubly recurrent on a, and the induced automorphism (7=1), is (7,) !

(b) For every n € N there is a partition of unity (b;);>, in 2, such that 776 = 7'b whenever i > n and
b Cb;.

(c)Ifn>1and 0#bC anm "a, there are a non-zero b’ C b and a j such that 1 < j <n and 7"d = 7id
for every d C b'.

(d) Suppose that m > 1 is such that anz’a = 0 for 1 < i < m. Then for any n > 1 we have a disjoint
family (bni)1<i<|n/m|, With supremum a n7~"a, such that 7"d = 7t d whenever 1 < i < |>] and d C by;.

(e) Suppose that b C a. Then 7 is doubly recurrent on b iff 7, is doubly recurrent on b, and in this case
7y = (74 )b, Wwhere (74)p is the automorphism of 2, induced by .

(f) Suppose that ¢ € 2 is such that m¢ = ¢. Then 7 is doubly recurrent on anc, and mTane = 7o [Aane; in
particular, m,(anc) =anec.

(g) If 7 is aperiodic, so is 7,.

(h) Suppose that a nma = 0, and that b C a is such that bnw,b = 0. Then b, 7b and 72b are all disjoint.

(i) There is an automorphism 7, € Aut® defined by setting 7,d = 7,d for d C a, 7,d = d for d C 1\ a,
and 7, belongs to the countably full subgroup of Aut2l generated by .

proof Set d, =an7m "a\ sup;<;, n~%a for n > 1, so that (dy),>1 and (7"d,),>1 are partitions of unity
in A,, and 7w,b = 7"b for b C d,,.

(a) By the symmetry in the definition of ‘doubly recurrent’, 7= is doubly recurrent on a iff 7 is. In this
case,

mdy, =71"ana\ SUPi<; ., T 'a=anm"ana\ supy<;c, T'Q

s0 (1) b =77 "b = (m,) "t for every b C 7"d,,; as (m,dy ) nen is a partition of unity in A, (771), = (7)1

D.H.FREMLIN



8 Automorphism groups 381N

(b) Induce on n. For n = 0 we can take by = a and b; = 0 for ¢ > 0. For the inductive step to n + 1, let
(b;)i>n be a partition of unity in 2, such that 776 = 7'b for b C b;. Then (7 b;)i>, and (dx, N 75 10 k>1.i>n
are partitions of unity in 2,. If b C d N7 tb;, then m,b = 7%b C b;, so 77+1h = wk*+ih. This means that
if we set b = Supgsy ispprizj de 07, b for j > n+1, (b)) >n41 will be a partition of unity in 2, and
7r2+1b = 7/b whenever b C b;. So the induction continues.

(c) Induce on n. If bnm~%a =0 for 1 < i < n then we can take b’ = b and j = 1. Otherwise, take the
first 4 > 1 such that b; = bn7w*a # 0. Then m,d = 7'd for every d C b;. Also 7" iwib; C a, so, by the
inductive hypothesis, there are a non-zero ¢ C 7'b; and a j such that 1 < j < n —i and 7"~ 'd = wid for
every d C c¢. Setting b’ = m~%c C by, we have 0 # V' C b and

ad = 7" "irid = wim,d = 7itld
whenever d C b'. So the induction continues.
(d) Again induce on n. If 1 < n < m then an7~"a = 0 and the result is trivial. If n = m, then

annm "a =d, and m,d = 7"d for every d C d,, so we can set b,; = d,,. For the inductive step to n > m,
we have

ant "a=d,u sup (dgnm "a)=d,uU sup (dynm Flanm ""Fqa))

m<k<n m<k<n
—k
=d, U sup (dk N T bp—k ;)
m<k<n—m

1< <[ (n—k)/m]

by the inductive hypothesis, while (dj, N W_kbnfk,j>m§k§nfm,1§j§L(nfk)/mj is disjoint. Now if m < k < n—m
and 1 <7 < L%j and d C dy, mwikbn_kd, we have m,d = 7Fd C bp—r,j, S0 T"d = 7" Fr,d = witld; while
if d C d,, then 7"d = m,d. So we can set
bnl = d’ru bnz = SUngkgn_m dk n bn—k),i—l
for 2 <i <[], and the induction will continue.
(e) Applying (b) and (d) to m and 7~ !, and using 381L and (a), we see that 7 is doubly recurrent on b

iff m, is doubly recurrent on b.
In this case, set D = {d : d € Ay, mpd = (7,)pd}. Then D is order-dense in 2,. P Take any non-zero

c € Ap. Since b C sup,,~; 7 "b, there is an n > 1 such that ¢’ = cn77"b\ sup;<;, 7% is non-zero.
Next, there is a non-zero d C ¢’ such that for every m < n either d C #7™a or dnw~™a = 0. Enumerate
{m :m < n,dC 7 ™a} in ascending order as (mo,... ,m) (note that as ¢’ C ann "a, we must have

mo = 0 and my =n). Set d; = 7™id for i <k, so that
do=d, mm+7Mid; =d;iq Ca,
while
mid; =™ tdC1\a
for 1 < j < myy1 —my; that is, d;41 = med; for i < k. Thus
7r§d =7"kd = 71"d C b,
while
mid=d; = 7™d C m™ic C1\b
for every i < k, and
(ma)pd = 7¥d = 7d = mpd,

so that d € D. As c is arbitrary, D is order-dense. Q
Because m, and (7,), are both order-continuous Boolean homomorphisms on 2, and every member of
2, is a supremum of some subset of D (313K), m, = (7,)s, as required.

(f) We have

—n

ancC sup,~, T "anc=sup,s; 7 "anm "c=sup,>; 7 "(anc),
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-1

so 7 is recurrent on a N ¢; similarly, 77" is recurrent on anc. If n > 1 and

dcanenm ™(anc)\ sup;<;c, 7 ‘(anc) =cnanm "a\ sup;<;.,, 7 ‘a,
then m4n.d = 7"d = w,d. So 7, extends Ty, as claimed.

(g) f0 #bCa, and n > 1, then (b) tells us that there are a non-zero ¢ C b and an i > n such that
mitd = m'd for every d C c. Now we are supposing that supp7* = 1, so there is a d C ¢ such that n'd # d,
that is, 7l'd # d. As b is arbitrary, supp n)y = a; as n is arbitrary, 7, is aperiodic.

(h) Of course 7b C ma is disjoint from b C a; it follows that 7bn7?b = w(bn7b) = 0. If ¢ = b 2b,

then ¢ C ann™2a\ 7 'a, so

m2bnb = 72c = mae C Wb
is disjoint from b and must be 0. So b, b and 72b are all disjoint.

(i) By 381C, the formula defines an automorphism 7,. Setting dy = 1\ a, (d,)nen is a partition of unity
in 2 and 7,d = 7"d for d C d,, so 7, belongs to the countably full subgroup of Aut2l generated by 7.

3810 Lemma Let 2 be a Boolean algebra and 7 : A — 2 a Boolean homomorphism. Then the following
are equiveridical:

(i) 7 is recurrent on every a € 2;

(ii) for every non-zero a € 2 there is a k > 1 such that a n7¥a # 0;

(iii) @ = supy~; an7Fa for every a € 2A.

proof (i)=-(ii) If (i) is true, and a € A\ {0}, then taking b = a in the definition 381Bg we see that there is
a k > 1 such that an7”a # 0.

(ii)=-(iii) Suppose (ii) is true. ? If a € A is not the supremum of {a n7*a : k > 1}, let b C a be non-zero
and disjoint from 7%a for every k > 1. Then bnm*b = 0 for every k > 1, which is impossible. X

(iii)=(i) Suppose (iii) is true. If 0 # b C a then b = sup~, bn7*b, so there is certainly some k > 1 such
that bn7*b # 0, in which case a n7*b # 0. As b is arbitrary, 7 is recurrent on a; as a is arbitrary, (i) is
true.

Remark The condition ‘recurrent on every a € 2’ looks, and is, very restrictive; but it is satisfied by the
homomorphisms we care about most (386A).

381P Proposition Let 2 be a Boolean algebra and 7 : 2l — 2 a Boolean homomorphism which is
recurrent on every a € 2. Then 7 is aperiodic iff 2 is relatively atomless (definition: 331A) over the
fixed-point algebra € = {c¢: ¢ € A, wc = c¢}. In particular, if 7 is ergodic, it is aperiodic iff 2 is atomless.

proof It is elementary to check that € is a subalgebra of 2.

(a) Suppose that 7 is not aperiodic. Then there is a least n > 1 such that 1 is not the support of 7";
that is, there is a non-zero a € 2 such that 7"d = d for every d C a. Now if 0 # b C a and 1 < i < n there
is a non-zero b’ C b such that ¥’ N7’ = 0. I We are supposing that the support of 7% is 1, so there is a
d C b such that d # 7'd. If d\ w'd # 0, take V' = d\ 7’d. Otherwise, try b’ = d\ 7" d; then

7 = wid\ md = n'd\ d # 0,
so b’ # 0, while &/ n7'd’ c d\7"d =0. Q

We can therefore find a non-zero b C a such fchat bn7ib = 0 whenever 1 < i < n. Now b is a re_lative
atom of A over €. B If d C b, set ¢ = supy<;,, 7'd. Then 7¢ = sup,<;,, 7'd = ¢, so ¢ € €, while bnn'd = 0
for 1 <i<n,sod=0bnc Q Thus b witnesses that 2 is not relatively atomless over €.

(b)(i) Note that if a € A and a C 7a then a = ma. P? Otherwise, set b = 7a \ a. Then 7"b = " la\ 7"a
for every n; also a C ma C 2a C ..., so (7"b) ey is disjoint. But in this case 7 cannot be recurrent on b.

XxQ
(ii) Suppose that 2 is not relatively atomless over €. Then there is a relative atom a € 2; as 7 is
recurrent on a, there is a first n > 1 such that a n7™a # 0. Then 7™b = b for every b C an7"a. I* Because a
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10 Automorphism groups 381P

is a relative atom over €, there is a ¢ € € such that b = anc. Now 7"b = n"anc2b. Set by = supy<;,, mib;
then wby = sup;<;<, mb2b1. So by = wby, by (i), and 7"b C sup,_,, 7'b. Next,

atbnrib = 7t (7" b nb) C ©H(r" tana) =0
for 0 <i<m,son™ Cband 7"b=">b. Q Thus ann"a witnesses that 7 is not aperiodic.

(c) Finally, if 7 is ergodic, then € = {0, 1} (372Pa), so that ‘relatively atomless over €’ becomes ‘atomless’.

381Q As far as possible I will express the ideas of this chapter in ‘pure’ Boolean algebra terms, without
shifting to measure spaces or Stone spaces. However there is a crucial argument in §382 for which the Stone
representation is an invaluable aid, and anyone studying the subject has to be able to use it.

Proposition Let 2 be a Boolean algebra and Z its Stone space. For a € 2l let @ be the corresponding
open-and-closed subset of Z; recall that @ can be identified with the Stone space of 2, (312T) For a Boolean
homomorphism 7 : A — 2 let f, : Z — Z be the continuous function such that 7a = f_'[a] for every a € A

(312Q).

( YIfa, b € A and ¢ : A, — A, is a Boolean homomorphism reprebented by a continuous function

g: b— a, then m € Aut 2 agrees with ¢ on 2, iff f. agrees with g on b.
(b) If 7 : 2 — A is a Boolean homomorphism, then a € 2 supports 7 iff @ 2O {z : fz(2) # z}. So a is the

support of 7 iff a = {z : fr(2) # z}.
(c) Suppose that 2 is Dedekind complete and 7, ¢ € Aut 2. Let G be the full subgroup of Aut 2 generated
by 7. Then

peG = U int{x : f4(2) = f7(2)} is dense in Z
nez
= {z: fo(2) € {fi(2) :n € Z}} is comeager in Z.

(d) A Boolean homomorphism 7 : 2l — 2 is recurrent on a € A iff @ C (J,,~, f*[al.

(e) Suppose that 2 is Dedekind o-complete, 7 € Aut 2l is recurrent on a € 2, and that 7, € Aut2, is
the induced automorphism (381M). Let f,_ be the corresponding autohomeomorphism of @. For k > 1, set
Gy ={z:z€a, ff(z) €a, fi(z) ¢ afor 1 <i <k} Then J,o,Gx =anNU,>, f*[a] is a dense open
subset of @ and f,, (z) = f¥(z) whenever k > 1 and z € Gy. - -

proof Recall that fr4 = fyfr for all Boolean homomorphisms 7, ¢ : 20 — 2 (312R).

(a) The point is that {J d C a} is a base for the Hausdorff topology of of a. So if g # fr [3, there are a
z € b such that f(z) # g(z) and a d C a such that g(z) € d and fr(z) ¢ d. In this case,

2 e g A\ £ = gd\ 7,
and ¢ # w[2,. On the other hand, if g = f,r[b, then
wd = f;'[d] = g7 [d] = &d
for every d C a, and ¢ = w[U,.
(b)
a € A supports 1 <= w agrees with the identity on 1\ a
<~ fr(z2) =z for everyzEw( \a)=Z\a
= a2{z: fz(2) # 2}
= a2 {z: fx(2) # 2}
So the smallest such a, if there is one, must have @ = {z : fr(2) # 2}.
(c) If ¢ € G, let {an)nez be a partitio/n\of unity in 2 such that ¢b = 7"b whenever n € Z and b C a,,
(381I). Then g(z) = f7(z) whenever z € ¢a, ((a) above). As sup,,c; da, =1 in 2,
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Unez int{z : f4(2) = f7(2)} 2 Upez dan
is dense (313Ca).
If U,ezint{z : f4(2) = fi(2)} is dense, it is a dense open subset of {z : f4(2) € {f7(2) : n € Z}, so the
latter is comeager.
If {z: fo(2) € {fP(2) : n € Z}} is comeager, set F,, = {z : f3(2) = f7(2)} for each n. Then F, \ int F},

is nowhere dense for each n, and Z \ U,,c5, F5 is meager, so |J,, o, int F}, is comeager, therefore dense (by

Baire’s theorem, 3A3G). If a € 2 is non-zero, there are an n € Z such that @m intF,, 20 and a b € A
such that ) # b C ¢an F,,, in which case 0 # ¢~ 'b C a and ¢c = 7"c for every ¢ C b. By 3811(c-ii), ¢ € G.
So the cycle is complete.

(d)
7 is recurrent on a <= whenever 0 # b C a thereis a k > 1

such that a n @%b # 0

<= whenever 0 # b C a thereisa k > 1
such that @ N (%)~ [6] # 0

<= whenever 0 £ b C a thereisa k > 1
such that f5[a] Nb # 0

< an U fk[a] is dense in @

k>1

= ac | fral
k>1

(e) Set dr, =anm%a\ SUP; <<k 7%, so that 7¥dy, = an7Fa\ SUP1 <<k m'a. Since 7% and 7, agree on
g, , (a) tells us that f* and f,., agree on

—

whdy = Tudy = £ [di] = Gy

Because supys; 7°dy, = a, |J,~, G is dense in @.

381R Cyclic automorphisms I end the section by describing a notation which is often useful.
Definition Let 2 be a Boolean algebra.

(a) Suppose that a, b are disjoint members of 2 and that 7 € Aut2l is such that ma = b. I will write
(arb) for the member 1) of Aut® defined by setting

Yd =ndif d C a,
=rldifdco,
=difdc 1\ (aud).

Observe that in this case (if a # 0) ¢ is an involution, that is, has order 2 in the group Aut2; I will call
such a ¥ an exchanging involution, and say that it exchanges a with b.

(b) More generally, if aq, ... ,a, are disjoint elements of 2 and 7; € Aut 2l are such that m;a; = a;41 for
each i < n, then I will write

(al 71 A2y v w1 an)

for that ) € Aut 2 such that

Yvd=mdif 1 <i<mn,dCcCay,

1 1

-1 = -1 g
=7 Ty ...m,_1difdC ay,,

=difdc 1\ supa,.

i<n
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12 Automorphism groups 381R

(c) It will occasionally be convenient to use the same notation when each ; is a Boolean isomorphism
between the principal ideals 2l,, and 2l,,_,, rather than an automorphism of the whole algebra 2.

Remark The point of this notation is that we can expect to use the standard techniques for manipulating
cycles that are (I suppose) familiar to you from elementary group theory; the principal change is that we
have to keep track of the subscripted automorphisms .. The following results are typical.

381S Lemn(iLet 2 be a Boolean algebra.
(a) If ¢ = (ar b) is an exchanging involution in Aut®2l, then

¥ =(ay0) = (bpa) = (b1 a)

has support a &
(b) If 7 = (a » b) is an exchanging involution in Aut®l, then for any ¢ € Aut 2,

%
¢! = (Pa grg-1 OD)
is another exchanging involution.
(c) f m=(arb) and ¢ = (c4d) are exchanging involutions, and a, b, ¢, d are all disjoint, then 7 and ¢
commute, and ¢ = 1¢ = ¢ is another exchanging involution, being (a ucy bud).

(d) If G is a countably full subgroup of Aut®2l, ay, ... ,a, € 2A are disjoint, and m,... ,7,—1 € G, then

(a1 m A2 7y - oy (Ln) €d.

proof (a) Check the action of ¢ on the principal ideals 2, Ap, A1\ (qup)-
(b) pan¢b = ¢d(anb) =0 and
¢rop~ pa = pma = Pb,
so Y = (m) is well-defined. Now check the action of 1 on the principal ideals 2gq, Agb, 21\ p(aub)-
(c) Check the action of ¢ on each of the principal ideals 2, ... ,2., where e =1\ (aubucud).
(d) Immediate from the definitions in 381Rb and 381Be.

381T Remark I must emphasize that while, after a little practice, calculations of this kind become
easy and safe, they are absolutely dependent on all the cycles present involving only members of one list of
disjoint elements of 2. If, for instance, a, b, ¢ are disjoint, then

(@:0)(bgc) = (arbyo).

But if anec # 0 then there is no expression for the product in this language. Secondly, of course, we must
be scrupulous in checking, at every use of the notation (m), that ai,...,a, are disjoint and that
mia; = a;41 for i < m. Thirdly, a significant problem can arise if the automorphisms involved don’t match.
Consider for instance the product
b= (2 b)(ayb).
Then we have ¥d = 7~ '¢d if d C a, 7¢~'d if d C b; 1 is not necessarily expressible as a product of ‘disjoint’
cycles. Clearly there are indefinitely complex variations possible on this theme. A possible formal expression
of a sufficient condition to avoid these difficulties is the following. Restrict yourself to calculations involving a
fixed list a1, ... ,an of disjoint elements of A for which you can describe a family of isomorphisms ¢;; : A,, —
2y, such that ¢;; is always the identity on 4., ¢jrPi; = Pik for all ¢, j, k, and whenever a; » a; appears in
a cycle of the calculation, then 7 agrees with ¢;; on %,,. Of course this would be intolerably unwieldy if it
were really necessary to exhibit all the ¢;; every time. I believe however that it is usually easy enough to
form a mental picture of the actions of the isomorphisms involved sufficiently clear to offer confidence that
such ¢;; are indeed present; and in cases of doubt, then after performing the formal operations it is always
straightforward to check that the calculations are valid, by looking at the actions of the automorphisms on
each relevant principal ideal.
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381X Basic exercises (a) Let X be a set and X an algebra of subsets of X containing all singleton sets.
Show that Aut ¥ can be identified with the group of permutations f : X — X such that f[E] and f~![E]
belong to ¥ for every E € X.

(b) Let 20 and B be Boolean algebras, and (a;);cr, (b;):cr partitions of unity in 2, B respectively. Assume
either that I is finite or that I is countable and B is Dedekind o-complete or that 95 is Dedekind complete.
Suppose that for each i € I we have a Boolean homomorphism 7; : 2,, — Bp,. (i) Show that there is a
Boolean homomorphism 7 : A — 9B extending every ;. (ii) Show that 7 is injective iff every m; is. (iii)
Show that if either I is finite or I is countable and 2 is Dedekind o-complete or 2 is Dedekind complete,
then = is surjective iff every m; is. (iv) Show that 7 is order-continuous, or sequentially order-continuous, iff
every m; is.

(c) Let 2 be a Boolean algebra. Show that if 7 € Aut2l and k € Z \ {0}, then 7 is aperiodic iff 7 is.
(d) In 381H, show that the family (c;)1<i<. is uniquely determined.

>(e) Let (X,X, 1) be a countably separated measure space (definition: 343D), 2 its measure algebra,
f X — X an inverse-measure-preserving function and 7 : 2 — 2 the induced homomorphism (343A). (i)
Show that the support of 7 is {z : v € X, f(z) # «}°. (ii) Show that 7 is periodic, with period n > 1, iff
puX >0, f*(z) = z for almost every z and {z : fi(z) = z} is negligible for 1 <1i < n.

(f) Let (X, X, 1) be a localizable measure space, with measure algebra (2, ). Suppose that 7 and ¢ are
automorphisms of 2, and that « is represented by a measure space automorphism f : X — X. Show that
the following are equiveridical: (i) ¢ belongs to the full subgroup of Aut 2 generated by 7; (ii) there is a
function ¢ : X — X, representing ¢, such that g(x) € {f"(x) : n € Z} for every x € X. (Hint: for (ii)=(i),
consider measurable envelopes of sets F' N g[A,], where A,, = {z : g(z) = f*(x)} and pF < c0.)

(g) Let A be a Boolean algebra, not {0}, and 7 : 2l — 2 an automorphism with fixed-point subalgebra €.
Show that 7 is periodic, with period n > 1, iff 7 2(, has order n in the group Aut 2. whenever ¢ € €\ {0}.
Show that 7 is aperiodic iff 7|2l has infinite order in the group Aut 2. whenever ¢ € €\ {0}.

(h) Let 2 be a Dedekind complete Boolean algebra, G a subgroup of Aut2l and ¢ € Aut2(. Show that
¢ belongs to the full subgroup of Aut 2 generated by G iff inf g supp(w¢) = 0.

(i) Let A be a Boolean algebra. Let us say that a subgroup G of Aut 2 is finitely full if whenever (a;);cs
is a finite partition of unity in A, (m;);cs is a family in G, and 7 € Aut2l is such that ma = m;a; whenever
i € I and a C a;, then m € G. Show that if 7, ¢ € Aut®l then ¢ belongs to the finitely full subgroup of
Aut 2 generated by 7 iff there are an n € N and a partition of unity (a;)_,<;<, in 2 such that ¢d = 7'd
whenever |i| <n and d C a;.

(j) Let 2 be a Boolean algebra and 7 : 2 — 2l a Boolean homomorphism which is recurrent on a € 2I.
Show that for any non-zero b C a and any n € N there is a k > n such that an kb #0.

(k) Let 2 be a Boolean algebra, m : 2 — 2 a Boolean homomorphism, and ¢ € 2. Show that the
following are equiveridical: (i) 7 is recurrent on every b C a; (ii) for every non-zero b C a there is an n > 1
such that bn7"b # 0; (iii) b = sup,,», bn7"b for every b C a.

>(1) Let (X, X, u) be a measure space, 2 its measure algebra, f : X — X a measure space automorphism,
and 7 the corresponding automorphism of . (i) Show that if F € ¥ then 7 is doubly recurrent on a = E*
ifft £\ U, >, f"[E] and E\ U, f"[E] are negligible. (ii) Show that in this case there is a measurable
F C E such that E\ F is negligible and {n : n € Z, f"(z) € F} is unbounded above and below in Z for
every x € F. (iii) For x € F let k(x) = min{n : n > 1, f"(z) € F}. Show that x +» f*@)(z): F - F
represents the induced automorphism 7, on the principal ideal 2.

(m) For a Boolean algebra 2, a Boolean homomorphism 7 : 2 — 2 is nowhere aperiodic if inf{a : a €
2, a supports 7" for some n > 1} = 0. Show that if 2 is Dedekind o-complete and m € Aut 2l is nowhere
aperiodic and doubly recurrent on a € 2, then the induced automorphism m, is nowhere aperiodic.
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14 Automorphism groups 381Xn

(n) Let 2 be a Dedekind o-complete Boolean algebra, 7 € Aut 2l an automorphism and € the fixed-point
subalgebra of m. Suppose that 7 is doubly recurrent on a € 2 and that =, is the induced automorphism on
2A,. Show that the fixed-point subalgebra of 7, is {cna: ¢ € €}, so that if 7 is ergodic, so is 7.

(o) Let A be a Boolean algebra with Stone space Z, and 7 : 2 — 2 a Boolean homomorphism corre-
sponding to f : Z — Z. (i) Show that 7 is periodic, with period n > 1, iff Z # (), f™(z) = z for every z € Z
and {z : f{(z) = 2} is nowhere dense whenever 1 < i < n. (i) Show that 7 is aperiodic iff {z : f(z) = 2,
f™(w) # z for every w # z} is nowhere dense for every n > 1.

(p) Let 2 be a Dedekind o-complete Boolean algebra, G a subgroup of Aut2l and G* the countably
full subgroup of Aut®l generated by G. Suppose that every member of G has a support. Show that every
member of G* has a support.

381Y Further exercises (a) (i) Give an example to show that the word ‘injective’ in the statement of
381H is essential. (ii) Give an example to show that, in 381H, we can have m¢,, # c,.

(b) Let 2 be a Dedekind complete Boolean algebra and G a semigroup of order-continuous Boolean
homomorphisms from 2 to itself. Let us say that G is full if whenever ¢ : 2l — 20 is an order-continuous
Boolean homomorphism, and there is a partition of unity (a;);er in 2 such that for every i € I there is a
m; € G such that ¢a = m;a for every a C a;, then ¢ € G. Show that if ¢ and 7 are order-continuous Boolean
homomorphisms from 2 to itself, then the following are equiveridical: (i) ¢ belongs to the full semigroup
generated by 7; (ii) for every non-zero a € 2 there are a non-zero b C a and an n € N such that ¢d = n"d
for every d C b; (iii) there is a partition of unity (a,)nen in 2 such that ¢a = 7"™a whenever n € N and
a C Gy.

(c) Give an example of a Dedekind o-complete Boolean algebra Aut 2 and an automorphism 7 of 2 such
that the countably full subgroup generated by 7 is not full.

(d) Let A be a Dedekind complete Boolean algebra, and let G be the countably full subgroup of Aut 2l
generated by a subset A of Aut2(. Show that if either A is countable or 2 is ccc, then G is full.

(e)(i) Let A be a Dedekind o-complete Boolean algebra, and a, b two elements of 2. Suppose that
7 : A, — Ay is a Boolean isomorphism such that there is no disjoint sequence (¢, )nen of non-zero elements
of Aynp such that we,, = c¢,41 for every n € N. Show that there is a Boolean automorphism of 2 extending
m. (ii) Let (2, i) be a measure algebra, and a, b € A two elements of 2 such that fi(a nb) < co. Show that
any measure-preserving isomorphism from 2{, to 2, extends to a measure-preserving automorphism of 2.
(Compare 332L.)

381 Notes and comments There are no long individual proofs in this section, and in so far as there is any
delicacy in the arguments it is as often as not because (as in 381E) I am taking facts which are easy to prove
for automorphisms of Dedekind complete algebras and separating out the parts which happen to be true in
greater generality. However the parts are numerous enough for the sum to be not entirely predictable. The
most important ideas are surely in 381M-381N.

In 381Q I give indications, including the minimum necessary for an application in the next section, of
how to express the concepts here in terms of continuous functions on Stone spaces. When we come, in §383
and onwards, to look specifically at measure algebras, many of our homomorphisms will be derived from
inverse-measure-preserving functions, and the results will be more effective if we can display them in terms
of functions on measure spaces. Some appropriate translations are in 381Xe-381X1. But these I will avoid
in the proofs of the main theorems because not all automorphisms of measure algebras can be represented
by automorphisms of the measure spaces we start from (343Jc). Of course Lebesgue measure is different, in
ways explored in §344, and classical ergodic theory has not needed to make a clear distinction here. One of
my purposes in this volume is to set out a framework in which transformations of measure spaces take their
proper place as an inspiration for the theory rather than a foundation.
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Version of 15.8.06

382 Factorization of automorphisms

My aim in this chapter is to investigate the automorphism groups of measure algebras, but as usual
I prefer to begin with results which can be expressed in the language of general Boolean algebras. The
principal theorems in this section are 382M, giving a sufficient condition for every member of a full group
of automorphisms to be a product of involutions, and 382R, describing the normal subgroups of full groups.
The former depends on Dedekind o-completeness and the presence of ‘separators’ (382Aa); the latter needs
a Dedekind complete algebra and a group with ‘many involutions’ (3820). Both concepts are chosen with a
view to the next section, where the results will be applied to groups of measure-preserving automorphisms.

382A Definitions Let 2 be a Boolean algebra and m € Aut 2l.

(a) I say that a € 2 is a separator for 7 if anma = 0 and 7b = b whenever b € 2 and bnz"a = 0 for
every n € Z.

(b) I say that a € 2 is a transversal for 7 if sup,c,7"a = 1 and 7"b = b whenever n € Z and
bCann"a.

382B Lemma Let 2 be a Boolean algebra and m € Aut2l. If every power of m has a separator and 7"
is the identity, where n > 1, then 7 has a transversal.

proof (a) For 0 < j < n let a; € A be a separator for 77, Let B be the subalgebra of 2 generated by
A ={r'a; : 0 <14, j <n}. Because m[A] = A, 7[B] = B. (Theset {a:a € B, macB, nlac B}isa
subalgebra of 2 including A, so must be 9B.) Because A is finite, so is B; let B be the set of atoms of B.
Then 7| B is a permutation of the finite set B.

(b) Let C be the set of orbits of 7| B, that is, the family of sets of the form {7*b : k € Z} for b € B.
Ifbe C e, set m=#(C); then d = #™d for every d Cb. P If m = n this is trivial. Otherwise, b is
either disjoint from, or included in, 7‘a,, whenever 0 < i < n, and therefore for every i € Z. But we have
A N TGy, = 0, 50 Tam, N7t "a,, = 0 for every 4, and b = 7™b must be disjoint from 7'a,,, for every 1.
By the other clause in the definition of ‘separator’, 7d = d for every d C b. Q

(c) For each C € C, choose bc € C. Set ¢ = suppee bo. Then c is a transversal for 7. B If C € C, we
have m"be = b, so ko = #(C) is a factor of n. Now

SUPg< <y T'C = SUPGec 0<pan T be = sSuppee sup C = sup(|JC) = sup B = 1.

So certainly supgyez ¢ = 1. Now suppose that k € Z\ {0} and d Ccnnfc. Set By = {b : b € B,
dnb # 0}. If b € By, then bne # 0, so b = be where C € C is the orbit of 7| B containing b. Next,
dnbnmfe#0,s0 m%(dnb) nc# 0 and there is a b’ € B such that 7=%(d nb) N’ # 0; in this case we must
have b’ = 77%b € C. But as ' nc2 7 %(dnb) ncis non-zero, b’ = b = b. Thus b = 7Fb and k is a multiple
of #(C). Since 7#(©)(dnb) = dnb, by (b), 78(dnb) = dnb.

This is true for every b € B meeting d; so

md = ¥ (supyc p, dNb) = supyep, T (dNb) = supyep, dNb = d.

As k and d are arbitrary, c is a transversal for 7. Q

382C Corollary If 2 is a Boolean algebra and 7 € %[ is an involution, then 7 is an exchanging involution
iff it has a separator iff it has a transversal.

proof If m exchanges a and mwa then of course a is a separator for 7. If m has a separator, then every
power of 7w has a separator, so 382B tells us that m has a transversal. If a is a transversal for m then
aUma = sup,cz 7"a = 1 and wb = b whenever b C a nma, so 7™ exchanges a \ ma and 7a \ a.

382D Lemma Let 2 be a Dedekind o-complete Boolean algebra and m € Aut 2. Then the following are
equiveridical:

(i) m has a separator;
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(ii) there is an a € A such that anma = 0 and a U ma U m2a supports 7;
(ili) there is a sequence (an)nen in 2 such that sup,, cy 7an \ @, supports 7;
(iv) there is a partition of unity (a’,a”,¥’,b", ¢, e) in 2 such that

ma' =b, wd' =b', 7w’ =¢, 7w uc)=dud', =wd=dforeverydcCe.

proof (i)=(ii) Suppose that a is a separator for m. Set a™ = sup, >, 7"a, a~ = sup,s; 7 "a; we are
supposing that a n7a = 0 and that aua* Ua™ supports 7. For n € N set a,, = 7"a \ SUPg<i<n mta, so that
{(an)nen is disjoint and has supremum aua™t. Set by = sup,,cy a2, \ 7 'a. Sinceant ta =7"*(anma) =0,

aCb Cauat. For any n € N,
“1.\ _ . 2n+l iy
m(agn \ 7 ta) = 7" a\ (aU sup < ico, T'a) = azny1,

so by nmh, = 0. Note that 7b; C at, while at \ 7 'a C by U ;.
Set ¢ = a\a’. Then

rienmic=nl(cnriie) Cc mi(a\ 7 Iat) C wi(a\ 7w la) = 0

whenever i < j in Z, so (7F¢) ez is disjoint. We have

supm "¢ =sup(r "a\ sup w'a) =sup(r "a\ sup 7 ‘a)\(aua™)
n>1 n>1 i>—n n>1 0<i<n

=sup7m "a\(auat)=a"\(aua™).
n>1

If k> 1 and i > 0 then
mkenria = 1 *(ennmitha) c 7 *(cnat) = 0;
as 7 is arbitrary, 7 Fcnb, = 0. So if we set b= b, U SUDg>1 m %k,

bamb = (bynaby) U (supby nml=2k¢) U (sup = enmby) U (sup 7P ennl=2ke)

k>1 k>1 Jk>1

couounm(supr 2 tenb)u0=0.
k>1

Since

bumbur lbobumh U tau supT e
n>1

Dauatu(a™\(ava®))=auatUua”

supports 7, 7~ 1b witnesses that (ii) is true.

(ii)=(iii) If a € A is such that anma = 0 and aUma U m2a supports 7, then 7" la = 7"+ la\ 7"a for
every n, so we can set a, = 1" 'a for each n to obtain a sequence witnessing (iii).

(iii)= (@) If (an)nen is such that sup,cyman \ a, supports m, set b, = supyey 7 (7a, \ay), ¢, =
bn \ SUpg<;<p, b; for each n € N. Then 7b, = b, and 7c, = ¢, for every n € N, while (c,)nen is dis-
joint. Set a = sup,,cy ¢ Nan \ 7 ta,. Then

anma= sup (¢mNanm \wilam) N (men nmap \ ay)
m,neN

= Ssup (Cm Nam \7T71G77L) n (Cn NTan \ an)
m,neN

=sup ¢, N (ap \ 7 ta,) N (Ta, \ a,) = 0.
neN

Next,

MEASURE THEORY



382G Factorization of automorphisms 17

sup wha = sup c¢p N Wk&n \ Wk_lan
keZ neN,keZ
= sup exonmtla,\7Fa, =supe, nby
neN,keZ neN

= supc, = supb, D supmwa, \ an
neN neN neN

supports 7. So a is a separator for .

(ii)=(iv) Let a be such that anwa = 0 and aumaun?a supports 7. Set ¢ = w2a\ (auma), b’ =
7 tceCma, vV = ma\V', a’ = 77" Ca, d = a\ad’ and e = 1\ (aumaur?a). Then (a,7a,c,e) and
(a/,a", b, b", c,e) are partitions of unity in ; wa” =b"; 7a’ = wa\b" =b'; 7" = ¢; 7d = d for every d C ¢;
S0

m(duc)=m(1\(aud’ue)) =1\ (raunb’ume) =1\ (raucue) =a=d ua”.

(iv)=(ii) If a’,a”, V', b", c,e witness (iv), then a = a’ Ua” witnesses (ii).

382E Corollary (a) If 2 is a Dedekind o-complete Boolean algebra and m € Aut 2 has a separator, then
7 has a support.
(b) If 2 is a Dedekind complete Boolean algebra then every m € Aut 2l has a separator.

proof (a) Taking a € 2 such that anma =0 and e = auma U2

be the support of = (381Ei, 381Ea).

a supports m, we see that e must actually

(b) If 2 is Dedekind complete and m € Aut2l, let P be the set {d : d € A, dnnd = 0}. Then P has a
maximal element. I Of course P # (3, as 0 € P. If Q C P is non-empty and upwards-directed, set a = sup Q,
which is defined because 2 is Dedekind complete; then wa = sup 7[Q] (since 7, being an automorphism, is
surely order-continuous). If d1, ds € Q, there is a d € @ such that dy uds C d, so dynwdy C dnwd =0. By
313Bc, anma = 0. This means that ¢ € P and is an upper bound for @) in P. As @ is arbitrary, Zorn’s
Lemma tells us that P has a maximal element. Q

Let b € P be maximal. Then bnwb = 0. Set e = bumaun—'b. 2 If e does not support 7, let d C 1\ e
be such that dn7d = 0 (381Ei). Then dnwb C dne = 0, while also bnmd C (7~ bnd) C 7(end) = 0; so
(bud)nm(bud) =0, and bcbud € P, which is impossible. X So if we set a = 77 1b we have a witness of
382D(ii), and 7 has a separator.

Remark 382Eb and 382D(i)<(ii) together amount to ‘Frolik’s theorem’ (FROLIK 68).

382F Corollary Let 2 be a Dedekind complete Boolean algebra.

(a) Every involution in Aut®l is an exchanging involution.

(b) If 7 € Aut®l is periodic with period n > 2, there is an a € 2 such that (a,7a,72a,..., 7" ta)
is a partition of unity in 2f; that is (in the language of 381R) 7 is of the form (M) where
(a1,...,a,) is a partition of unity in 2.

proof (a) By 382EDb, every involution has a separator; now use 382C.

(b) Again because every automorphism has a separator, 382B tells us that 7 has a transversal a. In this

case, a N mfa must be disjoint from the support of 7* for every k € Z; since supp7® = 1 for 0 < k < n,
anm*a = 0 for 0 < k < n; of course it follows that 7lanmia = i (anmi~la) = 0if 0 < i < j < n. So
a,ma, ..., " ta are disjoint; since SUPg<;<p T'@ = SUp;cz T'a = 1, they constitute a partition of unity.

382G Lemma Let 2 be a Dedekind o-complete Boolean algebra and m € Aut 2.
(a) Suppose that (a,)nen is a family in A such that wa, = a, and 7[2,, has a transversal for every n.
Set a = sup,,cy an; then ma = a and w2, has a transversal.

(b) If a is a transversal for 7 it is a transversal for 71,
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(c) Suppose that a € 2. Set
a* =sup,cz(m"a\ Sup;s, m'a), a. = sup,cz(7"a\ sup,., 7'a).
Then wa* = a*, wa, = a. and 7| A+, 7[A,, both have transversals.

proof (a) Of course ma = sup,,cy Ta, = a, so we can speak of 7[2,. For each n € N, let b,, be a transversal
for [ A, . Set b = sup,en(bn \ SUP;<, a;). Then b is a transversal for m[2A,. I Of course b € A,. Now

sup b = sup sup(7¥b,, \ sup 7*a;) = sup sup(7*b,, \ supa;)

kEZ keZ neN i<n neEN KEZ i<n
= sup((sup 7Fb,) \ sup ai) = sup(a, \ supa;) = sup a,, = a.
neN  keZ i<n neN <n neN

Next, suppose that k € Z and

dcbnmfb= sup (b \ supa;)n (7%b, \ Supwkaj)
m,neN i<m j<n

= sup (b Nam \ sup a;)n (7"b, Na, \ sup a;) = sup(b, N by, \ sup a;).
m,neN <m j<n neN <n

Setting d,, = dnb, N 7*b, for each n, we have
d = sup, ey dy, = SUp,, ey T d,, = Thd.
As k and d are arbitrary, b is a transversal for 7[%,. Q

(b) We have only to note that the definition in 382Ab is symmetric between 7 and 7~ 1.
(c)

na* = sup(7"a\ sup'tla)
nez i>n

=sup(n"Tta\ sup 7'a) =sup(7"a\ sup7'a) = a*.
nez i>n+1 nez i>n

Set b, = 7"a\ sup;., 7'a for each n, b = sup,,c; 7 "b, C a. Writing b* for sup,,c; 7"b, we have b* >
sup,,cz b, = a*. Note that 7= "b,, n7'a = 0 for every i > 1. So if m < n in Z,

TmhN 7" C T (sup;ep ™ by N Ma) = 0.

Thus (7°b);cz is disjoint, and b is a transversal for 7| Aq-.
Now

@ = SUP, 5 (T"a\ SUp,,, ') = Sup, e (m"a\ sup;s, Ta).

So 7 ta, = a, and 771 A,, has a transversal. It follows at once that ma, = a, and (using (b)) that 7|,
has a transversal.

1

382H Lemma Let 2 be a Dedekind o-complete Boolean algebra and m € Aut2(. If 7w has a transversal,
it is expressible as the product of at most two exchanging involutions both belonging to the countably full
subgroup of 2 generated by .

proof Let a be a transversal for 7. For n > 1, set a, = ann™a\ sup;«;., mla; set ap = a\ sup;s; T'a.
Then (an)nen is disjoint and sup,,cy an = a. We have b = b whenever b C a,,, while (miag);>1 is disjoint,
so (miag)icz is disjoint. For any n > 1, a,, is disjoint from 7a, for 0 < i < n, so (7a,)i<, is disjoint. If
0<i<mand 0<j<nandi<jand Ty N T ay, is non-zero, then 1 <n—j4+1t<nand

a, NIt = 7" I g nna, = 7" (lanlay,)

> (nlam, Nl ay) # 0,

S0 i = j; in this case @, Na, #0som =n. If0<i <nand j € Z and b = 7’a,, N1 ag, then 7"b = b and
7"b is disjoint from b, so b = 0. This shows that all the 7‘a,, for 0 < i < n, and the ©w’aq for j € Z, are
disjoint. Also, because 7"a,, = a, for n > 1,
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i PO j P P
SUPg<jcn T n U SUDP;cz may = SUD,eN jez ma, U SUpjez, wag = SUpjcz ma=1.
For any n > 1,

(72 anYo<icn = (T an)o<jon = (T an)o<j<n,

<7T172j7rjan>0§j<n = <7T17jan>0§j<n = <7Tn+17jan>0§j<n

are disjoint and cover supy< ., 7 a,,; while of course
Coi L
(r=* 1 ag)jez = (77 ao)jez,

(r'=%Imlag)jez = (7' Tao)jez
are disjoint and cover sup; ¢y mlag. So we can define ¢, ¢o € Aut A by setting
¢1d = 72 ifjeZand dC ag
0rif0§j<nanddg7rjan
Pod = rl=2iq if j€Z and d C mlag
0rif0§j<nanddg7rjan.

Note that if n > 1 and k € Z is arbitrary, then we have 7*a,, = 7/a,, where 0 < j < n and j = k mod n, so
if d ¢ 7*a,, then

rd=71"2d=7"2kd, ¢od=n'"%d=r71"%kq
because 7"d = d. So if d C ma, for any n € N and j € Z, we have ¢;d = n=%d C 7~ 7a,, and
pagnd = w1212 d = 7d.

Because sup, ey jez, mla, =1, ¢o¢py = 7. Of course both ¢; and ¢y belong to the countably full subgroup
generated by w. Next, ¢1 exchanges

sup ag U sup ™ ay,
j>1 n>2
0<j<[(n—1)/2]
sup magu sup 7
j<—1 n>2

—(n—1)/2]<j<0

so is either the identity or an exchanging involution. In the same way, ¢5 exchanges

sup ™ ag U sup way,,

§>1 n>2
1<j<[n/2]
sup ™ ag U sup may,
§<0 n>2

—[n/2]<j<0

S0 it too is either the identity or an exchanging involution. Thus we have a factorization of the desired type.

3821 Lemma Let 2 be a Dedekind o-complete Boolean algebra, and G a countably full subgroup of
Aut 2l such that every member of G has a separator.

(a) Every member of G has a support.

(b) Suppose m € G and n > 1 are such that 7™ is the identity. Then 7 has a transversal.

(c) Let m € G, and set e* = inf,,>1 supp(n™). Then 7[2A; .~ has a transversal.

(d) If e € A is such that me = e for every m € G, then {72, : # € G} is a countably full subgroup of
Aut 2., and 7|2, has a separator for every 7 € G.

proof (a) 382Ea.

(b) Induce on n. If n =1 then 1 is a transversal for m. For the inductive step to n > 1, let a € A be
such that anma = 0 and 7b = b whenever bnnia = 0 for every i € Z. Let B be the (finite) subalgebra of
2 generated by {7‘a : 0 <i < n}. Then 7"a = a € B, so {b: b € B} is a subalgebra of A containing m'a
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whenever ¢ < n, and includes B; thus 7b € B for every b € B. As 7 is injective, 7[B € AutB. Let E be
the set of atoms of B; then 7| E is a permutation of E.

Let C C E be an orbit of 7. Then 7(supC) = supC, and 7[2supc has a transversal. I Take e € C,
k = #(C). Then n'e € C\ {e}, so enwie = 0, whenever 1 < i < k. As 7" is the identity, k is a factor
of n. If & = 1, then e itself is a transversal for 7[2syp,c = 7[Ae. If k > 1, define ¢ € Aut2 by setting
¢d = m*(end)u(d\e) for every d € A. Then ¢ € G, because G is countably full, and ¢™/* is the identity.
By the inductive hypothesis, ¢ has a transversal ¢ € 2. There is some m € Z such that ¢/ = en¢™c # 0.
Now

Sup; ez TFe! = sup; ey ¢le’ = sup;cz(en ¢™tic) = en sup;eq dlc = e,
SO
SUp ez €’ = supp< oy, 7l (sup;ez ') = SUPg< < T e = sup C.
Also,if0<j< kand i€ Z and
0#dcCenahtie cenntitie =ennie,
we must have j = 0 and d C e’ n¢'e’, in which case 7%"T/d = ¢'d = d. So ¢’ is a transversal for [ Asupc. Q

Let C be the set of orbits of 7[E, and for C € C let cc be a transversal for 7|2, . Then suppocc cc is
a transversal for 7 (382Ga). Thus the induction proceeds.

(c) Set eg = 1\ suppm, e, = infi<;<p supp(r?) \ supp(7"*!) for n > 1. Then (e,)nen is a partition of
unity in 2y,c+, and 7"1q = a whenever a C e,. Also we,, = e, for each n, by 381Eg. By (b), 7|2, has a
transversal for every n; so 7|25~ has a transversal (382Ga again).

(d) (i) Write G, for {n]2 : m € G}. If {a;);cs is a countable partition of unity in 2., (m;);cs a family in
G, and ¢ € Aut 2, is such that ¢d = m;d whenever ¢ € I and d C a;, set J = IU{oo} for some object co ¢ I,
oo = 1\ € and 7o, the identity in Aut2l; then we have a ¢ € Aut 2 defined by setting ¢d = ¢p(dne) U (d\ e)
for every d € 2, and (a;)icy, (m)ics Witness that b€ G, s0¢=d| A belongs to Ge. As (a;)ier and (m;)ier
are arbitrary, G, is countably full.

(ii) If 7 € G, let a be a separator for 7, and consider ' = ane. Then a’ n7a’ = 0 and supyc, 7™Fa’ =
SUpgez 7 ane=e, so a’ is a separator for 7| Ae.

382J Lemma Let 2 be a Dedekind o-complete Boolean algebra, G a countably full subgroup of Aut2A
such that every member of G has a separator, and m € G an aperiodic automorphism. Then there is a
non-increasing sequence (e,)nen in 2 such that ¢y = 1 and
(i) 7 is doubly recurrent on e, and in fact sup,~; w'e, = sup;s; 7 ‘e, = 1,
(ii) ent1, e, €nt1 and anenﬂ are disjoint - -
for every n € N, where 7., € Aut,, is the automorphism induced by 7 (381M).

proof Construct (a,),en inductively, as follows. Start with ag = 1. Given that sup;~; 7‘a, = sup;~; ™ ‘a,
= 1, then of course 7 is doubly recurrent on a,, (381L). Now there is an a,,+1 C a, such that An41 N ’7'('(;1 Ant1 =
0 and apt1 U Tq, Gpg1 U 773" Gn+1 = an. I» We have a 7, € Aut® defined by setting 7,,d = 7,,d for d C a,,
Ta, d = d for d C 1\ a,. Because 7 is aperiodic, so is m,, (381Ng); in particular, the support of 7, is a, and
this must also be the support of 7., . Because G is countably full, 7, € G (381Ni), so 7,, has a separator.
By 382D, there is an a1 € A such that ap41 N7, any1 =0 and ap41 U T, dpy1 U frgn Gn+1 Supports m,
that is,

— ~ ~2 _ 2
An = An41 U Ta, Gnil UTy, il = Ani1 UTa, Gnl UT, Gnil. Q

Now

SUP TGy 1 = SUP T (SUP 7/ ap 1) 2 sSUp T (SUP T, A1)
i>1 i>1 §>0 i>1 §>0

(381Nb)
= sup mla, = 1.
i>1
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Similarly, because we can identify m, ! with (771),, (381Na), and

—1 -2 _ -2 ~ ~2 _
U1 UT, A1 UTy “Gny1 = Ty “(Ang1 UTa, Gny1 UT, Gni1) = an,

we have

Supm “iape1 =supm (supm Jany1)
i>1 i>1 320

Dsupn ‘(supm,’anq1) =supm a, = 1,
i>1 3>0 i>1

and the induction continues.
At the end of the induction, set e,, = ag, for every n. Then, for each n, we have
0= A2n+4+1 NTe, A2n4+1 = Ep41 N Tag,+16n+1-

Since we can identify 74, ., with (7, )
and W?n en+1 are all disjoint.

(381Ne), we can apply 381Nh to 7., to see that e,y1, 7e, €nt1

a2n+1

382K Lemma Let 2 be a Dedekind o-complete Boolean algebra. Suppose that we have an aperiodic
m € Aut 2l and a non-increasing sequence (e, )nen in 2 such that eg = 1 and

SUPj> Tl = SUp>y T 'en =1,  €nq1, Te, (ény1) and 72 (e,41) are disjoint

for every n € N, writing 7., € Aut®., for the induced automorphism. Let G be the countably full subgroup
of Aut 2 generated by m. Then there is a ¢ € G such that ¢ is either the identity or an exchanging involution
and inf, > supp(7¢)™ = 0.

proof (a) We need to check that every member of G has a support. P If ¢ € G, there is a partition (a,)nez
of unity such that ¢a = 7™a whenever n € Z and a C a,, (381Ib). If a C ag, then ¢a = a, so 1\ ap supports
¢. On the other hand, if a\ ag # 0, there is an n # 0 such that ana, # 0. As suppn™ = 1, there is a
non-zero d C ana, such that 0 = dn7n"d = dn¢d. Thus 1\ ag = sup{d : dn¢d = 0} is the support of ¢
(381Ei). Q

(b) For each n € N, write ,, for 7. and 7, € G for the corresponding automorphism of 2, as in 381Ni.
Set

u, =7 ten1, U =mpent.
Then all the u),, u!’ are disjoint. P
ul, nul! = m (epr1nmleny) =0
for each n. And if m < n, then w}, Uu, C e, C en41 is disjoint from
Upy Uty € T (€mg1) U (€mt1). Q

(c) By 381C, there is an automorphism ¢; € Aut 2 defined by setting

¢1d = mom, L Tpd = Tpf  Tad i n €N, d C ul,

T  pam, td = 7 A, tdifn €N, d C ull,

=d if dn sup(ul, uul) = 0;
neN

¢1 € G and ¢7 is the identity and ¢; exchanges sup,, ¢y ul, with sup, cyull, so is either the identity or an

exchanging involution. Set ¢y = infy>; supp(mm)k and ¢; = sup;¢y 7o, so that me; = ¢ and ¢rc1 = &1
(381J).

(d) For [ > 1, set
v = —1 4 no__ 1 %
] =T "Co\ SUP_j ;< T'Co, V] =TCo\ SUP_j<;q T Co-

Then v}, vy, v; and v}’ are disjoint whenever 1 < k < [. For j, [ > 1, set
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dy; = NI\ supy <oy,
di; = v n g\ supy<;; Ty,
di; = dfj Aridl:

1
now define ¢ € Aut 2l by setting

pod =7d if d C d;; for some j, [ > 1,
=g 9difdc 7Tjdlj for some j, 1 > 1,

=dif dn sup (dj; urid;) =0,
Jl>1

so that ¢ € G, ¢3 is the identity and

supp ¢2 = sup; j>q dij U’ dy; C sup;sq v Uy’ C e

1!

As ¢y exchanges sup,;>q dij C Sup;;>q dgj with sup; ;>4 mid; C SUp; ;>1 dlj, it too is either trivial or an

exchanging involution.
(e) Define ¢ € Aut 2 by setting

¢pd=1dif d C 1\ ¢y,
=¢odifd C ¢.
It is easy to check that ¢ is either the identity or an exchanging involution. Set ¢z = inf,,>1 supp(7¢)™.

(f) T wish to show that ca = 0. The rest of the argument does not strictly speaking require the Stone
representation (382Yb), but I think that most readers will find it easier to follow when expressed in terms
of the Stone space Z of 2. Let f, g1, g2 and g be the autohomeomorphisms of Z corresponding to 7, ¢1, ¢2
and ¢; write @ C Z for the open-and-closed set corresponding to a € 2. For each n € N, let f,, : €, — €, be
the autohomeomorphism corresponding to 7., . Since

supp ¢ = 1 for every k > 1,

SUp;~f Tlen = Sup;~, T ‘e, = 1 for every n € N, k € Z (381L),

¢o = infy>1 supp(mes)*,

€1 = Sup;ey T'Co,

supp ¢z \ sup;>;(v; uv)’) =0,

o = infy>1 supp(me)*,
the sets

{z: f*(2) = 2}, for k > 1,

Z\U;>p [ '[€n], for n € N and k € Z,

Z\U, <), [~ 'én], for n € N and k € Z,

coA mk21{z : (Qlf)k(z) # 2},

aoUc il

supp ¢z \ Uzzl(vl/ uvy),

Az (gf)F(x) # x for every k > 1},
as well as the sets

{z:01(2) € {f'(2) s i € Z}},

[2i0a(2) ¢ {fi(z) i € 2}} |
are all meager (using 381Qb), and their union Y™ is meager. Set Y = ;.5 f7'[Y]; then Y also is meager,
and X = Z \ Y’ is comeager, therefore dense, by Baire’s theorem (3A3G). Of course fi(z) € X whenever
r € X and i€ Z.

(g) Fix € X N ¢ for the time being. Because f*(x) # x for any k > 1, the map i — fi(x) : Z — X
is injective. Because gx(f*(2)) € {f**9(2) : j € Z} for every i € Z and both k € {1,2}, we can define g7,
g% : Z — Z by saying that gf (i) = j if gx(f*(z)) = f7(z). Similarly, f is represented on {f(z) : i € Z} by
s, where s(i) =i+ 1 for every i € Z.
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(i) For n € N, set
n=1{i:i€Z, fi(x) €y},

U ={i: fi(zx)eu,}, U!'={i:fi(z)eul}.

Because z € ;> f![en] N Uice [~ i[e,] for every k, E, is unbounded above and below. If i € E,,, then
Ffalfi(z)) = f**(x) where k > 1 is the first such that f**i(z) € €, (381Qe), that is, such that k +i € E,.
Turning this round, f,,1(f%(z)) = f7(x) where j is the greatest member of E,, less than i. In particular,
i € U! iff i is the next point of F,, above a point of F, 11, and i« € U/ iff 7 is the next point of E,, below
a point of E,yq1. If i € U}, then f, ! fi(x) = f/(z) where j € E, 1 is the next point of E,, below i, and
frnor [ fi(x) = f¥(x) where k is the next point of E,, 41 above j. Since g; must agree with £, ! f,. 1 f.* on
uAQL (381Qa), g1 f(z) = fi 1 fus1 £ fi(w) = fY(x) where [ is the next point of E,, below f¥(z). This means
that g7 exchanges pairs ¢ < [ exactly when i, I € E,, are the first and last points in E,, N]j, k[ where j, k
are successive points of E, 1. In this case, there is no point of E,; in the interval [i,1]. Accordingly, if
i’ <l and g§ exchanges ¢’ and I’ and either ¢’ or I is in |4, [, we must have ¢/, I’ € E,, for some m < n; and
as the interval [¢',1'] cannot meet E,,11 2 E,, it is included in ]é,{[. Thus g7 fixes ]7,{[ in the sense that
if i <4’ <l then ¢g7(i') =1 for some I" € Ji,l[. Tt follows that g7s fixes [¢,{[. In this case, of course, every
point of [z, [ must be fixed by some power of g{s.

The following diagram attempts to show how ¢{ links pairs of integers. The points of E,,, as n increases,
are shown as progressively multiplied circles.

mmmgmmm@gmmmémmm@

Pairs of points exchanged by ¢7

Note that because e,11, ¢Pe,ent1 and Wgn ent+1 are always disjoint, there are always at least two points of
E,, between any two successive points of ;1.

(ii) Set Co = {i : f'(z) € éo}. Then
Co=2Z\U{li,1[: i <1=g7(0)}-

PP Because X does not meet ¢o A (5 {2 : (g1.1)k(2) # 2},

Co={i: (g1 f)*fi(x) # fi(z) for every k > 1} = {i : (¢¥s)k(i) # i for every k > 1}.

If i <1 = ¢g7(i) then (i) tells us that every point of [i,[[ is fixed by some power of ¢g7s and cannot belong
to Cy. Conversely, if j € Z does not belong to any such interval [i,[[, then g7 (i) > j for every i > j, so
g7s(t) > j for every i > j andj ¢Co Q

Because X does not meet ¢ \ UzEZ f7%é], Co is not empty. Now Cj has no greatest member. P Let
jo € Cy. Then jo ¢ [4,!] for any pair 4, | exchanged by ¢7. If jo + 1 € Cp we can stop. Otherwise, there are
10, lo exchanged by g§ such that ig < jo+1 <ly. ? If ly ¢ Cy there are i1, 1 exchanged by g7 such that
i1 < lp < ly. But in this case i1 < jo < 1. X Thus jy < lg € Cp and jy cannot be the greatest member of
Co. Q

Similarly, Cy has no least member. P If j; € Cy but jo — 1 ¢ Cy, take ip, Iy exchanged by g§ such
that ig < jo— 1 < lp. T If ig — 1 ¢ Cy, take iy, l; exchanged by ¢§ such that i; < ig — 1 < ly; then
i1 < jo=1p <li. X So ig — 1 is a member of Cj less than jj,. Q

Thus Cy is unbounded above and below.

(iii) For I > 1,
= e\ U icje Pla) of = UGN\ U e P60

so setting

={i: fix)ev)}, V/={i:fi(x)e]},

we see that
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V/={i:i—1€Cyi+j¢Coif —l<j<l}={i+1:i€Coy Conli,i+2l] =0},
VIV ={iti+leCoi+j¢Coif —1<j<l}={i—1:i€Cy Conli—2li[=0};
that is to say, if j, k are successive members of Cy, and j +1 < k— 1, then j+1 € V/ and k —1 € V.
kij*lj,then

if 1 <1<l we have exactly one i € V/ N [j, k] and exactly one ¢ € V" N [j,k] and ¢ < 4", while if | > Iy
then neither V/ nor V" meets [, k].

Looking at this from the other direction, if j and k are successive members of Cy, and Iy = |

(iv) Now the point is that every V/ is unbounded above. I Because there are at least two points of
E,, between any two points of E, 11, successive points of E, always differ by at least 3™, for every n. Take
n such that 3™ > 20 + 1. For any iy € Z, there are an i; € Cj such that i; > ig, and a j € E, 11 such that
j > i1; let k be the next point of E, 1 above j. Then we have points j', k¥’ of E, N]j, k[ such that Cy is
disjoint from [/, k'[. So if we take i = max(Con |—o0,j'[) and i’ = min(Cy n [j’,00[), ' —i > k' —j' > 21+1
and ¢ +1 € V/, while i +1 > ¢ > 4y > iy. As i is arbitrary, V/ is unbounded above. Q Similarly, turning
the argument upside down, V}” is unbounded below.

(v) Next consider

=l f@edy =vinw )\ J Wi
1<i<y

={i:ieV/, i—j=max(V/ N]-o0,il},
D ={i: fiw)edy} =V n(V/ + )\ |J W +i

1<i<j
={i:ieV/" i+j=min(V/ NJi o[},
Dyj = {i: f'(z) € di;} = Dj; N (D} + j).
Since ¢y agrees with 7/ on g, g2 agrees with f7 on widy;, and g5 (i) = i + j whenever f'(z) € f~/ [3;],
that is, whenever ¢ +j € D;;. This means that ¢g§ exchanges pairs i < i’ exactly when, for some [, i" is the
greatest member of V) less than ¢’ and ¢’ is the least member of V/ greater than ¢”. Since X does not meet

su/p-p\@ \ Ul>1(1/)\l’ U 1/1?)7 g5 does not move any other :.

But, starting from any [ > 1 and i’ € VY, let i" be the greatest element of V}” less than ¢’. Then ¢’ —{ and
i 4+ 1 belong to Cy, and if k, k' are any successive members of Cy such that i/ < k < k/ < 4’ then there is
no member of V" in [k, k'] and therefore no member of V/ in [k, k']. So 4’ is the least member of V' greater
than i, and ¢% (i) = 4"”. Similarly, every member of every V}” is moved by ¢3.

At the same time we see that if ¢ € V" and ¢/ € V// are exchanged by g3, and m > [, then there can be
no interval of Cy of length 2m + 1 or greater between ¢’ and 4, so there is no point of V> UV, in [i",4].
For the same reason, if m < [ then no pair of points in V. U V,! exchanged by g3 can bracket either i” or
i’. So g leaves the interval [i”,4'] invariant. Accordingly gos leaves [¢”,'[ invariant.

The next diagram attempts to illustrate g&. Members of Cy are shown as multiple circles!.

A fx

Pairs of points exchanged by ¢3

T ()

At this point observe that 0 belongs to some g% s-invariant interval. I Let k, k' be successive members
of Cy such that £ < 0 < k’. Take [ such that k" —k < 2. Let i’ be the least member of V} greater than 0,
and " the greatest member of V] less than 0; since neither V; nor V/” meets [k, k'], i" and i’ are exchanged
by g%, while 0 € [i",4'[. @ This means that there is a k > 1 such that (¢3s)*(0) = 0, that is, (g2.f)*(z) = =.

T have made no attempt to arrange these in a configuration compatible with the process by which Co was constructed; the
diagram aims only to show how the links would be formed from a particular set.
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(vi) We know that g agrees with g on ¢/2\cl = ¢. Since z € & and f7la] = a, (9f)f(x) = 2.
Because X does not meet &;/A{z : (gf)*(x) # z for every k > 1}, z ¢ 6.
This is true for every z € X N ¢;. Since X is dense in Z, ¢; N ¢3 is empty, that is, ¢; ncg = 0.

(h) Since w¢ agrees with m¢; on Ay..,, and ¢; = 7¢cy, supp(7p)* \ ¢ = supp(r¢1)¥ \ ¢1 for every k, and
2\ ¢1 = infy>1supp(m¢1)¥\ ¢1 C infr>1 supp(mer)k\ co = 0.

Putting this together with (g), we see that co = 0, as required.

382L Lemma Let 2 be a Dedekind o-complete Boolean algebra, and G a countably full subgroup of
Aut 2l such that every member of G has a separator. If m € G, there is a ¢ € G such that ¢ is either the
identity or an exchanging involution and 7w¢ has a transversal.

proof (a) We may suppose that G is the countably full subgroup of Aut 2 generated by w. 7™ has a support
for every n > 1 (382Ia); set e = inf,,>1 supp 7", so that me = e and m[%,. has a transversal (382Ic), while
[, is aperiodic (381H). By 381J, ve = e for every @ € G; by 3821d, G. = {¢ |2, : ¥ € G} is a countably
full subgroup of Aut 2, and every member of G, has a separator.

(b) Applying 382J to 7|2, we can find (e,,),>1 such that eg = e, (e,)nen is non-increasing, sup;~, w'e, =
SUp;>1 7%, = e for every n, and e,y1, Te,€nt1 and Wgnenﬂ are disjoint for every n. (By 381Ne or
otherwise, we can compute 7., either in Aut2l or in Aut .. Note that 7. = 7[2, by 381Nf or otherwise.)
Now 382K tells us that there is a ¢ € G such that ¢ is either the identity or an exchanging involution, and
inf,,>1 supp(mep)™ = 0.

(c) Take é € AutA to agree with ¢ on 2, and with the identity on 1\e, so that ¢ is either the identity
or an exchanging involution. Now 7|2, = 7|21\, and 7¢[2A. = 7| A. both have transversals (using
3821 again). So m¢ has a transversal (382Ga).

382M Theorem Let 2 be a Dedekind o-complete Boolean algebra, and G a countably full subgroup of
Aut 2 such that every member of G has a separator. If m € G, it can be expressed as the product of at most
three exchanging involutions belonging to G.

proof By 382L, there is a ¢ € G, either the identity or an exchanging involution, such that 7m¢ has a
transversal. By 382H, m¢ is the product of at most two exchanging involutions in G, so 7 = m¢¢~! is the
product of at most three exchanging involutions.

382N Corollary If 2 is a Dedekind complete Boolean algebra and G is a full subgroup of Aut%l, every
m € G is expressible as the product of at most three involutions all belonging to G and all supported by
Supp 7.

proof We may suppose that G is the full subgroup of Aut 2l generated by w. By 382Eb, every member of
G has a separator. By 382M, 7 is the product of at most three involutions all belonging to G; by 381Jb,
they are all supported by supp .

3820 Definition Let 2 be a Boolean algebra, and G a subgroup of the automorphism group Aut 2. I
will say that G has many involutions if for every non-zero a € 2 there is an involution 7 € G which is
supported by a.

382P Lemma Let 2 be an atomless homogeneous Boolean algebra. Then Aut2 has many involutions,
and in fact every non-zero element of 2l is the support of an exchanging involution.

proof If a € A\ {0}, then there is a b such that 0 # bc a. Let ¢ : Ay — A, be an isomorphism; define
7 € Aut 2l to agree with 1 on 2, with ¢»~! on 2,5, and with the identity on 2;,,. Then 7 is an exchanging
involution with support a.

382Q Lemma Let 2 be a Dedekind complete Boolean algebra, and G a full subgroup of Aut2l with

many involutions. Then every non-zero element of 2l is the support of an exchanging involution belonging
to G.
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proof By the definition 3820,
C = {suppm: 7 € G is an involution}

is order-dense in A. So if a € A\ {0} there is a disjoint B € C such that sup B = a (313K). For each b € B
let m, € G be an involution with support b. Define m € G by setting nd = myd for d C b € B, nd = d if
dna = 0; then m € G is an involution with support a. By 382Fa it is an exchanging involution.

382R Theorem Let 2 be a Dedekind complete Boolean algebra, and G a full subgroup of Aut®l with
many involutions. Then a subset H of G is a normal subgroup of G iff it is of the form

{m:m€G,suppr €I}
for some ideal I <12 which is G-invariant, that is, such that ma € I for every a € I and 7 € G.

proof (a) I deal with the easy implication first. Let I < 2 be a G-invariant ideal and set H = {7 : 7 € G,
suppm € I}. Because the support of the identity automorphism ¢+ is0 € I, € H. If ¢, » € H and 7 € G,
then

supp(¢yp) C supp ¢ U supptp € I,
supp(¢) ') = supp ¢ € I,

supp(mm ) = m(supp ) € I
(381E), and ¢, ¥~ 1, mpr~1 all belong to H; so H < G.

(b) For the rest of the proof, therefore, I suppose that H is a normal subgroup of G and seek to express
it in the given form. We can in fact describe the ideal I immediately, as follows. Set

J={a:a €A, 7€ H whenever 7 € G is an involution and supp C a};

then 0 € J and a € J whenever a Cb € J. Also ma € J whenever a € J and m € G. P If ¢ € G is an
involution and supp ¢ C 7a then ¢, = 7~ ¢ is an involution in G' and

supp ¢ = 7 (supp ¢) C a,

so ¢1 € H and ¢ = w1~ ! € H. As ¢ is arbitrary, 7a € J. Q
I do not know how to prove directly that J is an ideal, so let us set

I'={apuaiu...Uay:ag,...,a, € J};
then I <%, and ma € I for every a € [ and 7 € G.
(c)IfaeA, v € Hand anta =0 then a € J. P If a = 0, this is trivial. Otherwise, let 7 € G be an
involution with supp« C a; say m = (b, ¢) where bu ¢ C a. By 382Q there is an involution 7; € G such that
suppm = b; say m = (V' 5, b”) where &' ub” = b. Set

d=nb, ' =nb'=c\c,

E—;
my =mamn L =0 7, V) gmnr ), w3 =),
¢ =m; "Ymp~! € H,

T= W??ldnrgd)’l = 7r§1772711/)7r2¢’17r31/17r2711/1717r2 € H.
Now
supp(¢matp ™) = ¥(suppmz) = ¥(buc) C Ya
is disjoint from
suppms =b ucd Ca,

so m3 commutes with 1metp 1, and
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T = 71'3_17'(2_17'(3’1/)7@’(/)71’(/)7@_1’1/17171'2

ury 7@%@,7?2

(b C/)(b/ T bN)(CI Tyt C”)(bl ™ CI)(b/ T b//)<cl mrym Tt CH)
%

(b c/)(b// x Cl/)

.

/
™

/

™

So 7€ H. As 7 is arbitrary, a € J. Q
H
d)Ir=(arb
1 € G such that suppy = a; because a € J, ¢ € H. Express ¢ as (a’ , a”) where a’ ua” = a. Set b/ = 7wad’
¥
%
and b’ = ma”, so that m# = (a’ ; b')(a” ; b"), and

Y1 =Yt = (a/ y a”) (b pyr—1 V') € H.

%
As P (a’ Ul) = a” ub” is disjoint from o’ Ub, o’ U € J, by (c), and 7 = (a/ V') € H; similarly,
%
a’ub’ € J,somg=(a"") € H and m = mm belongs to H. Q

) is an involution in G and a € J, then 7 € H. P By 382Q again, there is an involution

<_
(e) If 7 € G is an involution and suppm € I, then 7 € H. P Express 7 as (a b). Let ag,... ,a, € J be

such that aub C aguU ... Ua,. Set
%
cj =ana;\ sup;.;a;, bj=mc;, = (¢jnbj)
for j < m; then every c¢; belongs to J, so every m; belongs to H (by (d)) and 7 =mg...m, € H. Q

(f) If 7 € G and suppw € I then 7 € H. P By 382N, 7 is a product of involutions in G all with supports
included in supp 7; by (e), they all belong to H, so 7 also does. Q

(g) We are nearly home. So far we know that I is a G-invariant ideal and that 7 € H whenever m € G
and suppm € I. On the other hand, suppw € I for every m € H. PP By 382EDb, 7 has a separator; take a’,
a’, b, b, ¢ from 382D(iv). Then

adnma =bnabl =...=cnmc=0,

so a,...,call belong to J, by (c), and suppm = a’ U ... Uc belongs to I. Q
So H is precisely the set of members of G with supports in I, as required.

382S Corollary Let 21 be a homogeneous Dedekind complete Boolean algebra. Then Aut 2l is simple.

proof If 2 is {0} or {0,1} this is trivial. Otherwise, let H be a normal subgroup of Aut 2. Then by 382R
and 382P there is an invariant ideal I of 2 such that H = {m : suppw € I'}. But if H is non-trivial so is I;
say a € I\ {0}. If a = 1 then certainly 1 € I and H = Aut®2l. Otherwise, there is a 7 € Aut2l such that
ma=1\a (as in 381D), so 1\a € I, and again 1 € I and H = Aut 2l

Remark I ought to remark that in fact Aut 2l is simple for any homogeneous Dedekind o-complete Boolean
algebra; see STEPANEK & RUBIN 89, Theorem 5.9b.

382X Basic exercises (a) Let 2 be a Boolean algebra and Z its Stone space. Suppose that 7 € Aut 2
is represented by fr : Z — Z. For z € Z, write Orb,(z) = {f?(z) : n € Z}. (i) Show that a € 2 is a
separator for 7 iff f-![a]Na is empty and {2 : Orb,(z) Na} # 0} is dense in {z : fr(2) # 2}. (ii) Show that
a € 2 is a transversal for 7 iff {2z : Orb,(z) N@ # 0} is dense in Z and #(Orb,(z) Na) < 1 for every z.

>(b) Let X be a set. (i) Show that Aut(PX) is isomorphic to the symmetric group on X, the group of
all permutations of X. (ii) Show that any element of Aut(PX) is expressible as a product of at most two
involutions.

>(c) (MILLER 04) Let X be a set and ¥ a o-algebra of subsets of X. Suppose that (X, X) is countably
separated in the sense that there is a countable subset of ¥ separating the points of X (cf. 343D). Let G be
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the group of permutations f : X — X such that ¥ = {f![E] : E € ¥}. Show that every automorphism of
the Boolean algebra ¥ has a separator, so that every member of G is expressible as the product of at most
three involutions belonging to G.

(d) Recall that in any group G, a commutator in G is an element of the form ghg~'h~! where g,
h € G. Show that if 2 is a Dedekind complete Boolean algebra and G is a full subgroup of Aut 2l with many
involutions then every involution in G is a commutator in G, so that every element of G is expressible as a
product of three commutators, and any group homomorphism from G to an abelian group is constant.

(e) Give an example of a Dedekind complete Boolean algebra 2 such that not every member of Aut 2 is
a product of commutators in Aut 2.

(f) Let A be a Dedekind complete Boolean algebra, and suppose that Aut 2l has many involutions. Show
that if H < Aut® then every member of H is expressible as the product of at most three involutions
belonging to H.

(g) Let 2 be a Dedekind complete Boolean algebra and G a full subgroup of Aut 2l with many involutions.
Show that the partially ordered set ‘H of normal subgroups of G is a distributive lattice, that is, HN K1 Ky =
(HNK)(HNK3), HEK,NKy)=HK; NHK, for all H, Ky, Ky € H.

(h) Let 2 be a Dedekind complete Boolean algebra and G a full subgroup of Aut 2l with many involutions.
Show that if H is the normal subgroup of GG generated by a finite subset of G, then it is the normal subgroup
generated by a single involution.

(i) Let 2 be a Dedekind complete Boolean algebra and G a full subgroup of Aut 2 with many involutions.
Show (i) that there is an involution 7 € G such that every member of G is expressible as a product of
conjugates of 7 in G (ii) any proper normal subgroup of G is included in a maximal proper normal subgroup

of G.

(j) Let (2(, ) be an atomless probability algebra. Show that if = : 20 — 2[is an ergodic measure-preserving
automorphism it has no transversal.

(k) Show that if 2( is a Dedekind o-complete Boolean algebra with countable Maharam type (definition:
331F), then every automorphism of 2 has a separator. (Hint: show that if b € 2 then {a : a A wa C b} is
an order-closed subalgebra.)

(1) Let 21 be a Dedekind o-complete Boolean algebra and m € Aut®(. Show that = has a separator iff
there is a sequence (an)nen in 2A such that 7 is supported by sup,,cy an A Tay,.

(m) Let 2 be a Dedekind complete Boolean algebra and G a subgroup of Aut®2l with many involutions.
Show that for every n > 2 and every a € 2\ {0} there is a 7 € G with period n and support a.

382Y Further exercises (a) Find a Dedekind o-complete Boolean algebra with an involution which is
not an exchanging involution.

(b) Devise an expression of the ideas of parts (f)-(h) of the proof of 382K which does not involve the Stone
representation. (Hint: show that there is a non-increasing sequence in 2™ which makes enough decisions to
play the role of the Boolean homomorphism z : 2{ — Zs.)

(c) Let B be the algebra of Borel subsets of R. Show that AutB has exactly three proper normal
subgroups. (Hint: re-work the proof of 382R, paying particular attention to calls on Lemma 382Q. You will
need to know that if £ € B is uncountable then the subspace o-algebra on E is isomorphic to B; see §424
in Volume 4.)

(d) Find a Dedekind o-complete Boolean algebra 21 with an automorphism which cannot be expressed
either as a product of finitely many involutions in Aut%f, or as a product of finitely many commutators in
Aut 2. (This seems to require a certain amount of ingenuity.)
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382 Notes and comments The ideas of 382A and 382G-382N are adapted from MILLER 04, and (most
conspicuously in part (g) of the proof of 382K) betray their origin in a study of Borel automorphisms of R
(see 382Xc). The magic number of three involutions appears in RYZHIKOV 93 and TRUSS 89. The idea of the
method presented here is to shift from a ‘separator’ to a ‘transversal’. Since there are many automorphisms
without transversals (382Xj), something quite surprising has to happen. The diagrams in the proof of 382K
are supposed to show the two steps involved in the argument. We are trying to draw non-overlapping links
to build a function g* such that every point of Z will belong to a finite orbit of g*s. This must be done by
some uniform, translation-invariant, process based on configurations already present; in particular, we are
not permitted to single out any point of Z as a centre for the construction. The first attempt is based on
the sequence (F,)nen of sets corresponding to the decreasing sequence (e, )nen. The construction of such
a sequence (382J) requires that there be many separators, which is why these results cannot be applied to
all Boolean algebras, or even to all homogeneous ones. If this first attempt fails, however, the points not
recurrent under ¢g7s provide a set Cy with arbitrarily large gaps both to left and to right, from which the
second method can build an adequate family of links.

Of course the search for these factorizations was inspired by the well-known corresponding fact for algebras
PX (382XDb). In those algebras we can use the axiom of choice unscrupulously to pick out a point of each
orbit, thereby forming a transversal in one step without considering separators, and then apply 382H in its
original simple form. Perhaps the principal psychological barrier we need to overcome in 382K is raised in
the phrase ‘fix x € X N ¢;’. What I could have said is ‘fix an orbit of f meeting ¢1, and order it by the
transitive closure of the relation f’; because the whole point of the subsequent argument is that we do not
have a marker to work from.

This volume is concerned with measure algebras, and all the most important measure algebras are
Dedekind complete. I take the trouble to express the ideas down to Theorem 382M in terms of o-complete
algebras partly because this is the natural boundary of the arguments given and partly because in Volume
4 T will look at Borel automorphisms, as in 382Xc, and 382M as stated may then be illuminating. But note
that in 382N o-completeness is insufficient (382Yd). In 382S I allow myself for once to present a result
with a stronger hypothesis than is required for the conclusion; the point being that homogeneous semi-finite
measure algebras are necessarily Dedekind complete (383E), and the arguments for the more general case
do not seem to tell us anything which we can use elsewhere in this treatise.

It is natural to ask whether the number ‘three’ in 382M is best possible (cf. 382Xb). It seems to be quite
difficult to exhibit an automorphism requiring three involutions; examples may be found in ANzAI 51 and
ORNSTEIN & SHEILDS 732.

Just as well-known facts about symmetry groups lead us to the factorization theorem 382M, they suggest
that automorphism groups of Boolean algebras may often have few normal subgroups; and once again we
find that the form of the theorem changes significantly. However the root of the phenomenon remains
the fact that our groups are multiply transitive. 3820-382S are derived from STEPANEK & RUBIN 89 and
FaTHI 78. An obvious question arising from 382S is: does every homogeneous Boolean algebra have a simple
automorphism group? This leads into deep water. As remarked after 382S, every homogeneous Dedekind
o-complete algebra has a simple automorphism group. Using the continuum hypothesis, it is possible to
construct a homogeneous Boolean algebra which does not have a simple automorphism group; but as far as
I am aware no such construction is known which does not rely on some special axiom outside ordinary set
theory. See STEPANEK & RUBIN 89, §5.

Version of 9.11.14

383 Automorphism groups of measure algebras

I turn now to the group of measure-preserving automorphisms of a measure algebra, seeking to apply
the results of the last section. The principal theorems are 383D, which is a straightforward special case of
382N, and 383I, corresponding to 382S. I give another example of the use of 382R to describe the normal
subgroups of Autz2 (383J), and conclude with an important fact about conjugacy in Aut;2 and Aut®
(383L).

2T am indebted to P.Biryukov and G.Hjorth for the references.
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383A Definition Let (2, i) be a measure algebra. I will write Aut; 2 for the set of all measure-preserving
automorphisms of 2. This is a group, being a subgroup of the group Aut®l of all Boolean automorphisms
of 2.

383B Lemma Let (2, i) be a measure algebra, and {(a;);cr, (b;)ier two partitions of unity in 2. Assume
either that I is countable
or that (2, i) is localizable.
Suppose that for each ¢ € I we have a measure-preserving isomorphism m; : 24,, — 2, between the
corresponding principal ideals. Then there is a unique 7 € Aut; 2 such that mc = m;c whenever ¢ € I and
cCa;.

proof (Compare 381C.) By 322Ld or 322Le, we may identify 2 with each of the simple products [[;; 2a,,
[I;c; &s,; now 7 corresponds to the isomorphism between the two products induced by the ;.

383C Corollary If (2, 1) is a localizable measure algebra, then, in the language of 381Be, Aut;2 is a
full subgroup of Aut 2.

383D Theorem Let (2, i) be a localizable measure algebra. Then every measure-preserving automor-
phism of 2 is expressible as the product of at most three measure-preserving involutions.

proof This is immediate from 383C and 382N.

383E Lemma If (2, ) is a homogeneous semi-finite measure algebra, it is o-finite, therefore localizable.

proof If 2l = {0}, this is trivial. Otherwise there is an a € 2 such that 0 < fia < co. The principal ideal
A, is cee (322G(i)=(ii)), so A also is, and (2, i) must be o-finite, by 322G(ii)=(i).

383F Lemma Let (2, 1) be a homogeneous semi-finite measure algebra.

(a) If (@i)ier, (bi)icr are partitions of unity in A with fia; = fb; for every 4, there is a m# € Autz 2 such
that wa; = b; for each i.

(b) If (A, @) is totally finite, then whenever (a;)icr, (b;)icr are disjoint families in 2 with fia; = fb; for
every i, there is a m € Autz2 such that wa; = b; for each 1.

proof (a) By 383E, (2, 1) is o-finite, therefore localizable. For each i € I, the principal ideals 2,,, s,
are homogeneous, of the same measure and the same Maharam type (being 7(2) if a; # 0, 0 if a; = 0).
Because they are ccc, they are of the same magnitude, as defined in 332Ga, and there is a measure-preserving
isomorphism 7; : A,, — Ap, (332]). By 383B there is a measure-preserving automorphism = : 2 — 2 such
that 7d = m;d for every i € I, d C a;; and this 7 serves.

(b) Set a* =1\ sup;c;a;, b* =1\ sup;c; b;. We must have
:L_La* = /_j’l - Zie] fia; = :L_l’l - Zie] ﬂbl = ﬂb*a

so adding a*, b* to the families we obtain partitions of unity to which we can apply the result of (a).

383G Lemma (a) If (2, 1z) is an atomless semi-finite measure algebra, then Aut 2 and Aut;2 have many
involutions.

(b) If (A, ) is an atomless localizable measure algebra, then every non-zero element of 2 is the support
of an involution in Aut;A.

proof (a) If a € A\ {0}, then by 332A there is a non-zero b C a, of finite measure, such that the principal
ideal 2}, is (Maharam-type-)homogeneous. Now because 2 is atomless, there is a ¢ C b such that fic = % b
(331C), so that A, and 2Ap, . are isomorphic measure algebras. If 6 : A, — Ap,. is any measure-preserving

isomorphism, then m = (cg b\ ¢) is an involution in Autz2 (and therefore in Aut2() supported by a.

(b) Use 383C, (a) and 382Q.
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383H Corollary Let (2, i) be an atomless localizable measure algebra. Then
(a) the lattice of normal subgroups of Aut2l is isomorphic to the lattice of Aut2-invariant ideals of 2;
(b) the lattice of normal subgroups of Aut;®l is isomorphic to the lattice of Auty-invariant ideals of 2.

proof Use 382R. Taking G to be either Aut2 or Aut; 2, and 7 to be the family of G-invariant ideals in
A, we have amap I — Hy = {n:m € G, suppw € I} from Z to the family H of normal subgroups of G. Of
course this map is order-preserving; 382R tells us that it is surjective; and 383Gb tells us that it is injective
and its inverse is order-preserving, since if a € I\ J there is a 7 € G with suppm = a, so that 7 € H; \ H.
Thus we have an order-isomorphism between H and Z.

3831 382R provides the machinery for a full description of the normal subgroups of Aut2 and Aut;2
when (2, i) is an atomless localizable measure algebra, as we know that they correspond exactly to the
invariant ideals of 2. The general case is complicated. But the following special cases are easy enough.

Theorem Let (2, i) be a homogeneous semi-finite measure algebra.
(a) Aut2l is simple.
(b) If (2, &) is totally finite, Autz2 is simple.
(c) If (2, fx) is not totally finite, Aut; 2 has exactly one non-trivial proper normal subgroup.

proof (a) 2 is Dedekind complete (383E), so this is a special case of 3828S.

(b)-(c) The point is that the only possible Aut;-invariant ideals of 2 are {0}, A/ and A. P If A is {0}
or {0,1} this is trivial. Otherwise, 2 is atomless. Let I <1 2 be an invariant ideal.

(i) If I ¢ A, take a € I with fia = co. By 383E, 2 is o-finite, so a has the same magnitude w as 1.
By 3321, there is a partition of unity (e,)nen in 2 with fie,, = 1 for every n; setting b = sup,,cy €2, and
b = 1\ b, we see that both b and o’ are of infinite measure. Similarly we can divide a into ¢ and ¢/, both of
infinite measure. Now by 332J the principal ideals 23, 5, ., 2Aq\. are all isomorphic as measure algebras,
so that there are automorphisms 7, ¢ € Autz2 such that

me="b, ¢c=1V.

But this means that both b and b belong to I, so that 1 =bubd’ € I and I = 2.

(i) If I € Af and I # {0}, take any non-zero a € I. If b is any member of 2, then (because 2 is
atomless) b can be partitioned into by, ... , by, all of measure at most fia. Then for each i there is a b} C a
such that b, = fib;; since this common measure is finite, a(1\b}) = i(1\b;). By 332J and 383Fa, there is
a m; € Aut; 2 such that ;b = b;, so that b; belongs to I. Accordingly b € I. As b is arbitrary, I = A

Thus the only invariant ideals of 2 are {0}, 21 and A. Q

By 383Hb we therefore have either one, two or three normal subgroups of Aut;2, according to whether
il is zero, finite and not zero, or infinite.

Remark For the Lebesgue probability algebra, (b) is due to FATHI 78. The extension to algebras of
uncountable Maharam type is from CHOKSI & PRASAD 82.

383J The language of §352 offers a way of describing another case.

Proposition Let (2, i) be an atomless totally finite measure algebra. For each infinite cardinal &, let e, be
the Maharam-type-x component of 2, and let K be {x : e,, # 0}. Let H be the lattice of normal subgroups
of Aut; 2. Then

(i) if K is finite, H is isomorphic, as partially ordered set, to PK;

(ii) if K is infinite, then H is isomorphic, as partially ordered set, to the lattice of solid linear subspaces
of £°°.

proof (a) Let Z be the family of Aut;-invariant ideals of 2, so that % = Z, by 383Hb. For a, b € 2,
say that a < b if there is some k € N such that fi(ane,) < kfi(bne,) for every x € K. Then an ideal T
of A is AutzA-invariant iff @ € I whenever a < b € I. P (a) Suppose that I is Autz2 invariant, a € 2,
beland filanes) < kfi(bne,) for every k € K. Because  is atomless, we can find, for each k € K,
A1y .-, Qgk such that ane, = sup,<; ax; and fag; < G(bne,) for every i. Now for k € K and 1 <i <k
there is a measure-preserving automBrphisms 7 of the principal ideal 2., such that m.;a.; C b. Setting
mid = sup,.c i Tri(dNey) for every d € A, and a; = sup,.cx axi for 1 < i@ < k, we have m; € Aut;2 and
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mia; C b, so a; € I for each 4; also a = sup, <, a;, so a € I. (B) On the other hand, if a € 2 and 7 € Aut, 2,
then

a(ranes) = am(anes) = fi(anes)

for every k € K, because me, = e, so that ma < a. So if I satisfies the condition, 7[I] C I for every
mcAutUand I €Z. Q

(b) Consequently, for I € Z and k € K, e, € I iff there is some a € I such that ana, # 0, since in this
case e, = a. (This is where I use the hypothesis that (2, i) is totally finite.) It follows that if K is finite,
any I € 7 is the principal ideal generated by sup{e, : e, € I}. Conversely, of course, all such ideals are
Auty2-invariant. Thus 7 is in a natural order-preserving correspondence with PK, and H = PK.

(¢) Now suppose that K is infinite; enumerate it as (k,)nen. Define 0 : 20 — £°° by setting
Oa = (ilanex,)/i(ex, ) nen
for a € 2A; so that
a = b iff there is some k such that 0a < k6b,

fa < 0(aub) < fa—+60b<20(aub)

for all a, b € A, while 0(1y) is the standard order unit xN of £>°. Let U be the family of solid linear subspaces
of £>° and define functions I — V; : Z — U, U — Jy : U — T by saying

Vi={f:fe€Ll=|f] <kba for some a € I, k € N},

Ju={a:aeU bacU}.

The properties of 6 just listed ensure that V; € U and Jy € T for every I € Z, U € U. Of course both
I~ Viand U — Jy are order-preserving. If I € Z, then

Jy, ={a:3bel, a=b}=1.
Finally, Vj, =U for every U €. P
Vie=A{f:FacU, keN, |f|<kbacU}CU

because U is a solid linear subspace. But also, given g € U, there is an a € A such that f(ane,,) =
min(1, [g(n)])i(es, ) for every n (because 2 is atomless); in which case

fa <|g| <max(1,g])0a

soa € Jy and g € Vy,. Thus U = Vj,. Q So the functions I — Vi and U — Jy are the two halves of an
order-isomorphism between Z and U, and H = 7 = U, as claimed.

383K Later in this chapter I will give a good deal of space to the question of when two automorphisms
of a measure algebra are conjugate. Because, on any measure algebra (2, i), we have two groups Aut 2 and
Autz 2 with claims on our attention, we have two different conjugacy relations to examine. To clear the
ground, I give a result showing that in a significant number of cases the two coincide.

Proposition Let (2, i) be a totally finite measure algebra and 7 : 2 — 2 an ergodic measure-preserving
Boolean homomorphism. If ¢ € Aut® is such that ¢m¢~! is measure-preserving, then ¢ is measure-
preserving.

proof Consider the functional v : 2 — R defined by saying that va = fi(¢a) for every a € 2. Because fi
is completely additive (321F) and strictly positive, so is v. We therefore have a ¢ = [v > fi] in 2 such that
va > fia whenever 0 # a C ¢ and va < fia whenever anc =0 (326T). Now mc = c. PP? Otherwise, because
T is measure-preserving,

p(me\ ¢) = f(me) — p(enme) = e — f(enme) = e\ me) = %ﬂ(CATI'C) > 0.
Next,

vre = (gme) = f(dmd~"de) = ve,
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so we also have v(wc\ ¢) = v(c\ mc). But now observe that

v(re\e) < filme\e),  wle\me) > file\ we)
by the choice of ¢, which is impossible. X Q
Because 7 is ergodic, ¢ must be 0 or 1 (372Pa). But as vwl = v1 = fil, we cannot have 0 # 1 C ¢, so
¢ = 0. This means that va < fia for every a € 2; once again, v1 = i1, so in fact va = jia for every a, that
is, ¢ is measure-preserving.

383L Corollary Let (2, i) be a totally finite measure algebra, and m, my € Aut; 2 two ergodic measure-
preserving automorphisms. If they are conjugate in Aut2( then they are conjugate in Autz 2.

proof There is a ¢ € Aut2 such that ¢m ¢! = ma; now 383K tells us that ¢ € Aut; 2.

383X Basic exercises (a) Let (X, X, 1) be a countably separated measure space (definition: 343D),
and write Aut,, 3 for the group of automorphisms ¢ : ¥ — ¥ such that u¢(E) = pFE for every E € 3. Show
that every member of Aut, 3 is expressible as a product of at most three involutions belonging to Aut, X.
(Hint: 382Xc.)

(b) Let (X, %, ) be a measure space and (2, i) its measure algebra. Let S be the set of functions which
are isomorphisms between conegligible measurable subsets of X with their subspace measures. (i) Show
that the composition of two members of S belongs to S. (ii) Show that there is a map f — 7y : § — Aut;
defined by saying that 7¢(E*) = f~[E]* for every E € X, and that 7y, = m,7y, 7rj71 = 7wy for all f,
g € S. (iii) Show that {7 : f € S} is a countably full subgroup of Aut;2.

>(c) Let (X, X%, ) be a measure space and (2, ji) its measure algebra. Let ® be the group of measure
space automorphisms of (X, X, ). For f € @, let 7 € Aut;2 be the corresponding automorphism, defined
by setting m¢(E*) = (f~'[E])* for every E € ¥. (i) Show that f 71']?1 is a group homomorphism from ®
to Aut; (. (ii) Show that if ' C ® and the subgroup of ® generated by F'is ¥, then the subgroup of Aut;
generated by {my: f € F}is {my: f € U}. (ili) Show that if (X,X, i) is countably separated and F C ® is
a countable subgroup, then the full subgroup of Aut;2 generated by {n;: f € F}is {m, : g € F*}, where

F*={g:9€®, g(z) € {f(z):x € F} for every xz € X }.

>(d) Let (2, i) be a localizable measure algebra. For each infinite cardinal s, let e,, be the Maharam-
type-x component of . (i) Show that Aut; 2 is a simple group iff either there is just one infinite cardinal
 such that e, # 0, that e, has finite measure and all the atoms of 2 (if any) have different measures or 2
is purely atomic and there is just one pair of atoms of the same measure or 2 is purely atomic and all its
atoms have different measures. (ii) Show that Aut2l is a simple group iff either (2, i) is o-finite and there
is just one infinite cardinal x such that e, # 0 and 2( has at most one atom or 2 is purely atomic and has
at most two atoms.

(e) Let (U, 1) be a localizable measure algebra. (i) Show that Aut; 2 is simple iff it is isomorphic to one
of the groups {¢}, Za or Auty_ B, where & is an infinite cardinal and (B, 7, ) is the measure algebra of the
usual measure on {0,1}*. (ii) Show that Aut®l is simple iff it is isomorphic to one of the groups {¢}, Z or
Aut®B,.

(f) Show that if (2, ) is a semi-finite measure algebra of magnitude greater than ¢, its automorphism
group Aut; 2l is not simple.

(g) Let (2, ) be an atomless localizable measure algebra. For each infinite cardinal x write e, for the
Maharam-type-~x component of . For 7, 1 € Aut;®% show that 7 belongs to the normal subgroup of Aut; 2
generated by 1 iff there is a k € N such that

mag(e, N supp ) < kmag(e, N supp ) for every infinite cardinal &,

writing mag a for the magnitude of a, and setting k¢ = ¢ if £ > 0 and ( is an infinite cardinal.
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>(h) Let (2, ) be the measure algebra of Lebesgue measure on R. For n € N set e,, = [-n,n]* € 2. Let
G < Autz2 be the group consisting of measure-preserving automorphisms 7 such that supp = C e,, for some
n. Show that G is simple. (Hint: show that G is the union of an increasing sequence of simple subgroups.)

(i) Let (A, i) be an atomless totally finite measure algebra. Let H be the lattice of normal subgroups of
Aut2(. Show that H is isomorphic, as partially ordered set, to PK for some countable set K.

(j) Let (2, ) be an atomless localizable measure algebra which is not o-finite, and suppose that 7(2,) =
7(Ap) whenever a, b € 2 and 0 < fia < fib < 0o. Let & be the magnitude of . (i) Show that the lattice H
of normal subgroups of Aut;2 is well-ordered, with least member {¢} and one member H, for each infinite
cardinal ¢ less than or equal to kT, setting

= {m: 7 e Autz 2, mag(suppm) < ¢},

where maga is the magnitude of a. (ii) Show that the lattice H' of normal subgroups of Aut®l is well-
ordered, with least member {¢} and one member H, 2 for each uncountable cardinal ¢ less than or equal to
kT, setting

Hé ={n: 7€ Aut2, mag(suppm) < (}.

>(k) Let (2, &) be the measure algebra of Lebesgue measure on [0, 1]. Give an example of two measure-
preserving automorphisms of 2 which are conjugate in Aut®l but not in Autz2l.

(1) Let (A, z) be a probability algebra. For 7, ¢ € Aut; 2 set
p(m,¢) = supgeq fi(ma & ¢a),  o(m,¢) =

fi
(i) Show that p and o are metrics on Aut;2, and that p <o <

(i) Show that p(vm, ¥6) = p(ro,6%) = p(r,6), plr~1,6~) =
o(Ym v¢) = o(n,¢v) = o(r,¢), o(n™t,¢71) = o(r, ¢) o(m, ¢
6 € Aut; 2. (iii) Show that Aut;2A is complete under p and o.

(supp(7~'¢)).
(Hint: 381E, 381G, 382D-382E.)
¢)

, p(m, 90) < p(m, ¢) + p(2,0),

3,
o
00) < o(m ) -+ 0(0,0) for all 7. 6. .

383Y Further exercises (a) Let (2, i) be an atomless totally finite measure algebra. Show that Aut; 2
and Aut 2 have the same (cardinal) number of normal subgroups.

(b) Let X be a set. Show that AutPX has one normal subgroup if #(X) < 1, two if #(X) = 2, three if
#(X)=30r 5 <#(X) < w, four if #(X) =4 or #(X) = w, five if #(X) = w;.

383 Notes and comments This section is short because there are no substantial new techniques to
be developed. 383D is simply a matter of checking that the hypotheses of 382N are satisfied (and these
hypotheses were of course chosen with 383D in mind), and 3831 is similarly direct from 382R-382S. 383I-
383J, 383Xg and 383Xj are variations on a theme. In a general Boolean algebra 2 with a group G of
automorphisms, we have a transitive, reflexive relation < defined by saying that a <g b if there are
To, ... , Mk € G such that a C sup;<;, 7;b; the point about localizable measure algebras is that the functions
‘Maharam type’ and ‘magnitude’ enable us to describe this relation when G = Aut; 2, and the essence of
382R is that in that context 7 belongs to the normal subgroup of G generated by v iff supp 7 =g supp 9.

Some of the most interesting questions concerning automorphism groups of measure algebras can be
expressed in the form ‘how can we determine when a given pair of automorphisms are conjugate?’ Generally,
people have concentrated on conjugacy in Autz2. But the same question can be asked in Aut®. In
particular, it is possible for two members of Aut;2 to be conjugate in Aut 2 but not in Aut;2 (383Xk).
However this phenomenon does not occur for ergodic automorphisms, or even for ergodic measure-preserving
Boolean homomorphisms (383K-383L).

Most of the work of this chapter is focused on atomless measure algebras. There are various extra
complications which appear if we allow atoms. The most striking are in the next section; here I mention
only 383Xd and 383Yb.
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Version of 5.11.14

384 Outer automorphisms

Continuing with the investigation of the abstract group-theoretic nature of the automorphism groups
Aut2 and Aut; 2, I devote a section to some remarkable results concerning isomorphisms between them.
Under any of a variety of conditions, any isomorphism between two groups Aut 2 and Aut B must correspond
to an isomorphism between the underlying Boolean algebras (384E, 384F, 384J, 384M); consequently Aut 2l
has few, or no, outer automorphisms (384G, 384K, 3840). I organise the section around a single general
result (384D).

384A Lemma Let 2l be a Boolean algebra and G a subgroup of Aut?l which has many involutions
(definition: 3820). Then for every non-zero a € 2l there is an automorphism ¢ € G, of order 4, which is
supported by a.

proof Let m € G be an involution supported by a. Let b C a be such that wb # b. Then at least one of
b\ b, mb\ b = w(b\ wb) is non-zero, so in fact both are. Let ¢ be an involution supported by b\ wb. Then
m¢m = mpm—! is an involution supported by 7b\ b, so commutes with ¢, and ¢prém = 1. Also m¢b = b # b,
so m¢ and ¢m are not the identity, and v = ¢m has order 4. Of course 1) is supported by a because ¢ and 7
both are.

384B A note on supports Since in this section we shall be looking at more than one automorphism
group at a time, I shall need to call on the following elementary extension of a fact in §381. Let 2 and B
be Boolean algebras, and 6 : 2 — B a Boolean isomorphism. If 7 € Aut2l is supported by a € 2, then
Or0~! € AutB is supported by fa. (Use the same argument as in 381Ej.) Accordingly, if a is the support
of 7 then fa will be the support of §70~1, as in 381Gd.

384C Lemma Let 20 and B be two Boolean algebras, and G a subgroup of Aut 2l with many involutions.
If 61, 65 : A — B are distinct isomorphisms, then there is a ¢ € G such that 91¢91_1 #* €2¢92_1.

proof Because 01 # 02, 0 = 65 19, is not the identity automorphism on 2, and there is some non-zero a € 2
such that fana = 0. Let 7 € G be an involution supported by a; then §70~! is supported by fa, so cannot
be equal to 7, and 0,707 " # G705 "

384D Theorem Let 2 and B be Dedekind complete Boolean algebras and G and H subgroups of Aut 2L,
Aut B respectively, both having many involutions. Let ¢ : G — H be an isomorphism. Then there is a
unique Boolean isomorphism 6 : 2 — B such that g(¢) = 0¢0~! for every ¢ € G.

proof (a) The first half of the proof is devoted to setting up some structures in the group G. Let m € G be
any involution. Set

Cr=1{¢:0€G, ¢n = 7o},

the centralizer of 7 in G,

Ur={¢: 0 €Cr, d=0"", ¢voy~! =g~ "¢ for every ¢ € Cr},

the set of involutions in C; commuting with all their conjugates in C, together with the identity,

Ve ={¢:0 € G, ¢y = ¥ for every o € Uy},

the centralizer of U, in G,

Se={¢?: 9 €V}

and

We={¢:¢ €, ¢ =g for every ¢ € Sy},

the centralizer of S, in G.

(©) 1994 D. H. Fremlin
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(b) The point of this list is to provide a purely group-theoretic construction corresponding to the support
of 7 in 2. In the next few paragraphs of the proof (down to (f)), I set out to describe the objects just
introduced in terms of their action on 2. First, note that 7 is an exchanging involution (382Fa); express it

%
as (a’ ; a"), so that the support of 7 is a, = a’ ua”.
(¢) I start with two elementary properties of Cy:

(i) ¢(ar) = a, for every ¢ € C.. P As remarked in 381Gd, the support of m = ¢pmdp~! is ¢(a,), so this
must be a,. Q

(ii) If ¢ € C, and ¢ is not supported by a,, there is a non-zero d C 1\ a, such that dn¢d = 0, by
381Ei.

(d) Now for the properties of Uy:

(i) If ¢ € Uy, then ¢ is supported by a,. P? Otherwise, there is a non-zero d C 1\ a, such that
¢pdnd = 0. By 384A, there is a ¢ € G, of order 4, supported by d. Because dna, =0, v € C, (381Ef).
Because 1 # 11, there is a ¢ C d such that 1c # 1~ '¢; but now ¢gcnd = ¢y " lend =0, so

Yoy~ oe = YdPe = e # YT le = PP e = gYgy e,
and ¢ does not commute with its conjugate ¢ty ~!, contradicting the assumption that ¢ € U,. XQ
(ii) If v € A and 7u = u, then m, € U,, where
mud=7ndifdCu, w,d=difdnu=0,

%
that is, 7, = (¢’ Nnura’ nu). P () If w =0 then m, = ¢ € U,. Otherwise, 7, is an involution. (8) For any
P € Aut 2,

’@[J'”uw_l = (w(a‘/ n u) PYrp—1 7/’((1" n u))
(381Sb). Accordingly

%
Ay L= (" Nnuyad nu)=m,

and 7, € Cr. (v) If ¢ € C, then
T =Y~ = (Y yryr Pa”) = (Ya' 5 pa”).

So

Yt = (Y’ N ) yry—1 (@’ nu)) = (Ya' Ndu g a” npu) = Ty,
Now if mv = v then w7, = Tyay = TuTy; in particular, my, T, = Ty Tyy. As ¥ is arbitrary, m, € Us.
P P
In particular, of course, m = m; belongs to Us.
(e) The two parts of (d) lead directly to the properties we need of V.
(i) Vx C Cx, because 7 € U,. Consequently ¢a, = a, for every ¢ € V.

(i) If ¢ € V; then ¢d C dund for every d C a,. PP? Suppose, if possible, otherwise. Set uyp = dund,
so that mug = ug, and u = ¢ug \ug # 0; also u C par = ar. Since TPug = PrTuy = Pug, Tu = u. Set
v=wund, so that u =vumv and v # 7v. Because un ¢v C P(ugnu) =0,

TuPU = Qv # TV = Py,
which is impossible. XQ

(iii) It follows that ¢?d = d whenever ¢ € V, and d C a,. PP Let e be the support of ¢. Recall that
e =sup{c: cn¢oc =0} (381Gb), so that dne =sup{c: c C d, cngc=0}. Now if ¢ C a, and cn¢pc =0, we
know that ¢c C cume, so in fact ¢c C we. This shows that ¢p(dne) C w(dne). Also, because mp = ¢, by
(i), we have

#?(dne) C gr(dne) =7mp(dne) C m2(dne) =dne.

Of course ¢2(d\ e) = d\ e, so ¢*d C d. This is true for every d C a,. But as also ¢?a, = dar = ar, $p?d =d
for every d C a,. Q
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(iv) The final thing we need to know about V; is that ¢ € V. whenever ¢ € G and supp ¢ na, = 0;
this is immediate from (d-i) above.

(f) From (e-iii), we see that if ¢ € S, then supp¢na, = 0. But we also see from (e-iv) that if
0 # ¢ C 1\ a, there is an involution in S, supported by ¢; for there is a member ¢ of G, of order 4,
supported by ¢, and now @ € V, so 1? € S, while 1?2 is an involution.

(g) Consequently, W, is just the set of members of G supported by a,. P (i) If supp ¢ C a, and @) € S,
then supp ¥ na, = 0, as noted in (e), so ¢1) = 1¢; as ¢ is arbitrary, ¢ € W;.. (ii) If supp ¢ & a, then take a
non-zero d C 1\ a, such that ¢dnd = 0. Let ¥ € S; be an involution supported by d; then if ¢ C d is such
that ¢ # c,

PYe # gc = Yo,
and 1) # ¥ 0 ¢ & Wy Q

(h) We can now return to consider the isomorphism ¢ : G — H. If 7 € G is an involution, then ¢(7) € H

is an involution, and it is easy to check that

q[Cx] = Cymy,
q[Ux] = Ug(ry,
q[Vx] = Vo),
q[Sx] = Sy(x),
aWa] = W),

defining C

a(r)s - > Waemy € H as in (a) above. So we see that, for any ¢ € G,
supp ¢ C suppm = ¢ € Wr = q(¢) € Wy(n

<= suppq(¢) C suppq(m).

(i) Define 6 : 24 — B by writing
fa = sup{supp ¢(7) : 7 € G is an involution and suppw C a}

for every a € . Evidently 6 is order-preserving. Now if a € 2, m € G is an involution and supp =« ¢ a,
supp q(7) Z fa. P There is a ¢ € G, of order 4, supported by supp 7 \ a. Now ¢? is an involution supported
by supp , so supp ¢(¢?) € supp ¢(7). On the other hand, if 7’ € G is an involution supported by a, then
a supports every member of Uy, by (d-i), so ¢ € Vp, q(¢) € Vy(r) and supp q(¢?) = supp q(¢)? is disjoint
from supp q(7’), by (e-iii). As 7’ is arbitrary, supp ¢(¢?) nfa = 0; so

supp ¢(7) \ fa 2 supp ¢(¢*) # 0. Q

(j) In the same way, we can define 6* : B — 2 by setting
0*b = sup{supp ¢~ (7) : # € H is an involution and supp 7 C b}

for every b € B. Now 0*0a = a for every a € A. P (a) If 0 # u C a, there is an involution 7 € G supported
by u. Now ¢(m) is an involution in H supported by fa, so

un0*0a > un supp g lq(n) = suppw # 0.

As u is arbitrary, a C 6*6a. () If # € H is an involution supported by fa, then ¢ = ¢~ *(7) is an involution
in G with supp ¢(¢) = supp 7 C fa, so supp ¢ C a, by (i) above; as 7 is arbitrary, 8*fa C a. Q

Similarly, 80*b = b for every b € 9. But this means that 6 and 6* are the two halves of an order-
isomorphism between 2 and 2B. By 312M, both are Boolean homomorphisms.

(k) If 7 € G is an involution, then #(supp 7) = supp ¢(7). PP By the definition of 6, supp ¢(7) € 6(supp 7).
On the other hand,

supp q(m) = 00* (supp q(m)) 2 O(supp ¢ q(m)) = O(supp ). Q
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Similarly, if # € H is an involution, 6~ (supp 7) = 0*(supp ) = supp ¢~ ' (7).

(1) We are nearly home. Let us confirm that q(¢) = 0¢f~! for every ¢ € G. P? Otherwise, ¢ =
q(¢)10¢p0~1 is not the identity automorphism on 9B, and there is a non-zero b € B such that ¥bnb = 0,
that is, 0p0~1bn q(¢)b = 0. Let # € H be an involution supported by b. Then ¢~—*(7) is supported by 610,

by (j), so ¢0~1b supports ¢pq~1(7)¢~! and 0p0~1b supports q(pq H(7)p~ L) = q(¢)7q(¢)~L. On the other
hand, q(¢)b also supports q(¢)7q(¢) ™!, which is not the identity automorphism; so these two elements of B
cannot be disjoint. XQ

(m) Finally, 6 is unique by 384C.

Remark The ideas of the proof here are taken from EIGEN 82.

384E The rest of this section may be regarded as a series of corollaries of this theorem. But I think it
will be apparent that they are very substantial results.

Theorem Let 2l and B be atomless homogeneous Boolean algebras, and ¢ : Aut 2l — Aut 3 an isomorphism.
Then there is a unique Boolean isomorphism 6 : 2l — B such that ¢(¢) = 00~ for every ¢ € Aut 2.

proof (a) Let 2 be the Dedekind completion of 2 (314U). Then every ¢ € Aut2 has a unique extension to
a Boolean homomorphism ¢ : A — 2 (314Tb) Because the extension is unique, we must have (¢1))"= ¢

for all ¢, ¥ € Aut 2; consequently, ng and ¢~ 61 are inverses of each other, and ¢ € Aut 2 for each ¢ € Aut2;
moreover, ¢ — d) is a group homomorphism. Of course it is injective, so we have a subgroup G = {(b o€
Aut A} of Aut 2 which is isomorphic to Aut2(. Clearly

G:{QS:QZ)EAutﬁ, ¢u € A for every u € A}.

IfaeAis non-zero, then there is a non-zero u C a belonging to 2. Because 2l is atomless and homogeneous,
there is an involution m € Aut 2 supported by u (382P); now & € G is an involution supported by a. As a
is arbitrary, G has many involutions.

Similarly, writing 9B for the Dedekind completion of B, we have a subgroup H = {1/3 s € Aut B} of
Aut B isomorphic to Aut B, and with many involutions. Let ¢ : G — H be the corresponding isomorphism,
so that G(¢) = q(¢) for every ¢ € Aut 2.

By 384D, there is a Boolean isomorphism 0 : 92 — B such that q(o) = 9¢é‘1 for every ¢ € G. Note that

O(supp ¢) = supp(Aph~") = supp 4(¢)

for every ¢ € G, so that é(supp G~ Y(m)) = supp for every m € H.

(b) If u € 2, then fu € B. P It is enough to consider the case u ¢ {0,1}, since surely 60 = 0 and
1 = 1. Take any w € B which is neither 0 nor 1; then there is an involution in Aut 9B with support w (382P
again); the corresponding member 7 of H is still an involution with support w. Its image ¢~!(r) in G is
an involution with support a = 61w € é\l; of course 0 # a # 1. Take non-zero uy, uz € A such that u; ca

and uz C 1\ a; set ug = 1\ (u; Uus). Because 2 is homogeneous, there are ¢, ©» € G such that ¢u; = u,
Puy = uy, Yus = usz; set ¢s = ¢1p. Then we have

u = ¢uy C ¢p(supp ¢ () = supp(dg—H(m)p™ ) C d(ug Uuz) = uU dus,
u = ¢ous C d2(supp§~t(m)) = supp(¢2g~(m)p5 ") C uU pous = u U pus,
SO
¢(supp ¢~ () N ga(supp ¢~ (7)) = u,

and
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fu = 0(¢(supp ¢~ (m))) 0 B(¢2(supp ¢~ (r)))
= O(supp g (m)¢~ ") n O(supp 2" ()3 ')
=é<supp4 "(G(¢)m(¢)™")) 0 O(supp G (G(¢2)md(¢2) 7))
= supp(q(¢)mG(¢) ") N supp((d2)md(¢2) ")
(see the last sentence of (a) above)

= 4(¢)(supp ) N G(¢p2)(supp ) = G(¢)w N §(P2)w € B

because both q(¢) and §(¢2) belong to H. Q

Similarly, 6~1v € A for every v € B, and 0 = 0[2{ is an isomorphism between 2 and ‘B.
We now have

4(¢) = 4(9)1%B = (066~")B = 040~
for every ¢ € Aut . Finally, 6 is unique by 384C, as before.

384F Corollary If 2 and 95 are atomless homogeneous Boolean algebras with isomorphic automorphism
groups, they are isomorphic as Boolean algebras.

Remark Of course a one-element Boolean algebra {0} and a two-element Boolean algebra {0,1} have
isomorphic automorphism groups without being isomorphic.

384G Corollary If 2 is a homogeneous Boolean algebra, then Aut®l has no outer automorphisms.

proof If 20 = {0,1} this is trivial. Otherwise, 2 is atomless, so if ¢ is any automorphism of Aut®, there
is a Boolean isomorphism 6 : 21 — 2 such that g(¢) = 08¢0~ for every ¢ € Aut®, and ¢ is an inner
automorphism.

384H Definitions Complementary to the notion of ‘many involutions’ is the following concept.
(a) A Boolean algebra 2 is rigid if the only automorphism of 2 is the identity automorphism.

(b) A Boolean algebra 2 is nowhere rigid if no non-trivial principal ideal of 2 is rigid.

3841 Lemma Let 2 be a Boolean algebra. Then the following are equiveridical:

(i) A is nowhere rigid;

(ii) for every a € 2\ {0} there is a ¢ € Aut 2, not the identity, supported by a;

(iii) for every a € 2\ {0} there are distinct b, ¢ C a such that the principal ideals 2, 2, they generate
are isomorphic;

(iv) the automorphism group Aut 2l has many involutions.

proof (a)(ii)=(i) If a € A\ {0}, let ¢ € Aut be a non-trivial automophism supported by a; then ¢
is a non-trivial automorphism of the principal ideal 2l,, so %, is not rigid.

(b)(i)=(iii) There is a non-trivial automorphism 1 of A,; now if b € 2, is such that b = ¢ # b, Ay is
isomorphic to [2Ap] = Ae.

(c)(iii)=(iv) Take any non-zero a € 2. By (iii), there are distinct b, ¢ C a such that 2, 2. are
isomorphic. At least one of b\ ¢, ¢\ b is non-zero; suppose the former. Let v : 2, — 2. be an isomorphism,

<_._~
and set d =b\ ¢, d =1(b\c); then d C¢,s0d nd=0, and ¢ = (d d’) is an involution supported by a.
(d) (iv)=(ii) is trivial.
384J Theorem Let 2 and % be nowhere rigid Dedekind complete Boolean algebras and ¢ : Aut 2l —

Aut*B an isomorphism. Then there is a unique Boolean isomorphism 6 : 2l — B such that q(¢) = 60!
for every ¢ € Aut 2.

proof Put 3841(i)=(iv) and 384D together.
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384K Corollary Let 2l be a nowhere rigid Dedekind complete Boolean algebra. Then Aut®l has no
outer automorphisms.

384L Examples I note the following examples of nowhere rigid algebras.

(a) A non-trivial homogeneous Boolean algebra is nowhere rigid.

(b) Any principal ideal of a nowhere rigid Boolean algebra is nowhere rigid.

(¢) A simple product of nowhere rigid Boolean algebras is nowhere rigid.

(d) Any atomless semi-finite measure algebra is nowhere rigid.

(e) A free product of nowhere rigid Boolean algebras is nowhere rigid.

(f) The Dedekind completion of a nowhere rigid Boolean algebra is nowhere rigid.

Indeed, the difficulty is to find an atomless Boolean algebra which is not nowhere rigid; for a variety of
constructions of rigid algebras, see BEKKALI & BONNET 89.

384M Theorem Let (2, i) and (*B, 7) be atomless localizable measure algebras, and Aut; 2, Auty B the
corresponding groups of measure-preserving automorphisms. Let g : Aut; 2 — Aut; B be an isomorphism.
Then there is a unique Boolean isomorphism 6 : 2 — 9B such that g(¢) = 00! for every ¢ € Aut; 2.

proof The point is just that Aut; 2 has many involutions. I Let a € 2\ {0}. Then there is a non-zero
b C a such that the principal ideal 2, is Maharam-type-homogeneous. Take ¢ C b and d C b\ ¢ such that
fic = fid = min(1, %ﬂb) (331C). The principal ideals 2., 24 are now isomorphic as measure algebras (331I);

%
let ¢ : A. — A be a measure-preserving isomorphism. Then (¢ d) € Auty 2 is an involution supported by

a. Q

Similarly, Aut; % has many involutions, and the result follows at once from 384D.

384N To make proper use of the last theorem we need the following result.

Proposition Let (2, 1) and (B, 7) be localizable measure algebras and 6 : 2 — B a Boolean isomorphism.
For each infinite cardinal & let e, be the Maharam-type-«x component of 2 (332Gb) and for each v € ]0, o0]
let A, be the set of atoms of 2 of measure y. Then the following are equiveridical:
(i) for every ¢ € Aut, A, g6~ € Aut, B;
(ii) (o) for every infinite cardinal £ there is an a,; > 0 such that 7(6a) = a,fia for every a C e,
(B) for every «y € ]0, 00[ there is an a, > 0 such that 7(fa) = o fia for every a € A,.

proof (a)(i)=-(ii)(a) Let x be an infinite cardinal. The point is that if a, o’ Ce, and fia = ja’ <
then 7(0a) = v(fa’). P The principal ideals 2,, 2, are isomorphic as measure algebras; moreover, by
332J, the principal ideals 2,4, e, \o’ are isomorphic. We therefore have a ¢ € Aut; U such that ¢a = a’.
Consequently ¥fa = fa’, where ¢ = 0~ € Aut; B, and v(fa) = v(0a’). Q

If e, = 0 we can take o, = 1. Otherwise fix on some ¢y C e, such that 0 < ficg < oo; take b C f¢y such
that 0 < b < oo, and set ¢ = 671, a,, = b/fic. Then we shall have ¥(fa) = v(fc) = a,jia whenever
a C e, and fia = fic. But we can find for any n > 1 a partition c¢,1,... ,Cyy, of ¢ into elements of measure
%ﬂc; since v(0cp;) = v(0cy;) for all 4, j < n, we must have v(fcy;) = %9(90) = a.ficy; for all i. Soif a C e,
and fia = %ﬂc, v(0a) = v(0cp1) = afia. Now suppose that a C e, and fia = %/jc for some k, n > 1; then
a can be partitioned into k elements of measure %ﬂc, so in this case also 7(6a) = a,fia. Finally, for any
a C ey, set

D ={d:d c a, d is a rational multiple of fic},

and let D’ C D be a maximal upwards-directed set. Then sup D’ = a, so [D’] is an upwards-directed set
with supremum fa, and

v(0a) = supyepr 7(0d) = supge pr axfid = afia.

(B) Let v € ]0,00[. If A, = 0 take o, = 1. Otherwise, fix on any ¢ € A, and set o, = v(6c)/~. If
a € A, then there is a ¢ € Aut; 2 exchanging the atoms a and c, so that 6¢p0~! € Aut; B exchanges the
atoms fa and fc, and
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v(0a) = v(0c) = ayfia.

(b)(ii)=(i) Now suppose that the conditions («) and () are satisfied, that ¢ € Aut; 2 and that a € .
For each infinite cardinal k, we have ¢e,, = e,, so

p(0d(exna)) = apii(Pples na)) = agfi(es na) = v(0(e, Nna)).

Similarly, if we write a, = sup A,, then for each v € ]0,00[ we have ¢[A,] = A, and ¢a, = a, and for
¢ C ay we have

pc=~#{e:e€ Ay, e Cc});
v(0¢p(ayna)) = ay#({e:e€ Ay, e C ¢a})
=ay#({e:e€ A, eCa})
= Z v(fe) = v(8(ay na)).

ecAy,eca

Putting these together,

v(0¢a) = > v(0d(enna)) + > #(0¢(ayna))

% is an infinite cardinal ~v€]0,00[
= > v(0(exna))+ Y #(0(ayna)) =p(fa).
 is an infinite cardinal ~¥€]0,00]

But this means that
v(0p0~1b) = v(00~1b) = b

for every b € B, and §¢0~! is measure-preserving, as required by (i).

3840 Corollary If (2, 1) is an atomless totally finite measure algebra, Aut; 2 has no outer automor-
phisms.

proof Let g : Aut; 2 — Autz 2 be any automorphism. By 384M, there is a corresponding 6 € Aut 2 such
that g¢(¢) = 00! for every ¢ € Aut, 2. By 384N, there is for each infinite cardinal x an «,, > 0 such that
i(fa) = afia whenever a C e,, the Maharam-type-+ component of 2. But since e, = e, and fie, < o0
for every k, we must have o, = 1 whenever e, # 0; as 2 is atomless,

fi(6a) = > i(0(anes))

K is an infinite cardinal

= Z agi(anes)

K is an infinite cardinal

= Z ilanes) = fa

K is an infinite cardinal

for every a € . Thus § € Aut; 2 and ¢ is an inner automorphism.

384P The results above are satisfying and complete in their own terms, but leave open a number of
obvious questions concerning whether some of the hypotheses can be relaxed. Atoms can produce a variety
of complications (see 384Ya-384Yd below). To show that we really do need to assume that our algebras are
Dedekind complete or localizable, I offer the following.

Examples (a) There are an atomless localizable measure algebra (2, i) and an atomless semi-finite measure
algebra (B, 7) such that Aut? = AutB, Aut; A = Auty B but A and B are not isomorphic.
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proof Let (2, ip) be an atomless homogeneous probability algebra; for instance, the measure algebra of
Lebesgue measure on the unit interval. Let (2, i) be the simple product measure algebra (2o, fig)“* (322L);
then (2, ) is an atomless localizable measure algebra. In A let I be the set

{a : a € A and the principal ideal 2, is ccc};
then I is an ideal of A, the o-ideal generated by the elements of finite measure (cf. 322G). Set
B={a:aecU ecitheraeclorl\acl}.

Then B is a o-subalgebra of 2, so if we set 7 = i[B then (2B, 7) is a measure algebra in its own right.
The definition of I makes it plain that it is invariant under all Boolean automorphisms of 2(; so B also is
invariant under all automorphisms, and we have a homomorphism ¢ — ¢(¢) = ¢[B : Aut2A — AutB. On
the other hand, because 9 is order-dense in 2, and 2 is Dedekind complete, every automorphism of 28 can
be extended to an automorphism of 2 (see part (a) of the proof of 384E). So ¢ is actually an isomorphism
between Aut®2 and Aut®B. Moreover, still because 9B is order-dense, ¢(¢) is measure-preserving iff ¢ is
measure-preserving, so Aut; 2 is isomorphic to Aut; 8. But of course there is no Boolean isomorphism, let
alone a measure algebra isomorphism, between 2 and B, because 2 is Dedekind complete while 8 is not.

Remark Thus the hypothesis ‘Dedekind complete’ in 384D and 384J (and ‘localizable’ in 384M), and the
hypothesis ‘homogeneous’ in 384E-384F, are essential.

(b) There is an atomless semi-finite measure algebra (€, \) such that Aut ¢ has an outer automorphism.

proof In fact we can take € to be the simple product of 2 and B above. I claim that the isomorphism
between Aut 2l and Aut B gives rise to an outer automorphism of Aut €; this seems very natural, but I think
there is a fair bit to check, so I take the argument in easy stages.

(i) We may identify the Dedekind completion of € = 2 x B with 2 x A. For ¢ € Aut €, we have a
corresponding ¢ € Aut(2 x ). Now B x 2 is invariant under ¢. P Consider first ¢(0,1) = (a1,b1) € €.
The corresponding principal ideal &€, 3,) = A4, X By, of € must be isomorphic to the principal ideal
€(0,1) = B; so that if (a,b) € € and (a,b) C (a1,b1), then just one of the principal ideals €, ) = 2, x By,
Clannapinb) = Aajva X By, \p is cee. But this can only happen if 24, is ccc and By, is not; that is, if a; and
1\ by belong to I. Consequently ¢(0,a) C (a1,by) belongs to B x A for every a € A. We also find that

¢(1,0) = (1,1)\¢(0,1) = (1\ a1, 1\ b1) € B x A
Now if b € I, then
0,00 = €00 = Ay
is ccc and
d(b,0) e I x I CPBx
while
Cb(l\b)O) = (1\@1,1\171)\(]5(1),0) €B x A
This shows that ¢(b,0) € B x 2 for every b € B. So
Qg(bv a) = é(bv 0)u (;Aﬁ((),a) €BxA
for every b€ B and a € 2. Q

(ii) Let 0 : A x A — A x 2 be the involution defined by setting 6(a,b) = (b,a) for all a, b € 2A. Take
¢ € Aut € and consider ¢ = 00" € Aut(A x A). If ¢ = (a,b) € €, then 6~ '¢c = (b,a) € B x 2, so
$0~1c € B x A, by (i), and ¢c € A x B = €. This shows that ¢ [ € is a homomorphism from € to itself. Of
course 1~ = 9(5_16_1 has the same property. So we have a map ¢ : Aut € — Aut € given by setting

q(¢) = 0907 €
for ¢ € Aut €. Evidently ¢ is an automorphism.

(iii) ? Suppose, if possible, that ¢ were an inner automorphism. Let x € Aut € be such that ¢(¢) =
xox ! for every ¢ € Aut €. Then
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XOX = q() = 090~
for every ¢ € Aut €. Since G = {(2) : ¢ € Aut €} is a subgroup of Aut(2 x ) with many involutions, the
‘uniqueness’ assertion of 384D tells us that x = 6. But

0[e] =B x A # € = x[C] = x[¢],

so this cannot be. X
Thus ¢ is the required outer automorphism of Aut €.

Remark Thus the hypothesis ‘homogeneous’ in 384G, and the hypothesis ‘Dedekind complete’ in 384K, are
necessary.

384Q Example Let p be Lebesgue measure on R, and (2, i) its measure algebra. Then Aut; 2 has an
outer automorphism. P Set f(z) = 2z for z € R. Then E — f~'[E] = 1E is a Boolean automorphism of
the domain ¥ of u, and ,u(%E) = %,uE for every E € ¥ (263A, or otherwise). So we have a corresponding
0 € Autf defined by setting 0F° = (%E)' for every E € ¥, and [(fa) = %ﬂa for every a € . By
384N, we have an automorphism ¢ of Aut; 2 defined by setting ¢(¢) = ¢! for every measure-preserving
automorphism ¢. But ¢ is now an outer automorphism of Auty 2, because (by 384D) the only possible
automorphism of 2 corresponding to ¢ is 6, and 6 is not measure-preserving. Q

Thus the hypothesis ‘totally finite’ in 3840 cannot be omitted.

384X Basic exercises (a) Let 2 be a Boolean algebra. Show that the following are equiveridical: (i)
2( is nowhere rigid; (ii) for every a € A\ {0} and n € N there are disjoint non-zero by, ... ,b, C a such that
the principal ideals 2, they generate are all isomorphic; (iii) for every a € 2\ {0} and n > 1 there is a
¢ € Aut A, of order n, supported by a.

(b) Let A be an atomless homogeneous Boolean algebra and 9 a nowhere rigid Boolean algebra, and
suppose that Aut®2l is isomorphic to Aut®5. Show that there is an invariant order-dense subalgebra of B
which is isomorphic to 2.

(c) Let 2 and B be nowhere rigid Boolean algebras. Show that if Aut 2 and Aut B are isomorphic, then
the Dedekind completions 2l and 9 are isomorphic.

(d) Find two non-isomorphic atomless totally finite measure algebras (2, i), (B, ) such that Aut; 2 and
Auty B are isomorphic. (This is easy.)

(e) Let (2, ) and (B, 7) be semi-finite measure algebras and 6 : 2 — B a Boolean isomorphism. Show
that the following are equiveridical: (i) for every ¢ € Aut; A, ¢~ € Aut, B; (ii)(a) for every infinite
cardinal x there is an «, > 0 such that 7(fa) = «axfia whenever a € 2 and the principal ideal 2, is
Maharam-type-homogeneous with Maharam type x; (3) for every v € |0, 00[ there is an ., > 0 such that
v(0a) = o fia whenever a € 2 is an atom of measure 7.

(f) Show that if X is any set such that #(X) # 6, the group G of all permutations of X has no outer
automorphisms. (Hint: show that if 7 € G is an involution such that not every conjugate of 7 commutes
with 7, while 77/ and 77" are conjugate whenever 7/, 7"/ are conjugates of 7 which do not commute with ,
then 7 is a transposition.)

(g) Let g : Aut € — Aut € be the automorphism of 384Pb. Show that ¢(¢) is measure-preserving whenever
is measure-preserving, so that ¢[ Aut; € is an outer automorphism of Auty €.
X X

384Y Further exercises (a) Let (2, i) and (B, ) be localizable measure algebras such that Aut 2 &
Aut®B. Show that either 2 =B or one of 2, B has just one atom and the other is atomless.

(b) Let (A, ), (B, 7) be localizable measure algebras such that Auty; A = Aut; B. Show that either
(A, ) = (B, 7) or there is some v € |0, 00[ such that one of 2, B has just one atom of measure v and the
other has none or there are 7, 4/ € ]0, 0o[ such that the number of atoms of 2 of measure v is equal to the
number of atoms of B of measure 4/, but not to the number of atoms of 2 of measure +'.
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(c) Let (2, ) be a localizable measure algebra. Show that there is an outer automorphism of Aut A iff
2 has exactly six atoms.

(d) Let (2, i) be a localizable measure algebra. For each infinite cardinal x let e,; be the Maharam-type-«
component of A; for each v € |0,00[ let A, be the set of atoms of A of measure 7. Show that there is an
outer automorphism of Auty 2 iff

either there is an infinite cardinal x such that fie, = oo

or there are distinct 7y, § € |0, oo such that #(A,) = #(A4s) > 2
or there is a v € |0, oo[ such that #(A4,) =6

or there are 7, § € )0, 00[ such that #(A4,) =2 < #(4s) < w.

384 Notes and comments Let me recapitulate the results above. If 2 and B are Boolean algebras,
any isomorphism between Aut®l and Aut‘B corresponds to an isomorphism between 2 and 9B if either 2
and B are atomless and homogeneous (384E) or they are Dedekind complete and nowhere rigid (384J). If
(2, 1) and (B, 7) are atomless localizable measure algebras, then any automorphism between Auty 2 and
Aut; 9B corresponds to an isomorphism between 2 and B (384M) which if i = ¥ is totally finite will be
measure-preserving (3840).

These results may appear a little less surprising if I remark that the elementary Boolean algebras PX
give rise to some of the same phenomena. The automorphism group of PX can be identified with the group
of all permutations of X, and this has no outer automorphisms unless X has just six elements (384Xf).
Some of the ideas of the fundamental theorem 384D can be traced through in the purely atomic case also,
though of course there are significant changes to be made, and some serious complications arise, of which
the most striking surround the remarkable fact that Sg does have an outer automorphism (BURNSIDE 1911,
§162; ROTMAN 84, Theorem 7.8). T have not attempted to incorporate these into the main results. For
localizable measure algebras, where the only rigid parts are atoms, the complications are superable, and I
think I have listed them all (384Ya-384Yd).

Version of 14.1.15
385 Entropy

Perhaps the most glaring problem associated with the theory of measure-preserving homomorphisms and
automorphisms is the fact that we have no generally effective method of determining when two homomor-
phisms are the same, in the sense that two structures (2, i, 7) and (98,7, ¢) are isomorphic, where (2, fz)
and (B, 7) are measure algebras and 7 : A — A, ¢ : B — B are Boolean homomorphisms. Of course the
first part of the problem is to decide whether (2, ) and (28, 7) are isomorphic; but this is solved (at least
for localizable algebras) by Maharam’s theorem (see 332J). The difficulty lies in the homomorphisms. Even
when we know that (21, z) and (28, 7) are both isomorphic to the Lebesgue measure algebra, the extraordi-
nary variety of constructions of homomorphisms — corresponding in part to the variety of measure spaces
with such measure algebras, each with its own natural inverse-measure-preserving functions — means that
the question of which are isomorphic to each other is continually being raised. In this section I give the most
elementary ideas associated with the concept of ‘entropy’, up to the Kolmogorov-Sinai theorem (385P). This
is an invariant which can be attached to any measure-preserving homomorphism on a probability algebra,
and therefore provides a useful method for distinguishing non-isomorphic homomorphisms.

The main work of the section deals with homomorphisms on measure algebras, but as many of the most
important ones arise from inverse-measure-preserving functions on measure spaces. I comment on the extra
problems arising in the isomorphism problem for such functions (385T-385V). I should remark that some of
the lemmas will be repeated in stronger forms in the next section.

385A Notation Throughout this section and the next two, I will use the letter ¢ to denote the function
from [0, o[ to R defined by saying that q(t) = —tInt =tIn 1 if t > 0, ¢(0) = 0.

(© 1997 D. H. Fremlin
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The function ¢

We shall need the following straightforward facts concerning q.

(a) ¢ is continuous on [0, 00 and differentiable on ]0,00[; ¢’(t) = —1 — Int and ¢"(t) = —1 for t > 0.
Because ¢” is negative, ¢ is concave, that is, —¢q is convex. ¢ has a unique maximum at (% %)
(b) If s > 0 and ¢t > 0 then ¢'(s +t) < ¢'(¢); consequently
g(s+1t)=q(s) + [y ¢'(s + 7)dr < q(s) +q(t)
for s, t > 0. It follows that ¢(> 1, si) < Do Oq(sl) for all sg,...,s, > 0 and (because ¢ is continuous)

Q(Zz 05i) < Do aq(s;) for every non-negative summable series (s z>ieN-
(c) If s, t > 0 then q(st) = sq(t) + tq(s); more generally, if n > 1 and s; > 0 for i < n then

q(Ilizg si) = Z?:o q(s)[ Tizj 8-

ar (a(t)
It follows that for every € > 0 there is a § > 0 such that [t — 4| < € whenever ¢(¢) + q(1 —t) >

(d) The function ¢ — ¢(t) + ¢(1 — t) has a unique maximum at (3,In2). (4 (q(t) + q(1 —t))
In

(e) If0 <t <1 theng(l—t)<gq(t). P Set f(t) =q(t) —q(1—t). Then
=14

for 0 <t <1 while f(0) = f(1)=0,50 f(t) >0for 0<t <1 Q

(f)(i) If A is a Dedekind o-complete Boolean algebra, I will write ¢ for the function from L°(2()* to
LO(2) defined from ¢ (364H). Note that because 0 < ¢(t) < 1 for t € [0,1], 0 < g(u) < x1if 0 < w < x1.
(i) By (b), q(u+v) < q(u) + g(v) for all u, v > 0 in LO(A). (Represent 2 as the measure algebra of a
measure space, so that g(f*) = (qf)*, as in 364Ib.)
(iii) Similarly, if u, v € LY(2)T, then g(u x v) = u x q(v) + v x G(u).

385B Lemma Let (2, /i) be a probability algebra, B a closed subalgebra of 2, and P : L'(A, 1) —
L*(2A, i) the corresponding conditional expectation operator (365Q). Then [ g(u) < ¢(f ) and P(g(u)) <
q(Pu) for every u € L>=(A)".

proof Apply the remarks in 365Qb to —q. (g(u) € L™ C L! for every u € (L>°)" because ¢ is bounded on
every bounded interval in [0, oo[.)

385C Definition Let (2, /i) be a probability algebra. If A is a partition of unity in 2, its entropy is
H(A) =3, c4q(pa), where g is the function defined in 385A.

Remarks (a) In the definition of ‘partition of unity’ (311Gc) I allowed 0 to belong to the family. In the
present context this is a mild irritant, and when convenient I shall remove 0 from the partitions of unity
considered here (as in 385F below). But because ¢(0) = 0, it makes no difference; H(A) = H(A \ {0})
whenever A is a partition of unity. So if you wish you can read ‘partition of unity’ in this section to mean
‘partition of unity not containing 0’, if you are willing to make an occasional amendment in a formula. In
important cases, in fact, A is of the form {a; : i € I} or {a; : i € I} \ {0}, where (a;);ecs is an indexed
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partition of unity, with a; na; = 0 for ¢ # j, but no restriction in the number of ¢ with a; = 0; in this case,
we still have H(A) =3, ; q(fa;).

(b) Many authors prefer to use log, in place of In. This makes sense in terms of one of the intuitive
approaches to entropy as the ‘information’ associated with a partition. See PETERSEN 83, §5.1.

385D Definition Let (2, i) be a probability algebra, B a closed subalgebra of 2 and A a partition of
unity in 2. Let P : L*(A, 1) — L' (%A, i) be the conditional expectation operator associated with 8. Then
the conditional entropy of A on B is

H(AIB) =Y ,ca [ d(Pxa),
where ¢ is defined as in 385Af.

385E Elementary remarks (a) In the formula

ZaEAf Q(an)a

we have 0 < P(xa) < x1 for every a, so g(Pxa) > 0 and every term in the sum is non-negative; accordingly
H(A|®B) is well-defined in [0, oo].

(b) H(A) = H(A]{0,1}), since if B = {0,1} then P(xa) = paxl, so that [ g(Pxa) = q(ia). If A C B,
H(A|B) =0, since P(xa) = xa, g(Pxa) = 0 for every a.

385F Definition If 2 is a Boolean algebra and A, B C 2l are partitions of unity, I write AV B for the
partition of unity {anb:a € A, b € B} \ {0}. (See 385Xf.)

385G Lemma Let (2, i) be a probability algebra and % a closed subalgebra. Let A C 2 be a partition
of unity.
(a) If B is another partition of unity in 2, then

H(A|B) < H(AV B|B) < H(A|B) + H(B|B).

(b) If B is purely atomic and D is the set of its atoms, then H(AV D) = H(D) + H(A|B).

(c) If € C B is a smaller closed subalgebra of 2, then H(A|€) > H(A|®B). In particular, H(A) > H(A|B).

(d) Suppose that (B, ),cn is a non-decreasing sequence of closed subalgebras of 2 such that B =
Unen Bn- If H(A) < oo then

H(A|B) = lim,, o H(A|B,,).
In particular, if A C 9 then lim,, ., H(A|B,) =0
proof Write P for the conditional expectation operator on L*(2, 1) associated with 9B.

(a)(i) If B is infinite, enumerate it as (b;) en; if it is finite, enumerate it as (b;),<, and set b; = 0 for
j >n. For any a € A,

Xa = Z;io X(ambj)’ P(Xa) = E;io PX(ambj)7

n

q(Pxa) = hm q ZPX (anby))

7=0
<
,}LH;OZ%Q(PXQQI) ZO d(Px(anby))
j= j=

where all the infinite sums are to be regarded as order*-limits of the corresponding finite sums (see §367),
and the middle inequality is a consequence of 385A(f-ii). Accordingly
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H(AV B|%B) / 2(Px(anb))
a€A,beB,anb#0

>3 [atrxann) = Y e = am),

acA j=0 acA

(ii) Suppose for the moment that A and B are both finite. For a € 2 set u, = P(xa). If a, b € A we
have 0 < ugqp < Uup in LO(%)7 so we may choose vg; € LO(%) such that 0 < v, < x1 and ugnp = Vap X Up.
For any b € B, Y caUarb = up (because Y, x(anb) = xb), so up X Y ,c4Vap = up. Since

[lg(us) > 0] < [up > O], qlup) X 34 4 vab = qlus).
For any a € A,

(because vy € L2(B) for every b, so P(xb X vap) = P(xb) X vap)

> P(a(Y xb x vw)

beB

= P(Z Xb X q(vap))

beB

= Zub X q(vab)

beB

(385B)

(because B is disjoint)

(because ¢(vqp) € LO(B) for every b).
Putting these together,

H(AVB|B)= ) / (ars) = Y / (up X Vab)

acA,beB acA,beB
Z /ubxqvab Z /vaquub
acA,beB acA,beB
(385 A (£-ii))
< Z/ (ua) + Z/ (wy) = H(AB) + H(B|B),
acA beB

(iii) For general partitions of unity A and B, take any finite set C C AV B. Then C C {anb:a €
Ap, b € By} where Ag C A and By C B are finite. Set

A/:A()U{l\ supAo}, B/:Bou{l\ supBo},
so that A’ and B’ are finite partitions of unity and C C A’V B’. Now

Z/ (Px)< 3 / (Pxc) = H(A'V B'|%) < H(A|B) + H(B'|S)
ceC ceA’VB’
(by (ii))
H(A'"V AIB) + H(B' v B|B)
(by (1))
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= H(A|'B) + H(B|B).
As C' is arbitrary,
H(AV B|B) = Y ccavp | d(Pxc) < H(A|B) + H(B|B).
(b) Because B is purely atomic and D is its set of atoms,

P(Xa) = ZdED ﬂ(;:ld) Xda Q(P(Xa)) = ZdeD Q(M)Xd

for every a € A,

i(and)y\ —
H(A[B) = > acaaep Q(%)lﬂi

Accordingly,

HAVD)= Y q(aand)= 3 "D+ 10D g(ma)
a€A,deD a€A,deD H H
(385Ac¢)

= H(AIB)+ Y q(jid) = H(A|B) + H(D).
deD

(c) Write P for the conditional expectation operator corresponding to €. If a € 2,

q(Pexa) = q(PePxa) > Peq(Pxa)
by 385B. So
H(A|€) = EaGAf q(PGXa) ZZaGAfPCQ(PXa) :ZaEAf Q(an) = H(A|%)

Taking € = {0,1}, we get H(A) > H(A|B).

(d) Let P, be the conditional expectation operator corresponding to 9B, for each n. Fix a € A.
Then P(xa) is the order*-limit of (P,(xa))nen, by Lévy’s martingale theorem (367Jb). Consequently
(because ¢ is continuous) (G(P,xa))nen is order*-convergent to g(Pyxa) for every a € A (367H). Also,
because 0 < P,xa < x1 for every n, 0 < g(P,xa) < éxl for every n. By the Dominated Convergence
Theorem (3671), lim,_, [ §(Pyxa) = [ @(Pxa).

By 385B, we also have

0 < [ @(Puxa) < q( [ Pu(xa)) = q( [ xa) = q(j1a)
for every a € A and n € N; since also
0 < [ q@(Pxa) < q(fia),

we have | [ g(P,xa) — [ q(Pxa)| < q(ia) for every a € A, n € N.
Now we are supposing that H(A) is finite. Given € > 0, we can find a finite set I C A such that
> aeavs 4(pa) < € and an ng € N such that

S aerlf @(Poxa) — [ q(Pxa)| < e
for every n > ng; in which case
ZaeA\I|f Q(ana) - f(j(PXCL)‘ SZaEA\I q(ﬁa) <e
and |H(A|%B,,) — H(A|B)| < 2¢ for every n > ng. As e is arbitrary, H(A|B) = lim,,_, o H(A|B,).
385H Corollary Let (2(, i) be a probability algebra and A, B two partitions of unity in 2. Then
H(A) <H(AVB)< H(A)+ H(B).
proof Take B = {0,1} in 385Ga.
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3851 Lemma Let (2, i) be a probability algebra, and 7 : 2 — 2 a measure-preserving Boolean homo-
morphism. If A C 2 is a partition of unity, then H(7[A]) = H(A).

prOOf ZGEA q(ﬂﬂ-a') = ZaeA q(ﬂa)'

385J Lemma Let (2, i) be a measure algebra. Let A be the set of its atoms. Then the following are
equiveridical:

(i) either 2 is not purely atomic or 2 is purely atomic and H(A) = oo;

(ii) there is a partition of unity B C 2 such that H(B) = oo;

(iii) for every v € R there is a finite partition of unity C' C 2 such that H(C) > ~.

proof (i)=-(ii) We need examine only the case in which 2 is not purely atomic. Let a € 2 be a non-zero
element such that the principal ideal 2, is atomless. By 331C we can choose inductively a disjoint sequence
(an)nen such that a,, C a and fa,, = 2*"’1,aa. Now, for each n € N, choose a disjoint set B,, such that

#(B,) = 22" bcCa, and ab=2"2"[ia, for each b € B,,.
Set
B =U,eny BnU{1\a}.
Then B is a partition of unity in 2 and

HB) 23 S 5B =32 a5 )

n=0beB, n=0
2n+1+2"

o) —
fa
= n
n=0 2nt ﬂa
(ii)=(iii) Enumerate B as (b;);en. For eachn € N, C,, = {b; : i <n}U{1\ sup,,, b;} is a finite partition
of unity, and

limy, 00 H(Cp) > limy 00 Y1 q(ib;) = H(B) = o0.

(iii)=-(i) We need only consider the case in which 2 is purely atomic. In this case, AV C = A for every
partition of unity C C 2, so H(C) < H(A) for every C' (385H), and H(A) must be infinite.

385K Definition Let 2 be a Boolean algebra. If 7 : A — 2 is an order-continuous Boolean homo-
morphism, A C 2 is a partition of unity and n > 1, write D, (A, x) for the partition of unity generated
by {7‘a:a € A, 0 <i < n}, that is, {inf;<, 7%a; : a; € A for every i < n}\ {0}. It will occasionally be
convenient to take Do(A,w) = {1} (or @ in the trivial case 2 = {0}). Observe that D;(A4,7) = A\ {0} and

Dyi1(A,m) = Dyp(A,m) V™ [A]l = AV D, (A, 7))
for every n € N.

385L Lemma Let (2, ) be a probability algebra and 7 : 2 — 2 a measure-preserving Boolean ho-
momorphism. Let A C 2 be a partition of unity. Then lim,, ., %H(DR(AJT)) = inf,,>1 %H(Dn(A,w)) is
defined in [0, co].

proof (a) Set ag = 0, a, = H(Dp,(A,m)) for n > 1. Then apmyn < o + ay, for all my, n > 0. P If m,
n>1, Dyin(A,7) = Dp(A,7) Va™[D,(A,7)]. So 385Ga tells us that

H(Dyn(A,7)) < H(D (A, ) + H(z" [Do(A, 7)) = H(Dy(A, 7)) + H(Dy (A, 7))
because 7 is measure-preserving. Q

(b) If oy = oo then of course H(D,,(A, 7)) > H(A) = oo for every n > 1, by 385H, so inf,>1 = H (D, (A, ))
LH(D,(A,)). Otherwise, o, < na; is finite for every n. Set a = infp,>1 %an. Ife>0

n
there is an m > 1 such that %am < a+e Set M = maxjcm, ;. Now, for any n > m, there are k > 1,

j < m such that n = km + j, so that

= o0 = lim,, s
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1 k M 1 M
angkam"'aja 7an§7am+7§*am+7~
n n n m n

Accordingly limsup,,_, o, ~an < o+ €. As € is arbitrary,
.. 1 . 1
a < liminf, . o, <limsup,_, ., —on < «
n n

and lim,,_, o %an = « is defined in [0, 00].

Remark See also 385Yc¢ and 386Kc below.

385M Definition Let (2, ) be a probability algebra, and = : 2l — 21 a measure-preserving Boolean
homomorphism. For any partition of unity A C 2, set

h(m, A) = inf,>1 %H(Dn(A7 7)) = limy, 00 %H(DH(A, ™))
(385L). Now the entropy of  is
h(m) = sup{h(m, A) : A C 2 is a finite partition of unity}.

Remarks (a) For any partition A of unity,
h(r,A) < H(D1(A, 7)) = H(A).

(b) Observe that if 7 is the identity automorphism then D, (A,7) = A\ {0} for every A and n, so that
h(m) =0.

385N Lemma Let (2, 1) be a probability algebra and A, B two partitions of unity in 2. Let 7 : A — 2
be a measure-preserving Boolean homomorphism. Then h(w, A) < h(w, B) + H(A|B), where 9B is the closed
subalgebra of 2 generated by B.

proof We may suppose that 0 ¢ B, since removing 0 from B changes neither D, (B, 7) nor %8B. For each
n €N, set A, = 7"[4] and B, = 7"[B]. Let B,, = 7"[B] be the closed subalgebra of 2 generated by B,,,
and BF the closed subalgebra of 2 generated by D, (B,w). Then H(A,|B,) = H(A|®B). P The point is
that, because B is purely atomic and B is its set of atoms,

i(anb) . _
H(AIB) =3 capen q(”(ﬂb )b

as in the proof of 385Gb. Similarly,

H(Au|B1) = e a pep 0 S (") = H(AIB). @

Accordingly, for any n > 1,

I
—

H(Dn(A,m)[B7) < ) H(Ai|B;,)

i

I
o

(by 385Ga, because Dy (A, m) =AgV ...V A,)

|
-

< H(A;|B))

i

Il
=]

(by 385Ge)
=nH(A|B).

Now

h(r,A) = lim lH(Dn(A,ﬂ')) < limsup%H(Dn(A,ﬂ') V D,(B, 7))

n—oo N n—soo

(385Ga)
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= limsup — H (D (B, 7)) + - H(Dy(A, 7)|B7)

n—oo

(385GD)
< lim sup%H(Dn(B, 7)) + lim sup%H(Dn(A, )82 < h(r, B) + H(A|B).

n—roo n—oo

3850 Lemma Let (2, 1) be a probability algebra, = : 2 — 2 a measure-preserving Boolean homomor-
phism, and A C 2 a partition of unity such that H(A) < oco. Then h(m, A) < h(m).

proof If A is finite, this is immediate from the definition of h(); so suppose that A is infinite. Enumerate
A as {(a;);en. For each n € N let 98,, be the subalgebra of 2 generated by ag, ... ,a,, and B, the set of its

atoms; set B = J, .y Bn. Then A C B, so
lim,, oo H(A|B,) = H(A|I'B) =0
by 385Eb and 385Gd. Accordingly, using 385N,
h(m, A) < h(m, Bn) + H(A|Br) < h(m) + H(A[Brn) = h(T)
as n — oo, and h(m, A) < h(m).

neN

385P Theorem (KOLMOGOROV 58, SINAT 59) Let (2, i) be a probability algebra, and 7 : 2 — 2 a
measure-preserving Boolean homomorphism.

(i) Suppose that A C 2 is a partition of unity such that H(A) < oo and the closed subalgebra of 2
generated by |J, o 7" [A] is 2 itself. Then h(r) = h(r, A).

(ii) Suppose that 7 is an automorphism, and that A C 2l is a partition of unity such that H(A) < co and
the closed subalgebra of 2 generated by |J,,c, 7" [A] is 2 itself. Then h(7) = h(m, A).

proof I take the two arguments together. In both cases, by 3850, we have h(mw, A) < h(w), so I have to

show that if B C 2 is any finite partition of unity, then h(m, B) < h(w, A). For (i), let A,, be the partition

of unity generated by o<, ., mI[A]; for (ii), let A, be the partition of unity generated by U n<j<n I [A].

Then h(w, A,) = h(m, A) for every n. P In case (i), we have D,, (A, 7) = Dyin(A, ) for every m, so that
lim —H(Dp(An, 7)) = lim ~H(Dpin(A, 7))

m—oo M m—oo ™M

= lim L H(D,(A,7)).

m—oo M

In case (ii), we have Dy, (Ay, 7) = 7 "[Dyron(A, )] for every m, so that

lim ~H(Dp(An, 7)) = lim L H(Duion(A, 7))

m—oo M m—oo M

= lim LH(Dm(A 7). Q

m—oo m

Let 2, be the purely atomic closed subalgebra of 20 generated by A,; our hypothesis is that the
closed subalgebra generated by J, cy An is 2 itself, that is, that J 2, is dense. But this means that
lim,, oo H(B|2,,) = 0 (385Gd). Since

h(m, B) < h(r, Ay) + H(B|2L,) = h(r, A) + H(B|2,)

neN

for every n (385N), we have the result.

385Q Bernoulli shifts Let (2, 1) be a probability algebra, and 7 : 20 — 2( a measure-preserving Boolean
homomorphism.

(a) 7 is a one-sided Bernoulli shift if there is a closed subalgebra 2 in 2 such that (i) (7*[%o])ren
is stochastically independent (that is, fa(inf;<j ma;) = H?:o pa; for all ag, ... ,ar € Ap; see 325L) (ii) the
closed subalgebra of 2 generated by (J, o 7 [%o] is A itself. In this case 2y is a root algebra for .
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(b) 7 is a two-sided Bernoulli shift if it is an automorphism and there is a closed subalgebra 2 in
such that (i) (7*[2])rez is independent (ii) the closed subalgebra of 2 generated by J,, 7% [Ao] is A itself.
In this case 2y is a root algebra for 7.

It is important to be aware that a Bernoulli shift can have many, and (in the case of a two-sided shift)
very different, root algebras; this is the subject of §387 below.

385R Theorem Let (2, i) be a probability algebra and 7 : 2 — B a Bernoulli shift, either one- or
two-sided, with root algebra 2.

(i) If g is purely atomic, then h(7) = H(A), where A is the set of atoms of .

(ii) If 2 is not purely atomic, then h(m) = co.
proof (a) The point is that for any partition of unity C' C 2y \ {0}, h(7,C) = H(C). P For any n > 1,
D,,(C, ) is the partition of unity consisting of elements of the form inf;,, 7/¢;, where ¢y, ... ,c,—1 € C. So

n—1
H(D,(Com) = > g(p(inf wle;)) = > a] e
COy.v sCp—1E€C J co,... ,en—1€C  j=0

- Y e [

€0, en—1€C =0 i#j
(385Ac)
n—1
=3 3" alic) = nH(C)
j=0 ceC
So

h(m, C) = limy o0~ H(Dy(C,m) = H(C). Q

(b) If 2y is purely atomic and H(A) < oo, the result can now be read off from 385P, because the closed
subalgebra of 2 generated by A is 2 and the closed subalgebra of 2 generated by [J, oy 7 [A] or U,z 7 [A]
is A; so h(w) = h(w, A) = H(A).

(c) Otherwise, 385J tells us that there are finite partitions of unity C' C 2y such that H(C) is arbitrarily

large. Since h(w) > h(mw,C') = H(C) for any such C, by (a) and the definition of h(r), h(7) must be infinite,
as claimed.

385S Remarks (a) The standard construction of a Bernoulli shift is from a product space, as follows.
If (X,%, o) is any probability space, write p for the product measure on X; let (2, /i) be the measure
algebra of p, and Ay C 2 the set of equivalence classes of sets of the form {x : £(0) € E} where E € ¥, so
that (o, &[Ao) can be identified with the measure algebra of py. We have an inverse-measure-preserving
function f : XN — XN defined by setting

f(x)(n) = z(n+1) for every z € XN, n € N,
and f induces, as usual, a measure-preserving homomorphism 7 : 24 — 2. Now 7 is a one-sided Bernoulli
shift with root algebra o. P (i) If ag,... ,ar € Ao, express each a; as {z : z(0) € E;}*, where E; € X.
Now
maj ={z: (f(2))(0) € E;}* ={z: 2(j) € Ej}*

for each j, so
. ; . k k-
p(infj<p aj) = p(; < {z 1 2(4) € Ej}) = [[;20 woEj = [1;—¢ Ba;-

Thus (7*[2o])ken is independent. (ii) The closed subalgebra 2 of 2 generated by Jcy 7" (o] must contain
{z : z(k) € E}* for every k € N and E € ¥, so must contain W* for every W in the o-algebra generated
by sets of the form {z : (k) € E}; but every set measured by p is equivalent to such a set W (254Ff). So
A =2A Q
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(b) The same method gives us two-sided Bernoulli shifts. Again let (X, X, o) be a probability space,
and this time write u for the product measure on X?%; again let (2, i) be the measure algebra of u, and
Ay C 2A the set of equivalence classes of sets of the form {x : 2(0) € E} where E € %, so that (o, i[2p) can
once more be identified with the measure algebra of ug. This time, we have a measure space automorphism
f: X% = X7 defined by setting

f(@)(n) =z(n+1) for every x € X% n € Z,

and f induces a measure-preserving automorphism 7 : 2 — 2(. The arguments used above show that 7 is a
two-sided Bernoulli shift with root algebra 2(g.

It follows that if (2, 1) is an atomless homogeneous probability algebra it has a two-sided Bernouilli shift.
P We can identify (2, i) with the measure algebra of the usual measure on {0, 1}**% = ({0,1}*)%, where
K is the Maharam type of 2. Q

(¢) I remarked above that a Bernoulli shift will normally have many root algebras. But it is important
to know that, up to isomorphism, any probability algebra is the root algebra of just one Bernoulli shift of
each type.

P (i) Given a probability algebra (2, fip) then we can identify it with the measure algebra of a probability
space (X, 3, o) (321J), and now the constructions of (a) and (b) provide Bernoulli shifts with root algebras
isomorphic to (o, fig)-

(ii) Let (2, ) and (2B, 7) be probability algebras with one-sided Bernoulli shifts 7, ¢ with root algebras 2o,
By, and suppose that 0y : Ay — By is a measure-preserving isomorphism. Then (2, 1) can be identified with
the probability algebra free product of (7*[4g])ren (325L), while (B, 7) can be identified with the probability
algebra free product of (7¥[B¢])xen. For each k € N, ¢¥fy(7*)~1 is a measure-preserving isomorphism
between 7*[20y] and ¢*[Bo]. Assembling these, we have a measure-preserving Boolean homomorphism
0 : A — B such that fa = ¢¥0y(7*)"'a whenever k € N and a € 7¥[o] (325I), that is, 7%a = ¢*ya
for every a € g, k € N. Of course 6 extends y. Also 0[] is a closed subalgebra of B (324Kb) including
®*[By] for every k, so is the whole of B, and @ is a measure-preserving isomorphism.

If we set

C={a:ac, Ora= ¢ba},
then € is a closed subalgebra of 2. If a € 2y and k € N, then
Or(n*a) = 0n*Tla = ¢FH10ga = ¢(d*0pa) = ¢0(r*a),

so mfa € €. Thus ¢*[y] C € for every k € N, and ¢ = 2.
This means that 6 : 2 — B is such that ¢ = m6~!; 0 is an isomorphism between the structures (A, ji, 7)
and (B, 7, ¢) extending the isomorphism 6y from 2y to B.

(iii) Now suppose that (2, i) and (B, 7) are probability algebras with two-sided Bernoulli shifts m, ¢
with root algebras 20y, B¢, and suppose that 6y : Ay — B is a measure-preserving isomorphism. Repeating
(ii) word for word, but changing each N into Z, we find that 6y has an extension to a measure-preserving
isomorphism 6 : 2 — B such that 7 = ¢0, so that once more the structures (2, i, 7) and (B, 7, ) are
isomorphic. Q

(d) The classic problem to which the theory of this section was directed was the following: suppose we
have two two-sided Bernoulli shifts m and ¢, one based on a root algebra with two atoms of measure % and
the other on a root algebra with three atoms of measure %; are they isomorphic? The Kolmogorov-Sinai
theorem tells us that they are not, because h(r) = In2 and h(¢) = In3 are different. The question of which

Bernoulli shifts are isomorphic is addressed, and (for countably-generated algebras) solved, in §387 below.

(e) We shall need to know that any Bernoulli shift (either one- or two-sided) is ergodic. In fact, it is
mixing. I Let (2, i) be a probability algebra and 7 : 2 — 2 a Bernoulli shift with root algebra 2. Let B
be the subalgebra of 2 generated by J,cn 7 [o] (if 7 is one-sided) or by ey, 7% [Ao] (if 7 is two-sided).
If b, c € B, there is some n € N such that both belong to the algebra B, generated by UJ;,, 7/ [o] (if 7 is
one-sided) or by U; <, 7 [Ao] (if 7 is two-sided). If now k > 2n, 7¥b belongs to the algebra generated by
U,>n 7 [2o]. But this is independent of B, (cf. 325Xg, 272K), so
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i(cnm®b) = fic - p(m*b) = fic - fib.
And this is true for every k > n. Generally, if b, ¢ € 2 and € > 0, there are V', ¢/ € B such that (b AY) <€
and fi(c A ') <, so that

limsup |fi(cna*b) — fic - fb| < limsup |a(c’ na*b') — fic’ - b/
k—o0 k—o00
+ilend) + p(atb o T + e b — fic - jib'|
<0+ €+ e+ |ge— pd |+ |ab— pb'| < 4e.
As ¢, b and ¢ are arbitrary, 7 is mixing. By 372Qa, it is ergodic. Q

(f) The following elementary remark will be useful. If (2, i) is a probability algebra, = : % — 2 is a
measure-preserving automorphism, and 2y C 2 is a closed subalgebra such that (7*[o])ren is independent,
then (7o) kez is independent. B If J C Z is finite and (a;);e is a family in 2o, take n € N such that
—n < j for every j € J; then

fiinfjes ma;) = fiinfjes " a;) = [1;c, fa;. Q

(g) Tt is I hope obvious, but perhaps I should explicitly say: if (2, ) is a probability algebra, ¢ : 2 — 2
is a measure-preserving automorphism, and 7 : 2l — 2 is a (one- or two-sided) Bernouilli shift with a root
algebra 2o, then ¢m¢~! is a Bernouilli shift and ¢[2o] is a root algebra for ¢me=1.

385T Isomorphic homomorphisms (a) In this section I have spoken of ‘isomorphic homomorphisms’
without offering a formal definition. I hope that my intention was indeed obvious, and that the next
sentence will merely confirm what you have already assumed. If (21, fi;) and (25, fiz) are measure algebras,
and 71 : Ay — Ay, 7o : A — Ay are functions, then I say that (Ay, f1,71) and (s, fiz, m2) are isomorphic
if there is a measure-preserving isomorphism ¢ : 2; — 2y such that 7o = ¢m1¢~'. In this context, using
Maharam’s theorem or otherwise, we can expect to be able to decide whether (201, i1) and (s, i) are or
are not isomorphic; and if they are, we have a good hope of being able to describe a measure-preserving
isomorphism 6 : 2; — 2. In this case, of course, (s, fiz,m2) will be isomorphic to (1, i1, 75) where
7h = 07110, So now we have to decide whether (2, i1, 1) is isomorphic to (2, ji1, 75); and when 7y, T2
are measure-preserving Boolean automorphisms, this is just the question of whether m, 7} are conjugate in
the group Autg, () of measure-preserving automorphisms of ;. Thus the isomorphism problem, as stated
here, is very close to the classical group-theoretic problem of identifying the conjugacy classes in Autg ()
for a measure algebra (2, i). But we also want to look at measure-preserving homomorphisms which are
not automorphisms, so there would be something left even if the conjugacy problem were solved. (In effect,
we are studying conjugacy in the semigroup of all measure-preserving Boolean homomorphisms, not just in
its group of invertible elements.)

The point of the calculation of the entropy of a homomorphism is that it is an invariant under this
kind of isomorphism; so that if 71, mo have different entropies then (2;, i1, m1) and (s, fia, 72) cannot be
isomorphic. Of course the properties of being ‘ergodic’ or ‘mixing’ (see 3720) are also invariant.

(b) All the main work of this section has been done in terms of measure algebras; part of my purpose
in this volume has been to insist that this is often the right way to proceed, and to establish a language
which makes the arguments smooth and natural. But of course a large proportion of the most important
homomorphisms arise in the context of measure spaces, and I take a moment to discuss such applications.
Suppose that we have two quadruples (X1, X1, 1, f1) and (Xa, ¥, po, f2) where, for each i, (X;, ¥, p;) is
a measure space and f; : X; — X, is an inverse-measure-preserving function. Then we have associated
structures (1, fi1,m1) and (g, fiz, m2) where (2;, fi;) is the measure algebra of (X;, ¥;, p;) and m; : 2; — 2A;
is the measure-preserving homomorphism defined by the usual formula 7, E* = fl-_l[E]'. Now we can call
(X1,%1, 11, f1) and (X, X9, pa, f2) isomorphic if there is a measure space isomorphism ¢ : X; — Xo such
that fo = gfig~!. In this case (1, ji1,m1) and (Rz, jiz, T2) are isomorphic under the obvious isomorphism
¢(E*) = g[E]* for every E € ¥.

It is not the case that if the (2, fi;, ;) are isomorphic, then the (X;,3;, u;, f;) are; in fact we do not
even need to have an isomorphism of the measure spaces (for instance, one could be Lebesgue measure, and
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the other the Stone space of the Lebesgue measure algebra). Even when (24y, i1, 71) and (g, fia, 7o) are
actually identical, f; and fo need not be isomorphic. There are two examples in §343 of a probability space
(X, 3, u) with a measure space automorphism f : X — X such that f(z) # x for every € X but the
corresponding automorphism on the measure algebra is the identity (3431, 343J); writing ¢ for the identity
map from X to itself, (X, %, u,¢) and (X, X, i, f) are non-isomorphic but give rise to the same (2, fi, 7).

(c) Even with Lebesgue measure, we can have a problem in a formal sense. Take (X, 3, i) to be [0,1]
with Lebesgue measure, and set f(0) =1, f(1) =0, f(z) = z for x €]0,1[; then f is not isomorphic to the
identity function on X, but induces the identity automorphism on the measure algebra. But in this case we
can sort things out just by discarding the negligible set {0, 1}, and for Lebesgue measure such a procedure
is effective in a wide variety of situations. To formalize it I offer the following definition.

385U Definition Let (X7,X1, 1) and (Xa, X, o) be measure spaces, and f1 : X1 — Xy, fo: Xo — X5
two inverse-measure-preserving functions. I will say that the structures (X1,X1, p1, f1) and (Xa, X, o, f2)
are almost isomorphic if there are conegligible sets X/ C X; such that f;[X}] C X/ for both ¢ and
the structures (X!, u?, f/) are isomorphic in the sense of 385Tb, where 3} is the algebra of relatively
measurable subsets of X/, ) is the subspace measure on X/ and f/ = f;[ X/.

385V I leave the elementary properties of this notion to the exercises (385Xq-385Xs), but I spell out
the result for which the definition is devised. I phrase it in the language of §§342-343; if the terms are not
immediately familiar, start by imagining that both (X;, ¥;, ;) are measurable subspaces of R endowed with
some Radon measure (342J, 343H), or indeed that both are [0, 1] with Lebesgue measure.

Proposition Let (X7,%;,p1) and (X2, X3, u2) be perfect, complete, strictly localizable and countably
separated measure spaces, and (R, fi1), (o, fiz) their measure algebras. Suppose that f; : X7 — X,
fo : Xo — Xy are inverse-measure-preserving functions and that m; : 1 — Ay, mo : Ay — A are the
measure-preserving Boolean homomorphisms they induce. If (24, f1,71) and (g, iz, 72) are isomorphic,
then (X1,%1, p1, f1) and (Xa, Xo, pa, f2) are almost isomorphic.

proof Because (2, fi;) and (2, fiz) are isomorphic, we surely have p3 X, = psXo. If both are zero, we
can take X| = X} = () and stop; so let us suppose that pu; X; > 0. Let ¢ : 2; — 25 be a measure-preserving
automorphism such that m3 = ¢m ¢~ !. Because both p; and s are complete and strictly localizable
and compact (343K), there are inverse-measure-preserving functions g; : X; — X5 and g9 : Xo = X3
representing ¢!, ¢ respectively (343B). Now g192 : Xo — Xo, gog1 : X1 — X1, fag1 : X1 — Xo and
g1f1 : X1 — Xo represent, respectively, the identity automorphism on 2, the identity automorphism on
2;, the homomorphism ¢~ 7y = ¢~ : As — A; and the homomorphism 7,6~ ' again. Next, because
both p1 and ps are countably separated, the sets Ey = {z : gag1(z) = 2}, H = {z : fag1(x) = g1 f1(z)}
and Ey = {y : ¢192(y) = y} are all conegligible (343F). As in part (b) of the proof of 3441, ¢;[E; and
g2 [ E5 are the two halves of a bijection, a measure space isomorphism if F; and Fy are given their subspace
measures. Set Go = F1 N H, and for n € N set G,11 = G, N ffl[Gn]. Then every G,, is conegligible, so
X1 = Npen Gn is conegligible. Because X7 is a conegligible subset of 1, h = g,[X] is a measure space
isomorphism between X and X} = g1[X1], which is conegligible in X5. Because f1[Gp41] C G, for each n,
f1IX1] € X1. Because X1 C H, g1 f1(z) = fagi(z) for every x € X|. Next, if y € X1, g2(y) € X1, so

f2(y) = f29192(y) = 91f192(y) € g1[f1[X1]] € g1 [X1] = X5.
Accordingly we have f5 = hfih™!, where f! = f;| X/ for both i.
Thus h is an isomorphism between (X1, f{) and (X%, f3), and (X1,Xq, p1, f1) and (Xo, Xo, o, f2) are
almost isomorphic.

385X Basic exercises (a) Let (2, i) be a probability algebra and A C 2 a partition of unity. Show
that if #(A) = n then H(A) < lnn.

>(b) Let (2, z) be a probability algebra, 8 a closed subalgebra of 2 and A a partition of unity in 2,
enumerated as (an)nen. Set af = sup;s, ai, A, = {ao,... ,an,a}} for each n. Show that H(A,|B) <

H(A,+1|%B) for every n, and that H(A|B) = lim, oo H(A,|B).
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(c) Let (2, 1) be a probability algebra, 2B a closed subalgebra of 20 and A a partition of unity in 2. Show
that H(A|'B) =0 iff A C 8.

(d) Let (2, i) be a probability algebra, B a closed subalgebra of 2 and A a partition of unity in 2. Show
that H(A|B) = H(A) iff p(anb) = fia - ib for every a € A, b € B. (Hint: for ‘only if’, start with the case
B ={0,b,1\b,1} and use 385Gc.)

(e) Let (A, ) be a probability algebra and A, B two partitions of unity in 2. Show that H(AV B) =
H(A)+ H(B) iff i(anb) = fia - @b for all a € A, b € B. Show that H(AV B) = H(A) iff every member of
A is included in some member of B, that is, iff A= AV B.

(f) Let (2, 1) be a probability algebra, and write A for the set of partitions of unity in 2l not containing
0, ordered by saying that A < B if B refines A. (i) Show that A is a Dedekind complete lattice, and can
be identified with the lattice of purely atomic closed subalgebras of 2. Show that for A, B € A, AV B, as
defined in 385F, is sup{4, B} in \A. (ii) Show that H(AV B)+ H(AANB) < H(A)+ H(B) for all A, B € A,
where V, A are the lattice operations on A. (iii) Set Ay = {A: A € A, H(A) < co}. For A, B € A; set
p(A,B) =2H(AV B) — H(A) — H(B). Show that p is a metric on A; (the entropy metric). (iv) Show
that H : Ay — [0,00[ is 1-Lipschitz for p. (v) Show that the lattice operation V is uniformly p-continuous
on A;. (vi) Show that H : A; — [0, 00| is order-continuous. (vii) Show that if B is any closed subalgebra
of A, then A — H(A|*B) is order-continuous and 1-Lipschitz on A;. (viii) Show that if 7 : A — 2 is a
measure-preserving Boolean homomorphism, A — h(w, A) : A; — [0, 00[ is 1-Lipschitz for p.

(g) Let (2, [1;))ier be a family of probability algebras, with probability algebra free product (&, )
(325K). Suppose that 7; : 2; — 2; is a measure-preserving Boolean homomorphism for each 7 € I, and that
7 : € — € is the measure-preserving Boolean homomorphism they induce. Show that h(mw) = >, h(m;).
(Hint: use 385Gb and 385Gd to show that h(w) is the supremum of h(w, A) as A runs over the finite
partitions of unity in @),.; 2. Use this to reduce to the case I = {0,1}. Now show that if A; C 2l; is a
finite partition of unity for each i, and A = {ag ® a1 : ag € Ag, a1 € A1}, then H(A) = H(Ap) + H(41), so
that h(7r, A) = h(’ﬂ'o, Ao) + h(’/Tl, Al))

>(h) Let (2, ) be a probability algebra and 7 : 2 — 2 a measure-preserving automorphism. Show that
m

h(m=1) = h(n).

(i) Let (2, 1) be a probability algebra and 7 : 2 — 2 a measure-preserving Boolean homomorphism.
Show that h(7*) = kh(r) for any k € N. (Hint: if A C 2 is a partition of unity, (7%, A) < h(7*, Dy(A, 7)) =
kh(rm, A).)

(j) Let (A, ) be a probability algebra and B a topologically dense subalgebra of 2(. (i) Show that if
(a;)i<n is a partition of unity in 2 and € > 0, there is a partition (b;);<, of unity in 8 such that fi(a; A b;) <e
for every i < m. (ii) Show that if A is a finite partition of unity in 2 and € > 0 then there is a finite partition
of unity D C B such that H(AV D) < H(A) + e. (iii) Show that if 7 : 2 — 2 is a measure-preserving
Boolean homomorphism, then h(w) = sup{h(m, D) : D C B is a finite partition of unity}. (Hint: 385N,
385Gb.)

>(k) Let (2, z) be a probability algebra and 7 : 2 — 2 a measure-preserving Boolean homomorphism.
(i) Suppose there is a partition of unity A C 2 such that («) f(an7wb) = fia - b for every a € A, b € A (B)
2l is the closed subalgebra of itself generated by | J,, o 7" [A]. Show that 7 is a one-sided Bernoulli shift, and
that h(r) = H(A). (ii) Suppose that 7 is a one-sided Bernoulli shift of finite entropy. Show that there is a
partition of unity satisfying («) and (5).

>(1) Let (A, &) be the measure algebra of Lebesgue measure on [0,1[. Fix an integer k& > 2, and define
f:]0,1[ — [0, 1] by setting f(x) = <ka>, the fractional part of kx, for every = € [0, 1[; let m : 2 — A be the
corresponding homomorphism. (Cf. 372Xt.) Show that 7 is a one-sided Bernoulli shift and that h(7) = In k.
(Hint: in 385Xk, set A = {aog,... ,ar—1} where a; = [i, %[’ for i < k.)
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>(m) Let (A, &) be the measure algebra of Lebesgue measure on [0, 1]. Set f(z) = 2min(z,1 — ) for
x € [0,1] (see 372Xp). Show that the corresponding homomorphism 7 : 2 — 2l is a one-sided Bernoulli shift
and that h(m) = In2. (Hint: in 385Xk, set A = {a,1\ a} where a =0, 3]*.)

(n) Let (2, i) be a probability algebra and 7 : 2 — 2 a two-sided Bernoulli shift. (i) Show that 7! is a
two-sided Bernoulli shift. (ii) Show that 7 and 7~! are conjugate in Auty 2. (iii) Show that 7 is expressible
as the product of at most two involutions. (Hint: 382XDb.)

(o) Let {(A;, [i;))icr be a family of probability algebras, and (€, \) their probability algebra free product.
Suppose that for each i € I we have a measure-preserving Boolean homomorphism 7; : ; — 2;, and that
7 : € = € is the measure-preserving homomorphism induced by (m;)icr (325Xe). (i) Show that if every m;
is a one-sided Bernoulli shift so is 7. (ii) Show that if every m; is a two-sided Bernoulli shift so is 7.

(p) Let (2, i) be a probability algebra and 7 : 2 — 20 an ergodic measure-preserving Boolean homomor-
phism. Show that if A(7) > 0 then 2 is atomless.

(q) Show that the relation ‘almost isomorphic to’ (385U) is an equivalence relation.

(r) Show that the concept of ‘almost isomorphism’ described in 385U is not changed if we amend the
definition to require that the subspaces X|, X} should be measurable.

(s) Show that if (X71,%1, 1, f1) and (Xa, o, o, f2) are almost isomorphic quadruples as described in
385U, then (R4, fi1,m) and (s, i, m2) are isomorphic, where for each ¢ (2;, fi;) is the measure algebra of
(X, 5, 1) and m; : A; — 2A; is the measure-preserving Boolean homomorphism derived from f; : X; — Xj.

385Y Further exercises (a) Let (2, i) be a probability algebra, and write B for the lattice of closed
subalgebras of 2. Show that if A is any partition of unity in 2 of finite entropy, then the order-preserving
function B — —H(A|B) : B — ]—00, 0] is order-continuous.

(b) Let (2,z) be a probability algebra, and A; the set of partitions of unity of finite entropy not
containing 0, as in 385Xf. Show that A; is complete under the entropy metric. (Hint: show that if (A, ),en
is a non-decreasing sequence in Ay and sup,,cy H(A4,) < 0o, then the closed subalgebra of 2 generated by
Unen An is purely atomic.)

(c) Let (A, ) be a probability algebra, A a partition of unity in 2 of finite entropy, and 7 : %A — 2 a
measure-preserving Boolean homomorphism. Show that h(w, A) = lim,_, . H(A|®B,,), where B,, is the closed
subalgebra of 2 generated by |, ;<, 7'[A]. (Hint: use 385Gb to show that H(A|B,) = H(Dn41(A, 7)) —
H(D,,(A,7)) and observe that lim,, ., H(A|%,) is defined.)

(d) Let (2, z) be a probability algebra and 7 : 2 — 2 a measure-preserving Boolean homomorphism.
Suppose that there is a partition of unity A of finite entropy such that the closed subalgebra of 2l generated
by Ujsy 7'[A] is 2. Show that h(m) = 0. (Hint: use 385Yc and 385P.)

(e) Let u be Lebesgue measure on [0,1[, and take any o € ]0,1[. Let f : [0,1] — [0, 1] be the measure
space automorphism defined by saying that f(z) is to be one of x + o, x + « — 1. Let (2, i) be the measure
algebra of ([0,1[, ) and 7 : 2 — 2 the measure-preserving automorphism corresponding to f. Show that
h(m) = 0. (Hint: if o € Q, use 385Xi; otherwise use 385Yd with A = {a,1\ a} where a = [0,3[".)

(f) Set X = [0,1] \ Q, let v be the measure on X defined by setting vE = ﬁ fE H%dx for every
Lebesgue measurable set E C X, and for x € X let f(x) be the fractional part <%> of % Recall that f is
inverse-measure-preserving for v (see 372M). Let (2, 7) be the measure algebra of (X, v) and 7 : A — A the
homomorphism corresponding to f. Show that h(7) = 72/61n2. (Hint: use the Kolmogorov-Sinai theorem
and 372Yh(v).)

(g) Let (%, 1) be a probability algebra, and ¢ : 2 — 2 a one-sided Bernoulli shift. Show that there
are a probability algebra (€, 1)), a two-sided Bernouilli shift ¢ : € — €, and a measure-preserving Boolean
homomorphism 7 : 2 — € such that ¢m = w¢. (Hint: 328].)
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(h) Consider the triplets ([0, 1], 11, f1) and ([0, 1], p2, f2) where pi, po are Lebesgue measure on [0, 1],
[0, 1] respectively, fi(z) = <2z> for each x € [0, 1], and f2(z) = 2min(z, 1 —z) for each = € [0,1]. Show that
these structures are almost isomorphic in the sense of 385U, and give a formula for an almost-isomorphism.

385 Notes and comments In preparing this section I have been heavily influenced by PETERSEN 83.
I have taken almost the shortest possible route to Theorem 385P, the original application of the theory,
ignoring both the many extensions of these ideas and their intuitive underpinning in the concept of the
quantity of ‘information’ carried by a partition. For both of these I refer you to PETERSEN 83. The
techniques described there are I think sufficiently powerful to make possible the calculation of the entropy
of any of the measure-preserving homomorphisms which have yet appeared in this treatise.

Of course the idea of entropy of a partition, or of a homomorphism, can be translated into the language of
probability spaces and inverse-measure-preserving functions; if (X, ¥, 1) is a probability space, with measure
algebra (2, i), then partitions of unity in 2l correspond (subject to decisions on how to treat negligible sets)
to countable partitions of X into measurable sets, and an inverse-measure-preserving function f : X — X
gives rise to a measure-preserving homomorphism 7, : 2 — 2; so we can define the entropy of f to be h(my).
The whole point of the language I have sought to develop in this volume is that we can do this when and
if we choose; in particular, we are not limited to those homomorphisms which are representable by inverse-
measure-preserving functions. But of course a large proportion of the most important examples do arise in
this way (see 385X1, 385Xm). The same two examples are instructive from another point of view: the case
k = 2 of 385X1 is (almost) isomorphic to the tent map of 385Xm. The similarity is obvious, but exhibiting
an actual isomorphism is I think another matter (385Yh).

I must say ‘almost’ isomorphic here because the doubling map on [0, 1] is everywhere two-to-one, while
the tent map is not, so they cannot be isomorphic in any exact sense. This is the problem grappled with
in 385T-385V. In some moods I would say that a dislike of such contortions is a sign of civilized taste.
Certainly it is part of my motivation for working with measure algebras whenever possible. But I have to
say also that new ideas in this topic arise more often than not from actual measure spaces, and that it is
absolutely necessary to be able to operate in the more concrete context.

Version of 20.8.15
386 More about entropy

In preparation for the next two sections, I present a number of basic facts concerning measure-preserving
homomorphisms and entropy. Compared with the work to follow, they are mostly fairly elementary, but the
Halmos-Rokhlin-Kakutani lemma (386C) and the Shannon-McMillan-Breiman theorem (386E), in their full
strengths, go farther than one might expect.

As in §385, T write ¢(0) =0, ¢(t) = —tInt for ¢ > 0.

386A I start by returning to the notion of ‘recurrence’ from 381L-381P, in its original home.

Theorem Let (2, i) be a totally finite measure algebra and 7 : 2 — 2 a measure-preserving Boolean
homomorphism. Then 7 is recurrent on every a € 2.

proof If a € 2 is non-zero, then Z;OZO fi(r*a) = oo > pl, so there are i < j such that 0 # nlannia =
m(anmi~a) and an7wi~ta # 0. Thus (ii) of 3810 is satisfied; by 3810, 7 is recurrent on every a € 2.

386B Corollary Let (2, i) be a totally finite measure algebra and 7 : 2 — 2 a measure-preserving
Boolean homomorphism. Let € be its fixed-point subalgebra {c: ¢ € A, mc = ¢}. Then

Supy>, ™a =upr(a,€) =inf{c:acce €l e
for any a € 2 and n € N.
proof By 386A and 3810, a C sup;>, 7*a. Set a* = SUPgeN 7*a; by 381Kb, a* = SUDg>p, 7*a for every n;
by 381Ka, a* € €. Also, of course, a* C ¢ whenever a C ¢ € €, so a* = upr(a, €).

(©) 2003 D. H. Fremlin
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386C The Halmos-Rokhlin-Kakutani lemma Let (2, i) be a totally finite measure algebra and
7 : A — 2 a measure-preserving Boolean homomorphism, with fixed-point subalgebra €. Then the following
are equiveridical:

(i) 7 is aperiodic;
(ii) A is relatively atomless over € (definition: 331A);
(iii) whenever n > 1 and 0 < v < % there is an @ € 2 such that a, 7a, 72a,... , 7"
i(anc) =~vjc for every c € €;

(iv) whenever n > 1,0 < v < % and B C 2 is finite, there is an a € A such that a, 7a, 72a,... , 7" 'a
are disjoint and fi(a nb) = yfb for every b € B.

~lq are disjoint and

proof Note that € is (order-)closed because 7 is (order-)continuous (324Kb).
(i)=-(ii) Put 386A and 381P together.

(if)=(iii) Set 6 = L(LX —~) > 0. By 331B, there is a d € A such that ji(cnd) = dfic for every ¢ € €. Set
d, = w*d\ sup;;, m'd for k € N. Note that
djrr = m TR\ sup; .y, 7id € WIRAN sup; oy, T = wldy,
whenever j, k € N. Next, n'd; ndy, C sup,,<; d, for any i, j, k € N such that i+ j # k. P (a) If k < this
is obvious. (B) If i < k < i+ j then
7Tidj Nndy C 7ridj Nmid,_; = Wi(dj Ndg—;) = 0.
(v) If i + j < k, then
mid;nd, C mdnd, =0. Q

Setting ¢* = sup;end; = sup;ey w'd, we have ¢* € €, by 386B, so that ju(d\ c¢*) = 6u(1\ c*); but as

dcct =1

Set a* = sup,,en dmn (the mn here is a product, not a double subscript!), d* = sup,_,, d; = sup,_,, 7'd.
Then

filend) < S a(ennid) = Y1) i (end) = nji(e nd) = néfic
for every ¢ € €. Next, m'dun D dynyi for all m and 4, so
SUp; <, T'a* = sup;eyd; = 1.
Consequently
fie < 3202 alenwia®) = nji(ena®),
>

fcna*\d*) > p(ena*) — i(end*) > (3 — nd)ac = yjic
for every c € €.
By 331B again (applied to the principal ideal of 2 generated by a* \ d*) there is an a C a* \ d* such that

i(anc) =~vpc for every c € €. For 0 < i < n,

m'a* na* = supy ey T dkn N dip C SUP,,<; dim C d7,

n

so mlana = 0; accordingly a, 7a, ... , 7" ‘a are all disjoint and (iii) is satisfied.

(iii)=(iv) Note that 2l is certainly atomless, since for every k& > 1 we can find a ¢ € 2 such that
c,mc, ... , " ¢ are disjoint and fic = kHT-lp so that we have a partition of unity consisting of sets of measure
kL-i—ll' Let B’ be the set of atoms of the (finite) subalgebra of 2 generated by B, and m = #(B’). Let 6 >0
and k € N be such that

36 < (1 —ny)jib for every b € B,  m(jil)? < k6%, kd > jil.

By (iii), there is a ¢ € 2 such that ¢, 7e, ... ,ﬂ"kz_lc are disjoint and fi(sup;.,,> mic) =1—46. For j <k,
set €j = Sup;.p jop T, d; = sup; o, 7RI e, Observe that ej, wej, ... , 7" te; are disjoint, and
that w'd; C e; for i < 2n. Set e = sup,_ e; = sup; 2 7'c, so that fie =1 — 4.
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Suppose we choose d € 2 by the following random process. Take s(0),...,s(k — 1) independently in
{0,... )= 1}, so that Pr(s(j) = 1) = & for each | < n, and set d = sup, 7 d;. Because we certainly
have 7r17r5(3)dj C ej whenever i < n, d, md,... , 7"~ 'd will be disjoint. Now for any b € 2,

1

Pr(f(dnb) < = (b — 36)) < —.

3=

P We can express the random variable ji(dnb) as X = Zf;é X;, where X; = fi(m*9)d; nb). Then the X;
are independent random variables. For each j, X, takes values between 0 and fd; = (k — 1)ac < 7%’ and
has expectation %ﬂ(e} nb), where

! i, nkj+nl+i
€; =SUPjcp, T dj = SUPj<k—1,i<n T C.

So X has expectation +fi(e/ nb) where ¢/ = sup;_; €. Now

. ! nkj+n(k—1)+17
e\ €; = sup,; ., ™ (k=1)+i¢

npl
nk?

for each j, so fi(e\¢e') < A and A(1\€e') < 26; thus E(X) > L (b — 26), while

has measure njc < o

Var(X) = E;:é Var(X;) < k;(Ll)Q _ (p1)2.

But this means that

and

by the choice of k. Q
This is true for every b € B’, while #(B’) = m. There must therefore be some choice of s(0),... ,s(k—1)
such that, taking d* = sup;_y, mWd;,

fi(d” nb) = ~(jib — 36) = yjib

3=

for every b € B’, while d*,wd*,... , 7"~ 'd* are disjoint. Because 2 is atomless, there is a d C d* such that
f(dnb) = b for every b € B’. Since every member of B is a disjoint union of members of B’, fi(d nb) = b
for every b € B.

(iv)=(@{) If a € A\ {0,1} and n > 1 then (iv) tells us that there is a b € 2 such that b, wb,... ,7"b are
all disjoint and fi(1\ sup;,, 7'b) < fia. Now there must be some i < n such that d = w'bna # 0, in which
case

dna"d C ©bn i t"h = 7t (bna"b) = 0,

and 7"d # d. As n and a are arbitrary, 7 is aperiodic.

386D Corollary An ergodic measure-preserving Boolean homomorphism on an atomless totally finite
measure algebra is aperiodic.

proof By 372Pa, this is (ii)=(i) of 386C in the case € = {0,1} (compare 381P).

386E I turn now to a celebrated result which is a kind of strong law of large numbers.

The Shannon-McMillan-Breiman theorem Let (2, i) be a probability algebra, m : 2 — 2 a measure-
preserving Boolean homomorphism and A C 2l a partition of unity of finite entropy. For each n > 1,
set

1 1
Wn = ;EdeDn(A,w) 1n(@)xd’
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where D,,(A, ) is the partition of unity generated by {n‘a : a € A, i < n}, as in 385K. Then (w,)nen is
norm-convergent in L' =L!(2A, i) to w say; moreover, (w,)nen is order*-convergent to w (definition: 367A).
If 7: L°(2) — L°(2A) is the Riesz homomorphism defined by =, so that T((xa) = x(ma) for every a € A
(364P), then Tw = w.

proof (PETERSEN 83) We may suppose that 0 ¢ A.

(a) For each n € N, let B, be the subalgebra of 2 generated by {r'a:a € A, 1 <i <n}, B, the set of
its atoms, and P, the corresponding conditional expectation operator on L' (365Q). Let B be the closed
subalgebra of 2 generated by UneN n, and P the corresponding conditional expectation operator. Observe
that B, = 7[D,(A, )] and that, in the language of 385F, D,,11(A,7) = AV B,,. Let € be the fixed-point
subalgebra of m and @ the assomated conditional expectation. Set L° = L°(2A), and let In be the function
from {v: [v > 0] = 1} to L° corresponding to In : ]0,00[ — R (364H).

(b) It will save a moment later if I note a simple fact here: if v € L', then (7"v),,>1 is order*-convergent
and || ||1-convergent to 0. I» We know from the ergodic theorem (372G) that (0, )nen is order*-convergent
and || ||1-convergent to Qu, where ¥,, = n%rl ST, Now LTmy = 2ty — 4, is order*-convergent
and || ||1-convergent to Qu — Qu = 0 (using 367C for ‘order*-convergent’). Q

(c) Set

f(anb
Un = ZaeA Pn(xa) X xa = ZaeAJ;eBn %X(aﬁ b)

By Lévy’s martingale theorem (2751, 367Jb),
(vn X X@)nen = (Pa(xa) X X@)nen

is order*-convergent to P(xa) x xa for every a € A; consequently (v,)nen order*-converges to v =
> aea P(xa) x xa. It follows that (Inv,)nen order*-converges to Inv. I The point is that, for any a € A
andn € N, a C [P,(xa) > 0], so that [v,, > 0] = 1 for every n, and In v, is defined. Similarly, Inv is defined,
and (Inv,,),ey order*-converges to Inv by 367H. Q As 0 < v, < x1 for every n, {(v,)neny — v for || ||1, by
the Dominated Convergence Theorem (3671).

Next, (Inv,)nen is order-bounded in L'. B Of course Inwv,, < 0 for every n, because P, (ya) < P,(x1) <
x1 for each a, so v, < x1. To see that {Inv, : n € N} is bounded below in L', we use an idea from the
fundamental martingale inequality 275D. Set v, = inf,cyv,. For a@ >0, a € A and n € N set

ban (@) = [Pn(xa) < o] ninficn [Pi(xa) = af,
so that
[ve < a] = SUP4e A nen @ N ban ().
Now ban(a) € B, so
Blanbu(@) = [, xa= [, Pu(xa) < afilban(a))
and

oo

/,(,(a n [[1}* < a]] < mln Z an ban )

< min(fa, o Z [iban () < min(fia, o).
n=0

Letting o | 0, fi(an [vs = 0]) = 0 for every a € A, so [v. > 0] = 1, and Inwv, is defined. Moreover,
flan[—Inv, > —Ina]) = f(an v < a]) < min(fa, )
for every a € A, a > 0; that is,
flan[-Inv, > B]) < min(za,e?)

for every a € A and 8 € R. Accordingly

D.H.FREMLIN



62 Automorphism groups 386E

/(—m*) . /OOO Al-Tnv. > glds =Y /Ooo,u(am [~ v, > 8])d3

a€A
< Z/o min(fia, e ?)dp
a€A
In(1/pa) o
- Z(/ fadp +/ e Pdp)
acA Y0 In(1/fa)
_ i = In fia
= Z(ln(ﬂa),ua—&— enhe)
acA
1.\- _
= Zln(ﬁ)ua—&- Zua:H(A)—Fl < 00
acA a€A

because A has finite entropy. But this means that In v, belongs to L', and of course it is a lower bound for
{Inv, : n € N}. Q

By 3671 again, Inv € L' and (Inv,),eny — Inv for | ;.

(d) Fix n € N for the moment. For each d € D, 1(A,7) let d’ be the unique element of B,, such that
d c d'. Then

1 od
(n+ Dwpyr = Z ln(ﬁd/ Yxd — Z ln(:d, )xd
d€Dyp41(A,m) d€Dpy1(A,m)
o 1 (anb)
= ln(%)xb— > IH(T)X(Cmb)
beB, acA
beB,,
anb#0
= Z ln(ﬂ(id) )x(7d) — Inwv,, = T(nw,) — Inv,.
deD, (A,x)

Inducing on n, starting from

we get

for every n > 1.

(e) Set wl, = 30 T*(—=Inv) for n > 1. By the Ergodic Theorem, (w},),>1 is order*-convergent and
|| ll1-convergent to w = Q(—Inwv), and Tw = w. To estimate w, — w;,, set u;, = supys,, |nvgy — Inv| for
each n € N. Then (uy,)nen is a non-increasing sequence, ug € L' (by (c) above), and inf, ey u}, = 0 because

(In vy, )nen order*-converges to Inv. Now, whenever n > m € N,
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n—1
wy, —w| < % ZTi|lﬁv—lﬁvn_i_1\
i=0

n—m-—1
Z THInv —Inv,_ ;1| + Z T/ v — lﬁvn,i,ﬂ)

i=n—m

<

3=

n—m-—1 m—1

( Z Tk, + Z T" ' Inv — Inv;|)
=0 j=0
n—m—1 m—1

<1 Thul, + ) T ug)

=0 7=0

n—m-—1 m—1

1 i 1 — —1—j, %

= T +—T""™ E Ty

n—m Z m T n—m 0
i=0 =0

JF T’n m~

77L

. ~ m—=1 gm—1—74, %
setting @, = >0, T Jug.

Holding m fixed and letting n — oo, we know that

1 n—m-—1 i %
Yizo T uy,

n—m

Uy, is order*-convergent

is order*-convergent and || ||;-convergent to Qu,
and || ||1-convergent to 0, by (b). What this means is that

lim sup,,_, o |wn, — wl,| < Quk,

msup,, o [[wn — wplli < [[Quy, [lx
for every m € N. Since (Qu},)men is surely a non-decreasing sequence with infimum 0,
limsup,,_,o |wp, — wl,| =0, limsup,, . ||w, —w) |1 = 0.

Since w), is order*-convergent and || ||;-convergent to w, so is wy,.

386F Corollary If, in 386E, 7 is ergodic, then (w,),en is order*-convergent and || ||;-convergent to
h(m, A)x1.

proof Because the limit w in 386E has Tw = w, it must be of the form ~vx1, because 7 is ergodic (372Q(a-
iii)). Now v = [w must be

. . 1 1.\ . 1 _
i fen =t s >, WGoAd=lm o >, (@)
deD, (A,m) deD, (A,m)

(where ¢ is the function of 385A)
= lim 2H(D,(A,7)) = h(r, A).

n—oo n

386G The Csisaar-Kullback inequality (CsiszAR 67, KULLBACK 67) Let (2, 1) be a probability
algebra, and u a member of L'(2, z)* such that [u = 1. Then

Jaw) <—— (J lu = x1])*.
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proof Seta=[u<1], @ =fa, f= [ u,b=1\a Thenfib=1—-caand [,u=1—p. Surely § < a <1.
If @ = 0 then u = x1 and the result is trivial; so let us suppose that 0 < a < 1. Because the function ¢ is
concave,

Jatw) < fia- (o [ w) = aa(Z) = a(8) + Blno
(using 2331b/365Qb for the inequality), and similarly
Jya(w) <q(1=5)+ (1= p)In(1 - a).

Also
Jlu=x1l= [ (x1—w)+ [(u=x1)=a—=F+(1—-) - (1-a)=2(a-p),
s0
/q(u)+§(/ lu—x1))* < q(B) + flna+q(1 = B) + (1 - B)In(1 — @) + 2(a - 5)?
= o(8)
say. Now ¢ is continuous on [0, 1] and arbitrarily often differentiable on |0, 1],
¢(a) =0,
dt)=—-Int+Ina+1In(l —¢) —In(l —«a) —4(a —t) for t €]0,1],
¢'(a) =0,
(1) = —; — = +4<0fort€]0,1L

So ¢(t) <0 for ¢t € [0,1] and, in particular, ¢(3) < 0; but this means that
_ 1
Jatw) +5(f lu=x1)* >0,

that is, [ q(u) < —1([ |u— x1])?, as claimed.

386H Corollary Whenever (2, 1) is a probability algebra and A, B are partitions of unity of finite
entropy,

> |p(anb) — fia- b < \/2(H(A) + H(B) — H(AV B)).
acA,beB

proof Replacing A, B by A\ {0} and B\ {0} if necessary, we may suppose that neither A nor B contains
0. Let (€, \) be the probability algebra free product of (2, i) with itself (325E, 325K). Set

it(anb
U= 4capen ’:_L(;ﬁb)x(a ®b) € LO(Q);

then u is non-negative and integrable and [u =3 4 ,ep fi(anbd) = 1. Now
_ _ ii(andb
Jaw == > aantymied
acA,beB
=H(AV B)+ Z fg(and)lnpa + Z fi(and)In b

acA,beB acA,beB
=H(AVB)+ > fialnfia+ Y jibln fib
acA beB

=H(AV B)— H(A) — H(B).
On the other hand,
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flant) _
na-iab
Now 386G tells us that ([ |u— x1[)* < =2 [ q(u), so

Yacapen liland) —pa- bl < /=2 [G=/2(H(A) + H(B) - H(AV B),

f lu—=X1| =3 geapep Ha - bl 1 =3 seapen|ilanb) — fa- abl.

as required.

3861 The next six lemmas are notes on more or less elementary facts which will be used at various points
in the next section. The first two are nearly trivial.
Lemma Let (2, i) be a probability algebra and (a;)icr, (b;)icr two partitions of unity in 2. Then
_ 1 _
A(sup;cra;inb;) =1 — §Ziel ila; A b;).

proof

- - 1, o
f(supa;nb;) = > fi(a;nb) =Y 5 (pai + pbi — f(ai & bi))
i€l icl il

1 _

el

386J Lemma Let (2, i) be a totally finite measure algebra, (By)ren & non-decreasing sequence of subsets

of A such that 0 € By and (c;);cr a partition of unity in . Set B = |J,_;, Br. Then
limy, o0 sup;e; p(ci; Br) = sup;cg p(ci, B),
writing p(c, B) = infpep fi(c A b) for ¢ € 2 and non-empty B C 2, as in 3A4l, and counting sup @ as 0.
proof Of course (sup;c; p(¢i, Bi))ken is a non-increasing sequence and limy,_, o0 sup;¢; p(c;, Br) > sup;e; p(ci, B).
For the reverse inequality, let € > 0. Then J = {j : j € I, ic; > €} is finite. For each j € J,
limy o p(cj, Br) = p(cj, B), by 3A4l, while
p(ci, Br) < i(c; 20) = fic; < €

for every i € I'\ J. So

lim sup p(c¢;, Bx) < max(e, lim sup p(¢;, Bx)) = max(e,sup lim p(¢;, By))

k—00 e k—o00 ;e g icJ k—oo
(because J is finite)
= max(e, sup p(c¢;, B))
icJ

by 3A4J. As e is arbitrary, limy_,o sup;c; p(ci, Bi) < sup;c p(ci, B) and we have the result.

386K Lemma Let (2, 1) be a probability algebra, and = : 2 — 2 a measure-preserving Boolean
homomorphism. Let A, B and C be partitions of unity in 2.

(a) HAVBVC)+ H(C)<H(BVC)+ H(AV ().

(b) h(m, A) < h(m, AV B) < h(m, A) + h(w, B) < h(w, A) + H(B).

(c) If H(A) < o0,

h(r, A) = inf H(Dyy1(A4, 7)) — H(D(4,7)
= lim H(Dy (A7) — H(Dy(A, 7).

(d) If H(A) < oo and B is any closed subalgebra of 2 such that 7[B] C B, then h(w, A) < h(7|B) +
H(A|B).
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proof (a) Let € be the closed subalgebra of 2 generated by C, so that € is purely atomic and C is the set
of its atoms. Then
H(AVBVC)+ H(C)=H(AV B|¢)+2H(C)
< H(A|®)+ H(B|€)+2H(C)=H(AvVC)+ HBVC)
by 385Gb and 385Ga.

(b) We need only observe that D,,(AV B, 7) = D, (A, )V D, (B, ) for every n € N, being the partition
of unity generated by {n’a:i <mn,a € A} U{x'b:i <n, b€ B}. Consequently

h(r,A) = lim ~H(D,(A, 7)) < lim ~H(D,(A,7)V Dn(B, 7))

n—oo n n—oo n

= lim ~H(Dn(AV B,7)) = h(r, AV B)

n—oo N

< lim L (H(Dn(A,7) + H(Dn(B, 7)) = h(r, A) + h(r, B)

< h(m,A) + H(B)
as remarked in 385M.
(c) Set v, = H(Dp11(A, 7)) — H(Dy (A, 7)) for each n € N. By 385H, «,, > 0. From (a) we see that

Yni1 = H(AV 7[Dyi1(A, 7)) — H(AV ©[D,, (A, 7)])
< H(”T[Dn+1(A77T)D - H(F[DTL(A’WD =Tn

for every n € N. So lim,,_, o "y = inf,,en Vn; write v for the common value. Now
. 1 . 1 —
h(m, A) = lim, o0 gH(Dn(A, 7)) = lim, o ;Z:;ol Vi ="

(273Ca).

(d) Let P : L}L — L}L be the conditional expectation operator corresponding to B. Let (bi)ren be a
sequence running over {[P(xa) >p] : a € A, p € Q}, so that by € B for every k, and for each k € N
let B C B be the subalgebra generated by {b; : i < k}; let P, be the conditional expectation operator
corresponding to By. Writing B, C B for | J,cyy B, and Py for the corresponding conditional expectation
operator, then P(ya) € L°(B,), so Py (xa) = P(xa), for every a € A. So

H(A[B) = ZaGA f(j(an) = H(A[Bo) = limp 00 H(A|By),
by 385Gd.

For each k, let By be the set of atoms of B;. Then

h(r, A) < h(r, By) + H(A|By) < h(r]B) + H(A|By)
by 385N and the definition of h(w[9B). So
h(m, A) < h(r[B) + limg—,o0 H(A|Br) = h(7[B) + H(A[B).

386L Lemma Let (2, i) be a probability algebra and 9B a closed subalgebra.

(a) There is a function h : 20 — 9B such that fi(a A h(a)) = p(a,B) for every a € A and h(a)nh(a’) =0
whenever ana’ = 0.

(b) If A is a partition of unity in 2, then H(A[B) <> ., q(p(a,B)).

(c) If B is atomless and (a;);en is a partition of unity in 2, then there is a partition of unity (b;);cn in
B such that b; = fa; and f(b; A a;) < 2p(a;,B) for every i € N.

proof (a) Let P: L}A — Lllz be the conditional expectation operator associated with 5. For any b € ‘B,

/IP(Xa)—xbl= 1\bP(xa)+ub—/bP(xa)=/1\bxa+ub—/bxa
= f(a\b) + b — filand) = a(a A D).
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If a € A set h(a) = [P(xa) > 1]. Then |P(xa) — xh(a)| < |P(xa) — xb| for any b € B, so
pla,B) = inf ala £b) = é?%/ |P(xa) — xb|

- / |P(xa) — xh(a)| = fila & h(a)).

Ifana =0, then
P(xa) + P(xd') = Px(avad’) < x1,
S0
h(a) nh(d’) = [P(xa) > 3] n[P(xa’) > 3] € [P(xa) + P(xd’) > 1] =0,

by 364Ea.

(b) By 385Ae, g(t) < q(1—t) whenever 3 <t < 1. Consequently ¢(t) < g(min(t,1—t)) for every ¢ € [0,1],
and g(u) < q(u A (x1 —u)) whenever u € LY(2) and 0 < u < x1. Fix a € A for the moment. We have

q(P(xa)) < q(P(xa) A (x1 = P(xa)) = ¢(|P(xa) = xh(a)]).

Consequently

JatPra) < [ 1Pt - xbi@)) < o [ 1P) - i)
(because ¢ is concave)

= a(p(a,’B)).

Summing over a,
H(AIB) =Y ca [ @(Pxa) <Y c 4 d(pla, B)).

(c) Set b, = h(a;) for each 7 € N. Then (b});cn is disjoint. Next, for each ¢ € N, take b} € B such that
b C b, and bl = min(fia,, ib}); then (b);en is disjoint and b < fia; for every i. We can therefore find a
partition of unity (b;);en such that b; D b and fb; = fia; for every i. (Use 331C to choose (d;);en inductively
so that d; C 1\ (sup;.; d; U sup;ey b7) and fid; = fia; — fib] for each 4, and set b; = b} U d;.)

Take any ¢ € N. If b} > fia;, then

fila; 2 b;) = fi(a; A YY) < fi(a; & by) + fi(by A BY)
f(a; & b)) + pb — ja; < 2fi(a; A b)) = 2p(a;, B).

If @b < fia;, then

fi(a; & b;) < fi(a; 5b7) + a(b; 2b;)
f(a; & b) + pa; — b < 2fi(a; A Y,) = 2p(a;, B).

386M Lemma Let (2, 1) be a probability algebra and 7 : 2l — 2[ a measure-preserving automorphism.
Suppose that B C 2. For k € N, let B, be the closed subalgebra of 2l generated by {77b: b € B, |j| < k},
and let B be the closed subalgebra of 2 generated by {7’b:b € B, j € Z}.

(a) B is the topological closure | J, .y By

(b) 7[B] = B.

(c) If € is any closed subalgebra of 2 such that 7[¢] = €, and a € By, then

p(a, Q:) < (2k + 1)21763 p(bv Q:)

proof (a) Because (By)ren is non-decreasing, |J, oy B is a subalgebra of 2, so its closure also is (323J),
and must be B.
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(b) Of course m~[Bj41] is a closed subalgebra of 2 containing m/b whenever |j| < k and b € B, so
includes By; thus 7[B] C By C B for every k, and

n[B] = W[UkeN By C UkeNﬂ'[%k] CBCB
because 7 is continuous (324Kb again). Similarly, 7=1[8B] C B and 7[8] = B.
(c) For each b € B, choose ¢, € € such that (b A ¢) = p(b, €) (386La). Set

€ = Sup|;|<; SUDyep T (b A ¢3);
then
fie < 2+ )Y filb & ) = 2k + 1) Yy plb,©).
Now
B’ ={d:de U T ce €such that d\ e =c\e}
is a subalgebra of 2. By 314F(a-i), applied to the order-continuous homomorphism ¢ — c\e : € — ;.
{c\ e : ¢ € €} is an order-closed subalgebra of the principal ideal 2;..; by 313Id, applied to the order-

continuous function d — d\ e : A — Ay, B’ is order-closed. If b € B and |j| < k, then m7b A i, C e, so
mb € B'; accordingly B’ D By. Now a € By, so there is a ¢ € € such that a A ¢ C e, and

p(a, Q:) < ﬁ(a A C) < e < (2k + 1)Z:beB p(b’ Q:)’

as claimed.

386NN Lemma Let (2, 1) be a probability algebra and suppose either that 2 is not purely atomic or
that it is purely atomic and H(Dg) = oo, where Dy is the set of atoms of 2. Then whenever A C 2 is a
partition of unity and H(A) < v < oo, there is a partition of unity B, refining A, such that H(B) = ~.

proof (a) By 385J, there is a partition of unity D; such that H(D;) = oco. Set D = Dy V A; then we
still have H(D) = co. Enumerate D as (d;)ien. Choose (Bj)ren inductively, as follows. By = A. Given
that By, is a partition of unity, then if H(By V {dg, 1\ dr}) <, set Br11 = By V {di, 1\ di}; otherwise set
By.y1 = B.
Let B be the closed subalgebra of 2 generated by (J; .y Bx- Note that, for each d € D,
{c:ceU,dCcordnc=0}

is a closed subalgebra of 2 including every By, so includes B. If b € B\ {0}, there is surely some d € D
such that bnd # 0, so b2 d; thus B must be purely atomic. Let B be the set of atoms of B. Because
A = By C 9B, B refines A.

(b) H(B) < «. P For each k € N, let B be the closed subalgebra of 2 generated by By, so that

B = Upen Br- Suppose that by, ... ,b, are distinct members of B. Then for each £ € N we can find disjoint
boky .-, bnk € By such that f(byx A b;) < p(b;, By) for every i < n (386La). Accordingly fb; = limy o0 1big
for each 7, and

Dlimo a(fiby) = limp o0 357 q(fibin) < supyey H(Bi) < 7.

As by, ..., b, are arbitrary, H(B) <~v. Q

(c) H(B) > 7. P? Suppose otherwise. We know that

limg o0 H({dg, 1\ di}) = limp 00 q(fidy) + q(1 — fidy) = 0.

Let m € N be such that H(B) + H({dy, 1\ di}) < for every k > m. Because B refines By, we must have

H(Bi V {dk, 1\ dr}) < H(Bi) + H({dg, 1\ di}) <7,
so that Bii1 = By V {dg, 1\ di} for every k > m. But this means that dj, € B for every k > m, so that
v> H(B) = 32, a(pdy) = oo,

which is impossible. XQ
Thus B has the required properties.
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386X Basic exercises (a) Let (2, i) be a totally finite measure algebra and 7 : 2 — 2 a measure-
preserving Boolean homomorphism with fixed-point subalgebra €. Take any a € 2 and set a, = 7"a\
SUpy<;cp, ma for n > 1. Show that Y 02 nji(ana,) = p(upr(a,€)). (Hint: for 0 < j < k set ajp =
m/(anag_j). Show that if r € N, then (a;jx) << is disjoint.)

(b) Let (X, X, 1) be a totally finite measure space and f : X — X an inverse-measure-preserving function.
Take E € ¥ and set F' = {x: In > 1, f*(x) € E}. (i) Show that F \ F is negligible. (ii) For z € EN F set
ky =min{n :n >1, f*(z) € E}. Show that [, k,u(dz) = pF. (This is a simple form of the Recurrence
Theorem.)

(c) Let (2, z) be a totally finite measure algebra, (Bj)ren a non-decreasing sequence of subsets of 2 such
that 0 € By, and (¢;);cs a partition of unity in 2. Show that

limg 00 Zie[ p(Ci, Bk) = Zie] p(civB)
where B = [,y B

>(d) Let (2, z) be a probability algebra, 7 : 2l — 2 a measure-preserving Boolean homomorphism and
A a partition of unity in 2. Show that h(w, D, (A, 7)) = h(m, A) = h(w,w[A]) for any n > 1.

(e) Let (A, ) be a totally finite measure algebra and 7 : 2 — 2 a measure-preserving Boolean ho-
momorphism. Suppose that B C 2. For k € N, let By be the closed subalgebra of 2l generated by
{mIb:be B, j <k}, and let B be the closed subalgebra of 2 generated by {n/b: b € B, j € N}. Show that

B = UkeN %ka ﬂ-[%] g %a
and that if € is any subalgebra of 2 such that 7[€] C €, and a € By, then p(a, &) < (k+1) 3,5 p(b, €).

386Y Further exercises (a) Let (2, i) be a totally finite measure algebra and = : 2 — 2 an aperiodic
measure-preserving Boolean homomorphism. Set € = {¢: m¢ = ¢}. Show that whenever n > 1, 0 < v < %
and B C 20 is finite, there is an a € 2 such that a, wa, 72a, ... , 7" 'a are disjoint and ji(anbnec) = yia(bne)
for every b € B, c € C.

(b) Let (A, 1) be a probability algebra, and 7 : 20 — 2 a measure-preserving Boolean homomorphism.
Let B be the set of all closed subalgebras of 2 which are invariant under 7, ordered by inclusion. Show
that B +— h(n]B) : P — [0, 0] is order-preserving and order-continuous on the left, in the sense that
if 9 C ‘P is non-empty and upwards-directed then h(7[ sup Q) = supgeq h(m[B).

386 Notes and comments I have taken the trouble to give sharp forms of the Halmos-Rokhlin-Kakutani
lemma (386C) and the Cziszar-Kullback inequality (386G); while it is possible to get through the principal
results of the next two sections with rather less, the formulae become better focused if we have the exact
expressions available. Of course one can always go farther still (386Ya). Ornstein’s theorem in §387 (though
not Sinai’s, as stated there) can be deduced from the special case of the Shannon-McMillan-Breiman theorem
(386E) in which the homomorphism 7 is a Bernoulli shift.

Version of 9.3.16

387 Ornstein’s theorem

I come now to the most important of the handful of theorems known which enable us to describe auto-
morphisms of measure algebras up to isomorphism: two two-sided Bernoulli shifts (on algebras of countable
Maharam typre) of the same entropy are isomorphic (387J, 387L). This is hard work. It requires both
delicate e-6 analysis and substantial skill with the manipulation of measure-preserving homomorphisms.
The proof is based on difficult lemmas (387C, 387G, 387K), and includes Sinai’s theorem (387E, 387M),
describing the Bernoulli shifts which arise as factors of a given ergodic automorphism.

(© 1997 D. H. Fremlin
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387A The following definitions offer a language in which to express the ideas of this section.

Definitions Let (2, i) be a probability algebra and 7 : 2 — 2 a measure-preserving Boolean homomor-
phism.

(a) A Bernoulli partition for 7 is a partition of unity (a;);c; such that

. ; k-
plinfi<p 7 a;;)) = [Ti—o Raig)
whenever k € N and (0),... ,i(k) € I.

(b) If m € Aut; 2, that is, 7 is a measure-preserving automorphism, a Bernoulli partition (a;);cs for 7 is
(two-sidedly) generating if the closed subalgebra generated by {n/a; :i € I, j € Z} is 2 itself.

(¢) A factor of (A, i, 7) is a triple (B, @B, 7[B) where B is a closed subalgebra of 2 such that
7[B] C B.

(d) Let B, € be closed subalgebras of 2 such that 7[B] C B and 7[¢] C €. I will write Hom (*B; €)
for the set of Boolean homomorphisms ¢ : 8 — € such that

aob = pb, wob = ¢mh
for every b € 8. On Homy (B; €) the weak uniformity will be the uniformity generated by the pseudo-
metrics

(¢, 9) = fu(db & 4b)
for b € B (3A4Ba); the weak topology on Homj . (98; €) will be the associated topology (3A4Ab).

387B Elementary facts Suppose that (2, fi) is a probability algebra, m € Aut; 2 and that (b;);cr is a
Bernoulli partition for 7. Write B for the closed subalgebra of 2 generated by {b; : i € I}, B for the closed
subalgebra generated by {7’b; :i € I, j € Z}, and B for {b; : i € I} \ {0}.

(a) 7[B is a two-sided Bernoulli shift with root algebra B, and entropy H(B) = h(w, B) < h(7).

(b) If H(B) > 0 then 2 is atomless.

(¢) Suppose now that (¢;);er is another Bernoulli partition for = with fic; = fib; for every i; let € be the
closed subalgebra of 2 generated by {mi¢; : i € I, j € Z}. Then we have a unique ¢ € Homy - (B; €) such
that ¢b; = ¢; for every i € I, and ¢ is an isomorphism between (B, i| B, 7|B) and (€, @[ €, 7] C).

proof (a) I should begin by noting that 7[%8] is the (order-)closed subalgebra generated by {m/*1b; :i € I,
J € Z} (314H, 324L), so is equal to B; accordingly 7[B € Autj;s B.

Suppose that d; € 7 [Bg] for 0 < j < k. Then each 77d; € By is expressible as Sup;er, bi for some
I; C I. Now |

p(inf d;) = sup inf 77b;.
(jsk 2 (ioelo,...,ikelkjﬁk is)

k
SR LD S i
i0€1o,... ,ikE€lL - i0€lo,... ,ik€IlL j=0
E k k
=11>_ ab: =[] alsupts) = [ ind;-
j=0i€l; j=0 i€l =0
As do, ... ,d, are arbitrary, (7*[B¢])ren is independent. By 385Sf, (1¥[Bg])recz is independent. Since B is
defined as the closed subalgebra generated by {77b; : i € I, j € Z}, w|*B is a two-sided Bernoulli shift in

which By is a root algebra, as defined in 385Qb.
As in part (a) of the proof of 385R, h(w[B) = H(B) = h(w, B), and of course h(rw, B) < h(~).

(b) As B contains at least two elements of non-zero measure, v = maxpep ib < 1. Because (b;);cs is a
Bernoulli partition, every member of Dy (B, ) (definition: 385K) has measure at most 7*, for any k € N.
Thus any atom of 2 could have measure at most infeny* = 0.
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(c) It i(0), ... ,i(n) € I and j(0),... ,j(n) € Z, set L = {j(k) : k < n}; then

_ . i(k)7,. . 1/ - . o — 1. )
Al inf 7/ Obigy) = plinf 7' inf b)) = [TA('C inf - bi)
i(k)=t lel k)=l
(by (a) above)
= [T AC inf bigy)
lel j(k)=t
(because fir! = fi for every 1)
=[] Inf - ci)
€L k)=t
ecause 1f there are such that j =7 ut ¢ 7 then both products are zero, an
b if th k # k' such that j(k i(k") but i(k) # (k') then both d d
otherwise they are of the form [],.; fib,q) = [, icr@y)

= A(inf w1 a1y).

So we can apply 324P to see that there is a unique measure-preserving homomorphism ¢ : B — € such that
d(mib;) = wic; for every i € I and j € Z. Now the set {b: b € B, ¢nb = 7¢b} is a (metrically and order-)
closed subset of B including |J;c5, 7/ [B] and is therefore the whole of B. So ¢ € Homj »(B;€). Since ¢[B]
is a closed subalgebra of € (324Kb) including {ni¢; : i € I, j € Z}, it is the whole of €, and ¢ : B — € is
an isomorphism.

387C Lemma Let (2, i) be an atomless probability algebra and 7 € Aut; 2 an ergodic measure-
preserving automorphism. Let {a;);cn be a partition of unity in 2, of finite entropy, and {(7;);cn a sequence
of non-negative real numbers such that

Yicovi=1 XZea(vi) < h(m),
where ¢ is the function of 385A. Then for any € > 0 we can find a partition (a});cy of unity in 2 such that
(i) {i : a} # 0} is finite,
(i) 22520 [vi — haf] <,
(i) 3507 i} &.0,) < €+ 63/ [fia; — vl + 2 (A) — A, 4))
where A = {a; : i € N} \ {0},
(iv) HA)) < h(m, A") + €
where A’ = {a} : i € N} \ {0}.

proof (a) Of course h(m, A) < H(A), as remarked in 385M, so the square root \/2(H(A) — h(r, A)) gives

no difficulty. Set 8 = /2% |a; — | + /2(H(A) — h(w, A)), & = min(L, o).
There is a sequence (;);en of non-negative real numbers such that {i : ; > 0} is finite, >~ % = 1,
Yoo M= <26% and Y2 q(%i) < h(rw). P Take k € Nsuch that Y-, 7; < 62, and set 4; = ~; for i < k,

Y = >eopvi and y; = 0 for ¢ > k; then ¢(y,) < >0, q(7i) (385AD), so
Do 4(%i) < 372 a(vi) < h(m),

while

Sl =il <A+ <20 Q
Because >~ q(7;) is finite, there is a partition of unity C' in 2, of finite entropy, such that ;> ¢(7;) <

h(m,C) + 36; replacing C by C'V A if need be (note that C'V A still has finite entropy, by 385H), we ma;
suppose that C refines A.
There is a sequence (7/);en of non-negative real numbers such that >~ v/ =1, {i : 7/ > 0} is finite,

Zfio i — v:| < 46% and
Y20 a(v)) = h(m, C) + 3.
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P Take k € N such that 4; = 0 for ¢ > k. Take r > 1 such that 6 In(g) > h(m, C) + 30 and set

A = (1 = 6%)7; fori <k
:%52fork+1§i§k+r

=0fori>k+r.
Then

E;‘)i() |;}'/Z - :}/zl = 2527 Z;)io |;)~/7, - 77,' S 462a

T 52 r o~
S0 () < hlm, C) +38 < 62In(z) = ra(%) < S a().
Now the function
a s T25 ey + (1-a)i) - [0,1] =+ R
is continuous, so there is some « € [0, 1] such that
Yo a0 + (1= a)F) = b, C) + 34,
and we can set v, = o7; + (1 — «)7; for every i; of course
s i =l < a0 1 — il + (1= )38 [ — il < 40%. Q
Set M = {i : v} # 0}, so that M is finite.
(b) Let n €]0,0] be so small that
. 6
— <
() la(s) ~ a(0)] < e
(11) ZCGC q(min(ﬂca 277)) S 6’
(i) n < L.
(Actually, (iii) is a consequence of (i). For (ii) we must of course rely on the fact that ) . q(fic) is finite.)
Let v be the probability measure on M defined by saying that v{i} = +} for every i € M, and A the

product measure on MY, Define X;; : MY — {0,1}, for i € M and j € N, and Y; : MY — R, for j € N, by
setting

whenever s, t € [0,1] and |s — t| < 3n,

Xij(w) =1ifw(j) =1,
= 0 otherwise,
Yi(w) = In(v,,;) for every w € M™.

Then, for each i € M, (X;;) en is an independent sequence of random variables, all with expectation -},
and (Y;),en also is an independent sequence of random variables, all with expectation

ZieM %,‘ ln%/‘ = _Zzo (I('Vz/') = _h(ﬂ-v C) — 34.
Let m» > 1 be so large that
(iv) pJwn — h(m,C)x1 > §] < n, where

1 1
Wy, = ;ZdeDn(C,w) ln(ﬁ)xd;

(v)
1 n—1 ,
Pr(ziGM |;Zj:0 XZJ — fyz‘ S n) Z 1— (5,
Pr(lii?;é Y + h(m,C) + 36| < 5) >1-4;
) e’ — gy < 6
(iyer=2 1 = q(n+1) +q(n+1) < 0;
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these will be true for all sufficiently large n, using the Shannon-McMillan-Breiman theorem (386E-386F;
this is where we need to suppose that 7 is ergodic) for (iv) and the strong law of large numbers (in any of
the forms 273D, 273H or 2731) for (v).

(c) There is a family (b;;)j<n,icp such that
(cv) for each j < n, (bji)icm is a partition of unity in 2,
(B) B(infj<p b)) = H;:Ol () for every i(0),... ,i(n —1) € M,
(V) Yien i(bjinmia;) > 1 — 5% — 462 for every j < n.

P Construct (bj;)icam for j =n—1,n—2,...,0, as follows. Given b;;, for k < j < n, such that

p(inf < wa;gy 0 infecjn bjagy) = Alinfj<r maig) - T1Ze 1 Vi)

for every i(0), ... ,i(n—1) € M (of course this hypothesis is trivial for k = n— 1), let By, be the set of atoms
of the (finite) subalgebra of 2 generated by {b;; : ¢ € M, k < j < n}. Then a(bnd) = b - id for every
be B and d € Dk+1(A,7T).

Now

oo
> > lattaine) —~iac

1=0 ceDy(A,x)

o0 o0
<> Y latrtaine) — e e+l =y > e

=0 ce Dy (A,m) =0 c€EDy(A,m)

(oo} (oo} oo
< Z|%‘ — +Z|ﬂai =il +Z Z li(r"a; 0 c) — fia; - fic]
i=0 i=0

=0 ceDy(A,)

<46+ 3 e =l + 2 (H(xHA)) + H(Du(A, 7)) = H(Dys (4,7))

(by 386H, because Dy 1(A,7) = 7*[A] V Dy(A, 7))
<46% 4+ |ia; — vi| + V/2(H(A) = h(m, A))
=0
(because h(m, A) < H(Dyy1(A, 7)) — H(Dy(A, 7)), by 386Kc)
= 3% +46°.

Choose a partition of unity (bg;)ieas such that, for each ¢ € Dy (A, 7), b € By and i € M,
f(be; nbne) =vip(bne),
if fi(mka; nbnc) > yii(bne) then by, nbne C m*a;,
if i(7*a;nbnc) <~la(bne) then wa; nbnc C by;.

(This is where I use the hypothesis that 2l is atomless.) Note that in these formulae we always have
mFa;nc € Dy1(A,w), f(bne) =pb-jic, j(r*a;nbnc) = fi(n*a;nc) - b
Consequently
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Zu(w a; Nbyi) = z Z Z (bnen( Wazmbkz))

ieM bEBy c€ Dy (A,m) 1€M

Z Z Zmln (bnenmras), via(bne))

be By cEDk(A Tr) 1=0

Z Z Z (bnennha;) — |pbnentra;) —~viabne)l

bEBy, c€ Dy (A,m) =0

=1- Z Z Z|/j(bmcm7rkai)—'yl'ﬂ(bmc)|

bEBy c€ Dy (A,m) =0

=1- 5 S S abla(ennta;) — el

bEBy c€Dy (A,m) i=0

=1- Z Z\ cnmfa;) — i) > 1 — B2 — 462
ceDy(A,m) =0
Also we have
(br; nbne) = vipb - fie = f(bk; ND) - fic
for every b € By, ¢ € Di(A, ) and i € M, so the (downwards) induction proceeds. Q

(d) Let B be the set of atoms of the algebra generated by {b;; : j < n,i € M}. For b € B and
d € D,(C, ) set

Ibdz{j:j<n,3i€M,bgbji,dg7rjai}.
Then, for any j < n,
sup{bnd:be B, d € D, (C,7), j € Iyq} = sup;c s bji nma;,

because C refines A, so every m/a; is a supremum of members of D,,(C, ). Accordingly

> #(Ia)a(bnd) = ZZ bjinmia;) > n(1 — g% — 462).

beB,de D, (C,) j=0ieM
Set
eo =sup{bnd:be B,d e D,(C,7), #(Ipa) > n(l —  —40)};
then fieg >1— 5 —96.
(e) Let B’ C B be the set of those b € B such that

e .
b < MmO Sy = L < b byl <
Then ji(sup B') > 1 — 26. P Set
Bi={b:be B, ub< 6fn(h(7r’c)+25)}

={b:b€ B, h(r,C) + 26+ In(ib) < 0}

n—1
. . . 1
= {inf bjiqj) #(0), - yi(n = 1) € M, h(m,C) + 25+ ZO In ;) < 0}.
=

Then
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n—1
fi(sup B}) = Pr(h(r,C) + 25+ = > ¥; <0)
j=0
n—1
> Pr(|h(m,C) +36+ - > ¥;| <8) >1-34
7=0

by the choice of n. On the other hand, setting

1 ..
By={b:beB, Y |ni—~#{j:j<nbcbu})<n}
€M

= {inf byay 4(0), . iln = 1) € M, Y Iyf = #({ 2 i(7) =i}l < mh,
€M
we have

fi(sup By) = Pr(ZieM "Y; Zn ) XU| <n)>1-9

by the other half of clause (b-v). Since B’ = B{ N B}, fi(supB’) > 1 —26. Q
Let D’ be the set of those d € D,,(C, ) such that

1 1 . _
- = —n(h(7,C)+46).
- ln(ﬂd) < h(m,C)+0, ie, pd>e :

by (b-iv), p(sup D’) > 1 — n. Of course D' is finite. If d € D" and b € B’ then

ﬂd > e—n(h(w,C)+6) > e"éﬂb > Zﬂb.
Since fi(sup D') < 1 < 2fi(sup B’) (remember that § < 1), #(D’) < #(B').

Set e; = egn sup B’, so that ie; > 1 — 8 — 36, and
"={d:de D, i(dner) > Lpd};
then
fi(sup(D"\ D")) < 20a(1\ e1) < 28+ 6,

S0

a(supD”)>1—-28—-60—n>1—-28-"T76.
(f) If dy,... ,d € D" are distinct,

_ k.
f(supy<;<p diner) > 5 nfick fid; > ksupye pr ib,
and
#{b:be B, bnegn sup;<;p di} #0) > k.

By the Marriage Lemma (3A1K), there is an injective function fy : D” — B’ such that dn fo(d)neg # 0
for every d € D”. Because #(D’) < #(B’), we can extend fy to an injective function f : D" — B’.

(g) By the Halmos-Rokhlin-Kakutani lemma, in the strong form 386C(iv), there is an a € 2 such that
a,7 ta,... 7 " lq are disjoint and ji(and) = n}Hﬂd for every d € D' U{1}. Set é = sup{r 7 (and):j <

n, d € D'}. Because (177 (and))j<n,dep is disjoint,

8= 32120 Yaep Aland) = =23 e p fid 2 (1=1)* 21— 2.

(h) For i € M, set
a; = sup{ﬂ'_j(aﬁd) 1j<n,de D/a f(d) c bﬂ}
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Then the o} are disjoint. B Suppose that ¢, i’ € M are distinct. If j, j/ <n and d, d' € D" and f(d) C bj;,
f(d) c bj/l/, then either j # j’ or j = j'. In the former case,

I (and)nm i (and) cndanni'a=0.
In the latter case, bj; nb;/i» =0, so f(d) # f(d') and d # d’ and

i and)nn i (and) c 7 (dnd)=0. Q
Observe that

SUP; e pr @ = SUDP; <y e D I (and) =é

because if j < n and d € D’ then f(d ) € B’ C B and there must be some i € M such that f(d) C bj;. Take
any m € N\ M and set a,,, = 1\¢€, a}, =0 for i € N\ (M U {m}); then (a});en is a partition of unity. Now

Y laai =~ < Y Al = nja(an sup D) + ) |jsa} — nvjfian sup D')|
i€ M i€ M €M

<1-— Lﬂ(sup D'

+Z|Z Y. Ar(and) -y Y A(and)

i€eM j=0 deD’ deD’
f(d)cbjs
<1-(1-mn)?
+ > aland) - #({j:j <n, f(d) Cbji}) — nyia(and)|
deD’ ieM
<l1-(1-n¢ 2y Z (and)n
deD’

(see the definition of B in (e) above)
< 2n+ nnpa < 3.
So

Zlua — il < fay, + Y |l —%I+ZI% o

€M
<24 3n+46% <66 <e.
We shall later want to know that |fa; — ~;| < 3n for every i; for i € M this is covered by the formulae
above, for ¢ = m it is true because fia), =1 — i€ < 29 (see (g)), and for other i it is trivial.

(i) The next step is to show that Y .~ fi(aj na;) > 1 — 38 — 126. P It is enough to consider the case in
which 38 + 126 < 1. We know that

supa;na; 2 sup{r ?(and):j<n,de D,
€N
Ji € M such that f(d) C b;; and d C 7a;}
=sup{n (and):d € D, j € Iya)a}
(see (d) for the definition of Ipq) has measure at least ), #(I¢(ay,a)fi(and).
For d € D", we arranged that dn f(d)ney # 0. This means that there must be some b € B and

d" € D,(C,r) such that dn f(d)nbnd # 0 and #(Ipa) > n(1 — B — 46); of course d’ = d and b = f(d), so
that #(¢),q) must be at least n(1 — 3 —46). Accordingly

Z a;na;) > Z n(l1—p8—40)i(and) :n(1—6—45)n%_1ﬂ(supD”)

=0 de D"

>(1—-n)(1—-B—-40)(1-28-76)>1-33—-125. Q
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But this means that
doicola; sag) =2(1 =377 ila; na;)) < 66+ 240 < e+ 63
(using 3861 for the equality).

(j) Finally, we need to estimate H(A’) and h(w, A’), where A" = {a} : i € N} \ {0}. For the former, we
have H(A’) < h(m,C) + 46. P |aa; — ~}| < 3n for every 4, by (h) above. So by (b-i),

H(A) = ienroqmy 4(Ra;) <0+ 32720 q(v;) = h(r,C) + 45. Q

(k) Consider the partition of unity
A" = A"V {a,1\a}.
Let © be the closed subalgebra of 2 generated by {n’c:j € Z, c € A"}.

(i) and € ® for every d € D’. P Of course ané € D, because 1\ é=al,. If d € D" and d’ # d, then
(because f is injective) f(d) # f(d’); there must therefore be some k < n and distinct ¢, ¢/ € M such that
f(d) C bg; and f(d') C by But this means that 7= *(and) C a} and 7= *(and’) C a},, so that and C 7*a]
and and nr*a) = 0.

What this means is that if we set
d=anén inf{r*a, : k <n,i€ M, andC 7*al},

we get a member of © (because every a; € D, and 7[D] = D) including and and disjoint from and’
whenever d’ € D' and d' # d. But as anm7a = 0if 0 < j < n, ané must be sup{and : d' € D'}, and
and = d belongs to ©. Q

(ii) Consequently cné € D for every ¢ € C. P We have
cné=sup{cnm(and):j<n,de D'}
=sup{r ’(n’cnand):j<n,dec D'}
=sup{r J(and):j<n,de D dcnic}
(because if d € D’ and j < n then either d C w/c or dnmic = 0)
€D

because and € D for every d € D' and 77 1[D] = D. Q
(iii) It follows that h(w, A”) > h(w,C) — . PP For any c € C,

ple,D) < file & (cn)) = ile\ &) < min(fic, 2n) <

Wl

So

h(m,C) < h(m[D)+ H(C|D)
(386Kd, because 7[D] = D)

<h(m, A"+ q(p(c,D))

ceC
(by the Kolmogorov-Sinai theorem (385P) and 386Lb)

< h(m, A") + ) g(min(jic, 2n))
ceC

(because ¢ is monotonic on [0, £])
< h(m A")+46

by the choice of 1. Q
(iv) Finally, h(m, A") > h(w,C) — 26. P Using 386Kb,
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h(m,C) =8 < h(r, A”) < h(r, A") + H({a,1\ a})
= h(m, A') + q(fa) + q(1 — fia)
= h(m, A) +a(=7) +a(z57) < hm, A) + 9
by the choice of n. Q
(1) Putting these together,
H(A) < h(m,C)+46 < h(m,A")+ 65 < h(m,A") + ¢
and the proof is complete.

387D Corollary Suppose that (2, i) is an atomless probability algebra and 7 € Aut; 2. Let (a;)ien be
a partition of unity in 2, of finite entropy, and (v;);en a sequence of non-negative real numbers such that

Z?io vi =1, Zzoio Q(%) < h(ﬁ)
Then for any € > 0 we can find a Bernoulli partition (a});cn for 7 such that fia} = ~; for every ¢ € N and
S0 la £ a;) < e+ 64/ g — il + v/2(H(A) — K, A)),
writing A = {a; : i € N} \ {0}.

proof (a) Set § = \/Zfio |\ia; — vi| + /2(H(A) — h(m, A)). Let (€x)nen be a sequence of strictly positive

real numbers such that

Yoo n +6Ven + V2 < e
Using 387C, we can choose inductively, for n € N, partitions of unity (a,;):cy such that, for each n € N,

Do Vi — fian| < €n,

H(A,) < h(m, Ap) + €n < 00

(writing A, = {an; : 4 € N} \ {0}),
Yoo a1, 2 ani) < eny1+6v/en + 26,

while

ito (a0 & a;) < € + 66

On completing the induction, we see that
S o S g1 A i) < 0 €n Y ey 63/ €n + V26, < 0.

In particular, given i € N, Y > fi(ant1,i & ap;) is finite, s0 (ani)nen is a Cauchy sequence in the complete
metric space 2 (323Gc), and has a limit af, with

pa; = limy, o0 fiGn; = Vi
(323C). If i # j,
a;n a;f = limy 00 Gni Nap; =0
(using 323Ba), so (af);en is disjoint; since
Z?io pa; = Z?io v =1,
(af)ien is a partition of unity. We also have

oo

Z a; Aa;) < Z (agi & a;) + ZZ (@nt1,i D Ani)
i=0 i=0 n=0 i=0
6ﬁ+Zen+Z6\/en V2e, < e+6p.
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(b) Now take any i(0),... ,i(k) € N. For each j <k, n € N,
H (w9 [Au]) + H(D;(An, 7)) — H(Dj41(An, 7)) < H(A,) — i, 4,) < €,
(using 386Kc). But this means that

Z Z' dmﬂ-anz ﬂdﬁanz‘§m7

deD;(An,m) i=0
by 386H. A fortiori,
|i(d N an;) — fd - fiani| < v/2€,
for each d € D;(A,, ), i € N. Inducing on r, we see that
|A(infj<r 77 ani)) = Tjo Aan,i)| < 7v260 =0
as n — oo, for any r < k. Because i, n and 7 are all continuous (323C, 323Ba and the other part of 324Kb,

u(mfw al( )) = lim ,U(lan ani(j))

i<k n—o00
k k
= lim_ H fani = [ o
: i
As i(0),... ,i(k) are arbitrary, (a});en is a Bernoulli partition for .

387E Sinai’s theorem (atomic case) (SINAT 62) Suppose that (2, i) is an atomless probability algebra
and that m € Auty 2 is ergodic. Let (v;);en be a sequence of non-negative real numbers such that > .- 7 = 1
and .2 q(7;) < h(m). Then there is a Bernoulli partition (a});en for 7 such that jia} = ~; for every i € N.

proof Apply 387D from any starting point, e.g., ag =1, a; = 0 for ¢ > 0.

387F I devote a couple of pages to machinery concerning the spaces Homy (B; €) of 387Ad. We do
not really need to work at this level of abstraction, but it is easy, it fits naturally among the methods being
developed in this volume, and it will simplify the language of some of the lemmas to follow.

Lemma Let (2, i) be a probability algebra, m a member of Aut; 2 and B, € closed subalgebras of 2 such
that 7[B] = B and 7[¢] = C.
(a) Suppose that ¢ € Hom -(B;€).
(i) ¢ = ¢nl for every j € Z.
(i) ¢[B] is a closed subalgebra of € and 7 [¢[B]] = #[B]; ¢ is an isomorphism between (B, i[B, 7|B)
and (¢[B], i §[B], 7[[B])).
(iii) If ¢» € Homy (¢[B]; €) then ¢ € Homy .(B; ).
(iv) If (b;)icr is a Bernoulli partition for 7[B, then (¢b;);cs is a Bernoulli partition for «|¢€.
(b) Homy »(B; €) is complete under its weak uniformity.
(¢) Let B C B be such that B is the closed subalgebra of itself generated by (J;c;, 7*[B]. Then the weak
uniformity of Homy (B; &) is the uniformity defined by the pseudometrics (¢,1) — fi(¢b A 1)b) as b runs
over B.

proof (a)(i) Since m¢ = ¢m, we can induce on j to get the result for j > 0. Now if b € B there is a b/ € B
such that w0’ = b, in which case

7 b = lont = ingb = ¢V = pr1b.
Thus 77 1¢ = ¢m 1. Accordingly 77/ ¢ = ¢ 7 for every j > 0 and we have the result.

(i) ¢[B] is a closed subalgebra of € by 324Kb again. Now 7[¢[B]] = ¢[7[B]] = ¢[B]. Because ¢ is
injective, it is an isomorphism between the two structures.

(iii) By (ii), we can speak of Homy . (¢[B]; €), and ¢¢ : B — € is a Boolean homomorphism. Now
o = po = plB, wYo =mp =B
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so ¢ € Homy - (°B; €).
(iv) If k € N and ¢(0),... ,i(k) € I,

p(inf 7 gbi)) = p(inf on'big)) = pe(inf 7bi(;))
4 k k
= ﬂ(]igc b)) = [ [ mbic) = [ [ aebi)-
= =0 j=0

(b) Let F be a Cauchy filter on Homy . (B; €). Write p for the measure metric on € (323Ad).

(i) For b € B, let F3 be the image of F under the map b — ¢b : Homy »(B;¢) — €. Then F is
p-Cauchy, since (¢, 1) — p(pb, ¥b) is one of the pseudometrics defining the weak uniformity (see 3A4Fc).
Since € is complete (323Gc), we have an element lim F;, = limy_, 7 ¢b defined in €; call it 6b.

(ii) () Take b, V' € B.

A N1 T . /
0(bnd’) = q}lﬁn}__qﬁ(bmb) = ng}__qﬁbﬂqﬁb = d)lgl}__(bbm é;r%fd)b
(because n : € x € — € is continuous, by 323Ba)

=0bn oY,

and similarly 6(b\d") = 6b\ 6b'. Since of course
91% = lim¢_>]: ¢1‘B = lim¢_>]: 1@ = 1@,
f is a Boolean homomorphism.

(B) Now for any b € B, we have

7 gb =7 11 (6b - 1 (6b
( m ) 11m 7
(becallse 7 F€ l'S C()IltiIlll()llS, by 324I(b once IIl()Ie)

= lim ¢7wb = O7b,
o—F

/1 90 - }l lllll (5“ - ll]ll H(N)
( F ) s
(becallse /lqut 1S COIltlIluOllS, by 323Cb)
]. _l _l
lmF:Ll‘ :u’ °

So 0 € Homy (B, €).
(iii) If b € B and € > 0, there is an F' € F such that p(¢b,1b) < € for every ¢, ¢ € F. So for ¢ € F,

P, 0b) = Timy_, 5 p(gb, b) < e.
As b and € are arbitrary, 7 — 6 (2A3Sc). As F is arbitrary, Homy . (B, €) is complete.

(c)(i) Write W for the weak uniformity and V for the uniformity defined by the pseudometrics (¢, ) —
fi(pb A 1b) as b runs over B. Since W is defined by a larger set of pseudometrics, we surely have V C W; 1
need to show that W C V), that is, that the identity map from (Homj »(9B;¢€),V) to (Homg »(B;€), W) is
uniformly continuous. Let D be the set of those d € 8 such that

for every € > 0 there are a finite subset I C B and a § > 0 such that fi(¢d A 1d) < e whenever

¢, 1 € Homy (B, €) and supye; fi(pb A b) < 0.
Then BU{0,1} C D.
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(i)(@) If d, d € D then dnd € D. P Let € > 0. Then there are I, I’ € [B]* and §, §' > 0 such that
fi(¢d & pd) < Le whenever supye; fi(¢b A ¢b) < 6 and fi(¢d’ A1pd') < e whenever sup,e; fi(¢b A vb) < &
If now supyeryp (b A 1b) < min(6, ") we shall have

ilednd) ag(dnd)) = i(ednod) a (vdnpd)) < il¢d apd) + i ed A pd)
(see the proof of 323Ba)

INA
N | =

€+

N | =
)
I
o

As € is arbitrary, dnd’ € D. Q
(B) If d € D then 1\d € D. P For any ¢, ¢ € Homy (B; €),
(1N d) (1N d)) = a((91\ ¢d) & (Y1\¥d)) = A((1\ ¢d) & (1\¥d)) = fi(¢pd £ 1pd). Q

So D is a subalgebra of B (312B).
(7) D is a closed subalgebra of B. P Suppose that d belongs to the closure of D for the measure-
algebra topology. Let € > 0. Then there is a d’ € D such that a(dAad') < %e. Let I € [B]<“ and ¢ > 0 be

such that fi(¢d’ A pd’) < e whenever sup,c; fi(db A pb) < 8. If now supye; i(¢b A ¥b) < 6,

ied o d) < (¢d s ¢d') + u(¢d o ¢d') + a(dd svd) < g(d ad') + 5 + p(d o d)
=pdad)+3+ad ad) <e

As € is arbitrary, d € D; as d is arbitrary, D is closed. Q

(6) n[D] € D. P Suppose that d € D and € > 0. Let I € [B]<* and 6 > 0 be such that
f(od Apd) < € whenever supyc; fi(pb A b) < 4. If now supye; fi(pb A ¥b) < 4,

p(ord A prd) = fi(rpd & mipd) = fm(pd £ pd)
= ja(pd A pd) < e.

As d and € are arbitrary, 7[D] C D. Q
Inducing on j, we see that 7/d € D whenever j € Nand d € D.

(€) 7~1[D] C D. P Since, as noted in (a-i) above, 7~ 1¢ = ¢n~! for every ¢ € Homy (B, €), we can
repeat the argument of (§) with 7—! in the place of 7. @ So 7~7d € D whenever j € N and d € D, and
md € D whenever j € Z and d € D.

(iii) Thus D is a closed subalgebra of B including | J;o;, 7'[B] and must be the whole of B. But this
means that the condition of 3A4Cc is satisfied by the defining families of pseudometrics for V and W, so
that the identity map from Homgy .(B;€) to itself is (V.W)-uniformly continuous, W C V and the two
uniformities are the same.

387G Lemma Suppose that (2, i) is an atomless probability algebra and m € Aut; . Let (b;);en and
(¢;)ien be Bernoulli partitions for 7, of the same finite entropy, and write B, € for the closed subalgebras
of 2 generated by {n/b; :i € N, j € Z} and {n’c; : i € N, j € Z}. Suppose that € C B. Then for any € > 0
we can find a ¢ € Homy »(B; €) such that fi(¢c; Ac¢;) < € for every i € N,

proof (a) Set B = {b; : i € N} \ {0}, C = {¢; : i € N} \ {0}. If only one ¢; is non-zero, then H(C) = 0, so
H(B) =0 and B = {0,1}, in which case 8 = € and we take ¢ to be the identity homomorphism and stop.
Otherwise, € is atomless (387Bb).

For k € N, let B C B be the finite subalgebra of 2 generated by {77b; : i < k, |j| < k}. Because € C B,
there is an m € N such that

plci,Bm) < ie for every i € N
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(386J). Let 1, £ > 0 be such that

4OV < g, E<min(fg), S a(min(2€, ficy) < .

(The last is achievable because Y .- q(jic;) = H(C) is finite.) Let » > m be such that
p(ci,B,) <& for every ¢ € N.

Let n > r be such that

2r+1
2n+2 —

<&, e < for every i > n.

(b) Let (b})ien be a partition of unity in € such that pb, = fb; for every ¢ € N. Let U be the set of
atoms of the subalgebra of B generated by {n/b; : i < n, |j| <n}U{nic; :i <n, |j| <n}, and V the set of
atoms of the subalgebra of € generated by {m7b. : i < n, |j| <n}U{r’¢; : i <n, |j| <n}. Foreach v €V,
choose a disjoint family (dyy)uer in € such that sup,cy dyw = v and fidy, = (v nu) for every u € U. By

1 _
mﬂ(dvu) for
everyu € Uandv e V. (n]Cisa Bernoulli shift, therefore ergodic, by 385Se, therefore aperiodic, by 386D.)

Set e—sup‘]|<n7r3a € = Sup|j|<,—, 7 a; then

2n

386C(iv) again, there is an a € € such that a,7a,... a are disjoint and fi(andy,,) =

2n+1
2n+2’

2r+1
2n+2°

je = (2n + 1)jia = pe=2n—-r)+pa=1-

Let €; be the principal ideal of € generated by é.
(c¢) The family (777 (andyu))|jj<n,ucv,vev is disjoint. P All we have to note is that the families
<dvu>uEU,vEV and
(T77a) 1< = (77" (7" a)) j1<n

are disjoint. @Q Consequently, if we set

b, = SUP|j|<n SUPyeV SUPyecU,uc nib; 7 (am dvu) ed

for i € N| <bZ>Z€N is disjoint, since a given triple (j,u,v) can contribute to at most one b;.
Of course b; C SUp|jj<n T ~Ja = e for every i. If i < n, we also have ,ub = jie - fib;. P For |j| < n, 7lb; is
a supremum of members of U, so

ﬂi)z = Z Z Z ,a(ﬂ-ij(and'uu))

Jj=—nveV ueUucCnib;
(because (77 (a N dyu))|j<nuevveyv is disjoint)

=3 Y Aendw) =55 D> Y d

j=—nveVucUucnib; j=—nveV uclUucnib;
(by the choice of a)

S =PID D M

j=—nveVyuelUucnib;

(by the choice of d,,,)

n
- 2n1+2 Z > = 2n1+2 Z A(m’bi)
j=—nuelUucnib; j=-n
(because 77b; is a disjoint union of members of U when i < n, |j| < n)
= Jfib, = fie - fib. Q
Again because € is atomless, we can choose a partition of unity (b});en in € such that gb} = b, for every
1, while b} sz and by ne = bz for 1 < n.
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(d) Let € be the finite subalgebra of B generated by {n/b; : i < n, |j| < r}U{ric; 1 i < n, |j| < r}
Define 6 : € — €; by setting
0b = SUD|j| <,y SUDy ey SUP ety cnip T (@ N dyw)
for b € €.
(i) 0 is a Boolean homomorphism. P The point is that if [j| < n —r and b € €, then 77b belongs to
the algebra generated by {7*b; : i < n, |k| < n} U {rFc; : i < n, |k| < n}, so is a union of members of U.
Since each map
b w7 (andy,) if u € 7b, 0 otherwise
is a Boolean homomorphism from € to the principal ideal generated by 7=/ (and,,), and
<7T_j (CL n dvu)>|j\§nfr,u€U,v€V
is a partition of unity in €z, 6 also is a Boolean homomorphism. Q

(ii) f(6b) < b for every b € €. P (Compare (c) above.)

,[_L(Gb) = i Z Z ,L_”Tij (CL n dvu)

j=—n+rveV ueUucmib

_ Ly i) = 22
=5 Y Y Aenw =" <. Q

Jj=—n+rveVuclUucnib

(iii) O(7*b;) = énmhbr for i < n, |k| <r. P Of course 7¢b; € €. If |j| < n —r, then |j + k| < n, so
7 an6(7*b;) = sup sup 779 (andy.,)
veV ueU,ucmitkp;

=" (sup sup T andy.))
veEV uelU,ucnitkd;

=@ Fanb) =1 7antf(enbl) = Tanatb;

because 77a C wFe. Taking the supremum of these pieces we have
O(rkb;) = SUD|j|<ppr T 70N O(7*b;) = SUD|j|<p—p TGN b = en7hbl. Q
(iv) Finally, fc; = ¢; né for every i < n. P If |j| < n—r and v € V then either v C w/¢; or vn7ic; = 0.
In the former case,
dyy = vNnu =0 whenever u € U and u ¢ wc;,

so that

U = SUPyey dou = SUDPyep yc nic; Qous
in the latter case, dy, = v Nnu = 0 whenever « C m¢;. So we have

vnmic; = SUPyeU,uc ric; dvu

for every v € V, and

Oc;= sup sup sup 7 Y(andy)
lj|<n—rveVueUucmic;

= sup 7 (ansup sup  dy)
|7 <n—r veEV uelU,ucnic;

= sup 7 J(an sup(vnnic))
|j|<n—r veV

= sup 7w (annl¢;))=c¢n sup 7w la=c¢né Q
lFl<n—r lil<n—r
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(e) Let B* be the closed subalgebra of 2l generated by {n/b} : i € N, j € Z}. Then for every b € B,
there is a b* € B* such that b = b* né. I The set of b for which this is true is a subalgebra of 2 containing
7¥b; for i < r and |k| < r, by (d-iii). @ It follows that

p(ci,B*) < 2¢ for i € N.
P If i > n this is trivial, because fic; < £, by the choice of n. Otherwise, ¢; € €. Take b € B,. such that
a(b A c) = ple,Byr) <& Let b* € B* be such that 0b = b* né. Then

plens B) < fie; £6) < 1— e+ (e n (e A 1Y))
2r+1 _ _ 2r+1

= gz T g((énc;) A 0b) = iz T fi(Oc; A Ob)
(by (d-iv))

_ 2r+1 _ ) 2r+1 o

= 2L b o) < 28 e, A
(by (d-ii))

<2

by the choice of n. Q
(f) Set B* = {b} : i € N} \ {0}. Then H(B*) = h(n,C) < h(m,B*)+n. P

H(B*) = H(B) = H(C)
(because b} = [ib; for every 4, and we supposed from the beginning that H(C) = H(B))
= h(rm, C)
(because C' is a Bernoulli partition, see 387Ba)
< h(n[B*)+ H(C|B")
(386Kd)

< h(n[B") +Zq<p<ci,%*>>

=0
(386Lb)

oo
< h(m,B*)+ ) q(min(2¢, fic;))
i=0
(by the Kolmogorov-Sinai theorem, 385P(ii), and (e) above, recalling that & < %, so that ¢ is monotonic on

[0,2¢])
< h(m, BY) +1

by the choice of £. Q
Note also that H(B*) = h(w,C) < h(m).

(g) By 387D, applied to 7| € and the partition (b} );cn of unity in € and the sequence (v;);en = (b})ien,
we have a Bernoulli partition (d;);en in € such that id; = ab; = fb; for every i € N and

Zi:oﬂ(diﬁbf) §77+6\4/%§m-

Let ® C € be the closed subalgebra of 2 generated by {n’d; : i € N, j € Z}. Then we have a ¢ €
Homy (B; €) such that ¢b; = d; for every i € N (387Bc).

(h) Set

e* = é\ Suplj\gm,iEN mJ (d’L AN b;k).
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Then ¢(77b;) ne* = O(n/b;) ne* whenever i < m and |j| < m. P
d(mb;) ne* =7 (b)) ne* = wid;ne*
=mibine* =nibnéne* =0(r'b;)ne

by (d-iii), because ¢ and |j| are both at most m <r <n. Q Since b+ ¢bne* : A — WA+, b~ Obne* : € —
.+ are Boolean homomorphisms, ¢bne* = 6bne* for every b € B,
Now fi(c; & ¢c;) < € for every ¢ € N. PP If ¢ > n then of course

A(pe; & cy) < 2fic; < 26 < e

If i < n, then (by the choice of m) there is a b € B,, such that fi(c;,b) < te. So

¢Ci Ac; C (¢Cz A (7256) @] ((bb A 9[)) (@] (0b A HCZ) U (062 A Ci)
CPleiab)yu(l\e)ubbac)

(using the definition of e* and (d-iv)) has measure at most

e &) + 1\ €) + b & )
(by (d-ii), since b and ¢; both belong to &)

< 2fi(c; Ab) + A(1\E) + (2m+1) Y A(d; A b])
=0

e

€ €
2 2n+2 4

IN

as required. Q
Thus we have found a suitable ¢.

387H Lemma Suppose that (2, i) is an atomless probability algebra and 7= € Aut; . Let (b;);en and
(¢;)ien be Bernoulli partitions for 7, of the same finite entropy, and write B, € for the closed subalgebras
generated by {n/b; : i € N, j € Z} and {n’¢c; : i € N, j € Z}. Suppose that € C B. Then for any € > 0 we
can find a ¢ € Homy, (€;B) such that fi(dc; A c¢;) < e and p(b;, ¢[€]) < € for every i € N.

proof (a) By 387G, there is a ¢y € Homp (B; €) such that ji(doc; A ¢;) < fe for every i € N. Write B~
for ¢o[B] C € and bf = ¢ob; for i € N.
Let m € N be such that

p(ci, Bm) < 1€ for every i € N,
where 9B, is the subalgebra of 2 generated by {77b; : i < m, |j| < m} (386J). Let n € ]0, ¢] be such that
(2m + 1)327% o min(n, 2/ib;) < e
We know that B* is a closed subalgebra of € and #[B*] = B* (387F(a-ii)), while (b});en is a generating
Bernoulli partition of %8* because ¢ is an isomorphism between (9B, i]B,7[9B) and (B*, il B*, 7B*)
(387Bc). By 387G again, there is a ¢ € Homy (€;B*) such that fi(¢1b] AbF) < n for every i € N. Write
¢ = ¢1[€], ¢f = ¢p1¢; for i € N.

(b) Now fi(c; & ¢oc;) < € for every i € N. P There is a b € B,, such that fi(c; Ab) < 1e. We know
that ¢g[%B,,] is the subalgebra of 2 generated by {¢om’b; : i < m, |j| < m} = {7/b} : i < m, |j| < m}, and
contains ¢ob. Because

d1(dob) A dob C SUP; e, || <m G (mIbF) A TIb; = SUP|j|<m 7 (sup;en @167 A DY),

we have
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(@160b A Gob) < (2m +1) > A(¢1b] AD})
=0

<(@2m+1) Z min(n, 2ib;) <
i=0

€.

e

But this means that

alc; & goci) = f(dr1ci & poci) < p(drci A drdob) + fi(dr1dob A pob) + [i(pob A poc;)

< fiei & gob) + i + (b2 c;) < file; & pocs) + pdoci A dob) + %

IN
o

+ﬂ(ClAb)+ <e Q

£
2

(c) Set ¢ = ¢y ' ¢1; this is well-defined, with domain €, because ¢y is injective and ¢, [€] C ¢o[B]. Because
@1 : € = ¢o[B] and gbgl : ¢o[B] — B are Boolean homomorphisms, ¢ : € — B is a Boolean homomorphism.
If ¢ € €, then

Agc = pp1c = fie,  wPe = wh1c = TP,
so ¢ € Homp (€;B). Next,
fici & pei) = fi(doci & pogpe:) = fi(doci A ;) <€
for every 4, by (b). Finally, if i € N, then ¢1b} belongs to ¢1[¢], while © = ¢O_1[¢1[€]], S0
p(bi, $[€]) = p(dobi, $1[€]) < [(Pob; & 1b7) = (b & ¢1b]) < <.

This completes the proof.

3871 Lemma Suppose that (2, i) is an atomless probability algebra and m € Auty A. Let (b;)icr, (¢i)ier
be Bernoulli partitions for m, of the same finite entropy, and write 9, € for the closed subalgebras generated
by {nib; i € N, j € Z} and {n’¢c; : i € N, j € Z}. Suppose that € C B. Then for any € > 0 we can find
¢ € Homy, »(€;B) such that ¢[€] =B and fi(pc; A ¢;) < € for every i € N.

proof (a) To begin with (down to the end of (c) below) suppose that I = N. Choose sequences (€,)nen
in 10, 00[, (0n)nen in ]0,00[, (rn)nen in N and (¢n)nen in Homy -(€;B) inductively, as follows. Start with
ro = 0 and ¢g : € — B the identity. Given that ¢, € Homj »(€;B) is such that p(b;, $,,[€]) < 27" for every
i € N, let 7, € N be such that p(b;,®,) < 27"*! for every i € N, where D, is the algebra generated by
{mippe; i <y, 7] < 7n} (386]).

Take €,,, 6, > 0 such that

(2rm + L)e, < 27™ for every m < n,

6, <27 e, S min(6y, 2f1¢;) < €n,
and use 387H to find ¢,, € Homy (¢, [€]; B) such that
(ndnci & ¢nci) < 0y p(biy Pngn[€]) < 27771
for every i € N. Set ¢, 11 = Yy, so that ¢,41 € Homy »(€;B) (387F (a-iii)) and p(b;, dp41[€]) < 27771
for every i. Continue.

(b) For any i € N,

ZZO:O ﬂ(¢n+lci A (bnci) S EZOZO 571 S €,

80 (PnCi)nen has a limit ¢c; in A. This shows that (¢, )nen is a Cauchy sequence in Homj . (&;B) for the
uniformity defined by the pseudometrics (¢,v¢’) — f(ve; A 9'¢;) as i runs over N. But this is the weak
uniformity of Homy »(€;B), by 387Fc. Since Homy »(€;B) is complete under this uniformity (387Fb),
¢ = limy, o0 ¢y, is defined in Homy - (€;B). Of course
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(e & ci) <307 g i(dnrici A dnei) <€
for every i € N.

(c) Now b; € ¢[¢€] for every j € N. P Fix m € N. Then p(b;,D,,) < 27! 50 there is a b € D,, such
that fi(b; A b) < 27™F1 Now

D o(bmei, [€]) < (dmes & des) <Y Z (Pr+16i A Prci)
=0 =0 =0 k=n

< Z Zmln (BPrr1ci + fAprci, Op) = Z Zmln 2fic;, 0p) < Z €.

k=m i=0 k=m 1=0 k=m
So

p(b,d[€]) < (2rm + 1) p(dmei, 0[€])

i=0
(386Mc)
<> @t De <Y 27k =27
k=m k=m

and

p(bj, 8€]) < ji(b; & b) + p(b, p[€]) < 27mHL 4 gmAl — gmmt2,
As m is arbitrary, p(b;, #[€]) = 0 and b; € ¢[¢]. Q

(d) This completes the proof if I = N. In general, if I = {0,... ,n}, set b; = ¢; = 0 for i > n and proceed
as above; this shows that the result is true for any countable I. If we have been indulgent enough to allow
an uncountable I to survive to this point, set J = {i : b; # 0} U {i : ¢; # 0} and apply the result to (b;);cs
and <b1>1€J

387J Ornstein’s theorem (finite entropy case) Let (2(, i) and (B, 7) be probability algebras, and
m:A = 2A ¢ B — B two-sided Bernoulli shifts of the same finite entropy. Then (2, i, 7) and (B, 7, §)
are isomorphic.

proof (a) By 385R, 2 has a purely atomic root algebra 2. If 2 is infinite, enumerate its atoms as (a;);en;
if g is finite, enumerate its atoms as (aog, ... ,a,) and set a; = 0 for ¢ > n. In either case, (a;);en is a
two-sided generating Bernoulli partition in (. Similarly, B has a generating Bernoulli partition (b;);en. By
385R, {a; : i € N} and {b; : i € N} both have entropy h(w) = h(¢). If this entropy is zero, then 2 and B
are both {0, 1}, and the result is trivial; so let us assume that h(w) > 0, so that 2 is atomless (387Bb).

(b) By Sinai’s theorem (387E), there is a Bernoulli partition (¢;);en for m such that fic; = vb; for every
i € N. Let € be the closed subalgebra of 2 generated by {7m’c; : i € N, j € Z}. By 387I, there is a
1 € Homy (€, ) such that ¢[C] = 2. But now

(A, i, m) = (€, 1€, 7[€) = (B, v, §)
(387F (a-ii), 387Bc).
387K Using the same methods, we can extend the last result to the case of Bernoulli shifts of infinite
entropy. The first step uses the ideas of 387C, as follows.

Lemma Let (2, i) be a probability algebra and m € Aut; 2 an ergodic measure-preserving automorphism.
Suppose that (a;);cr is a finite Bernoulli partition for 7, with #(I) = r > 1 and fia; = 1/r for every i € I,
and that h(7) > In2r. Then for any e > 0 there is a Bernoulli partition (bi;)cr, jefo0,13 for 7 such that
_ _ _ 1
filai & (big Ubin)) <€, fibio = fibin = -
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for every i € I.
proof (a) Write A for {a; : ¢ € I'}. Let 6 > 0 be such that
§ 4645 <e.
Let n > 0 be such that
n<Iln2, Bnp<é
and
|t — 3| < 6 whenever ¢ € [0,1] and g(t) +q(1 —t) > In2 — 4p
(385Ad). We have

H(A) =rq(+) =nr,

and fid = r~" whenever n € N and d € D, (4, ).

Note that 2 is atomless. IP? If a € 2 is an atom, then sup;¢y mla = 1 (because 7 is ergodic, 372Pb),
and 2 is purely atomic, with atoms all of the same size as a; but this means that H(C) < ln(ﬁ) for every
partition of unity C' C 2, so that

h(m, C) = Ty o = H(Dp(C,7)) < limiy o0 + In(=-) =0

na
for every partition of unity C, and

0=h(r)>In2r >In2. XQ

(b) There is a finite partition of unity C' C 2 such that
h(m,C) =1n2r —mn,

and C refines A. PP Because h(m) > In 2r, there is a finite partition of unity C’ such that h(w, C’) > In2r —n;
replacing C’ by C’V A if need be, we may suppose that C” refines A; take such a C’ of minimal size. Because
H(C") > h(m,C") > H(A), there must be distinct ¢y, ¢; € C’ included in the same member of A. Because 2
is atomless, the principal ideal generated by c; has a closed subalgebra isomorphic, as measure algebra, to
the measure algebra of Lebesgue measure on [0, 1], up to a scalar multiple of the measure; and in particular
there is a family (dy)¢cjo,1) such that ds C d; whenever s <, dy = ¢; and fid; = tfic; for every t € [0, 1]. Let
D, be the partition of unity

(C"\ {co,c1}) U{couds, 1\ di}
for each t € [0,1]. Then
h(mw, D1) = h(m, (C"\ {co,c1}) U{couecr}) <In2r —n,
by the minimality of #(C"), while
h(m, Do) = h(m,C") > In2r —n.
Using 385N, we also have, for any s, ¢ € [0,1] such that [s — ] < 1,

h(m,Ds) — h(m, D) < H(Ds[D)
(where D, is the closed subalgebra generated by Dy)
< q(p(co uds,Dy)) + q(p(c1\ ds,D1))
(by 386Lb, because D; \ ©; C {couds,c1\ds})
< q(i((couds) & (coudy))) + q(ia((er \ ds) A (c1\ dy)))
= 2q(ji(ds & dy)) = 2q(|s — t|fc1)

because ¢ is monotonic on [0, |s — t|fic;|. But this means that ¢t — h(m, D;) is continuous and there must be
some t such that h(m, D;) = In2r —n; take C' = D;. Q
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(c) Let £ > 0 be such that
£<m €<g, a2 +g1-2) <, Teoqlmin(2, fic) < 7.
Let n € N be such that

== <& alzg)+a) < lwa — h(m O)xL 2] <&,

where
wy =1L > ln(—1 )xd
n = L 2edeD, (Cym) g )X G-

(The Shannon-McMillan-Breiman theorem, 386E-386F, assures us that any sufficiently large n has these
properties.)

(d) Let D be the set of those d € D, (C, ) such that

ad > (2r)™™,  ie., lha(%) < In2r.

n

Then g(sup D) > 1 — &, by the choice of n, because h(w,C) = In2r — n. Note that every member of
D is included in some member of D, (A, ), because C refines A. If b € D, (A, 7), then b = r=", so
#({d :d e D,dcb}) < 2" we can therefore find a function f : D — {0,1}" such that f is injective on
{d:d e D, dcb} for every b € D, (A, 7).

(e) By 386C(iv), as usual, there is an a € & such that a,7 ta,... 7 "*la are disjoint and ji(and) =
n%_lﬂd for every d € D,,(C, ). Set

€ =SUPycp jen T ?(and);

then

fie =300 Y gep i(and) = n%lﬂ(sup D)>(1-€2>1-2¢

(f) Set
c¢* =sup{rI(and):j<n,de D, fd)(j) =1}
(I am identifying members of {0,1}™ with functions from {0,... ,n — 1} to {0,1}.) Set
A*=Av{c,1\c*}, A =A*Vv{a,1\a}V{e1\e},
and let A be the closed subalgebra of 2 generated by {mia’ :a' € A, j € Z}. Then and € A for every
de D. P Set d=upr(and,A’). Let b be the element of D,,(A, ) including d. Because a, b, e € A,
dcanbne=supy.panbnd =sup{and :d € D, d cb}.

Now if d’ € D, d’ € b and d’ # d, then f(d') # f(d). Let j be such that f(d’')(j) # f(d)(4); then 77 (a nd)
is included in one of ¢*, 1\ ¢* and 777 (and’) in the other. This means that one of 7/c*, 1\ 7/¢c* is a member
of 2 including a N d and disjoint from and’, so that d nd’ = 0. Thus d must be actually equal to a nd, and
andeA'. Q

Next, cne € A’ for every c € C. P (777 (and))j<n, dep is a disjoint family in 2’ with supremum e. But

whenever d € D and j < n we must have d C m/¢’ for some ¢’ € C, so either d C ¢ or dnnic = 0; thus
777 (and) must be either included in ¢ or disjoint from it. Accordingly

cne=sup{r(and):j<n,deD,dcric}eA. Q
Consequently h(m, A’) > In2r — 2n. P For any c € C,
ple, W) < file & (ene)) = fife\ ) < min(fic, 26) < 5,

SO
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In2r —n = h(r,C) < h(xA')+ H(C|A)

h(r, A +Z (e, )

ceC

(386Kd)

(by the Kolmogorov-Sinai theorem and 386Lb)

< h(m, A") + ) q(min(ge, 2€)) < h(m, A) +1n
ceC

by the choice of £&. Q
Finally, h(m, A*) > In2r —4n. P

In2r —2n < h(m, A") < h(m, A*) + H({a,1\ a}) + H({e,1\ e})
(applying 386Kb twice)

h(m, A*) + q(fia) + q(1 — pa) + q(fie) + q(1 — fie)
h(m A)+q( )+q( o) +4q(26) + q(1 - 2¢)
h(m, A*) +n+n= (W,A*)+277-Q

IN

IN

(g) We have

In2r —4n < h(m, A*) < H(A")

<H(A)+ H{c", 1\c¢"}) =lnr+ H{{c",1\c'}) <In2r,

SO

q(pe”) +q(1 — pc*) = H({c", 1\ c"}) 2 In2 — 4n.
By the choice of n, |ic* — 3| < 6.

Next,
_ . 1 _ X !
Yier li(aine) — |+ |p(ai\ ¢*) — -] < 30
P By 386H,
_ * 1_ _ * 1_
Z\N(amc)—;ﬂc|+|ﬂ(ai\c) —p(i\e)]
i€l
< V2(H(A)+ H({c*,1\c}) — H(A"))
S\/21n7’—|—1n2—ln27"—|—477)=\/877§5.
So

_ * 1 _ % 1
Z|/~L(amc)—;|+|ﬂ(ai\c)—;|
il

_ B D T
SE;(W(GWC ) = —pet| + et —
ic

+[aai\ ) = Za(T )|+l ¢) —

N | =
S—

<G+ [act — 3]+ a1\ ) - 5] < 36. Q
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(h) Now apply 387D to the partition of unity A*, indexed as (a}})ier jefo,1}, Where aj; = a;nc* and
ajo = a; \c*, and <'7ij>i€],j€{0,1}a where v;; = % for all 7, j. We have
Ziel,je{m} |/]afj - %‘j| <30
by (g), while
H(A*) — h(m, A*) <In2r —In2r + 4n = 4n,

SO

Ziel,je{o,l} |/7'a;<j —Yii| + \/2(H(A*) — h(m, A*)) <30 + /81 < 46.
Also
Ziej,jg{o,1} Q(’Yij) =1In2r < h(m).
So 387D tells us that there is a Bernoulli partition (bi;);cs je{o,1} for m such that fib;; =
Yict jefony Albiy Aajy) <6+ 6v/40 < e.

1

5 for all 4, j and

Now of course

> alai & (bioubin)) <D A((aine*) A bi) + A((ai \ ¢*) Abig)
el el
= Y laaby)<e

i€l,je{0,1}

as required.

387L Ornstein’s theorem (infinite entropy case) Let (2, i) be a probability algebra of countable
Maharam type, and 7 : 2 — 2 a two-sided Bernoulli shift of infinite entropy. Then (2, i, 7) is isomorphic
to (Bz, vz, @), where (B, i7) is the measure algebra of the usual measure on [0,1]%, and ¢ is the standard
two-sided Bernoulli shift on Bz (385Sb).

proof (a) We have to find a root algebra € for m which is isomorphic to the measure algebra of Lebesgue
measure on [0, 1]. The materials we have to start with are a root algebra 2y C 2 such that either 2y is not
purely atomic or H(Ag) = oo, where Ay is the set of atoms of .

Because 2 has countable Maharam type, there is a sequence {d,)nen in g such that {d, : n € N} is
dense for the measure-algebra topology of 2y (3310).

(b) There is a sequence (Cy,)nen of partitions of unity in (g such that C,, 41 refines C,,, H(C,,) = nln2
and d,, is a union of members of C,,;1 for every n. I We have
sup{H(C) : C C 2y is a partition of unity} = oo
(385J). Choose the C,, inductively, as follows. Start with Cp = {0,1}. Given C,, with H(C,) = nln2, set
Cl =C,V{d,,1\d,}; then
H(C}) < H(Cp) + H({dy, 1\ dn}) < (n+1)In2
(385Ga, 385Ad). By 386N, there is a partition of unity C),41, refining C7,, such that H(Cp41) = (n+1)1In2.
Continue. Q
(c) For each n € N, let €, be the closed subalgebra of 2 generated by {n’/a : a € C,, j € Z}. Then

(€, )nen is increasing. For each n, 7[€,] = €,; because C,, C o, 7] €, is a Bernoulli shift with generating
partition C,,. Accordingly

h(m|€,) = h(r, Cp) = H(Cp,) =nln2

(385R). Of course d,, € €41 for every n.

Choose inductively, for each n € N, ¢, > 0, r, € N and a Bernoulli partition (bns)se0,1}» in €, as
follows. Start with byy = 1. (See 3A1H for the notation I am using here.) Given that (b,s)scio,1}» is a
Bernoulli partition for m which generates €,,, in the sense that &, is the closed subalgebra of 21 generated
by {7bne : 0 € {0,1}", j € Z}, and fib,, = 27" for every o, take €, > 0 such that

D.H.FREMLIN



92 Automorphism groups 387L

(2rm + L)e, < 27™ for every m < n.
We know that
h(ml€pt1) =(n+1)In2 =1In(2-27).

So we can apply 387K to (€41, m[ €, 1) to see that there is a Bernoulli partition (b,,)rc(0,13»+ for 7 such
that
oo € Cusry i, =27
for every 7 € {0,1}"F1,
ﬂ(bmf A (b;z,a“<0> U b;ua“<1>)) <27

for every o € {0,1}". By 387l (with B = € = &,,;1), there is a Bernoulli partition (b,11+)refo,13n+1 for
7| €, 41 such that the closed subalgebra generated by {m7b,41, : 7 € {0,1}", j € Z} is € q1, fibyy1r =
2771 for every 7 € {0,1}"*! and

> reqoayrt Blbn1r AYL) < €.

For each k € N, let ‘B,(CRH) be the finite subalgebra of €, generated by {m/b, .1, : 7 € {0, 1}" "1, |j| < k}.
Since d,;, € €, 41 C €, 41 for every m < n, there is an r,, € N such that

p(dpm, %$«Z+1)) < 27" for every m < n.
Continue.
(d) Fix m <n € N for the moment. For o € {0,1}™, set
bno = sup{bn, : 7 € {0,1}", T extends o}.
(If n = m, then of course o is the unique member of {0,1}™ extending itself, so this formula is safe.) Then
fbpe = 27"#({7: 7 € {0,1}", 7 extends o}) = 272" =27,

Next, if o, ¢’ € {0,1}™ are distinct, there is no member of {0,1}" extending both, so b,s N b, = 0; thus
(bno)ocfo,1}m 1s a partition of unity. If ¢(0),... ,o(k) € {0,1}™, then

a(inf ﬂjbn’g N =1 sup inf ijn,T ;
(inf () (T(O),...,T(k)e{o,l}" inf ()
T(§)20(§)Vi<k
= Z ﬂ(lgfl;:ﬂjbn,T(J))
7(0),...,7(k)e{0,1}" -
T(§)20(J)Vi<k

_ Z (27n)k+1

7(0),...,7(k)€{0,1}™
7(§)20()Vi<k

k
= (2 @ = 2 = T b o),

=0
80 (bno)oefo,1ym is a Bernoulli partition.
(e) If m <n €N, then
de{o,l}m ﬂ(bna A bn+1,a) < 2¢,.
P We have
bpo A bn+1,<7 = ( sup bn7’) A ( sup bn-i—l,v)
ocCre{0,1}" ocCve{0,1}n+1
= ( sup bnT) A ( sup bn+1,‘r“<0> u bn+1,‘r“<1>)
ocCre{0,1}" cCre{0,1}"
c sup  bpr A (bpy1,7~<0> Ubny1,r~<05)s
cCre{0,1}"
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SO

Z ﬂ(b’ﬂo' A bn+1,o) S Z ﬂ(b’m’ A (bn+1,7—’\<0> U bn+1,T’\<1>>)
oe{0,1}m T7€{0,1}"

< Z ﬂ(bnr A (b’lrL,T’\<0> U b:l,T’\<1>))
T7€{0,1}"

+ Z /_j‘(b{nv A bn+1,v)
ve{0,1}n+1

< Z 27pn + € = 26,. Q

T7€{0,1}"

(f) In particular, for any m € N and ¢ € {0,1}™,
o (bne Dbpy1 o) <307 2€, < 00.
So we can define b, = lim,,_, o bys in A. We have
by = limy, o0 iy = 27
and if o, o’ € {0,1}™ are distinct, then
by Nbyr = limy, 00 bpo Nbner =0,

80 (bs)sef0,13m is a partition of unity in L. If 0(0),... ,0(k) € {0,1}™, then

f(inf wbo(j) = Tim f(inf 7/by o(;))

j n—oo  j<k
k

k
= lim ] abnoi) = [ 260,
§=0 3=0
80 (bs)oecfo,13m is a Bernoulli partition for 7. If o € {0,1}™, then bne = by, s~ <> Uby o~<o> for every
n>m-+1,so
bo~<0> Ubg~c1> = liMy 00 by g~ <05 U by g~ 1> = liMy 00 bn o = s

(g) Let & be the closed subalgebra of 2 generated by |J,,cn{bs : 0 € {0,1}}. Then € is atomless
and countably 7-generated, so (&, i €) is isomorphic to the measure algebra of Lebesgue measure on [0, 1]

(331P). Now ji(infj<g mle;) = H?:o fie; for all eg,... ,ep € € P Let € > 0. For m € N, let &,, be the
subalgebra of € generated by {b, : 0 € {0,1}}. (&, )men is non-decreasing, so J,,cn Em is a closed
subalgebra of 2, and must be & Now the function

(ao, .. ,ak) — ﬂ(infjgk Wjaj) - H?:O paj : A+ S R

is continuous and zero on &Ftl for every m, by 387Ba, so is zero on ¢**! and in particular is zero at
(eo,.-. ,er), as required. Q
By 385Sf, (m7[€]) jez is independent.

(h) Let B* be the closed subalgebra of A generated by {mib, : o € U,,cn{0,1}™, j € Z}; then B* is the
closed subalgebra of 2 generated by |J ez 7/ [€]. Tt follows from (e) that, for any m € N,

S pbme.B) < D filbmo A by)

oefo,1}m oef{0,1}m
S Z Z ﬁ(bna Abn+1,4:7) S 2 Z €n-
ce{0,1}m n=m n=m

So if b € BT,

T'm
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p(b,B%) < (21, +1) Z p(bm+1,m B*)

G’E{O,l}m’+1
(386Mc, as w[B*] = B*)
o0 o0
< 2(2rp, +1) Z en < 2 Z 27" = 9~mHl,
n=m-+1 n=m+1

It follows that, whenever m < n in N,
(A, B*) < p(d, B TY) 4 27nF1 < 9=n y 9=ntl

by the choice of r,,. Letting n — oo, we see that p(d,,, B*) = 0, that is, d,, € B*, for every m € N. But
this means that 21y C B*, by the choice of {d,,)men. Accordingly 77 [2lg] € B* for every j and B* must be
the whole of 2.

(i) Thus 7 is a two-sided Bernoulli shift with root algebra &; by 385Sc, (2, [, ) is isomorphic to
(Bz, vz, 9).

387M Corollary: Sinai’s theorem (general case) Suppose that (2, ) is an atomless probability
algebra, and m € Aut; 2. Let (8, 7) be a probability algebra of countable Maharam type, and ¢ : B — B
a one- or two-sided Bernoulli shift with h(¢) < h(w). Then (9B, 7, ¢) is isomorphic to a factor of (2, iz, 7).

proof (a) To begin with (down to the end of (b)) suppose that ¢ is two-sided. Let B¢ be a root algebra for
¢. If By is purely atomic, then there is a generating Bernoulli partition (b;);en for ¢ of entropy h(®) (385R).
By 387E, there is a Bernoulli partition (¢;);en for 7 such that fic; = 0b; for every i. Let € be the closed
subalgebra of 2 generated by {7’c; :i € N, j € Z}. Now (€, i] €, 7| €) is a factor of (A, ji, 7) isomorphic to
(8,7, 0).

(b) If B is not purely atomic, then there is a partition of unity (b;);en in B of infinite entropy (385J).
Again, let € be the closed subalgebra of 2 generated by {n’c; : i € N, j € Z}, where (¢;);en is a Bernoulli
partition for 7 such that fic; = vb; for every i. Now n[€ is a Bernoulli shift of infinite entropy and € has
countable Maharam type, so 387L tells us that there is a closed subalgebra €, C € such that (7%[€¢])rez
is independent and (&, 1] €g) is isomorphic to the measure algebra of Lebesgue measure on [0,1]. But
(B, v[By) is a probability algebra of countable Maharam type, so is isomorphic to a closed subalgebra
¢, of €y (332N). Of course (7*[€])rez is independent, so if we take €% to be the closed subalgebra of 2
generated by e 7™[€1], 7] €} will be a two-sided Bernoulli shift isomorphic to ¢.

(c) If ¢ is a one-sided Bernoulli shift, then 385Sa shows that (B, 7, ) can be represented in terms of a
product measure on a space X" and the standard shift operator on X~. Now this extends naturally to the
standard two-sided Bernoulli shift represented by the product measure on X%, as described in 385Sb (cf.
385Yg); so that (B, 7, ) becomes represented as a factor of (B',0’,¢") where ¢’ is a two-sided Bernoulli
shift with the same entropy as ¢ (since the entropy is determined by the root algebra, by 385R). By (a)-(b),
(B',0', ¢) is isomorphic to a factor of (A, i, ), so (B, v, P) also is.

Remark Thus (2, i, 7) has factors which are Bernoulli shifts based on root algebras of all countably-
generated types permitted by the entropy of 7.

387X Basic exercises (a) Let (2, ) be a probability algebra, and = : 2l — 2l a one- or two-sided
Bernoulli shift. Show that 7™ is a Bernoulli shift for any n > 1. (Hint: if 2y is a root algebra for 7, the
closed subalgebra generated by U, _,, 7/ [2Ap] is a root algebra for 7™.)

(b) Suppose that (U, &) be a probability algebra, 7 € Aut; 2 and B is a closed subalgebra of 2 such
that 7[B] = B. Show that if 7 is ergodic or mixing, so is 7[B.

(c) Let (2, ) be a measure algebra and m € Aut; 2. Show that (¢,v) — ¢ : Homy »(A;2A) x
Homy »(2A;2A) — Homy (A;A) is continuous for the weak topology on Homj - (2%;2L).
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(d) Let (A, i) be a probability algebra, and write ¢ for the identity map on 2; regard Aut; 2 as a subset
of Homy, ,(2; 1) with its weak topology. Show that m +— 7~1 : Aut; A — Aut; 2 is continuous.

(e) Let (2, 1) be a probability algebra of countable Maharam type, and 7 : 2 — 2 a two-sided Bernoulli
shift. Show that for any n > 1 there is a Bernoulli shift ¢ : 2 — 2 such that ¢™ = w. (Hint: construct
a Bernoulli shift ¢ such that h(y) = Lh(r), and use 385Xi and Ornstein’s theorem to show that 7 is
isomorphic to ¥™.)

(f) Let (avi)ien, (Bi)ien be non-negative real sequences such that Y ;o a; =Y oo 8; = Land Y o) q(a;)
=>"704a(Bi). Let po, vo be the measures on N defined by the formulae

poll = ZiEE a;, k= Zz‘eE Bi

for E C N. Set X = N% and let u, v be the product measures on X derived from s and v9. Show that there
is a permutation f : X — X such that v is precisely the image measure ;o f ! and f is translation-invariant,
that is, f(z6) = f(x)0 for every x € X, where 0(n) =n+ 1 for every n € Z.

(g) Let (2, i, w) and (B, v, ¢) be probability algebras of countable Maharam type with two-sided Bernoulli
shifts. Suppose that each is isomorphic to a factor of the other. Show that they are isomorphic.

387Y Further exercises (a) Suppose that (2, [, 7) and (B,7,¢) are probability algebras with one-
sided Bernoulli shifts, and that they are isomorphic. Show that they have isomorphic root algebras. (Hint:
apply the results of §333 to (2, i, 7[2A]).)

387 Notes and comments The arguments here are expanded from SMORODINSKY 71 and ORNSTEIN 74.
I have sought a reasonably direct path to 387J and 387L; of course there is a great deal more to be said
(387Xe is a hint), and, in particular, extensions of the methods here provide powerful theorems enabling us
to show that automorphisms are Bernoulli shifts. (See ORNSTEIN 74.)

The ideas sketched in 387F can evidently be applied in many other ways; see 387Xc-387Xd here, or §494
in Volume 4.

Version of 6.6.16
388 Dye’s theorem

I have repeatedly said that any satisfactory classification theorem for automorphisms of measure algebras
remains elusive. There is however a classification, at least for the Lebesgue measure algebra, of the ‘orbit
structures’ corresponding to measure-preserving automorphisms; in fact, they are defined by the fixed-point
subalgebras, which I described in §333. We have to work hard for this result, but the ideas are instructive.

388A Orbit structures I said that this section was directed to a classification of ‘orbit structures’,
without saying what these might be. In fact what I will do is to classify the full subgroups generated by
measure-preserving automorphisms of the Lebesgue measure algebra. One aspect of the relation with ‘orbits’
is the following (cf. 381Qc).

Proposition Let (X,X, u) be a localizable countably separated measure space (definition: 343D), with
measure algebra (2, ). Suppose that f and g are measure space automorphisms from X to itself, inducing
measure-preserving automorphisms 7, ¢ of 2. Then the following are equiveridical:

(i) ¢ belongs to the full subgroup of Aut 2l generated by ;

(ii) for almost every = € X, there is an n € Z such that g(x) = f™(z);

(iii) for almost every z € X, {¢"(z) : n € Z} C {f"(x) : n € Z}.

proof (i)=(ii) Let (Hy)ren be a sequence in ¥ which separates the points of X; we may suppose that
Hy = X. By 381Ib, there is a partition of unity (a,)nez in 2 such that ¢c = n"c¢ whenever ¢ C a,, and

(©) 2001 D. H. Fremlin
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n € Z. For each n € Z let E, € ¥ be such that E; = ap; then Yy =
transformation f™ induces 7", so for any k € N and n € Z the set

v = (fY)7HE, N HE)Ag™E, N Hy)

nez En 18 conegligible. The

is negligible, and Y = ¢g~1[Y{] \Unez xen Frnk is conegligible. Now, for any x € Y, there is some n such that
g(x) belongs to E,, = E, N Hy, so that f"(x) € E,, {k:g(z) € Hy} ={k: f"(x) € H} and g(z) = f"(x).
As Y is conegligible, (ii) is satisfied.

(ii)=-(iii) For z € X, set Q, = {f"(z) : n € Z}; we are supposing that Ay = {z : g(z) ¢ Q,} is negligible.
Set A = U,z 97 "[Ao], so that A is negligible and g"(z) € X \ A for every z € X \ A, n € Z.

Suppose that 2 € X \ A and n € N. Then ¢"(z) € ,. P Induce on n. Of course ¢°(x) = x € Q,. For
the inductive step to n + 1, g"(x) € Q. \ Ay, so there is a k € Z such that ¢"(z) = f¥(x). At the same
time, there is an i € Z such that g(¢"(x)) = f*(¢"(x)), so that ¢g"*!(z) = fi+*(z) € Q,. Thus the induction
continues. Q

Consequently ¢~ "(z)
such that x = g"¢g~"(z)

Thus {¢"(z) : n € Z}

€ Q, whenever x GX\Aandn € N. P Since g7"(z) € X \ A, thereisa k € Z
= ffg7"(z) and g7"(z) = f"(2) € %. Q
C Q, for every z in the conegligible set X \ A.

(iii)=(ii) is trivial.

(ii)=(i) Set

En={z:g9(z) = f"(@)} = X\ Upen(g™ [Hi]AF " [H)),

for n € Z. Then (ii) tells us that J,, o, F» is conegligible, so |J,,c; g[En] is conegligible. But also each E,
is measurable, so g[E,] also is, and we can set a,, = g[E,|*. Now for y € g[E,], v = f"(g~'(y)), that is,
g ' (y) = f"(y); so ¢pa = 7"a for every a C a,. Since sup,,cz a, = 1 in A, ¢ belongs to the full subgroup
generated by 7.

Remark Of course the requirement ‘countably separated’ is essential here; for other measure spaces we can
have ¢ and 7 actually equal without g(x) and f(z) being related for any particular = (see 3431 and 343J).

388B Corollary Under the hypotheses of 388A, m and ¢ generate the same full subgroup of Aut 2l iff
{f"(z):ne€Z}={g"(x):n € Z} for almost every z € X.

388C Extending some ideas from 381M-381N, we have the following fact.

Lemma Let (2, i) be a totally finite measure algebra, and 7 : 20 — 2 a measure-preserving automorphism;
let € be its fixed-point subalgebra {c : mc = ¢}. Let (d;)icr, {€i)icr be two disjoint families in 2 such that
p(end;) = fi(cne;) for every ¢ € I and ¢ € €. Then there is a ¢ € G, the full subgroup of Aut 2 generated
by m, such that ¢d; = e; for every ¢ € I.

proof Adding d* =1\ sup;c;d;, €* =1\ sup;c;e; to the respective families, we may suppose that (d;)icr,
(e;)icr are partitions of unity. Define (a,)nen inductively by the formula

an = suP;cr(di \ SUP,cp Gm) N T (€5 \ SUPcr TG ).
Then a,, nd; Na,, =0 whenever m < n and i € I, so {ay)nen is disjoint. Also
T"ap C SUPjer €\ SUDycpn T G
for each n, so (7" a,)nen is disjoint. Note that as 7" (a, nd;) C e; for each j,
ma, Ne; =sup(a, Nd;)Ne; =supm(a,Ndj)ne;ne;
Jjel jeI
= W"(an F‘ldz) ne; = ﬂ"(an N di)
for every i € I and n € N.

? Suppose, if possible, that a = 1\ sup,,cy @n is non-zero. Then there is an ¢ € I such that and; # 0.
Set ¢ = sup,, ey 7" (a N d;); then me C ¢ so ¢ € €. Now
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Z glene;nmay) = Z alena™(a,nd;)) = Z p(r"(cnay,nd;))
n=0 n=0 n=0

= Zﬂ(cmanmdi) = fg(ecnd;i\a) < i(end;) = flene;).
n=0

So b=cne;\ sup,cy7"ay, is non-zero, and there is an n € N such that b n7"™(a nd;) is non-zero. But look
at o/ =71 "(bnn"(and;)). We have 0 # @’ Cand;, so a’ C d; \ sup,,, am; while

m"a’ CbC e\ Sup,, oy, ™"l

But this means that a’ C a,,, which is absurd. X
This shows that (a,)nen is a partition of unity in 2(. Since

Yoo AT an) = 3207 flan = fil,

(m™an)nen also is a partition of unity. We can therefore define ¢ € G, by setting ¢d = 7"d whenever n € N
and d C a,,. Now, for any ¢ € I,

¢d; = sup,en @(di N an) = sup, ey 7" (di N an) = sup, ey € NT"an = €;.

So we have found a suitable ¢.

388D von Neumann automorphisms (a) Definitions Let 2 be a Boolean algebra and 7 € Aut2
an automorphism. 7 is weakly von Neumann if there is a sequence (a,)nen in 2l such that ap = 1 and,
for every n, ap11 N7 py1 =0, Gpy1 UT> Gny1 = ay,. In this case, 7 is von Neumann if (a,),ey can be
chosen in such a way that {7™a,, : m, n € N} 7-generates 2, and relatively von Neumann if {(a,),en
can be chosen so that {7™a,, : m, n € N} U{c: mc = ¢} 7-generates 2.

(b) There is another way of looking at automorphisms of this type which will be useful. If 2 is a
Boolean algebra and m : 2l — 2 an automorphism, then a dyadic cycle system for 7 is a finite or infinite
family (dmi)m<n,icom OF {(dmi)men,i<am such that («) for each m, (dm;)icom is a partition of unity such
that 7d,,; = dp,i+1 whenever ¢ < 2™ — 1 (so that md,, 2m_1 must be dio) (8) dmo = dmt1,0 U dpmg1,2m for
every m < n (in the finite case) or for every m € N (in the infinite case). An easy induction on m shows
that if kK < m then

dy; = sup{dp,; : j < 2™, j =i mod 2F}

for every i < 2F.
Conversely, if d is such that (77d),<2n is a partition of unity in 2, then we can form a finite dyadic cycle
system (dpmi)m<n,i<am by setting dp,; = sup{n?d : j < 2", j =i mod 2™} whenever m < n and j < 2™.

(¢) Now an automorphism 7 : 2 — 2 is weakly von Neumann iff it has an infinite dyadic cycle system
(dmi)men,i<zm. (The ap, of (a) correspond to the dy,o of (b); starting from the definition in (a), you must
check first, by induction on m, that (7a,,);<om is a partition of unity in 21.) 7 is von Neumann iff it has a
dyadic cycle system (dpi)men,i<om which 7-generates 2.

388E Example The following is the basic example of a von Neumann transformation — in a sense,
the only example of a measure-preserving von Neumann transformation. Let p be the usual measure on
X ={0,1}", ¥ its domain, and (2, i) its measure algebra. Define f : X — X by setting

f(z)(n) =1—x(n) if (i) = 0 for every i < n,
= z(n) otherwise.

Then f is a homeomorphism and a measure space automorphism. I (i) To see that f is a homeomorphism,
perhaps the easiest way is to look at g, where

g(x)(n) =1 —x(n) if z(i) = 1 for every i < n,

= z(n) otherwise,
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and check that f and g are both continuous and that fg and gf are both the identity function. (ii) To see
that f is inverse-measure-preserving, it is enough to check that u{z : f(x)(i) = z(i) for every i <n} = 277!
for every n € N, z € X (254G). But

{z: f(x)(@) = 2(7) for every i < n} = {z: z(i) = g(2)(7) for every i < n}.

(iii) Similarly, g is inverse-measure-preserving, so f is a measure space automorphism. Q
If n € Nand x € X then

f2k (x)(n) =1—2a(n) if n > k and (i) = 0 whenever k < i < n,
= z(n) otherwise.
(Induce on k. For the inductive step, observe that if we identify X with {0,1} x X then f2(e,y) = (¢, f(v))
for every e € {0,1} and y € X.)

Let 7 : 20 — 2 be the corresponding automorphism, setting 7E* = f~![E]* for E € ¥. Then 7 is a
measure-preserving von Neumann automorphism. P 7 is a measure-preserving automorphism because f
is. Set B, = {z: 2 € X, z(i) = 1 for every i < n}, a, = E;. Then f~2"[E, 1] = {x : 2(i) = 1 for
i < mn, z(n) = 0}, so a,y1 and 72" a1 split a, for each n, and (an)nen witnesses that 7 is weakly von
Neumann. Next, inducing on n, we find that {f~¢[E,] : i < 2"} runs over the basic cylinder sets of the
form {x : x(i) = 2(i) for every i < n} determined by coordinates less than n. Since the equivalence classes
of such sets T-generate 2 (see part (a) of the proof of 331K), 7 is a von Neumann automorphism. Q

f is sometimes called the odometer transformation. For another way of looking at the functions f
and g, see 445Xp in Volume 4.

388F We are now ready to approach the main results of this section.

Lemma Let (2(, &) be a totally finite measure algebra and 7 : 2 — 2 an aperiodic measure-preserving
automorphism. Let € be its fixed-point subalgebra. Then for any a € 2 there is a b C a such that p(bNe) =
ii(anc) for every ¢ € € and T, is a weakly von Neumann automorphism, writing m, for the induced
automorphism of the principal ideal 2}, as in 381M.

Remark On first reading, there is something to be said for supposing here that 7 is ergodic, that is, that
¢ ={0,1}.

proof I should remark straight away that 7 is doubly recurrent on every b € 2 (386A), so we have an
induced automorphism m, : A, — 2Ap for every b € A (381M).

(a) Set ¢, = %(1 + 27") for each n € N, so that (e,)nen is strictly decreasing, with ¢¢ = 1 and
lim,, oo €, = % Now there are (bn)nen, (dni)neN,icon such that, for each n € N,

bpt1 C by Ca, [Abnnc) =eyfi(anc) for every c € €,
(dni)icon is disjoint,  sup;_on dp; = by,
Ty, Ani = dp, 41 for every i < 2" — 1,

bn+1 Ndnp; = dn+1,i U dn+17i+2" for every ¢ < 2™.

P Start with by = dgo = a. To construct by,+1 and (d,41,:)i<2n+1, given (dy,;)i<on, note first that (because
mp, 1s measure-preserving and m, (cnd) = cnmy, d for every d C by, see 38INf) [i(dnone) = f(dp;nc)
whenever ¢ € € and ¢ < 2", so

f(dnonec) =2""u(b,nec) =2 e fi(anc)
for every c € €, and
dno = by \ SUP;con_1 Tp, dni = Tp, dnon_1 = Wf:dno.
Now 7, is aperiodic (381Ng) so wl?: also is (381Bd), and there is a dy 41,0 € dpno such that

wl%:dn+170 Ndpt10=0, [(dpt10nc)=2"""te,1fi(anc) for every c € €
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(applying 386C(iii) to wg:mldno, with v = €,41/2€,). Set dpt1,; = ﬂgndnJrLo for each j < 2"*!. Be-
cause 7r§:dn+170 C dno \ dnt1,0, while <7fgndno>j<2n is disjoint, <7Tgndn+170>j<2n+1 is disjoint. Set b,y1 =
SUp,j cont1 le)‘ndnﬂ,o; then b,1 C b, and fi(bpr1nec) = enprji(anc) for every ¢ € €. For j < 2"+
dn+1,5 C dpni where 4 is either j or j — 2", 50 b1 Ndpi = dny1,i Udpgr,iqon for every ¢ < 27,

For j < 2"t —1,

Ton An+1,5 = dnt1,541 C bny1,
so we must also have
M1 At 1,5 = (T, )by dnt1,j = Ao+

(using 381Ne). Thus the induction continues. Q

(b) Set

b=inf,enbyn, ens =bndy; forn e N, i <27,

Because (b,,)nen is non-increasing,
_ . _ 1_
g(bne) =limy, o0 (b ne) = iu(a ne)
for every ¢ € €. Next,

eni =bNbpt1 Ndni =00 (dng1,i Udnt1,i427) = €nti1,iUenititon

whenever 7 < 2™.
If m <nand j < 2™ then

bp Ndy; = sup{dy; : i < 2", i =j mod 2™}
(induce on n). So
ﬂ(bn n dmj) =2"""idno = 27 Mep;

taking the limit as n — oo, fie;,; = 27 ™ ib. Next,

Tp,, (bn, N dpm;) = sup{dy, i1 11 < 2", 9= j mod 2™}
=sup{d,; i <2",i=j+1mod 2™} = b, Ndp, j1+1,

here interpreting d, o» as dno, dm2m as dmo. Consequently mpepn; C em j+1. IPZ Otherwise, there are a
non-zero € C dy,; Nb and & > 1 such that mlenb=0for 1 <i < k and 7¥e C b\dm j+1. Take n > m so
large that e > kfi(b, \ b), so that

e’ =e\ sup;<;cp 774 (b, \ b) # 0;
now w'e’ nb, =0 for 1 <i < k, while 7¥¢’ C b,,, and
Ty, € =7k C 1 \ dmj+1-
But this means that m, (b, N dimj) € dm,j+1, which is impossible. XQ
Since fi(mpem;) = fiem,j+1, we must have mpen; = €, j41. And this is true whenever m € N and j < 2™,

if we identify e, om with epo. Thus (€mi)men,i<am is a dyadic cycle system for m, and m, is a weakly von
Neumann automorphism.

388G Lemma Let (2, i) be a totally finite measure algebra and 7, ¢ two measure-preserving automor-
phisms of . Suppose that ¥ belongs to the full subgroup G, of Aut® generated by 7 and that there is a
b € A such that sup,,c;¥"b = 1 and the induced automorphisms 1, m, on 2; are equal. Then Gy = G.

proof (a) The first fact to note is that if 0 £ V' € b, n € Z and 7"V’ C b, then there are m € Z, b’ C V/
such that " # 0 and 7"d = ¢™d for every d C b”. P () If n = 0 take b =¥, m = 0. () Next, suppose
that n > 0. We have 0 #£ V' C bnm~™b, so by 381Nc there are i, b} such that 1 <i < mn, 0 #£ b} C b and
7"d = wid for every d C b}. Now by 381Nb there are a non-zero b’ C b} and an m > i such that ¢jd = y™d
for every d C b”; so that 7"d = ¢™d for every d C b”. (y) If n < 0, then apply (3) to 7! and 11, recalling
that (771, =m, " =1, ' = (1), (381Na). Q
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(b) Now take any non-zero a € 2. Then there are m, n € Z such that a; = any™b # 0, as =
ma; NY"b # 0. Set by = " "m las. Because 1) € G, there are a non-zero by C by and a k € Z such that
P mp™d = wFd for every d C by. Now

by = 7™y C Y™y = h " "as C b.

By (a), there are a non-zero bz C by and an r € Z such that 7°d = ¢"d for every d C bz. Consider a’ = 1)"bs.
Then

0#d Cy™by =7 tag Cay Ca;
and, for d C a’, 9™™d C bz C by, so that
wd = " (P )T = Yratp T = T,
As a is arbitrary, this shows that 7 € G, so that G C G and the two are equal.

388H Lemma Let (2, i) be a totally finite measure algebra, 7 : 2l — 2 an aperiodic measure-preserving
automorphism, and ¢ any member of the full subgroup G, of Aut® generated by 7. Suppose that
(dmi)m<n.i<2m is a finite dyadic cycle system for ¢. Then there is a weakly von Neumann automorphism 1,
with dyadic cycle system (d),,;)men,i<2m, such that Gy, = G, Ya = ¢a whenever andyo =0, and d,; = dp;

mi mi
whenever m < n and 7 < 2™.

proof Write € for the closed subalgebra {c : mc = ¢}. By 388F there is a b C dyo such that f(bnc) =
11i(dno ne) for every ¢ € € and 7, : A, — A, is a weakly von Neumann automorphism. Let (ej;)ren i<2r be
a dyadic cycle system for 7.

If we define ¥; € Aut® by setting

Yid =myd for d C b, 1d=mpd for d C 1\,
then 91 € G,. Next, for any ¢ € €,
(672 be) = fig 2+ (bne) = (b 6) = Li(duo 116) = il(duo\B) 1 0
because 2"t € G, 50 =2 e = ¢ (381Ja). By 388C, thereis a 1)y € G such that ¢y (dpo \ b) = ¢~2" +1b.
Set ¢z = ¢p~2"FT1py 1p2"F 1)y, so that 3 € G and
wa _ ¢—2”+1w2—1¢—2"+1b _ ¢—2"+1(an \ b)
Thus ¥3b and 2(dno \ b) are disjoint and have union ¢~ tdyy = dny (if n = 0, we must read do; as
dop = 1). Accordingly we can define v € G by setting
d = p3d if d C b,
=1ad if d C dpo \ b,
= ¢d ifdﬁdn() =0.
Since ¥d,o = dn1, we have ¥d,; = ¢d,; for every i < 2", and therefore 9'd,,o = d,,; whenever m < n
and 7 < 2™. Looking at 12", we have
’(/JQH dno = ¢2” dno = ana anb = ¢2n_1¢sb =dno \ b7
so that ¥2" (d, \ b) = b and w2n+1b = b. Accordingly
V2 d = 67" " Lpyg?" " Nad = ¢hrd = myd

for every d C b, and 7, is the automorphism of 2, induced by . Also sup;ont1 ¥'b = 1, so 388G tells us
that Gw = Gﬂ—.

Now define (., )men as follows. For m < n, ap, = dmo; for m > n, an = epm—pn—1,0. Then for m < n we
have

2m 2’"1 2"77/
YV g1 = V7 dig1,0 = 07 dint1,0 = dmg1,2m = Gy \ Gonp1,

for m = n we have
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V2 api1 = V¥ ego = Y2 b =dno \ b= an \ ani1,
and for m > n we have

2n+1 2771—7171 men—l

Em—n,0 = (7Tb) €m—n,0

27774
Y= amy1 = (P )
= €m—_n,2m—n-1 = Em_n-1,0 \ €m—n,0 = Om \ Am+4-1-

Thus (am)men Witnesses that 1 is a weakly von Neumann automorphism. If d,,, = ¥’a,, for m € N, i < 2™
then (d),,;)men,i<om will be a dyadic cycle system for ¢ and d},,; = d,; for m < n, as required.

3881 Lemma Let (2, 1) be a totally finite measure algebra and € a closed subalgebra of 2 such that 2
is relatively atomless over €. For a € 2 write €, = {anc:c e C}.

(a) Suppose that b € A, w € € and 6 > 0 are such that f(bnc) > dfic whenever ¢ € € and ¢ C w. Then
there is an e € A such that e C bnw and fi(enc) = dfic whenever ¢ € €,,.

(b) Suppose that k£ > 1 and that (bo,...,b,) is a finite partition of unity in 2. Then there is a partition
E of unity in 2 such that

plenc) = %ﬂc for every e € E, c € €,

#{e:e€eE,3i<r,bine¢ C.})<r+1.

proof (a) Set a = bnw and consider the principal ideal 2, generated by 2. We know that (2, a[2,) is
a totally finite measure algebra (322H), and that €, is a closed subalgebra of 2, (333Bc¢); and it is easy to
see that %, is relatively atomless over €,,.

Let 6 : €, — €, be the Boolean homomorphism defined by setting 8c = cnbd for ¢ € €. If c € €, and
fc =0, then ¢ € € and djic < fi(cnd) = 0, so ¢ = 0; thus 6 is injective; since it is certainly surjective, it is a
Boolean isomorphism. We can therefore define a functional v = gf=! : €, — [0, 00|, and we shall have

dvd = op(0~1d) < i(bn 0~ 1d) = (00~1d) = jud

for every d € €,. By 331B, there is an e € 2, such that dvd = j(dne) for every d € €,, that is,
duc = fi(cne) for every c € €, as required.

(b) (i) Write D for the set of all those e € 2 such that fi(cne) = +jic for every ¢ € € and b; ne € €, for
every ¢ < r. Then whenever a € 2 and v > Tzl is such that p(anc) = yuc for every ¢ € €, thereis an e € D
such that e C a. P For d € 2 and ¢ € € set v4(c) = fi(dnc), so that v4 : € — [0, 00] is a completely additive
functional. For i < rset v; = [i] € > kvgnp, ], in the notation of 326T; so that v; € € and fic > kfi(anb; nc)
whenever ¢ € € and ¢ C v;, while fic < kfi(anb; nc) whenever ¢ € € and cnv; = 0. Setting v = inf;<, v;,

we have

kyiw = kiilanv) = > i_ kig(anb; nv) < (r+ 1)pv.

Since ky > r+ 1, v = 0. So if we now set w; = (inf;<; v;) \v; for i < r (starting with wy = 1\ vg),
(wo, ... ,w,) is a partition of unity in €, and fic < kfi(anb; nc) whenever ¢ € €, i < r and ¢ C w;.

By (a), we can find for each ¢ < r an e; € 2 such that e; C anb; nw; and fi(cne;) = %ﬁc whenever ¢ € €
and ¢ C w;. Set e = sup,«, €;, so that e C a,

enb;, =enw;nb; =¢e; =enw; € €,
for each 7, and

— A ro ro1_ 1_

for every c € €. So e has all the properties required. Q
(ii) Let Ey C D be a maximal disjoint family, and set m = #(Ep), a = 1\ sup Ey. Then

alanc) = fic =Y. p, Alene) = (1= 2)fic

for every ¢ € €, while a does not include any member of D. By (i), 1 — 7 < Tzl, that is, Kk —m <r+ 1.
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Applying (a) repeatedly, with w = 1 and § = %, we can find disjoint dg, ... ,dg_m_1 C a such that

f(cnd;) = ¢ic for every ¢ € € and i < k —m. So if we set E = Eq U {d; : i < k —m} we shall have a
partition of unity with the properties required.

388J Lemma Let (2, ) be a totally finite measure algebra and 7 : 2 — 2 an aperiodic measure-
preserving automorphism, with fixed-point subalgebra €. Suppose that ¢ is a member of the full subgroup
G of Aut® generated by = with a finite dyadic cycle system (dpi)m<n,i<2m, and that a € 2 and € > 0.
Then there is a 1) € G such that

(i) ¥ has a dyadic cycle system (d}.}m<k i<am, with k > n and d),,; = dp; for m <n, i < 2™;

(ii) ¥d = ¢d if dndy,o = 0;

(iii) there is an a’ in the subalgebra of 2 generated by € U {d}, : i < 2*} such that fi(a & a') <e.

proof (a) Take k > n so large that 2F¢ > 2722”1, Let © be the subalgebra of the principal ideal
2,4, generated by {d,1n¢7a : j < 2"}; then ® has atoms by, ... ,b, where r < 22". (If n = 0, take
dpr = doo = 1.) Applying 388Ib to the closed subalgebra €, , of 24 ,, we can find a partition of unity E of
Aq4,, such that

flenc) =2""Fp(d, nec) =2 %ic
for every e € E and ¢ € €, and
E, ={e: e € E, there is some ¢ < r such that b;ne ¢ €.}

has cardinal at most r + 1 < 22", Of course jie = 27 %l for every e € E, so #(E) = 2" and fi(sup E;) <
27%92" 11 < 27 ™¢. Write e* for sup E.

(b) For e € E set ¢/ = ¢*"~te; then {¢' : e € E} is a disjoint family, with cardinal 2°~"; enumerate it as
(vi)j<or-n. Note that

SUP; cok—n Vi = ¢2n71(sup E) = dn07
pa(vine) = (¢~ tlu;ne) = 27 e
for every ¢ € € and i < 2F~™. There is therefore a 1); € G such that
Prv; = ¢ 2 oy for i <2870 =1, ghrvgron_g = ¢~ Ty

(388C). We have

_on _on
P1dpo = Y1( sup wv;) = sup Yoy = sup ¢ 2 v ue? Ty
i<2k—n i<2k—n i<2k—n 1
= sup ¢_2 +1vi = ¢_2 +1dn0 = dnl = ¢dn0
Z‘<2k—n

So we may define ¥ € G by setting

lﬂd = ’L/)ld ifd cC dno,
= ¢d if ddyo = 0.

(c) For each i < 2~—n,
2 v = ¢ Tlprv; = vip

(identifying vor—n with vg). Moreover, ¥/v; C dy,; whenever i < 287" and j =1 mod 2". So (7vg);<or is a
partition of unity in (. What this means is that if we set

dpi = sup{v’vg : i < 2F, i = j mod 2™}
for m <k, then (d},,;)m<k, j<2= is a dyadic cycle system for ¢, with d},,; = dyn; if m < n and j < 2™.
(d) Let B be the subalgebra of 2 generated by €U {dy; : j < 2F1. Recall the definition of {v; : i < 28—"}
as {¢?"~'e: e € E}; this implies that
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{v; 10 < 2877} = {ahyv; i < 2P} = {72 Tl 1i < 2P} = B,
so that
{3ty 1i < 28"} = {ple:e € B}
for j < 2™, and
B {dy; <2} ={Plv:i<2F " j <2} ={¢le:e€ B, j < 2"},
Set Ey = E\ E;. For e € Ey and @ < r there is a ¢.; € € such that enb; = ence;. Set
K={(i,j):1<i<r j<2" b Cdla},

a' =sup{¢’ence; : e € Ey, (i,j) € K}.
Then a’ is a supremum of (finitely many) members of 9B, so belongs to B. If (i,j) € K and e € Ey, then
Pence = ¢’ (ence) = ¢/ (enb;) C a,
so a’ C a. Next, d,yng~7(a\a') C e* for each j < 2". P Set
I={i:i<r (i,j) e K}y={i:b; C ¢ 7a};
then d,1 N ¢~7a = sup;c; b;. Now, for each i € I,
bi = sup.ep(bine) C sup.cp,(ence)ue”,
so that
dni N~ Ia =sup;c; b C SUD,c fzy icr(€NCei) U e C (dp1n ¢~ Iad ) yuer. Q
But this means that
i(dnjp1na\a’) = fi(dy n ¢ (a\ad')) < fie* <27
for every j < 2™ (interpreting d,, on as dyo, as usual), and
filand) =32 fildyna\a’) <e,

so that the final condition of the lemma is satisfied.

388K Theorem Let (2, 1) be a totally finite measure algebra, with Maharam type w, and 7 : 2 — 2
an aperiodic measure-preserving automorphism. Then there is a relatively von Neumann automorphism
¢ : A — A such that ¢ and 7 generate the same full subgroups of Aut .

proof (a) The idea is to construct ¢ as the limit of a sequence (¢,,)nen of weakly von Neumann automor-
phisms such that Gy, = G.. Each ¢, will have a dyadic cycle system (dpmi)men,icom; there will be a
strictly increasing sequence (k,)nen such that

dp+1,m,i = dn,m,; whenever m < k,,, i < 2™,

dn+10 = ¢pa whenever and, g, 0 = 0.

Interpolated between the ¢, will be a second sequence (¢, )nen in G, with associated (finite) dyadic cycle
systems (dy,;;)m<k, i<2m-

(b) Before starting on the inductive construction we must fix on a countable set B C 2 which 7-generates
2, and a sequence (b,)nen in B such that every member of B recurs cofinally often in the sequence. (For
instance, take the sequence of first members of an enumeration of B x N.) As usual, I write € for the closed
subalgebra {c : m¢ = ¢}. The induction begins with ¢y = 7, kj, = 0, djyo = 1. Given 1, € G and its dyadic
cycle system (d;,,,.;)m<k i<2m, use 388H to find a weakly von Neumann automorphism ¢,,, with dyadic
cycle system (dpmi)men,i<am, such that Gy, = Gz, dpmi = d,,,; for m < k], and i < 2™, and ¢,a = Y,a
whenever a n d;’k;)o =0.

(c) Given the weakly von Neumann automorphism ¢,, with its dyadic cycle system (dymi)men,i<2m,
such that Gy, = G, then we have a partition of unity (e,;)jez such that ma = ¢/ a whenever j € Z
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and a C e,; (381I). Take r, such that gé, < 27", where &, = SUP|j|>r, €nj, and k, > k! such that
27kn (27, + 1)l < 27", Set
6:7, = Supl]‘g?"n (b’r_],jdn;knvo’

so that je; <277,
Now use 388J to find a ¢n41 € G, with a dyadic cycle system (dj, 1, ;) m<k:, , , i<2m, such that &, >

kn, d/n+1,m,i = dpm; it m < ky, Ynp10 = dpaif and, i, 0 =0, and there is a b}, in the algebra generated by
CU{d) 1 i m < kypq, @ < 2™} such that fi(b, Ab),) < 27", Continue.

(d) The effect of this construction is to ensure that if [ < n in N then

dimi = dpms whenever m < ky, ¢ < 2™,
¢na = ¢ra whenever and i, 0 =0,

b; belongs to the subalgebra generated by € U {dym; : m < ky, i < 2™},
and, of course, dp, k.0 C di k0. Since (ky)nen is strictly increasing, inf, ey dp x, 0 = 0. Now, for each n € N,

Akt = Pnlnk,,0 = Ont1dn,k,,0 2 Pnt1n41,k041,0 = Gnt1 ko, 15

so setting
ao = 1\ doko,0,  Ant1 = dnk,,0\ dnt1,k,q,0 for each n,

we have

doag = 1\ do k1, Pnt10n+1 = dnk,,1 \ dny1,k,..,1 for each n,
and (¢, an)nen is a partition of unity. There is therefore a ¢ € Aut 2 defined by setting ¢a = ¢pa if @ C ay;
because G is full, ¢ € G,.

(e) If m < n, then apy Ndm i, 0 =0, S0 ppa = ¢ppma = ¢a for every a C a,,. Thus ¢pa = ¢a for every
a C Sup,,<, am = 1\ dn k., 0. In particular, ¢dpm; = dp,m,i+1 Whenever m < k,, and 1 <4 < 2™ (counting
dp.m,2m as dpmo, as usual); so that in fact ¢dymi = dn,m,i+1 Wwhenever m < k,, and i < 2™.

For each n, we have d,.,; = d;H»l,m,i = dp+1,m,; whenever m < k, and i < 2™. We therefore have a

family (d},;)men,icom defined by saying that d},, = dymi whenever n € N, m < k, and i < 2™. Now, for
any m € N, there is a k, > m, so that (d},;)icom = (dpmi)i<cam is a partition of unity; and

drni = Anmi = dnmt1,i U dnmt1,ipom = dpy g, Udn 4 iom
for each ¢ < 2™. Moreover,
¢dy, i = Gndnmi = dnmiv1 = dyy, 41
at least for 1 < i < 2™ (counting dy, om as dy, (), so that in fact ¢d},; = d, ;, for every i < 2™. Thus

(dF,;)menN,i<2m is a dyadic cycle system for ¢, and ¢ is a weakly von Neumann automorphism.
Writing B for the closed subalgebra of 2 generated by €u{d},; : m € N, i < 2™}, then

CU{d, i :m <k, i<2™}=CU{dpi1mi:m<k,,i<2"}
=Cu{d,, m<k,i<2"}C®B
for any n € N. So b/, € B for every n. If b € B and € > 0, there is an n € N such that 27" < € and b, = b,

so that (b A b)) < € as every b/, belongs to B, and B is closed, b € B; as b is arbitrary, and B 7-generates
2A, B = 2. Thus ¢ is a relatively von Neumann automorphism.

(f) If n € N and dne}, = 0, then ¢/d = ¢ d and ¢~/d = ¢,;7d whenever 0 < j < r,,. P Induce on
j. For j = 0 the result is trivial. For the inductive step to j + 1 < r,, note that if ' nd, k, 1 = 0 then
(]57_le/ N dn,kn,O =0, so

o7 = ¢ pul, M) = ¢ o, M) = ¢, d
Now we have

PHld = ¢(¢hd) = pn(¢d) = ¢)Fd
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because
Ohdndng,,0 = O3 (dNd,7 dn g, 0) =0,
while
¢ d = ¢ (¢n7d) = ¢, (¢,7d) = ¢, Nd
because

(ZS,;jd n dn,kn,l = QI);J (d N ¢¥L+ldn,kn,,0) =0. Q
Thus ¢’d = ¢% d whenever |j| < 7.

(g) Finally, Gy = G,. P I remarked in (d) that ¢ € G, so that G4 C Gr. To see that 7 € G4, take
any non-zero a € . Because fi(e}, Ué,) < 27" F1 for each n, there is an n such that o’ = a\ (e}, Ué,) # 0.
Now there is some j € Z such that a” = a’ ney; # 0; since a’' né, =0, |j| < r,. If d C a”, then wd = @I d,
by the definition of e,,;. But also ¢,d = ¢’/d, by (f), because dne, = 0. So md = ¢’d for every d C a”. As
a is arbitrary, m € G4 and G C G4. Q

This completes the proof.

388L Theorem Let (1, i) and (s, fiz) be totally finite measure algebras of countable Maharam type,
and m : Ay — Ay, w2 1 As — Ay measure-preserving automorphisms. For each ¢, let €; be the fixed-point
subalgebra of m; and G, the full subgroup of Aut®; generated by m;. If (24, 1,¢;) and (g, fiz, €2) are
isomorphic, so are (24, fi1, Gr,) and (™Uz, iz, Gr, ).

proof (a) It is enough to consider the case in which (21, fi1,€1) and (s, fiz, €3) are actually equal; I
therefore delete the subscripts and speak of a structure (2, iz, €), with two automorphisms 71, 72 of 20 both
with fixed-point subalgebra €.

(b) Suppose first that 2 is relatively atomless over €, that is, that both the m; are aperiodic (381P).
In this case, 388K tells us that there are relatively von Neumann automorphisms ¢; and ¢, of 2 such
that G, = G4, and G, = Gg,. But (2, i, 1) and (A, i, ¢2) are isomorphic. PP Let (dmi)menicom and
(d),:ymeN,i<am be dyadic cycle systems for ¢1, ¢ respectively such that €U {d,,; : m € N, i < 2™} and
cu{d,;:meN,i<2m} both T-generate 2.

Writing 9B, 9B’ for the subalgebras of 2 generated by €U {d,; : m € N, i < 2™} and €U{d],, : m €
N, i < 2™} respectively, it is easy to see that these algebras are isomorphic: we just set 6pc = ¢ for
c €€, 0pdn; =d,,; for i < 2™ to obtain a measure-preserving isomorphism 6y : B — B’. Because these are
topologically dense subalgebras of 2L, there is a unique extension of §y to a measure-preserving automorphism

60 : A — 2A (3240). Next, we see that
0107 c = c = ¢gc for every c € €,

00107 d,,,; = 0¢1dmi = Odm i1 = d)y, 141 = Podl,,

for m € N, i < 2™ (as usual, taking dp,2m to be dmo and dj, om to be d,,). But this means that
01071 = ¢ob for every b € By, so (again because By is dense in A) O¢p10~1 = ¢o. Thus @ is an isomorphism
between (2, i, ¢1) and (A, i, p2). Q

Of course 6 is now also an isomorphism between (U, i, Gg,) = (A, i, Gr,) and (4, i, Gg,) = (A, i, Gr,)-

(c) Next, consider the case in which 7 is periodic, with period n, for some n > 1. In this case w2 € G, .
P Let (do,...,dn—1) be a partition of unity in 2 such that md; = d;j+q for i < n—1 and md,—1 = dy
(382FD). If d C d;, then ¢ = sup,.,, 7id € € and d = d; n ¢; so any member of 2 is of the form SUp; <, dj N C;
for some family cq, ... ,c,—1 in €.

If a € A\ {0}, take 4, j < n such that o’ = and;nmy 'dj # 0. Then any d C @’ is of the form

-1 —1
diﬂclzﬂz (djﬂCQ)ZCQFT’ﬂ'Q d]'
for some c1, ¢ € €; setting ¢ = ¢1 N ¢, we have
_ _ _ o J—t
d—diﬁc, ng—djﬂc—’f('l d.

As a is arbitrary, this shows that m € G,. Q
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Now sup,,cz m53do belongs to € and includes dy, so must be 1. Finally, the two induced automorphisms
(71)dy, (m2)d, on Ag4, are both the identity. ¥ If 0 # d C dy there are a non-zero d’ C d and an m > 1
such that (m2)a,d = 75*d for every d € d'. As 7§* € G, there are a non-zero d C d’ and a k € Z such that
ad = 7Fd. Now 7¥d C dy so k is a multiple of n and (72)4,d = 7¥d = d. This shows that {d : (m2)4,d = d}
is order-dense in 24, and must be the whole of 24,. As for 7, we have (71)4,d = 7}'d = d for every d C dj.

Q
So 388G tells us that G, = G,.

(d) For the general case, we see from 381H that there is a partition of unity (c;)1<i<. in € such that
71 [, is aperiodic and if 7 is finite and ¢; # 0 then w1 [, is periodic with period 3. For each i, let H; be
{d1e, : ¢ € Gr, }; then H; is a full subgroup of Aut2l,.,, and

Gr, ={¢: ¢ At ¢|A., € H; whenever 1 < i < w}.
Similarly, writing H = {¢[, : ¢ € Gr,},
Gr, ={¢: ¢ € Aut, ¢|A., € H/ whenever 1 <i < w}.

Note also that H;, H] are the full subgroups of Aut®l,, generated by m1[,, m2[%., respectively. By (b)
and (c), H; = H for finite ¢, while there is a measure-preserving automorphism 6 : 2., — 2, such that
OH,0~! = H!. Now we can define a measure-preserving automorphism 6; : 20 — 2 by setting 61a = fa
if a C c,, 010 = a if anc, = 0, and we shall have 6,G,,0; " = Gr,. Thus (2, i, Gy,) and (A, i, G,) are

isomorphic, as claimed.

388X Basic exercises >(a) Let (2, 1) be a Boolean algebra, and 7 : 2 — 2 an automorphism. Let
us say that a pseudo-cycle for 7 is a partition of unity (a;);<n, where n > 1, such that wa; = a;41 for
it <n—1 (so that ma,—1 = ag). (i) Show that if we have pseudo-cycles (a;)i<n and (b;);j<m, where m is a
multiple of n, then we have a pseudo-cycle (¢;);j<m with ¢o C ag, so that a; = sup{¢; : j < m, j =i mod
n} for every i < n. (ii) Show that 7 is weakly von Neumann iff it has a pseudo-cycle of length 2™ for any
n € N.

(b) Let (204, 711) and (s, fiz) be probability algebras, and 71 : A; — s and 7o : Az — Ao measure-
preserving von Neumann automorphisms. Show that there is a measure-preserving Boolean isomorphism
0 : Ay — Ay such that mg = 971'2971.

(c) Let A be a Boolean algebra and 7 : 2 — 2 a relatively von Neumann automorphism with fixed-
point subalgebra € and a dyadic cycle system (d;)men,i<am such that {d,; : m € N, i < 2™} U € 7-
generates 2. Show that for any n € N the fixed-point subalgebra of 72" is the subalgebra of 2 generated by
{dn; i< 2"} UC.

(d) Let (2, i) be a probability algebra, and 7 : 2 — 2 a measure-preserving automorphism. (i) Show
that 7 is weakly von Neumann iff it has a factor (definition: 387Ac) which is a von Neumann automorphism.
(ii) Show that if 7 is a relatively von Neumann automorphism then no non-trivial factor of 7 can be weakly
mixing.

(e) Let (2, 1) be an atomless probability algebra of countable Maharam type, and 7 : 20 — 2 a measure-
preserving von Neumann automorphism. (i) Show that for any ultrafilter 7 on N there is a ¢ € Aut; 2
defined by the formula ¢x(a) = lim,_, 7"a for every a € 2, the limit being taken in the measure-algebra
topology. (ii) Show that {¢# : F is an ultrafilter on N} is a subgroup of Aut; 2 homeomorphic to Z5.
(Hint: 388E.)

(f) Let 2 be a Boolean algebra and 7 : 24 — 2 a weakly von Neumann automorphism. Show that 7™ is
a weakly von Neumann automorphism for every n € Z \ {0}. (Hint: consider n = 2, n = —1, odd n > 3
separately. The formula of 388E may be useful.)

(g) Let 2 be a Boolean algebra and m : 2 — 2l a von Neumann automorphism. (i) Show that 72 is
not ergodic. (ii) Show that 72 is relatively von Neumann. (iii) Show that 7" is von Neumann for every
odd n € Z. (iv) Show that if (2, ) is a probability algebra and 7 is a measure-preserving von Neumann
automorphism then 7 is ergodic.
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388Y Further exercises (a) Let X be a set, ¥ a o-algebra of subsets of X, and Z a o-ideal of ¥ such
that the quotient algebra 2 = ¥ /7 is Dedekind complete and there is a countable subset of ¥ separating
the points of X. Suppose that f and g are automorphisms of the structure (X, ¥, 7) inducing 7, ¢ € Aut 2.
Show that the following are equiveridical: (i) ¢ belongs to the full subgroup of Aut 2 generated by m; (ii)
{z:zeX, f(x)¢{g™(x):neZ}} eI (i) {z:ze X, {f"(x):neZ} L {g"(x) :neZ}} €T

(b)(i) Let m be a a weakly von Neumann automorphism of a Boolean algebra. Show that 7 is aperiodic.
(ii) Let 7 be a relatively von Neumann measure-preserving automorphism of a probability algebra. Show
that 7 has zero entropy.

(c) Give an example of an ergodic weakly von Neumann measure-preserving automorphism with zero
entropy which is not a relatively von Neumann automorphism.

(d) Let (2, 1) be a probability algebra and 7 € Aut®l a relatively von Neumann automorphism; let
T =Ty : L), — L}, be the corresponding Riesz homomorphism (365N). (i) Show that Upsi{w: Thu=u} is
dense in Lll-t. (ii) Show that {T™ : n € Z} is relatively compact in B(L};; Li—t) for the strong operator topology.

(e) Show that the odometer transformation on {0, 1} is expressible as the product of two Borel measur-
able measure-preserving involutions.

(f) Give an example of a probability algebra (2, i) and a von Neumann automorphism 7 € Aut 2l which
is not ergodic.

(g) Let 2 be a Dedekind o-complete Boolean algebra and 7, ¥ two doubly recurrent automorphisms of
2. Suppose that ¥ belongs to the full subgroup G, of Aut®l generated by m and that there is a b € 2 such
that sup,,cz¥"b = 1 and the induced automorphisms 1)y, m, on 2, are equal. Show that Gy = G.

(h) Let u be Lebesgue measure on [0, 1], and (2, ji) its measure algebra; let € be the closed subalgebra of
elements expressible as (E x [0, 1])*, where E C [0,1] is measurable. Suppose that 7 : 2 — 2 is a measure-
preserving automorphism such that € = {c : m¢ = c¢}. Show that there is a family (f;)sc[0,1) of ergodic
measure space automorphisms of [0,1] such that (x,y) — (x, f.(y)) is a measure space automorphism of
[0, 1]? representing 7.

388 Notes and comments Dye’s theorem (DYE 59) is actually Theorem 388L in the case in which 7y, 7o
are ergodic, that is, in which €; and €5 are both trivial. I take the trouble to give the generalized form here
(a simplified version of that in KRIEGER 76) because it seems a natural target, once we have a classification
of the relevant structures (2, i, €) (333R). The essential mathematical ideas are the same in both cases.
You can find the special case worked out in HAJIAN ITO & KAKUTANI 75, from which I have taken the
argument used here; and you may find it useful to go through the version above, to check what kind of
simplifications arise if each € is taken to be {0,1}. Essentially the difference will be that every ‘aperiodic’
turns into ‘ergodic’ (with an occasional ‘atomless’ thrown in) and ‘331B’ turns into ‘331C’. As far as I know,
there is no simplification available in the structure of the argument; of course the details become a bit easier,
but with the possible exception of 388I-388J I think there is little difference.

Of course modifying a general argument to give a simpler proof of a special case is a standard exercise in
this kind of mathematics. What is much more interesting is the reverse process. What kinds of theorem about
ergodic automorphisms will in fact be true of all automorphisms? A variety of very powerful approaches
to such questions have been developed in the last half-century, and I hope to describe some of the ideas in
Volumes 4 and 5. The methods used in this section are relatively straightforward and do not require any
deep theoretical underpinning beyond Maharam’s lemma 331B. But an alternative approach can be found
using 388Yh: in effect (at least for the Lebesgue measure algebra) any measure-preserving automorphism can
be disintegrated into ergodic measure space automorphisms (the fibre maps f, of 388Yh). It is sometimes
possible to guess which theorems about ergodic transformations are ‘uniformisable’ in the sense that they can
be applied to such a family (f.).c0,1], in a systematic way, to provide a structure which can be interpreted
on the product measure. The details tend to be complex, which is one of the reasons why I do not attempt
to work through them here; but such disintegrations can be a most valuable aid to intuition.
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In this section I use von Neumann automorphisms as an auxiliary tool: the point is, first, that two
von Neumann automorphisms are isomorphic — that is, the von Neumann automorphisms on a given totally
finite measure algebra (21, i) (necessarily isomorphic to the Lebesgue measure algebra, since we must have 2
atomless and 7(2) = w) form a conjugacy class in the group Aut; 2 of measure-preserving automorphisms;
and next, that for any ergodic measure-preserving automorphism 7 (on an atomless totally finite algebra
of countable Maharam type) there is a von Neumann automorphism ¢ such that G, = G, (388K). But
I think they are remarkable in themselves. A (weakly) von Neumann automorphism has a ‘pseudo-cycle’
(388Xa) for every power of 2. For some purposes, existence is all we need to know; but in the arguments of
388H-388K we need to keep track of named pseudo-cycles in what I call ‘dyadic cycle systems’ (388D).

In this volume I have systematically preferred arguments which deal directly with measure algebras,
rather than with measure spaces. I believe that such arguments can have a simplicity and clarity which
repays the extra effort of dealing with more abstract structures. But undoubtedly it is necessary, if you are
to have any hope of going farther in the subject, to develop methods of transferring intuitions and theorems
between the two contexts. I offer 381X1 as an example. The description there of ‘induced automorphism’
requires a certain amount of manoeuvering around negligible sets, but gives a valuably graphic description.
In the same way, 381Xf, 388A and 381Qc provide alternative ways of looking at full subgroups.

There are contexts in which it is useful to know whether an element of the full subgroup generated by w
actually belongs to the full semigroup generated by 7 (381Yb); for instance, this happens in 388C.
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Version of 14.1.15

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

385Xr Exercise 385Xr, referred to in the 2003, 2006 and 2013 editions of Volume 4, is now 385Xj.

(©) 2015 D. H. Fremlin
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