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Chapter 38

Automorphism groups

As with any mathematical structure, every measure algebra has an associated symmetry group, the group
of all measure-preserving automorphisms. In this chapter I set out to describe some of the remarkable features
of these groups. I begin with elementary results on automorphisms of general Boolean algebras (§381),
introducing definitions for the rest of the chapter. In §382 I give a general theorem on the expression of an
automorphism as the product of involutions (382M), with a description of the normal subgroups of certain
groups of automorphisms (382R). Applications of these ideas to measure algebras are in §383. I continue with
a discussion of circumstances under which these automorphism groups determine the underlying algebras
and/or have few outer automorphisms (§384).

One of the outstanding open problems of the subject is the ‘isomorphism problem’, the classification of
automorphisms of measure algebras up to conjugacy in the automorphism group. I offer two sections on
‘entropy’, the most important numerical invariant enabling us to distinguish some non-conjugate automor-
phisms (§§385-386). For Bernoulli shifts on the Lebesgue measure algebra (385Q-385S), the isomorphism
problem is solved by Ornstein’s theorem (387J, 387L); I present a complete proof of this theorem in §§386-
387. Finally, in §388, I give Dye’s theorem, describing the full subgroups generated by single automorphisms
of measure algebras of countable Maharam type.

Version of 19.7.06

381 Automorphisms of Boolean algebras

I begin the chapter with a preparatory section of definitions (381B) and mostly elementary facts. A
fundamental method of constructing automorphisms is in 381C-381D. The idea of ‘support’ of an endomor-
phism is explored in 381E-381G, a first look at ‘periodic’ and ‘aperiodic’ parts is in 381H, and basic facts
about ‘full subgroups’ are in 381I-381J. We start to go deeper with the notion of ‘recurrence’, treated in
381L-381P. I describe how these phenomena appear when we represent an endomorphism as a map on the
Stone space of an algebra (381Q). I end by introducing a ‘cycle notation’ for certain automorphisms.

381A The group AutA For any Boolean algebra A, I write AutA for the set of automorphisms of A,
that is, the set of bijective Boolean homomorphisms π : A → A. This is a group, being a subgroup of the
group of all permutations of A (use 312G). Note that every member of AutA is order-continuous; this is
because it must be an isomorphism of the order structure of A (313Ld).

381B The primary aim of this chapter is to study automorphisms of probability algebras. In the context
of the present section, this means that for a first reading you can take it that all algebras are Dedekind
complete. The methods can however be used in many other contexts, at the price of complicating some of
the statements of the lemmas. It is also interesting, and occasionally important, to apply some of the ideas
to general Boolean homomorphisms. In the following definitions I try to set out a language to make this
possible.

Definitions (a) If A is a Boolean algebra and π : A → A is a Boolean homomorphism, I say that a ∈ A

supports π if πd = d for every d ⊆ 1 \ a.

(b) Let A be a Boolean algebra and π : A→ A a Boolean homomorphism. If min{a : a ∈ A supports π}
is defined in A, I will call it the support suppπ of π.
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2 Automorphism groups 381Bc

(c) If A is a Boolean algebra, an automorphism π : A→ A is periodic, with period n ≥ 1, if A 6= {0},
πn is the identity operator and 1 is the support of πi whenever 1 ≤ i < n.

(d) If A is a Boolean algebra, a Boolean homomorphism π : A→ A is aperiodic if the support of πn is
1 for every n ≥ 1. I remark immediately that if π is aperiodic, so is πn for every n ≥ 1 (see 381Xc). Note
that if A = {0} then the trivial automorphism of A is counted as aperiodic.

(e) If A is a Boolean algebra, a subgroup G of AutA is full if whenever 〈ai〉i∈I is a partition of unity in
A, 〈πi〉i∈I is a family in G, and π ∈ AutA is such that πd = πid whenever i ∈ I and d ⊆ ai, then π ∈ G.

(f) If A is a Boolean algebra, a subgroup G of AutA is countably full if whenever 〈ai〉i∈I is a countable
partition of unity in A, 〈πi〉i∈I is a family in G, and π ∈ AutA is such that πd = πid whenever i ∈ I and
d ⊆ ai, then π ∈ G.

(g) If A is a Boolean algebra, a ∈ A and π : A→ A is a Boolean homomorphism, I say that π is recurrent
on a if for every non-zero b ⊆ a there is a k ≥ 1 such that a ∩ πkb 6= 0. If π ∈ AutA and π and π−1 are
both recurrent on a, I say that π is doubly recurrent on a.

381C Before setting out to explore the concepts just listed, I give a fundamental result on piecing
automorphisms together from fragments.

Lemma Let A be a Boolean algebra, and 〈ai〉i∈I , 〈bi〉i∈I two partitions of unity in A. Assume
either that I is finite
or that I is countable and A is Dedekind σ-complete
or that A is Dedekind complete.

Suppose that for each i ∈ I we have an isomorphism πi : Aai → Abi between the corresponding principal
ideals. Then there is a unique π ∈ AutA such that πd = πid whenever i ∈ I and d ⊆ ai.

proof By 315F, we may identify A with each of the products
∏
i∈I Aai ,

∏
i∈I Abi ; now π corresponds to

the isomorphism between the two products induced by the πi.

381D Corollary Let A be a homogeneous Boolean algebra, and A, B two partitions of unity in A,
neither containing 0. Let θ : A→ B be a bijection. Suppose

either that A, B are finite
or that A, B are countable and A is Dedekind σ-complete
or that A is Dedekind complete.

Then there is an automorphism of A extending θ.

proof For every a ∈ A, the principal ideals Aa, Aθa are isomorphic to the whole algebra A, and therefore
to each other; let πa : Aa → Aθa be an isomorphism. Now apply 381C.

381E Lemma Let A be a Boolean algebra, and π, φ, ψ : A→ A Boolean homomorphisms of which π is
injective.

(a) If a ∈ A supports φ then φa = a and φd ⊆ a for every d ⊆ a.
(b) If a ∈ A supports both φ and ψ then it supports φψ.
(c) Let A be the set of elements of A supporting φ. Then A is non-empty and closed under ∩ ; also b ∈ A

whenever b ⊇ a ∈ A. If φ is order-continuous, then inf B ∈ A whenever B ⊆ A has an infimum in A.
(d) If a ∈ A supports πφ, then φa supports πφ.
(e) If π commutes with φ, and a ∈ A is such that πa supports φ, then a supports φ.
(f) If φ is supported by a and ψ is supported by b, where a ∩ b = 0, then φψ = ψφ.
(g) For any n ≥ 1 and a ∈ A, a supports πn iff πa supports πn. Consequently π(suppπn) = suppπn if

πn has a support.
(h) If π ∈ AutA and a ∈ A supports π, then a supports π−1.
(i) If π ∈ AutA and a ∈ A, then
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381F Automorphisms of Boolean algebras 3

a supports π ⇐⇒ d△ πd ⊆ a for every d ∈ A

⇐⇒ d ⊆ a whenever d ∩ πd = 0

⇐⇒ d ∩ πd 6= 0 whenever 0 6= d ⊆ 1 \ a.

(j) If π ∈ AutA and a ∈ A supports φ, then πa supports πφπ−1.

(k) If a ∈ A supports φ, and π1, π2 ∈ AutA agree on Aa, then π1φπ
−1
1 = π2φπ

−1
2 .

proof (a) φ(1 \ a) = 1 \ a, so φa = a, and if d ⊆ a then φd ⊆ φa = a.

(b) If d ∩ a = 0 then φd = d = ψd so φψd = d.

(c) Of course 1 ∈ A, because φ0 = 0; and it is also obvious that if b ⊇ a ∈ A then b ∈ A. If a, b ∈ A and
d ∩ a ∩ b = 0, then φd = φ(d \ a) ∪ φ(d \ b) = d. If φ is order-continuous, B ⊆ A is non-empty and c = inf B
is defined in A, then for any d ⊆ 1 \ c we have

d = d \ c = supb∈B d \ b,

and

φd = supb∈B φ(d \ b) = supb∈B d \ b = d.

So in this case c supports φ.

(d) If d ∩ φa = 0 then πd ∩ a = πd ∩ πφa = 0, so πφπd = πd and (because π is injective) φπd = d.

(e) If d ∩ a = 0 then πd ∩ πa = 0, so πφd = φπd = πd and φd = d.

(f) If d ⊆ a then φd ⊆ a and ψd = d so ψφd = φd = φψd; if d ⊆ b then ψφd = φψd = ψd; and if
d ⊆ 1 \ (a ∪ b) then ψφd = φψd = d.

(g) Because π is injective, so is πn−1. So if a supports πn = πn−1π, so does πa, by (d). On the other
hand, π commutes with πn, so if πa supports πn so does a, by (e).

If c = suppπn then πc supports πn so c ⊆ πc. Consequently πic ⊆ πi+1c for every i ∈ N and c ⊆ πc ⊆ πnc.
But as πnc = c, by (a), πc = c.

(h) If d ∩ a = 0 then πd = d so d = π−1d.

(i)(ααα) If a supports π and d ∈ A, then πa = a, by (a), so

(d△ πd) \ a = (d \ a) △ (πd \ πa) = (d \ a) △ π(d \ a) = (d \ a) △ (d \ a) = 0

and d△ πd ⊆ a.

(βββ) If d△ πd ⊆ a and d ∩ πd = 0, then d ⊆ d△ πd ⊆ a.

(γγγ) If d ⊆ a whenever d ∩ πd = 0, and 0 6= d′ ⊆ 1 \ a, then of course d′ ∩ πd′ 6= 0.

(δδδ) If a does not support π, there is a c ⊆ 1 \ a such that πc 6= c. So one of c \ πc, πc \ c is non-zero. If
c \ πc 6= 0, take this for d; then d ⊆ 1 \ a and πd ∩ d ⊆ πc \ πc = 0. Otherwise, because π is an automorphism,
we can take d = π−1(πc \ c); then 0 6= d ⊆ c ⊆ 1 \ a, while

d ∩ πd = (c \ π−1c) ∩ (πc \ c) = 0.

(j) If d ∩ πa = 0 then π−1d ∩ a = 0 so φπ−1d = π−1d and πφπ−1d = d.

(k) For d ⊆ a, π−1
2 π1d = π−1

2 π2d = d, so π−1
2 π1 is supported by 1 \ a. By (f), φπ−1

2 π1 = π−1
2 π1φ, so

π1φπ
−1
1 = π2π

−1
2 π1φπ

−1
1 = π2φπ

−1
2 π1π

−1
1 = π2φπ

−1
2 .

381F Corollary If A is a Dedekind complete Boolean algebra, then every order-continuous Boolean
homomorphism φ : A→ A has a support.

proof By 381Ec, inf{a : a ∈ A supports φ} is the support of φ.

D.H.Fremlin



4 Automorphism groups 381G

381G Corollary Let A be a Boolean algebra, and suppose that π ∈ AutA has a support e.
(a) πe = e.
(b) e = sup{d△ πd : d ∈ A} = sup{d : d ∈ A, d ∩ πd = 0}.
(c) e is the support of π−1.
(d) For any φ ∈ AutA, φe is the support of φπφ−1.

proof (a) 381Ea.

(b) 381Ei.

(c) 381Eh.

(d) By 381Ej, φe supports φπφ−1. At the same time, if a ∈ A supports φπφ−1, then φ−1a supports π, so
e ⊆ φ−1a and a ⊇ φe. Thus φe is the smallest element of A supporting φπφ−1 and is the support of φπφ−1.

381H Proposition Let A be a Dedekind σ-complete Boolean algebra and π : A→ A an injective Boolean
homomorphism such that πn has a support for every n ∈ N. Then there is a partition of unity 〈ci〉1≤i≤ω
in A such that πci ⊆ ci for every i, π↾Acn is periodic with period n whenever n ∈ N \ {0} and cn 6= 0, and
π↾Acω is aperiodic.

proof Set

c1 = 1 \ suppπ,

cn = inf
i<n

suppπi \ suppπn for n ≥ 2,

cω = inf
n∈N

suppπn.

Then 〈ci〉1≤i≤ω is a partition of unity. By 381Eg, πcn = cn for every n, so πcω ⊆ cω. If d ⊆ cn, where
1 ≤ n ∈ N, then d ∩ suppπn = 0 so πnd = d. If 1 ≤ i < j ≤ ω and 0 6= a ⊆ cj , then a ⊆ suppπi so there is
a d ⊆ a such that (π↾Acn)id = πid 6= d; thus if n ∈ N \ {0} (and cn 6= 0) π↾Acn is periodic with period n,
while π↾Acω is aperiodic.

Remark The hypothesis ‘every πn has a support’ will be satisfied if A is Dedekind complete and π is
order-continuous (381F). For other sufficient conditions see 382E.

381I Full and countably full subgroups If A is a Boolean algebra, it is obvious that the intersection
of any family of (countably) full subgroups of AutA is again (countably) full. We may therefore speak of
the (countably) full subgroup of A generated by an element of AutA.

Proposition Let A be a Boolean algebra.
(a) Let G be a subgroup of AutA. Let H be the set of those π ∈ AutA such that for every non-zero

a ∈ A there are a non-zero b ⊆ a and a φ ∈ G such that πc = φc for every c ⊆ b. Then H is a full subgroup
of AutA, the smallest full subgroup of A including G.

(b) Suppose that A is Dedekind σ-complete and π, φ ∈ AutA. Then the following are equiveridical:

(i) φ belongs to the countably full subgroup of AutA generated by π;
(ii) there is a partition of unity 〈an〉n∈Z in A such that φc = πnc whenever n ∈ Z and c ⊆ an.

(c) Suppose that A is Dedekind complete, and π, φ ∈ AutA. Then the following are equiveridical:

(i) φ belongs to the full subgroup of AutA generated by π;
(ii) for every non-zero a ∈ A there are a non-zero b ⊆ a and an n ∈ Z such that φc = πnc for

every c ⊆ b;
(iii) φ belongs to the countably full subgroup of AutA generated by π;
(iv) infn∈Z supp(πnφ) = 0.

proof (a)(i) π2π1 ∈ H for all π1, π2 ∈ H. PPP Let a ∈ A be non-zero; then there are a non-zero b ⊆ a and
a φ1 ∈ G such that π1 and φ1 agree on the principal ideal Ab. Next, there are a non-zero c ⊆ π1b and a
φ2 ∈ G such that π2 and φ2 agree on Ac. Set d = π−1

1 c; then d ∈ Aa \ {0}, and φ2φ1 is a member of G
agreeing with π2π1 on Ad. As a is arbitrary, π2π1 ∈ H. QQQ

Measure Theory



381I Automorphisms of Boolean algebras 5

(ii) π−1 ∈ H for every π ∈ H. PPP If a ∈ A \ {0}, there are a non-zero b ⊆ π−1a and a φ ∈ G such that
π and φ agree on Ab; now 0 6= πb ⊆ a and π−1 and φ−1 agree on Aπb. As a is arbitrary, π−1 ∈ H. QQQ Of
course H ⊇ G, so H is a subgroup of AutA.

(iii) Suppose now that 〈ai〉i∈I is a partition of unity in A, 〈πi〉i∈I is a family in H, and π ∈ AutA is
such that π agrees with πi on Aai for every i ∈ I. Then π ∈ H. PPP If a ∈ A \ {0}, there is an i ∈ I such that
b = a ∩ ai is non-zero; now π agrees with πi on b. QQQ So H is a full subgroup of AutA.

(iv) If H ′ is any full subgroup of AutA including G, then H ′ ⊇ H. PPP If π ∈ H, then B = {b : there is
a φ ∈ G agreeing with π on Ab} is an order-dense subset of A, so there is a partition 〈ai〉i∈I of unity in A

such that ai ∈ B for every i. For each i ∈ I, let πi ∈ G be such that π and πi agree on Aai ; then 〈(ai, πi)〉i∈I
witnesses that π ∈ H ′. As π is arbitrary, H ⊆ H ′. QQQ

(b) (ii)⇒(i) is trivial. In the other direction, let G be the family of all those automorphisms ψ of A such
that there is a partition of unity 〈an〉n∈Z in A such that ψc = πnc whenever n ∈ Z and c ⊆ an. Then G is a
countably full subgroup of AutA containing π.

PPP Of course π ∈ G (set a1 = 1, an = 0 for n 6= 1).

Take ψ1, ψ2 ∈ G. Let 〈an〉n∈Z, 〈a′n〉n∈Z be partitions of unity in A such that ψ1c = πnc whenever n ∈ Z
and c ⊆ an, while ψ2c = πnc whenever n ∈ Z and c ⊆ a′n. Then 〈a′n ∩ ψ−1

2 am〉m,n∈Z is a partition of unity.

If c ⊆ a′n ∩ ψ−1
2 am, then ψ2c = πnc ⊆ am, so ψ1ψ2c = πm+nc. So if we set bn = supi∈Z a

′
i ∩ ψ

−1
2 an−i for each

n ∈ Z, 〈bn〉n∈Z is a partition of unity in A witnessing that ψ1ψ2 ∈ G. At the same time, 〈ψ1a−n〉n∈Z is a
partition of unity witnessing that ψ−1

1 ∈ G. As ψ1 and ψ2 are arbitrary, G is a subgroup of AutA.

Now suppose that 〈ai〉i∈I is a countable partition of unity in A and that ψ ∈ AutA is such that for every
i ∈ I there is a ψi ∈ G such that ψc = ψic for every c ⊆ ai. For each i ∈ I let 〈ain〉n∈Z be a partition
of unity such that ψic = πnc whenever c ⊆ ain. Then 〈ai ∩ ain〉i∈I,n∈Z is a partition of unity such that
ψc = πnc whenever c ⊆ ci ∩ ain. So setting bn = supi∈I ai ∩ ain for each n ∈ Z, 〈bn〉n∈Z is a partition of
unity witnessing that ψ ∈ G. As ψ is arbitrary, G is countably full. QQQ

Accordingly G must include (indeed, must coincide with) the countably full subgroup generated by π,
and (i)⇒(ii).

(c)(i)⇒(ii) is a special case of (a).

(ii)⇒(iii) For n ∈ Z, let Bn be the set of those b ∈ A such that φc = πnc for every c ⊆ b. Set
bn = supBn for each n; then if c ⊆ bn,

φc = φ(supb∈Bn
b ∩ c) = supb∈Bn

φ(b ∩ c) = supb∈Bn
πn(b ∩ c) = πnc.

Set

an = bn \ sup
0≤i<n

bi if n ∈ N,

= bn \ sup
i>n

bi if n ∈ Z \ N;

then 〈an〉n∈Z is disjoint,

supn∈Z an = supn∈Z bn = sup(
⋃
n∈Z

Bn) = 1,

and φc = πnc for every c ⊆ an, n ∈ Z. Thus φ satisfies condition (ii) of (a) and belongs to the countably
full subgroup generated by π.

(iii)⇒(i) is trivial.

(ii)⇔(iv) The point is that, for n ∈ Z and b ∈ A,

φc = πnc for every c ⊆ b ⇐⇒ π−nφc = c for every c ⊆ b

⇐⇒ b ∩ supp(π−nφ) = 0.

So we have

D.H.Fremlin



6 Automorphism groups 381I

(ii) ⇐⇒ ∀ a ∈ A \ {0} ∃ n ∈ Z, b such that 0 6= b ⊆ a and b ∩ supp(π−nφ) = 0

⇐⇒ ∀ a ∈ A \ {0} ∃ n ∈ Z, a \ supp(π−nφ) 6= 0

⇐⇒ inf
n∈Z

supp(π−nφ) = 0,

as required.

381J Lemma Let A be a Boolean algebra, and π ∈ AutA. Suppose that φ belongs to the full subgroup
of AutA generated by π.

(a) If c ∈ A is such that πc = c, then φc = c.
(b) If a ∈ A supports π then it supports φ.

proof (a) Let G be the set of all ψ ∈ AutA such that ψc = c. Then G is a subgroup of AutA containing
π. Also G is full. PPP If 〈ai〉i∈I is a partition of unity in A, 〈ψi〉i∈I is a family in G, and ψ ∈ AutA is such
that ψd = ψid whenever d ⊆ ai, then

ψc = supi∈I ψ(c ∩ ai) = supi∈I ψi(c ∩ ai) = supi∈I ψic ∩ ψiai = supi∈I c ∩ ψiai = c.

So ψ ∈ G; as ψ is arbitrary, G is full. QQQ So φ ∈ G and φc = c, as claimed.

(b) If c ∩ a = 0 then πc = c so φc = c.

381K Lemma Let A be a Dedekind σ-complete Boolean algebra and π : A → A a sequentially order-
continuous Boolean homomorphism.

(a) If a ∈ A and a∗ = infk∈N supi≥k π
ia, then πa∗ = a∗.

(b) If a ∈ A is such that a ⊆ supi≥1 π
ia, then supi≥k π

ia = supi∈N π
ia for every k ∈ N.

proof (a) Because π is sequentially order-continuous,

πa∗ = inf
k∈N

sup
i≥k

πi+1a

(313Lc)

= inf
k∈N

sup
i≥k+1

πia = inf
k≥1

sup
i≥k

πia = inf
k∈N

sup
i≥k

πia = a∗.

(b) Induce on k. For k = 0 the result is just the hypothesis. For the inductive step to k + 1, because π
is sequentially order-continuous, so is πk (313Ic), so

sup
i≥k+1

πia = sup
i≥1

πkπia = πk(sup
i≥1

πia)

= πk(sup
i∈N

πia) = sup
i≥k

πia = sup
i∈N

πia,

and the induction continues.

381L Lemma Let A be a Dedekind σ-complete Boolean algebra and π ∈ AutA. Then for any a ∈ A,
the following are equiveridical:

(i) π is recurrent on a;
(ii) a ⊆ supn≥1 π

−na;

(iii) there is some k ≥ 1 such that a ⊆ supn≥k π
−na;

(iv) a ⊆ supn≥k π
−na for every k ∈ N.

proof (i)⇒(ii) If (i) is true, set b = a \ supn≥1 π
−na. Then a ∩ πnb = 0 for every n ≥ 1, so b = 0, that is,

a ⊆ supn≥1 π
−na.

(ii)⇒(i) If (ii) is true and 0 6= b ⊆ a, then there is some n ≥ 1 such that b ∩ π−na 6= 0, that is,
πnb ∩ a 6= 0; as b is arbitrary, π is recurrent on a.

(iv)⇒(ii)⇔(iii) are trivial.

(ii)⇒(iv) Apply 381Kb to π−1.

Measure Theory



381N Automorphisms of Boolean algebras 7

381M It is with the idea of ‘recurrence’ that we start to get genuine surprises. The first fundamental
construction is that of ‘induced automorphism’ in the following sense.

Proposition Let A be a Dedekind σ-complete Boolean algebra and a ∈ A. Suppose that π ∈ AutA is
doubly recurrent on a. Then we have a Boolean automorphism πa : Aa → Aa defined by saying that
πad = πnd whenever n ≥ 1 and d ⊆ a ∩ π−na \ sup1≤i<n π

−ia; I will call πa the induced automorphism
on Aa.

proof For n ≥ 1 set

dn = a ∩ π−na \ sup1≤i<n π
−ia.

If 1 ≤ m < n then

dn ⊆ π−na \ π−ma, dm ⊆ π−ma

so dm ∩ dn = 0. Also

dm ⊆ a, πn−mdn ∩ a = πn−m(dn ∩ π−(n−m)a) = 0

so

πndn ∩ πmdm = πm(πn−mdn ∩ dm) = 0.

Finally, supn≥1 dn = a ∩ supn≥1 π
−na = a, because π is recurrent on a (using (a)).

It follows that 〈dn〉n≥1 is a partition of unity in Aa. Since 〈πndn〉n≥1 also is a disjoint family in Aa, and

sup
n≥1

πndn = sup
n≥1

(πna ∩ a \ sup
1≤i<n

πn−ia)

= a ∩ sup
n≥1

(πna \ sup
1≤i<n

πia) = a ∩ sup
n≥1

πna = a,

(because π−1 is recurrent on a), 〈πndn〉n≥1 is another partition of unity. So we have an automorphism
πa : Aa → Aa defined by setting πad = πnd if d ⊆ dn (381C).

381N Lemma Let A be a Dedekind σ-complete Boolean algebra and a ∈ A. Suppose that π ∈ AutA is
doubly recurrent on a. Let πa ∈ AutAa be the induced automorphism.

(a) π−1 is doubly recurrent on a, and the induced automorphism (π−1)a is (πa)−1.
(b) For every n ∈ N there is a partition of unity 〈bi〉i≥n in Aa such that πna b = πib whenever i ≥ n and

b ⊆ bi.
(c) If n ≥ 1 and 0 6= b ⊆ a ∩ π−na, there are a non-zero b′ ⊆ b and a j such that 1 ≤ j ≤ n and πnd = πjad

for every d ⊆ b′.
(d) Suppose that m ≥ 1 is such that a ∩ πia = 0 for 1 ≤ i < m. Then for any n ≥ 1 we have a disjoint

family 〈bni〉1≤i≤⌊n/m⌋, with supremum a ∩ π−na, such that πnd = πiad whenever 1 ≤ i ≤ ⌊ nm⌋ and d ⊆ bni.
(e) Suppose that b ⊆ a. Then π is doubly recurrent on b iff πa is doubly recurrent on b, and in this case

πb = (πa)b, where (πa)b is the automorphism of Ab induced by πa.
(f) Suppose that c ∈ A is such that πc = c. Then π is doubly recurrent on a ∩ c, and πa∩c = πa↾Aa∩c; in

particular, πa(a ∩ c) = a ∩ c.
(g) If π is aperiodic, so is πa.
(h) Suppose that a ∩ πa = 0, and that b ⊆ a is such that b ∩ πab = 0. Then b, πb and π2b are all disjoint.
(i) There is an automorphism π̃a ∈ AutA defined by setting π̃ad = πad for d ⊆ a, π̃ad = d for d ⊆ 1 \ a,

and π̃a belongs to the countably full subgroup of AutA generated by π.

proof Set dn = a ∩ π−na \ sup1≤i<n π
−ia for n ≥ 1, so that 〈dn〉n≥1 and 〈πndn〉n≥1 are partitions of unity

in Aa, and πab = πnb for b ⊆ dn.

(a) By the symmetry in the definition of ‘doubly recurrent’, π−1 is doubly recurrent on a iff π is. In this
case,

πndn = πna ∩ a \ sup1≤i<n π
n−ia = a ∩ πna ∩ a \ sup1≤i<n π

ia

so (π−1)ab = π−nb = (πa)−1b for every b ⊆ πndn; as 〈πndn〉n∈N is a partition of unity in Aa, (π−1)a = (πa)−1.

D.H.Fremlin



8 Automorphism groups 381N

(b) Induce on n. For n = 0 we can take b0 = a and bi = 0 for i > 0. For the inductive step to n+ 1, let
〈bi〉i≥n be a partition of unity in Aa such that πna b = πib for b ⊆ bi. Then 〈π−1

a bi〉i≥n and 〈dk ∩ π−1
a bi〉k≥1,i≥n

are partitions of unity in Aa. If b ⊆ dk ∩ π−1
a bi, then πab = πkb ⊆ bi, so πn+1

a b = πk+ib. This means that
if we set b′j = supk≥1,i≥n,k+i=j dk ∩ π−1

a bi for j ≥ n + 1, 〈b′j〉j≥n+1 will be a partition of unity in Aa, and

πn+1
a b = πjb whenever b ⊆ bj . So the induction continues.

(c) Induce on n. If b ∩ π−ia = 0 for 1 ≤ i < n then we can take b′ = b and j = 1. Otherwise, take the
first i ≥ 1 such that b1 = b ∩ π−ia 6= 0. Then πad = πid for every d ⊆ b1. Also πn−iπib1 ⊆ a, so, by the
inductive hypothesis, there are a non-zero c ⊆ πib1 and a j such that 1 ≤ j ≤ n − i and πn−id = πjad for
every d ⊆ c. Setting b′ = π−ic ⊆ b1, we have 0 6= b′ ⊆ b and

πnd = πn−iπid = πjaπad = πj+1
a d

whenever d ⊆ b′. So the induction continues.

(d) Again induce on n. If 1 ≤ n < m then a ∩ π−na = 0 and the result is trivial. If n = m, then
a ∩ π−na = dn and πad = πnd for every d ⊆ dn, so we can set bn1 = dn. For the inductive step to n > m,
we have

a ∩ π−na = dn ∪ sup
m≤k<n

(dk ∩ π−na) = dn ∪ sup
m≤k<n

(dk ∩ π−k(a ∩ π−(n−k)a))

= dn ∪ sup
m≤k≤n−m

1≤j≤⌊(n−k)/m⌋

(dk ∩ π−kbn−k,j)

by the inductive hypothesis, while 〈dk ∩ π−kbn−k,j〉m≤k≤n−m,1≤j≤⌊(n−k)/m⌋ is disjoint. Now ifm ≤ k ≤ n−m
and 1 ≤ j ≤ ⌊n−km ⌋ and d ⊆ dk ∩ π−kbn−k,j , we have πad = πkd ⊆ bn−k,j , so πnd = πn−kπad = πj+1

a d; while
if d ⊆ dn then πnd = πad. So we can set

bn1 = dn, bni = supm≤k≤n−m dk ∩ bn−k,i−1

for 2 ≤ i ≤ ⌊ nm⌋, and the induction will continue.

(e) Applying (b) and (d) to π and π−1, and using 381L and (a), we see that π is doubly recurrent on b
iff πa is doubly recurrent on b.

In this case, set D = {d : d ∈ Ab, πbd = (πa)bd}. Then D is order-dense in Ab. PPP Take any non-zero
c ∈ Ab. Since b ⊆ supn≥1 π

−nb, there is an n ≥ 1 such that c′ = c ∩ π−nb \ sup1≤i<n π
−ib is non-zero.

Next, there is a non-zero d ⊆ c′ such that for every m ≤ n either d ⊆ π−ma or d ∩ π−ma = 0. Enumerate
{m : m ≤ n, d ⊆ π−ma} in ascending order as (m0, . . . ,mk) (note that as c′ ⊆ a ∩ π−na, we must have
m0 = 0 and mk = n). Set di = πmid for i ≤ k, so that

d0 = d, πmi+1−midi = di+1 ⊆ a,

while

πjdi = πmi+jd ⊆ 1 \ a

for 1 ≤ j < mi+1 −mi; that is, di+1 = πadi for i < k. Thus

πkad = πmkd = πnd ⊆ b,

while

πiad = di = πmid ⊆ πmic′ ⊆ 1 \ b

for every i < k, and

(πa)bd = πkad = πnd = πbd,

so that d ∈ D. As c is arbitrary, D is order-dense. QQQ
Because πb and (πa)b are both order-continuous Boolean homomorphisms on Ab, and every member of

Ab is a supremum of some subset of D (313K), πb = (πa)b, as required.

(f) We have

a ∩ c ⊆ supn≥1 π
−na ∩ c = supn≥1 π

−na ∩ π−nc = supn≥1 π
−n(a ∩ c),

Measure Theory



381P Automorphisms of Boolean algebras 9

so π is recurrent on a ∩ c; similarly, π−1 is recurrent on a ∩ c. If n ≥ 1 and

d ⊆ a ∩ c ∩ π−n(a ∩ c) \ sup1≤i<n π
−i(a ∩ c) = c ∩ a ∩ π−na \ sup1≤i<n π

−ia,

then πa∩cd = πnd = πad. So πa extends πa∩c, as claimed.

(g) If 0 6= b ⊆ a, and n ≥ 1, then (b) tells us that there are a non-zero c ⊆ b and an i ≥ n such that
πnad = πid for every d ⊆ c. Now we are supposing that suppπi = 1, so there is a d ⊆ c such that πid 6= d,
that is, πnad 6= d. As b is arbitrary, suppπna = a; as n is arbitrary, πa is aperiodic.

(h) Of course πb ⊆ πa is disjoint from b ⊆ a; it follows that πb ∩ π2b = π(b ∩ πb) = 0. If c = b ∩ π−2b,
then c ⊆ a ∩ π−2a \ π−1a, so

π2b ∩ b = π2c = πac ⊆ πab

is disjoint from b and must be 0. So b, πb and π2b are all disjoint.

(i) By 381C, the formula defines an automorphism π̃a. Setting d0 = 1 \ a, 〈dn〉n∈N is a partition of unity
in A and π̃ad = πnd for d ⊆ dn, so π̃a belongs to the countably full subgroup of AutA generated by π.

381O Lemma Let A be a Boolean algebra and π : A→ A a Boolean homomorphism. Then the following
are equiveridical:

(i) π is recurrent on every a ∈ A;
(ii) for every non-zero a ∈ A there is a k ≥ 1 such that a ∩ πka 6= 0;
(iii) a = supk≥1 a ∩ πka for every a ∈ A.

proof (i)⇒(ii) If (i) is true, and a ∈ A \ {0}, then taking b = a in the definition 381Bg we see that there is
a k ≥ 1 such that a ∩ πka 6= 0.

(ii)⇒(iii) Suppose (ii) is true. ??? If a ∈ A is not the supremum of {a ∩ πka : k ≥ 1}, let b ⊆ a be non-zero
and disjoint from πka for every k ≥ 1. Then b ∩ πkb = 0 for every k ≥ 1, which is impossible. XXX

(iii)⇒(i) Suppose (iii) is true. If 0 6= b ⊆ a then b = supk≥1 b ∩ π
kb, so there is certainly some k ≥ 1 such

that b ∩ πkb 6= 0, in which case a ∩ πkb 6= 0. As b is arbitrary, π is recurrent on a; as a is arbitrary, (i) is
true.

Remark The condition ‘recurrent on every a ∈ A’ looks, and is, very restrictive; but it is satisfied by the
homomorphisms we care about most (386A).

381P Proposition Let A be a Boolean algebra and π : A → A a Boolean homomorphism which is
recurrent on every a ∈ A. Then π is aperiodic iff A is relatively atomless (definition: 331A) over the
fixed-point algebra C = {c : c ∈ A, πc = c}. In particular, if π is ergodic, it is aperiodic iff A is atomless.

proof It is elementary to check that C is a subalgebra of A.

(a) Suppose that π is not aperiodic. Then there is a least n ≥ 1 such that 1 is not the support of πn;
that is, there is a non-zero a ∈ A such that πnd = d for every d ⊆ a. Now if 0 6= b ⊆ a and 1 ≤ i < n there
is a non-zero b′ ⊆ b such that b′ ∩ πib′ = 0. PPP We are supposing that the support of πi is 1, so there is a
d ⊆ b such that d 6= πid. If d \ πid 6= 0, take b′ = d \ πid. Otherwise, try b′ = d \ πn−id; then

πib′ = πid \ πnd = πid \ d 6= 0,

so b′ 6= 0, while b′ ∩ πib′ ⊆ d \ πnd = 0. QQQ
We can therefore find a non-zero b ⊆ a such that b ∩ πib = 0 whenever 1 ≤ i < n. Now b is a relative

atom of A over C. PPP If d ⊆ b, set c = sup0≤i<n π
id. Then πc = sup1≤i≤n π

id = c, so c ∈ C, while b ∩ πid = 0
for 1 ≤ i < n, so d = b ∩ c. QQQ Thus b witnesses that A is not relatively atomless over C.

(b)(i) Note that if a ∈ A and a ⊆ πa then a = πa. PPP??? Otherwise, set b = πa \ a. Then πnb = πn+1a \ πna
for every n; also a ⊆ πa ⊆ π2a ⊆ . . . , so 〈πnb〉n∈N is disjoint. But in this case π cannot be recurrent on b.
XXXQQQ

(ii) Suppose that A is not relatively atomless over C. Then there is a relative atom a ∈ A; as π is
recurrent on a, there is a first n ≥ 1 such that a ∩ πna 6= 0. Then πnb = b for every b ⊆ a ∩ πna. PPP Because a
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10 Automorphism groups 381P

is a relative atom over C, there is a c ∈ C such that b = a ∩ c. Now πnb = πna ∩ c ⊇ b. Set b1 = sup0≤i<n π
ib;

then πb1 = sup1≤i≤n π
ib ⊇ b1. So b1 = πb1, by (i), and πnb ⊆ supi<n π

ib. Next,

πnb ∩ πib = πi(πn−ib ∩ b) ⊆ πi(πn−ia ∩ a) = 0

for 0 < i < n, so πnb ⊆ b and πnb = b. QQQ Thus a ∩ πna witnesses that π is not aperiodic.

(c) Finally, if π is ergodic, then C = {0, 1} (372Pa), so that ‘relatively atomless over C’ becomes ‘atomless’.

381Q As far as possible I will express the ideas of this chapter in ‘pure’ Boolean algebra terms, without
shifting to measure spaces or Stone spaces. However there is a crucial argument in §382 for which the Stone
representation is an invaluable aid, and anyone studying the subject has to be able to use it.

Proposition Let A be a Boolean algebra and Z its Stone space. For a ∈ A let â be the corresponding
open-and-closed subset of Z; recall that â can be identified with the Stone space of Aa (312T). For a Boolean
homomorphism π : A→ A let fπ : Z → Z be the continuous function such that π̂a = f−1

π [â] for every a ∈ A

(312Q).
(a) If a, b ∈ A and φ : Aa → Ab is a Boolean homomorphism represented by a continuous function

g : b̂→ â, then π ∈ AutA agrees with φ on Aa iff fπ agrees with g on b̂.
(b) If π : A→ A is a Boolean homomorphism, then a ∈ A supports π iff â ⊇ {z : fπ(z) 6= z}. So a is the

support of π iff â = {z : fπ(z) 6= z}.
(c) Suppose that A is Dedekind complete and π, φ ∈ AutA. Let G be the full subgroup of AutA generated

by π. Then

φ ∈ G ⇐⇒
⋃

n∈Z

int{x : fφ(z) = fnπ (z)} is dense in Z

⇐⇒ {z : fφ(z) ∈ {fnπ (z) : n ∈ Z}} is comeager in Z.

(d) A Boolean homomorphism π : A→ A is recurrent on a ∈ A iff â ⊆ ⋃
n≥1 f

n
π [â].

(e) Suppose that A is Dedekind σ-complete, π ∈ AutA is recurrent on a ∈ A, and that πa ∈ AutAa is
the induced automorphism (381M). Let fπa

be the corresponding autohomeomorphism of â. For k ≥ 1, set
Gk = {z : z ∈ â, fk(z) ∈ â, f i(z) /∈ â for 1 ≤ i < k}. Then

⋃
k≥1Gk = â ∩ ⋃

k≥1 f
−k[â] is a dense open

subset of â and fπa
(z) = fkπ (z) whenever k ≥ 1 and z ∈ Gk.

proof Recall that fπφ = fφfπ for all Boolean homomorphisms π, φ : A→ A (312R).

(a) The point is that {d̂ : d ⊆ a} is a base for the Hausdorff topology of of â. So if g 6= fπ↾b̂, there are a

z ∈ b̂ such that fπ(z) 6= g(z) and a d ⊆ a such that g(z) ∈ d̂ and fπ(z) /∈ d̂. In this case,

z ∈ g−1[d̂] \ f−1
π [d̂] = φ̂d \ π̂d,

and φ 6= π↾Aa. On the other hand, if g = fπ↾b̂, then

π̂d = f−1
π [d̂] = g−1[d̂] = φ̂d

for every d ⊆ a, and φ = π↾Aa.

(b)

a ∈ A supports π ⇐⇒ π agrees with the identity on 1 \ a

⇐⇒ fπ(z) = z for every z ∈ π̂(1 \ a) = Z \ â
⇐⇒ â ⊇ {z : fπ(z) 6= z}
⇐⇒ â ⊇ {z : fπ(z) 6= z}.

So the smallest such a, if there is one, must have â = {z : fπ(z) 6= z}.
(c) If φ ∈ G, let 〈an〉n∈Z be a partition of unity in A such that φb = πnb whenever n ∈ Z and b ⊆ an

(381I). Then g(z) = fnπ (z) whenever z ∈ φ̂an ((a) above). As supn∈Z φan = 1 in A,
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381R Automorphisms of Boolean algebras 11

⋃
n∈Z

int{x : fφ(z) = fnπ (z)} ⊇ ⋃
n∈Z

φ̂an

is dense (313Ca).
If

⋃
n∈Z

int{x : fφ(z) = fnπ (z)} is dense, it is a dense open subset of {z : fφ(z) ∈ {fnπ (z) : n ∈ Z}, so the
latter is comeager.

If {z : fφ(z) ∈ {fnπ (z) : n ∈ Z}} is comeager, set Fn = {z : fφ(z) = fnπ (z)} for each n. Then Fn \ intFn
is nowhere dense for each n, and Z \ ⋃n∈Z

Fn is meager, so
⋃
n∈Z

intFn is comeager, therefore dense (by

Baire’s theorem, 3A3G). If a ∈ A is non-zero, there are an n ∈ Z such that φ̂a ∩ intFn 6= ∅ and a b ∈ A

such that ∅ 6= b̂ ⊆ φ̂a ∩ Fn, in which case 0 6= φ−1b ⊆ a and φc = πnc for every c ⊆ b. By 381I(c-ii), φ ∈ G.
So the cycle is complete.

(d)

π is recurrent on a ⇐⇒ whenever 0 6= b ⊆ a there is a k ≥ 1

such that a ∩ πkb 6= 0

⇐⇒ whenever 0 6= b ⊆ a there is a k ≥ 1

such that â ∩ (fkπ )−1 [̂b] 6= ∅
⇐⇒ whenever 0 6= b ⊆ a there is a k ≥ 1

such that fkπ [â] ∩ b̂ 6= ∅
⇐⇒ â ∩

⋃

k≥1

fkπ [â] is dense in â

⇐⇒ â ⊆
⋃

k≥1

fkπ [â].

(e) Set dk = a ∩ π−ka \ sup1≤i<k π
−ia, so that πkdk = a ∩ πka \ sup1≤i<k π

ia. Since πk and πa agree on

Adk , (a) tells us that fkπ and fπa
agree on

π̂kdk = π̂adk = f−1
πa

[d̂k] = Gk.

Because supk≥1 π
kdk = a,

⋃
k≥1Gk is dense in â.

381R Cyclic automorphisms I end the section by describing a notation which is often useful.

Definition Let A be a Boolean algebra.

(a) Suppose that a, b are disjoint members of A and that π ∈ AutA is such that πa = b. I will write

(
←−−
a π b) for the member ψ of AutA defined by setting

ψd = πd if d ⊆ a,

= π−1d if d ⊆ b,

= d if d ⊆ 1 \ (a ∪ b).

Observe that in this case (if a 6= 0) ψ is an involution, that is, has order 2 in the group AutA; I will call
such a ψ an exchanging involution, and say that it exchanges a with b.

(b) More generally, if a1, . . . , an are disjoint elements of A and πi ∈ AutA are such that πiai = ai+1 for
each i < n, then I will write

(←−−−−−−−−−−−−−−−a1 π1
a2 π2

. . . πn−1
an)

for that ψ ∈ AutA such that

ψd = πid if 1 ≤ i < n, d ⊆ ai,

= π−1
1 π−1

2 . . . π−1
n−1d if d ⊆ an,

= d if d ⊆ 1 \ sup
i≤n

ai.
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12 Automorphism groups 381R

(c) It will occasionally be convenient to use the same notation when each πi is a Boolean isomorphism
between the principal ideals Aai and Aai+1

, rather than an automorphism of the whole algebra A.

Remark The point of this notation is that we can expect to use the standard techniques for manipulating
cycles that are (I suppose) familiar to you from elementary group theory; the principal change is that we
have to keep track of the subscripted automorphisms π. The following results are typical.

381S Lemma Let A be a Boolean algebra.

(a) If ψ = (
←−−
a π b) is an exchanging involution in AutA, then

ψ = (
←−−
a ψ b) = (

←−−
b ψ a) = (

←−−−
b π−1 a)

has support a ∪ b.

(b) If π = (
←−−
a π b) is an exchanging involution in AutA, then for any φ ∈ AutA,

φπφ−1 = (
←−−−−−−−
φa φπφ−1 φb)

is another exchanging involution.

(c) If π = (
←−−
a π b) and φ = (

←−−
c φ d) are exchanging involutions, and a, b, c, d are all disjoint, then π and φ

commute, and ψ = πφ = φπ is another exchanging involution, being (
←−−−−−−−
a ∪ c ψ b ∪ d).

(d) If G is a countably full subgroup of AutA, a1, . . . , an ∈ A are disjoint, and π1, . . . , πn−1 ∈ G, then

(←−−−−−−−−−−−−−−−a1 π1
a2 π2

. . . πn−1
an) ∈ G.

proof (a) Check the action of ψ on the principal ideals Aa, Ab, A1\(a∪b).

(b) φa ∩ φb = φ(a ∩ b) = 0 and

φπφ−1φa = φπa = φb,

so ψ = (
←−−−−−−−
φa φπφ−1 φb) is well-defined. Now check the action of ψ on the principal ideals Aφa, Aφb, A1\φ(a∪b).

(c) Check the action of ψ on each of the principal ideals Aa, . . . ,Ae, where e = 1 \ (a ∪ b ∪ c ∪ d).

(d) Immediate from the definitions in 381Rb and 381Be.

381T Remark I must emphasize that while, after a little practice, calculations of this kind become
easy and safe, they are absolutely dependent on all the cycles present involving only members of one list of
disjoint elements of A. If, for instance, a, b, c are disjoint, then

(
←−−
a π b)(

←−−
b φ c) = (

←−−−−
a π b φ c).

But if a ∩ c 6= 0 then there is no expression for the product in this language. Secondly, of course, we must
be scrupulous in checking, at every use of the notation (←−−−−−−−a1 π1

. . . an), that a1, . . . , an are disjoint and that
πiai = ai+1 for i < n. Thirdly, a significant problem can arise if the automorphisms involved don’t match.
Consider for instance the product

ψ = (
←−−
a π b)(

←−−
a φ b).

Then we have ψd = π−1φd if d ⊆ a, πφ−1d if d ⊆ b; ψ is not necessarily expressible as a product of ‘disjoint’
cycles. Clearly there are indefinitely complex variations possible on this theme. A possible formal expression
of a sufficient condition to avoid these difficulties is the following. Restrict yourself to calculations involving a
fixed list a1, . . . , an of disjoint elements of A for which you can describe a family of isomorphisms φij : Aai →
Aaj such that φii is always the identity on Aai , φjkφij = φik for all i, j, k, and whenever ai π aj appears in
a cycle of the calculation, then π agrees with φij on Aai . Of course this would be intolerably unwieldy if it
were really necessary to exhibit all the φij every time. I believe however that it is usually easy enough to
form a mental picture of the actions of the isomorphisms involved sufficiently clear to offer confidence that
such φij are indeed present; and in cases of doubt, then after performing the formal operations it is always
straightforward to check that the calculations are valid, by looking at the actions of the automorphisms on
each relevant principal ideal.
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381X Basic exercises (a) Let X be a set and Σ an algebra of subsets of X containing all singleton sets.
Show that Aut Σ can be identified with the group of permutations f : X → X such that f [E] and f−1[E]
belong to Σ for every E ∈ Σ.

(b) Let A and B be Boolean algebras, and 〈ai〉i∈I , 〈bi〉i∈I partitions of unity in A, B respectively. Assume
either that I is finite or that I is countable and B is Dedekind σ-complete or that B is Dedekind complete.
Suppose that for each i ∈ I we have a Boolean homomorphism πi : Aai → Bbi . (i) Show that there is a
Boolean homomorphism π : A → B extending every πi. (ii) Show that π is injective iff every πi is. (iii)
Show that if either I is finite or I is countable and A is Dedekind σ-complete or A is Dedekind complete,
then π is surjective iff every πi is. (iv) Show that π is order-continuous, or sequentially order-continuous, iff
every πi is.

(c) Let A be a Boolean algebra. Show that if π ∈ AutA and k ∈ Z \ {0}, then π is aperiodic iff πk is.

(d) In 381H, show that the family 〈ci〉1≤i≤ω is uniquely determined.

>>>(e) Let (X,Σ, µ) be a countably separated measure space (definition: 343D), A its measure algebra,
f : X → X an inverse-measure-preserving function and π : A → A the induced homomorphism (343A). (i)
Show that the support of π is {x : x ∈ X, f(x) 6= x}•. (ii) Show that π is periodic, with period n ≥ 1, iff
µX > 0, fn(x) = x for almost every x and {x : f i(x) = x} is negligible for 1 ≤ i < n.

(f) Let (X,Σ, µ) be a localizable measure space, with measure algebra (A, µ̄). Suppose that π and φ are
automorphisms of A, and that π is represented by a measure space automorphism f : X → X. Show that
the following are equiveridical: (i) φ belongs to the full subgroup of AutA generated by π; (ii) there is a
function g : X → X, representing φ, such that g(x) ∈ {fn(x) : n ∈ Z} for every x ∈ X. (Hint : for (ii)⇒(i),
consider measurable envelopes of sets F ∩ g[An], where An = {x : g(x) = fn(x)} and µF <∞.)

(g) Let A be a Boolean algebra, not {0}, and π : A→ A an automorphism with fixed-point subalgebra C.
Show that π is periodic, with period n ≥ 1, iff π↾Ac has order n in the group AutAc whenever c ∈ C \ {0}.
Show that π is aperiodic iff π↾Ac has infinite order in the group AutAc whenever c ∈ C \ {0}.

(h) Let A be a Dedekind complete Boolean algebra, G a subgroup of AutA and φ ∈ AutA. Show that
φ belongs to the full subgroup of AutA generated by G iff infπ∈G supp(πφ) = 0.

(i) Let A be a Boolean algebra. Let us say that a subgroup G of AutA is finitely full if whenever 〈ai〉i∈I
is a finite partition of unity in A, 〈πi〉i∈I is a family in G, and π ∈ AutA is such that πa = πiai whenever
i ∈ I and a ⊆ ai, then π ∈ G. Show that if π, φ ∈ AutA then φ belongs to the finitely full subgroup of
AutA generated by π iff there are an n ∈ N and a partition of unity 〈ai〉−n≤i≤n in A such that φd = πid
whenever |i| ≤ n and d ⊆ ai.

(j) Let A be a Boolean algebra and π : A → A a Boolean homomorphism which is recurrent on a ∈ A.
Show that for any non-zero b ⊆ a and any n ∈ N there is a k ≥ n such that a ∩ πkb 6= 0.

(k) Let A be a Boolean algebra, π : A → A a Boolean homomorphism, and a ∈ A. Show that the
following are equiveridical: (i) π is recurrent on every b ⊆ a; (ii) for every non-zero b ⊆ a there is an n ≥ 1
such that b ∩ πnb 6= 0; (iii) b = supn≥1 b ∩ π

nb for every b ⊆ a.

>>>(l) Let (X,Σ, µ) be a measure space, A its measure algebra, f : X → X a measure space automorphism,
and π the corresponding automorphism of A. (i) Show that if E ∈ Σ then π is doubly recurrent on a = E•

iff E \ ⋃n≥1 f
−n[E] and E \ ⋃n≥1 f

n[E] are negligible. (ii) Show that in this case there is a measurable

F ⊆ E such that E \ F is negligible and {n : n ∈ Z, fn(x) ∈ F} is unbounded above and below in Z for
every x ∈ F . (iii) For x ∈ F let k(x) = min{n : n ≥ 1, fn(x) ∈ F}. Show that x 7→ fk(x)(x) : F → F
represents the induced automorphism πa on the principal ideal Aa.

(m) For a Boolean algebra A, a Boolean homomorphism π : A→ A is nowhere aperiodic if inf{a : a ∈
A, a supports πn for some n ≥ 1} = 0. Show that if A is Dedekind σ-complete and π ∈ AutA is nowhere
aperiodic and doubly recurrent on a ∈ A, then the induced automorphism πa is nowhere aperiodic.
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14 Automorphism groups 381Xn

(n) Let A be a Dedekind σ-complete Boolean algebra, π ∈ AutA an automorphism and C the fixed-point
subalgebra of π. Suppose that π is doubly recurrent on a ∈ A and that πa is the induced automorphism on
Aa. Show that the fixed-point subalgebra of πa is {c ∩ a : c ∈ C}, so that if π is ergodic, so is πa.

(o) Let A be a Boolean algebra with Stone space Z, and π : A → A a Boolean homomorphism corre-
sponding to f : Z → Z. (i) Show that π is periodic, with period n ≥ 1, iff Z 6= ∅, fn(z) = z for every z ∈ Z
and {z : f i(z) = z} is nowhere dense whenever 1 ≤ i < n. (ii) Show that π is aperiodic iff {z : fn(z) = z,
fn(w) 6= z for every w 6= z} is nowhere dense for every n ≥ 1.

(p) Let A be a Dedekind σ-complete Boolean algebra, G a subgroup of AutA and G∗ the countably
full subgroup of AutA generated by G. Suppose that every member of G has a support. Show that every
member of G∗ has a support.

381Y Further exercises (a) (i) Give an example to show that the word ‘injective’ in the statement of
381H is essential. (ii) Give an example to show that, in 381H, we can have πcω 6= cω.

(b) Let A be a Dedekind complete Boolean algebra and G a semigroup of order-continuous Boolean
homomorphisms from A to itself. Let us say that G is full if whenever φ : A → A is an order-continuous
Boolean homomorphism, and there is a partition of unity 〈ai〉i∈I in A such that for every i ∈ I there is a
πi ∈ G such that φa = πia for every a ⊆ ai, then φ ∈ G. Show that if φ and π are order-continuous Boolean
homomorphisms from A to itself, then the following are equiveridical: (i) φ belongs to the full semigroup
generated by π; (ii) for every non-zero a ∈ A there are a non-zero b ⊆ a and an n ∈ N such that φd = πnd
for every d ⊆ b; (iii) there is a partition of unity 〈an〉n∈N in A such that φa = πna whenever n ∈ N and
a ⊆ an.

(c) Give an example of a Dedekind σ-complete Boolean algebra AutA and an automorphism π of A such
that the countably full subgroup generated by π is not full.

(d) Let A be a Dedekind complete Boolean algebra, and let G be the countably full subgroup of AutA
generated by a subset A of AutA. Show that if either A is countable or A is ccc, then G is full.

(e)(i) Let A be a Dedekind σ-complete Boolean algebra, and a, b two elements of A. Suppose that
π : Aa → Ab is a Boolean isomorphism such that there is no disjoint sequence 〈cn〉n∈N of non-zero elements
of Aa∩b such that πcn = cn+1 for every n ∈ N. Show that there is a Boolean automorphism of A extending
π. (ii) Let (A, µ̄) be a measure algebra, and a, b ∈ A two elements of A such that µ̄(a ∩ b) <∞. Show that
any measure-preserving isomorphism from Aa to Ab extends to a measure-preserving automorphism of A.
(Compare 332L.)

381 Notes and comments There are no long individual proofs in this section, and in so far as there is any
delicacy in the arguments it is as often as not because (as in 381E) I am taking facts which are easy to prove
for automorphisms of Dedekind complete algebras and separating out the parts which happen to be true in
greater generality. However the parts are numerous enough for the sum to be not entirely predictable. The
most important ideas are surely in 381M-381N.

In 381Q I give indications, including the minimum necessary for an application in the next section, of
how to express the concepts here in terms of continuous functions on Stone spaces. When we come, in §383
and onwards, to look specifically at measure algebras, many of our homomorphisms will be derived from
inverse-measure-preserving functions, and the results will be more effective if we can display them in terms
of functions on measure spaces. Some appropriate translations are in 381Xe-381Xl. But these I will avoid
in the proofs of the main theorems because not all automorphisms of measure algebras can be represented
by automorphisms of the measure spaces we start from (343Jc). Of course Lebesgue measure is different, in
ways explored in §344, and classical ergodic theory has not needed to make a clear distinction here. One of
my purposes in this volume is to set out a framework in which transformations of measure spaces take their
proper place as an inspiration for the theory rather than a foundation.
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Version of 15.8.06

382 Factorization of automorphisms

My aim in this chapter is to investigate the automorphism groups of measure algebras, but as usual
I prefer to begin with results which can be expressed in the language of general Boolean algebras. The
principal theorems in this section are 382M, giving a sufficient condition for every member of a full group
of automorphisms to be a product of involutions, and 382R, describing the normal subgroups of full groups.
The former depends on Dedekind σ-completeness and the presence of ‘separators’ (382Aa); the latter needs
a Dedekind complete algebra and a group with ‘many involutions’ (382O). Both concepts are chosen with a
view to the next section, where the results will be applied to groups of measure-preserving automorphisms.

382A Definitions Let A be a Boolean algebra and π ∈ AutA.

(a) I say that a ∈ A is a separator for π if a ∩ πa = 0 and πb = b whenever b ∈ A and b ∩ πna = 0 for
every n ∈ Z.

(b) I say that a ∈ A is a transversal for π if supn∈Z π
na = 1 and πnb = b whenever n ∈ Z and

b ⊆ a ∩ πna.

382B Lemma Let A be a Boolean algebra and π ∈ AutA. If every power of π has a separator and πn

is the identity, where n ≥ 1, then π has a transversal.

proof (a) For 0 ≤ j < n let aj ∈ A be a separator for πj . Let B be the subalgebra of A generated by
A = {πiaj : 0 ≤ i, j < n}. Because π[A] = A, π[B] = B. (The set {a : a ∈ B, πa ∈ B, π−1a ∈ B} is a
subalgebra of A including A, so must be B.) Because A is finite, so is B; let B be the set of atoms of B.
Then π↾B is a permutation of the finite set B.

(b) Let C be the set of orbits of π↾B, that is, the family of sets of the form {πkb : k ∈ Z} for b ∈ B.
If b ∈ C ∈ C, set m = #(C); then d = πmd for every d ⊆ b. PPP If m = n this is trivial. Otherwise, b is
either disjoint from, or included in, πiam whenever 0 ≤ i < n, and therefore for every i ∈ Z. But we have
am ∩ πmam = 0, so πiam ∩ πi+mam = 0 for every i, and b = πmb must be disjoint from πiam, for every i.
By the other clause in the definition of ‘separator’, πmd = d for every d ⊆ b. QQQ

(c) For each C ∈ C, choose bC ∈ C. Set c = supC∈C bC . Then c is a transversal for π. PPP If C ∈ C, we
have πnbC = bC , so kC = #(C) is a factor of n. Now

sup0≤k<n π
kc = supC∈C,0≤k<n π

kbC = supC∈C supC = sup(
⋃ C) = supB = 1.

So certainly supk∈Z π
kc = 1. Now suppose that k ∈ Z \ {0} and d ⊆ c ∩ πkc. Set B0 = {b : b ∈ B,

d ∩ b 6= 0}. If b ∈ B0, then b ∩ c 6= 0, so b = bC where C ∈ C is the orbit of π↾B containing b. Next,
d ∩ b ∩ πkc 6= 0, so π−k(d ∩ b) ∩ c 6= 0 and there is a b′ ∈ B such that π−k(d ∩ b) ∩ b′ 6= 0; in this case we must
have b′ = π−kb ∈ C. But as b′ ∩ c ⊇ π−k(d ∩ b) ∩ c is non-zero, b′ = bC = b. Thus b = πkb and k is a multiple
of #(C). Since π#(C)(d ∩ b) = d ∩ b, by (b), πk(d ∩ b) = d ∩ b.

This is true for every b ∈ B meeting d; so

πkd = πk(supb∈B0
d ∩ b) = supb∈B0

πk(d ∩ b) = supb∈B0
d ∩ b = d.

As k and d are arbitrary, c is a transversal for π. QQQ

382C Corollary If A is a Boolean algebra and π ∈ A is an involution, then π is an exchanging involution
iff it has a separator iff it has a transversal.

proof If π exchanges a and πa then of course a is a separator for π. If π has a separator, then every
power of π has a separator, so 382B tells us that π has a transversal. If a is a transversal for π then
a ∪ πa = supn∈Z π

na = 1 and πb = b whenever b ⊆ a ∩ πa, so π exchanges a \ πa and πa \ a.

382D Lemma Let A be a Dedekind σ-complete Boolean algebra and π ∈ AutA. Then the following are
equiveridical:

(i) π has a separator;
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16 Automorphism groups 382D

(ii) there is an a ∈ A such that a ∩ πa = 0 and a ∪ πa ∪ π2a supports π;

(iii) there is a sequence 〈an〉n∈N in A such that supn∈N πan \ an supports π;

(iv) there is a partition of unity (a′, a′′, b′, b′′, c, e) in A such that

πa′ = b′, πa′′ = b′′, πb′′ = c, π(b′ ∪ c) = a′ ∪ a′′, πd = d for every d ⊆ e.

proof (i)⇒(ii) Suppose that a is a separator for π. Set a+ = supn≥1 π
na, a− = supn≥1 π

−na; we are

supposing that a ∩ πa = 0 and that a ∪ a+ ∪ a− supports π. For n ∈ N set an = πna \ sup0≤i<n π
ia, so that

〈an〉n∈N is disjoint and has supremum a ∪ a+. Set b1 = supn∈N a2n \ π−1a. Since a ∩ π−1a = π−1(a ∩ πa) = 0,
a ⊆ b1 ⊆ a ∪ a+. For any n ∈ N,

π(a2n \ π−1a) = π2n+1a \ (a ∪ sup1≤i≤2n π
ia) = a2n+1,

so b1 ∩ πb1 = 0. Note that πb1 ⊆ a+, while a+ \ π−1a ⊆ b1 ∪ πb1.

Set c = a \ a+. Then

πic ∩ πjc = πj(c ∩ πi−jc) ⊆ πj(a \ πi−ja+) ⊆ πj(a \ πi−jπj−ia) = 0

whenever i < j in Z, so 〈πkc〉k∈Z is disjoint. We have

sup
n≥1

π−nc = sup
n≥1

(π−na \ sup
i>−n

πia) = sup
n≥1

(π−na \ sup
0≤i<n

π−ia) \ (a ∪ a+)

= sup
n≥1

π−na \ (a ∪ a+) = a− \ (a ∪ a+).

If k ≥ 1 and i ≥ 0 then

π−kc ∩ πia = π−k(c ∩ πi+ka) ⊆ π−k(c ∩ a+) = 0;

as i is arbitrary, π−kc ∩ b1 = 0. So if we set b = b1 ∪ supk≥1 π
−2kc,

b ∩ πb = (b1 ∩ πb1) ∪ (sup
k≥1

b1 ∩ π1−2kc) ∪ (sup
k≥1

π−2kc ∩ πb1) ∪ ( sup
j,k≥1

π−2jc ∩ π1−2kc)

⊆ 0 ∪ 0 ∪ π(sup
k≥1

π−2k−1c ∩ b1) ∪ 0 = 0.

Since

b ∪ πb ∪ π−1b ⊇ b1 ∪ πb1 ∪ π−1a ∪ sup
n≥1

π−nc

⊇ a ∪ a+ ∪ (a− \ (a ∪ a+)) = a ∪ a+ ∪ a−

supports π, π−1b witnesses that (ii) is true.

(ii)⇒(iii) If a ∈ A is such that a ∩ πa = 0 and a ∪ πa ∪ π2a supports π, then πn+1a = πn+1a \ πna for
every n, so we can set an = πn−1a for each n to obtain a sequence witnessing (iii).

(iii)⇒(i) If 〈an〉n∈N is such that supn∈N πan \ an supports π, set bn = supk∈Z π
k(πan \ an), cn =

bn \ sup0≤i<n bi for each n ∈ N. Then πbn = bn and πcn = cn for every n ∈ N, while 〈cn〉n∈N is dis-

joint. Set a = supn∈N cn ∩ an \ π−1an. Then

a ∩ πa = sup
m,n∈N

(cm ∩ am \ π−1am) ∩ (πcn ∩ πan \ an)

= sup
m,n∈N

(cm ∩ am \ π−1am) ∩ (cn ∩ πan \ an)

= sup
n∈N

cn ∩ (an \ π−1an) ∩ (πan \ an) = 0.

Next,
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382G Factorization of automorphisms 17

sup
k∈Z

πka = sup
n∈N,k∈Z

cn ∩ πkan \ πk−1an

= sup
n∈N,k∈Z

cn ∩ πk+1an \ πkan = sup
n∈N

cn ∩ bn

= sup
n∈N

cn = sup
n∈N

bn ⊇ sup
n∈N

πan \ an

supports π. So a is a separator for π.

(ii)⇒(iv) Let a be such that a ∩ πa = 0 and a ∪ πa ∪ π2a supports π. Set c = π2a \ (a ∪ πa), b′′ =
π−1c ⊆ πa, b′ = πa \ b′′, a′′ = π−1b′′ ⊆ a, a′ = a \ a′′ and e = 1 \ (a ∪ πa ∪ π2a). Then (a, πa, c, e) and
(a′, a′′, b′, b′′, c, e) are partitions of unity in A; πa′′ = b′′; πa′ = πa \ b′′ = b′; πb′′ = c; πd = d for every d ⊆ e;
so

π(b′ ∪ c) = π(1 \ (a ∪ b′′ ∪ e)) = 1 \ (πa ∪ πb′′ ∪ πe) = 1 \ (πa ∪ c ∪ e) = a = a′ ∪ a′′.

(iv)⇒(ii) If a′, a′′, b′, b′′, c, e witness (iv), then a = a′ ∪ a′′ witnesses (ii).

382E Corollary (a) If A is a Dedekind σ-complete Boolean algebra and π ∈ AutA has a separator, then
π has a support.

(b) If A is a Dedekind complete Boolean algebra then every π ∈ AutA has a separator.

proof (a) Taking a ∈ A such that a ∩ πa = 0 and e = a ∪ πa ∪ π2a supports π, we see that e must actually
be the support of π (381Ei, 381Ea).

(b) If A is Dedekind complete and π ∈ AutA, let P be the set {d : d ∈ A, d ∩ πd = 0}. Then P has a
maximal element. PPP Of course P 6= ∅, as 0 ∈ P . If Q ⊆ P is non-empty and upwards-directed, set a = supQ,
which is defined because A is Dedekind complete; then πa = supπ[Q] (since π, being an automorphism, is
surely order-continuous). If d1, d2 ∈ Q, there is a d ∈ Q such that d1 ∪ d2 ⊆ d, so d1 ∩ πd2 ⊆ d ∩ πd = 0. By
313Bc, a ∩ πa = 0. This means that a ∈ P and is an upper bound for Q in P . As Q is arbitrary, Zorn’s
Lemma tells us that P has a maximal element. QQQ

Let b ∈ P be maximal. Then b ∩ πb = 0. Set e = b ∪ πa ∪ π−1b. ??? If e does not support π, let d ⊆ 1 \ e
be such that d ∩ πd = 0 (381Ei). Then d ∩ πb ⊆ d ∩ e = 0, while also b ∩ πd ⊆ π(π−1b ∩ d) ⊆ π(e ∩ d) = 0; so
(b ∪ d) ∩ π(b ∪ d) = 0, and b ⊂ b ∪ d ∈ P , which is impossible. XXX So if we set a = π−1b we have a witness of
382D(ii), and π has a separator.

Remark 382Eb and 382D(i)⇔(ii) together amount to ‘Froĺık’s theorem’ (Froĺık 68).

382F Corollary Let A be a Dedekind complete Boolean algebra.

(a) Every involution in AutA is an exchanging involution.

(b) If π ∈ AutA is periodic with period n ≥ 2, there is an a ∈ A such that (a, πa, π2a, . . . , πn−1a)
is a partition of unity in A; that is (in the language of 381R) π is of the form (←−−−−−−−−−−−a1 π a2 π . . . π an) where
(a1, . . . , an) is a partition of unity in A.

proof (a) By 382Eb, every involution has a separator; now use 382C.

(b) Again because every automorphism has a separator, 382B tells us that π has a transversal a. In this
case, a ∩ πka must be disjoint from the support of πk for every k ∈ Z; since suppπk = 1 for 0 < k < n,
a ∩ πka = 0 for 0 < k < n; of course it follows that πia ∩ πja = πi(a ∩ πj−ia) = 0 if 0 ≤ i < j < n. So
a, πa, . . . , πn−1a are disjoint; since sup0≤i<n π

ia = supi∈Z π
ia = 1, they constitute a partition of unity.

382G Lemma Let A be a Dedekind σ-complete Boolean algebra and π ∈ AutA.

(a) Suppose that 〈an〉n∈N is a family in A such that πan = an and π↾Aan has a transversal for every n.
Set a = supn∈N an; then πa = a and π↾Aa has a transversal.

(b) If a is a transversal for π it is a transversal for π−1.
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18 Automorphism groups 382G

(c) Suppose that a ∈ A. Set

a∗ = supn∈Z(πna \ supi>n π
ia), a∗ = supn∈Z(πna \ supi<n π

ia).

Then πa∗ = a∗, πa∗ = a∗ and π↾Aa∗ , π↾Aa∗ both have transversals.

proof (a) Of course πa = supn∈N πan = a, so we can speak of π↾Aa. For each n ∈ N, let bn be a transversal
for π↾Aan . Set b = supn∈N(bn \ supi<n ai). Then b is a transversal for π↾Aa. PPP Of course b ∈ Aa. Now

sup
k∈Z

πkb = sup
k∈Z

sup
n∈N

(πkbn \ sup
i<n

πkai) = sup
n∈N

sup
k∈Z

(πkbn \ sup
i<n

ai)

= sup
n∈N

(
(sup
k∈Z

πkbn) \ sup
i<n

ai
)

= sup
n∈N

(an \ sup
i<n

ai) = sup
n∈N

an = a.

Next, suppose that k ∈ Z and

d ⊆ b ∩ πkb = sup
m,n∈N

(bm \ sup
i<m

ai) ∩ (πkbn \ sup
j<n

πkaj)

= sup
m,n∈N

(bm ∩ am \ sup
i<m

ai) ∩ (πkbn ∩ an \ sup
j<n

aj) = sup
n∈N

(bn ∩ πkbn \ sup
i<n

ai).

Setting dn = d ∩ bn ∩ πkbn for each n, we have

d = supn∈N dn = supn∈N π
kdn = πkd.

As k and d are arbitrary, b is a transversal for π↾Aa. QQQ

(b) We have only to note that the definition in 382Ab is symmetric between π and π−1.

(c)

πa∗ = sup
n∈Z

(πn+1a \ sup
i>n

πi+1a)

= sup
n∈Z

(πn+1a \ sup
i>n+1

πia) = sup
n∈Z

(πna \ sup
i>n

πia) = a∗.

Set bn = πna \ supi>n π
ia for each n, b = supn∈Z π

−nbn ⊆ a. Writing b∗ for supn∈Z π
nb, we have b∗ ⊇

supn∈Z bn = a∗. Note that π−nbn ∩ πia = 0 for every i ≥ 1. So if m < n in Z,

πmb ∩ πnb ⊆ πm(supi∈Z π
−ibi ∩ π

n−ma) = 0.

Thus 〈πib〉i∈Z is disjoint, and b is a transversal for π↾Aa∗ .
Now

a∗ = supn∈Z(πna \ supi<n π
ia) = supn∈Z(π−na \ supi>n π

−ia).

So π−1a∗ = a∗ and π−1↾Aa∗ has a transversal. It follows at once that πa∗ = a∗ and (using (b)) that π↾Aa∗
has a transversal.

382H Lemma Let A be a Dedekind σ-complete Boolean algebra and π ∈ AutA. If π has a transversal,
it is expressible as the product of at most two exchanging involutions both belonging to the countably full
subgroup of A generated by π.

proof Let a be a transversal for π. For n ≥ 1, set an = a ∩ πna \ sup1≤i<n π
ia; set a0 = a \ supi≥1 π

ia.

Then 〈an〉n∈N is disjoint and supn∈N an = a. We have πnb = b whenever b ⊆ an, while 〈πia0〉i≥1 is disjoint,
so 〈πia0〉i∈Z is disjoint. For any n ≥ 1, an is disjoint from πian for 0 < i < n, so 〈πian〉i<n is disjoint. If
0 ≤ i < m and 0 ≤ j < n and i ≤ j and πiam ∩ πjan is non-zero, then 1 ≤ n− j + i ≤ n and

an ∩ πn−j+ia = πn−j+ia ∩ πnan = πn−j(πia ∩ πjan)

⊇ πn−j(πiam ∩ πjan) 6= 0,

so i = j; in this case am ∩ an 6= 0 so m = n. If 0 ≤ i < n and j ∈ Z and b = πian ∩ πja0, then πnb = b and
πnb is disjoint from b, so b = 0. This shows that all the πian for 0 ≤ i < n, and the πja0 for j ∈ Z, are
disjoint. Also, because πnan = an for n ≥ 1,
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sup0≤i<n π
ian ∪ supj∈Z π

ja0 = supn∈N,j∈Z π
jan ∪ supj∈Z π

ja0 = supj∈Z π
ja = 1.

For any n ≥ 1,

〈π−2jπjan〉0≤j<n = 〈π−jan〉0≤j<n = 〈πn−jan〉0≤j<n,

〈π1−2jπjan〉0≤j<n = 〈π1−jan〉0≤j<n = 〈πn+1−jan〉0≤j<n
are disjoint and cover sup0≤j<n π

jan; while of course

〈π−2jπja0〉j∈Z = 〈π−ja0〉j∈Z,

〈π1−2jπja0〉j∈Z = 〈π1−ja0〉j∈Z

are disjoint and cover supj∈Z π
ja0. So we can define φ1, φ2 ∈ AutA by setting

φ1d = π−2jd if j ∈ Z and d ⊆ πja0

or if 0 ≤ j < n and d ⊆ πjan

φ2d = π1−2jd if j ∈ Z and d ⊆ πja0

or if 0 ≤ j < n and d ⊆ πjan.

Note that if n ≥ 1 and k ∈ Z is arbitrary, then we have πkan = πjan where 0 ≤ j < n and j ≡ k mod n, so
if d ⊆ πkan then

φ1d = π−2jd = π−2kd, φ2d = π1−2jd = π1−2kd

because πnd = d. So if d ⊆ πjan for any n ∈ N and j ∈ Z, we have φ1d = π−2jd ⊆ π−jan and

φ2φ1d = π1−2(−j)π−2jd = πd.

Because supn∈N,j∈Z π
jan = 1, φ2φ1 = π. Of course both φ1 and φ2 belong to the countably full subgroup

generated by π. Next, φ1 exchanges

sup
j≥1

πja0 ∪ sup
n≥2

0<j≤⌊(n−1)/2⌋

πjan,

sup
j≤−1

πja0 ∪ sup
n≥2

−⌊(n−1)/2⌋≤j<0

πjan,

so is either the identity or an exchanging involution. In the same way, φ2 exchanges

sup
j≥1

πja0 ∪ sup
n≥2

1≤j≤⌊n/2⌋

πjan,

sup
j≤0

πja0 ∪ sup
n≥2

−⌊n/2⌋<j≤0

πjan,

so it too is either the identity or an exchanging involution. Thus we have a factorization of the desired type.

382I Lemma Let A be a Dedekind σ-complete Boolean algebra, and G a countably full subgroup of
AutA such that every member of G has a separator.

(a) Every member of G has a support.
(b) Suppose π ∈ G and n ≥ 1 are such that πn is the identity. Then π has a transversal.
(c) Let π ∈ G, and set e∗ = infn≥1 supp(πn). Then π↾A1\e∗ has a transversal.
(d) If e ∈ A is such that πe = e for every π ∈ G, then {π↾Ae : π ∈ G} is a countably full subgroup of

AutAe, and π↾Ae has a separator for every π ∈ G.

proof (a) 382Ea.

(b) Induce on n. If n = 1 then 1 is a transversal for π. For the inductive step to n > 1, let a ∈ A be
such that a ∩ πa = 0 and πb = b whenever b ∩ πia = 0 for every i ∈ Z. Let B be the (finite) subalgebra of
A generated by {πia : 0 ≤ i < n}. Then πna = a ∈ B, so {b : πb ∈ B} is a subalgebra of A containing πia
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whenever i < n, and includes B; thus πb ∈ B for every b ∈ B. As π is injective, π↾B ∈ AutB. Let E be
the set of atoms of B; then π↾E is a permutation of E.

Let C ⊆ E be an orbit of π. Then π(supC) = supC, and π↾AsupC has a transversal. PPP Take e ∈ C,
k = #(C). Then πie ∈ C \ {e}, so e ∩ πie = 0, whenever 1 ≤ i < k. As πn is the identity, k is a factor
of n. If k = 1, then e itself is a transversal for π↾AsupC = π↾Ae. If k > 1, define φ ∈ AutA by setting

φd = πk(e ∩ d) ∪ (d \ e) for every d ∈ A. Then φ ∈ G, because G is countably full, and φn/k is the identity.
By the inductive hypothesis, φ has a transversal c ∈ A. There is some m ∈ Z such that e′ = e ∩ φmc 6= 0.
Now

supi∈Z π
kie′ = supi∈Z φ

ie′ = supi∈Z(e ∩ φm+ic) = e ∩ supi∈Z φ
ic = e,

so

supj∈Z π
je′ = sup0≤j<k π

j(supi∈Z π
kie′) = sup0≤j<k π

je = supC.

Also, if 0 ≤ j < k and i ∈ Z and

0 6= d ⊆ e′ ∩ πki+je′ ⊆ e ∩ πki+je = e ∩ πje,

we must have j = 0 and d ⊆ e′ ∩ φie′, in which case πki+jd = φid = d. So e′ is a transversal for π↾AsupC . QQQ
Let C be the set of orbits of π↾E, and for C ∈ C let cC be a transversal for π↾AsupC . Then supC∈C cC is

a transversal for π (382Ga). Thus the induction proceeds.

(c) Set e0 = 1 \ suppπ, en = inf1≤i≤n supp(πi) \ supp(πn+1) for n ≥ 1. Then 〈en〉n∈N is a partition of
unity in A1\e∗ , and πn+1a = a whenever a ⊆ en. Also πen = en for each n, by 381Eg. By (b), π↾Aen has a
transversal for every n; so π↾A1\e∗ has a transversal (382Ga again).

(d)(i) Write Ge for {π↾Ae : π ∈ G}. If 〈ai〉i∈I is a countable partition of unity in Ae, 〈πi〉i∈I a family in
G, and φ ∈ AutAe is such that φd = πid whenever i ∈ I and d ⊆ ai, set J = I ∪{∞} for some object∞ /∈ I,

a∞ = 1 \ e and π∞ the identity in AutA; then we have a φ̃ ∈ AutA defined by setting φ̃d = φ(d ∩ e) ∪ (d \ e)

for every d ∈ A, and 〈ai〉i∈J , 〈πi〉i∈J witness that φ̃ ∈ G, so φ = φ̃↾Ae belongs to Ge. As 〈ai〉i∈I and 〈πi〉i∈I
are arbitrary, Ge is countably full.

(ii) If π ∈ G, let a be a separator for π, and consider a′ = a ∩ e. Then a′ ∩ πa′ = 0 and supk∈Z π
ka′ =

supk∈Z π
ka ∩ e = e, so a′ is a separator for π↾Ae.

382J Lemma Let A be a Dedekind σ-complete Boolean algebra, G a countably full subgroup of AutA
such that every member of G has a separator, and π ∈ G an aperiodic automorphism. Then there is a
non-increasing sequence 〈en〉n∈N in A such that e0 = 1 and

(i) π is doubly recurrent on en, and in fact supi≥1 π
ien = supi≥1 π

−ien = 1,

(ii) en+1, πenen+1 and π2
enen+1 are disjoint

for every n ∈ N, where πen ∈ AutAen is the automorphism induced by π (381M).

proof Construct 〈an〉n∈N inductively, as follows. Start with a0 = 1. Given that supi≥1 π
ian = supi≥1 π

−ian
= 1, then of course π is doubly recurrent on an (381L). Now there is an an+1 ⊆ an such that an+1 ∩ πanan+1 =
0 and an+1 ∪ πanan+1 ∪ π2

anan+1 = an. PPP We have a π̃an ∈ AutA defined by setting π̃and = πand for d ⊆ an,
π̃and = d for d ⊆ 1 \ an. Because π is aperiodic, so is πan (381Ng); in particular, the support of πan is an and
this must also be the support of π̃an . Because G is countably full, π̃an ∈ G (381Ni), so π̃an has a separator.
By 382D, there is an an+1 ∈ A such that an+1 ∩ π̃anan+1 = 0 and an+1 ∪ π̃anan+1 ∪ π̃2

anan+1 supports π̃an ,
that is,

an = an+1 ∪ π̃anan+1 ∪ π̃2
anan+1 = an+1 ∪ πanan+1 ∪ π2

anan+1. QQQ

Now

sup
i≥1

πian+1 = sup
i≥1

πi(sup
j≥0

πjan+1) ⊇ sup
i≥1

πi(sup
j≥0

πjanan+1)

(381Nb)

= sup
i≥1

πian = 1.
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Similarly, because we can identify π−1
an with (π−1)an (381Na), and

an+1 ∪ π−1
an an+1 ∪ π−2

an an+1 = π−2
an (an+1 ∪ π̃anan+1 ∪ π̃2

anan+1) = an,

we have

sup
i≥1

π−iian+1 = sup
i≥1

π−i(sup
j≥0

π−jan+1)

⊇ sup
i≥1

π−i(sup
j≥0

π−j
an an+1) = sup

i≥1
π−ian = 1,

and the induction continues.
At the end of the induction, set en = a2n for every n. Then, for each n, we have

0 = a2n+1 ∩ πena2n+1 = en+1 ∩ πa2n+1
en+1.

Since we can identify πa2n+1
with (πen)a2n+1

(381Ne), we can apply 381Nh to πen to see that en+1, πenen+1

and π2
enen+1 are all disjoint.

382K Lemma Let A be a Dedekind σ-complete Boolean algebra. Suppose that we have an aperiodic
π ∈ AutA and a non-increasing sequence 〈en〉n∈N in A such that e0 = 1 and

supi≥1 π
ien = supi≥1 π

−ien = 1, en+1, πen(en+1) and π2
en(en+1) are disjoint

for every n ∈ N, writing πen ∈ AutAen for the induced automorphism. Let G be the countably full subgroup
of AutA generated by π. Then there is a φ ∈ G such that φ is either the identity or an exchanging involution
and infn≥1 supp(πφ)n = 0.

proof (a) We need to check that every member of G has a support. PPP If φ ∈ G, there is a partition 〈an〉n∈Z

of unity such that φa = πna whenever n ∈ Z and a ⊆ an (381Ib). If a ⊆ a0, then φa = a, so 1 \ a0 supports
φ. On the other hand, if a \ a0 6= 0, there is an n 6= 0 such that a ∩ an 6= 0. As suppπn = 1, there is a
non-zero d ⊆ a ∩ an such that 0 = d ∩ πnd = d ∩ φd. Thus 1 \ a0 = sup{d : d ∩ φd = 0} is the support of φ
(381Ei). QQQ

(b) For each n ∈ N, write πn for πen and π̃n ∈ G for the corresponding automorphism of A, as in 381Ni.
Set

u′n = π−1
n en+1, u′′n = πnen+1.

Then all the u′n, u′′n are disjoint. PPP

u′n ∩ u′′n = π−1
n (en+1 ∩ π2

nen+1) = 0

for each n. And if m < n, then u′n ∪ u′′n ⊆ en ⊆ em+1 is disjoint from

u′m ∪ u′′m ⊆ π−1
m (em+1) ∪ πm(em+1). QQQ

(c) By 381C, there is an automorphism φ1 ∈ AutA defined by setting

φ1d = πnπ
−1
n+1πnd = π̃nπ̃

−1
n+1π̃nd if n ∈ N, d ⊆ u′n,

= π−1
n πn+1π

−1
n d = π̃−1

n π̃n+1π̃
−1
n d if n ∈ N, d ⊆ u′′n,

= d if d ∩ sup
n∈N

(u′n ∪ u′′n) = 0;

φ1 ∈ G and φ21 is the identity and φ1 exchanges supn∈N u
′
n with supn∈N u

′′
n, so is either the identity or an

exchanging involution. Set c0 = infk≥1 supp(πφ1)k and c1 = supi∈Z π
ic0, so that πc1 = c1 and φ1c1 = c1

(381J).

(d) For l ≥ 1, set

v′l = π−lc0 \ sup−l<i≤l π
ic0, v′′l = πlc0 \ sup−l≤i<l π

ic0.

Then v′k, v′′k , v′l and v′′l are disjoint whenever 1 ≤ k < l. For j, l ≥ 1, set
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d′lj = v′l ∩ π
−jv′′l \ sup1≤i<j π

−iv′′l ,

d′′lj = v′′l ∩ πjv′l \ sup1≤i<j π
iv′l,

dlj = d′lj ∩ π
−jd′′lj ;

now define φ2 ∈ AutA by setting

φ2d = πjd if d ⊆ dlj for some j, l ≥ 1,

= π−jd if d ⊆ πjdlj for some j, l ≥ 1,

= d if d ∩ sup
j,l≥1

(dlj ∪ π
jdlj) = 0,

so that φ2 ∈ G, φ22 is the identity and

suppφ2 = supl,j≥1 dlj ∪ π
jdlj ⊆ supl≥1 v

′
l ∪ v

′′
l ⊆ c1.

As φ2 exchanges supj,l≥1 dlj ⊆ supj,l≥1 d
′
lj with supj,l≥1 π

jdlj ⊆ supj,l≥1 d
′′
lj , it too is either trivial or an

exchanging involution.

(e) Define φ ∈ AutA by setting

φd = φ1d if d ⊆ 1 \ c1,

= φ2d if d ⊆ c1.

It is easy to check that φ is either the identity or an exchanging involution. Set c2 = infn≥1 supp(πφ)n.

(f) I wish to show that c2 = 0. The rest of the argument does not strictly speaking require the Stone
representation (382Yb), but I think that most readers will find it easier to follow when expressed in terms
of the Stone space Z of A. Let f , g1, g2 and g be the autohomeomorphisms of Z corresponding to π, φ1, φ2
and φ; write â ⊆ Z for the open-and-closed set corresponding to a ∈ A. For each n ∈ N, let fn : ên → ên be
the autohomeomorphism corresponding to πen . Since

suppπk = 1 for every k ≥ 1,
supi≥k π

ien = supi≥k π
−ien = 1 for every n ∈ N, k ∈ Z (381L),

c0 = infk≥1 supp(πφ1)k,
c1 = supi∈Z π

ic0,
suppφ2 \ supl≥1(v′l ∪ v

′′
l ) = 0,

c2 = infk≥1 supp(πφ)k,

the sets

{z : fk(z) = z}, for k ≥ 1,
Z \⋃i≥k f

−i[ên], for n ∈ N and k ∈ Z,

Z \⋃i≤k f
−i[ên], for n ∈ N and k ∈ Z,

ĉ0△
⋂
k≥1{z : (g1f)k(z) 6= z},

ĉ1△
⋃
i∈Z

f−i[ĉ0],

̂suppφ2 \
⋃
l≥1(v̂′l ∪ v̂′′l ),

ĉ2△{z : (gf)k(x) 6= x for every k ≥ 1},
as well as the sets

{z : g1(z) /∈ {f i(z) : i ∈ Z}},
{z : g2(z) /∈ {f i(z) : i ∈ Z}}

are all meager (using 381Qb), and their union Y is meager. Set Y ′ =
⋃
i∈Z

f−i[Y ]; then Y ′ also is meager,

and X = Z \ Y ′ is comeager, therefore dense, by Baire’s theorem (3A3G). Of course f i(x) ∈ X whenever
x ∈ X and i ∈ Z.

(g) Fix x ∈ X ∩ ĉ1 for the time being. Because fk(x) 6= x for any k ≥ 1, the map i 7→ f i(x) : Z → X
is injective. Because gk(f i(z)) ∈ {f i+j(z) : j ∈ Z} for every i ∈ Z and both k ∈ {1, 2}, we can define gx1 ,
gx2 : Z → Z by saying that gxk(i) = j if gk(f i(x)) = f j(x). Similarly, f is represented on {f i(x) : i ∈ Z} by
s, where s(i) = i+ 1 for every i ∈ Z.
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(i) For n ∈ N, set

En = {i : i ∈ Z, f i(x) ∈ ên},

U ′
n = {i : f i(x) ∈ û′n}, U ′′

n = {i : f i(x) ∈ û′′n}.
Because x ∈ ⋃

i≥k f
−i[ên] ∩ ⋃

i≤k f
−i[ên] for every k, En is unbounded above and below. If i ∈ En, then

fn(f i(x)) = fk+i(x) where k ≥ 1 is the first such that fk+i(x) ∈ ên (381Qe), that is, such that k + i ∈ En.
Turning this round, f−1

n (f i(x)) = f j(x) where j is the greatest member of En less than i. In particular,
i ∈ U ′

n iff i is the next point of En above a point of En+1, and i ∈ U ′′
n iff i is the next point of En below

a point of En+1. If i ∈ U ′
n, then f−1

n f i(x) = f j(x) where j ∈ En+1 is the next point of En below i, and
fn+1f

−1
n f i(x) = fk(x) where k is the next point of En+1 above j. Since g1 must agree with f−1

n fn+1f
−1
n on

û′n (381Qa), g1f
i(x) = f−1

n fn+1f
−1
n fi(x) = f l(x) where l is the next point of En below fk(x). This means

that gx1 exchanges pairs i < l exactly when i, l ∈ En are the first and last points in En ∩ ]j, k[ where j, k
are successive points of En+1. In this case, there is no point of En+1 in the interval [i, l]. Accordingly, if
i′ < l′ and gx1 exchanges i′ and l′ and either i′ or l′ is in ]i, l[, we must have i′, l′ ∈ Em for some m < n; and
as the interval [i′, l′] cannot meet Em+1 ⊇ En, it is included in ]i, l[. Thus gx1 fixes ]i, l[ in the sense that
if i < i′ < l then gx1 (i′) = l′ for some l′ ∈ ]i, l[. It follows that gx1 s fixes [i, l[. In this case, of course, every
point of [i, l[ must be fixed by some power of gx1 s.

The following diagram attempts to show how gx1 links pairs of integers. The points of En, as n increases,
are shown as progressively multiplied circles.

Pairs of points exchanged by gx1

Note that because en+1, φenen+1 and π2
enen+1 are always disjoint, there are always at least two points of

En between any two successive points of En+1.

(ii) Set C0 = {i : f i(x) ∈ ĉ0}. Then

C0 = Z \⋃{[i, l[ : i < l = gx1 (i)}.
PPP Because X does not meet ĉ0 △

⋂
k≥1{z : (g1f)k(z) 6= z},

C0 = {i : (g1f)kf i(x) 6= f i(x) for every k ≥ 1} = {i : (gx1 s)
k(i) 6= i for every k ≥ 1}.

If i < l = gx1 (i) then (i) tells us that every point of [i, l[ is fixed by some power of gx1 s and cannot belong
to C0. Conversely, if j ∈ Z does not belong to any such interval [i, l[, then gx1 (i) > j for every i > j, so
gx1 s(i) > j for every i ≥ j and j /∈ C0. QQQ

Because X does not meet ĉ1 \
⋃
i∈Z

f−i[ĉ0], C0 is not empty. Now C0 has no greatest member. PPP Let
j0 ∈ C0. Then j0 /∈ [i, l[ for any pair i, l exchanged by gx1 . If j0 + 1 ∈ C0 we can stop. Otherwise, there are
i0, l0 exchanged by gx1 such that i0 ≤ j0 + 1 < l0. ??? If l0 /∈ C0 there are i1, l1 exchanged by gx1 such that
i1 ≤ l0 < l1. But in this case i1 ≤ j0 < l1. XXX Thus j0 < l0 ∈ C0 and j0 cannot be the greatest member of
C0. QQQ

Similarly, C0 has no least member. PPP If j0 ∈ C0 but j0 − 1 /∈ C0, take i0, l0 exchanged by gx1 such
that i0 ≤ j0 − 1 < l0. ??? If i0 − 1 /∈ C0, take i1, l1 exchanged by gx1 such that i1 ≤ i0 − 1 < l1; then
i1 ≤ j0 = l0 < l1. XXX So i0 − 1 is a member of C0 less than j0. QQQ

Thus C0 is unbounded above and below.

(iii) For l ≥ 1,

v̂′l = f l[ĉ0] \⋃−l≤j<l f
j [ĉ0], v̂′′l = f−l[ĉ0] \⋃−l<j≤l f

j [ĉ0];

so setting

V ′
l = {i : f i(x) ∈ v̂′l}, V ′′

l = {i : f i(x) ∈ v̂′′l },
we see that
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V ′
l = {i : i− l ∈ C0, i+ j /∈ C0 if −l < j ≤ l} = {i+ l : i ∈ C0, C0 ∩ ]i, i+ 2l] = ∅},

V ′′
l = {i : i+ l ∈ C0, i+ j /∈ C0 if −l ≤ j < l} = {i− l : i ∈ C0, C0 ∩ [i− 2l, i[ = ∅};

that is to say, if j, k are successive members of C0, and j + l < k − l, then j + l ∈ V ′
l and k − l ∈ V ′′

l .

Looking at this from the other direction, if j and k are successive members of C0, and l0 = ⌊k−j−1

2
⌋, then

if 1 ≤ l ≤ l0 we have exactly one i′ ∈ V ′
l ∩ [j, k] and exactly one i′′ ∈ V ′′

l ∩ [j, k] and i′ < i′′, while if l > l0
then neither V ′

l nor V ′′
l meets [j, k].

(iv) Now the point is that every V ′
l is unbounded above. PPP Because there are at least two points of

En between any two points of En+1, successive points of En always differ by at least 3n, for every n. Take
n such that 3n ≥ 2l + 1. For any i0 ∈ Z, there are an i1 ∈ C0 such that i1 ≥ i0, and a j ∈ En+1 such that
j ≥ i1; let k be the next point of En+1 above j. Then we have points j′, k′ of En ∩ ]j, k[ such that C0 is
disjoint from [j′, k′[. So if we take i = max(C0 ∩ ]−∞, j′[) and i′ = min(C0 ∩ [j′,∞[), i′− i ≥ k′−j′ ≥ 2l+1
and i + l ∈ V ′

l , while i + l ≥ i ≥ i1 ≥ i0. As i0 is arbitrary, V ′
l is unbounded above. QQQ Similarly, turning

the argument upside down, V ′′
l is unbounded below.

(v) Next consider

D′
lj = {i : f i(x) ∈ d̂′lj} = V ′

l ∩ (V ′′
l + j) \

⋃

1≤i<j

V ′′
l + i

= {i : i ∈ V ′
l , i− j = max(V ′′

l ∩ ]−∞, i[},
D′′
lj = {i : f i(x) ∈ d̂′lj} = V ′′

l ∩ (V ′
l + j) \

⋃

1≤i<j

V ′
l + i

= {i : i ∈ V ′′
l , i+ j = min(V ′

l ∩ ]i,∞[},
Dlj = {i : f i(x) ∈ d̂lj} = D′

lj ∩ (D′′
lj + j).

Since φ2 agrees with πj on Adlj , g2 agrees with f j on π̂jdlj , and gx2 (i) = i + j whenever f i(x) ∈ f−j [d̂lj ],
that is, whenever i+ j ∈ Dlj . This means that gx2 exchanges pairs i′′ < i′ exactly when, for some l, i′′ is the
greatest member of V ′′

l less than i′ and i′ is the least member of V ′
l greater than i′′. Since X does not meet

̂suppφ2 \
⋃
l≥1(v̂′l ∪ v̂′′l ), gx2 does not move any other i.

But, starting from any l ≥ 1 and i′ ∈ V ′
l , let i′′ be the greatest element of V ′′

l less than i′. Then i′− l and
i′′ + l belong to C0, and if k, k′ are any successive members of C0 such that i′′ < k < k′ < i′ then there is
no member of V ′′

l in [k, k′] and therefore no member of V ′
l in [k, k′]. So i′ is the least member of V ′

l greater
than i′′, and gx2 (i′) = i′′. Similarly, every member of every V ′′

l is moved by gx2 .
At the same time we see that if i′′ ∈ V ′′

l and i′ ∈ V ′
l are exchanged by gx2 , and m > l, then there can be

no interval of C0 of length 2m + 1 or greater between i′′ and i′, so there is no point of V ′′
m ∪ V ′

m in [i′′, i′].
For the same reason, if m < l then no pair of points in V ′′

m ∪ V ′
m exchanged by gx2 can bracket either i′′ or

i′. So gx2 leaves the interval [i′′, i′] invariant. Accordingly g2s leaves [i′′, i′[ invariant.
The next diagram attempts to illustrate gx2 . Members of C0 are shown as multiple circles1.

Pairs of points exchanged by gx2

At this point observe that 0 belongs to some gx2 s-invariant interval. PPP Let k, k′ be successive members
of C0 such that k ≤ 0 < k′. Take l such that k′ − k ≤ 2l. Let i′ be the least member of V ′

l greater than 0,
and i′′ the greatest member of V ′′

l less than 0; since neither V ′
l nor V ′′

l meets [k, k′], i′′ and i′ are exchanged
by gx2 , while 0 ∈ [i′′, i′[. QQQ This means that there is a k ≥ 1 such that (gx2 s)

k(0) = 0, that is, (g2f)k(x) = x.

1I have made no attempt to arrange these in a configuration compatible with the process by which C0 was constructed; the
diagram aims only to show how the links would be formed from a particular set.
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(vi) We know that g agrees with g2 on φ̂2c1 = ĉ1. Since x ∈ ĉ1 and f−1[ĉ1] = ĉ1, (gf)k(x) = x.
Because X does not meet ĉ2△{z : (gf)k(x) 6= x for every k ≥ 1}, x /∈ ĉ2.

This is true for every x ∈ X ∩ ĉ1. Since X is dense in Z, ĉ1 ∩ ĉ2 is empty, that is, c1 ∩ c2 = 0.

(h) Since πφ agrees with πφ1 on A1\c1 , and c1 = πφc1, supp(πφ)k \ c1 = supp(πφ1)k \ c1 for every k, and

c2 \ c1 = infk≥1 supp(πφ1)k \ c1 ⊆ infk≥1 supp(πφ1)k \ c0 = 0.

Putting this together with (g), we see that c2 = 0, as required.

382L Lemma Let A be a Dedekind σ-complete Boolean algebra, and G a countably full subgroup of
AutA such that every member of G has a separator. If π ∈ G, there is a φ ∈ G such that φ is either the
identity or an exchanging involution and πφ has a transversal.

proof (a) We may suppose that G is the countably full subgroup of AutA generated by π. πn has a support
for every n ≥ 1 (382Ia); set e = infn≥1 suppπn, so that πe = e and π↾A1\e has a transversal (382Ic), while
π↾Ae is aperiodic (381H). By 381J, ψe = e for every ψ ∈ G; by 382Id, Ge = {ψ↾Ae : ψ ∈ G} is a countably
full subgroup of AutAe and every member of Ge has a separator.

(b) Applying 382J to π↾Ae, we can find 〈en〉n≥1 such that e0 = e, 〈en〉n∈N is non-increasing, supi≥1 π
ien =

supi≥1 π
−ien = e for every n, and en+1, πenen+1 and π2

enen+1 are disjoint for every n. (By 381Ne or
otherwise, we can compute πen either in AutA or in AutAe. Note that πe = π↾Ae, by 381Nf or otherwise.)
Now 382K tells us that there is a φ ∈ Ge such that φ is either the identity or an exchanging involution, and
infn≥1 supp(πeφ)n = 0.

(c) Take φ̃ ∈ AutA to agree with φ on Ae and with the identity on A1\e, so that φ̃ is either the identity

or an exchanging involution. Now πφ̃↾A1\e = π↾A1\e and πφ̃↾Ae = πφ↾Ae both have transversals (using

382I again). So πφ̃ has a transversal (382Ga).

382M Theorem Let A be a Dedekind σ-complete Boolean algebra, and G a countably full subgroup of
AutA such that every member of G has a separator. If π ∈ G, it can be expressed as the product of at most
three exchanging involutions belonging to G.

proof By 382L, there is a φ ∈ G, either the identity or an exchanging involution, such that πφ has a
transversal. By 382H, πφ is the product of at most two exchanging involutions in G, so π = πφφ−1 is the
product of at most three exchanging involutions.

382N Corollary If A is a Dedekind complete Boolean algebra and G is a full subgroup of AutA, every
π ∈ G is expressible as the product of at most three involutions all belonging to G and all supported by
suppπ.

proof We may suppose that G is the full subgroup of AutA generated by π. By 382Eb, every member of
G has a separator. By 382M, π is the product of at most three involutions all belonging to G; by 381Jb,
they are all supported by suppπ.

382O Definition Let A be a Boolean algebra, and G a subgroup of the automorphism group AutA. I
will say that G has many involutions if for every non-zero a ∈ A there is an involution π ∈ G which is
supported by a.

382P Lemma Let A be an atomless homogeneous Boolean algebra. Then AutA has many involutions,
and in fact every non-zero element of A is the support of an exchanging involution.

proof If a ∈ A \ {0}, then there is a b such that 0 6= b ⊂ a. Let ψ : Ab → Aa\b be an isomorphism; define
π ∈ AutA to agree with ψ on Ab, with ψ−1 on Aa\b, and with the identity on A1\a. Then π is an exchanging
involution with support a.

382Q Lemma Let A be a Dedekind complete Boolean algebra, and G a full subgroup of AutA with
many involutions. Then every non-zero element of A is the support of an exchanging involution belonging
to G.
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proof By the definition 382O,

C = {suppπ : π ∈ G is an involution}
is order-dense in A. So if a ∈ A \ {0} there is a disjoint B ⊆ C such that supB = a (313K). For each b ∈ B
let πb ∈ G be an involution with support b. Define π ∈ G by setting πd = πbd for d ⊆ b ∈ B, πd = d if
d ∩ a = 0; then π ∈ G is an involution with support a. By 382Fa it is an exchanging involution.

382R Theorem Let A be a Dedekind complete Boolean algebra, and G a full subgroup of AutA with
many involutions. Then a subset H of G is a normal subgroup of G iff it is of the form

{π : π ∈ G, suppπ ∈ I}
for some ideal I ⊳ A which is G-invariant, that is, such that πa ∈ I for every a ∈ I and π ∈ G.

proof (a) I deal with the easy implication first. Let I ⊳ A be a G-invariant ideal and set H = {π : π ∈ G,
suppπ ∈ I}. Because the support of the identity automorphism ι is 0 ∈ I, ι ∈ H. If φ, ψ ∈ H and π ∈ G,
then

supp(φψ) ⊆ suppφ ∪ suppψ ∈ I,

supp(ψ−1) = suppψ ∈ I,

supp(πψπ−1) = π(suppψ) ∈ I
(381E), and φψ, ψ−1, πψπ−1 all belong to H; so H ⊳ G.

(b) For the rest of the proof, therefore, I suppose that H is a normal subgroup of G and seek to express
it in the given form. We can in fact describe the ideal I immediately, as follows. Set

J = {a : a ∈ A, π ∈ H whenever π ∈ G is an involution and suppπ ⊆ a};
then 0 ∈ J and a ∈ J whenever a ⊆ b ∈ J . Also πa ∈ J whenever a ∈ J and π ∈ G. PPP If φ ∈ G is an
involution and suppφ ⊆ πa then φ1 = π−1φπ is an involution in G and

suppφ1 = π−1(suppφ) ⊆ a,

so φ1 ∈ H and φ = πφ1π
−1 ∈ H. As φ is arbitrary, πa ∈ J . QQQ

I do not know how to prove directly that J is an ideal, so let us set

I = {a0 ∪ a1 ∪ . . . ∪ an : a0, . . . , an ∈ J};
then I ⊳ A, and πa ∈ I for every a ∈ I and π ∈ G.

(c) If a ∈ A, ψ ∈ H and a ∩ ψa = 0 then a ∈ J . PPP If a = 0, this is trivial. Otherwise, let π ∈ G be an

involution with suppπ ⊆ a; say π = (
←−−
b π c) where b ∪ c ⊆ a. By 382Q there is an involution π1 ∈ G such that

suppπ1 = b; say π1 = (
←−−−−
b′ π1

b′′) where b′ ∪ b′′ = b. Set

c′ = πb′, c′′ = πb′′ = c \ c′,

π2 = π1ππ1π
−1 = (

←−−−−
b′ π1

b′′)(
←−−−−−−−
c′ ππ1π−1 c′′), π3 = (

←−−−
b′ π c

′),

φ = π−1
2 ψπ2ψ

−1 ∈ H,

π̄ = π−1
3 φπ3φ

−1 = π−1
3 π−1

2 ψπ2ψ
−1π3ψπ

−1
2 ψ−1π2 ∈ H.

Now

supp(ψπ2ψ
−1) = ψ(suppπ2) = ψ(b ∪ c) ⊆ ψa

is disjoint from

suppπ3 = b′ ∪ c′ ⊆ a,

so π3 commutes with ψπ2ψ
−1, and
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π̄ = π−1
3 π−1

2 π3ψπ2ψ
−1ψπ−1

2 ψ−1π2

= π−1
3 π−1

2 π3π2

= (
←−−−
b′ π c

′)(
←−−−−
b′ π1

b′′)(
←−−−−−−−
c′ ππ1π−1 c′′)(

←−−−
b′ π c

′)(
←−−−−
b′ π1

b′′)(
←−−−−−−−
c′ ππ1π−1 c′′)

= (
←−−−
b′ π c

′)(
←−−−
b′′ π c

′′)

= π.

So π ∈ H. As π is arbitrary, a ∈ J . QQQ

(d) If π = (
←−−
a π b) is an involution in G and a ∈ J , then π ∈ H. PPP By 382Q again, there is an involution

ψ ∈ G such that suppψ = a; because a ∈ J , ψ ∈ H. Express ψ as (
←−−−−
a′ ψ a

′′) where a′ ∪ a′′ = a. Set b′ = πa′

and b′′ = πa′′, so that π = (
←−−−
a′ π b

′)(
←−−−−
a′′ π b

′′), and

ψ1 = ψπψπ−1 = (
←−−−−
a′ ψ a

′′)(
←−−−−−−−
b′ πψπ−1 b′′) ∈ H.

As ψ1(a′ ∪ b′) = a′′ ∪ b′′ is disjoint from a′ ∪ b′, a′ ∪ b′ ∈ J , by (c), and π1 = (
←−−−
a′ π b

′) ∈ H; similarly,

a′′ ∪ b′′ ∈ J , so π2 = (
←−−−−
a′′ π b

′′) ∈ H and π = π1π2 belongs to H. QQQ

(e) If π ∈ G is an involution and suppπ ∈ I, then π ∈ H. PPP Express π as (
←−−
a π b). Let a0, . . . , an ∈ J be

such that a ∪ b ⊆ a0 ∪ . . . ∪ an. Set

cj = a ∩ aj \ supi<j ai, bj = πcj , πj = (
←−−−
cj π bj)

for j ≤ n; then every cj belongs to J , so every πj belongs to H (by (d)) and π = π0 . . . πn ∈ H. QQQ

(f) If π ∈ G and suppπ ∈ I then π ∈ H. PPP By 382N, π is a product of involutions in G all with supports
included in suppπ; by (e), they all belong to H, so π also does. QQQ

(g) We are nearly home. So far we know that I is a G-invariant ideal and that π ∈ H whenever π ∈ G
and suppπ ∈ I. On the other hand, suppπ ∈ I for every π ∈ H. PPP By 382Eb, π has a separator; take a′,
a′′, b′, b′′, c from 382D(iv). Then

a′ ∩ πa′ = b′ ∩ πb′ = . . . = c ∩ πc = 0,

so a′, . . . , c all belong to J , by (c), and suppπ = a′ ∪ . . . ∪ c belongs to I. QQQ
So H is precisely the set of members of G with supports in I, as required.

382S Corollary Let A be a homogeneous Dedekind complete Boolean algebra. Then AutA is simple.

proof If A is {0} or {0, 1} this is trivial. Otherwise, let H be a normal subgroup of AutA. Then by 382R
and 382P there is an invariant ideal I of A such that H = {π : suppπ ∈ I}. But if H is non-trivial so is I;
say a ∈ I \ {0}. If a = 1 then certainly 1 ∈ I and H = AutA. Otherwise, there is a π ∈ AutA such that
πa = 1 \ a (as in 381D), so 1 \ a ∈ I, and again 1 ∈ I and H = AutA.

Remark I ought to remark that in fact AutA is simple for any homogeneous Dedekind σ-complete Boolean
algebra; see Štěpánek & Rubin 89, Theorem 5.9b.

382X Basic exercises (a) Let A be a Boolean algebra and Z its Stone space. Suppose that π ∈ AutA
is represented by fπ : Z → Z. For z ∈ Z, write Orbπ(z) = {fnπ (z) : n ∈ Z}. (i) Show that a ∈ A is a
separator for π iff f−1

π [â]∩ â is empty and {z : Orbπ(z)∩ â} 6= ∅} is dense in {z : fπ(z) 6= z}. (ii) Show that
a ∈ A is a transversal for π iff {z : Orbπ(z) ∩ â 6= ∅} is dense in Z and #(Orbπ(z) ∩ â) ≤ 1 for every z.

>>>(b) Let X be a set. (i) Show that Aut(PX) is isomorphic to the symmetric group on X, the group of
all permutations of X. (ii) Show that any element of Aut(PX) is expressible as a product of at most two
involutions.

>>>(c) (Miller 04) Let X be a set and Σ a σ-algebra of subsets of X. Suppose that (X,Σ) is countably
separated in the sense that there is a countable subset of Σ separating the points of X (cf. 343D). Let G be
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the group of permutations f : X → X such that Σ = {f−1[E] : E ∈ Σ}. Show that every automorphism of
the Boolean algebra Σ has a separator, so that every member of G is expressible as the product of at most
three involutions belonging to G.

(d) Recall that in any group G, a commutator in G is an element of the form ghg−1h−1 where g,
h ∈ G. Show that if A is a Dedekind complete Boolean algebra and G is a full subgroup of AutA with many
involutions then every involution in G is a commutator in G, so that every element of G is expressible as a
product of three commutators, and any group homomorphism from G to an abelian group is constant.

(e) Give an example of a Dedekind complete Boolean algebra A such that not every member of AutA is
a product of commutators in AutA.

(f) Let A be a Dedekind complete Boolean algebra, and suppose that AutA has many involutions. Show
that if H ⊳ AutA then every member of H is expressible as the product of at most three involutions
belonging to H.

(g) Let A be a Dedekind complete Boolean algebra and G a full subgroup of AutA with many involutions.
Show that the partially ordered set H of normal subgroups of G is a distributive lattice, that is, H∩K1K2 =
(H ∩K1)(H ∩K2), H(K1 ∩K2) = HK1 ∩HK2 for all H, K1, K2 ∈ H.

(h) Let A be a Dedekind complete Boolean algebra and G a full subgroup of AutA with many involutions.
Show that if H is the normal subgroup of G generated by a finite subset of G, then it is the normal subgroup
generated by a single involution.

(i) Let A be a Dedekind complete Boolean algebra and G a full subgroup of AutA with many involutions.
Show (i) that there is an involution π ∈ G such that every member of G is expressible as a product of
conjugates of π in G (ii) any proper normal subgroup of G is included in a maximal proper normal subgroup
of G.

(j) Let (A, µ̄) be an atomless probability algebra. Show that if π : A→ A is an ergodic measure-preserving
automorphism it has no transversal.

(k) Show that if A is a Dedekind σ-complete Boolean algebra with countable Maharam type (definition:
331F), then every automorphism of A has a separator. (Hint : show that if b ∈ A then {a : a△ πa ⊆ b} is
an order-closed subalgebra.)

(l) Let A be a Dedekind σ-complete Boolean algebra and π ∈ AutA. Show that π has a separator iff
there is a sequence 〈an〉n∈N in A such that π is supported by supn∈N an △ πan.

(m) Let A be a Dedekind complete Boolean algebra and G a subgroup of AutA with many involutions.
Show that for every n ≥ 2 and every a ∈ A \ {0} there is a π ∈ G with period n and support a.

382Y Further exercises (a) Find a Dedekind σ-complete Boolean algebra with an involution which is
not an exchanging involution.

(b) Devise an expression of the ideas of parts (f)-(h) of the proof of 382K which does not involve the Stone
representation. (Hint : show that there is a non-increasing sequence in A+ which makes enough decisions to
play the role of the Boolean homomorphism x : A→ Z2.)

(c) Let B be the algebra of Borel subsets of R. Show that AutB has exactly three proper normal
subgroups. (Hint : re-work the proof of 382R, paying particular attention to calls on Lemma 382Q. You will
need to know that if E ∈ B is uncountable then the subspace σ-algebra on E is isomorphic to B; see §424
in Volume 4.)

(d) Find a Dedekind σ-complete Boolean algebra A with an automorphism which cannot be expressed
either as a product of finitely many involutions in AutA, or as a product of finitely many commutators in
AutA. (This seems to require a certain amount of ingenuity.)
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382 Notes and comments The ideas of 382A and 382G-382N are adapted from Miller 04, and (most
conspicuously in part (g) of the proof of 382K) betray their origin in a study of Borel automorphisms of R
(see 382Xc). The magic number of three involutions appears in Ryzhikov 93 and Truss 89. The idea of the
method presented here is to shift from a ‘separator’ to a ‘transversal’. Since there are many automorphisms
without transversals (382Xj), something quite surprising has to happen. The diagrams in the proof of 382K
are supposed to show the two steps involved in the argument. We are trying to draw non-overlapping links
to build a function gx such that every point of Z will belong to a finite orbit of gxs. This must be done by
some uniform, translation-invariant, process based on configurations already present; in particular, we are
not permitted to single out any point of Z as a centre for the construction. The first attempt is based on
the sequence 〈En〉n∈N of sets corresponding to the decreasing sequence 〈en〉n∈N. The construction of such
a sequence (382J) requires that there be many separators, which is why these results cannot be applied to
all Boolean algebras, or even to all homogeneous ones. If this first attempt fails, however, the points not
recurrent under gx1 s provide a set C0 with arbitrarily large gaps both to left and to right, from which the
second method can build an adequate family of links.

Of course the search for these factorizations was inspired by the well-known corresponding fact for algebras
PX (382Xb). In those algebras we can use the axiom of choice unscrupulously to pick out a point of each
orbit, thereby forming a transversal in one step without considering separators, and then apply 382H in its
original simple form. Perhaps the principal psychological barrier we need to overcome in 382K is raised in
the phrase ‘fix x ∈ X ∩ ĉ1’. What I could have said is ‘fix an orbit of f meeting ĉ1, and order it by the
transitive closure of the relation f ’; because the whole point of the subsequent argument is that we do not
have a marker to work from.

This volume is concerned with measure algebras, and all the most important measure algebras are
Dedekind complete. I take the trouble to express the ideas down to Theorem 382M in terms of σ-complete
algebras partly because this is the natural boundary of the arguments given and partly because in Volume
4 I will look at Borel automorphisms, as in 382Xc, and 382M as stated may then be illuminating. But note
that in 382N σ-completeness is insufficient (382Yd). In 382S I allow myself for once to present a result
with a stronger hypothesis than is required for the conclusion; the point being that homogeneous semi-finite
measure algebras are necessarily Dedekind complete (383E), and the arguments for the more general case
do not seem to tell us anything which we can use elsewhere in this treatise.

It is natural to ask whether the number ‘three’ in 382M is best possible (cf. 382Xb). It seems to be quite
difficult to exhibit an automorphism requiring three involutions; examples may be found in Anzai 51 and
Ornstein & Sheilds 732.

Just as well-known facts about symmetry groups lead us to the factorization theorem 382M, they suggest
that automorphism groups of Boolean algebras may often have few normal subgroups; and once again we
find that the form of the theorem changes significantly. However the root of the phenomenon remains
the fact that our groups are multiply transitive. 382O-382S are derived from Štěpánek & Rubin 89 and
Fathi 78. An obvious question arising from 382S is: does every homogeneous Boolean algebra have a simple
automorphism group? This leads into deep water. As remarked after 382S, every homogeneous Dedekind
σ-complete algebra has a simple automorphism group. Using the continuum hypothesis, it is possible to
construct a homogeneous Boolean algebra which does not have a simple automorphism group; but as far as
I am aware no such construction is known which does not rely on some special axiom outside ordinary set
theory. See Štěpánek & Rubin 89, §5.

Version of 9.11.14

383 Automorphism groups of measure algebras

I turn now to the group of measure-preserving automorphisms of a measure algebra, seeking to apply
the results of the last section. The principal theorems are 383D, which is a straightforward special case of
382N, and 383I, corresponding to 382S. I give another example of the use of 382R to describe the normal
subgroups of Autµ̄A (383J), and conclude with an important fact about conjugacy in Autµ̄A and AutA
(383L).

2I am indebted to P.Biryukov and G.Hjorth for the references.
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383A Definition Let (A, µ̄) be a measure algebra. I will write Autµ̄A for the set of all measure-preserving
automorphisms of A. This is a group, being a subgroup of the group AutA of all Boolean automorphisms
of A.

383B Lemma Let (A, µ̄) be a measure algebra, and 〈ai〉i∈I , 〈bi〉i∈I two partitions of unity in A. Assume
either that I is countable
or that (A, µ̄) is localizable.

Suppose that for each i ∈ I we have a measure-preserving isomorphism πi : Aai → Abi between the
corresponding principal ideals. Then there is a unique π ∈ Autµ̄A such that πc = πic whenever i ∈ I and
c ⊆ ai.

proof (Compare 381C.) By 322Ld or 322Le, we may identify A with each of the simple products
∏
i∈I Aai ,∏

i∈I Abi ; now π corresponds to the isomorphism between the two products induced by the πi.

383C Corollary If (A, µ̄) is a localizable measure algebra, then, in the language of 381Be, Autµ̄A is a
full subgroup of AutA.

383D Theorem Let (A, µ̄) be a localizable measure algebra. Then every measure-preserving automor-
phism of A is expressible as the product of at most three measure-preserving involutions.

proof This is immediate from 383C and 382N.

383E Lemma If (A, µ̄) is a homogeneous semi-finite measure algebra, it is σ-finite, therefore localizable.

proof If A = {0}, this is trivial. Otherwise there is an a ∈ A such that 0 < µ̄a < ∞. The principal ideal
Aa is ccc (322G(i)⇒(ii)), so A also is, and (A, µ̄) must be σ-finite, by 322G(ii)⇒(i).

383F Lemma Let (A, µ̄) be a homogeneous semi-finite measure algebra.
(a) If 〈ai〉i∈I , 〈bi〉i∈I are partitions of unity in A with µ̄ai = µ̄bi for every i, there is a π ∈ Autµ̄A such

that πai = bi for each i.
(b) If (A, µ̄) is totally finite, then whenever 〈ai〉i∈I , 〈bi〉i∈I are disjoint families in A with µ̄ai = µ̄bi for

every i, there is a π ∈ Autµ̄A such that πai = bi for each i.

proof (a) By 383E, (A, µ̄) is σ-finite, therefore localizable. For each i ∈ I, the principal ideals Aai , Abi
are homogeneous, of the same measure and the same Maharam type (being τ(A) if ai 6= 0, 0 if ai = 0).
Because they are ccc, they are of the same magnitude, as defined in 332Ga, and there is a measure-preserving
isomorphism πi : Aai → Abi (332J). By 383B there is a measure-preserving automorphism π : A → A such
that πd = πid for every i ∈ I, d ⊆ ai; and this π serves.

(b) Set a∗ = 1 \ supi∈I ai, b
∗ = 1 \ supi∈I bi. We must have

µ̄a∗ = µ̄1−∑
i∈I µ̄ai = µ̄1−∑

i∈I µ̄bi = µ̄b∗,

so adding a∗, b∗ to the families we obtain partitions of unity to which we can apply the result of (a).

383G Lemma (a) If (A, µ̄) is an atomless semi-finite measure algebra, then AutA and Autµ̄A have many
involutions.

(b) If (A, µ̄) is an atomless localizable measure algebra, then every non-zero element of A is the support
of an involution in Autµ̄A.

proof (a) If a ∈ A \ {0}, then by 332A there is a non-zero b ⊆ a, of finite measure, such that the principal
ideal Ab is (Maharam-type-)homogeneous. Now because A is atomless, there is a c ⊆ b such that µ̄c = 1

2 µ̄b
(331C), so that Ac and Ab\c are isomorphic measure algebras. If θ : Ac → Ab\c is any measure-preserving

isomorphism, then π = (
←−−−−
c θ b \ c) is an involution in Autµ̄A (and therefore in AutA) supported by a.

(b) Use 383C, (a) and 382Q.
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383H Corollary Let (A, µ̄) be an atomless localizable measure algebra. Then
(a) the lattice of normal subgroups of AutA is isomorphic to the lattice of AutA-invariant ideals of A;
(b) the lattice of normal subgroups of Autµ̄A is isomorphic to the lattice of Autµ̄A-invariant ideals of A.

proof Use 382R. Taking G to be either AutA or Autµ̄A, and I to be the family of G-invariant ideals in
A, we have a map I 7→ HI = {π : π ∈ G, suppπ ∈ I} from I to the family H of normal subgroups of G. Of
course this map is order-preserving; 382R tells us that it is surjective; and 383Gb tells us that it is injective
and its inverse is order-preserving, since if a ∈ I \ J there is a π ∈ G with suppπ = a, so that π ∈ HI \HJ .
Thus we have an order-isomorphism between H and I.

383I 382R provides the machinery for a full description of the normal subgroups of AutA and Autµ̄A
when (A, µ̄) is an atomless localizable measure algebra, as we know that they correspond exactly to the
invariant ideals of A. The general case is complicated. But the following special cases are easy enough.

Theorem Let (A, µ̄) be a homogeneous semi-finite measure algebra.
(a) AutA is simple.
(b) If (A, µ̄) is totally finite, Autµ̄A is simple.
(c) If (A, µ̄) is not totally finite, Autµ̄A has exactly one non-trivial proper normal subgroup.

proof (a) A is Dedekind complete (383E), so this is a special case of 382S.

(b)-(c) The point is that the only possible Autµ̄A-invariant ideals of A are {0}, Af and A. PPP If A is {0}
or {0, 1} this is trivial. Otherwise, A is atomless. Let I ⊳ A be an invariant ideal.

(i) If I 6⊆ Af , take a ∈ I with µ̄a = ∞. By 383E, A is σ-finite, so a has the same magnitude ω as 1.
By 332I, there is a partition of unity 〈en〉n∈N in A with µ̄en = 1 for every n; setting b = supn∈N e2n and
b′ = 1 \ b, we see that both b and b′ are of infinite measure. Similarly we can divide a into c and c′, both of
infinite measure. Now by 332J the principal ideals Ab, Ab′ , Ac, A1\c are all isomorphic as measure algebras,
so that there are automorphisms π, φ ∈ Autµ̄A such that

πc = b, φc = b′.

But this means that both b and b′ belong to I, so that 1 = b ∪ b′ ∈ I and I = A.
(ii) If I ⊆ Af and I 6= {0}, take any non-zero a ∈ I. If b is any member of A, then (because A is

atomless) b can be partitioned into b0, . . . , bn, all of measure at most µ̄a. Then for each i there is a b′i ⊆ a
such that µ̄b′i = µ̄bi; since this common measure is finite, µ̄(1 \ b′i) = µ̄(1 \ bi). By 332J and 383Fa, there is
a πi ∈ Autµ̄A such that πib

′
i = bi, so that bi belongs to I. Accordingly b ∈ I. As b is arbitrary, I = Af .

Thus the only invariant ideals of A are {0}, Af and A. QQQ
By 383Hb we therefore have either one, two or three normal subgroups of Autµ̄A, according to whether

µ̄1 is zero, finite and not zero, or infinite.

Remark For the Lebesgue probability algebra, (b) is due to Fathi 78. The extension to algebras of
uncountable Maharam type is from Choksi & Prasad 82.

383J The language of §352 offers a way of describing another case.

Proposition Let (A, µ̄) be an atomless totally finite measure algebra. For each infinite cardinal κ, let eκ be
the Maharam-type-κ component of A, and let K be {κ : eκ 6= 0}. Let H be the lattice of normal subgroups
of Autµ̄A. Then

(i) if K is finite, H is isomorphic, as partially ordered set, to PK;
(ii) if K is infinite, then H is isomorphic, as partially ordered set, to the lattice of solid linear subspaces

of ℓ∞.

proof (a) Let I be the family of Autµ̄A-invariant ideals of A, so that H ∼= I, by 383Hb. For a, b ∈ A,
say that a � b if there is some k ∈ N such that µ̄(a ∩ eκ) ≤ kµ̄(b ∩ eκ) for every κ ∈ K. Then an ideal I
of A is Autµ̄A-invariant iff a ∈ I whenever a � b ∈ I. PPP (α) Suppose that I is Autµ̄A invariant, a ∈ A,
b ∈ I and µ̄(a ∩ eκ) ≤ kµ̄(b ∩ eκ) for every κ ∈ K. Because A is atomless, we can find, for each κ ∈ K,
aκ1, . . . , aκk such that a ∩ eκ = supi≤k aκi and µ̄aκi ≤ µ̄(b ∩ eκ) for every i. Now for κ ∈ K and 1 ≤ i ≤ k
there is a measure-preserving automorphisms πκi of the principal ideal Aeκ such that πκiaκi ⊆ b. Setting
πid = supκ∈K πκi(d ∩ eκ) for every d ∈ A, and ai = supκ∈K aκi for 1 ≤ i ≤ k, we have πi ∈ Autµ̄A and
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πiai ⊆ b, so ai ∈ I for each i; also a = supi≤k ai, so a ∈ I. (β) On the other hand, if a ∈ A and π ∈ Autµ̄A,
then

µ̄(πa ∩ eκ) = µ̄π(a ∩ eκ) = µ̄(a ∩ eκ)

for every κ ∈ K, because πeκ = eκ, so that πa � a. So if I satisfies the condition, π[I] ⊆ I for every
π ∈ Autµ̄A and I ∈ I. QQQ

(b) Consequently, for I ∈ I and κ ∈ K, eκ ∈ I iff there is some a ∈ I such that a ∩ aκ 6= 0, since in this
case eκ � a. (This is where I use the hypothesis that (A, µ̄) is totally finite.) It follows that if K is finite,
any I ∈ I is the principal ideal generated by sup{eκ : eκ ∈ I}. Conversely, of course, all such ideals are
Autµ̄A-invariant. Thus I is in a natural order-preserving correspondence with PK, and H ∼= PK.

(c) Now suppose that K is infinite; enumerate it as 〈κn〉n∈N. Define θ : A→ ℓ∞ by setting

θa = 〈µ̄(a ∩ eκn
)/µ̄(eκn

)〉n∈N

for a ∈ A; so that

a � b iff there is some k such that θa ≤ kθb,

θa ≤ θ(a ∪ b) ≤ θa+ θb ≤ 2θ(a ∪ b)

for all a, b ∈ A, while θ(1A) is the standard order unit χN of ℓ∞. Let U be the family of solid linear subspaces
of ℓ∞ and define functions I 7→ VI : I → U , U 7→ JU : U → I by saying

VI = {f : f ∈ ℓ∞, |f | ≤ kθa for some a ∈ I, k ∈ N},

JU = {a : a ∈ A, θa ∈ U}.
The properties of θ just listed ensure that VI ∈ U and JU ∈ I for every I ∈ I, U ∈ U . Of course both
I 7→ VI and U 7→ JU are order-preserving. If I ∈ I, then

JVI
= {a : ∃ b ∈ I, a � b} = I.

Finally, VJU = U for every U ∈ U . PPP

VJU = {f : ∃ a ∈ A, k ∈ N, |f | ≤ kθa ∈ U} ⊆ U
because U is a solid linear subspace. But also, given g ∈ U , there is an a ∈ A such that µ̄(a ∩ eκn

) =
min(1, |g(n)|)µ̄(eκn

) for every n (because A is atomless); in which case

θa ≤ |g| ≤ max(1, ‖g‖∞)θa

so a ∈ JU and g ∈ VJU . Thus U = VJU . QQQ So the functions I 7→ VI and U 7→ JU are the two halves of an
order-isomorphism between I and U , and H ∼= I ∼= U , as claimed.

383K Later in this chapter I will give a good deal of space to the question of when two automorphisms
of a measure algebra are conjugate. Because, on any measure algebra (A, µ̄), we have two groups AutA and
Autµ̄A with claims on our attention, we have two different conjugacy relations to examine. To clear the
ground, I give a result showing that in a significant number of cases the two coincide.

Proposition Let (A, µ̄) be a totally finite measure algebra and π : A → A an ergodic measure-preserving
Boolean homomorphism. If φ ∈ AutA is such that φπφ−1 is measure-preserving, then φ is measure-
preserving.

proof Consider the functional ν : A → R defined by saying that νa = µ̄(φa) for every a ∈ A. Because µ̄
is completely additive (321F) and strictly positive, so is ν. We therefore have a c = [[ν > µ̄]] in A such that
νa > µ̄a whenever 0 6= a ⊆ c and νa ≤ µ̄a whenever a ∩ c = 0 (326T). Now πc = c. PPP??? Otherwise, because
π is measure-preserving,

µ̄(πc \ c) = µ̄(πc)− µ̄(c ∩ πc) = µ̄c− µ̄(c ∩ πc) = µ̄(c \ πc) =
1

2
µ̄(c△ πc) > 0.

Next,

νπc = µ̄(φπc) = µ̄(φπφ−1φc) = νc,
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so we also have ν(πc \ c) = ν(c \ πc). But now observe that

ν(πc \ c) ≤ µ̄(πc \ c), ν(c \ πc) > µ̄(c \ πc)

by the choice of c, which is impossible. XXXQQQ
Because π is ergodic, c must be 0 or 1 (372Pa). But as νπ1 = ν1 = µ̄1, we cannot have 0 6= 1 ⊆ c, so

c = 0. This means that νa ≤ µ̄a for every a ∈ A; once again, ν1 = µ̄1, so in fact νa = µ̄a for every a, that
is, φ is measure-preserving.

383L Corollary Let (A, µ̄) be a totally finite measure algebra, and π1, π2 ∈ Autµ̄A two ergodic measure-
preserving automorphisms. If they are conjugate in AutA then they are conjugate in Autµ̄A.

proof There is a φ ∈ AutA such that φπ1φ
−1 = π2; now 383K tells us that φ ∈ Autµ̄A.

383X Basic exercises (a) Let (X,Σ, µ) be a countably separated measure space (definition: 343D),
and write Autµ Σ for the group of automorphisms φ : Σ→ Σ such that µφ(E) = µE for every E ∈ Σ. Show
that every member of Autµ Σ is expressible as a product of at most three involutions belonging to Autµ Σ.
(Hint : 382Xc.)

(b) Let (X,Σ, µ) be a measure space and (A, µ̄) its measure algebra. Let S be the set of functions which
are isomorphisms between conegligible measurable subsets of X with their subspace measures. (i) Show
that the composition of two members of S belongs to S. (ii) Show that there is a map f 7→ πf : S → Autµ̄A

defined by saying that πf (E•) = f−1[E]• for every E ∈ Σ, and that πfg = πgπf , π−1
f = πf−1 for all f ,

g ∈ S. (iii) Show that {πf : f ∈ S} is a countably full subgroup of Autµ̄A.

>>>(c) Let (X,Σ, µ) be a measure space and (A, µ̄) its measure algebra. Let Φ be the group of measure
space automorphisms of (X,Σ, µ). For f ∈ Φ, let πf ∈ Autµ̄A be the corresponding automorphism, defined

by setting πf (E•) = (f−1[E])• for every E ∈ Σ. (i) Show that f 7→ π−1
f is a group homomorphism from Φ

to Autµ̄A. (ii) Show that if F ⊆ Φ and the subgroup of Φ generated by F is Ψ, then the subgroup of Autµ̄A
generated by {πf : f ∈ F} is {πf : f ∈ Ψ}. (iii) Show that if (X,Σ, µ) is countably separated and F ⊆ Φ is
a countable subgroup, then the full subgroup of Autµ̄A generated by {πf : f ∈ F} is {πg : g ∈ F ∗}, where

F ∗ = {g : g ∈ Φ, g(x) ∈ {f(x) : x ∈ F} for every x ∈ X}.

>>>(d) Let (A, µ̄) be a localizable measure algebra. For each infinite cardinal κ, let eκ be the Maharam-
type-κ component of A. (i) Show that Autµ̄A is a simple group iff either there is just one infinite cardinal
κ such that eκ 6= 0, that eκ has finite measure and all the atoms of A (if any) have different measures or A

is purely atomic and there is just one pair of atoms of the same measure or A is purely atomic and all its
atoms have different measures. (ii) Show that AutA is a simple group iff either (A, µ̄) is σ-finite and there
is just one infinite cardinal κ such that eκ 6= 0 and A has at most one atom or A is purely atomic and has
at most two atoms.

(e) Let (A, µ̄) be a localizable measure algebra. (i) Show that Autµ̄A is simple iff it is isomorphic to one
of the groups {ι}, Z2 or Autν̄κ Bκ where κ is an infinite cardinal and (Bκ, ν̄κ) is the measure algebra of the
usual measure on {0, 1}κ. (ii) Show that AutA is simple iff it is isomorphic to one of the groups {ι}, Z2 or
AutBκ.

(f) Show that if (A, µ̄) is a semi-finite measure algebra of magnitude greater than c, its automorphism
group Autµ̄A is not simple.

(g) Let (A, µ̄) be an atomless localizable measure algebra. For each infinite cardinal κ write eκ for the
Maharam-type-κ component of A. For π, ψ ∈ Autµ̄A show that π belongs to the normal subgroup of Autµ̄A
generated by ψ iff there is a k ∈ N such that

mag(eκ ∩ suppπ) ≤ kmag(eκ ∩ suppψ) for every infinite cardinal κ,

writing mag a for the magnitude of a, and setting kζ = ζ if k > 0 and ζ is an infinite cardinal.
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>>>(h) Let (A, µ̄) be the measure algebra of Lebesgue measure on R. For n ∈ N set en = [−n, n]• ∈ A. Let
G ≤ Autµ̄A be the group consisting of measure-preserving automorphisms π such that suppπ ⊆ en for some
n. Show that G is simple. (Hint : show that G is the union of an increasing sequence of simple subgroups.)

(i) Let (A, µ̄) be an atomless totally finite measure algebra. Let H be the lattice of normal subgroups of
AutA. Show that H is isomorphic, as partially ordered set, to PK for some countable set K.

(j) Let (A, µ̄) be an atomless localizable measure algebra which is not σ-finite, and suppose that τ(Aa) =
τ(Ab) whenever a, b ∈ A and 0 < µ̄a ≤ µ̄b <∞. Let κ be the magnitude of A. (i) Show that the lattice H
of normal subgroups of Autµ̄A is well-ordered, with least member {ι} and one member Hζ for each infinite
cardinal ζ less than or equal to κ+, setting

Hζ = {π : π ∈ Autµ̄A, mag(suppπ) < ζ},
where mag a is the magnitude of a. (ii) Show that the lattice H′ of normal subgroups of AutA is well-
ordered, with least member {ι} and one member H ′

ζ for each uncountable cardinal ζ less than or equal to

κ+, setting

H ′
ζ = {π : π ∈ AutA, mag(suppπ) < ζ}.

>>>(k) Let (A, µ̄) be the measure algebra of Lebesgue measure on [0, 1]. Give an example of two measure-
preserving automorphisms of A which are conjugate in AutA but not in Autµ̄A.

(l) Let (A, µ̄) be a probability algebra. For π, φ ∈ Autµ̄A set

ρ(π, φ) = supa∈A µ̄(πa△ φa), σ(π, φ) = µ̄(supp(π−1φ)).

(i) Show that ρ and σ are metrics on Autµ̄A, and that ρ ≤ σ ≤ 3
2ρ. (Hint : 381E, 381G, 382D-382E.)

(ii) Show that ρ(ψπ, ψφ) = ρ(πψ, φψ) = ρ(π, φ), ρ(π−1, φ−1) = ρ(π, φ), ρ(πψ, φθ) ≤ ρ(π, φ) + ρ(ψ, θ),
σ(ψπ, ψφ) = σ(πψ, φψ) = σ(π, φ), σ(π−1, φ−1) = σ(π, φ), σ(πψ, φθ) ≤ σ(π, φ) + σ(ψ, θ) for all π, φ, ψ,
θ ∈ Autµ̄A. (iii) Show that Autµ̄A is complete under ρ and σ.

383Y Further exercises (a) Let (A, µ̄) be an atomless totally finite measure algebra. Show that Autµ̄A
and AutA have the same (cardinal) number of normal subgroups.

(b) Let X be a set. Show that AutPX has one normal subgroup if #(X) ≤ 1, two if #(X) = 2, three if
#(X) = 3 or 5 ≤ #(X) < ω, four if #(X) = 4 or #(X) = ω, five if #(X) = ω1.

383 Notes and comments This section is short because there are no substantial new techniques to
be developed. 383D is simply a matter of checking that the hypotheses of 382N are satisfied (and these
hypotheses were of course chosen with 383D in mind), and 383I is similarly direct from 382R-382S. 383I-
383J, 383Xg and 383Xj are variations on a theme. In a general Boolean algebra A with a group G of
automorphisms, we have a transitive, reflexive relation �G defined by saying that a �G b if there are
π0, . . . , πk ∈ G such that a ⊆ supi≤k πib; the point about localizable measure algebras is that the functions
‘Maharam type’ and ‘magnitude’ enable us to describe this relation when G = Autµ̄A, and the essence of
382R is that in that context π belongs to the normal subgroup of G generated by ψ iff suppπ �G suppψ.

Some of the most interesting questions concerning automorphism groups of measure algebras can be
expressed in the form ‘how can we determine when a given pair of automorphisms are conjugate?’ Generally,
people have concentrated on conjugacy in Autµ̄A. But the same question can be asked in AutA. In
particular, it is possible for two members of Autµ̄A to be conjugate in AutA but not in Autµ̄A (383Xk).
However this phenomenon does not occur for ergodic automorphisms, or even for ergodic measure-preserving
Boolean homomorphisms (383K-383L).

Most of the work of this chapter is focused on atomless measure algebras. There are various extra
complications which appear if we allow atoms. The most striking are in the next section; here I mention
only 383Xd and 383Yb.
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Version of 5.11.14

384 Outer automorphisms

Continuing with the investigation of the abstract group-theoretic nature of the automorphism groups
AutA and Autµ̄ A, I devote a section to some remarkable results concerning isomorphisms between them.
Under any of a variety of conditions, any isomorphism between two groups AutA and AutB must correspond
to an isomorphism between the underlying Boolean algebras (384E, 384F, 384J, 384M); consequently AutA
has few, or no, outer automorphisms (384G, 384K, 384O). I organise the section around a single general
result (384D).

384A Lemma Let A be a Boolean algebra and G a subgroup of AutA which has many involutions
(definition: 382O). Then for every non-zero a ∈ A there is an automorphism ψ ∈ G, of order 4, which is
supported by a.

proof Let π ∈ G be an involution supported by a. Let b ⊆ a be such that πb 6= b. Then at least one of
b \ πb, πb \ b = π(b \ πb) is non-zero, so in fact both are. Let φ be an involution supported by b \ πb. Then
πφπ = πφπ−1 is an involution supported by πb \ b, so commutes with φ, and φπφπ = ι. Also πφb = πb 6= b,
so πφ and φπ are not the identity, and ψ = φπ has order 4. Of course ψ is supported by a because φ and π
both are.

384B A note on supports Since in this section we shall be looking at more than one automorphism
group at a time, I shall need to call on the following elementary extension of a fact in §381. Let A and B

be Boolean algebras, and θ : A → B a Boolean isomorphism. If π ∈ AutA is supported by a ∈ A, then
θπθ−1 ∈ AutB is supported by θa. (Use the same argument as in 381Ej.) Accordingly, if a is the support
of π then θa will be the support of θπθ−1, as in 381Gd.

384C Lemma Let A and B be two Boolean algebras, and G a subgroup of AutA with many involutions.
If θ1, θ2 : A→ B are distinct isomorphisms, then there is a φ ∈ G such that θ1φθ

−1
1 6= θ2φθ

−1
2 .

proof Because θ1 6= θ2, θ = θ−1
2 θ1 is not the identity automorphism on A, and there is some non-zero a ∈ A

such that θa ∩ a = 0. Let π ∈ G be an involution supported by a; then θπθ−1 is supported by θa, so cannot
be equal to π, and θ1πθ

−1
1 6= θ2πθ

−1
2 .

384D Theorem Let A and B be Dedekind complete Boolean algebras and G and H subgroups of AutA,
AutB respectively, both having many involutions. Let q : G → H be an isomorphism. Then there is a
unique Boolean isomorphism θ : A→ B such that q(φ) = θφθ−1 for every φ ∈ G.

proof (a) The first half of the proof is devoted to setting up some structures in the group G. Let π ∈ G be
any involution. Set

Cπ = {φ : φ ∈ G, φπ = πφ},
the centralizer of π in G,

Uπ = {φ : φ ∈ Cπ, φ = φ−1, φψφψ−1 = ψφψ−1φ for every ψ ∈ Cπ},
the set of involutions in Cπ commuting with all their conjugates in Cπ, together with the identity,

Vπ = {φ : φ ∈ G, φψ = ψφ for every ψ ∈ Uπ},
the centralizer of Uπ in G,

Sπ = {φ2 : φ ∈ Vπ}
and

Wπ = {φ : φ ∈ G, φψ = ψφ for every ψ ∈ Sπ},
the centralizer of Sπ in G.

c© 1994 D. H. Fremlin
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(b) The point of this list is to provide a purely group-theoretic construction corresponding to the support
of π in A. In the next few paragraphs of the proof (down to (f)), I set out to describe the objects just
introduced in terms of their action on A. First, note that π is an exchanging involution (382Fa); express it

as (
←−−−
a′ π a

′′), so that the support of π is aπ = a′ ∪ a′′.

(c) I start with two elementary properties of Cπ:

(i) φ(aπ) = aπ for every φ ∈ Cπ. PPP As remarked in 381Gd, the support of π = φπφ−1 is φ(aπ), so this
must be aπ. QQQ

(ii) If φ ∈ Cπ and φ is not supported by aπ, there is a non-zero d ⊆ 1 \ aπ such that d ∩ φd = 0, by
381Ei.

(d) Now for the properties of Uπ:

(i) If φ ∈ Uπ, then φ is supported by aπ. PPP??? Otherwise, there is a non-zero d ⊆ 1 \ aπ such that
φd ∩ d = 0. By 384A, there is a ψ ∈ G, of order 4, supported by d. Because d ∩ aπ = 0, ψ ∈ Cπ (381Ef).
Because ψ 6= ψ−1, there is a c ⊆ d such that ψc 6= ψ−1c; but now φc ∩ d = φψ−1c ∩ d = 0, so

ψφψ−1φc = ψφ2c = ψc 6= ψ−1c = φ2ψ−1c = φψφψ−1c,

and φ does not commute with its conjugate ψφψ−1, contradicting the assumption that φ ∈ Uπ. XXXQQQ

(ii) If u ∈ A and πu = u, then πu ∈ Uπ, where

πud = πd if d ⊆ u, πud = d if d ∩ u = 0,

that is, πu = (
←−−−−−−−−−
a′ ∩ u π a

′′ ∩ u). PPP (α) If u = 0 then πu = ι ∈ Uπ. Otherwise, πu is an involution. (β) For any
ψ ∈ AutA,

ψπuψ
−1 = (

←−−−−−−−−−−−−−−−−−−
ψ(a′ ∩ u) ψπψ−1 ψ(a′′ ∩ u))

(381Sb). Accordingly

ππuπ
−1 = (

←−−−−−−−−−
a′′ ∩ u π a

′ ∩ u) = πu

and πu ∈ Cπ. (γ) If ψ ∈ Cπ, then

π = ψπψ−1 = (
←−−−−−−−−−−
ψa′ ψπψ−1 ψa′′) = (

←−−−−−−
ψa′ π ψa

′′).

So

ψπuψ
−1 = (

←−−−−−−−−−−−−−−−−−−
ψ(a′ ∩ u) ψπψ−1 ψ(a′′ ∩ u)) = (

←−−−−−−−−−−−−−−
ψa′ ∩ ψu π ψa

′′ ∩ ψu) = πψu.

Now if πv = v then πuπv = πu△v = πvπu; in particular, πψuπu = πuπψu. As ψ is arbitrary, πu ∈ Uπ. QQQ
In particular, of course, π = π1 belongs to Uπ.

(e) The two parts of (d) lead directly to the properties we need of Vπ.

(i) Vπ ⊆ Cπ, because π ∈ Uπ. Consequently φaπ = aπ for every φ ∈ Vπ.

(ii) If φ ∈ Vπ then φd ⊆ d ∪ πd for every d ⊆ aπ. PPP??? Suppose, if possible, otherwise. Set u0 = d ∪ πd,
so that πu0 = u0, and u = φu0 \ u0 6= 0; also u ⊆ φaπ = aπ. Since πφu0 = φπu0 = φu0, πu = u. Set
v = u ∩ a′, so that u = v ∪ πv and v 6= πv. Because u ∩ φv ⊆ φ(u0 ∩ u) = 0,

πuφv = φv 6= φπv = φπuv,

which is impossible. XXXQQQ

(iii) It follows that φ2d = d whenever φ ∈ Vπ and d ⊆ aπ. PPP Let e be the support of φ. Recall that
e = sup{c : c ∩ φc = 0} (381Gb), so that d ∩ e = sup{c : c ⊆ d, c ∩ φc = 0}. Now if c ⊆ aπ and c ∩ φc = 0, we
know that φc ⊆ c ∪ πc, so in fact φc ⊆ πc. This shows that φ(d ∩ e) ⊆ π(d ∩ e). Also, because πφ = φπ, by
(i), we have

φ2(d ∩ e) ⊆ φπ(d ∩ e) = πφ(d ∩ e) ⊆ π2(d ∩ e) = d ∩ e.

Of course φ2(d \ e) = d \ e, so φ2d ⊆ d. This is true for every d ⊆ aπ. But as also φ2aπ = φaπ = aπ, φ2d = d
for every d ⊆ aπ. QQQ
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(iv) The final thing we need to know about Vπ is that φ ∈ Vπ whenever φ ∈ G and suppφ ∩ aπ = 0;
this is immediate from (d-i) above.

(f) From (e-iii), we see that if φ ∈ Sπ then suppφ ∩ aπ = 0. But we also see from (e-iv) that if
0 6= c ⊆ 1 \ aπ there is an involution in Sπ supported by c; for there is a member ψ of G, of order 4,
supported by c, and now ψ ∈ Vπ so ψ2 ∈ Sπ, while ψ2 is an involution.

(g) Consequently, Wπ is just the set of members of G supported by aπ. PPP (i) If suppφ ⊆ aπ and ψ ∈ Sπ,
then suppψ ∩ aπ = 0, as noted in (e), so φψ = ψφ; as ψ is arbitrary, φ ∈Wπ. (ii) If suppφ 6⊆ aπ, then take a
non-zero d ⊆ 1 \ aπ such that φd ∩ d = 0. Let ψ ∈ Sπ be an involution supported by d; then if c ⊆ d is such
that ψc 6= c,

φψc 6= φc = ψφc,

and φψ 6= ψφ so φ /∈Wπ. QQQ

(h) We can now return to consider the isomorphism q : G→ H. If π ∈ G is an involution, then q(π) ∈ H
is an involution, and it is easy to check that

q[Cπ] = Cq(π),

q[Uπ] = Uq(π),

q[Vπ] = Vq(π),

q[Sπ] = Sq(π),

q[Wπ] = Wq(π),

defining Cq(π), . . . ,Wq(π) ⊆ H as in (a) above. So we see that, for any φ ∈ G,

suppφ ⊆ suppπ ⇐⇒ φ ∈Wπ ⇐⇒ q(φ) ∈Wq(π)

⇐⇒ supp q(φ) ⊆ supp q(π).

(i) Define θ : A→ B by writing

θa = sup{supp q(π) : π ∈ G is an involution and suppπ ⊆ a}
for every a ∈ A. Evidently θ is order-preserving. Now if a ∈ A, π ∈ G is an involution and suppπ 6⊆ a,
supp q(π) 6⊆ θa. PPP There is a φ ∈ G, of order 4, supported by suppπ \ a. Now φ2 is an involution supported
by suppπ, so supp q(φ2) ⊆ supp q(π). On the other hand, if π′ ∈ G is an involution supported by a, then
a supports every member of Uπ′ , by (d-i), so φ ∈ Vπ′ , q(φ) ∈ Vq(π′) and supp q(φ2) = supp q(φ)2 is disjoint

from supp q(π′), by (e-iii). As π′ is arbitrary, supp q(φ2) ∩ θa = 0; so

supp q(π) \ θa ⊇ supp q(φ2) 6= 0. QQQ

(j) In the same way, we can define θ∗ : B→ A by setting

θ∗b = sup{supp q−1(π̃) : π̃ ∈ H is an involution and supp π̃ ⊆ b}
for every b ∈ B. Now θ∗θa = a for every a ∈ A. PPP (α) If 0 6= u ⊆ a, there is an involution π ∈ G supported
by u. Now q(π) is an involution in H supported by θa, so

u ∩ θ∗θa ⊇ u ∩ supp q−1q(π) = suppπ 6= 0.

As u is arbitrary, a ⊆ θ∗θa. (β) If π̃ ∈ H is an involution supported by θa, then φ = q−1(π̃) is an involution
in G with supp q(φ) = supp π̃ ⊆ θa, so suppφ ⊆ a, by (i) above; as π̃ is arbitrary, θ∗θa ⊆ a. QQQ

Similarly, θθ∗b = b for every b ∈ B. But this means that θ and θ∗ are the two halves of an order-
isomorphism between A and B. By 312M, both are Boolean homomorphisms.

(k) If π ∈ G is an involution, then θ(suppπ) = supp q(π). PPP By the definition of θ, supp q(π) ⊆ θ(suppπ).
On the other hand,

supp q(π) = θθ∗(supp q(π)) ⊇ θ(supp q−1q(π)) = θ(suppπ). QQQ
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Similarly, if π̃ ∈ H is an involution, θ−1(supp π̃) = θ∗(supp π̃) = supp q−1(π̃).

(l) We are nearly home. Let us confirm that q(φ) = θφθ−1 for every φ ∈ G. PPP??? Otherwise, ψ =
q(φ)−1θφθ−1 is not the identity automorphism on B, and there is a non-zero b ∈ B such that ψb ∩ b = 0,
that is, θφθ−1b ∩ q(φ)b = 0. Let π̃ ∈ H be an involution supported by b. Then q−1(π̃) is supported by θ−1b,
by (j), so φθ−1b supports φq−1(π̃)φ−1 and θφθ−1b supports q(φq−1(π̃)φ−1) = q(φ)π̃q(φ)−1. On the other
hand, q(φ)b also supports q(φ)π̃q(φ)−1, which is not the identity automorphism; so these two elements of B
cannot be disjoint. XXXQQQ

(m) Finally, θ is unique by 384C.

Remark The ideas of the proof here are taken from Eigen 82.

384E The rest of this section may be regarded as a series of corollaries of this theorem. But I think it
will be apparent that they are very substantial results.

Theorem Let A and B be atomless homogeneous Boolean algebras, and q : AutA→ AutB an isomorphism.
Then there is a unique Boolean isomorphism θ : A→ B such that q(φ) = θφθ−1 for every φ ∈ AutA.

proof (a) Let Â be the Dedekind completion of A (314U). Then every φ ∈ AutA has a unique extension to

a Boolean homomorphism φ̂ : Â→ Â (314Tb). Because the extension is unique, we must have (φψ)̂= φ̂ψ̂

for all φ, ψ ∈ AutA; consequently, φ̂ and φ̂−1 are inverses of each other, and φ̂ ∈ Aut Â for each φ ∈ AutA;

moreover, φ 7→ φ̂ is a group homomorphism. Of course it is injective, so we have a subgroup G = {φ̂ : φ ∈
AutA} of Aut Â which is isomorphic to AutA. Clearly

G = {φ : φ ∈ Aut Â, φu ∈ A for every u ∈ A}.

If a ∈ Â is non-zero, then there is a non-zero u ⊆ a belonging to A. Because A is atomless and homogeneous,
there is an involution π ∈ AutA supported by u (382P); now π̂ ∈ G is an involution supported by a. As a
is arbitrary, G has many involutions.

Similarly, writing B̂ for the Dedekind completion of B, we have a subgroup H = {ψ̂ : ψ ∈ AutB} of

Aut B̂ isomorphic to AutB, and with many involutions. Let q̂ : G→ H be the corresponding isomorphism,

so that q̂(φ̂) = q̂(φ) for every φ ∈ AutA.

By 384D, there is a Boolean isomorphism θ̂ : Â→ B̂ such that q̂(φ) = θ̂φθ̂−1 for every φ ∈ G. Note that

θ̂(suppφ) = supp(θ̂φθ̂−1) = supp q̂(φ)

for every φ ∈ G, so that θ̂(supp q̂−1(π)) = suppπ for every π ∈ H.

(b) If u ∈ A, then θ̂u ∈ B. PPP It is enough to consider the case u /∈ {0, 1}, since surely θ̂0 = 0 and

θ̂1 = 1. Take any w ∈ B which is neither 0 nor 1; then there is an involution in AutB with support w (382P
again); the corresponding member π of H is still an involution with support w. Its image q̂−1(π) in G is

an involution with support a = θ̂−1w ∈ Â; of course 0 6= a 6= 1. Take non-zero u1, u3 ∈ A such that u1 ⊂ a
and u3 ⊆ 1 \ a; set u2 = 1 \ (u1 ∪ u3). Because A is homogeneous, there are φ, ψ ∈ G such that φu1 = u,
ψu1 = u1, ψu2 = u3; set φ2 = φψ. Then we have

u = φu1 ⊆ φ(supp q̂−1(π)) = supp(φq̂−1(π)φ−1) ⊆ φ(u1 ∪ u2) = u ∪ φu2,

u = φ2u1 ⊆ φ2(supp q̂−1(π)) = supp(φ2q̂
−1(π)φ−1

2 ) ⊆ u ∪ φ2u2 = u ∪ φu3,

so

φ(supp q̂−1(π)) ∩ φ2(supp q̂−1(π)) = u,

and
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θ̂u = θ̂(φ(supp q̂−1(π))) ∩ θ̂(φ2(supp q̂−1(π)))

= θ̂(suppφq̂−1(π)φ−1) ∩ θ̂(suppφ2q̂
−1(π)φ−1

2 )

= θ̂(supp q̂−1(q̂(φ)πq̂(φ)−1)) ∩ θ̂(supp q̂−1(q̂(φ2)πq̂(φ2)−1))

= supp(q̂(φ)πq̂(φ)−1) ∩ supp(q̂(φ2)πq̂(φ2)−1)

(see the last sentence of (a) above)

= q̂(φ)(suppπ) ∩ q̂(φ2)(suppπ) = q̂(φ)w ∩ q̂(φ2)w ∈ B

because both q̂(φ) and q̂(φ2) belong to H. QQQ

Similarly, θ̂−1v ∈ A for every v ∈ B, and θ = θ̂↾A is an isomorphism between A and B.
We now have

q(φ) = q̂(φ̂)↾B = (θ̂φ̂θ̂−1)↾B = θφθ−1

for every φ ∈ AutA. Finally, θ is unique by 384C, as before.

384F Corollary If A and B are atomless homogeneous Boolean algebras with isomorphic automorphism
groups, they are isomorphic as Boolean algebras.

Remark Of course a one-element Boolean algebra {0} and a two-element Boolean algebra {0, 1} have
isomorphic automorphism groups without being isomorphic.

384G Corollary If A is a homogeneous Boolean algebra, then AutA has no outer automorphisms.

proof If A = {0, 1} this is trivial. Otherwise, A is atomless, so if q is any automorphism of AutA, there
is a Boolean isomorphism θ : A → A such that q(φ) = θφθ−1 for every φ ∈ AutA, and q is an inner
automorphism.

384H Definitions Complementary to the notion of ‘many involutions’ is the following concept.

(a) A Boolean algebra A is rigid if the only automorphism of A is the identity automorphism.

(b) A Boolean algebra A is nowhere rigid if no non-trivial principal ideal of A is rigid.

384I Lemma Let A be a Boolean algebra. Then the following are equiveridical:
(i) A is nowhere rigid;
(ii) for every a ∈ A \ {0} there is a φ ∈ AutA, not the identity, supported by a;
(iii) for every a ∈ A \ {0} there are distinct b, c ⊆ a such that the principal ideals Ab, Ac they generate

are isomorphic;
(iv) the automorphism group AutA has many involutions.

proof (a)(ii)⇒(i) If a ∈ A \ {0}, let φ ∈ AutA be a non-trivial automophism supported by a; then φ↾Aa
is a non-trivial automorphism of the principal ideal Aa, so Aa is not rigid.

(b)(i)⇒(iii) There is a non-trivial automorphism ψ of Aa; now if b ∈ Aa is such that ψb = c 6= b, Ab is
isomorphic to ψ[Ab] = Ac.

(c)(iii)⇒(iv) Take any non-zero a ∈ A. By (iii), there are distinct b, c ⊆ a such that Ab, Ac are
isomorphic. At least one of b \ c, c \ b is non-zero; suppose the former. Let ψ : Ab → Ac be an isomorphism,

and set d = b \ c, d′ = ψ(b \ c); then d′ ⊆ c, so d′ ∩ d = 0, and φ = (
←−−−
d ψ d

′) is an involution supported by a.

(d)(iv)⇒(ii) is trivial.

384J Theorem Let A and B be nowhere rigid Dedekind complete Boolean algebras and q : AutA →
AutB an isomorphism. Then there is a unique Boolean isomorphism θ : A → B such that q(φ) = θφθ−1

for every φ ∈ AutA.

proof Put 384I(i)⇒(iv) and 384D together.
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384K Corollary Let A be a nowhere rigid Dedekind complete Boolean algebra. Then AutA has no
outer automorphisms.

384L Examples I note the following examples of nowhere rigid algebras.

(a) A non-trivial homogeneous Boolean algebra is nowhere rigid.
(b) Any principal ideal of a nowhere rigid Boolean algebra is nowhere rigid.
(c) A simple product of nowhere rigid Boolean algebras is nowhere rigid.
(d) Any atomless semi-finite measure algebra is nowhere rigid.
(e) A free product of nowhere rigid Boolean algebras is nowhere rigid.
(f) The Dedekind completion of a nowhere rigid Boolean algebra is nowhere rigid.

Indeed, the difficulty is to find an atomless Boolean algebra which is not nowhere rigid; for a variety of
constructions of rigid algebras, see Bekkali & Bonnet 89.

384M Theorem Let (A, µ̄) and (B, ν̄) be atomless localizable measure algebras, and Autµ̄ A, Autν̄ B the
corresponding groups of measure-preserving automorphisms. Let q : Autµ̄ A→ Autν̄ B be an isomorphism.
Then there is a unique Boolean isomorphism θ : A→ B such that q(φ) = θφθ−1 for every φ ∈ Autµ̄ A.

proof The point is just that Autµ̄ A has many involutions. PPP Let a ∈ A \ {0}. Then there is a non-zero
b ⊆ a such that the principal ideal Ab is Maharam-type-homogeneous. Take c ⊆ b and d ⊆ b \ c such that
µ̄c = µ̄d = min(1, 12 µ̄b) (331C). The principal ideals Ac, Ad are now isomorphic as measure algebras (331I);

let ψ : Ac → Ad be a measure-preserving isomorphism. Then (
←−−
c ψ d) ∈ Autµ̄ A is an involution supported by

a. QQQ
Similarly, Autν̄ B has many involutions, and the result follows at once from 384D.

384N To make proper use of the last theorem we need the following result.

Proposition Let (A, µ̄) and (B, ν̄) be localizable measure algebras and θ : A→ B a Boolean isomorphism.
For each infinite cardinal κ let eκ be the Maharam-type-κ component of A (332Gb) and for each γ ∈ ]0,∞[
let Aγ be the set of atoms of A of measure γ. Then the following are equiveridical:

(i) for every φ ∈ Autµ̄ A, θφθ−1 ∈ Autν̄ B;
(ii)(α) for every infinite cardinal κ there is an ακ > 0 such that ν̄(θa) = ακµ̄a for every a ⊆ eκ,

(β) for every γ ∈ ]0,∞[ there is an αγ > 0 such that ν̄(θa) = αγ µ̄a for every a ∈ Aγ .

proof (a)(i)⇒(ii)(ααα) Let κ be an infinite cardinal. The point is that if a, a′ ⊆ eκ and µ̄a = µ̄a′ < ∞
then ν̄(θa) = ν̄(θa′). PPP The principal ideals Aa, Aa′ are isomorphic as measure algebras; moreover, by
332J, the principal ideals Aeκ\a, Aeκ\a′ are isomorphic. We therefore have a φ ∈ Autµ̄ A such that φa = a′.
Consequently ψθa = θa′, where ψ = θφθ−1 ∈ Autν̄ B, and ν̄(θa) = ν̄(θa′). QQQ

If eκ = 0 we can take ακ = 1. Otherwise fix on some c0 ⊆ eκ such that 0 < µ̄c0 < ∞; take b ⊆ θc0 such
that 0 < ν̄b < ∞, and set c = θ−1b, ακ = ν̄b/µ̄c. Then we shall have ν̄(θa) = ν̄(θc) = ακµ̄a whenever
a ⊆ eκ and µ̄a = µ̄c. But we can find for any n ≥ 1 a partition cn1, . . . , cnn of c into elements of measure
1
n µ̄c; since ν̄(θcni) = ν̄(θcnj) for all i, j ≤ n, we must have ν̄(θcni) = 1

n ν̄(θc) = ακµ̄cni for all i. So if a ⊆ eκ
and µ̄a = 1

n µ̄c, ν̄(θa) = ν̄(θcn1) = ακµ̄a. Now suppose that a ⊆ eκ and µ̄a = k
n µ̄c for some k, n ≥ 1; then

a can be partitioned into k elements of measure 1
n µ̄c, so in this case also ν̄(θa) = ακµ̄a. Finally, for any

a ⊆ eκ, set

D = {d : d ⊆ a, µ̄d is a rational multiple of µ̄c},
and let D′ ⊆ D be a maximal upwards-directed set. Then supD′ = a, so θ[D′] is an upwards-directed set
with supremum θa, and

ν̄(θa) = supd∈D′ ν̄(θd) = supd∈D′ ακµ̄d = ακµ̄a.

(βββ) Let γ ∈ ]0,∞[. If Aγ = ∅ take αγ = 1. Otherwise, fix on any c ∈ Aγ and set αγ = ν̄(θc)/γ. If
a ∈ Aγ then there is a φ ∈ Autµ̄ A exchanging the atoms a and c, so that θφθ−1 ∈ Autν̄ B exchanges the
atoms θa and θc, and
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ν̄(θa) = ν̄(θc) = αγ µ̄a.

(b)(ii)⇒(i) Now suppose that the conditions (α) and (β) are satisfied, that φ ∈ Autµ̄ A and that a ∈ A.
For each infinite cardinal κ, we have φeκ = eκ, so

ν̄(θφ(eκ ∩ a)) = ακµ̄(φ(eκ ∩ a)) = ακµ̄(eκ ∩ a) = ν̄(θ(eκ ∩ a)).

Similarly, if we write aγ = supAγ , then for each γ ∈ ]0,∞[ we have φ[Aγ ] = Aγ and φaγ = aγ , and for
c ⊆ aγ we have

µ̄c = γ#({e : e ∈ Aγ , e ⊆ c});
so

ν̄(θφ(aγ ∩ a)) = αγγ#({e : e ∈ Aγ , e ⊆ φa})
= αγγ#({e : e ∈ Aγ , e ⊆ a})
=

∑

e∈Aγ ,e⊆a

ν̄(θe) = ν̄(θ(aγ ∩ a)).

Putting these together,

ν̄(θφa) =
∑

κ is an infinite cardinal

ν̄(θφ(eκ ∩ a)) +
∑

γ∈]0,∞[

ν̄(θφ(aγ ∩ a))

=
∑

κ is an infinite cardinal

ν̄(θ(eκ ∩ a)) +
∑

γ∈]0,∞[

ν̄(θ(aγ ∩ a)) = ν̄(θa).

But this means that

ν̄(θφθ−1b) = ν̄(θθ−1b) = ν̄b

for every b ∈ B, and θφθ−1 is measure-preserving, as required by (i).

384O Corollary If (A, µ̄) is an atomless totally finite measure algebra, Autµ̄ A has no outer automor-
phisms.

proof Let q : Autµ̄ A→ Autµ̄ A be any automorphism. By 384M, there is a corresponding θ ∈ AutA such
that q(φ) = θφθ−1 for every φ ∈ Autµ̄ A. By 384N, there is for each infinite cardinal κ an ακ > 0 such that
µ̄(θa) = ακµ̄a whenever a ⊆ eκ, the Maharam-type-κ component of A. But since θeκ = eκ and µ̄eκ < ∞
for every κ, we must have ακ = 1 whenever eκ 6= 0; as A is atomless,

µ̄(θa) =
∑

κ is an infinite cardinal

µ̄(θ(a ∩ eκ))

=
∑

κ is an infinite cardinal

ακµ̄(a ∩ eκ)

=
∑

κ is an infinite cardinal

µ̄(a ∩ eκ) = µ̄a

for every a ∈ A. Thus θ ∈ Autµ̄ A and q is an inner automorphism.

384P The results above are satisfying and complete in their own terms, but leave open a number of
obvious questions concerning whether some of the hypotheses can be relaxed. Atoms can produce a variety
of complications (see 384Ya-384Yd below). To show that we really do need to assume that our algebras are
Dedekind complete or localizable, I offer the following.

Examples (a) There are an atomless localizable measure algebra (A, µ̄) and an atomless semi-finite measure
algebra (B, ν̄) such that AutA ∼= AutB, Autµ̄ A ∼= Autν̄ B but A and B are not isomorphic.
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proof Let (A0, µ̄0) be an atomless homogeneous probability algebra; for instance, the measure algebra of
Lebesgue measure on the unit interval. Let (A, µ̄) be the simple product measure algebra (A0, µ̄0)ω1 (322L);
then (A, µ̄) is an atomless localizable measure algebra. In A let I be the set

{a : a ∈ A and the principal ideal Aa is ccc};
then I is an ideal of A, the σ-ideal generated by the elements of finite measure (cf. 322G). Set

B = {a : a ∈ A, either a ∈ I or 1 \ a ∈ I}.
Then B is a σ-subalgebra of A, so if we set ν̄ = µ̄↾B then (B, ν̄) is a measure algebra in its own right.

The definition of I makes it plain that it is invariant under all Boolean automorphisms of A; so B also is
invariant under all automorphisms, and we have a homomorphism φ 7→ q(φ) = φ↾B : AutA → AutB. On
the other hand, because B is order-dense in A, and A is Dedekind complete, every automorphism of B can
be extended to an automorphism of A (see part (a) of the proof of 384E). So q is actually an isomorphism
between AutA and AutB. Moreover, still because B is order-dense, q(φ) is measure-preserving iff φ is
measure-preserving, so Autµ̄ A is isomorphic to Autν̄ B. But of course there is no Boolean isomorphism, let
alone a measure algebra isomorphism, between A and B, because A is Dedekind complete while B is not.

Remark Thus the hypothesis ‘Dedekind complete’ in 384D and 384J (and ‘localizable’ in 384M), and the
hypothesis ‘homogeneous’ in 384E-384F, are essential.

(b) There is an atomless semi-finite measure algebra (C, λ̄) such that AutC has an outer automorphism.

proof In fact we can take C to be the simple product of A and B above. I claim that the isomorphism
between AutA and AutB gives rise to an outer automorphism of AutC; this seems very natural, but I think
there is a fair bit to check, so I take the argument in easy stages.

(i) We may identify the Dedekind completion of C = A ×B with A × A. For φ ∈ AutC, we have a

corresponding φ̂ ∈ Aut(A × A). Now B × A is invariant under φ̂. PPP Consider first φ(0, 1) = (a1, b1) ∈ C.
The corresponding principal ideal C(a1,b1)

∼= Aa1 × Bb1 of C must be isomorphic to the principal ideal
C(0,1)

∼= B; so that if (a, b) ∈ C and (a, b) ⊆ (a1, b1), then just one of the principal ideals C(a,b)
∼= Aa ×Bb,

C(a1\a,b1\b)
∼= Aa1\a ×Bb1\b is ccc. But this can only happen if Aa1 is ccc and Bb1 is not; that is, if a1 and

1 \ b1 belong to I. Consequently φ̂(0, a) ⊆ (a1, b1) belongs to B× A for every a ∈ A. We also find that

φ(1, 0) = (1, 1) \ φ(0, 1) = (1 \ a1, 1 \ b1) ∈ B× A.

Now if b ∈ I, then

Cφ(b,0) ∼= C(b,0)
∼= Ab

is ccc and

φ(b, 0) ∈ I × I ⊆ B× A;

while

φ(1 \ b, 0) = (1 \ a1, 1 \ b1) \ φ(b, 0) ∈ B× A.

This shows that φ(b, 0) ∈ B× A for every b ∈ B. So

φ̂(b, a) = φ̂(b, 0) ∪ φ̂(0, a) ∈ B× A

for every b ∈ B and a ∈ A. QQQ

(ii) Let θ : A × A → A × A be the involution defined by setting θ(a, b) = (b, a) for all a, b ∈ A. Take

φ ∈ AutC and consider ψ = θφ̂θ−1 ∈ Aut(A × A). If c = (a, b) ∈ C, then θ−1c = (b, a) ∈ B × A, so

φ̂θ−1c ∈ B×A, by (i), and ψc ∈ A×B = C. This shows that ψ↾C is a homomorphism from C to itself. Of

course ψ−1 = θφ̂−1θ−1 has the same property. So we have a map q : AutC→ AutC given by setting

q(φ) = θφ̂θ−1↾C

for φ ∈ AutC. Evidently q is an automorphism.

(iii) ??? Suppose, if possible, that q were an inner automorphism. Let χ ∈ AutC be such that q(φ) =
χφχ−1 for every φ ∈ AutC. Then
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χ̂φ̂χ̂−1 = q̂(φ) = θφ̂θ−1

for every φ ∈ AutC. Since G = {φ̂ : φ ∈ AutC} is a subgroup of Aut(A × A) with many involutions, the
‘uniqueness’ assertion of 384D tells us that χ̂ = θ. But

θ[C] = B× A 6= C = χ[C] = χ̂[C],

so this cannot be. XXX
Thus q is the required outer automorphism of AutC.

Remark Thus the hypothesis ‘homogeneous’ in 384G, and the hypothesis ‘Dedekind complete’ in 384K, are
necessary.

384Q Example Let µ be Lebesgue measure on R, and (A, µ̄) its measure algebra. Then Autµ̄ A has an
outer automorphism. PPP Set f(x) = 2x for x ∈ R. Then E 7→ f−1[E] = 1

2E is a Boolean automorphism of

the domain Σ of µ, and µ( 1
2E) = 1

2µE for every E ∈ Σ (263A, or otherwise). So we have a corresponding

θ ∈ AutA defined by setting θE• = ( 1
2E)• for every E ∈ Σ, and µ̄(θa) = 1

2 µ̄a for every a ∈ A. By

384N, we have an automorphism q of Autµ̄ A defined by setting q(φ) = θφθ−1 for every measure-preserving
automorphism φ. But q is now an outer automorphism of Autµ̄ A, because (by 384D) the only possible
automorphism of A corresponding to q is θ, and θ is not measure-preserving. QQQ

Thus the hypothesis ‘totally finite’ in 384O cannot be omitted.

384X Basic exercises (a) Let A be a Boolean algebra. Show that the following are equiveridical: (i)
A is nowhere rigid; (ii) for every a ∈ A \ {0} and n ∈ N there are disjoint non-zero b0, . . . , bn ⊆ a such that
the principal ideals Abi they generate are all isomorphic; (iii) for every a ∈ A \ {0} and n ≥ 1 there is a
φ ∈ AutA, of order n, supported by a.

(b) Let A be an atomless homogeneous Boolean algebra and B a nowhere rigid Boolean algebra, and
suppose that AutA is isomorphic to AutB. Show that there is an invariant order-dense subalgebra of B
which is isomorphic to A.

(c) Let A and B be nowhere rigid Boolean algebras. Show that if AutA and AutB are isomorphic, then

the Dedekind completions Â and B̂ are isomorphic.

(d) Find two non-isomorphic atomless totally finite measure algebras (A, µ̄), (B, ν̄) such that Autµ̄ A and
Autν̄ B are isomorphic. (This is easy.)

(e) Let (A, µ̄) and (B, ν̄) be semi-finite measure algebras and θ : A→ B a Boolean isomorphism. Show
that the following are equiveridical: (i) for every φ ∈ Autµ̄ A, θφθ−1 ∈ Autν̄ B; (ii)(α) for every infinite
cardinal κ there is an ακ > 0 such that ν̄(θa) = ακµ̄a whenever a ∈ A and the principal ideal Aa is
Maharam-type-homogeneous with Maharam type κ; (β) for every γ ∈ ]0,∞[ there is an αγ > 0 such that
ν̄(θa) = αγ µ̄a whenever a ∈ A is an atom of measure γ.

(f) Show that if X is any set such that #(X) 6= 6, the group G of all permutations of X has no outer
automorphisms. (Hint : show that if τ ∈ G is an involution such that not every conjugate of τ commutes
with τ , while ττ ′ and ττ ′′ are conjugate whenever τ ′, τ ′′ are conjugates of τ which do not commute with τ ,
then τ is a transposition.)

(g) Let q : AutC→ AutC be the automorphism of 384Pb. Show that q(φ) is measure-preserving whenever
φ is measure-preserving, so that q↾ Autλ̄ C is an outer automorphism of Autλ̄ C.

384Y Further exercises (a) Let (A, µ̄) and (B, ν̄) be localizable measure algebras such that AutA ∼=
AutB. Show that either A ∼= B or one of A, B has just one atom and the other is atomless.

(b) Let (A, µ̄), (B, ν̄) be localizable measure algebras such that Autµ̄ A ∼= Autν̄ B. Show that either

(A, µ̄) ∼= (B, ν̄) or there is some γ ∈ ]0,∞[ such that one of A, B has just one atom of measure γ and the
other has none or there are γ, γ′ ∈ ]0,∞[ such that the number of atoms of A of measure γ is equal to the
number of atoms of B of measure γ′, but not to the number of atoms of A of measure γ′.
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(c) Let (A, µ̄) be a localizable measure algebra. Show that there is an outer automorphism of AutA iff
A has exactly six atoms.

(d) Let (A, µ̄) be a localizable measure algebra. For each infinite cardinal κ let eκ be the Maharam-type-κ
component of A; for each γ ∈ ]0,∞[ let Aγ be the set of atoms of A of measure γ. Show that there is an
outer automorphism of Autµ̄ A iff

either there is an infinite cardinal κ such that µ̄eκ =∞
or there are distinct γ, δ ∈ ]0,∞[ such that #(Aγ) = #(Aδ) ≥ 2
or there is a γ ∈ ]0,∞[ such that #(Aγ) = 6
or there are γ, δ ∈ ]0,∞[ such that #(Aγ) = 2 < #(Aδ) < ω.

384 Notes and comments Let me recapitulate the results above. If A and B are Boolean algebras,
any isomorphism between AutA and AutB corresponds to an isomorphism between A and B if either A

and B are atomless and homogeneous (384E) or they are Dedekind complete and nowhere rigid (384J). If
(A, µ̄) and (B, ν̄) are atomless localizable measure algebras, then any automorphism between Autµ̄ A and
Autν̄ B corresponds to an isomorphism between A and B (384M) which if µ̄ = ν̄ is totally finite will be
measure-preserving (384O).

These results may appear a little less surprising if I remark that the elementary Boolean algebras PX
give rise to some of the same phenomena. The automorphism group of PX can be identified with the group
of all permutations of X, and this has no outer automorphisms unless X has just six elements (384Xf).
Some of the ideas of the fundamental theorem 384D can be traced through in the purely atomic case also,
though of course there are significant changes to be made, and some serious complications arise, of which
the most striking surround the remarkable fact that S6 does have an outer automorphism (Burnside 1911,
§162; Rotman 84, Theorem 7.8). I have not attempted to incorporate these into the main results. For
localizable measure algebras, where the only rigid parts are atoms, the complications are superable, and I
think I have listed them all (384Ya-384Yd).

Version of 14.1.15

385 Entropy

Perhaps the most glaring problem associated with the theory of measure-preserving homomorphisms and
automorphisms is the fact that we have no generally effective method of determining when two homomor-
phisms are the same, in the sense that two structures (A, µ̄, π) and (B, ν̄, φ) are isomorphic, where (A, µ̄)
and (B, ν̄) are measure algebras and π : A → A, φ : B → B are Boolean homomorphisms. Of course the
first part of the problem is to decide whether (A, µ̄) and (B, ν̄) are isomorphic; but this is solved (at least
for localizable algebras) by Maharam’s theorem (see 332J). The difficulty lies in the homomorphisms. Even
when we know that (A, µ̄) and (B, ν̄) are both isomorphic to the Lebesgue measure algebra, the extraordi-
nary variety of constructions of homomorphisms – corresponding in part to the variety of measure spaces
with such measure algebras, each with its own natural inverse-measure-preserving functions – means that
the question of which are isomorphic to each other is continually being raised. In this section I give the most
elementary ideas associated with the concept of ‘entropy’, up to the Kolmogorov-Sinǎı theorem (385P). This
is an invariant which can be attached to any measure-preserving homomorphism on a probability algebra,
and therefore provides a useful method for distinguishing non-isomorphic homomorphisms.

The main work of the section deals with homomorphisms on measure algebras, but as many of the most
important ones arise from inverse-measure-preserving functions on measure spaces. I comment on the extra
problems arising in the isomorphism problem for such functions (385T-385V). I should remark that some of
the lemmas will be repeated in stronger forms in the next section.

385A Notation Throughout this section and the next two, I will use the letter q to denote the function
from [0,∞[ to R defined by saying that q(t) = −t ln t = t ln 1

t if t > 0, q(0) = 0.

c© 1997 D. H. Fremlin
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0 0.5 1 1.5

-0.5

The function q

We shall need the following straightforward facts concerning q.

(a) q is continuous on [0,∞[ and differentiable on ]0,∞[; q′(t) = −1 − ln t and q′′(t) = − 1
t for t > 0.

Because q′′ is negative, q is concave, that is, −q is convex. q has a unique maximum at ( 1
e ,

1
e ).

(b) If s ≥ 0 and t > 0 then q′(s+ t) ≤ q′(t); consequently

q(s+ t) = q(s) +
∫ t
0
q′(s+ τ)dτ ≤ q(s) + q(t)

for s, t ≥ 0. It follows that q(
∑n
i=0 si) ≤

∑n
i=0 q(si) for all s0, . . . , sn ≥ 0 and (because q is continuous)

q(
∑∞
i=0 si) ≤

∑∞
i=0 q(si) for every non-negative summable series 〈si〉i∈N.

(c) If s, t ≥ 0 then q(st) = sq(t) + tq(s); more generally, if n ≥ 1 and si ≥ 0 for i ≤ n then

q(
∏n
i=0 si) =

∑n
j=0 q(sj)

∏
i6=j si.

(d) The function t 7→ q(t) + q(1 − t) has a unique maximum at ( 1
2 , ln 2). ( ddt (q(t) + q(1 − t)) = ln 1−t

t .)

It follows that for every ǫ > 0 there is a δ > 0 such that |t− 1
2 | ≤ ǫ whenever q(t) + q(1− t) ≥ ln 2− δ.

(e) If 0 ≤ t ≤ 1
2 , then q(1− t) ≤ q(t). PPP Set f(t) = q(t)− q(1− t). Then

f ′′(t) = −1

t
+

1

1−t
=

2t−1

t(1−t)
≤ 0

for 0 < t ≤ 1
2 , while f(0) = f( 1

2 ) = 0, so f(t) ≥ 0 for 0 ≤ t ≤ 1
2 . QQQ

(f)(i) If A is a Dedekind σ-complete Boolean algebra, I will write q̄ for the function from L0(A)+ to
L0(A) defined from q (364H). Note that because 0 ≤ q(t) ≤ 1 for t ∈ [0, 1], 0 ≤ q̄(u) ≤ χ1 if 0 ≤ u ≤ χ1.

(ii) By (b), q̄(u+ v) ≤ q̄(u) + q̄(v) for all u, v ≥ 0 in L0(A). (Represent A as the measure algebra of a
measure space, so that q̄(f•) = (qf)•, as in 364Ib.)

(iii) Similarly, if u, v ∈ L0(A)+, then q̄(u× v) = u× q̄(v) + v × q̄(u).

385B Lemma Let (A, µ̄) be a probability algebra, B a closed subalgebra of A, and P : L1(A, µ̄) →
L1(A, µ̄) the corresponding conditional expectation operator (365Q). Then

∫
q̄(u) ≤ q(

∫
u) and P (q̄(u)) ≤

q̄(Pu) for every u ∈ L∞(A)+.

proof Apply the remarks in 365Qb to −q. (q̄(u) ∈ L∞ ⊆ L1 for every u ∈ (L∞)+ because q is bounded on
every bounded interval in [0,∞[.)

385C Definition Let (A, µ̄) be a probability algebra. If A is a partition of unity in A, its entropy is
H(A) =

∑
a∈A q(µ̄a), where q is the function defined in 385A.

Remarks (a) In the definition of ‘partition of unity’ (311Gc) I allowed 0 to belong to the family. In the
present context this is a mild irritant, and when convenient I shall remove 0 from the partitions of unity
considered here (as in 385F below). But because q(0) = 0, it makes no difference; H(A) = H(A \ {0})
whenever A is a partition of unity. So if you wish you can read ‘partition of unity’ in this section to mean
‘partition of unity not containing 0’, if you are willing to make an occasional amendment in a formula. In
important cases, in fact, A is of the form {ai : i ∈ I} or {ai : i ∈ I} \ {0}, where 〈ai〉i∈I is an indexed
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partition of unity, with ai ∩ aj = 0 for i 6= j, but no restriction in the number of i with ai = 0; in this case,
we still have H(A) =

∑
i∈I q(µ̄ai).

(b) Many authors prefer to use log2 in place of ln. This makes sense in terms of one of the intuitive
approaches to entropy as the ‘information’ associated with a partition. See Petersen 83, §5.1.

385D Definition Let (A, µ̄) be a probability algebra, B a closed subalgebra of A and A a partition of
unity in A. Let P : L1(A, µ̄) → L1(A, µ̄) be the conditional expectation operator associated with B. Then
the conditional entropy of A on B is

H(A|B) =
∑
a∈A

∫
q̄(Pχa),

where q̄ is defined as in 385Af.

385E Elementary remarks (a) In the formula
∑
a∈A

∫
q̄(Pχa),

we have 0 ≤ P (χa) ≤ χ1 for every a, so q̄(Pχa) ≥ 0 and every term in the sum is non-negative; accordingly
H(A|B) is well-defined in [0,∞].

(b) H(A) = H(A|{0, 1}), since if B = {0, 1} then P (χa) = µ̄aχ1, so that
∫
q̄(Pχa) = q(µ̄a). If A ⊆ B,

H(A|B) = 0, since P (χa) = χa, q̄(Pχa) = 0 for every a.

385F Definition If A is a Boolean algebra and A, B ⊆ A are partitions of unity, I write A ∨ B for the
partition of unity {a ∩ b : a ∈ A, b ∈ B} \ {0}. (See 385Xf.)

385G Lemma Let (A, µ̄) be a probability algebra and B a closed subalgebra. Let A ⊆ A be a partition
of unity.

(a) If B is another partition of unity in A, then

H(A|B) ≤ H(A ∨B|B) ≤ H(A|B) +H(B|B).

(b) If B is purely atomic and D is the set of its atoms, then H(A ∨D) = H(D) +H(A|B).

(c) If C ⊆ B is a smaller closed subalgebra of A, then H(A|C) ≥ H(A|B). In particular, H(A) ≥ H(A|B).

(d) Suppose that 〈Bn〉n∈N is a non-decreasing sequence of closed subalgebras of A such that B =⋃
n∈N

Bn. If H(A) <∞ then

H(A|B) = limn→∞H(A|Bn).

In particular, if A ⊆ B then limn→∞H(A|Bn) = 0.

proof Write P for the conditional expectation operator on L1(A, µ̄) associated with B.

(a)(i) If B is infinite, enumerate it as 〈bj〉j∈N; if it is finite, enumerate it as 〈bj〉j≤n and set bj = 0 for
j > n. For any a ∈ A,

χa =
∑∞
j=0 χ(a ∩ bj), P (χa) =

∑∞
j=0 Pχ(a ∩ bj),

q̄(Pχa) = lim
n→∞

q̄(
n∑

j=0

Pχ(a ∩ bj))

≤ lim
n→∞

n∑

j=0

q̄(Pχ(a ∩ bj)) =

∞∑

j=0

q̄(Pχ(a ∩ bj))

where all the infinite sums are to be regarded as order*-limits of the corresponding finite sums (see §367),
and the middle inequality is a consequence of 385A(f-ii). Accordingly
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H(A ∨B|B) =
∑

a∈A,b∈B,a∩b 6=0

∫
q̄(Pχ(a ∩ b))

=
∑

a∈A

∞∑

j=0

∫
q̄(Pχ(a ∩ bj)) ≥

∑

a∈A

∫
q̄(Pχa) = H(A|B).

(ii) Suppose for the moment that A and B are both finite. For a ∈ A set ua = P (χa). If a, b ∈ A we
have 0 ≤ ua∩b ≤ ub in L0(B), so we may choose vab ∈ L0(B) such that 0 ≤ vab ≤ χ1 and ua∩b = vab × ub.

For any b ∈ B,
∑
a∈A ua∩b = ub (because

∑
a∈A χ(a ∩ b) = χb), so ub ×

∑
a∈A vab = ub. Since

[[|q̄(ub)| > 0]] ⊆ [[ub > 0]], q̄(ub)×
∑
a∈A vab = q̄(ub).

For any a ∈ A,

q̄(ua) = q̄(
∑

b∈B

ua∩b) = q̄(
∑

b∈B

ub × vab) = q̄(P (
∑

b∈B

χb× vab))

(because vab ∈ L0(B) for every b, so P (χb× vab) = P (χb)× vab)
≥ P (q̄(

∑

b∈B

χb× vab))

(385B)

= P (
∑

b∈B

χb× q̄(vab))

(because B is disjoint)

=
∑

b∈B

ub × q̄(vab)

(because q̄(vab) ∈ L0(B) for every b).
Putting these together,

H(A ∨B|B) =
∑

a∈A,b∈B

∫
q̄(ua∩b) =

∑

a∈A,b∈B

∫
q̄(ub × vab)

=
∑

a∈A,b∈B

∫
ub × q̄(vab) +

∑

a∈A,b∈B

∫
vab × q̄(ub)

(385A(f-iii))

≤
∑

a∈A

∫
q̄(ua) +

∑

b∈B

∫
q̄(ub) = H(A|B) +H(B|B).

(iii) For general partitions of unity A and B, take any finite set C ⊆ A ∨ B. Then C ⊆ {a ∩ b : a ∈
A0, b ∈ B0} where A0 ⊆ A and B0 ⊆ B are finite. Set

A′ = A0 ∪ {1 \ supA0}, B′ = B0 ∪ {1 \ supB0},
so that A′ and B′ are finite partitions of unity and C ⊆ A′ ∨B′. Now

∑

c∈C

∫
q̄(Pχc) ≤

∑

c∈A′∨B′

∫
q̄(Pχc) = H(A′ ∨B′|B) ≤ H(A′|B) +H(B′|B)

(by (ii))

≤ H(A′ ∨A|B) +H(B′ ∨B|B)

(by (i))
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= H(A|B) +H(B|B).

As C is arbitrary,

H(A ∨B|B) =
∑
c∈A∨B

∫
q̄(Pχc) ≤ H(A|B) +H(B|B).

(b) Because B is purely atomic and D is its set of atoms,

P (χa) =
∑
d∈D

µ̄(a∩d)

µ̄d
χd, q̄(P (χa)) =

∑
d∈D q(

µ̄(a∩d)

µ̄d
)χd

for every a ∈ A,

H(A|B) =
∑
a∈A,d∈D q(

µ̄(a∩d)

µ̄d
)µ̄d.

Accordingly,

H(A ∨D) =
∑

a∈A,d∈D

q(µ̄(a ∩ d)) =
∑

a∈A,d∈D

q(
µ̄(a∩d)

µ̄d
)µ̄d+

µ̄(a∩d)

µ̄d
q(µ̄d)

(385Ac)

= H(A|B) +
∑

d∈D

q(µ̄d) = H(A|B) +H(D).

(c) Write PC for the conditional expectation operator corresponding to C. If a ∈ A,

q̄(PCχa) = q̄(PCPχa) ≥ PCq̄(Pχa)

by 385B. So

H(A|C) =
∑
a∈A

∫
q̄(PCχa) ≥∑a∈A

∫
PCq̄(Pχa) =

∑
a∈A

∫
q̄(Pχa) = H(A|B).

Taking C = {0, 1}, we get H(A) ≥ H(A|B).

(d) Let Pn be the conditional expectation operator corresponding to Bn, for each n. Fix a ∈ A.
Then P (χa) is the order*-limit of 〈Pn(χa)〉n∈N, by Lévy’s martingale theorem (367Jb). Consequently
(because q is continuous) 〈q̄(Pnχa)〉n∈N is order*-convergent to q̄(Pχa) for every a ∈ A (367H). Also,
because 0 ≤ Pnχa ≤ χ1 for every n, 0 ≤ q̄(Pnχa) ≤ 1

eχ1 for every n. By the Dominated Convergence

Theorem (367I), limn→∞

∫
q̄(Pnχa) =

∫
q̄(Pχa).

By 385B, we also have

0 ≤
∫
q̄(Pnχa) ≤ q(

∫
Pn(χa)) = q(

∫
χa) = q(µ̄a)

for every a ∈ A and n ∈ N; since also

0 ≤
∫
q̄(Pχa) ≤ q(µ̄a),

we have |
∫
q̄(Pnχa)−

∫
q̄(Pχa)| ≤ q(µ̄a) for every a ∈ A, n ∈ N.

Now we are supposing that H(A) is finite. Given ǫ > 0, we can find a finite set I ⊆ A such that∑
a∈A\I q(µ̄a) ≤ ǫ, and an n0 ∈ N such that

∑
a∈I |

∫
q̄(Pnχa)−

∫
q̄(Pχa)| ≤ ǫ

for every n ≥ n0; in which case
∑
a∈A\I |

∫
q̄(Pnχa)−

∫
q̄(Pχa)| ≤∑a∈A\I q(µ̄a) ≤ ǫ

and |H(A|Bn)−H(A|B)| ≤ 2ǫ for every n ≥ n0. As ǫ is arbitrary, H(A|B) = limn→∞H(A|Bn).

385H Corollary Let (A, µ̄) be a probability algebra and A, B two partitions of unity in A. Then
H(A) ≤ H(A ∨B) ≤ H(A) +H(B).

proof Take B = {0, 1} in 385Ga.
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385I Lemma Let (A, µ̄) be a probability algebra, and π : A → A a measure-preserving Boolean homo-
morphism. If A ⊆ A is a partition of unity, then H(π[A]) = H(A).

proof
∑
a∈A q(µ̄πa) =

∑
a∈A q(µ̄a).

385J Lemma Let (A, µ̄) be a measure algebra. Let A be the set of its atoms. Then the following are
equiveridical:

(i) either A is not purely atomic or A is purely atomic and H(A) =∞;
(ii) there is a partition of unity B ⊆ A such that H(B) =∞;
(iii) for every γ ∈ R there is a finite partition of unity C ⊆ A such that H(C) ≥ γ.

proof (i)⇒(ii) We need examine only the case in which A is not purely atomic. Let a ∈ A be a non-zero
element such that the principal ideal Aa is atomless. By 331C we can choose inductively a disjoint sequence
〈an〉n∈N such that an ⊆ a and µ̄an = 2−n−1µ̄a. Now, for each n ∈ N, choose a disjoint set Bn such that

#(Bn) = 22
n

, b ⊆ an and µ̄b = 2−2n µ̄an for each b ∈ Bn.

Set

B =
⋃
n∈N

Bn ∪ {1 \ a}.
Then B is a partition of unity in A and

H(B) ≥
∞∑

n=0

∑

b∈Bn

q(µ̄Bn) =

∞∑

n=0

22
n

q
( µ̄a

2n+1+2n

)

=

∞∑

n=0

µ̄a

2n+1
ln
(2n+1+2n

µ̄a

)
≥

∞∑

n=0

µ̄a

2n+1
2n ln 2 =∞.

(ii)⇒(iii) Enumerate B as 〈bi〉i∈N. For each n ∈ N, Cn = {bi : i ≤ n}∪{1 \ supi≤n bi} is a finite partition
of unity, and

limn→∞H(Cn) ≥ limn→∞

∑n
i=0 q(µ̄bi) = H(B) =∞.

(iii)⇒(i) We need only consider the case in which A is purely atomic. In this case, A ∨C = A for every
partition of unity C ⊆ A, so H(C) ≤ H(A) for every C (385H), and H(A) must be infinite.

385K Definition Let A be a Boolean algebra. If π : A → A is an order-continuous Boolean homo-
morphism, A ⊆ A is a partition of unity and n ≥ 1, write Dn(A, π) for the partition of unity generated
by {πia : a ∈ A, 0 ≤ i < n}, that is, {infi<n π

iai : ai ∈ A for every i < n} \ {0}. It will occasionally be
convenient to take D0(A, π) = {1} (or ∅ in the trivial case A = {0}). Observe that D1(A, π) = A \ {0} and

Dn+1(A, π) = Dn(A, π) ∨ πn[A] = A ∨ π[Dn(A, π)]

for every n ∈ N.

385L Lemma Let (A, µ̄) be a probability algebra and π : A → A a measure-preserving Boolean ho-
momorphism. Let A ⊆ A be a partition of unity. Then limn→∞

1
nH(Dn(A, π)) = infn≥1

1
nH(Dn(A, π)) is

defined in [0,∞].

proof (a) Set α0 = 0, αn = H(Dn(A, π)) for n ≥ 1. Then αm+n ≤ αm + αn for all m, n ≥ 0. PPP If m,
n ≥ 1, Dm+n(A, π) = Dm(A, π) ∨ πm[Dn(A, π)]. So 385Ga tells us that

H(Dm+n(A, π)) ≤ H(Dm(A, π)) +H(πm[Dn(A, π)]) = H(Dm(A, π)) +H(Dn(A, π))

because π is measure-preserving. QQQ

(b) If α1 =∞ then of courseH(Dn(A, π)) ≥ H(A) =∞ for every n ≥ 1, by 385H, so infn≥1
1
nH(Dn(A, π))

= ∞ = limn→∞
1
nH(Dn(A, π)). Otherwise, αn ≤ nα1 is finite for every n. Set α = infn≥1

1
nαn. If ǫ > 0

there is an m ≥ 1 such that 1
mαm ≤ α + ǫ. Set M = maxj<m αj . Now, for any n ≥ m, there are k ≥ 1,

j < m such that n = km+ j, so that

D.H.Fremlin



50 Automorphism groups 385L

αn ≤ kαm + αj ,
1

n
αn ≤ k

n
αm +

M

n
≤ 1

m
αm +

M

n
.

Accordingly lim supn→∞
1
nαn ≤ α+ ǫ. As ǫ is arbitrary,

α ≤ lim infn→∞
1

n
αn ≤ lim supn→∞

1

n
αn ≤ α

and limn→∞
1
nαn = α is defined in [0,∞].

Remark See also 385Yc and 386Kc below.

385M Definition Let (A, µ̄) be a probability algebra, and π : A → A a measure-preserving Boolean
homomorphism. For any partition of unity A ⊆ A, set

h(π,A) = infn≥1
1
nH(Dn(A, π)) = limn→∞

1
nH(Dn(A, π))

(385L). Now the entropy of π is

h(π) = sup{h(π,A) : A ⊆ A is a finite partition of unity}.

Remarks (a) For any partition A of unity,

h(π,A) ≤ H(D1(A, π)) = H(A).

(b) Observe that if π is the identity automorphism then Dn(A, π) = A \ {0} for every A and n, so that
h(π) = 0.

385N Lemma Let (A, µ̄) be a probability algebra and A, B two partitions of unity in A. Let π : A→ A

be a measure-preserving Boolean homomorphism. Then h(π,A) ≤ h(π,B)+H(A|B), where B is the closed
subalgebra of A generated by B.

proof We may suppose that 0 /∈ B, since removing 0 from B changes neither Dn(B, π) nor B. For each
n ∈ N, set An = πn[A] and Bn = πn[B]. Let Bn = πn[B] be the closed subalgebra of A generated by Bn,
and B∗

n the closed subalgebra of A generated by Dn(B, π). Then H(An|Bn) = H(A|B). PPP The point is
that, because B is purely atomic and B is its set of atoms,

H(A|B) =
∑
a∈A,b∈B q(

µ̄(a∩b)

µ̄b
)µ̄b

as in the proof of 385Gb. Similarly,

H(An|Bn) =
∑
a∈A,b∈B q(

µ̄(πna∩πnb)

µ̄(πnb)
)µ̄(πnb) = H(A|B). QQQ

Accordingly, for any n ≥ 1,

H(Dn(A, π)|B∗
n) ≤

n−1∑

i=0

H(Ai|B∗
n)

(by 385Ga, because Dn(A, π) = A0 ∨ . . . ∨An)

≤
n−1∑

i=0

H(Ai|Bi)

(by 385Gc)

= nH(A|B).

Now

h(π,A) = lim
n→∞

1

n
H(Dn(A, π)) ≤ lim sup

n→∞

1

n
H(Dn(A, π) ∨Dn(B, π))

(385Ga)
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= lim sup
n→∞

1

n
H(Dn(B, π)) +

1

n
H(Dn(A, π)|B∗

n)

(385Gb)

≤ lim sup
n→∞

1

n
H(Dn(B, π)) + lim sup

n→∞

1

n
H(Dn(A, π)|B∗

n) ≤ h(π,B) +H(A|B).

385O Lemma Let (A, µ̄) be a probability algebra, π : A→ A a measure-preserving Boolean homomor-
phism, and A ⊆ A a partition of unity such that H(A) <∞. Then h(π,A) ≤ h(π).

proof If A is finite, this is immediate from the definition of h(π); so suppose that A is infinite. Enumerate
A as 〈ai〉i∈N. For each n ∈ N let Bn be the subalgebra of A generated by a0, . . . , an, and Bn the set of its

atoms; set B =
⋃
n∈N

Bn. Then A ⊆ B, so

limn→∞H(A|Bn) = H(A|B) = 0

by 385Eb and 385Gd. Accordingly, using 385N,

h(π,A) ≤ h(π,Bn) +H(A|Bn) ≤ h(π) +H(A|Bn)→ h(π)

as n→∞, and h(π,A) ≤ h(π).

385P Theorem (Kolmogorov 58, Sinǎı 59) Let (A, µ̄) be a probability algebra, and π : A → A a
measure-preserving Boolean homomorphism.

(i) Suppose that A ⊆ A is a partition of unity such that H(A) < ∞ and the closed subalgebra of A

generated by
⋃
n∈N

πn[A] is A itself. Then h(π) = h(π,A).
(ii) Suppose that π is an automorphism, and that A ⊆ A is a partition of unity such that H(A) <∞ and

the closed subalgebra of A generated by
⋃
n∈Z

πn[A] is A itself. Then h(π) = h(π,A).

proof I take the two arguments together. In both cases, by 385O, we have h(π,A) ≤ h(π), so I have to
show that if B ⊆ A is any finite partition of unity, then h(π,B) ≤ h(π,A). For (i), let An be the partition
of unity generated by

⋃
0≤j<n π

j [A]; for (ii), let An be the partition of unity generated by
⋃

−n≤j<n π
j [A].

Then h(π,An) = h(π,A) for every n. PPP In case (i), we have Dm(An, π) = Dm+n(A, π) for every m, so that

lim
m→∞

1

m
H(Dm(An, π)) = lim

m→∞

1

m
H(Dm+n(A, π))

= lim
m→∞

1

m
H(Dm(A, π)).

In case (ii), we have Dm(An, π) = π−n[Dm+2n(A, π)] for every m, so that

lim
m→∞

1

m
H(Dm(An, π)) = lim

m→∞

1

m
H(Dm+2n(A, π))

= lim
m→∞

1

m
H(Dm(A, π)). QQQ

Let An be the purely atomic closed subalgebra of A generated by An; our hypothesis is that the
closed subalgebra generated by

⋃
n∈N

An is A itself, that is, that
⋃
n∈N

An is dense. But this means that
limn→∞H(B|An) = 0 (385Gd). Since

h(π,B) ≤ h(π,An) +H(B|An) = h(π,A) +H(B|An)

for every n (385N), we have the result.

385Q Bernoulli shifts Let (A, µ̄) be a probability algebra, and π : A→ A a measure-preserving Boolean
homomorphism.

(a) π is a one-sided Bernoulli shift if there is a closed subalgebra A0 in A such that (i) 〈πk[A0]〉k∈N

is stochastically independent (that is, µ̄(infj≤k π
jaj) =

∏k
j=0 µ̄aj for all a0, . . . , ak ∈ A0; see 325L) (ii) the

closed subalgebra of A generated by
⋃
k∈N

πk[A0] is A itself. In this case A0 is a root algebra for π.
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(b) π is a two-sided Bernoulli shift if it is an automorphism and there is a closed subalgebra A0 in A

such that (i) 〈πk[A0]〉k∈Z is independent (ii) the closed subalgebra of A generated by
⋃
k∈Z

πk[A0] is A itself.
In this case A0 is a root algebra for π.

It is important to be aware that a Bernoulli shift can have many, and (in the case of a two-sided shift)
very different, root algebras; this is the subject of §387 below.

385R Theorem Let (A, µ̄) be a probability algebra and π : A → B a Bernoulli shift, either one- or
two-sided, with root algebra A0.

(i) If A0 is purely atomic, then h(π) = H(A), where A is the set of atoms of A0.
(ii) If A0 is not purely atomic, then h(π) =∞.

proof (a) The point is that for any partition of unity C ⊆ A0 \ {0}, h(π,C) = H(C). PPP For any n ≥ 1,
Dn(C, π) is the partition of unity consisting of elements of the form infj<n π

jcj , where c0, . . . , cn−1 ∈ C. So

H(Dn(C, π)) =
∑

c0,... ,cn−1∈C

q(µ̄( inf
j<n

πjcj)) =
∑

c0,... ,cn−1∈C

q(

n−1∏

j=0

µ̄cj))

=
∑

c0,... ,cn−1∈C

n−1∑

j=0

q(µ̄cj)
∏

i6=j

µ̄ci

(385Ac)

=
n−1∑

j=0

∑

c∈C

q(µ̄c) = nH(C).

So

h(π,C) = limn→∞
1

n
H(Dn(C, π)) = H(C). QQQ

(b) If A0 is purely atomic and H(A) <∞, the result can now be read off from 385P, because the closed
subalgebra of A generated by A is A0 and the closed subalgebra of A generated by

⋃
k∈N

πk[A] or
⋃
k∈Z

πk[A]
is A; so h(π) = h(π,A) = H(A).

(c) Otherwise, 385J tells us that there are finite partitions of unity C ⊆ A0 such that H(C) is arbitrarily
large. Since h(π) ≥ h(π,C) = H(C) for any such C, by (a) and the definition of h(π), h(π) must be infinite,
as claimed.

385S Remarks (a) The standard construction of a Bernoulli shift is from a product space, as follows.
If (X,Σ, µ0) is any probability space, write µ for the product measure on XN; let (A, µ̄) be the measure
algebra of µ, and A0 ⊆ A the set of equivalence classes of sets of the form {x : x(0) ∈ E} where E ∈ Σ, so
that (A0, µ̄↾A0) can be identified with the measure algebra of µ0. We have an inverse-measure-preserving
function f : XN → XN defined by setting

f(x)(n) = x(n+ 1) for every x ∈ XN, n ∈ N,

and f induces, as usual, a measure-preserving homomorphism π : A → A. Now π is a one-sided Bernoulli
shift with root algebra A0. PPP (i) If a0, . . . , ak ∈ A0, express each aj as {x : x(0) ∈ Ej}•, where Ej ∈ Σ.
Now

πjaj = {x : (f j(x))(0) ∈ Ej}• = {x : x(j) ∈ Ej}•

for each j, so

µ̄(infj≤k π
jaj) = µ(

⋂
j≤k{x : x(j) ∈ Ej}) =

∏k
j=0 µ0Ej =

∏k
j=0 µ̄aj .

Thus 〈πk[A0]〉k∈N is independent. (ii) The closed subalgebra A′ of A generated by
⋃
k∈N

πk[A0] must contain
{x : x(k) ∈ E}• for every k ∈ N and E ∈ Σ, so must contain W • for every W in the σ-algebra generated
by sets of the form {x : x(k) ∈ E}; but every set measured by µ is equivalent to such a set W (254Ff). So
A′ = A. QQQ
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(b) The same method gives us two-sided Bernoulli shifts. Again let (X,Σ, µ0) be a probability space,
and this time write µ for the product measure on XZ; again let (A, µ̄) be the measure algebra of µ, and
A0 ⊆ A the set of equivalence classes of sets of the form {x : x(0) ∈ E} where E ∈ Σ, so that (A0, µ̄↾A0) can
once more be identified with the measure algebra of µ0. This time, we have a measure space automorphism
f : XZ → XZ defined by setting

f(x)(n) = x(n+ 1) for every x ∈ XZ, n ∈ Z,

and f induces a measure-preserving automorphism π : A→ A. The arguments used above show that π is a
two-sided Bernoulli shift with root algebra A0.

It follows that if (A, µ̄) is an atomless homogeneous probability algebra it has a two-sided Bernouilli shift.
PPP We can identify (A, µ̄) with the measure algebra of the usual measure on {0, 1}κ×Z ∼= ({0, 1}κ)Z, where
κ is the Maharam type of A. QQQ

(c) I remarked above that a Bernoulli shift will normally have many root algebras. But it is important
to know that, up to isomorphism, any probability algebra is the root algebra of just one Bernoulli shift of
each type.

PPP(i) Given a probability algebra (A0, µ̄0) then we can identify it with the measure algebra of a probability
space (X,Σ, µ0) (321J), and now the constructions of (a) and (b) provide Bernoulli shifts with root algebras
isomorphic to (A0, µ̄0).

(ii) Let (A, µ̄) and (B, ν̄) be probability algebras with one-sided Bernoulli shifts π, φ with root algebras A0,
B0, and suppose that θ0 : A0 → B0 is a measure-preserving isomorphism. Then (A, µ̄) can be identified with
the probability algebra free product of 〈πk[A0]〉k∈N (325L), while (B, ν̄) can be identified with the probability
algebra free product of 〈πk[B0]〉k∈N. For each k ∈ N, φkθ0(πk)−1 is a measure-preserving isomorphism
between πk[A0] and φk[B0]. Assembling these, we have a measure-preserving Boolean homomorphism
θ : A → B such that θa = φkθ0(πk)−1a whenever k ∈ N and a ∈ πk[A0] (325I), that is, θπka = φkθ0a
for every a ∈ A0, k ∈ N. Of course θ extends θ0. Also θ[A] is a closed subalgebra of B (324Kb) including
φk[B0] for every k, so is the whole of B, and θ is a measure-preserving isomorphism.

If we set

C = {a : a ∈ A, θπa = φθa},
then C is a closed subalgebra of A. If a ∈ A0 and k ∈ N, then

θπ(πka) = θπk+1a = φk+1θ0a = φ(φkθ0a) = φθ(πka),

so πka ∈ C. Thus φk[A0] ⊆ C for every k ∈ N, and C = A.
This means that θ : A→ B is such that φ = θπθ−1; θ is an isomorphism between the structures (A, µ̄, π)

and (B, ν̄, φ) extending the isomorphism θ0 from A0 to B0.

(iii) Now suppose that (A, µ̄) and (B, ν̄) are probability algebras with two-sided Bernoulli shifts π, φ
with root algebras A0, B0, and suppose that θ0 : A0 → B0 is a measure-preserving isomorphism. Repeating
(ii) word for word, but changing each N into Z, we find that θ0 has an extension to a measure-preserving
isomorphism θ : A → B such that θπ = φθ, so that once more the structures (A, µ̄, π) and (B, ν̄, φ) are
isomorphic. QQQ

(d) The classic problem to which the theory of this section was directed was the following: suppose we
have two two-sided Bernoulli shifts π and φ, one based on a root algebra with two atoms of measure 1

2 and

the other on a root algebra with three atoms of measure 1
3 ; are they isomorphic? The Kolmogorov-Sinǎı

theorem tells us that they are not, because h(π) = ln 2 and h(φ) = ln 3 are different. The question of which
Bernoulli shifts are isomorphic is addressed, and (for countably-generated algebras) solved, in §387 below.

(e) We shall need to know that any Bernoulli shift (either one- or two-sided) is ergodic. In fact, it is
mixing. PPP Let (A, µ̄) be a probability algebra and π : A→ A a Bernoulli shift with root algebra A0. Let B

be the subalgebra of A generated by
⋃
k∈N

πk[A0] (if π is one-sided) or by
⋃
k∈Z

πk[A0] (if π is two-sided).

If b, c ∈ B, there is some n ∈ N such that both belong to the algebra Bn generated by
⋃
j≤n π

j [A0] (if π is

one-sided) or by
⋃

|j|≤n π
j [A0] (if π is two-sided). If now k > 2n, πkb belongs to the algebra generated by⋃

j>n π
j [A0]. But this is independent of Bn (cf. 325Xg, 272K), so
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µ̄(c ∩ πkb) = µ̄c · µ̄(πkb) = µ̄c · µ̄b.
And this is true for every k ≥ n. Generally, if b, c ∈ A and ǫ > 0, there are b′, c′ ∈ B such that µ̄(b△ b′) ≤ ǫ
and µ̄(c△ c′) ≤ ǫ, so that

lim sup
k→∞

|µ̄(c ∩ πkb)− µ̄c · µ̄b| ≤ lim sup
k→∞

|µ̄(c′ ∩ πkb′)− µ̄c′ · µ̄b′|

+ µ̄(c△ c′) + µ̄(πkb△ πkb′) + |µ̄c · µ̄b− µ̄c′ · µ̄b′|
≤ 0 + ǫ+ ǫ+ |µ̄c− µ̄c′|+ |µ̄b− µ̄b′| ≤ 4ǫ.

As ǫ, b and c are arbitrary, π is mixing. By 372Qa, it is ergodic. QQQ

(f) The following elementary remark will be useful. If (A, µ̄) is a probability algebra, π : A → A is a
measure-preserving automorphism, and A0 ⊆ A is a closed subalgebra such that 〈πk[A0]〉k∈N is independent,
then 〈πk[A0]〉k∈Z is independent. PPP If J ⊆ Z is finite and 〈aj〉j∈J is a family in A0, take n ∈ N such that
−n ≤ j for every j ∈ J ; then

µ̄(infj∈J π
jaj) = µ̄(infj∈J π

n+jaj) =
∏
j∈J µ̄aj . QQQ

(g) It is I hope obvious, but perhaps I should explicitly say: if (A, µ̄) is a probability algebra, φ : A→ A

is a measure-preserving automorphism, and π : A → A is a (one- or two-sided) Bernouilli shift with a root
algebra A0, then φπφ−1 is a Bernouilli shift and φ[A0] is a root algebra for φπφ−1.

385T Isomorphic homomorphisms (a) In this section I have spoken of ‘isomorphic homomorphisms’
without offering a formal definition. I hope that my intention was indeed obvious, and that the next
sentence will merely confirm what you have already assumed. If (A1, µ̄1) and (A2, µ̄2) are measure algebras,
and π1 : A1 → A2, π2 : A2 → A2 are functions, then I say that (A1, µ̄1, π1) and (A2, µ̄2, π2) are isomorphic
if there is a measure-preserving isomorphism φ : A1 → A2 such that π2 = φπ1φ

−1. In this context, using
Maharam’s theorem or otherwise, we can expect to be able to decide whether (A1, µ̄1) and (A2, µ̄2) are or
are not isomorphic; and if they are, we have a good hope of being able to describe a measure-preserving
isomorphism θ : A1 → A2. In this case, of course, (A2, µ̄2, π2) will be isomorphic to (A1, µ̄1, π

′
2) where

π′
2 = θ−1π2θ. So now we have to decide whether (A1, µ̄1, π1) is isomorphic to (A1, µ̄1, π

′
2); and when π1, π2

are measure-preserving Boolean automorphisms, this is just the question of whether π1, π′
2 are conjugate in

the group Autµ̄1
(A1) of measure-preserving automorphisms of A1. Thus the isomorphism problem, as stated

here, is very close to the classical group-theoretic problem of identifying the conjugacy classes in Autµ̄(A)
for a measure algebra (A, µ̄). But we also want to look at measure-preserving homomorphisms which are
not automorphisms, so there would be something left even if the conjugacy problem were solved. (In effect,
we are studying conjugacy in the semigroup of all measure-preserving Boolean homomorphisms, not just in
its group of invertible elements.)

The point of the calculation of the entropy of a homomorphism is that it is an invariant under this
kind of isomorphism; so that if π1, π2 have different entropies then (A1, µ̄1, π1) and (A2, µ̄2, π2) cannot be
isomorphic. Of course the properties of being ‘ergodic’ or ‘mixing’ (see 372O) are also invariant.

(b) All the main work of this section has been done in terms of measure algebras; part of my purpose
in this volume has been to insist that this is often the right way to proceed, and to establish a language
which makes the arguments smooth and natural. But of course a large proportion of the most important
homomorphisms arise in the context of measure spaces, and I take a moment to discuss such applications.
Suppose that we have two quadruples (X1,Σ1, µ1, f1) and (X2,Σ2, µ2, f2) where, for each i, (Xi,Σi, µi) is
a measure space and fi : Xi → Xi is an inverse-measure-preserving function. Then we have associated
structures (A1, µ̄1, π1) and (A2, µ̄2, π2) where (Ai, µ̄i) is the measure algebra of (Xi,Σi, µi) and πi : Ai → Ai
is the measure-preserving homomorphism defined by the usual formula πiE

• = f−1
i [E]•. Now we can call

(X1,Σ1, µ1, f1) and (X2,Σ2, µ2, f2) isomorphic if there is a measure space isomorphism g : X1 → X2 such
that f2 = gf1g

−1. In this case (A1, µ̄1, π1) and (A2, µ̄2, π2) are isomorphic under the obvious isomorphism
φ(E•) = g[E]• for every E ∈ Σ1.

It is not the case that if the (Ai, µ̄i, πi) are isomorphic, then the (Xi,Σi, µi, fi) are; in fact we do not
even need to have an isomorphism of the measure spaces (for instance, one could be Lebesgue measure, and
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the other the Stone space of the Lebesgue measure algebra). Even when (A1, µ̄1, π1) and (A2, µ̄2, π2) are
actually identical, f1 and f2 need not be isomorphic. There are two examples in §343 of a probability space
(X,Σ, µ) with a measure space automorphism f : X → X such that f(x) 6= x for every x ∈ X but the
corresponding automorphism on the measure algebra is the identity (343I, 343J); writing ι for the identity
map from X to itself, (X,Σ, µ, ι) and (X,Σ, µ, f) are non-isomorphic but give rise to the same (A, µ̄, π).

(c) Even with Lebesgue measure, we can have a problem in a formal sense. Take (X,Σ, µ) to be [0, 1]
with Lebesgue measure, and set f(0) = 1, f(1) = 0, f(x) = x for x ∈ ]0, 1[; then f is not isomorphic to the
identity function on X, but induces the identity automorphism on the measure algebra. But in this case we
can sort things out just by discarding the negligible set {0, 1}, and for Lebesgue measure such a procedure
is effective in a wide variety of situations. To formalize it I offer the following definition.

385U Definition Let (X1,Σ1, µ1) and (X2,Σ2, µ2) be measure spaces, and f1 : X1 → X1, f2 : X2 → X2

two inverse-measure-preserving functions. I will say that the structures (X1,Σ1, µ1, f1) and (X2,Σ2, µ2, f2)
are almost isomorphic if there are conegligible sets X ′

i ⊆ Xi such that fi[X
′
i] ⊆ X ′

i for both i and
the structures (X ′

i,Σ
′
i, µ

′
i, f

′
i) are isomorphic in the sense of 385Tb, where Σ′

i is the algebra of relatively
measurable subsets of X ′

i, µ
′
i is the subspace measure on X ′

i and f ′i = fi↾X
′
i.

385V I leave the elementary properties of this notion to the exercises (385Xq-385Xs), but I spell out
the result for which the definition is devised. I phrase it in the language of §§342-343; if the terms are not
immediately familiar, start by imagining that both (Xi,Σi, µi) are measurable subspaces of R endowed with
some Radon measure (342J, 343H), or indeed that both are [0, 1] with Lebesgue measure.

Proposition Let (X1,Σ1, µ1) and (X2,Σ2, µ2) be perfect, complete, strictly localizable and countably
separated measure spaces, and (A1, µ̄1), (A2, µ̄2) their measure algebras. Suppose that f1 : X1 → X1,
f2 : X2 → X2 are inverse-measure-preserving functions and that π1 : A1 → A1, π2 : A2 → A2 are the
measure-preserving Boolean homomorphisms they induce. If (A1, µ̄1, π1) and (A2, µ̄2, π2) are isomorphic,
then (X1,Σ1, µ1, f1) and (X2,Σ2, µ2, f2) are almost isomorphic.

proof Because (A1, µ̄1) and (A2, µ̄2) are isomorphic, we surely have µ1X1 = µ2X2. If both are zero, we
can take X ′

1 = X ′
2 = ∅ and stop; so let us suppose that µ1X1 > 0. Let φ : A1 → A2 be a measure-preserving

automorphism such that π2 = φπ1φ
−1. Because both µ1 and µ2 are complete and strictly localizable

and compact (343K), there are inverse-measure-preserving functions g1 : X1 → X2 and g2 : X2 → X1

representing φ−1, φ respectively (343B). Now g1g2 : X2 → X2, g2g1 : X1 → X1, f2g1 : X1 → X2 and
g1f1 : X1 → X2 represent, respectively, the identity automorphism on A2, the identity automorphism on
A1, the homomorphism φ−1π2 = π1φ

−1 : A2 → A1 and the homomorphism π1φ
−1 again. Next, because

both µ1 and µ2 are countably separated, the sets E1 = {x : g2g1(x) = x}, H = {x : f2g1(x) = g1f1(x)}
and E2 = {y : g1g2(y) = y} are all conegligible (343F). As in part (b) of the proof of 344I, g1↾E1 and
g2↾E2 are the two halves of a bijection, a measure space isomorphism if E1 and E2 are given their subspace
measures. Set G0 = E1 ∩ H, and for n ∈ N set Gn+1 = Gn ∩ f−1

1 [Gn]. Then every Gn is conegligible, so
X ′

1 =
⋂
n∈N

Gn is conegligible. Because X ′
1 is a conegligible subset of E1, h = g1↾X

′
1 is a measure space

isomorphism between X ′
1 and X ′

2 = g1[X ′
1], which is conegligible in X2. Because f1[Gn+1] ⊆ Gn for each n,

f1[X ′
1] ⊆ X ′

1. Because X ′
1 ⊆ H, g1f1(x) = f2g1(x) for every x ∈ X ′

1. Next, if y ∈ X ′
2, g2(y) ∈ X ′

1, so

f2(y) = f2g1g2(y) = g1f1g2(y) ∈ g1[f1[X ′
1]] ⊆ g1[X ′

1] = X ′
2.

Accordingly we have f ′2 = hf ′1h
−1, where f ′i = fi↾X

′
i for both i.

Thus h is an isomorphism between (X ′
1, f

′
1) and (X ′

2, f
′
2), and (X1,Σ1, µ1, f1) and (X2,Σ2, µ2, f2) are

almost isomorphic.

385X Basic exercises (a) Let (A, µ̄) be a probability algebra and A ⊆ A a partition of unity. Show
that if #(A) = n then H(A) ≤ lnn.

>>>(b) Let (A, µ̄) be a probability algebra, B a closed subalgebra of A and A a partition of unity in A,
enumerated as 〈an〉n∈N. Set a∗n = supi>n ai, An = {a0, . . . , an, a∗n} for each n. Show that H(An|B) ≤
H(An+1|B) for every n, and that H(A|B) = limn→∞H(An|B).
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(c) Let (A, µ̄) be a probability algebra, B a closed subalgebra of A and A a partition of unity in A. Show
that H(A|B) = 0 iff A ⊆ B.

(d) Let (A, µ̄) be a probability algebra, B a closed subalgebra of A and A a partition of unity in A. Show
that H(A|B) = H(A) iff µ̄(a ∩ b) = µ̄a · µ̄b for every a ∈ A, b ∈ B. (Hint : for ‘only if’, start with the case
B = {0, b, 1 \ b, 1} and use 385Gc.)

(e) Let (A, µ̄) be a probability algebra and A, B two partitions of unity in A. Show that H(A ∨ B) =
H(A) +H(B) iff µ̄(a ∩ b) = µ̄a · µ̄b for all a ∈ A, b ∈ B. Show that H(A ∨ B) = H(A) iff every member of
A is included in some member of B, that is, iff A = A ∨B.

(f) Let (A, µ̄) be a probability algebra, and write A for the set of partitions of unity in A not containing
0, ordered by saying that A ≤ B if B refines A. (i) Show that A is a Dedekind complete lattice, and can
be identified with the lattice of purely atomic closed subalgebras of A. Show that for A, B ∈ A, A ∨ B, as
defined in 385F, is sup{A,B} in A. (ii) Show that H(A∨B) +H(A∧B) ≤ H(A) +H(B) for all A, B ∈ A,
where ∨, ∧ are the lattice operations on A. (iii) Set A1 = {A : A ∈ A, H(A) < ∞}. For A, B ∈ A1 set
ρ(A,B) = 2H(A ∨ B) −H(A) −H(B). Show that ρ is a metric on A1 (the entropy metric). (iv) Show
that H : A1 → [0,∞[ is 1-Lipschitz for ρ. (v) Show that the lattice operation ∨ is uniformly ρ-continuous
on A1. (vi) Show that H : A1 → [0,∞[ is order-continuous. (vii) Show that if B is any closed subalgebra
of A, then A 7→ H(A|B) is order-continuous and 1-Lipschitz on A1. (viii) Show that if π : A → A is a
measure-preserving Boolean homomorphism, A 7→ h(π,A) : A1 → [0,∞[ is 1-Lipschitz for ρ.

(g) Let 〈(Ai, µ̄i)〉i∈I be a family of probability algebras, with probability algebra free product (C, λ̄)
(325K). Suppose that πi : Ai → Ai is a measure-preserving Boolean homomorphism for each i ∈ I, and that
π : C → C is the measure-preserving Boolean homomorphism they induce. Show that h(π) =

∑
i∈I h(πi).

(Hint : use 385Gb and 385Gd to show that h(π) is the supremum of h(π,A) as A runs over the finite
partitions of unity in

⊗
i∈I Ai. Use this to reduce to the case I = {0, 1}. Now show that if Ai ⊆ Ai is a

finite partition of unity for each i, and A = {a0 ⊗ a1 : a0 ∈ A0, a1 ∈ A1}, then H(A) = H(A0) +H(A1), so
that h(π,A) = h(π0, A0) + h(π1, A1).)

>>>(h) Let (A, µ̄) be a probability algebra and π : A→ A a measure-preserving automorphism. Show that
h(π−1) = h(π).

(i) Let (A, µ̄) be a probability algebra and π : A → A a measure-preserving Boolean homomorphism.
Show that h(πk) = kh(π) for any k ∈ N. (Hint : if A ⊆ A is a partition of unity, h(πk, A) ≤ h(πk, Dk(A, π)) =
kh(π,A).)

(j) Let (A, µ̄) be a probability algebra and B a topologically dense subalgebra of A. (i) Show that if
〈ai〉i≤n is a partition of unity in A and ǫ > 0, there is a partition 〈bi〉i≤n of unity in B such that µ̄(ai △ bi) ≤ ǫ
for every i ≤ n. (ii) Show that if A is a finite partition of unity in A and ǫ > 0 then there is a finite partition
of unity D ⊆ B such that H(A ∨ D) ≤ H(A) + ǫ. (iii) Show that if π : A → A is a measure-preserving
Boolean homomorphism, then h(π) = sup{h(π,D) : D ⊆ B is a finite partition of unity}. (Hint : 385N,
385Gb.)

>>>(k) Let (A, µ̄) be a probability algebra and π : A → A a measure-preserving Boolean homomorphism.
(i) Suppose there is a partition of unity A ⊆ A such that (α) µ̄(a ∩ πb) = µ̄a · µ̄b for every a ∈ A, b ∈ A (β)
A is the closed subalgebra of itself generated by

⋃
n∈N

πn[A]. Show that π is a one-sided Bernoulli shift, and
that h(π) = H(A). (ii) Suppose that π is a one-sided Bernoulli shift of finite entropy. Show that there is a
partition of unity satisfying (α) and (β).

>>>(l) Let (A, µ̄) be the measure algebra of Lebesgue measure on [0, 1[. Fix an integer k ≥ 2, and define
f : [0, 1[→ [0, 1[ by setting f(x) = <kx>, the fractional part of kx, for every x ∈ [0, 1[; let π : A→ A be the
corresponding homomorphism. (Cf. 372Xt.) Show that π is a one-sided Bernoulli shift and that h(π) = ln k.
(Hint : in 385Xk, set A = {a0, . . . , ak−1} where ai =

[
i
k ,

i+1
k

[•
for i < k.)
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>>>(m) Let (A, µ̄) be the measure algebra of Lebesgue measure on [0, 1]. Set f(x) = 2 min(x, 1 − x) for
x ∈ [0, 1] (see 372Xp). Show that the corresponding homomorphism π : A→ A is a one-sided Bernoulli shift
and that h(π) = ln 2. (Hint : in 385Xk, set A = {a, 1 \ a} where a = [0, 12 ]•.)

(n) Let (A, µ̄) be a probability algebra and π : A→ A a two-sided Bernoulli shift. (i) Show that π−1 is a
two-sided Bernoulli shift. (ii) Show that π and π−1 are conjugate in Autµ̄ A. (iii) Show that π is expressible
as the product of at most two involutions. (Hint : 382Xb.)

(o) Let 〈(Ai, µ̄i)〉i∈I be a family of probability algebras, and (C, λ̄) their probability algebra free product.
Suppose that for each i ∈ I we have a measure-preserving Boolean homomorphism πi : Ai → Ai, and that
π : C → C is the measure-preserving homomorphism induced by 〈πi〉i∈I (325Xe). (i) Show that if every πi
is a one-sided Bernoulli shift so is π. (ii) Show that if every πi is a two-sided Bernoulli shift so is π.

(p) Let (A, µ̄) be a probability algebra and π : A→ A an ergodic measure-preserving Boolean homomor-
phism. Show that if h(π) > 0 then A is atomless.

(q) Show that the relation ‘almost isomorphic to’ (385U) is an equivalence relation.

(r) Show that the concept of ‘almost isomorphism’ described in 385U is not changed if we amend the
definition to require that the subspaces X ′

1, X ′
2 should be measurable.

(s) Show that if (X1,Σ1, µ1, f1) and (X2,Σ2, µ2, f2) are almost isomorphic quadruples as described in
385U, then (A1, µ̄1, π1) and (A2, µ̄2, π2) are isomorphic, where for each i (Ai, µ̄i) is the measure algebra of
(Xi,Σi, µi) and πi : Ai → Ai is the measure-preserving Boolean homomorphism derived from fi : Xi → Xi.

385Y Further exercises (a) Let (A, µ̄) be a probability algebra, and write B for the lattice of closed
subalgebras of A. Show that if A is any partition of unity in A of finite entropy, then the order-preserving
function B 7→ −H(A|B) : B→ ]−∞, 0] is order-continuous.

(b) Let (A, µ̄) be a probability algebra, and A1 the set of partitions of unity of finite entropy not
containing 0, as in 385Xf. Show that A1 is complete under the entropy metric. (Hint : show that if 〈An〉n∈N

is a non-decreasing sequence in A1 and supn∈NH(An) < ∞, then the closed subalgebra of A generated by⋃
n∈N

An is purely atomic.)

(c) Let (A, µ̄) be a probability algebra, A a partition of unity in A of finite entropy, and π : A → A a
measure-preserving Boolean homomorphism. Show that h(π,A) = limn→∞H(A|Bn), where Bn is the closed
subalgebra of A generated by

⋃
1≤i≤n π

i[A]. (Hint : use 385Gb to show that H(A|Bn) = H(Dn+1(A, π))−
H(Dn(A, π)) and observe that limn→∞H(A|Bn) is defined.)

(d) Let (A, µ̄) be a probability algebra and π : A → A a measure-preserving Boolean homomorphism.
Suppose that there is a partition of unity A of finite entropy such that the closed subalgebra of A generated
by

⋃
i≥1 π

i[A] is A. Show that h(π) = 0. (Hint : use 385Yc and 385P.)

(e) Let µ be Lebesgue measure on [0, 1[, and take any α ∈ ]0, 1[. Let f : [0, 1[ → [0, 1[ be the measure
space automorphism defined by saying that f(x) is to be one of x+α, x+α− 1. Let (A, µ̄) be the measure
algebra of ([0, 1[ , µ) and π : A → A the measure-preserving automorphism corresponding to f . Show that
h(π) = 0. (Hint : if α ∈ Q, use 385Xi; otherwise use 385Yd with A = {a, 1 \ a} where a =

[
0, 12

[•
.)

(f) Set X = [0, 1] \ Q, let ν be the measure on X defined by setting νE = 1
ln 2

∫
E

1
1+xdx for every

Lebesgue measurable set E ⊆ X, and for x ∈ X let f(x) be the fractional part < 1
x> of 1

x . Recall that f is
inverse-measure-preserving for ν (see 372M). Let (A, ν̄) be the measure algebra of (X, ν) and π : A→ A the
homomorphism corresponding to f . Show that h(π) = π2/6 ln 2. (Hint : use the Kolmogorov-Sinǎı theorem
and 372Yh(v).)

(g) Let (A, µ̄) be a probability algebra, and φ : A → A a one-sided Bernoulli shift. Show that there

are a probability algebra (C, λ̄), a two-sided Bernouilli shift φ̃ : C → C, and a measure-preserving Boolean

homomorphism π : A→ C such that φ̃π = πφ. (Hint : 328J.)
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(h) Consider the triplets ([0, 1[ , µ1, f1) and ([0, 1], µ2, f2) where µ1, µ2 are Lebesgue measure on [0, 1[,
[0, 1] respectively, f1(x) = <2x> for each x ∈ [0, 1[, and f2(x) = 2 min(x, 1−x) for each x ∈ [0, 1]. Show that
these structures are almost isomorphic in the sense of 385U, and give a formula for an almost-isomorphism.

385 Notes and comments In preparing this section I have been heavily influenced by Petersen 83.
I have taken almost the shortest possible route to Theorem 385P, the original application of the theory,
ignoring both the many extensions of these ideas and their intuitive underpinning in the concept of the
quantity of ‘information’ carried by a partition. For both of these I refer you to Petersen 83. The
techniques described there are I think sufficiently powerful to make possible the calculation of the entropy
of any of the measure-preserving homomorphisms which have yet appeared in this treatise.

Of course the idea of entropy of a partition, or of a homomorphism, can be translated into the language of
probability spaces and inverse-measure-preserving functions; if (X,Σ, µ) is a probability space, with measure
algebra (A, µ̄), then partitions of unity in A correspond (subject to decisions on how to treat negligible sets)
to countable partitions of X into measurable sets, and an inverse-measure-preserving function f : X → X
gives rise to a measure-preserving homomorphism πf : A→ A; so we can define the entropy of f to be h(πf ).
The whole point of the language I have sought to develop in this volume is that we can do this when and
if we choose; in particular, we are not limited to those homomorphisms which are representable by inverse-
measure-preserving functions. But of course a large proportion of the most important examples do arise in
this way (see 385Xl, 385Xm). The same two examples are instructive from another point of view: the case
k = 2 of 385Xl is (almost) isomorphic to the tent map of 385Xm. The similarity is obvious, but exhibiting
an actual isomorphism is I think another matter (385Yh).

I must say ‘almost’ isomorphic here because the doubling map on [0, 1[ is everywhere two-to-one, while
the tent map is not, so they cannot be isomorphic in any exact sense. This is the problem grappled with
in 385T-385V. In some moods I would say that a dislike of such contortions is a sign of civilized taste.
Certainly it is part of my motivation for working with measure algebras whenever possible. But I have to
say also that new ideas in this topic arise more often than not from actual measure spaces, and that it is
absolutely necessary to be able to operate in the more concrete context.

Version of 20.8.15

386 More about entropy

In preparation for the next two sections, I present a number of basic facts concerning measure-preserving
homomorphisms and entropy. Compared with the work to follow, they are mostly fairly elementary, but the
Halmos-Rokhlin-Kakutani lemma (386C) and the Shannon-McMillan-Breiman theorem (386E), in their full
strengths, go farther than one might expect.

As in §385, I write q(0) = 0, q(t) = −t ln t for t > 0.

386A I start by returning to the notion of ‘recurrence’ from 381L-381P, in its original home.

Theorem Let (A, µ̄) be a totally finite measure algebra and π : A → A a measure-preserving Boolean
homomorphism. Then π is recurrent on every a ∈ A.

proof If a ∈ A is non-zero, then
∑∞
k=0 µ̄(πka) = ∞ > µ1, so there are i < j such that 0 6= πia ∩ πja =

πi(a ∩ πj−ia) and a ∩ πj−ia 6= 0. Thus (ii) of 381O is satisfied; by 381O, π is recurrent on every a ∈ A.

386B Corollary Let (A, µ̄) be a totally finite measure algebra and π : A → A a measure-preserving
Boolean homomorphism. Let C be its fixed-point subalgebra {c : c ∈ A, πc = c}. Then

supk≥n π
ka = upr(a,C) = inf{c : a ⊆ c ∈ C} ∈ C

for any a ∈ A and n ∈ N.

proof By 386A and 381O, a ⊆ supk≥1 π
ka. Set a∗ = supk∈N π

ka; by 381Kb, a∗ = supk≥n π
ka for every n;

by 381Ka, a∗ ∈ C. Also, of course, a∗ ⊆ c whenever a ⊆ c ∈ C, so a∗ = upr(a,C).

c© 2003 D. H. Fremlin
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386C The Halmos-Rokhlin-Kakutani lemma Let (A, µ̄) be a totally finite measure algebra and
π : A→ A a measure-preserving Boolean homomorphism, with fixed-point subalgebra C. Then the following
are equiveridical:

(i) π is aperiodic;

(ii) A is relatively atomless over C (definition: 331A);

(iii) whenever n ≥ 1 and 0 ≤ γ < 1
n there is an a ∈ A such that a, πa, π2a, . . . , πn−1a are disjoint and

µ̄(a ∩ c) = γµ̄c for every c ∈ C;

(iv) whenever n ≥ 1, 0 ≤ γ < 1
n and B ⊆ A is finite, there is an a ∈ A such that a, πa, π2a, . . . , πn−1a

are disjoint and µ̄(a ∩ b) = γµ̄b for every b ∈ B.

proof Note that C is (order-)closed because π is (order-)continuous (324Kb).

(i)⇒(ii) Put 386A and 381P together.

(ii)⇒(iii) Set δ = 1
n ( 1

n − γ) > 0. By 331B, there is a d ∈ A such that µ̄(c ∩ d) = δµ̄c for every c ∈ C. Set

dk = πkd \ supi<k π
id for k ∈ N. Note that

dj+k = πj+kd \ supi<j+k π
id ⊆ πj+kd \ supi<k π

j+id = πjdk

whenever j, k ∈ N. Next, πidj ∩ dk ⊆ supm≤i dm for any i, j, k ∈ N such that i+ j 6= k. PPP (α) If k ≤ i this
is obvious. (β) If i < k < i+ j then

πidj ∩ dk ⊆ πidj ∩ π
idk−i = πi(dj ∩ dk−i) = 0.

(γ) If i+ j < k, then

πidj ∩ dk ⊆ πi+jd ∩ dk = 0. QQQ

Setting c∗ = supi∈N di = supi∈N π
id, we have c∗ ∈ C, by 386B, so that µ̄(d \ c∗) = δµ̄(1 \ c∗); but as

d ⊆ c∗, c∗ = 1.

Set a∗ = supm∈N dmn (the mn here is a product, not a double subscript!), d∗ = supi<n di = supi<n π
id.

Then

µ̄(c ∩ d∗) ≤∑n−1
i=0 µ̄(c ∩ πid) =

∑n−1
i=0 µ̄π

i(c ∩ d) = nµ̄(c ∩ d) = nδµ̄c

for every c ∈ C. Next, πidmn ⊇ dmn+i for all m and i, so

supi<n π
ia∗ = supi∈N di = 1.

Consequently

µ̄c ≤∑n−1
i=0 µ̄(c ∩ πia∗) = nµ̄(c ∩ a∗),

µ̄(c ∩ a∗ \ d∗) ≥ µ̄(c ∩ a∗)− µ̄(c ∩ d∗) ≥ ( 1
n − nδ)µ̄c = γµ̄c

for every c ∈ C.

By 331B again (applied to the principal ideal of A generated by a∗ \ d∗) there is an a ⊆ a∗ \ d∗ such that
µ̄(a ∩ c) = γµ̄c for every c ∈ C. For 0 < i < n,

πia∗ ∩ a∗ = supk,l∈N π
idkn ∩ dln ⊆ supm≤i dm ⊆ d∗,

so πia ∩ a = 0; accordingly a, πa, . . . , πn−1a are all disjoint and (iii) is satisfied.

(iii)⇒(iv) Note that A is certainly atomless, since for every k ≥ 1 we can find a c ∈ A such that
c, πc, . . . , πk−1c are disjoint and µ̄c = µ̄1

k+1 , so that we have a partition of unity consisting of sets of measure
µ̄1
k+1 . Let B′ be the set of atoms of the (finite) subalgebra of A generated by B, and m = #(B′). Let δ > 0
and k ∈ N be such that

3δ ≤ (1− nγ)µ̄b for every b ∈ B′, m(µ̄1)2 < kδ2, kδ ≥ µ̄1.

By (iii), there is a c ∈ A such that c, πc, . . . , πnk
2−1c are disjoint and µ̄(supi<nk2 π

ic) = 1 − δ. For j < k,
set ej = supl<k,i<n π

nkj+nl+ic, dj = supl<k−1 π
nkj+nlc. Observe that ej , πej , . . . , π

n−1ej are disjoint, and

that πidj ⊆ ej for i < 2n. Set e = supj<k ej = supi<nk2 π
ic, so that µ̄e = 1− δ.
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Suppose we choose d ∈ A by the following random process. Take s(0), . . . , s(k − 1) independently in
{0, . . . , n − 1}, so that Pr(s(j) = l) = 1

n for each l < n, and set d = supj<k π
s(j)dj . Because we certainly

have πiπs(j)dj ⊆ ej whenever i < n, d, πd, . . . , πn−1d will be disjoint. Now for any b ∈ A,

Pr
(
µ̄(d ∩ b) ≤ 1

n
(µ̄b− 3δ)

)
<

1

m
.

PPP We can express the random variable µ̄(d ∩ b) as X =
∑k−1
j=0 Xj , where Xj = µ̄(πs(j)dj ∩ b). Then the Xj

are independent random variables. For each j, Xj takes values between 0 and µ̄dj = (k − 1)µ̄c ≤ µ̄1

nk
, and

has expectation 1
n µ̄(e′j ∩ b), where

e′j = supi<n π
idj = supl<k−1,i<n π

nkj+nl+ic.

So X has expectation 1
n µ̄(e′ ∩ b) where e′ = supj<k e

′
j . Now

ej \ e
′
j = supi<n π

nkj+n(k−1)+ic

has measure nµ̄c ≤ nµ̄1

nk2
for each j, so µ̄(e \ e′) ≤ µ̄1

k
and µ̄(1 \ e′) ≤ 2δ; thus E(X) ≥ 1

n (µ̄b− 2δ), while

Var(X) =
∑k−1
j=0 Var(Xj) ≤ k

(µ̄1
nk

)2
=

(µ̄1)2

n2k
.

But this means that

(µ̄1)2

n2k
≥

(δ
n

)2
Pr

(
X ≤ 1

n
(µ̄b− 3δ)

)
,

and

Pr
(
X ≤ 1

n
(µ̄b− 3δ)

)
≤ (µ̄1)2

kδ2
<

1

m

by the choice of k. QQQ
This is true for every b ∈ B′, while #(B′) = m. There must therefore be some choice of s(0), . . . , s(k−1)

such that, taking d∗ = supj<k π
s(j)dj ,

µ̄(d∗ ∩ b) ≥ 1

n
(µ̄b− 3δ) ≥ γµ̄b

for every b ∈ B′, while d∗, πd∗, . . . , πn−1d∗ are disjoint. Because A is atomless, there is a d ⊆ d∗ such that
µ̄(d ∩ b) = γµ̄b for every b ∈ B′. Since every member of B is a disjoint union of members of B′, µ̄(d ∩ b) = γµ̄b
for every b ∈ B.

(iv)⇒(i) If a ∈ A \ {0, 1} and n ≥ 1 then (iv) tells us that there is a b ∈ A such that b, πb, . . . , πnb are
all disjoint and µ̄(1 \ supi≤n π

ib) < µ̄a. Now there must be some i < n such that d = πib ∩ a 6= 0, in which
case

d ∩ πnd ⊆ πib ∩ πi+nb = πi(b ∩ πnb) = 0,

and πnd 6= d. As n and a are arbitrary, π is aperiodic.

386D Corollary An ergodic measure-preserving Boolean homomorphism on an atomless totally finite
measure algebra is aperiodic.

proof By 372Pa, this is (ii)⇒(i) of 386C in the case C = {0, 1} (compare 381P).

386E I turn now to a celebrated result which is a kind of strong law of large numbers.

The Shannon-McMillan-Breiman theorem Let (A, µ̄) be a probability algebra, π : A→ A a measure-
preserving Boolean homomorphism and A ⊆ A a partition of unity of finite entropy. For each n ≥ 1,
set

wn =
1

n

∑
d∈Dn(A,π)

ln(
1

µ̄d
)χd,
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where Dn(A, π) is the partition of unity generated by {πia : a ∈ A, i < n}, as in 385K. Then 〈wn〉n∈N is
norm-convergent in L1 =L1(A, µ̄) to w say; moreover, 〈wn〉n∈N is order*-convergent to w (definition: 367A).
If T : L0(A) → L0(A) is the Riesz homomorphism defined by π, so that T (χa) = χ(πa) for every a ∈ A

(364P), then Tw = w.

proof (Petersen 83) We may suppose that 0 /∈ A.

(a) For each n ∈ N, let Bn be the subalgebra of A generated by {πia : a ∈ A, 1 ≤ i ≤ n}, Bn the set of
its atoms, and Pn the corresponding conditional expectation operator on L1 (365Q). Let B be the closed
subalgebra of A generated by

⋃
n∈N

Bn, and P the corresponding conditional expectation operator. Observe
that Bn = π[Dn(A, π)] and that, in the language of 385F, Dn+1(A, π) = A ∨ Bn. Let C be the fixed-point
subalgebra of π and Q the associated conditional expectation. Set L0 = L0(A), and let l̄n be the function
from {v : [[v > 0]] = 1} to L0 corresponding to ln : ]0,∞[→ R (364H).

(b) It will save a moment later if I note a simple fact here: if v ∈ L1, then 〈 1nTnv〉n≥1 is order*-convergent
and ‖ ‖1-convergent to 0. PPP We know from the ergodic theorem (372G) that 〈ṽn〉n∈N is order*-convergent
and ‖ ‖1-convergent to Qv, where ṽn = 1

n+1

∑n
i=0 T

iv. Now 1
nT

nv = n+1
n ṽn − ṽn−1 is order*-convergent

and ‖ ‖1-convergent to Qv −Qv = 0 (using 367C for ‘order*-convergent’). QQQ

(c) Set

vn =
∑
a∈A Pn(χa)× χa =

∑
a∈A,b∈Bn

µ̄(a∩b)

µ̄b
χ(a ∩ b).

By Lévy’s martingale theorem (275I, 367Jb),

〈vn × χa〉n∈N = 〈Pn(χa)× χa〉n∈N

is order*-convergent to P (χa) × χa for every a ∈ A; consequently 〈vn〉n∈N order*-converges to v =∑
a∈A P (χa) × χa. It follows that 〈l̄n vn〉n∈N order*-converges to l̄n v. PPP The point is that, for any a ∈ A

and n ∈ N, a ⊆ [[Pn(χa) > 0]], so that [[vn > 0]] = 1 for every n, and l̄n vn is defined. Similarly, l̄n v is defined,
and 〈l̄n vn〉n∈N order*-converges to l̄n v by 367H. QQQ As 0 ≤ vn ≤ χ1 for every n, 〈vn〉n∈N → v for ‖ ‖1, by
the Dominated Convergence Theorem (367I).

Next, 〈l̄n vn〉n∈N is order-bounded in L1. PPP Of course l̄n vn ≤ 0 for every n, because Pn(χa) ≤ Pn(χ1) ≤
χ1 for each a, so vn ≤ χ1. To see that {l̄n vn : n ∈ N} is bounded below in L1, we use an idea from the
fundamental martingale inequality 275D. Set v∗ = infn∈N vn. For α > 0, a ∈ A and n ∈ N set

ban(α) = [[Pn(χa) < α]] ∩ infi<n [[Pi(χa) ≥ α]],

so that

[[v∗ < α]] = supa∈A,n∈N a ∩ ban(α).

Now ban(α) ∈ Bn, so

µ̄(a ∩ ban(α)) =
∫
ban(α)

χa =
∫
ban(α)

Pn(χa) ≤ αµ̄(ban(α)),

and

µ̄(a ∩ [[v∗ < α]]) ≤ min(µ̄a,

∞∑

n=0

µ̄(a ∩ ban(α)))

≤ min(µ̄a, α

∞∑

n=0

µ̄ban(α)) ≤ min(µ̄a, α).

Letting α ↓ 0, µ̄(a ∩ [[v∗ = 0]]) = 0 for every a ∈ A, so [[v∗ > 0]] = 1, and l̄n v∗ is defined. Moreover,

µ̄(a ∩ [[− l̄n v∗ > − lnα]]) = µ̄(a ∩ [[v∗ < α]]) ≤ min(µ̄a, α)

for every a ∈ A, α > 0; that is,

µ̄(a ∩ [[− l̄n v∗ > β]]) ≤ min(µ̄a, e−β)

for every a ∈ A and β ∈ R. Accordingly
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∫
(− l̄n v∗) =

∫ ∞

0

µ̄[[− l̄n v∗ > β]]dβ =
∑

a∈A

∫ ∞

0

µ̄(a ∩ [[− l̄n v∗ > β]])dβ

≤
∑

a∈A

∫ ∞

0

min(µ̄a, e−β)dβ

=
∑

a∈A

(∫ ln(1/µ̄a)

0

µ̄a dβ +

∫ ∞

ln(1/µ̄a)

e−βdβ
)

=
∑

a∈A

(
ln(

1

µ̄a
)µ̄a+ eln µ̄a

)

=
∑

a∈A

ln(
1

µ̄a
)µ̄a+

∑

a∈A

µ̄a = H(A) + 1 <∞

because A has finite entropy. But this means that l̄n v∗ belongs to L1, and of course it is a lower bound for
{l̄n vn : n ∈ N}. QQQ

By 367I again, l̄n v ∈ L1 and 〈l̄n vn〉n∈N → l̄n v for ‖ ‖1.

(d) Fix n ∈ N for the moment. For each d ∈ Dn+1(A, π) let d′ be the unique element of Bn such that
d ⊆ d′. Then

(n+ 1)wn+1 =
∑

d∈Dn+1(A,π)

ln(
1

µ̄d′
)χd−

∑

d∈Dn+1(A,π)

ln(
µ̄d

µ̄d′
)χd

=
∑

b∈Bn

ln(
1

µ̄b
)χb−

∑

a∈A
b∈Bn

a∩b 6=0

ln(
µ̄(a∩b)

µ̄b
)χ(a ∩ b)

=
∑

d∈Dn(A,π)

ln(
1

µ̄(πd)
)χ(πd)− l̄n vn = T (nwn)− l̄n vn.

Inducing on n, starting from

w1 =
∑
a∈A ln(

1

µ̄a
)χa = − l̄n v0,

we get

nwn =
∑n−1
i=0 T

i(− l̄n vn−i−1), wn =
1

n

∑n−1
i=0 T

i(− l̄n vn−i−1)

for every n ≥ 1.

(e) Set w′
n = 1

n

∑n−1
i=0 T

i(− l̄n v) for n ≥ 1. By the Ergodic Theorem, 〈w′
n〉n≥1 is order*-convergent and

‖ ‖1-convergent to w = Q(− l̄n v), and Tw = w. To estimate wn − w′
n, set u∗n = supk≥n | l̄n vk − l̄n v| for

each n ∈ N. Then 〈u∗n〉n∈N is a non-increasing sequence, u∗0 ∈ L1 (by (c) above), and infn∈N u
∗
n = 0 because

〈l̄n vn〉n∈N order*-converges to l̄n v. Now, whenever n > m ∈ N,
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|wn − w′
n| ≤

1

n

n−1∑

i=0

T i| l̄n v − l̄n vn−i−1|

=
1

n

(n−m−1∑

i=0

T i| l̄n v − l̄n vn−i−1|+
n−1∑

i=n−m

T i| l̄n v − l̄n vn−i−1|
)

≤ 1

n

(n−m−1∑

i=0

T iu∗m +

m−1∑

j=0

Tn−1−j | l̄n v − l̄n vj |
)

≤ 1

n−m

(n−m−1∑

i=0

T iu∗m +
m−1∑

j=0

Tn−1−ju∗0
)

=
1

n−m

n−m−1∑

i=0

T iu∗m +
1

n−m
Tn−m

m−1∑

j=0

Tm−1−ju∗0

=
1

n−m

n−m−1∑

i=0

T iu∗m +
1

n−m
Tn−mũm,

setting ũm =
∑m−1
j=0 Tm−1−ju∗0.

Holding m fixed and letting n→∞, we know that

1

n−m

∑n−m−1
i=0 T iu∗m

is order*-convergent and ‖ ‖1-convergent to Qu∗m. As for the other term, 1
n−mT

n−mũm is order*-convergent

and ‖ ‖1-convergent to 0, by (b). What this means is that

lim supn→∞ |wn − w′
n| ≤ Qu∗m,

lim supn→∞ ‖wn − w′
n‖1 ≤ ‖Qu∗m‖1

for every m ∈ N. Since 〈Qu∗m〉m∈N is surely a non-decreasing sequence with infimum 0,

lim supn→∞ |wn − w′
n| = 0, lim supn→∞ ‖wn − w′

n‖1 = 0.

Since w′
n is order*-convergent and ‖ ‖1-convergent to w, so is wn.

386F Corollary If, in 386E, π is ergodic, then 〈wn〉n∈N is order*-convergent and ‖ ‖1-convergent to
h(π,A)χ1.

proof Because the limit w in 386E has Tw = w, it must be of the form γχ1, because π is ergodic (372Q(a-
iii)). Now γ =

∫
w must be

lim
n→∞

∫
wn = lim

n→∞

1

n

∑

d∈Dn(A,π)

ln(
1

µ̄d
)µ̄d = lim

n→∞

1

n

∑

d∈Dn(A,π)

q(µ̄d)

(where q is the function of 385A)

= lim
n→∞

1

n
H(Dn(A, π)) = h(π,A).

386G The Csisaár-Kullback inequality (Csiszár 67, Kullback 67) Let (A, µ̄) be a probability
algebra, and u a member of L1(A, µ̄)+ such that

∫
u = 1. Then

∫
q̄(u) ≤ −1

2
(
∫
|u− χ1|)2.
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proof Set a = [[u < 1]], α = µ̄a, β =
∫
a
u, b = 1 \ a. Then µ̄b = 1− α and

∫
b
u = 1− β. Surely β ≤ α < 1.

If α = 0 then u = χ1 and the result is trivial; so let us suppose that 0 < α < 1. Because the function q is
concave,

∫
a
q̄(u) ≤ µ̄a · q( 1

µ̄a

∫
a
u) = αq(

β

α
) = q(β) + β lnα,

(using 233Ib/365Qb for the inequality), and similarly∫
b
q̄(u) ≤ q(1− β) + (1− β) ln(1− α).

Also ∫
|u− χ1| =

∫
a
(χ1− u) +

∫
b
(u− χ1) = α− β + (1− β)− (1− α) = 2(α− β),

so

∫
q̄(u) +

1

2
(

∫
|u− χ1|)2 ≤ q(β) + β lnα+ q(1− β) + (1− β) ln(1− α) + 2(α− β)2

= φ(β)

say. Now φ is continuous on [0, 1] and arbitrarily often differentiable on ]0, 1[,

φ(α) = 0,

φ′(t) = − ln t+ lnα+ ln(1− t)− ln(1− α)− 4(α− t) for t ∈ ]0, 1[,

φ′(α) = 0,

φ′′(t) = −1

t
− 1

1−t
+ 4 ≤ 0 for t ∈ ]0, 1[.

So φ(t) ≤ 0 for t ∈ [0, 1] and, in particular, φ(β) ≤ 0; but this means that

∫
q̄(u) +

1

2
(
∫
|u− χ1|)2 ≥ 0,

that is,
∫
q̄(u) ≤ − 1

2 (
∫
|u− χ1|)2, as claimed.

386H Corollary Whenever (A, µ̄) is a probability algebra and A, B are partitions of unity of finite
entropy,

∑

a∈A,b∈B

|µ̄(a ∩ b)− µ̄a · µ̄b| ≤
√

2(H(A) +H(B)−H(A ∨B)).

proof Replacing A, B by A \ {0} and B \ {0} if necessary, we may suppose that neither A nor B contains
0. Let (C, λ̄) be the probability algebra free product of (A, µ̄) with itself (325E, 325K). Set

u =
∑
a∈A,b∈B

µ̄(a∩b)

µ̄a·µ̄b
χ(a⊗ b) ∈ L0(C);

then u is non-negative and integrable and
∫
u =

∑
a∈A,b∈B µ̄(a ∩ b) = 1. Now

∫
q̄(u) = −

∑

a∈A,b∈B

µ̄(a ∩ b) ln
µ̄(a∩b)

µ̄a·µ̄b

= H(A ∨B) +
∑

a∈A,b∈B

µ̄(a ∩ b) ln µ̄a+
∑

a∈A,b∈B

µ̄(a ∩ b) ln µ̄b

= H(A ∨B) +
∑

a∈A

µ̄a ln µ̄a+
∑

b∈B

µ̄b ln µ̄b

= H(A ∨B)−H(A)−H(B).

On the other hand,
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∫
|u− χ1| = ∑

a∈A,b∈B µ̄a · µ̄b|
µ̄(a∩b)

µ̄a·µ̄b
− 1| = ∑

a∈A,b∈B |µ̄(a ∩ b)− µ̄a · µ̄b|.

Now 386G tells us that (
∫
|u− χ1|)2 ≤ −2

∫
q̄(u), so

∑
a∈A,b∈B |µ̄(a ∩ b)− µ̄a · µ̄b| ≤

√
−2

∫
q̄ =

√
2(H(A) +H(B)−H(A ∨B),

as required.

386I The next six lemmas are notes on more or less elementary facts which will be used at various points
in the next section. The first two are nearly trivial.

Lemma Let (A, µ̄) be a probability algebra and 〈ai〉i∈I , 〈bi〉i∈I two partitions of unity in A. Then

µ̄(supi∈I ai ∩ bi) = 1− 1

2

∑
i∈I µ̄(ai △ bi).

proof

µ̄(sup
i∈I

ai ∩ bi) =
∑

i∈I

µ̄(ai ∩ bi) =
∑

i∈I

1

2
(µ̄ai + µ̄bi − µ̄(ai △ bi))

= 1− 1

2

∑

i∈I

µ̄(ai △ bi).

386J Lemma Let (A, µ̄) be a totally finite measure algebra, 〈Bk〉k∈N a non-decreasing sequence of subsets

of A such that 0 ∈ B0 and 〈ci〉i∈I a partition of unity in A. Set B =
⋃
i<k Bk. Then

limk→∞ supi∈I ρ(ci, Bk) = supi∈I ρ(ci, B),

writing ρ(c,B) = infb∈B µ̄(c△ b) for c ∈ A and non-empty B ⊆ A, as in 3A4I, and counting sup ∅ as 0.

proof Of course 〈supi∈I ρ(ci, Bk)〉k∈N is a non-increasing sequence and limk→∞ supi∈I ρ(ci, Bk) ≥ supi∈I ρ(ci, B).
For the reverse inequality, let ǫ > 0. Then J = {j : j ∈ I, µ̄cj ≥ ǫ} is finite. For each j ∈ J ,
limk→∞ ρ(cj , Bk) = ρ(cj , B), by 3A4I, while

ρ(ci, Bk) ≤ µ̄(ci △ 0) = µ̄ci ≤ ǫ
for every i ∈ I \ J . So

lim
k→∞

sup
i∈I

ρ(ci, Bk) ≤ max(ǫ, lim
k→∞

sup
i∈J

ρ(ci, Bk)) = max(ǫ, sup
i∈J

lim
k→∞

ρ(ci, Bk))

(because J is finite)

= max(ǫ, sup
i∈J

ρ(ci, B))

by 3A4J. As ǫ is arbitrary, limk→∞ supi∈I ρ(ci, Bk) ≤ supi∈I ρ(ci, B) and we have the result.

386K Lemma Let (A, µ̄) be a probability algebra, and π : A → A a measure-preserving Boolean
homomorphism. Let A, B and C be partitions of unity in A.

(a) H(A ∨B ∨ C) +H(C) ≤ H(B ∨ C) +H(A ∨ C).
(b) h(π,A) ≤ h(π,A ∨B) ≤ h(π,A) + h(π,B) ≤ h(π,A) +H(B).
(c) If H(A) <∞,

h(π,A) = inf
n∈N

H(Dn+1(A, π))−H(Dn(A, π))

= lim
n→∞

H(Dn+1(A, π))−H(Dn(A, π)).

(d) If H(A) < ∞ and B is any closed subalgebra of A such that π[B] ⊆ B, then h(π,A) ≤ h(π↾B) +
H(A|B).
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proof (a) Let C be the closed subalgebra of A generated by C, so that C is purely atomic and C is the set
of its atoms. Then

H(A ∨B ∨ C) +H(C) = H(A ∨B|C) + 2H(C)

≤ H(A|C) +H(B|C) + 2H(C) = H(A ∨ C) +H(B ∨ C)

by 385Gb and 385Ga.

(b) We need only observe that Dn(A∨B, π) = Dn(A, π)∨Dn(B, π) for every n ∈ N, being the partition
of unity generated by {πia : i < n, a ∈ A} ∪ {πib : i < n, b ∈ B}. Consequently

h(π,A) = lim
n→∞

1

n
H(Dn(A, π)) ≤ lim

n→∞

1

n
H(Dn(A, π) ∨Dn(B, π))

= lim
n→∞

1

n
H(Dn(A ∨B, π)) = h(π,A ∨B)

≤ lim
n→∞

1

n
(H(Dn(A, π) +H(Dn(B, π))) = h(π,A) + h(π,B)

≤ h(π,A) +H(B)

as remarked in 385M.

(c) Set γn = H(Dn+1(A, π))−H(Dn(A, π)) for each n ∈ N. By 385H, γn ≥ 0. From (a) we see that

γn+1 = H(A ∨ π[Dn+1(A, π)])−H(A ∨ π[Dn(A, π)])

≤ H(π[Dn+1(A, π)])−H(π[Dn(A, π]) = γn

for every n ∈ N. So limn→∞ γn = infn∈N γn; write γ for the common value. Now

h(π,A) = limn→∞
1

n
H(Dn(A, π)) = limn→∞

1

n

∑n−1
i=0 γi = γ

(273Ca).

(d) Let P : L1
µ̄ → L1

µ̄ be the conditional expectation operator corresponding to B. Let 〈bk〉k∈N be a
sequence running over {[[P (χa) > p]] : a ∈ A, p ∈ Q}, so that bk ∈ B for every k, and for each k ∈ N
let Bk ⊆ B be the subalgebra generated by {bi : i ≤ k}; let Pk be the conditional expectation operator

corresponding to Bk. Writing B∞ ⊆ B for
⋃
k∈N

Bk, and P∞ for the corresponding conditional expectation

operator, then P (χa) ∈ L0(B∞), so P∞(χa) = P (χa), for every a ∈ A. So

H(A|B) =
∑
a∈A

∫
q̄(Pχa) = H(A|B∞) = limk→∞H(A|Bk),

by 385Gd.
For each k, let Bk be the set of atoms of Bk. Then

h(π,A) ≤ h(π,Bk) +H(A|Bk) ≤ h(π↾B) +H(A|Bk)

by 385N and the definition of h(π↾B). So

h(π,A) ≤ h(π↾B) + limk→∞H(A|Bk) = h(π↾B) +H(A|B).

386L Lemma Let (A, µ̄) be a probability algebra and B a closed subalgebra.
(a) There is a function h : A → B such that µ̄(a△ h(a)) = ρ(a,B) for every a ∈ A and h(a) ∩ h(a′) = 0

whenever a ∩ a′ = 0.
(b) If A is a partition of unity in A, then H(A|B) ≤∑

a∈A q(ρ(a,B)).
(c) If B is atomless and 〈ai〉i∈N is a partition of unity in A, then there is a partition of unity 〈bi〉i∈N in

B such that µ̄bi = µ̄ai and µ̄(bi △ ai) ≤ 2ρ(ai,B) for every i ∈ N.

proof (a) Let P : L1
µ̄ → L1

µ̄ be the conditional expectation operator associated with B. For any b ∈ B,

∫
|P (χa)− χb| =

∫

1\b

P (χa) + µ̄b−
∫

b

P (χa) =

∫

1\b

χa+ µ̄b−
∫

b

χa

= µ̄(a \ b) + µ̄b− µ̄(a ∩ b) = µ̄(a△ b).
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If a ∈ A set h(a) = [[P (χa) > 1
2 ]]. Then |P (χa)− χh(a)| ≤ |P (χa)− χb| for any b ∈ B, so

ρ(a,B) = inf
b∈B

µ̄(a△ b) = inf
b∈B

∫
|P (χa)− χb|

=

∫
|P (χa)− χh(a)| = µ̄(a△ h(a)).

If a ∩ a′ = 0, then

P (χa) + P (χa′) = Pχ(a ∪ a′) ≤ χ1,

so

h(a) ∩ h(a′) = [[P (χa) > 1
2 ]] ∩ [[P (χa′) > 1

2 ]] ⊆ [[P (χa) + P (χa′) > 1]] = 0,

by 364Ea.

(b) By 385Ae, q(t) ≤ q(1−t) whenever 1
2 ≤ t ≤ 1. Consequently q(t) ≤ q(min(t, 1−t)) for every t ∈ [0, 1],

and q̄(u) ≤ q̄(u ∧ (χ1− u)) whenever u ∈ L0(A) and 0 ≤ u ≤ χ1. Fix a ∈ A for the moment. We have

q̄(P (χa)) ≤ q̄(P (χa) ∧ (χ1− P (χa)) = q̄(|P (χa)− χh(a)|).
Consequently

∫
q̄(Pχa) ≤

∫
q̄(|P (χa)− χh(a)|) ≤ q

(∫
|P (χa)− χh(a)|

)

(because q is concave)

= q(ρ(a,B)).

Summing over a,

H(A|B) =
∑
a∈A

∫
q̄(Pχa) ≤∑

a∈A q(ρ(a,B)).

(c) Set b′i = h(ai) for each i ∈ N. Then 〈b′i〉i∈N is disjoint. Next, for each i ∈ N, take b′′i ∈ B such that
b′′i ⊆ b′i and µ̄b′′i = min(µ̄ai, µ̄b

′
i); then 〈b′′i 〉i∈N is disjoint and µ̄b′′i ≤ µ̄ai for every i. We can therefore find a

partition of unity 〈bi〉i∈N such that bi ⊇ b
′′
i and µ̄bi = µ̄ai for every i. (Use 331C to choose 〈di〉i∈N inductively

so that di ⊆ 1 \ (supj<i dj ∪ supj∈N b
′′
j ) and µ̄di = µ̄ai − µ̄b′′i for each i, and set bi = b′′i ∪ di.)

Take any i ∈ N. If µ̄b′i > µ̄ai, then

µ̄(ai △ bi) = µ̄(ai △ b′′i ) ≤ µ̄(ai △ b′i) + µ̄(b′i △ b′′i )

= µ̄(ai △ b′i) + µ̄b′i − µ̄ai ≤ 2µ̄(ai △ b′i) = 2ρ(ai,B).

If µ̄b′i ≤ µ̄ai, then

µ̄(ai △ bi) ≤ µ̄(ai △ b′i) + µ̄(b′i △ bi)

= µ̄(ai △ b′i) + µ̄ai − µ̄b′i ≤ 2µ̄(ai △ b′i) = 2ρ(ai,B).

386M Lemma Let (A, µ̄) be a probability algebra and π : A→ A a measure-preserving automorphism.
Suppose that B ⊆ A. For k ∈ N, let Bk be the closed subalgebra of A generated by {πjb : b ∈ B, |j| ≤ k},
and let B be the closed subalgebra of A generated by {πjb : b ∈ B, j ∈ Z}.

(a) B is the topological closure
⋃
k∈N

Bk.
(b) π[B] = B.
(c) If C is any closed subalgebra of A such that π[C] = C, and a ∈ Bk, then

ρ(a,C) ≤ (2k + 1)
∑
b∈B ρ(b,C).

proof (a) Because 〈Bk〉k∈N is non-decreasing,
⋃
k∈N

Bk is a subalgebra of A, so its closure also is (323J),
and must be B.
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(b) Of course π−1[Bk+1] is a closed subalgebra of A containing πjb whenever |j| ≤ k and b ∈ B, so
includes Bk; thus π[Bk] ⊆ Bk+1 ⊆ B for every k, and

π[B] = π[
⋃
k∈N

Bk] ⊆ ⋃
k∈N

π[Bk] ⊆ B ⊆ B

because π is continuous (324Kb again). Similarly, π−1[B] ⊆ B and π[B] = B.

(c) For each b ∈ B, choose cb ∈ C such that µ̄(b△ cb) = ρ(b,C) (386La). Set

e = sup|j|≤k supb∈B π
j(b△ cb);

then

µ̄e ≤ (2k + 1)
∑
b∈B µ̄(b△ cb) = (2k + 1)

∑
b∈B ρ(b,C).

Now

B′ = {d : d ∈ A, ∃ c ∈ C such that d \ e = c \ e}
is a subalgebra of A. By 314F(a-i), applied to the order-continuous homomorphism c 7→ c \ e : C → A1\e,
{c \ e : c ∈ C} is an order-closed subalgebra of the principal ideal A1\e; by 313Id, applied to the order-
continuous function d 7→ d \ e : A → A1\e, B

′ is order-closed. If b ∈ B and |j| ≤ k, then πjb△ πjcb ⊆ e, so
πjb ∈ B′; accordingly B′ ⊇ Bk. Now a ∈ Bk, so there is a c ∈ C such that a△ c ⊆ e, and

ρ(a,C) ≤ µ̄(a△ c) ≤ µ̄e ≤ (2k + 1)
∑
b∈B ρ(b,C),

as claimed.

386N Lemma Let (A, µ̄) be a probability algebra and suppose either that A is not purely atomic or

that it is purely atomic and H(D0) = ∞, where D0 is the set of atoms of A. Then whenever A ⊆ A is a
partition of unity and H(A) ≤ γ ≤ ∞, there is a partition of unity B, refining A, such that H(B) = γ.

proof (a) By 385J, there is a partition of unity D1 such that H(D1) = ∞. Set D = D1 ∨ A; then we
still have H(D) = ∞. Enumerate D as 〈di〉i∈N. Choose 〈Bk〉k∈N inductively, as follows. B0 = A. Given
that Bk is a partition of unity, then if H(Bk ∨ {dk, 1 \ dk}) ≤ γ, set Bk+1 = Bk ∨ {dk, 1 \ dk}; otherwise set
Bk+1 = Bk.

Let B be the closed subalgebra of A generated by
⋃
k∈N

Bk. Note that, for each d ∈ D,

{c : c ∈ A, d ⊆ c or d ∩ c = 0}
is a closed subalgebra of A including every Bk, so includes B. If b ∈ B \ {0}, there is surely some d ∈ D
such that b ∩ d 6= 0, so b ⊇ d; thus B must be purely atomic. Let B be the set of atoms of B. Because
A = B0 ⊆ B, B refines A.

(b) H(B) ≤ γ. PPP For each k ∈ N, let Bk be the closed subalgebra of A generated by Bk, so that

B =
⋃
k∈N

Bk. Suppose that b0, . . . , bn are distinct members of B. Then for each k ∈ N we can find disjoint
b0k, . . . , bnk ∈ Bk such that µ̄(bik △ bi) ≤ ρ(bi,Bk) for every i ≤ n (386La). Accordingly µ̄bi = limk→∞ µ̄bik
for each i, and

∑n
i=0 q(µ̄bi) = limk→∞

∑n
i=0 q(µ̄bik) ≤ supk∈NH(Bk) ≤ γ.

As b0, . . . , bn are arbitrary, H(B) ≤ γ. QQQ

(c) H(B) ≥ γ. PPP??? Suppose otherwise. We know that

limk→∞H({dk, 1 \ dk}) = limk→∞ q(µ̄dk) + q(1− µ̄dk) = 0.

Let m ∈ N be such that H(B) +H({dk, 1 \ dk}) ≤ γ for every k ≥ m. Because B refines Bk, we must have

H(Bk ∨ {dk, 1 \ dk}) ≤ H(Bk) +H({dk, 1 \ dk}) ≤ γ,

so that Bk+1 = Bk ∨ {dk, 1 \ dk} for every k ≥ m. But this means that dk ∈ B for every k ≥ m, so that

γ > H(B) ≥∑∞
k=m q(µ̄dk) =∞,

which is impossible. XXXQQQ
Thus B has the required properties.
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386X Basic exercises (a) Let (A, µ̄) be a totally finite measure algebra and π : A → A a measure-
preserving Boolean homomorphism with fixed-point subalgebra C. Take any a ∈ A and set an = πna \

sup1≤i<n π
ia for n ≥ 1. Show that

∑∞
n=1 nµ̄(a ∩ an) = µ̄(upr(a,C)). (Hint : for 0 ≤ j < k set ajk =

πj(a ∩ ak−j). Show that if r ∈ N, then 〈ajk〉j≤r<k is disjoint.)

(b) Let (X,Σ, µ) be a totally finite measure space and f : X → X an inverse-measure-preserving function.
Take E ∈ Σ and set F = {x : ∃n ≥ 1, fn(x) ∈ E}. (i) Show that E \ F is negligible. (ii) For x ∈ E ∩ F set
kx = min{n : n ≥ 1, fn(x) ∈ E}. Show that

∫
E
kxµ(dx) = µF . (This is a simple form of the Recurrence

Theorem.)

(c) Let (A, µ̄) be a totally finite measure algebra, 〈Bk〉k∈N a non-decreasing sequence of subsets of A such
that 0 ∈ B0, and 〈ci〉i∈I a partition of unity in A. Show that

limk→∞

∑
i∈I ρ(ci, Bk) =

∑
i∈I ρ(ci, B)

where B =
⋃
k∈N

Bk.

>>>(d) Let (A, µ̄) be a probability algebra, π : A → A a measure-preserving Boolean homomorphism and
A a partition of unity in A. Show that h(π,Dn(A, π)) = h(π,A) = h(π, π[A]) for any n ≥ 1.

(e) Let (A, µ̄) be a totally finite measure algebra and π : A → A a measure-preserving Boolean ho-
momorphism. Suppose that B ⊆ A. For k ∈ N, let Bk be the closed subalgebra of A generated by
{πjb : b ∈ B, j ≤ k}, and let B be the closed subalgebra of A generated by {πjb : b ∈ B, j ∈ N}. Show that

B =
⋃
k∈N

Bk, π[B] ⊆ B,

and that if C is any subalgebra of A such that π[C] ⊆ C, and a ∈ Bk, then ρ(a,C) ≤ (k + 1)
∑
b∈B ρ(b,C).

386Y Further exercises (a) Let (A, µ̄) be a totally finite measure algebra and π : A→ A an aperiodic
measure-preserving Boolean homomorphism. Set C = {c : πc = c}. Show that whenever n ≥ 1, 0 ≤ γ < 1

n

and B ⊆ A is finite, there is an a ∈ A such that a, πa, π2a, . . . , πn−1a are disjoint and µ̄(a ∩ b ∩ c) = γµ̄(b ∩ c)
for every b ∈ B, c ∈ C.

(b) Let (A, µ̄) be a probability algebra, and π : A → A a measure-preserving Boolean homomorphism.
Let P be the set of all closed subalgebras of A which are invariant under π, ordered by inclusion. Show
that B 7→ h(π↾B) : P → [0,∞] is order-preserving and order-continuous on the left, in the sense that
if Q ⊆ P is non-empty and upwards-directed then h(π↾ supQ) = supB∈Q h(π↾B).

386 Notes and comments I have taken the trouble to give sharp forms of the Halmos-Rokhlin-Kakutani
lemma (386C) and the Cziszár-Kullback inequality (386G); while it is possible to get through the principal
results of the next two sections with rather less, the formulae become better focused if we have the exact
expressions available. Of course one can always go farther still (386Ya). Ornstein’s theorem in §387 (though
not Sinǎı’s, as stated there) can be deduced from the special case of the Shannon-McMillan-Breiman theorem
(386E) in which the homomorphism π is a Bernoulli shift.

Version of 9.3.16

387 Ornstein’s theorem

I come now to the most important of the handful of theorems known which enable us to describe auto-
morphisms of measure algebras up to isomorphism: two two-sided Bernoulli shifts (on algebras of countable
Maharam typre) of the same entropy are isomorphic (387J, 387L). This is hard work. It requires both
delicate ǫ-δ analysis and substantial skill with the manipulation of measure-preserving homomorphisms.
The proof is based on difficult lemmas (387C, 387G, 387K), and includes Sinǎı’s theorem (387E, 387M),
describing the Bernoulli shifts which arise as factors of a given ergodic automorphism.

c© 1997 D. H. Fremlin
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387A The following definitions offer a language in which to express the ideas of this section.

Definitions Let (A, µ̄) be a probability algebra and π : A → A a measure-preserving Boolean homomor-
phism.

(a) A Bernoulli partition for π is a partition of unity 〈ai〉i∈I such that

µ̄(infj≤k π
jai(j)) =

∏k
j=0 µ̄ai(j)

whenever k ∈ N and i(0), . . . , i(k) ∈ I.

(b) If π ∈ Autµ̄ A, that is, π is a measure-preserving automorphism, a Bernoulli partition 〈ai〉i∈I for π is
(two-sidedly) generating if the closed subalgebra generated by {πjai : i ∈ I, j ∈ Z} is A itself.

(c) A factor of (A, µ̄, π) is a triple (B, µ̄↾B, π↾B) where B is a closed subalgebra of A such that
π[B] ⊆ B.

(d) Let B, C be closed subalgebras of A such that π[B] ⊆ B and π[C] ⊆ C. I will write Homµ̄,π(B;C)
for the set of Boolean homomorphisms φ : B→ C such that

µ̄φb = µ̄b, πφb = φπb

for every b ∈ B. On Homµ̄,π(B;C) the weak uniformity will be the uniformity generated by the pseudo-
metrics

(φ, ψ) 7→ µ̄(φb△ ψb)

for b ∈ B (3A4Ba); the weak topology on Homµ̄,π(B;C) will be the associated topology (3A4Ab).

387B Elementary facts Suppose that (A, µ̄) is a probability algebra, π ∈ Autµ̄ A and that 〈bi〉i∈I is a
Bernoulli partition for π. Write B0 for the closed subalgebra of A generated by {bi : i ∈ I}, B for the closed
subalgebra generated by {πjbi : i ∈ I, j ∈ Z}, and B for {bi : i ∈ I} \ {0}.

(a) π↾B is a two-sided Bernoulli shift with root algebra B0 and entropy H(B) = h(π,B) ≤ h(π).
(b) If H(B) > 0 then A is atomless.
(c) Suppose now that 〈ci〉i∈I is another Bernoulli partition for π with µ̄ci = µ̄bi for every i; let C be the

closed subalgebra of A generated by {πjci : i ∈ I, j ∈ Z}. Then we have a unique φ ∈ Homµ̄,π(B;C) such
that φbi = ci for every i ∈ I, and φ is an isomorphism between (B, µ̄↾B, π↾B) and (C, µ̄↾C, π↾C).

proof (a) I should begin by noting that π[B] is the (order-)closed subalgebra generated by {πj+1bi : i ∈ I,
j ∈ Z} (314H, 324L), so is equal to B; accordingly π↾B ∈ Autµ̄↾B B.

Suppose that dj ∈ πj [B0] for 0 ≤ j ≤ k. Then each π−jdj ∈ B0 is expressible as supi∈Ij bi for some
Ij ⊆ I. Now

µ̄( inf
j≤k

dj) = µ̄( sup
i0∈I0,... ,ik∈Ik

inf
j≤k

πjbij )

=
∑

i0∈I0,... ,ik∈Ik

µ̄( inf
j≤k

πjbij ) =
∑

i0∈I0,... ,ik∈Ik

k∏

j=0

µ̄bij

=

k∏

j=0

∑

i∈Ij

µ̄bi =

k∏

j=0

µ̄(sup
i∈Ij

bi) =

k∏

j=0

µ̄dj .

As d0, . . . , dk are arbitrary, 〈πk[B0]〉k∈N is independent. By 385Sf, 〈πk[B0]〉k∈Z is independent. Since B is
defined as the closed subalgebra generated by {πjbi : i ∈ I, j ∈ Z}, π↾B is a two-sided Bernoulli shift in
which B0 is a root algebra, as defined in 385Qb.

As in part (a) of the proof of 385R, h(π↾B) = H(B) = h(π,B), and of course h(π,B) ≤ h(π).

(b) As B contains at least two elements of non-zero measure, γ = maxb∈B µ̄b < 1. Because 〈bi〉i∈I is a
Bernoulli partition, every member of Dk(B, π) (definition: 385K) has measure at most γk, for any k ∈ N.
Thus any atom of A could have measure at most infk∈N γ

k = 0.
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(c) If i(0), . . . , i(n) ∈ I and j(0), . . . , j(n) ∈ Z, set L = {j(k) : k ≤ n}; then

µ̄( inf
k≤n

πj(k)bi(k)) = µ̄(inf
l∈L

πl( inf
k≤n
j(k)=l

bi(k))) =
∏

l∈L

µ̄(πl( inf
k≤n
j(k)=l

bi(k)))

(by (a) above)

=
∏

l∈L

µ̄( inf
k≤n
j(k)=l

bi(k))

(because µ̄πl = µ̄ for every l)

=
∏

l∈L

µ̄( inf
k≤n
j(k)=l

ci(k))

(because if there are k 6= k′ such that j(k) = j(k′) but i(k) 6= i(k′) then both products are zero, and

otherwise they are of the form
∏
l∈L µ̄br(l) =

∏
l∈L µ̄cr(l))

= µ̄( inf
k≤n

πj(k)ai(k)).

So we can apply 324P to see that there is a unique measure-preserving homomorphism φ : B→ C such that
φ(πjbi) = πjci for every i ∈ I and j ∈ Z. Now the set {b : b ∈ B, φπb = πφb} is a (metrically and order-)
closed subset of B including

⋃
j∈Z

πj [B] and is therefore the whole of B. So φ ∈ Homµ̄,π(B;C). Since φ[B]

is a closed subalgebra of C (324Kb) including {πjci : i ∈ I, j ∈ Z}, it is the whole of C, and φ : B → C is
an isomorphism.

387C Lemma Let (A, µ̄) be an atomless probability algebra and π ∈ Autµ̄ A an ergodic measure-
preserving automorphism. Let 〈ai〉i∈N be a partition of unity in A, of finite entropy, and 〈γi〉i∈N a sequence
of non-negative real numbers such that

∑∞
i=0 γi = 1,

∑∞
i=0 q(γi) ≤ h(π),

where q is the function of 385A. Then for any ǫ > 0 we can find a partition 〈a′i〉i∈N of unity in A such that

(i) {i : a′i 6= 0} is finite,

(ii)
∑∞
i=0 |γi − µ̄a′i| ≤ ǫ,

(iii)
∑∞
i=0 µ̄(a′i △ ai) ≤ ǫ+ 6

√∑∞
i=0 |µ̄ai − γi|+

√
2(H(A)− h(π,A))

where A = {ai : i ∈ N} \ {0},
(iv) H(A′) ≤ h(π,A′) + ǫ

where A′ = {a′i : i ∈ N} \ {0}.
proof (a) Of course h(π,A) ≤ H(A), as remarked in 385M, so the square root

√
2(H(A)− h(π,A)) gives

no difficulty. Set β =
√∑∞

i=0 |µ̄ai − γi|+
√

2(H(A)− h(π,A)), δ = min( 1
4 ,

1
24ǫ).

There is a sequence 〈γ̄i〉i∈N of non-negative real numbers such that {i : γ̄i > 0} is finite,
∑∞
i=0 γ̄i = 1,∑∞

i=0 |γ̄i−γi| ≤ 2δ2 and
∑∞
i=0 q(γ̄i) ≤ h(π). PPP Take k ∈ N such that

∑∞
i=k γi ≤ δ2, and set γ̄i = γi for i < k,

γ̄k =
∑∞
i=k γi and γ̄i = 0 for i > k; then q(γ̄k) ≤∑∞

i=k q(γi) (385Ab), so
∑∞
i=0 q(γ̄i) ≤

∑∞
i=0 q(γi) ≤ h(π),

while
∑∞
i=0 |γ̄i − γi| ≤ γ̄k +

∑∞
i=k γi ≤ 2δ2. QQQ

Because
∑∞
i=0 q(γ̄i) is finite, there is a partition of unity C in A, of finite entropy, such that

∑∞
i=0 q(γ̄i) ≤

h(π,C) + 3δ; replacing C by C ∨ A if need be (note that C ∨ A still has finite entropy, by 385H), we may
suppose that C refines A.

There is a sequence 〈γ′i〉i∈N of non-negative real numbers such that
∑∞
i=0 γ

′
i = 1, {i : γ′i > 0} is finite,∑∞

i=0 |γ′i − γi| ≤ 4δ2 and
∑∞
i=0 q(γ

′
i) = h(π,C) + 3δ.
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PPP Take k ∈ N such that γ̄i = 0 for i > k. Take r ≥ 1 such that δ2 ln( rδ2 ) ≥ h(π,C) + 3δ and set

γ̃i = (1− δ2)γ̄i for i ≤ k

=
1

r
δ2 for k + 1 ≤ i ≤ k + r

= 0 for i > k + r.

Then
∑∞
i=0 |γ̃i − γ̄i| = 2δ2,

∑∞
i=0 |γ̃i − γi| ≤ 4δ2,

∑k+r
i=0 q(γ̄i) ≤ h(π,C) + 3δ ≤ δ2 ln(

r

δ2
) = rq(

δ2

r
) ≤∑k+r

i=0 q(γ̃i).

Now the function

α 7→∑k+r
i=0 q(αγ̄i + (1− α)γ̃i) : [0, 1]→ R

is continuous, so there is some α ∈ [0, 1] such that
∑k+r
i=0 q(αγ̄i + (1− α)γ̃i) = h(π,C) + 3δ,

and we can set γ′i = αγ̄i + (1− α)γ̃i for every i; of course
∑∞
i=0 |γ′i − γi| ≤ α

∑∞
i=0 |γ̄i − γi|+ (1− α)

∑∞
i=0 |γ̃i − γi| ≤ 4δ2. QQQ

Set M = {i : γ′i 6= 0}, so that M is finite.

(b) Let η ∈ ]0, δ] be so small that

(i) |q(s)− q(t)| ≤ δ

1+#(M)
whenever s, t ∈ [0, 1] and |s− t| ≤ 3η,

(ii)
∑
c∈C q(min(µ̄c, 2η)) ≤ δ,

(iii) η ≤ 1

6
.

(Actually, (iii) is a consequence of (i). For (ii) we must of course rely on the fact that
∑
c∈C q(µ̄c) is finite.)

Let ν be the probability measure on M defined by saying that ν{i} = γ′i for every i ∈ M , and λ the
product measure on MN. Define Xij : MN → {0, 1}, for i ∈ M and j ∈ N, and Yj : MN → R, for j ∈ N, by
setting

Xij(ω) = 1 if ω(j) = i,

= 0 otherwise,

Yj(ω) = ln(γ′ω(j)) for every ω ∈MN.

Then, for each i ∈ M , 〈Xij〉j∈N is an independent sequence of random variables, all with expectation γ′i,
and 〈Yj〉j∈N also is an independent sequence of random variables, all with expectation

∑
i∈M γ′i ln γ′i = −∑∞

i=0 q(γ
′
i) = −h(π,C)− 3δ.

Let n ≥ 1 be so large that

(iv) µ̄[[wn − h(π,C)χ1 ≥ δ]] < η, where

wn =
1

n

∑
d∈Dn(C,π)

ln(
1

µ̄d
)χd;

(v)

Pr
(∑

i∈M |
1

n

∑n−1
j=0 Xij − γ′i| ≤ η

)
≥ 1− δ,

Pr
(
|1
n

∑n−1
j=0 Yj + h(π,C) + 3δ| ≤ δ

)
≥ 1− δ;

(vi) enδ ≥ 2,
1

n+1
≤ η, q(

1

n+1
) + q(

n

n+1
) ≤ δ;
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these will be true for all sufficiently large n, using the Shannon-McMillan-Breiman theorem (386E-386F;
this is where we need to suppose that π is ergodic) for (iv) and the strong law of large numbers (in any of
the forms 273D, 273H or 273I) for (v).

(c) There is a family 〈bji〉j<n,i∈M such that

(α) for each j < n, 〈bji〉i∈M is a partition of unity in A,

(β) µ̄(infj<n bj,i(j)) =
∏n−1
j=0 γ

′
i(j) for every i(0), . . . , i(n− 1) ∈M ,

(γ)
∑
i∈M µ̄(bji ∩ π

jai) ≥ 1− β2 − 4δ2 for every j < n.

PPP Construct 〈bji〉i∈M for j = n− 1, n− 2, . . . , 0, as follows. Given bji, for k < j < n, such that

µ̄(infj≤k π
jai(j) ∩ infk<j<n bj,i(j)) = µ̄(infj≤k π

jai(j)) ·
∏n−1
j=k+1 γ

′
i(j)

for every i(0), . . . , i(n−1) ∈M (of course this hypothesis is trivial for k = n−1), let Bk be the set of atoms
of the (finite) subalgebra of A generated by {bji : i ∈ M, k < j < n}. Then µ̄(b ∩ d) = µ̄b · µ̄d for every
b ∈ Bk and d ∈ Dk+1(A, π).

Now

∞∑

i=0

∑

c∈Dk(A,π)

|µ̄(πkai ∩ c)− γ′iµ̄c|

≤
∞∑

i=0

∑

c∈Dk(A,π)

|µ̄(πkai ∩ c)− µ̄ai · µ̄c|+
∞∑

i=0

|µ̄ai − γ′i|
∑

c∈Dk(A,π)

µ̄c

≤
∞∑

i=0

|γi − γ′i|+
∞∑

i=0

|µ̄ai − γi|+
∞∑

i=0

∑

c∈Dk(A,π)

|µ̄(πkai ∩ c)− µ̄ai · µ̄c|

≤ 4δ2 +

∞∑

i=0

|µ̄ai − γi|+
√

2
(
H(πk[A]) +H(Dk(A, π))−H(Dk+1(A, π))

)

(by 386H, because Dk+1(A, π) = πk[A] ∨Dk(A, π))

≤ 4δ2 +
∞∑

i=0

|µ̄ai − γi|+
√

2(H(A)− h(π,A))

(because h(π,A) ≤ H(Dk+1(A, π))−H(Dk(A, π)), by 386Kc)

= β2 + 4δ2.

Choose a partition of unity 〈bki〉i∈M such that, for each c ∈ Dk(A, π), b ∈ Bk and i ∈M ,

µ̄(bki ∩ b ∩ c) = γ′iµ̄(b ∩ c),

if µ̄(πkai ∩ b ∩ c) ≥ γ′iµ̄(b ∩ c) then bki ∩ b ∩ c ⊆ πkai,

if µ̄(πkai ∩ b ∩ c) ≤ γ′iµ̄(b ∩ c) then πkai ∩ b ∩ c ⊆ bki.

(This is where I use the hypothesis that A is atomless.) Note that in these formulae we always have

πkai ∩ c ∈ Dk+1(A, π), µ̄(b ∩ c) = µ̄b · µ̄c, µ̄(πkai ∩ b ∩ c) = µ̄(πkai ∩ c) · µ̄b.

Consequently
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∑

i∈M

µ̄(πkai ∩ bki) =
∑

b∈Bk

∑

c∈Dk(A,π)

∑

i∈M

µ̄(b ∩ c ∩ (πkai ∩ bki))

=
∑

b∈Bk

∑

c∈Dk(A,π)

∞∑

i=0

min(µ̄(b ∩ c ∩ πkai), γ
′
iµ̄(b ∩ c))

≥
∑

b∈Bk

∑

c∈Dk(A,π)

∞∑

i=0

µ̄(b ∩ c ∩ πkai)− |µ̄(b ∩ c ∩ πkai)− γ′iµ̄(b ∩ c)|

= 1−
∑

b∈Bk

∑

c∈Dk(A,π)

∞∑

i=0

|µ̄(b ∩ c ∩ πkai)− γ′iµ̄(b ∩ c)|

= 1−
∑

b∈Bk

∑

c∈Dk(A,π)

∞∑

i=0

µ̄b · |µ̄(c ∩ πkai)− γ′iµ̄c|

= 1−
∑

c∈Dk(A,π)

∞∑

i=0

|µ̄(c ∩ πkai)− γ′iµ̄c| ≥ 1− β2 − 4δ2.

Also we have

µ̄(bki ∩ b ∩ c) = γ′iµ̄b · µ̄c = µ̄(bki ∩ b) · µ̄c
for every b ∈ Bk, c ∈ Dk(A, π) and i ∈M , so the (downwards) induction proceeds. QQQ

(d) Let B be the set of atoms of the algebra generated by {bji : j < n, i ∈ M}. For b ∈ B and
d ∈ Dn(C, π) set

Ibd = {j : j < n, ∃ i ∈M, b ⊆ bji, d ⊆ πjai}.
Then, for any j < n,

sup{b ∩ d : b ∈ B, d ∈ Dn(C, π), j ∈ Ibd} = supi∈M bji ∩ π
jai,

because C refines A, so every πjai is a supremum of members of Dn(C, π). Accordingly

∑

b∈B,d∈Dn(C,π)

#(Ibd)µ̄(b ∩ d) =

n−1∑

j=0

∑

i∈M

µ̄(bji ∩ π
jai) ≥ n(1− β2 − 4δ2).

Set

e0 = sup{b ∩ d : b ∈ B, d ∈ Dn(C, π), #(Ibd) ≥ n(1− β − 4δ)};
then µ̄e0 ≥ 1− β − δ.

(e) Let B′ ⊆ B be the set of those b ∈ B such that

µ̄b ≤ e−n(h(π,C)+2δ),
∑
i∈M |γ′i −

1

n
#({j : j < n, b ⊆ bji})| ≤ η.

Then µ̄(supB′) ≥ 1− 2δ. PPP Set

B′
1 = {b : b ∈ B, µ̄b ≤ e−n(h(π,C)+2δ)}

= {b : b ∈ B, h(π,C) + 2δ +
1

n
ln(µ̄b) ≤ 0}

= { inf
j<n

bj,i(j) : i(0), . . . , i(n− 1) ∈M, h(π,C) + 2δ +
1

n

n−1∑

j=0

ln γ′i(j) ≤ 0}.

Then
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µ̄(supB′
1) = Pr(h(π,C) + 2δ +

1

n

n−1∑

j=0

Yj ≤ 0)

≥ Pr(|h(π,C) + 3δ +
1

n

n−1∑

j=0

Yj | ≤ δ) ≥ 1− δ

by the choice of n. On the other hand, setting

B′
2 = {b : b ∈ B,

∑

i∈M

|γ′i −
1

n
#({j : j < n, b ⊆ bji})| ≤ η}

= { inf
j<n

bj,i(j) : i(0), . . . , i(n− 1) ∈M,
∑

i∈M

|γ′i −
1

n
#({j : i(j) = i})| ≤ η},

we have

µ̄(supB′
2) = Pr(

∑
i∈M |γ′i −

1

n

∑n−1
j=0 Xij | ≤ η) ≥ 1− δ

by the other half of clause (b-v). Since B′ = B′
1 ∩B′

2, µ̄(supB′) ≥ 1− 2δ. QQQ
Let D′ be the set of those d ∈ Dn(C, π) such that

1

n
ln(

1

µ̄d
) ≤ h(π,C) + δ, i.e., µ̄d ≥ e−n(h(π,C)+δ);

by (b-iv), µ̄(supD′) > 1− η. Of course D′ is finite. If d ∈ D′ and b ∈ B′ then

µ̄d ≥ e−n(h(π,C)+δ) ≥ enδµ̄b ≥ 2µ̄b.

Since µ̄(supD′) ≤ 1 ≤ 2µ̄(supB′) (remember that δ ≤ 1
4 ), #(D′) ≤ #(B′).

Set e1 = e0 ∩ supB′, so that µ̄e1 ≥ 1− β − 3δ, and

D′′ = {d : d ∈ D′, µ̄(d ∩ e1) ≥ 1

2
µ̄d};

then

µ̄(sup(D′ \D′′)) ≤ 2µ̄(1 \ e1) ≤ 2β + 6δ,

so

µ̄(supD′′) ≥ 1− 2β − 6δ − η ≥ 1− 2β − 7δ.

(f) If d1, . . . , dk ∈ D′′ are distinct,

µ̄(sup1≤i≤k di ∩ e1) ≥ k

2
infi≤k µ̄di ≥ k supb∈B′ µ̄b,

and

#({b : b ∈ B′, b ∩ e0 ∩ sup1≤i≤k di} 6= 0) ≥ k.

By the Marriage Lemma (3A1K), there is an injective function f0 : D′′ → B′ such that d ∩ f0(d) ∩ e0 6= 0
for every d ∈ D′′. Because #(D′) ≤ #(B′), we can extend f0 to an injective function f : D′ → B′.

(g) By the Halmos-Rokhlin-Kakutani lemma, in the strong form 386C(iv), there is an a ∈ A such that
a, π−1a, . . . , π−n+1a are disjoint and µ̄(a ∩ d) = 1

n+1 µ̄d for every d ∈ D′ ∪ {1}. Set ẽ = sup{π−j(a ∩ d) : j <

n, d ∈ D′}. Because 〈π−j(a ∩ d)〉j<n,d∈D′ is disjoint,

µ̄ẽ =
∑n−1
j=0

∑
d∈D′ µ̄(a ∩ d) =

n

n+1

∑
d∈D′ µ̄d ≥ (1− η)2 ≥ 1− 2η.

(h) For i ∈M , set

a′i = sup{π−j(a ∩ d) : j < n, d ∈ D′, f(d) ⊆ bji}.
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Then the a′i are disjoint. PPP Suppose that i, i′ ∈M are distinct. If j, j′ < n and d, d′ ∈ D′ and f(d) ⊆ bji,
f(d′) ⊆ bj′i′ , then either j 6= j′ or j = j′. In the former case,

π−j(a ∩ d) ∩ π−j′(a ∩ d′) ⊆ π−ja ∩ π−j′a = 0.

In the latter case, bji ∩ bj′i′ = 0, so f(d) 6= f(d′) and d 6= d′ and

π−j(a ∩ d) ∩ π−j′(a ∩ d′) ⊆ π−j(d ∩ d′) = 0. QQQ

Observe that

supi∈M a′i = supj<n,d∈D′ π−j(a ∩ d) = ẽ

because if j < n and d ∈ D′ then f(d) ∈ B′ ⊆ B and there must be some i ∈M such that f(d) ⊆ bji. Take
any m ∈ N \M and set a′m = 1 \ ẽ, a′i = 0 for i ∈ N \ (M ∪ {m}); then 〈a′i〉i∈N is a partition of unity. Now

∑

i∈M

|µ̄a′i − γ′i| ≤
∑

i∈M

γ′i|1− nµ̄(a ∩ supD′)|+
∑

i∈M

|µ̄a′i − nγ′iµ̄(a ∩ supD′)|

≤ 1− n

n+1
µ̄(supD′)

+
∑

i∈M

|
n−1∑

j=0

∑

d∈D′

f(d)⊆bji

µ̄(π−j(a ∩ d))− nγ′i
∑

d∈D′

µ̄(a ∩ d)|

≤ 1− (1− η)2

+
∑

d∈D′

∑

i∈M

|µ̄(a ∩ d) ·#({j : j < n, f(d) ⊆ bji})− nγ′iµ̄(a ∩ d)|

≤ 1− (1− η)2 +
∑

d∈D′

µ̄(a ∩ d)nη

(see the definition of B′
2 in (e) above)

≤ 2η + nηµ̄a ≤ 3η.

So

∞∑

i=0

|µ̄a′i − γi| ≤ µ̄a′m +
∑

i∈M

|µ̄a′i − γ′i|+
∞∑

i=0

|γ′i − γi|

≤ 2η + 3η + 4δ2 ≤ 6δ ≤ ǫ.
We shall later want to know that |µ̄a′i − γ′i| ≤ 3η for every i; for i ∈ M this is covered by the formulae

above, for i = m it is true because µ̄a′m = 1− µ̄ẽ ≤ 2η (see (g)), and for other i it is trivial.

(i) The next step is to show that
∑∞
i=0 µ̄(a′i ∩ ai) ≥ 1− 3β − 12δ. PPP It is enough to consider the case in

which 3β + 12δ < 1. We know that

sup
i∈N

a′i ∩ ai ⊇ sup{π−j(a ∩ d) : j < n, d ∈ D′,

∃ i ∈M such that f(d) ⊆ bji and d ⊆ πjai}
= sup{π−j(a ∩ d) : d ∈ D′, j ∈ If(d),d}

(see (d) for the definition of Ibd) has measure at least
∑
d∈D′ #(If(d),d)µ̄(a ∩ d).

For d ∈ D′′, we arranged that d ∩ f(d) ∩ e0 6= 0. This means that there must be some b ∈ B and
d′ ∈ Dn(C, π) such that d ∩ f(d) ∩ b ∩ d′ 6= 0 and #(Ibd′) ≥ n(1− β − 4δ); of course d′ = d and b = f(d), so
that #(If(d),d) must be at least n(1− β − 4δ). Accordingly

∞∑

i=0

µ̄(a′i ∩ ai) ≥
∑

d∈D′′

n(1− β − 4δ)µ̄(a ∩ d) = n(1− β − 4δ)
1

n+1
µ̄(supD′′)

≥ (1− η)(1− β − 4δ)(1− 2β − 7δ) ≥ 1− 3β − 12δ. QQQ
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But this means that
∑∞
i=0 µ̄(a′i △ ai) = 2(1−∑∞

i=0 µ̄(a′i ∩ ai)) ≤ 6β + 24δ ≤ ǫ+ 6β

(using 386I for the equality).

(j) Finally, we need to estimate H(A′) and h(π,A′), where A′ = {a′i : i ∈ N} \ {0}. For the former, we
have H(A′) ≤ h(π,C) + 4δ. PPP |µ̄a′i − γ′i| ≤ 3η for every i, by (h) above. So by (b-i),

H(A′) =
∑
i∈M∪{m} q(µ̄a

′
i) ≤ δ +

∑∞
i=0 q(γ

′
i) = h(π,C) + 4δ. QQQ

(k) Consider the partition of unity

A′′ = A′ ∨ {a, 1 \ a}.
Let D be the closed subalgebra of A generated by {πjc : j ∈ Z, c ∈ A′′}.

(i) a ∩ d ∈ D for every d ∈ D′. PPP Of course a ∩ ẽ ∈ D, because 1 \ ẽ = a′m. If d′ ∈ D′ and d′ 6= d, then
(because f is injective) f(d) 6= f(d′); there must therefore be some k < n and distinct i, i′ ∈ M such that
f(d) ⊆ bki and f(d′) ⊆ bki′ . But this means that π−k(a ∩ d) ⊆ a′i and π−k(a ∩ d′) ⊆ a′i′ , so that a ∩ d ⊆ πka′i
and a ∩ d′ ∩ πka′i = 0.

What this means is that if we set

d̃ = a ∩ ẽ ∩ inf{πka′i : k < n, i ∈M, a ∩ d ⊆ πka′i},
we get a member of D (because every a′i ∈ D, and π[D] = D) including a ∩ d and disjoint from a ∩ d′

whenever d′ ∈ D′ and d′ 6= d. But as a ∩ π−ja = 0 if 0 < j < n, a ∩ ẽ must be sup{a ∩ d′ : d′ ∈ D′}, and

a ∩ d = d̃ belongs to D. QQQ

(ii) Consequently c ∩ ẽ ∈ D for every c ∈ C. PPP We have

c ∩ ẽ = sup{c ∩ π−j(a ∩ d) : j < n, d ∈ D′}
= sup{π−j(πjc ∩ a ∩ d) : j < n, d ∈ D′}
= sup{π−j(a ∩ d) : j < n, d ∈ D′, d ⊆ πjc}

(because if d ∈ D′ and j < n then either d ⊆ πjc or d ∩ πjc = 0)

∈ D

because a ∩ d ∈ D for every d ∈ D′ and π−1[D] = D. QQQ

(iii) It follows that h(π,A′′) ≥ h(π,C)− δ. PPP For any c ∈ C,

ρ(c,D) ≤ µ̄(c△ (c ∩ ẽ)) = µ̄(c \ ẽ) ≤ min(µ̄c, 2η) ≤ 1

3
.

So

h(π,C) ≤ h(π↾D) +H(C|D)

(386Kd, because π[D] = D)

≤ h(π,A′′) +
∑

c∈C

q(ρ(c,D))

(by the Kolmogorov-Sinǎı theorem (385P) and 386Lb)

≤ h(π,A′′) +
∑

c∈C

q(min(µ̄c, 2η))

(because q is monotonic on [0, 13 ])

≤ h(π,A′′) + δ

by the choice of η. QQQ

(iv) Finally, h(π,A′) ≥ h(π,C)− 2δ. PPP Using 386Kb,
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h(π,C)− δ ≤ h(π,A′′) ≤ h(π,A′) +H({a, 1 \ a})
= h(π,A′) + q(µ̄a) + q(1− µ̄a)

= h(π,A′) + q(
1

n+1
) + q(

n

n+1
) ≤ h(π,A′) + δ

by the choice of n. QQQ

(l) Putting these together,

H(A′) ≤ h(π,C) + 4δ ≤ h(π,A′) + 6δ ≤ h(π,A′) + ǫ,

and the proof is complete.

387D Corollary Suppose that (A, µ̄) is an atomless probability algebra and π ∈ Autµ̄ A. Let 〈ai〉i∈N be
a partition of unity in A, of finite entropy, and 〈γi〉i∈N a sequence of non-negative real numbers such that

∑∞
i=0 γi = 1,

∑∞
i=0 q(γi) ≤ h(π).

Then for any ǫ > 0 we can find a Bernoulli partition 〈a∗i 〉i∈N for π such that µ̄a∗i = γi for every i ∈ N and

∑∞
i=0 µ̄(a∗i △ ai) ≤ ǫ+ 6

√∑∞
i=0 |µ̄ai − γi|+

√
2(H(A)− h(π,A)),

writing A = {ai : i ∈ N} \ {0}.

proof (a) Set β =
√∑∞

i=0 |µ̄ai − γi|+
√

2(H(A)− h(π,A)). Let 〈ǫn〉n∈N be a sequence of strictly positive

real numbers such that
∑∞
n=0 ǫn + 6

√
ǫn +

√
2ǫn ≤ ǫ.

Using 387C, we can choose inductively, for n ∈ N, partitions of unity 〈ani〉i∈N such that, for each n ∈ N,
∑∞
i=0 |γi − µ̄ani| ≤ ǫn,

H(An) ≤ h(π,An) + ǫn <∞
(writing An = {ani : i ∈ N} \ {0}),

∑∞
i=0 µ̄(an+1,i △ ani) ≤ ǫn+1 + 6

√
ǫn +

√
2ǫn,

while
∑∞
i=0 µ̄(a0i △ ai) ≤ ǫ0 + 6β.

On completing the induction, we see that
∑∞
n=0

∑∞
i=0 µ̄(an+1,i △ ani) ≤

∑∞
n=1 ǫn +

∑∞
n=0 6

√
ǫn +

√
2ǫn <∞.

In particular, given i ∈ N,
∑∞
n=0 µ̄(an+1,i △ ani) is finite, so 〈ani〉n∈N is a Cauchy sequence in the complete

metric space A (323Gc), and has a limit a∗i , with

µ̄a∗i = limn→∞ µ̄ani = γi

(323C). If i 6= j,

a∗i ∩ a∗j = limn→∞ ani ∩ anj = 0

(using 323Ba), so 〈a∗i 〉i∈N is disjoint; since
∑∞
i=0 µ̄a

∗
i =

∑∞
i=0 γi = 1,

〈a∗i 〉i∈N is a partition of unity. We also have

∞∑

i=0

µ̄(a∗i △ ai) ≤
∞∑

i=0

µ̄(a0i △ ai) +

∞∑

n=0

∞∑

i=0

µ̄(an+1,i △ ani)

≤ ǫ0 + 6β +

∞∑

n=1

ǫn +

∞∑

n=0

6

√
ǫn +

√
2ǫn ≤ ǫ+ 6β.
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(b) Now take any i(0), . . . , i(k) ∈ N. For each j < k, n ∈ N,

H(πj [An]) +H(Dj(An, π))−H(Dj+1(An, π)) ≤ H(An)− h(π,An) ≤ ǫn
(using 386Kc). But this means that

∑

d∈Dj(An,π)

∞∑

i=0

|µ̄(d ∩ πjani)− µ̄d · µ̄ani| ≤
√

2ǫn,

by 386H. A fortiori,

|µ̄(d ∩ πjani)− µ̄d · µ̄ani| ≤
√

2ǫn

for each d ∈ Dj(An, π), i ∈ N. Inducing on r, we see that

|µ̄(infj≤r π
jan,i(j))−

∏r
j=0 µ̄an,i(j)| ≤ r

√
2ǫn → 0

as n→∞, for any r ≤ k. Because µ̄, ∩ and π are all continuous (323C, 323Ba and the other part of 324Kb,

µ̄( inf
j≤k

πja∗i(j)) = lim
n→∞

µ̄( inf
j≤k

πjan,i(j))

= lim
n→∞

k∏

j=0

µ̄an,i(j) =
k∏

j=0

γi(j).

As i(0), . . . , i(k) are arbitrary, 〈a∗i 〉i∈N is a Bernoulli partition for π.

387E Sinǎı’s theorem (atomic case) (Sinǎı 62) Suppose that (A, µ̄) is an atomless probability algebra
and that π ∈ Autµ̄ A is ergodic. Let 〈γi〉i∈N be a sequence of non-negative real numbers such that

∑∞
i=0 γi = 1

and
∑∞
i=0 q(γi) ≤ h(π). Then there is a Bernoulli partition 〈a∗i 〉i∈N for π such that µ̄a∗i = γi for every i ∈ N.

proof Apply 387D from any starting point, e.g., a0 = 1, ai = 0 for i > 0.

387F I devote a couple of pages to machinery concerning the spaces Homµ̄,π(B;C) of 387Ad. We do
not really need to work at this level of abstraction, but it is easy, it fits naturally among the methods being
developed in this volume, and it will simplify the language of some of the lemmas to follow.

Lemma Let (A, µ̄) be a probability algebra, π a member of Autµ̄ A and B, C closed subalgebras of A such
that π[B] = B and π[C] = C.

(a) Suppose that φ ∈ Homµ̄,π(B;C).
(i) πjφ = φπj for every j ∈ Z.
(ii) φ[B] is a closed subalgebra of C and π[φ[B]] = φ[B]; φ is an isomorphism between (B, µ̄↾B, π↾B)

and (φ[B], µ̄↾φ[B], π↾φ[B]).
(iii) If ψ ∈ Homµ̄,π(φ[B];C) then ψφ ∈ Homµ̄,π(B;C).
(iv) If 〈bi〉i∈I is a Bernoulli partition for π↾B, then 〈φbi〉i∈I is a Bernoulli partition for π↾C.

(b) Homµ̄,π(B;C) is complete under its weak uniformity.
(c) Let B ⊆ B be such that B is the closed subalgebra of itself generated by

⋃
i∈Z

πi[B]. Then the weak
uniformity of Homµ̄,π(B;C) is the uniformity defined by the pseudometrics (φ, ψ) 7→ µ̄(φb△ ψb) as b runs
over B.

proof (a)(i) Since πφ = φπ, we can induce on j to get the result for j ≥ 0. Now if b ∈ B there is a b′ ∈ B

such that πb′ = b, in which case

π−1φb = π−1φπb′ = π−1πφb′ = φb′ = φπ−1b.

Thus π−1φ = φπ−1. Accordingly π−jφ = φπ−j for every j ≥ 0 and we have the result.

(ii) φ[B] is a closed subalgebra of C by 324Kb again. Now π[φ[B]] = φ[π[B]] = φ[B]. Because φ is
injective, it is an isomorphism between the two structures.

(iii) By (ii), we can speak of Homµ̄,π(φ[B];C), and ψφ : B→ C is a Boolean homomorphism. Now

µ̄ψφ = µ̄φ = µ̄↾B, πψφ = πφ = π↾B
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so ψφ ∈ Homµ̄,π(B;C).

(iv) If k ∈ N and i(0), . . . , i(k) ∈ I,

µ̄( inf
j≤k

πjφbi(j)) = µ̄( inf
j≤k

φπjbi(j)) = µ̄φ( inf
j≤k

πjbi(j))

= µ̄( inf
j≤k

πjbi(j)) =

k∏

j=0

µ̄bi(j) =

k∏

j=0

µ̄φbi(j).

(b) Let F be a Cauchy filter on Homµ̄,π(B;C). Write ρ for the measure metric on C (323Ad).

(i) For b ∈ B, let Fb be the image of F under the map b 7→ φb : Homµ̄,π(B;C) → C. Then Fb is
ρ-Cauchy, since (φ, ψ) 7→ ρ(φb, ψb) is one of the pseudometrics defining the weak uniformity (see 3A4Fc).
Since C is complete (323Gc), we have an element limFb = limφ→F φb defined in C; call it θb.

(ii)(ααα) Take b, b′ ∈ B.

θ(b ∩ b′) = lim
φ→F

φ(b ∩ b′) = lim
φ→F

φb ∩ φb′ = lim
φ→F

φb ∩ lim
φ→F

φb′

(because ∩ : C× C→ C is continuous, by 323Ba)

= θb ∩ θb′,

and similarly θ(b \ b′) = θb \ θb′. Since of course

θ1B = limφ→F φ1B = limφ→F 1C = 1C,

θ is a Boolean homomorphism.

(βββ) Now for any b ∈ B, we have

πθb = π( lim
φ→F

φb) = lim
φ→F

πφb

(because π↾C is continuous, by 324Kb once more)

= lim
φ→F

φπb = θπb,

µ̄θb = µ̄( lim
φ→F

φb) = lim
φ→F

µ̄φb

(because µ̄↾C is continuous, by 323Cb)

= lim
φ→F

µ̄b = µ̄b.

So θ ∈ Homµ̄,π(B,C).

(iii) If b ∈ B and ǫ > 0, there is an F ∈ F such that ρ(φb, ψb) ≤ ǫ for every φ, ψ ∈ F . So for φ ∈ F ,

ρ(φb, θb) = limψ→F ρ(φb, ψb) ≤ ǫ.
As b and ǫ are arbitrary, F → θ (2A3Sc). As F is arbitrary, Homµ̄,π(B,C) is complete.

(c)(i) Write W for the weak uniformity and V for the uniformity defined by the pseudometrics (φ, ψ) 7→
µ̄(φb△ ψb) as b runs over B. Since W is defined by a larger set of pseudometrics, we surely have V ⊆ W; I
need to show that W ⊆ V, that is, that the identity map from (Homµ̄,π(B;C),V) to (Homµ̄,π(B;C),W) is
uniformly continuous. Let D be the set of those d ∈ B such that

for every ǫ > 0 there are a finite subset I ⊆ B and a δ > 0 such that µ̄(φd△ ψd) ≤ ǫ whenever
φ, ψ ∈ Homµ̄,π(B,C) and supb∈I µ̄(φb△ ψb) ≤ δ.

Then B ∪ {0, 1} ⊆ D.
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(i)(ααα) If d, d′ ∈ D then d ∩ d′ ∈ D. PPP Let ǫ > 0. Then there are I, I ′ ∈ [B]ω and δ, δ′ > 0 such that
µ̄(φd△ ψd) ≤ 1

2ǫ whenever supb∈I µ̄(φb△ ψb) ≤ δ and µ̄(φd′ △ ψd′) ≤ 1
2ǫ whenever supb∈I µ̄(φb△ ψb) ≤ δ′.

If now supb∈I∪I′ µ̄(φb△ ψb) ≤ min(δ, δ′) we shall have

µ̄(φ(d ∩ d′) △ ψ(d ∩ d′)) = µ̄(φd ∩ φd′) △ (ψd ∩ ψd′)) ≤ µ̄(φd△ ψd) + µ̄(φd′ △ ψd′)

(see the proof of 323Ba)

≤ 1

2
ǫ+

1

2
ǫ = ǫ.

As ǫ is arbitrary, d ∩ d′ ∈ D. QQQ

(βββ) If d ∈ D then 1 \ d ∈ D. PPP For any φ, ψ ∈ Homµ̄,π(B;C),

µ̄(φ(1 \ d) △ ψ(1 \ d)) = µ̄((φ1 \ φd) △ (ψ1 \ ψd)) = µ̄((1 \ φd) △ (1 \ ψd)) = µ̄(φd△ ψd). QQQ

So D is a subalgebra of B (312B).
(γγγ) D is a closed subalgebra of B. PPP Suppose that d belongs to the closure of D for the measure-

algebra topology. Let ǫ > 0. Then there is a d′ ∈ D such that µ̄(d△ d′) ≤ 1
3ǫ. Let I ∈ [B]<ω and δ > 0 be

such that µ̄(φd′ △ ψd′) ≤ 1
3ǫ whenever supb∈I µ̄(φb△ ψb) ≤ δ. If now supb∈I µ̄(φb△ ψb) ≤ δ,

µ̄(φd△ ψd) ≤ µ̄(φd△ φd′) + µ̄(φd′ △ ψd′) + µ̄(ψd′ △ ψd) ≤ µ̄φ(d△ d′) +
ǫ

3
+ µ̄ψ(d′ △ d)

= µ̄(d△ d′) +
ǫ

3
+ µ̄(d′ △ d) ≤ ǫ.

As ǫ is arbitrary, d ∈ D; as d is arbitrary, D is closed. QQQ

(δδδ) π[D] ⊆ D. PPP Suppose that d ∈ D and ǫ > 0. Let I ∈ [B]<ω and δ > 0 be such that
µ̄(φd△ ψd) ≤ ǫ whenever supb∈I µ̄(φb△ ψb) ≤ δ. If now supb∈I µ̄(φb△ ψb) ≤ δ,

µ̄(φπd△ ψπd) = µ̄(πφd△ πψd) = µ̄π(φd△ ψd)

= µ̄(φd△ ψd) ≤ ǫ.
As d and ǫ are arbitrary, π[D] ⊆ D. QQQ

Inducing on j, we see that πjd ∈ D whenever j ∈ N and d ∈ D.

(ǫǫǫ) π−1[D] ⊆ D. PPP Since, as noted in (a-i) above, π−1φ = φπ−1 for every φ ∈ Homµ̄,π(B,C), we can
repeat the argument of (δ) with π−1 in the place of π. QQQ So π−jd ∈ D whenever j ∈ N and d ∈ D, and
πjd ∈ D whenever j ∈ Z and d ∈ D.

(iii) Thus D is a closed subalgebra of B including
⋃
i∈Z

πi[B] and must be the whole of B. But this
means that the condition of 3A4Cc is satisfied by the defining families of pseudometrics for V and W, so
that the identity map from Homµ̄,π(B;C) to itself is (V.W)-uniformly continuous, W ⊆ V and the two
uniformities are the same.

387G Lemma Suppose that (A, µ̄) is an atomless probability algebra and π ∈ Autµ̄ A. Let 〈bi〉i∈N and
〈ci〉i∈N be Bernoulli partitions for π, of the same finite entropy, and write B, C for the closed subalgebras
of A generated by {πjbi : i ∈ N, j ∈ Z} and {πjci : i ∈ N, j ∈ Z}. Suppose that C ⊆ B. Then for any ǫ > 0
we can find a φ ∈ Homµ̄,π(B;C) such that µ̄(φci △ ci) ≤ ǫ for every i ∈ N,

proof (a) Set B = {bi : i ∈ N} \ {0}, C = {ci : i ∈ N} \ {0}. If only one ci is non-zero, then H(C) = 0, so
H(B) = 0 and B = {0, 1}, in which case B = C and we take φ to be the identity homomorphism and stop.
Otherwise, C is atomless (387Bb).

For k ∈ N, let Bk ⊆ B be the finite subalgebra of A generated by {πjbi : i ≤ k, |j| ≤ k}. Because C ⊆ B,
there is an m ∈ N such that

ρ(ci,Bm) ≤ 1

4
ǫ for every i ∈ N
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(386J). Let η, ξ > 0 be such that

η + 6 4
√

2η ≤ ǫ

4(2m+1)
, ξ ≤ min(

ǫ

4
,
1

6
),

∑∞
i=0 q(min(2ξ, µ̄ci)) ≤ η.

(The last is achievable because
∑∞
i=0 q(µ̄ci) = H(C) is finite.) Let r ≥ m be such that

ρ(ci,Br) ≤ ξ for every i ∈ N.

Let n ≥ r be such that

2r+1

2n+2
≤ ξ, µ̄ci ≤ ξ for every i > n.

(b) Let 〈b′i〉i∈N be a partition of unity in C such that µ̄b′i = µ̄bi for every i ∈ N. Let U be the set of
atoms of the subalgebra of B generated by {πjbi : i ≤ n, |j| ≤ n} ∪ {πjci : i ≤ n, |j| ≤ n}, and V the set of
atoms of the subalgebra of C generated by {πjb′i : i ≤ n, |j| ≤ n} ∪ {πjci : i ≤ n, |j| ≤ n}. For each v ∈ V ,
choose a disjoint family 〈dvu〉u∈U in C such that supu∈U dvu = v and µ̄dvu = µ̄(v ∩ u) for every u ∈ U . By

386C(iv) again, there is an a ∈ C such that a, πa, . . . , π2na are disjoint and µ̄(a ∩ dvu) =
1

2n+2
µ̄(dvu) for

every u ∈ U and v ∈ V . (π↾C is a Bernoulli shift, therefore ergodic, by 385Se, therefore aperiodic, by 386D.)
Set e = sup|j|≤n π

ja, ẽ = sup|j|≤n−r π
ja; then

µ̄e = (2n+ 1)µ̄a =
2n+1

2n+2
, µ̄ẽ = (2(n− r) + 1)µ̄a = 1− 2r+1

2n+2
.

Let Cẽ be the principal ideal of C generated by ẽ.

(c) The family 〈π−j(a ∩ dvu)〉|j|≤n,u∈U,v∈V is disjoint. PPP All we have to note is that the families
〈dvu〉u∈U,v∈V and

〈π−ja〉|j|≤n = 〈π−n(πn+ja)〉|j|≤n
are disjoint. QQQ Consequently, if we set

b̂i = sup|j|≤n supv∈V supu∈U,u⊆πjbi π
−j(a ∩ dvu) ∈ C

for i ∈ N, 〈b̂i〉i∈N is disjoint, since a given triple (j, u, v) can contribute to at most one b̂i.

Of course b̂i ⊆ sup|j|≤n π
−ja = e for every i. If i ≤ n, we also have µ̄b̂i = µ̄e · µ̄bi. PPP For |j| ≤ n, πjbi is

a supremum of members of U , so

µ̄b̂i =

n∑

j=−n

∑

v∈V

∑

u∈U,u⊆πjbi

µ̄(π−j(a ∩ dvu))

(because 〈π−j(a ∩ dvu)〉|j|≤n,u∈U,v∈V is disjoint)

=

n∑

j=−n

∑

v∈V

∑

u∈U,u⊆πjbi

µ̄(a ∩ dvu) =
1

2n+2

n∑

j=−n

∑

v∈V

∑

u∈U,u⊆πjbi

µ̄dvu

(by the choice of a)

=
1

2n+2

n∑

j=−n

∑

v∈V

∑

u∈U,u⊆πjbi

µ̄(v ∩ u)

(by the choice of dvu)

=
1

2n+2

n∑

j=−n

∑

u∈U,u⊆πjbi

µ̄u =
1

2n+2

n∑

j=−n

µ̄(πjbi)

(because πjbi is a disjoint union of members of U when i ≤ n, |j| ≤ n)

=
2n+1

2n+2
µ̄bi = µ̄e · µ̄bi. QQQ

Again because C is atomless, we can choose a partition of unity 〈b∗i 〉i∈N in C such that µ̄b∗i = µ̄bi for every

i, while b∗i ⊇ b̂i and b∗i ∩ e = b̂i for i ≤ n.
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(d) Let E be the finite subalgebra of B generated by {πjbi : i ≤ n, |j| ≤ r} ∪ {πjci : i ≤ n, |j| ≤ r}.
Define θ : E→ Cẽ by setting

θb = sup|j|≤n−r supv∈V supu∈U,u⊆πjb π
−j(a ∩ dvu)

for b ∈ E.

(i) θ is a Boolean homomorphism. PPP The point is that if |j| ≤ n − r and b ∈ E, then πjb belongs to
the algebra generated by {πkbi : i ≤ n, |k| ≤ n} ∪ {πkci : i ≤ n, |k| ≤ n}, so is a union of members of U .
Since each map

b 7→ π−j(a ∩ dvu) if u ⊆ πjb, 0 otherwise

is a Boolean homomorphism from E to the principal ideal generated by π−j(a ∩ dvu), and

〈π−j(a ∩ dvu)〉|j|≤n−r,u∈U,v∈V
is a partition of unity in Cẽ, θ also is a Boolean homomorphism. QQQ

(ii) µ̄(θb) ≤ µ̄b for every b ∈ E. PPP (Compare (c) above.)

µ̄(θb) =
n−r∑

j=−n+r

∑

v∈V

∑

u∈U,u⊆πjb

µ̄π−j(a ∩ dvu)

=
1

2n+2

n−r∑

j=−n+r

∑

v∈V

∑

u∈U,u⊆πjb

µ̄(v ∩ u) =
2n−2r+1

2n+2
µ̄b ≤ µ̄b. QQQ

(iii) θ(πkbi) = ẽ ∩ πkb∗i for i ≤ n, |k| ≤ r. PPP Of course πkbi ∈ E. If |j| ≤ n− r, then |j + k| ≤ n, so

π−ja ∩ θ(πkbi) = sup
v∈V

sup
u∈U,u⊆πj+kbi

π−j(a ∩ dvu)

= πk
(
sup
v∈V

sup
u∈U,u⊆πj+kbi

π−j−k(a ∩ dvu)
)

= πk(π−j−ka ∩ b̂i) = π−ja ∩ πk(e ∩ b∗i ) = π−ja ∩ πkb∗i

because π−ja ⊆ πke. Taking the supremum of these pieces we have

θ(πkbi) = sup|j|≤n−r π
−ja ∩ θ(πkbi) = sup|j|≤n−r π

−ja ∩ πkb∗i = ẽ ∩ πkb∗i . QQQ

(iv) Finally, θci = ci ∩ ẽ for every i ≤ n. PPP If |j| ≤ n−r and v ∈ V then either v ⊆ πjci or v ∩ πjci = 0.
In the former case,

dvu = v ∩ u = 0 whenever u ∈ U and u 6⊆ πjci,
so that

v = supu∈U dvu = supu∈U,u⊆πjci dvu;

in the latter case, dvu = v ∩ u = 0 whenever u ⊆ πjci. So we have

v ∩ πjci = supu∈U,u⊆πjci dvu

for every v ∈ V , and

θci = sup
|j|≤n−r

sup
v∈V

sup
u∈U,u⊆πjci

π−j(a ∩ dvu)

= sup
|j|≤n−r

π−j(a ∩ sup
v∈V

sup
u∈U,u⊆πjci

dvu)

= sup
|j|≤n−r

π−j(a ∩ sup
v∈V

(v ∩ πjci))

= sup
|j|≤n−r

π−j(a ∩ πjci) = ci ∩ sup
|j|≤n−r

π−ja = ci ∩ ẽ. QQQ
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(e) Let B∗ be the closed subalgebra of A generated by {πjb∗i : i ∈ N, j ∈ Z}. Then for every b ∈ Br

there is a b∗ ∈ B∗ such that θb = b∗ ∩ ẽ. PPP The set of b for which this is true is a subalgebra of A containing
πkbi for i ≤ r and |k| ≤ r, by (d-iii). QQQ It follows that

ρ(ci,B
∗) ≤ 2ξ for i ∈ N.

PPP If i > n this is trivial, because µ̄ci ≤ ξ, by the choice of n. Otherwise, ci ∈ E. Take b ∈ Br such that
µ̄(b△ ci) = ρ(ci,Br) ≤ ξ. Let b∗ ∈ B∗ be such that θb = b∗ ∩ ẽ. Then

ρ(ci,B
∗) ≤ µ̄(ci △ b∗) ≤ 1− µ̄ẽ+ µ̄(ẽ ∩ (ci △ b∗))

=
2r+1

2n+2
+ µ̄((ẽ ∩ ci) △ θb) =

2r+1

2n+2
+ µ̄(θci △ θb)

(by (d-iv))

=
2r+1

2n+2
+ µ̄(θ(ci △ b)) ≤ 2r+1

2n+2
+ µ̄(ci △ b)

(by (d-ii))

≤ 2ξ

by the choice of n. QQQ

(f) Set B∗ = {b∗i : i ∈ N} \ {0}. Then H(B∗) = h(π,C) ≤ h(π,B∗) + η. PPP

H(B∗) = H(B) = H(C)

(because µ̄b∗i = µ̄bi for every i, and we supposed from the beginning that H(C) = H(B))

= h(π,C)

(because C is a Bernoulli partition, see 387Ba)

≤ h(π↾B∗) +H(C|B∗)

(386Kd)

≤ h(π↾B∗) +

∞∑

i=0

q(ρ(ci,B
∗))

(386Lb)

≤ h(π,B∗) +
∞∑

i=0

q(min(2ξ, µ̄ci))

(by the Kolmogorov-Sinǎı theorem, 385P(ii), and (e) above, recalling that ξ ≤ 1
6 , so that q is monotonic on

[0, 2ξ])

≤ h(π,B∗) + η

by the choice of ξ. QQQ
Note also that H(B∗) = h(π,C) ≤ h(π).

(g) By 387D, applied to π↾C and the partition 〈b∗i 〉i∈N of unity in C and the sequence 〈γi〉i∈N = 〈µ̄b∗i 〉i∈N,
we have a Bernoulli partition 〈di〉i∈N in C such that µ̄di = µ̄b∗i = µ̄bi for every i ∈ N and

∑∞
i=0 µ̄(di △ b∗i ) ≤ η + 6 4

√
2η ≤ ǫ

4(2m+1)
.

Let D ⊆ C be the closed subalgebra of A generated by {πjdi : i ∈ N, j ∈ Z}. Then we have a φ ∈
Homµ̄,π(B;C) such that φbi = di for every i ∈ N (387Bc).

(h) Set

e∗ = ẽ \ sup|j|≤m,i∈N π
j(di △ b∗i ).
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Then φ(πjbi) ∩ e∗ = θ(πjbi) ∩ e∗ whenever i ≤ m and |j| ≤ m. PPP

φ(πjbi) ∩ e∗ = πj(φbi) ∩ e∗ = πjdi ∩ e
∗

= πjb∗i ∩ e∗ = πjb∗i ∩ ẽ ∩ e∗ = θ(πjbi) ∩ e∗

by (d-iii), because i and |j| are both at most m ≤ r ≤ n. QQQ Since b 7→ φb ∩ e∗ : A→ Ae∗ , b 7→ θb ∩ e∗ : E→
Ae∗ are Boolean homomorphisms, φb ∩ e∗ = θb ∩ e∗ for every b ∈ Bm.

Now µ̄(ci △ φci) ≤ ǫ for every i ∈ N. PPP If i > n then of course

µ̄(φci △ ci) ≤ 2µ̄ci ≤ 2ξ ≤ ǫ.
If i ≤ n, then (by the choice of m) there is a b ∈ Bm such that µ̄(ci, b) ≤ 1

4ǫ. So

φci △ ci ⊆ (φci △ φb) ∪ (φb△ θb) ∪ (θb△ θci) ∪ (θci △ ci)

⊆ φ(ci △ b) ∪ (1 \ e∗) ∪ θ(b△ ci)

(using the definition of e∗ and (d-iv)) has measure at most

µ̄(ci △ b) + µ̄(1 \ e∗) + µ̄(b△ ci)

(by (d-ii), since b and ci both belong to E)

≤ 2µ̄(ci △ b) + µ̄(1 \ ẽ) + (2m+ 1)

∞∑

i=0

µ̄(di △ b∗i )

≤ ǫ

2
+

2r+1

2n+2
+

ǫ

4
≤ ǫ,

as required. QQQ

Thus we have found a suitable φ.

387H Lemma Suppose that (A, µ̄) is an atomless probability algebra and π ∈ Autµ̄ A. Let 〈bi〉i∈N and
〈ci〉i∈N be Bernoulli partitions for π, of the same finite entropy, and write B, C for the closed subalgebras
generated by {πjbi : i ∈ N, j ∈ Z} and {πjci : i ∈ N, j ∈ Z}. Suppose that C ⊆ B. Then for any ǫ > 0 we
can find a φ ∈ Homµ̄,π(C;B) such that µ̄(φci △ ci) ≤ ǫ and ρ(bi, φ[C]) ≤ ǫ for every i ∈ N.

proof (a) By 387G, there is a φ0 ∈ Homµ̄,π(B;C) such that µ̄(φ0ci △ ci) ≤ 1
4ǫ for every i ∈ N. Write B∗

for φ0[B] ⊆ C and b∗i = φ0bi for i ∈ N.

Let m ∈ N be such that

ρ(ci,Bm) ≤ 1
4ǫ for every i ∈ N,

where Bm is the subalgebra of A generated by {πjbi : i ≤ m, |j| ≤ m} (386J). Let η ∈ ]0, ǫ] be such that

(2m+ 1)
∑∞
i=0 min(η, 2µ̄bi) ≤ 1

4ǫ.

We know that B∗ is a closed subalgebra of C and π[B∗] = B∗ (387F(a-ii)), while 〈b∗i 〉i∈N is a generating
Bernoulli partition of B∗ because φ0 is an isomorphism between (B, µ̄↾B, π↾B) and (B∗, µ̄↾B∗, π↾B∗)
(387Bc). By 387G again, there is a φ1 ∈ Homµ̄,π(C;B∗) such that µ̄(φ1b

∗
i △ b∗i ) ≤ η for every i ∈ N. Write

C∗ = φ1[C], c∗i = φ1ci for i ∈ N.

(b) Now µ̄(c∗i △ φ0ci) ≤ ǫ for every i ∈ N. PPP There is a b ∈ Bm such that µ̄(ci △ b) ≤ 1
4ǫ. We know

that φ0[Bm] is the subalgebra of A generated by {φ0πjbi : i ≤ m, |j| ≤ m} = {πjb∗i : i ≤ m, |j| ≤ m}, and
contains φ0b. Because

φ1(φ0b) △ φ0b ⊆ supi∈N,|j|≤m φ1(πjb∗i ) △ πjb∗i = sup|j|≤m π
j(supi∈N φ1b

∗
i △ b∗i ),

we have
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µ̄(φ1φ0b△ φ0b) ≤ (2m+ 1)
∞∑

i=0

µ̄(φ1b
∗
i △ b∗i )

≤ (2m+ 1)
∞∑

i=0

min(η, 2µ̄bi) ≤ 1

4
ǫ.

But this means that

µ̄(c∗i △ φ0ci) = µ̄(φ1ci △ φ0ci) ≤ µ̄(φ1ci △ φ1φ0b) + µ̄(φ1φ0b△ φ0b) + µ̄(φ0b△ φ0ci)

≤ µ̄(ci △ φ0b) +
ǫ

4
+ µ̄(b△ ci) ≤ µ̄(ci △ φ0ci) + µ̄(φ0ci △ φ0b) +

ǫ

2

≤ ǫ

4
+ µ̄(ci △ b) +

ǫ

2
≤ ǫ. QQQ

(c) Set φ = φ−1
0 φ1; this is well-defined, with domain C, because φ0 is injective and φ1[C] ⊆ φ0[B]. Because

φ1 : C→ φ0[B] and φ−1
0 : φ0[B]→ B are Boolean homomorphisms, φ : C→ B is a Boolean homomorphism.

If c ∈ C, then

µ̄φc = µ̄φ1c = µ̄c, πφc = πφ1c = πφc,

so φ ∈ Homµ̄,π(C;B). Next,

µ̄(ci △ φci) = µ̄(φ0ci △ φ0φci) = µ̄(φ0ci △ c∗i ) ≤ ǫ
for every i, by (b). Finally, if i ∈ N, then φ1b

∗
i belongs to φ1[C], while D = φ−1

0 [φ1[C]], so

ρ(bi, φ[C]) = ρ(φ0bi, φ1[C]) ≤ µ̄(φ0bi △ φ1b
∗
i ) = µ̄(b∗i △ φ1b

∗
i ) ≤ η ≤ ǫ.

This completes the proof.

387I Lemma Suppose that (A, µ̄) is an atomless probability algebra and π ∈ Autµ̄ A. Let 〈bi〉i∈I , 〈ci〉i∈I
be Bernoulli partitions for π, of the same finite entropy, and write B, C for the closed subalgebras generated
by {πjbi : i ∈ N, j ∈ Z} and {πjci : i ∈ N, j ∈ Z}. Suppose that C ⊆ B. Then for any ǫ > 0 we can find
φ ∈ Homµ̄,π(C;B) such that φ[C] = B and µ̄(φci △ ci) ≤ ǫ for every i ∈ N.

proof (a) To begin with (down to the end of (c) below) suppose that I = N. Choose sequences 〈ǫn〉n∈N

in ]0,∞[, 〈δn〉n∈N in ]0,∞[, 〈rn〉n∈N in N and 〈φn〉n∈N in Homµ̄,π(C;B) inductively, as follows. Start with
r0 = 0 and φ0 : C→ B the identity. Given that φn ∈ Homµ̄,π(C;B) is such that ρ(bi, φn[C]) ≤ 2−n for every
i ∈ N, let rn ∈ N be such that ρ(bi,Dn) ≤ 2−n+1 for every i ∈ N, where Dn is the algebra generated by
{πjφnci : i ≤ rn, |j| ≤ rn} (386J).

Take ǫn, δn > 0 such that

(2rm + 1)ǫn ≤ 2−n for every m ≤ n,

δn ≤ 2−n−1ǫ,
∑∞
i=0 min(δn, 2µ̄ci) ≤ ǫn,

and use 387H to find ψn ∈ Homµ̄,π(φn[C];B) such that

µ̄(ψnφnci △ φnci) ≤ δn, ρ(bi, ψnφn[C]) ≤ 2−n−1

for every i ∈ N. Set φn+1 = ψnφn, so that φn+1 ∈ Homµ̄,π(C;B) (387F(a-iii)) and ρ(bi, φn+1[C]) ≤ 2−n−1

for every i. Continue.

(b) For any i ∈ N,
∑∞
n=0 µ̄(φn+1ci △ φnci) ≤

∑∞
n=0 δn ≤ ǫ,

so 〈φnci〉n∈N has a limit φci in A. This shows that 〈φn〉n∈N is a Cauchy sequence in Homµ̄,π(C;B) for the
uniformity defined by the pseudometrics (ψ,ψ′) 7→ µ̄(ψci △ ψ′ci) as i runs over N. But this is the weak
uniformity of Homµ̄,π(C;B), by 387Fc. Since Homµ̄,π(C;B) is complete under this uniformity (387Fb),
φ = limn→∞ φn is defined in Homµ̄,π(C;B). Of course
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µ̄(φci △ ci) ≤
∑∞
n=0 µ̄(φn+1ci △ φnci) ≤ ǫ

for every i ∈ N.

(c) Now bj ∈ φ[C] for every j ∈ N. PPP Fix m ∈ N. Then ρ(bj ,Dm) ≤ 2−m+1, so there is a b ∈ Dm such
that µ̄(bj △ b) ≤ 2−m+1. Now

∞∑

i=0

ρ(φmci, φ[C]) ≤
∞∑

i=0

µ̄(φmci △ φci) ≤
∞∑

i=0

∞∑

k=m

µ̄(φk+1ci △ φkci)

≤
∞∑

k=m

∞∑

i=0

min(µ̄φk+1ci + µ̄φkci, δk) =

∞∑

k=m

∞∑

i=0

min(2µ̄ci, δk) ≤
∞∑

k=m

ǫk.

So

ρ(b, φ[C]) ≤ (2rm + 1)

∞∑

i=0

ρ(φmci, φ[C])

(386Mc)

≤
∞∑

k=m

(2rm + 1)ǫk ≤
∞∑

k=m

2−k = 2−m+1,

and

ρ(bj , φ[C]) ≤ µ̄(bj △ b) + ρ(b, φ[C]) ≤ 2−m+1 + 2−m+1 = 2−m+2.

As m is arbitrary, ρ(bj , φ[C]) = 0 and bj ∈ φ[C]. QQQ

(d) This completes the proof if I = N. In general, if I = {0, . . . , n}, set bi = ci = 0 for i > n and proceed
as above; this shows that the result is true for any countable I. If we have been indulgent enough to allow
an uncountable I to survive to this point, set J = {i : bi 6= 0} ∪ {i : ci 6= 0} and apply the result to 〈bi〉i∈J
and 〈bi〉i∈J .

387J Ornstein’s theorem (finite entropy case) Let (A, µ̄) and (B, ν̄) be probability algebras, and
π : A → A, φ : B → B two-sided Bernoulli shifts of the same finite entropy. Then (A, µ̄, π) and (B, ν̄, φ)
are isomorphic.

proof (a) By 385R, A has a purely atomic root algebra A0. If A0 is infinite, enumerate its atoms as 〈ai〉i∈N;
if A0 is finite, enumerate its atoms as (a0, . . . , an) and set ai = 0 for i > n. In either case, 〈ai〉i∈N is a
two-sided generating Bernoulli partition in A. Similarly, B has a generating Bernoulli partition 〈bi〉i∈N. By
385R, {ai : i ∈ N} and {bi : i ∈ N} both have entropy h(π) = h(φ). If this entropy is zero, then A and B

are both {0, 1}, and the result is trivial; so let us assume that h(π) > 0, so that A is atomless (387Bb).

(b) By Sinǎı’s theorem (387E), there is a Bernoulli partition 〈ci〉i∈N for π such that µ̄ci = ν̄bi for every
i ∈ N. Let C be the closed subalgebra of A generated by {πjci : i ∈ N, j ∈ Z}. By 387I, there is a
ψ ∈ Homµ̄,π(C,A) such that ψ[C] = A. But now

(A, µ̄, π) ∼= (C, µ̄↾C, π↾C) ∼= (B, ν̄, φ)

(387F(a-ii), 387Bc).

387K Using the same methods, we can extend the last result to the case of Bernoulli shifts of infinite
entropy. The first step uses the ideas of 387C, as follows.

Lemma Let (A, µ̄) be a probability algebra and π ∈ Autµ̄ A an ergodic measure-preserving automorphism.
Suppose that 〈ai〉i∈I is a finite Bernoulli partition for π, with #(I) = r ≥ 1 and µ̄ai = 1/r for every i ∈ I,
and that h(π) ≥ ln 2r. Then for any ǫ > 0 there is a Bernoulli partition 〈bij〉i∈I,j∈{0,1} for π such that

µ̄(ai △ (bi0 ∪ bi1)) ≤ ǫ, µ̄bi0 = µ̄bi1 =
1

2r

D.H.Fremlin



88 Automorphism groups 387K

for every i ∈ I.

proof (a) Write A for {ai : i ∈ I}. Let δ > 0 be such that

δ + 6
√

4δ ≤ ǫ.
Let η > 0 be such that

η < ln 2,
√

8η ≤ δ
and

|t− 1
2 | ≤ δ whenever t ∈ [0, 1] and q(t) + q(1− t) ≥ ln 2− 4η

(385Ad). We have

H(A) = rq(
1

r
) = ln r,

and µ̄d = r−n whenever n ∈ N and d ∈ Dn(A, π).
Note that A is atomless. PPP??? If a ∈ A is an atom, then supj∈Z π

ja = 1 (because π is ergodic, 372Pb),

and A is purely atomic, with atoms all of the same size as a; but this means that H(C) ≤ ln( 1
µ̄a ) for every

partition of unity C ⊆ A, so that

h(π,C) = limn→∞
1

n
H(Dn(C, π)) ≤ limn→∞

1

n
ln(

1

µ̄a
) = 0

for every partition of unity C, and

0 = h(π) ≥ ln 2r ≥ ln 2. XXXQQQ

(b) There is a finite partition of unity C ⊆ A such that

h(π,C) = ln 2r − η,

and C refines A. PPP Because h(π) ≥ ln 2r, there is a finite partition of unity C ′ such that h(π,C ′) ≥ ln 2r−η;
replacing C ′ by C ′∨A if need be, we may suppose that C ′ refines A; take such a C ′ of minimal size. Because
H(C ′) ≥ h(π,C ′) > H(A), there must be distinct c0, c1 ∈ C ′ included in the same member of A. Because A

is atomless, the principal ideal generated by c1 has a closed subalgebra isomorphic, as measure algebra, to
the measure algebra of Lebesgue measure on [0, 1], up to a scalar multiple of the measure; and in particular
there is a family 〈dt〉t∈[0,1] such that ds ⊆ dt whenever s ≤ t, d1 = c1 and µ̄dt = tµ̄c1 for every t ∈ [0, 1]. Let
Dt be the partition of unity

(C ′ \ {c0, c1}) ∪ {c0 ∪ dt, c1 \ dt}
for each t ∈ [0, 1]. Then

h(π,D1) = h(π, (C ′ \ {c0, c1}) ∪ {c0 ∪ c1}) < ln 2r − η,

by the minimality of #(C ′), while

h(π,D0) = h(π,C ′) ≥ ln 2r − η.

Using 385N, we also have, for any s, t ∈ [0, 1] such that |s− t| ≤ 1
e ,

h(π,Ds)− h(π,Dt) ≤ H(Ds|Dt)

(where Dt is the closed subalgebra generated by Dt)

≤ q(ρ(c0 ∪ ds,Dt)) + q(ρ(c1 \ ds,Dt))

(by 386Lb, because Ds \Dt ⊆ {c0 ∪ ds, c1 \ ds})
≤ q(µ̄((c0 ∪ ds) △ (c0 ∪ dt))) + q(µ̄((c1 \ ds) △ (c1 \ dt)))

= 2q(µ̄(ds △ dt)) = 2q(|s− t|µ̄c1)

because q is monotonic on [0, |s− t|µ̄c1]. But this means that t 7→ h(π,Dt) is continuous and there must be
some t such that h(π,Dt) = ln 2r − η; take C = Dt. QQQ
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(c) Let ξ > 0 be such that

ξ ≤ η, ξ ≤ 1

6
, q(2ξ) + q(1− 2ξ) ≤ η,

∑
c∈C q(min(2ξ, µ̄c)) ≤ η.

Let n ∈ N be such that

1

n+1
≤ ξ, q(

1

n+1
) + q(

n

n+1
) ≤ η, µ̄[[wn − h(π,C)χ1 ≥ η]] ≤ ξ,

where

wn =
1

n

∑
d∈Dn(C,π)

ln(
1

µ̄d
)χd.

(The Shannon-McMillan-Breiman theorem, 386E-386F, assures us that any sufficiently large n has these
properties.)

(d) Let D be the set of those d ∈ Dn(C, π) such that

µ̄d ≥ (2r)−n, i.e.,
1

n
ln(

1

µ̄d
) ≤ ln 2r.

Then µ̄(supD) ≥ 1 − ξ, by the choice of n, because h(π,C) = ln 2r − η. Note that every member of
D is included in some member of Dn(A, π), because C refines A. If b ∈ Dn(A, π), then µ̄b = r−n, so
#({d : d ∈ D, d ⊆ b}) ≤ 2n; we can therefore find a function f : D → {0, 1}n such that f is injective on
{d : d ∈ D, d ⊆ b} for every b ∈ Dn(A, π).

(e) By 386C(iv), as usual, there is an a ∈ A such that a, π−1a, . . . , π−n+1a are disjoint and µ̄(a ∩ d) =
1

n+1 µ̄d for every d ∈ Dn(C, π). Set

e = supd∈D,j<n π
−j(a ∩ d);

then

µ̄e =
∑n−1
j=0

∑
d∈D µ̄(a ∩ d) =

n

n+1
µ̄(supD) ≥ (1− ξ)2 ≥ 1− 2ξ.

(f) Set

c∗ = sup{π−j(a ∩ d) : j < n, d ∈ D, f(d)(j) = 1}.
(I am identifying members of {0, 1}n with functions from {0, . . . , n− 1} to {0, 1}.) Set

A∗ = A ∨ {c∗, 1 \ c∗}, A′ = A∗ ∨ {a, 1 \ a} ∨ {e, 1 \ e},
and let A′ be the closed subalgebra of A generated by {πja′ : a′ ∈ A′, j ∈ Z}. Then a ∩ d ∈ A′ for every

d ∈ D. PPP Set d̃ = upr(a ∩ d,A′). Let b be the element of Dn(A, π) including d. Because a, b, e ∈ A′,

d̃ ⊆ a ∩ b ∩ e = supd′∈D a ∩ b ∩ d′ = sup{a ∩ d′ : d′ ∈ D, d′ ⊆ b}.
Now if d′ ∈ D, d′ ⊆ b and d′ 6= d, then f(d′) 6= f(d). Let j be such that f(d′)(j) 6= f(d)(j); then π−j(a ∩ d)
is included in one of c∗, 1 \ c∗ and π−j(a ∩ d′) in the other. This means that one of πjc∗, 1 \ πjc∗ is a member

of A′ including a ∩ d and disjoint from a ∩ d′, so that d̃ ∩ d′ = 0. Thus d̃ must be actually equal to a ∩ d, and
a ∩ d ∈ A′. QQQ

Next, c ∩ e ∈ A′ for every c ∈ C. PPP 〈π−j(a ∩ d)〉j<n, d∈D is a disjoint family in A′ with supremum e. But
whenever d ∈ D and j < n we must have d ⊆ πjc′ for some c′ ∈ C, so either d ⊆ πjc or d ∩ πjc = 0; thus
π−j(a ∩ d) must be either included in c or disjoint from it. Accordingly

c ∩ e = sup{π−j(a ∩ d) : j < n, d ∈ D, d ⊆ πjc} ∈ A′. QQQ

Consequently h(π,A′) ≥ ln 2r − 2η. PPP For any c ∈ C,

ρ(c,A′) ≤ µ̄(c△ (c ∩ e)) = µ̄(c \ e) ≤ min(µ̄c, 2ξ) ≤ 1

3
,

so
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ln 2r − η = h(π,C) ≤ h(π↾A′) +H(C|A′)

(386Kd)

≤ h(π,A′) +
∑

c∈C

q(ρ(c,A′))

(by the Kolmogorov-Sinǎı theorem and 386Lb)

≤ h(π,A′) +
∑

c∈C

q(min(µ̄c, 2ξ)) ≤ h(π,A′) + η

by the choice of ξ. QQQ
Finally, h(π,A∗) ≥ ln 2r − 4η. PPP

ln 2r − 2η ≤ h(π,A′) ≤ h(π,A∗) +H({a, 1 \ a}) +H({e, 1 \ e})
(applying 386Kb twice)

= h(π,A∗) + q(µ̄a) + q(1− µ̄a) + q(µ̄e) + q(1− µ̄e)

≤ h(π,A∗) + q(
1

n
) + q(

n

n+1
) + q(2ξ) + q(1− 2ξ)

≤ h(π,A∗) + η + η = h(π,A∗) + 2η. QQQ

(g) We have

ln 2r − 4η ≤ h(π,A∗) ≤ H(A∗)

≤ H(A) +H({c∗, 1 \ c∗}) = ln r +H({c∗, 1 \ c∗}) ≤ ln 2r,

so

q(µ̄c∗) + q(1− µ̄c∗) = H({c∗, 1 \ c∗}) ≥ ln 2− 4η.

By the choice of η, |µ̄c∗ − 1
2 | ≤ δ.

Next,

∑
i∈I |µ̄(ai ∩ c

∗)− 1

2r
|+ |µ̄(ai \ c

∗)− 1

2r
| ≤ 3δ.

PPP By 386H,

∑

i∈I

|µ̄(ai ∩ c
∗)− 1

r
µ̄c∗|+ |µ̄(ai \ c

∗)− 1

r
µ̄(1 \ c∗)|

≤
√

2(H(A) +H({c∗, 1 \ c∗})−H(A∗))

≤
√

2(ln r + ln 2− ln 2r + 4η) =
√

8η ≤ δ.

So

∑

i∈I

|µ̄(ai ∩ c
∗)− 1

2r
|+ |µ̄(ai \ c

∗)− 1

2r
|

≤
∑

i∈I

(
|µ̄(ai ∩ c

∗)− 1

r
µ̄c∗|+ 1

r
|µ̄c∗ − 1

2
|

+ |µ̄(ai \ c
∗)− 1

r
µ̄(1 \ c∗)|+ 1

r
|µ̄(1 \ c∗)− 1

2
|
)

≤ δ + |µ̄c∗ − 1

2
|+ |µ̄(1 \ c∗)− 1

2
| ≤ 3δ. QQQ
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(h) Now apply 387D to the partition of unity A∗, indexed as 〈a∗ij〉i∈I,j∈{0,1}, where a∗i1 = ai ∩ c
∗ and

a∗i0 = ai \ c
∗, and 〈γij〉i∈I,j∈{0,1}, where γij = 1

2r for all i, j. We have
∑
i∈I,j∈{0,1} |µ̄a∗ij − γij | ≤ 3δ

by (g), while

H(A∗)− h(π,A∗) ≤ ln 2r − ln 2r + 4η = 4η,

so
∑
i∈I,j∈{0,1} |µ̄a∗ij − γij |+

√
2(H(A∗)− h(π,A∗)) ≤ 3δ +

√
8η ≤ 4δ.

Also
∑
i∈I,j∈{0,1} q(γij) = ln 2r ≤ h(π).

So 387D tells us that there is a Bernoulli partition 〈bij〉i∈I,j∈{0,1} for π such that µ̄bij = 1
2r for all i, j and

∑
i∈I,j∈{0,1} µ̄(bij △ a∗ij) ≤ δ + 6

√
4δ ≤ ǫ.

Now of course

∑

i∈I

µ̄(ai △ (bi0 ∪ bi1)) ≤
∑

i∈I

µ̄((ai ∩ c
∗) △ bi1) + µ̄((ai \ c

∗) △ bi0)

=
∑

i∈I,j∈{0,1}

µ̄(a∗ij △ bij) ≤ ǫ,

as required.

387L Ornstein’s theorem (infinite entropy case) Let (A, µ̄) be a probability algebra of countable
Maharam type, and π : A → A a two-sided Bernoulli shift of infinite entropy. Then (A, µ̄, π) is isomorphic
to (BZ, ν̄Z, φ), where (BZ, ν̄Z) is the measure algebra of the usual measure on [0, 1]Z, and φ is the standard
two-sided Bernoulli shift on BZ (385Sb).

proof (a) We have to find a root algebra E for π which is isomorphic to the measure algebra of Lebesgue
measure on [0, 1]. The materials we have to start with are a root algebra A0 ⊆ A such that either A0 is not
purely atomic or H(A0) =∞, where A0 is the set of atoms of A0.

Because A has countable Maharam type, there is a sequence 〈dn〉n∈N in A0 such that {dn : n ∈ N} is
dense for the measure-algebra topology of A0 (331O).

(b) There is a sequence 〈Cn〉n∈N of partitions of unity in A0 such that Cn+1 refines Cn, H(Cn) = n ln 2
and dn is a union of members of Cn+1 for every n. PPP We have

sup{H(C) : C ⊆ A0 is a partition of unity} =∞
(385J). Choose the Cn inductively, as follows. Start with C0 = {0, 1}. Given Cn with H(Cn) = n ln 2, set
C ′
n = Cn ∨ {dn, 1 \ dn}; then

H(C ′
n) ≤ H(Cn) +H({dn, 1 \ dn}) ≤ (n+ 1) ln 2

(385Ga, 385Ad). By 386N, there is a partition of unity Cn+1, refining C ′
n, such that H(Cn+1) = (n+1) ln 2.

Continue. QQQ

(c) For each n ∈ N, let Cn be the closed subalgebra of A generated by {πja : a ∈ Cn, j ∈ Z}. Then
〈Cn〉n∈N is increasing. For each n, π[Cn] = Cn; because Cn ⊆ A0, π↾Cn is a Bernoulli shift with generating
partition Cn. Accordingly

h(π↾Cn) = h(π,Cn) = H(Cn) = n ln 2

(385R). Of course dn ∈ Cn+1 for every n.
Choose inductively, for each n ∈ N, ǫn > 0, rn ∈ N and a Bernoulli partition 〈bnσ〉σ∈{0,1}n in Cn, as

follows. Start with b0∅ = 1. (See 3A1H for the notation I am using here.) Given that 〈bnσ〉σ∈{0,1}n is a
Bernoulli partition for π which generates Cn, in the sense that Cn is the closed subalgebra of A generated
by {πjbnσ : σ ∈ {0, 1}n, j ∈ Z}, and µ̄bnσ = 2−n for every σ, take ǫn > 0 such that
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(2rm + 1)ǫn ≤ 2−n for every m < n.

We know that

h(π↾Cn+1) = (n+ 1) ln 2 = ln(2 · 2n).

So we can apply 387K to (Cn+1, π↾Cn+1) to see that there is a Bernoulli partition 〈b′nτ 〉τ∈{0,1}n+1 for π such
that

b′nτ ∈ Cn+1, µ̄b′nτ = 2−n−1

for every τ ∈ {0, 1}n+1,

µ̄(bnσ △ (b′n,σa<0> ∪ b′n,σa<1>)) ≤ 2−nǫn

for every σ ∈ {0, 1}n. By 387I (with B = C = Cn+1), there is a Bernoulli partition 〈bn+1,τ 〉τ∈{0,1}n+1 for

π↾Cn+1 such that the closed subalgebra generated by {πjbn+1,τ : τ ∈ {0, 1}n+1, j ∈ Z} is Cn+1, µ̄bn+1,τ =
2−n−1 for every τ ∈ {0, 1}n+1, and

∑
τ∈{0,1}n+1 µ̄(bn+1,τ △ b′nτ ) ≤ ǫn.

For each k ∈ N, let B
(n+1)
k be the finite subalgebra of Cn+1 generated by {πjbn+1,τ : τ ∈ {0, 1}n+1, |j| ≤ k}.

Since dm ∈ Cm+1 ⊆ Cn+1 for every m ≤ n, there is an rn ∈ N such that

ρ(dm,B
(n+1)
rn ) ≤ 2−n for every m ≤ n.

Continue.

(d) Fix m ≤ n ∈ N for the moment. For σ ∈ {0, 1}m, set

bnσ = sup{bnτ : τ ∈ {0, 1}n, τ extends σ}.
(If n = m, then of course σ is the unique member of {0, 1}m extending itself, so this formula is safe.) Then

µ̄bnσ = 2−n#({τ : τ ∈ {0, 1}n, τ extends σ}) = 2−n2n−m = 2−m.

Next, if σ, σ′ ∈ {0, 1}m are distinct, there is no member of {0, 1}n extending both, so bnσ ∩ bnσ′ = 0; thus
〈bnσ〉σ∈{0,1}m is a partition of unity. If σ(0), . . . , σ(k) ∈ {0, 1}m, then

µ̄( inf
j≤k

πjbn,σ(j)) = µ̄( sup
τ(0),... ,τ(k)∈{0,1}n

τ(j)⊇σ(j)∀j≤k

inf
j≤k

πjbn,τ(j))

=
∑

τ(0),... ,τ(k)∈{0,1}n

τ(j)⊇σ(j)∀j≤k

µ̄( inf
j≤k

πjbn,τ(j))

=
∑

τ(0),... ,τ(k)∈{0,1}n

τ(j)⊇σ(j)∀j≤k

(2−n)k+1

= (2n−m)k+1(2−n)k+1 = (2−m)k+1 =
k∏

j=0

µ̄bn,σ(j),

so 〈bnσ〉σ∈{0,1}m is a Bernoulli partition.

(e) If m ≤ n ∈ N, then
∑
σ∈{0,1}m µ̄(bnσ △ bn+1,σ) ≤ 2ǫn.

PPP We have

bnσ △ bn+1,σ = ( sup
σ⊆τ∈{0,1}n

bnτ ) △ ( sup
σ⊆υ∈{0,1}n+1

bn+1,υ)

= ( sup
σ⊆τ∈{0,1}n

bnτ ) △ ( sup
σ⊆τ∈{0,1}n

bn+1,τa<0> ∪ bn+1,τa<1>)

⊆ sup
σ⊆τ∈{0,1}n

bnτ △ (bn+1,τa<0> ∪ bn+1,τa<0>),

Measure Theory



387L Ornstein’s theorem 93

so

∑

σ∈{0,1}m

µ̄(bnσ △ bn+1,σ) ≤
∑

τ∈{0,1}n

µ̄(bnτ △ (bn+1,τa<0> ∪ bn+1,τa<1>))

≤
∑

τ∈{0,1}n

µ̄(bnτ △ (b′n,τa<0> ∪ b′n,τa<1>))

+
∑

υ∈{0,1}n+1

µ̄(b′nυ △ bn+1,υ)

≤
∑

τ∈{0,1}n

2−nǫn + ǫn = 2ǫn. QQQ

(f) In particular, for any m ∈ N and σ ∈ {0, 1}m,
∑∞
n=m µ̄(bnσ △ bn+1,σ) ≤∑∞

n=m 2ǫn <∞.

So we can define bσ = limn→∞ bnσ in A. We have

µ̄bσ = limn→∞ µ̄bnσ = 2−m;

and if σ, σ′ ∈ {0, 1}m are distinct, then

bσ ∩ bσ′ = limn→∞ bnσ ∩ bnσ′ = 0,

so 〈bσ〉σ∈{0,1}m is a partition of unity in A. If σ(0), . . . , σ(k) ∈ {0, 1}m, then

µ̄( inf
j≤k

πjbσ(j)) = lim
n→∞

µ̄( inf
j≤k

πjbn,σ(j))

= lim
n→∞

k∏

j=0

µ̄bn,σ(j) =

k∏

j=0

µ̄bσ(j),

so 〈bσ〉σ∈{0,1}m is a Bernoulli partition for π. If σ ∈ {0, 1}m, then bnσ = bn,σa<0> ∪ bn,σa<0> for every
n ≥ m+ 1, so

bσa<0> ∪ bσa<1> = limn→∞ bn,σa<0> ∪ bn,σa<1> = limn→∞ bn,σ = bσ.

(g) Let E be the closed subalgebra of A generated by
⋃
m∈N
{bσ : σ ∈ {0, 1}m}. Then E is atomless

and countably τ -generated, so (E, µ̄↾E) is isomorphic to the measure algebra of Lebesgue measure on [0, 1]

(331P). Now µ̄(infj≤k π
jej) =

∏k
j=0 µ̄ej for all e0, . . . , ek ∈ E. PPP Let ǫ > 0. For m ∈ N, let Em be the

subalgebra of E generated by {bσ : σ ∈ {0, 1}m}. 〈Em〉m∈N is non-decreasing, so
⋃
m∈N

Em is a closed
subalgebra of A, and must be E. Now the function

(a0, . . . , ak) 7→ µ̄(infj≤k π
jaj)−

∏k
j=0 µ̄aj : Ak+1 → R

is continuous and zero on Ek+1
m for every m, by 387Ba, so is zero on Ek+1, and in particular is zero at

(e0, . . . , ek), as required. QQQ
By 385Sf, 〈πj [E]〉j∈Z is independent.

(h) Let B∗ be the closed subalgebra of A generated by {πjbσ : σ ∈ ⋃
m∈N
{0, 1}m, j ∈ Z}; then B∗ is the

closed subalgebra of A generated by
⋃
j∈Z

πj [E]. It follows from (e) that, for any m ∈ N,

∑

σ∈{0,1}m

ρ(bmσ,B
∗) ≤

∑

σ∈{0,1}m

µ̄(bmσ △ bσ)

≤
∑

σ∈{0,1}m

∞∑

n=m

µ̄(bnσ △ bn+1,σ) ≤ 2

∞∑

n=m

ǫn.

So if b ∈ B
(m+1)
rm ,
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ρ(b,B∗) ≤ (2rm + 1)
∑

σ∈{0,1}m+1

ρ(bm+1,σ,B
∗)

(386Mc, as π[B∗] = B∗)

≤ 2(2rm + 1)

∞∑

n=m+1

ǫn ≤ 2

∞∑

n=m+1

2−n = 2−m+1.

It follows that, whenever m ≤ n in N,

ρ(dm,B
∗) ≤ ρ(dm,B

(n+1)
rn ) + 2−n+1 ≤ 2−n + 2−n+1

by the choice of rn. Letting n → ∞, we see that ρ(dm,B
∗) = 0, that is, dm ∈ B∗, for every m ∈ N. But

this means that A0 ⊆ B∗, by the choice of 〈dm〉m∈N. Accordingly πj [A0] ⊆ B∗ for every j and B∗ must be
the whole of A.

(i) Thus π is a two-sided Bernoulli shift with root algebra E; by 385Sc, (A, µ̄, π) is isomorphic to
(BZ, ν̄Z, φ).

387M Corollary: Sinǎı’s theorem (general case) Suppose that (A, µ̄) is an atomless probability
algebra, and π ∈ Autµ̄ A. Let (B, ν̄) be a probability algebra of countable Maharam type, and φ : B → B

a one- or two-sided Bernoulli shift with h(φ) ≤ h(π). Then (B, ν̄, φ) is isomorphic to a factor of (A, µ̄, π).

proof (a) To begin with (down to the end of (b)) suppose that φ is two-sided. Let B0 be a root algebra for
φ. If B0 is purely atomic, then there is a generating Bernoulli partition 〈bi〉i∈N for φ of entropy h(φ) (385R).
By 387E, there is a Bernoulli partition 〈ci〉i∈N for π such that µ̄ci = ν̄bi for every i. Let C be the closed
subalgebra of A generated by {πjci : i ∈ N, j ∈ Z}. Now (C, µ̄↾C, π↾C) is a factor of (A, µ̄, π) isomorphic to
(B, ν̄, φ).

(b) If B0 is not purely atomic, then there is a partition of unity 〈bi〉i∈N in B0 of infinite entropy (385J).
Again, let C be the closed subalgebra of A generated by {πjci : i ∈ N, j ∈ Z}, where 〈ci〉i∈N is a Bernoulli
partition for π such that µ̄ci = ν̄bi for every i. Now π↾C is a Bernoulli shift of infinite entropy and C has
countable Maharam type, so 387L tells us that there is a closed subalgebra C0 ⊆ C such that 〈πk[C0]〉k∈Z

is independent and (C0, µ̄↾C0) is isomorphic to the measure algebra of Lebesgue measure on [0, 1]. But
(B0, ν̄↾B0) is a probability algebra of countable Maharam type, so is isomorphic to a closed subalgebra
C1 of C0 (332N). Of course 〈πk[C1]〉k∈Z is independent, so if we take C∗

1 to be the closed subalgebra of A

generated by
⋃
k∈Z

πk[C1], π↾C∗
1 will be a two-sided Bernoulli shift isomorphic to φ.

(c) If φ is a one-sided Bernoulli shift, then 385Sa shows that (B, ν̄, φ) can be represented in terms of a
product measure on a space XN and the standard shift operator on XN. Now this extends naturally to the
standard two-sided Bernoulli shift represented by the product measure on XZ, as described in 385Sb (cf.
385Yg); so that (B, ν̄, φ) becomes represented as a factor of (B′, ν̄ ′, φ′) where φ′ is a two-sided Bernoulli
shift with the same entropy as φ (since the entropy is determined by the root algebra, by 385R). By (a)-(b),
(B′, ν̄ ′, φ′) is isomorphic to a factor of (A, µ̄, π), so (B, ν̄, φ) also is.

Remark Thus (A, µ̄, π) has factors which are Bernoulli shifts based on root algebras of all countably-
generated types permitted by the entropy of π.

387X Basic exercises (a) Let (A, µ̄) be a probability algebra, and π : A → A a one- or two-sided
Bernoulli shift. Show that πn is a Bernoulli shift for any n ≥ 1. (Hint : if A0 is a root algebra for π, the
closed subalgebra generated by

⋃
j<n π

j [A0] is a root algebra for πn.)

(b) Suppose that (A, µ̄) be a probability algebra, π ∈ Autµ̄ A and B is a closed subalgebra of A such
that π[B] = B. Show that if π is ergodic or mixing, so is π↾B.

(c) Let (A, µ̄) be a measure algebra and π ∈ Autµ̄ A. Show that (φ, ψ) 7→ ψφ : Homµ̄,π(A;A) ×
Homµ̄,π(A;A)→ Homµ̄,π(A;A) is continuous for the weak topology on Homµ̄,π(A;A).
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(d) Let (A, µ̄) be a probability algebra, and write ι for the identity map on A; regard Autµ̄ A as a subset
of Homµ̄,ι(A;A) with its weak topology. Show that π 7→ π−1 : Autµ̄ A→ Autµ̄ A is continuous.

(e) Let (A, µ̄) be a probability algebra of countable Maharam type, and π : A→ A a two-sided Bernoulli
shift. Show that for any n ≥ 1 there is a Bernoulli shift φ : A → A such that φn = π. (Hint : construct
a Bernoulli shift ψ such that h(ψ) = 1

nh(π), and use 385Xi and Ornstein’s theorem to show that π is
isomorphic to ψn.)

(f) Let 〈αi〉i∈N, 〈βi〉i∈N be non-negative real sequences such that
∑∞
i=0 αi =

∑∞
i=0 βi = 1 and

∑∞
i=0 q(αi)

=
∑∞
i=0 q(βi). Let µ0, ν0 be the measures on N defined by the formulae

µ0E =
∑
i∈E αi, ν0E =

∑
i∈E βi

for E ⊆ N. Set X = NZ and let µ, ν be the product measures on X derived from µ0 and ν0. Show that there
is a permutation f : X → X such that ν is precisely the image measure µf−1 and f is translation-invariant,
that is, f(xθ) = f(x)θ for every x ∈ X, where θ(n) = n+ 1 for every n ∈ Z.

(g) Let (A, µ̄, π) and (B, ν̄, φ) be probability algebras of countable Maharam type with two-sided Bernoulli
shifts. Suppose that each is isomorphic to a factor of the other. Show that they are isomorphic.

387Y Further exercises (a) Suppose that (A, µ̄, π) and (B, ν̄, φ) are probability algebras with one-
sided Bernoulli shifts, and that they are isomorphic. Show that they have isomorphic root algebras. (Hint :
apply the results of §333 to (A, µ̄, π[A]).)

387 Notes and comments The arguments here are expanded from Smorodinsky 71 and Ornstein 74.
I have sought a reasonably direct path to 387J and 387L; of course there is a great deal more to be said
(387Xe is a hint), and, in particular, extensions of the methods here provide powerful theorems enabling us
to show that automorphisms are Bernoulli shifts. (See Ornstein 74.)

The ideas sketched in 387F can evidently be applied in many other ways; see 387Xc-387Xd here, or §494
in Volume 4.

Version of 6.6.16

388 Dye’s theorem

I have repeatedly said that any satisfactory classification theorem for automorphisms of measure algebras
remains elusive. There is however a classification, at least for the Lebesgue measure algebra, of the ‘orbit
structures’ corresponding to measure-preserving automorphisms; in fact, they are defined by the fixed-point
subalgebras, which I described in §333. We have to work hard for this result, but the ideas are instructive.

388A Orbit structures I said that this section was directed to a classification of ‘orbit structures’,
without saying what these might be. In fact what I will do is to classify the full subgroups generated by
measure-preserving automorphisms of the Lebesgue measure algebra. One aspect of the relation with ‘orbits’
is the following (cf. 381Qc).

Proposition Let (X,Σ, µ) be a localizable countably separated measure space (definition: 343D), with
measure algebra (A, µ̄). Suppose that f and g are measure space automorphisms from X to itself, inducing
measure-preserving automorphisms π, φ of A. Then the following are equiveridical:

(i) φ belongs to the full subgroup of AutA generated by π;
(ii) for almost every x ∈ X, there is an n ∈ Z such that g(x) = fn(x);
(iii) for almost every x ∈ X, {gn(x) : n ∈ Z} ⊆ {fn(x) : n ∈ Z}.

proof (i)⇒(ii) Let 〈Hk〉k∈N be a sequence in Σ which separates the points of X; we may suppose that
H0 = X. By 381Ib, there is a partition of unity 〈an〉n∈Z in A such that φc = πnc whenever c ⊆ an and

c© 2001 D. H. Fremlin
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n ∈ Z. For each n ∈ Z let En ∈ Σ be such that E•
n = an; then Y0 =

⋃
n∈Z

En is conegligible. The
transformation fn induces πn, so for any k ∈ N and n ∈ Z the set

Fnk = (fn)−1[En ∩Hk]△g−1[En ∩Hk]

is negligible, and Y = g−1[Y0] \⋃n∈Z,k∈N
Fnk is conegligible. Now, for any x ∈ Y , there is some n such that

g(x) belongs to En = En ∩H0, so that fn(x) ∈ En, {k : g(x) ∈ Hk} = {k : fn(x) ∈ Hk} and g(x) = fn(x).
As Y is conegligible, (ii) is satisfied.

(ii)⇒(iii) For x ∈ X, set Ωx = {fn(x) : n ∈ Z}; we are supposing that A0 = {x : g(x) /∈ Ωx} is negligible.
Set A =

⋃
n∈Z

g−n[A0], so that A is negligible and gn(x) ∈ X \A for every x ∈ X \A, n ∈ Z.

Suppose that x ∈ X \ A and n ∈ N. Then gn(x) ∈ Ωx. PPP Induce on n. Of course g0(x) = x ∈ Ωx. For
the inductive step to n + 1, gn(x) ∈ Ωx \ A0, so there is a k ∈ Z such that gn(x) = fk(x). At the same
time, there is an i ∈ Z such that g(gn(x)) = f i(gn(x)), so that gn+1(x) = f i+k(x) ∈ Ωx. Thus the induction
continues. QQQ

Consequently g−n(x) ∈ Ωx whenever x ∈ X \ A and n ∈ N. PPP Since g−n(x) ∈ X \ A, there is a k ∈ Z
such that x = gng−n(x) = fkg−n(x) and g−n(x) = f−k(x) ∈ Ωx. QQQ

Thus {gn(x) : n ∈ Z} ⊆ Ωx for every x in the conegligible set X \A.

(iii)⇒(ii) is trivial.

(ii)⇒(i) Set

En = {x : g(x) = fn(x)} = X \⋃k∈N
(g−1[Hk]△f−n[Hk]),

for n ∈ Z. Then (ii) tells us that
⋃
n∈Z

En is conegligible, so
⋃
n∈Z

g[En] is conegligible. But also each En
is measurable, so g[En] also is, and we can set an = g[En]•. Now for y ∈ g[En], y = fn(g−1(y)), that is,
g−1(y) = f−n(y); so φa = πna for every a ⊆ an. Since supn∈Z an = 1 in A, φ belongs to the full subgroup
generated by π.

Remark Of course the requirement ‘countably separated’ is essential here; for other measure spaces we can
have φ and π actually equal without g(x) and f(x) being related for any particular x (see 343I and 343J).

388B Corollary Under the hypotheses of 388A, π and φ generate the same full subgroup of AutA iff
{fn(x) : n ∈ Z} = {gn(x) : n ∈ Z} for almost every x ∈ X.

388C Extending some ideas from 381M-381N, we have the following fact.

Lemma Let (A, µ̄) be a totally finite measure algebra, and π : A→ A a measure-preserving automorphism;
let C be its fixed-point subalgebra {c : πc = c}. Let 〈di〉i∈I , 〈ei〉i∈I be two disjoint families in A such that
µ̄(c ∩ di) = µ̄(c ∩ ei) for every i ∈ I and c ∈ C. Then there is a φ ∈ Gπ, the full subgroup of AutA generated
by π, such that φdi = ei for every i ∈ I.

proof Adding d∗ = 1 \ supi∈I di, e
∗ = 1 \ supi∈I ei to the respective families, we may suppose that 〈di〉i∈I ,

〈ei〉i∈I are partitions of unity. Define 〈an〉n∈N inductively by the formula

an = supi∈I(di \ supm<n am) ∩ π−n(ei \ supm<n π
mam).

Then an ∩ di ∩ am = 0 whenever m < n and i ∈ I, so 〈an〉n∈N is disjoint. Also

πnan ⊆ supi∈I ei \ supm<n π
mam

for each n, so 〈πnan〉n∈N is disjoint. Note that as πn(an ∩ dj) ⊆ ej for each j,

πnan ∩ ei = sup
j∈I

πn(an ∩ dj) ∩ ei = sup
j∈I

πn(an ∩ dj) ∩ ej ∩ ei

= πn(an ∩ di) ∩ ei = πn(an ∩ di)

for every i ∈ I and n ∈ N.
??? Suppose, if possible, that a = 1 \ supn∈N an is non-zero. Then there is an i ∈ I such that a ∩ di 6= 0.

Set c = supn∈N π
n(a ∩ di); then πc ⊆ c so c ∈ C. Now
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∞∑

n=0

µ̄(c ∩ ei ∩ π
nan) =

∞∑

n=0

µ̄(c ∩ πn(an ∩ di)) =

∞∑

n=0

µ̄(πn(c ∩ an ∩ di))

=

∞∑

n=0

µ̄(c ∩ an ∩ di) = µ̄(c ∩ di \ a) < µ̄(c ∩ di) = µ̄(c ∩ ei).

So b = c ∩ ei \ supn∈N π
nan is non-zero, and there is an n ∈ N such that b ∩ πn(a ∩ di) is non-zero. But look

at a′ = π−n(b ∩ πn(a ∩ di)). We have 0 6= a′ ⊆ a ∩ di, so a′ ⊆ di \ supm<n am; while

πna′ ⊆ b ⊆ ei \ supm<n π
mam.

But this means that a′ ⊆ an, which is absurd. XXX
This shows that 〈an〉n∈N is a partition of unity in A. Since

∑∞
n=0 µ̄(πnan) =

∑∞
n=0 µ̄an = µ̄1,

〈πnan〉n∈N also is a partition of unity. We can therefore define φ ∈ Gπ by setting φd = πnd whenever n ∈ N
and d ⊆ an. Now, for any i ∈ I,

φdi = supn∈N φ(di ∩ an) = supn∈N π
n(di ∩ an) = supn∈N ei ∩ π

nan = ei.

So we have found a suitable φ.

388D von Neumann automorphisms (a) Definitions Let A be a Boolean algebra and π ∈ AutA
an automorphism. π is weakly von Neumann if there is a sequence 〈an〉n∈N in A such that a0 = 1 and,
for every n, an+1 ∩ π2nan+1 = 0, an+1 ∪ π2nan+1 = an. In this case, π is von Neumann if 〈an〉n∈N can be
chosen in such a way that {πman : m, n ∈ N} τ -generates A, and relatively von Neumann if 〈an〉n∈N

can be chosen so that {πman : m, n ∈ N} ∪ {c : πc = c} τ -generates A.

(b) There is another way of looking at automorphisms of this type which will be useful. If A is a
Boolean algebra and π : A→ A an automorphism, then a dyadic cycle system for π is a finite or infinite
family 〈dmi〉m≤n,i<2m or 〈dmi〉m∈N,i<2m such that (α) for each m, 〈dmi〉i<2m is a partition of unity such
that πdmi = dm,i+1 whenever i < 2m − 1 (so that πdm,2m−1 must be dm0) (β) dm0 = dm+1,0 ∪ dm+1,2m for
every m < n (in the finite case) or for every m ∈ N (in the infinite case). An easy induction on m shows
that if k ≤ m then

dki = sup{dmj : j < 2m, j ≡ i mod 2k}
for every i < 2k.

Conversely, if d is such that 〈πjd〉j<2n is a partition of unity in A, then we can form a finite dyadic cycle
system 〈dmi〉m≤n,i<2m by setting dmi = sup{πjd : j < 2n, j ≡ i mod 2m} whenever m ≤ n and j < 2m.

(c) Now an automorphism π : A → A is weakly von Neumann iff it has an infinite dyadic cycle system
〈dmi〉m∈N,i<2m . (The am of (a) correspond to the dm0 of (b); starting from the definition in (a), you must
check first, by induction on m, that 〈πiam〉i<2m is a partition of unity in A.) π is von Neumann iff it has a
dyadic cycle system 〈dmi〉m∈N,i<2m which τ -generates A.

388E Example The following is the basic example of a von Neumann transformation – in a sense,
the only example of a measure-preserving von Neumann transformation. Let µ be the usual measure on
X = {0, 1}N, Σ its domain, and (A, µ̄) its measure algebra. Define f : X → X by setting

f(x)(n) = 1− x(n) if x(i) = 0 for every i < n,

= x(n) otherwise.

Then f is a homeomorphism and a measure space automorphism. PPP (i) To see that f is a homeomorphism,
perhaps the easiest way is to look at g, where

g(x)(n) = 1− x(n) if x(i) = 1 for every i < n,

= x(n) otherwise,
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and check that f and g are both continuous and that fg and gf are both the identity function. (ii) To see
that f is inverse-measure-preserving, it is enough to check that µ{x : f(x)(i) = z(i) for every i ≤ n} = 2−n−1

for every n ∈ N, z ∈ X (254G). But

{x : f(x)(i) = z(i) for every i ≤ n} = {x : x(i) = g(z)(i) for every i ≤ n}.
(iii) Similarly, g is inverse-measure-preserving, so f is a measure space automorphism. QQQ

If n ∈ N and x ∈ X then

f2
k

(x)(n) = 1− x(n) if n ≥ k and x(i) = 0 whenever k ≤ i < n,

= x(n) otherwise.

(Induce on k. For the inductive step, observe that if we identify X with {0, 1} ×X then f2(ǫ, y) = (ǫ, f(y))
for every ǫ ∈ {0, 1} and y ∈ X.)

Let π : A → A be the corresponding automorphism, setting πE• = f−1[E]• for E ∈ Σ. Then π is a
measure-preserving von Neumann automorphism. PPP π is a measure-preserving automorphism because f
is. Set En = {x : x ∈ X, x(i) = 1 for every i < n}, an = E•

n. Then f−2n [En+1] = {x : x(i) = 1 for
i < n, x(n) = 0}, so an+1 and π2nan+1 split an for each n, and 〈an〉n∈N witnesses that π is weakly von
Neumann. Next, inducing on n, we find that {f−i[En] : i < 2n} runs over the basic cylinder sets of the
form {x : x(i) = z(i) for every i < n} determined by coordinates less than n. Since the equivalence classes
of such sets τ -generate A (see part (a) of the proof of 331K), π is a von Neumann automorphism. QQQ
f is sometimes called the odometer transformation. For another way of looking at the functions f

and g, see 445Xp in Volume 4.

388F We are now ready to approach the main results of this section.

Lemma Let (A, µ̄) be a totally finite measure algebra and π : A → A an aperiodic measure-preserving
automorphism. Let C be its fixed-point subalgebra. Then for any a ∈ A there is a b ⊆ a such that µ̄(b∩ c) =
1
2 µ̄(a ∩ c) for every c ∈ C and πb is a weakly von Neumann automorphism, writing πb for the induced
automorphism of the principal ideal Ab, as in 381M.

Remark On first reading, there is something to be said for supposing here that π is ergodic, that is, that
C = {0, 1}.
proof I should remark straight away that π is doubly recurrent on every b ∈ A (386A), so we have an
induced automorphism πb : Ab → Ab for every b ∈ A (381M).

(a) Set ǫn = 1
2 (1 + 2−n) for each n ∈ N, so that 〈ǫn〉n∈N is strictly decreasing, with ǫ0 = 1 and

limn→∞ ǫn = 1
2 . Now there are 〈bn〉n∈N, 〈dni〉n∈N,i<2n such that, for each n ∈ N,

bn+1 ⊆ bn ⊆ a, µ̄(bn ∩ c) = ǫnµ̄(a ∩ c) for every c ∈ C,

〈dni〉i<2n is disjoint, supi<2n dni = bn,

πbndni = dn,i+1 for every i < 2n − 1,

bn+1 ∩ dni = dn+1,i ∪ dn+1,i+2n for every i < 2n.

PPP Start with b0 = d00 = a. To construct bn+1 and 〈dn+1,i〉i<2n+1 , given 〈dni〉i<2n , note first that (because
πbn is measure-preserving and πbn(c ∩ d) = c ∩ πbnd for every d ⊆ bn, see 381Nf) µ̄(dn0 ∩ c) = µ̄(dni ∩ c)
whenever c ∈ C and i < 2n, so

µ̄(dn0 ∩ c) = 2−nµ̄(bn ∩ c) = 2−nǫnµ̄(a ∩ c)

for every c ∈ C, and

dn0 = bn \ supi<2n−1 πbndni = πbndn,2n−1 = π2n

bn
dn0.

Now πbn is aperiodic (381Ng) so π2n

bn
also is (381Bd), and there is a dn+1,0 ⊆ dn0 such that

π2n

bn
dn+1,0 ∩ dn+1,0 = 0, µ̄(dn+1,0 ∩ c) = 2−n−1ǫn+1µ̄(a ∩ c) for every c ∈ C
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(applying 386C(iii) to π2n

bn
↾Adn0

, with γ = ǫn+1/2ǫn). Set dn+1,j = πjbndn+1,0 for each j < 2n+1. Be-

cause π2n

bn
dn+1,0 ⊆ dn0 \ dn+1,0, while 〈πjbndn0〉j<2n is disjoint, 〈πjbndn+1,0〉j<2n+1 is disjoint. Set bn+1 =

supj<2n+1 π
j
bn
dn+1,0; then bn+1 ⊆ bn and µ̄(bn+1 ∩ c) = ǫn+1µ̄(a ∩ c) for every c ∈ C. For j < 2n+1,

dn+1,j ⊆ dni where i is either j or j − 2n, so bn+1 ∩ dni = dn+1,i ∪ dn+1,i+2n for every i < 2n.
For j < 2n+1 − 1,

πbndn+1,j = dn+1,j+1 ⊆ bn+1,

so we must also have

πbn+1
dn+1,j = (πbn)bn+1

dn+1,j = dn+1,j+1

(using 381Ne). Thus the induction continues. QQQ

(b) Set

b = infn∈N bn, eni = b ∩ dni for n ∈ N, i < 2n.

Because 〈bn〉n∈N is non-increasing,

µ̄(b ∩ c) = limn→∞ µ̄(bn ∩ c) =
1

2
µ̄(a ∩ c)

for every c ∈ C. Next,

eni = b ∩ bn+1 ∩ dni = b ∩ (dn+1,i ∪ dn+1,i+2n) = en+1,i ∪ en+1,i+2n

whenever i < 2n.
If m ≤ n and j < 2m then

bn ∩ dmj = sup{dni : i < 2n, i ≡ j mod 2m}
(induce on n). So

µ̄(bn ∩ dmj) = 2n−mµ̄dn0 = 2−mǫn;

taking the limit as n→∞, µ̄emj = 2−mµ̄b. Next,

πbn(bn ∩ dmj) = sup{dn,i+1 : i < 2n, i ≡ j mod 2m}
= sup{dni : i < 2n, i ≡ j + 1 mod 2m} = bn ∩ dm,j+1,

here interpreting dn,2n as dn0, dm,2m as dm0. Consequently πbemj ⊆ em,j+1. PPP??? Otherwise, there are a
non-zero e ⊆ dmj ∩ b and k ≥ 1 such that πie ∩ b = 0 for 1 ≤ i < k and πke ⊆ b \ dm,j+1. Take n ≥ m so
large that µ̄e > kµ̄(bn \ b), so that

e′ = e \ sup1≤i<k π
−i(bn \ b) 6= 0;

now πie′ ∩ bn = 0 for 1 ≤ i < k, while πke′ ⊆ bn, and

πbne
′ = πke′ ⊆ 1 \ dm,j+1.

But this means that πbn(bn ∩ dmj) 6⊆ dm,j+1, which is impossible. XXXQQQ
Since µ̄(πbemj) = µ̄em,j+1, we must have πbemj = em,j+1. And this is true whenever m ∈ N and j < 2m,

if we identify em,2m with em0. Thus 〈emi〉m∈N,i<2m is a dyadic cycle system for πb and πb is a weakly von
Neumann automorphism.

388G Lemma Let (A, µ̄) be a totally finite measure algebra and π, ψ two measure-preserving automor-
phisms of A. Suppose that ψ belongs to the full subgroup Gπ of AutA generated by π and that there is a
b ∈ A such that supn∈Z ψ

nb = 1 and the induced automorphisms ψb, πb on Ab are equal. Then Gψ = Gπ.

proof (a) The first fact to note is that if 0 6= b′ ⊆ b, n ∈ Z and πnb′ ⊆ b, then there are m ∈ Z, b′′ ⊆ b′

such that b′′ 6= 0 and πnd = ψmd for every d ⊆ b′′. PPP (α) If n = 0 take b′′ = b′, m = 0. (β) Next, suppose
that n > 0. We have 0 6= b′ ⊆ b ∩ π−nb, so by 381Nc there are i, b′1 such that 1 ≤ i ≤ n, 0 6= b′1 ⊆ b′ and
πnd = πibd for every d ⊆ b′1. Now by 381Nb there are a non-zero b′′ ⊆ b′1 and an m ≥ i such that ψibd = ψmd
for every d ⊆ b′′; so that πnd = ψmd for every d ⊆ b′′. (γ) If n < 0, then apply (β) to π−1 and ψ−1, recalling
that (π−1)b = π−1

b = ψ−1
b = (ψ−1)b (381Na). QQQ
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(b) Now take any non-zero a ∈ A. Then there are m, n ∈ Z such that a1 = a ∩ ψmb 6= 0, a2 =
πa1 ∩ ψnb 6= 0. Set b1 = ψ−mπ−1a2. Because ψ ∈ Gπ, there are a non-zero b2 ⊆ b1 and a k ∈ Z such that
ψ−nπψmd = πkd for every d ⊆ b2. Now

πkb2 = ψ−nπψmb2 ⊆ ψ−nπψmb1 = ψ−na2 ⊆ b.

By (a), there are a non-zero b3 ⊆ b2 and an r ∈ Z such that πkd = ψrd for every d ⊆ b3. Consider a′ = ψmb3.
Then

0 6= a′ ⊆ ψmb1 = π−1a2 ⊆ a1 ⊆ a;

and, for d ⊆ a′, ψ−md ⊆ b3 ⊆ b2, so that

πd = ψn(ψ−nπψm)ψ−md = ψnπkψ−md = ψn+r−md.

As a is arbitrary, this shows that π ∈ Gψ, so that Gπ ⊆ Gψ and the two are equal.

388H Lemma Let (A, µ̄) be a totally finite measure algebra, π : A→ A an aperiodic measure-preserving
automorphism, and φ any member of the full subgroup Gπ of AutA generated by π. Suppose that
〈dmi〉m≤n,i<2m is a finite dyadic cycle system for φ. Then there is a weakly von Neumann automorphism ψ,
with dyadic cycle system 〈d′mi〉m∈N,i<2m , such that Gψ = Gπ, ψa = φa whenever a ∩ dn0 = 0, and d′mi = dmi
whenever m ≤ n and i < 2m.

proof Write C for the closed subalgebra {c : πc = c}. By 388F there is a b ⊆ dn0 such that µ̄(b ∩ c) =
1
2 µ̄(dn0 ∩ c) for every c ∈ C and πb : Ab → Ab is a weakly von Neumann automorphism. Let 〈eki〉k∈N,i<2k be
a dyadic cycle system for πb.

If we define ψ1 ∈ AutA by setting

ψ1d = πbd for d ⊆ b, ψ1d = π1\bd for d ⊆ 1 \ b,

then ψ1 ∈ Gπ. Next, for any c ∈ C,

µ̄(φ−2n+1b ∩ c) = µ̄φ−2n+1(b ∩ c) = µ̄(b ∩ c) =
1

2
µ̄(dn0 ∩ c) = µ̄((dn0 \ b) ∩ c)

because φ−2n+1 ∈ Gπ, so φ−2n+1c = c (381Ja). By 388C, there is a ψ2 ∈ Gπ such that ψ2(dn0 \ b) = φ−2n+1b.
Set ψ3 = φ−2n+1ψ−1

2 φ−2n+1ψ1, so that ψ3 ∈ Gπ and

ψ3b = φ−2n+1ψ−1
2 φ−2n+1b = φ−2n+1(dn0 \ b).

Thus ψ3b and ψ2(dn0 \ b) are disjoint and have union φ−2n+1dn0 = dn1 (if n = 0, we must read d01 as
d00 = 1). Accordingly we can define ψ ∈ Gπ by setting

ψd = ψ3d if d ⊆ b,

= ψ2d if d ⊆ dn0 \ b,

= φd if d ∩ dn0 = 0.

Since ψdn0 = dn1, we have ψdni = φdni for every i < 2n, and therefore ψidm0 = dmi whenever m ≤ n
and i < 2m. Looking at ψ2n , we have

ψ2ndn0 = φ2
n

dn0 = dn0, ψ2nb = φ2
n−1ψ3b = dn0 \ b,

so that ψ2n(dn0 \ b) = b and ψ2n+1

b = b. Accordingly

ψ2n+1

d = φ2
n−1ψ2φ

2n−1ψ3d = ψ1d = πbd

for every d ⊆ b, and πb is the automorphism of Ab induced by ψ. Also supi<2n+1 ψib = 1, so 388G tells us
that Gψ = Gπ.

Now define 〈am〉m∈N as follows. For m ≤ n, am = dm0; for m > n, am = em−n−1,0. Then for m < n we
have

ψ2mam+1 = ψ2mdm+1,0 = φ2
m

dm+1,0 = dm+1,2m = am \ am+1,

for m = n we have
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ψ2nan+1 = ψ2ne00 = ψ2nb = dn0 \ b = an \ an+1,

and for m > n we have

ψ2mam+1 = (ψ2n+1

)2
m−n−1

em−n,0 = (πb)
2m−n−1

em−n,0

= em−n,2m−n−1 = em−n−1,0 \ em−n,0 = am \ am+1.

Thus 〈am〉m∈N witnesses that ψ is a weakly von Neumann automorphism. If d′mi = ψiam for m ∈ N, i < 2m

then 〈d′mi〉m∈N,i<2m will be a dyadic cycle system for ψ and d′mi = dmi for m ≤ n, as required.

388I Lemma Let (A, µ̄) be a totally finite measure algebra and C a closed subalgebra of A such that A

is relatively atomless over C. For a ∈ A write Ca = {a ∩ c : c ∈ C}.
(a) Suppose that b ∈ A, w ∈ C and δ > 0 are such that µ̄(b ∩ c) ≥ δµ̄c whenever c ∈ C and c ⊆ w. Then

there is an e ∈ A such that e ⊆ b ∩w and µ̄(e ∩ c) = δµ̄c whenever c ∈ Cw.
(b) Suppose that k ≥ 1 and that (b0, . . . , br) is a finite partition of unity in A. Then there is a partition

E of unity in A such that

µ̄(e ∩ c) =
1

k
µ̄c for every e ∈ E, c ∈ C,

#({e : e ∈ E, ∃ i ≤ r, bi ∩ e /∈ Ce}) ≤ r + 1.

proof (a) Set a = b ∩w and consider the principal ideal Aa generated by A. We know that (Aa, µ̄↾Aa) is
a totally finite measure algebra (322H), and that Ca is a closed subalgebra of Aa (333Bc); and it is easy to
see that Aa is relatively atomless over Ca.

Let θ : Cw → Ca be the Boolean homomorphism defined by setting θc = c ∩ b for c ∈ Cw. If c ∈ Cw and
θc = 0, then c ∈ C and δµ̄c ≤ µ̄(c ∩ b) = 0, so c = 0; thus θ is injective; since it is certainly surjective, it is a
Boolean isomorphism. We can therefore define a functional ν = µ̄θ−1 : Ca → [0,∞[, and we shall have

δνd = δµ̄(θ−1d) ≤ µ̄(b ∩ θ−1d) = µ̄(θθ−1d) = µ̄d

for every d ∈ Ca. By 331B, there is an e ∈ Aa such that δνd = µ̄(d ∩ e) for every d ∈ Ca, that is,
δµ̄c = µ̄(c ∩ e) for every c ∈ Cw, as required.

(b)(i) Write D for the set of all those e ∈ A such that µ̄(c ∩ e) = 1
k µ̄c for every c ∈ C and bi ∩ e ∈ Ce for

every i ≤ r. Then whenever a ∈ A and γ > r+1
k is such that µ(a ∩ c) = γµc for every c ∈ C, there is an e ∈ D

such that e ⊆ a. PPP For d ∈ A and c ∈ C set νd(c) = µ̄(d ∩ c), so that νd : C→ [0,∞[ is a completely additive
functional. For i ≤ r set vi = [[µ̄↾C > kνa∩bi ]], in the notation of 326T; so that vi ∈ C and µ̄c ≥ kµ̄(a ∩ bi ∩ c)
whenever c ∈ C and c ⊆ vi, while µ̄c ≤ kµ̄(a ∩ bi ∩ c) whenever c ∈ C and c ∩ vi = 0. Setting v = infi≤r vi,
we have

kγµ̄v = kµ̄(a ∩ v) =
∑r
i=0 kµ̄(a ∩ bi ∩ v) ≤ (r + 1)µ̄v.

Since kγ > r + 1, v = 0. So if we now set wi = (infj<i vj) \ vi for i ≤ r (starting with w0 = 1 \ v0),
(w0, . . . , wr) is a partition of unity in C, and µ̄c ≤ kµ̄(a ∩ bi ∩ c) whenever c ∈ C, i ≤ r and c ⊆ wi.

By (a), we can find for each i ≤ r an ei ∈ A such that ei ⊆ a ∩ bi ∩wi and µ̄(c ∩ ei) = 1
k µ̄c whenever c ∈ C

and c ⊆ wi. Set e = supi≤r ei, so that e ⊆ a,

e ∩ bi = e ∩wi ∩ bi = ei = e ∩wi ∈ Ce

for each i, and

µ̄(c ∩ e) =
∑r
i=0 µ̄(c ∩ ei) =

∑r
i=0 µ̄(c ∩wi ∩ ei) =

∑r
i=0

1

k
µ̄(c ∩wi) =

1

k
µ̄c

for every c ∈ C. So e has all the properties required. QQQ

(ii) Let E0 ⊆ D be a maximal disjoint family, and set m = #(E0), a = 1 \ supE0. Then

µ̄(a ∩ c) = µ̄c−∑
e∈E0

µ̄(c ∩ e) = (1− m

k
)µ̄c

for every c ∈ C, while a does not include any member of D. By (i), 1− m
k ≤ r+1

k , that is, k −m ≤ r + 1.
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Applying (a) repeatedly, with w = 1 and δ = 1
k , we can find disjoint d0, . . . , dk−m−1 ⊆ a such that

µ̄(c ∩ di) = 1
k µ̄c for every c ∈ C and i < k −m. So if we set E = E0 ∪ {di : i < k −m} we shall have a

partition of unity with the properties required.

388J Lemma Let (A, µ̄) be a totally finite measure algebra and π : A → A an aperiodic measure-
preserving automorphism, with fixed-point subalgebra C. Suppose that φ is a member of the full subgroup
Gπ of AutA generated by π with a finite dyadic cycle system 〈dmi〉m≤n,i<2m , and that a ∈ A and ǫ > 0.
Then there is a ψ ∈ Gπ such that

(i) ψ has a dyadic cycle system 〈d′mi〉m≤k,i<2m , with k ≥ n and d′mi = dmi for m ≤ n, i < 2m;
(ii) ψd = φd if d ∩ dn0 = 0;
(iii) there is an a′ in the subalgebra of A generated by C ∪ {d′ki : i < 2k} such that µ̄(a△ a′) ≤ ǫ.

proof (a) Take k ≥ n so large that 2kǫ ≥ 2n22
n

µ̄1. Let D be the subalgebra of the principal ideal
Adn1

generated by {dn1 ∩ φ−ja : j < 2n}; then D has atoms b0, . . . , br where r < 22
n

. (If n = 0, take
d01 = d00 = 1.) Applying 388Ib to the closed subalgebra Cdn1

of Adn1
, we can find a partition of unity E of

Adn1
such that

µ̄(e ∩ c) = 2n−kµ̄(dn1 ∩ c) = 2−kµ̄c

for every e ∈ E and c ∈ C, and

E1 = {e : e ∈ E, there is some i ≤ r such that bi ∩ e /∈ Ce}
has cardinal at most r + 1 ≤ 22

n

. Of course µ̄e = 2−kµ̄1 for every e ∈ E, so #(E) = 2k−n and µ̄(supE1) ≤
2−k22

n

µ̄1 ≤ 2−nǫ. Write e∗ for supE1.

(b) For e ∈ E set e′ = φ2
n−1e; then {e′ : e ∈ E} is a disjoint family, with cardinal 2k−n; enumerate it as

〈vi〉i<2k−n . Note that

supi<2k−n vi = φ2
n−1(supE) = dn0,

µ̄(vi ∩ c) = µ̄(φ−2n+1vi ∩ c) = 2−kµ̄c

for every c ∈ C and i < 2k−n. There is therefore a ψ1 ∈ Gπ such that

ψ1vi = φ−2n+1vi+1 for i < 2k−n − 1, ψ1v2k−n−1 = φ−2n+1v0

(388C). We have

ψ1dn0 = ψ1( sup
i<2k−n

vi) = sup
i<2k−n

ψ1vi = sup
i<2k−n−1

φ−2n+1vi+1 ∪ φ−2n+1v0

= sup
i<2k−n

φ−2n+1vi = φ−2n+1dn0 = dn1 = φdn0.

So we may define ψ ∈ Gπ by setting

ψd = ψ1d if d ⊆ dn0,

= φd if d ∩ dn0 = 0.

(c) For each i < 2k−n,

ψ2nvi = φ2
n−1ψ1vi = vi+1

(identifying v2k−n with v0). Moreover, ψjvi ⊆ dnl whenever i < 2k−n and j ≡ l mod 2n. So 〈ψjv0〉j<2k is a
partition of unity in A. What this means is that if we set

d′mj = sup{ψiv0 : i < 2k, i ≡ j mod 2m}
for m ≤ k, then 〈d′mj〉m≤k,j<2m is a dyadic cycle system for ψ, with d′mj = dmj if m ≤ n and j < 2m.

(d) Let B be the subalgebra of A generated by C∪{d′kj : j < 2k}. Recall the definition of {vi : i < 2k−n}
as {φ2n−1e : e ∈ E}; this implies that

Measure Theory



388K Dye’s theorem 103

{ψvi : i < 2k−n} = {ψ1vi : i < 2k−n} = {φ−2n+1vi : i < 2k−n} = E,

so that

{ψj+1vi : i < 2k−n} = {φje : e ∈ E}
for j < 2n, and

B ⊇ {d′kj : j < 2k} = {ψjvi : i < 2k−n, j < 2n} = {φje : e ∈ E, j < 2n}.
Set E0 = E \ E1. For e ∈ E0 and i ≤ r there is a cei ∈ C such that e ∩ bi = e ∩ cei. Set

K = {(i, j) : 1 ≤ i ≤ r, j < 2n, bi ⊆ φ−ja},

a′ = sup{φje ∩ cei : e ∈ E0, (i, j) ∈ K}.
Then a′ is a supremum of (finitely many) members of B, so belongs to B. If (i, j) ∈ K and e ∈ E0, then

φje ∩ cei = φj(e ∩ cei) = φj(e ∩ bi) ⊆ a,

so a′ ⊆ a. Next, dn1 ∩ φ−j(a \ a′) ⊆ e∗ for each j < 2n. PPP Set

I = {i : i ≤ r, (i, j) ∈ K} = {i : bi ⊆ φ−ja};
then dn1 ∩ φ−ja = supi∈I bi. Now, for each i ∈ I,

bi = supe∈E(bi ∩ e) ⊆ supe∈E0
(e ∩ cei) ∪ e∗,

so that

dn1 ∩ φ−ja = supi∈I bi ⊆ supe∈E0,i∈I(e ∩ cei) ∪ e∗ ⊆ (dn1 ∩ φ−ja′) ∪ e∗. QQQ

But this means that

µ̄(dn,j+1 ∩ a \ a′) = µ̄(dn1 ∩ φ−j(a \ a′)) ≤ µ̄e∗ ≤ 2−nǫ

for every j < 2n (interpreting dn,2n as dn0, as usual), and

µ̄(a△ a′) =
∑2n

j=1 µ̄(dnj ∩ a \ a′) ≤ ǫ,
so that the final condition of the lemma is satisfied.

388K Theorem Let (A, µ̄) be a totally finite measure algebra, with Maharam type ω, and π : A → A

an aperiodic measure-preserving automorphism. Then there is a relatively von Neumann automorphism
φ : A→ A such that φ and π generate the same full subgroups of AutA.

proof (a) The idea is to construct φ as the limit of a sequence 〈φn〉n∈N of weakly von Neumann automor-
phisms such that Gφn

= Gπ. Each φn will have a dyadic cycle system 〈dnmi〉m∈N,i<2m ; there will be a
strictly increasing sequence 〈kn〉n∈N such that

dn+1,m,i = dn,m,i whenever m ≤ kn, i < 2m,

φn+1a = φna whenever a ∩ dn,kn,0 = 0.

Interpolated between the φn will be a second sequence 〈ψn〉n∈N in Gπ, with associated (finite) dyadic cycle
systems 〈d′nmi〉m≤k′n,i<2m .

(b) Before starting on the inductive construction we must fix on a countable set B ⊆ A which τ -generates
A, and a sequence 〈bn〉n∈N in B such that every member of B recurs cofinally often in the sequence. (For
instance, take the sequence of first members of an enumeration of B×N.) As usual, I write C for the closed
subalgebra {c : πc = c}. The induction begins with ψ0 = π, k′0 = 0, d′000 = 1. Given ψn ∈ Gπ and its dyadic
cycle system 〈d′nmi〉m≤k′n,i<2m , use 388H to find a weakly von Neumann automorphism φn, with dyadic
cycle system 〈dnmi〉m∈N,i<2m , such that Gφn

= Gπ, dnmi = d′nmi for m ≤ k′n and i < 2m, and φna = ψna
whenever a ∩ d′n,k′n,0 = 0.

(c) Given the weakly von Neumann automorphism φn, with its dyadic cycle system 〈dnmi〉m∈N,i<2m ,
such that Gφn

= Gπ, then we have a partition of unity 〈enj〉j∈Z such that πa = φjna whenever j ∈ Z
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and a ⊆ enj (381I). Take rn such that µ̄ẽn ≤ 2−n, where ẽn = sup|j|>rn enj , and kn > k′n such that

2−kn(2rn + 1)µ̄1 ≤ 2−n. Set

e∗n = sup|j|≤rn φ
−j
n dn,kn,0,

so that µ̄e∗n ≤ 2−n.
Now use 388J to find a ψn+1 ∈ Gπ, with a dyadic cycle system 〈d′n+1,m,i〉m≤k′n+1,i<2m , such that k′n+1 ≥

kn, d′n+1,m,i = dnmi if m ≤ kn, ψn+1a = φna if a ∩ dn,kn,0 = 0, and there is a b′n in the algebra generated by

C ∪ {d′n+1,m,i : m ≤ k′n+1, i < 2m} such that µ̄(bn △ b′n) ≤ 2−n. Continue.

(d) The effect of this construction is to ensure that if l < n in N then

dlmi = dnmi whenever m ≤ kl, i < 2m,

φna = φla whenever a ∩ dl,kl,0 = 0,

b′l belongs to the subalgebra generated by C ∪ {dnmi : m ≤ kn, i < 2m},
and, of course, dn,kn,0 ⊆ dl,kl,0. Since 〈kn〉n∈N is strictly increasing, infn∈N dn,kn,0 = 0. Now, for each n ∈ N,

dn,kn,1 = φndn,kn,0 = φn+1dn,kn,0 ⊇ φn+1dn+1,kn+1,0 = dn+1,kn+1,1,

so setting

a0 = 1 \ d0,k0,0, an+1 = dn,kn,0 \ dn+1,kn+1,0 for each n,

we have

φ0a0 = 1 \ d0,k0,1, φn+1an+1 = dn,kn,1 \ dn+1,kn+1,1 for each n,

and 〈φnan〉n∈N is a partition of unity. There is therefore a φ ∈ AutA defined by setting φa = φna if a ⊆ an;
because Gπ is full, φ ∈ Gπ.

(e) If m ≤ n, then am ∩ dm,km,0 = 0, so φna = φma = φa for every a ⊆ am. Thus φna = φa for every
a ⊆ supm≤n am = 1 \ dn,kn,0. In particular, φdnmi = dn,m,i+1 whenever m ≤ kn and 1 ≤ i < 2m (counting
dn,m,2m as dnm0, as usual); so that in fact φdnmi = dn,m,i+1 whenever m ≤ kn and i < 2m.

For each n, we have dnmi = d′n+1,m,i = dn+1,m,i whenever m ≤ kn and i < 2m. We therefore have a
family 〈d∗mi〉m∈N,i<2m defined by saying that d∗mi = dnmi whenever n ∈ N, m ≤ kn and i < 2m. Now, for
any m ∈ N, there is a kn > m, so that 〈d∗mi〉i<2m = 〈dnmi〉i<2m is a partition of unity; and

d∗mi = dnmi = dn,m+1,i ∪ dn,m+1,i+2m = d∗m+1,i ∪ d
∗
m+1,i+2m

for each i < 2m. Moreover,

φd∗m,i = φndnmi = dn,m,i+1 = d∗m,i+1

at least for 1 ≤ i < 2m (counting d∗m,2m as d∗m,0), so that in fact φd∗mi = d∗m,i+1 for every i < 2m. Thus
〈d∗mi〉m∈N,i<2m is a dyadic cycle system for φ, and φ is a weakly von Neumann automorphism.

Writing B for the closed subalgebra of A generated by C ∪ {d∗mi : m ∈ N, i < 2m}, then

C ∪ {d′nmi : m ≤ k′n, i < 2m} = C ∪ {dn+1,m,i : m ≤ k′n, i < 2m}
= C ∪ {d∗mi : m ≤ k′n, i < 2m} ⊆ B

for any n ∈ N. So b′n ∈ B for every n. If b ∈ B and ǫ > 0, there is an n ∈ N such that 2−n ≤ ǫ and bn = b,
so that µ̄(b△ b′n) ≤ ǫ; as every b′n belongs to B, and B is closed, b ∈ B; as b is arbitrary, and B τ -generates
A, B = A. Thus φ is a relatively von Neumann automorphism.

(f) If n ∈ N and d ∩ e∗n = 0, then φjd = φjnd and φ−jd = φ−jn d whenever 0 ≤ j ≤ rn. PPP Induce on
j. For j = 0 the result is trivial. For the inductive step to j + 1 ≤ rn, note that if d′ ∩ dn,kn,1 = 0 then
φ−1
n d′ ∩ dn,kn,0 = 0, so

φ−1d′ = φ−1φn(φ−1
n d′) = φ−1φ(φ−1

n d′) = φ−1
n d′.

Now we have

φj+1d = φ(φjnd) = φn(φjnd) = φj+1
n d
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because

φjnd ∩ dn,kn,0 = φjn(d ∩ φ−jn dn,kn,0) = 0,

while

φ−j−1d = φ−1(φ−jn d) = φ−1
n (φ−jn d) = φ−j−1

n d

because

φ−jn d ∩ dn,kn,1 = φ−jn (d ∩ φj+1
n dn,kn,0) = 0. QQQ

Thus φjd = φjnd whenever |j| ≤ rn.

(g) Finally, Gφ = Gπ. PPP I remarked in (d) that φ ∈ Gπ, so that Gφ ⊆ Gπ. To see that π ∈ Gφ, take
any non-zero a ∈ A. Because µ̄(e∗n ∪ ẽn) ≤ 2−n+1 for each n, there is an n such that a′ = a \ (e∗n ∪ ẽn) 6= 0.
Now there is some j ∈ Z such that a′′ = a′ ∩ enj 6= 0; since a′ ∩ ẽn = 0, |j| ≤ rn. If d ⊆ a′′, then πd = φjnd,
by the definition of enj . But also φjnd = φjd, by (f), because d ∩ e∗n = 0. So πd = φjd for every d ⊆ a′′. As
a is arbitrary, π ∈ Gφ and Gπ ⊆ Gφ. QQQ

This completes the proof.

388L Theorem Let (A1, µ̄1) and (A2, µ̄2) be totally finite measure algebras of countable Maharam type,
and π1 : A1 → A1, π2 : A2 → A2 measure-preserving automorphisms. For each i, let Ci be the fixed-point
subalgebra of πi and Gπi

the full subgroup of AutAi generated by πi. If (A1, µ̄1,C1) and (A2, µ̄2,C2) are
isomorphic, so are (A1, µ̄1, Gπ1

) and (A2, µ̄2, Gπ2
).

proof (a) It is enough to consider the case in which (A1, µ̄1,C1) and (A2, µ̄2,C2) are actually equal; I
therefore delete the subscripts and speak of a structure (A, µ̄,C), with two automorphisms π1, π2 of A both
with fixed-point subalgebra C.

(b) Suppose first that A is relatively atomless over C, that is, that both the πi are aperiodic (381P).
In this case, 388K tells us that there are relatively von Neumann automorphisms φ1 and φ2 of A such
that Gπ1

= Gφ1
and Gπ2

= Gφ2
. But (A, µ̄, φ1) and (A, µ̄, φ2) are isomorphic. PPP Let 〈dmi〉m∈N,i<2m and

〈d′mi〉m∈N,i<2m be dyadic cycle systems for φ1, φ2 respectively such that C ∪ {dmi : m ∈ N, i < 2m} and
C ∪ {d′mi : m ∈ N, i < 2m} both τ -generate A.

Writing B, B′ for the subalgebras of A generated by C ∪ {dmi : m ∈ N, i < 2m} and C ∪ {d′mi : m ∈
N, i < 2m} respectively, it is easy to see that these algebras are isomorphic: we just set θ0c = c for
c ∈ C, θ0dmi = d′mi for i < 2m to obtain a measure-preserving isomorphism θ0 : B→ B′. Because these are
topologically dense subalgebras of A, there is a unique extension of θ0 to a measure-preserving automorphism
θ : A→ A (324O). Next, we see that

θφ1θ
−1c = c = φ2c for every c ∈ C,

θφ1θ
−1d′mi = θφ1dmi = θdm,i+1 = d′m,i+1 = φ2d

′
mi

for m ∈ N, i < 2m (as usual, taking dm,2m to be dm0 and d′m,2m to be d′m0). But this means that

θφ1θ
−1b = φ2b for every b ∈ B2, so (again because B2 is dense in A) θφ1θ

−1 = φ2. Thus θ is an isomorphism
between (A, µ̄, φ1) and (A, µ̄, φ2). QQQ

Of course θ is now also an isomorphism between (A, µ̄, Gφ1
) = (A, µ̄, Gπ1

) and (A, µ̄, Gφ2
) = (A, µ̄, Gπ2

).

(c) Next, consider the case in which π1 is periodic, with period n, for some n ≥ 1. In this case π2 ∈ Gπ1
.

PPP Let (d0, . . . , dn−1) be a partition of unity in A such that π1di = di+1 for i < n − 1 and π1dn−1 = d0
(382Fb). If d ⊆ dj , then c = supi<n π

i
1d ∈ C and d = dj ∩ c; so any member of A is of the form supj<n dj ∩ cj

for some family c0, . . . , cn−1 in C.
If a ∈ A \ {0}, take i, j < n such that a′ = a ∩ di ∩ π

−1
2 dj 6= 0. Then any d ⊆ a′ is of the form

di ∩ c1 = π−1
2 (dj ∩ c2) = c2 ∩ π−1

2 dj

for some c1, c2 ∈ C; setting c = c1 ∩ c2, we have

d = di ∩ c, π2d = dj ∩ c = πj−i1 d.

As a is arbitrary, this shows that π2 ∈ Gπ1
. QQQ
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Now supn∈Z π
n
2 d0 belongs to C and includes d0, so must be 1. Finally, the two induced automorphisms

(π1)d0 , (π2)d0 on Ad0 are both the identity. PPP If 0 6= d̃ ⊆ d0 there are a non-zero d′ ⊆ d̃ and an m ≥ 1
such that (π2)d0d = πm2 d for every d ⊆ d′. As πm2 ∈ Gπ1

, there are a non-zero d ⊆ d′ and a k ∈ Z such that
πm2 d = πk1d. Now πk1d ⊆ d0 so k is a multiple of n and (π2)d0d = πk1d = d. This shows that {d : (π2)d0d = d}
is order-dense in Ad0 and must be the whole of Ad0 . As for π1, we have (π1)d0d = πn1 d = d for every d ⊆ d0.
QQQ

So 388G tells us that Gπ1
= Gπ2

.

(d) For the general case, we see from 381H that there is a partition of unity 〈ci〉1≤i≤ω in C such that
π1↾Acω is aperiodic and if i is finite and ci 6= 0 then π1↾Aci is periodic with period i. For each i, let Hi be
{φ↾Aci : φ ∈ Gπ1

}; then Hi is a full subgroup of AutAci , and

Gπ1
= {φ : φ ∈ AutA, φ↾Aci ∈ Hi whenever 1 ≤ i ≤ ω}.

Similarly, writing H ′
i = {φ↾Aci : φ ∈ Gπ2

},
Gπ2

= {φ : φ ∈ AutA, φ↾Aci ∈ H ′
i whenever 1 ≤ i ≤ ω}.

Note also that Hi, H
′
i are the full subgroups of AutAci generated by π1↾Aci , π2↾Aci respectively. By (b)

and (c), Hi = H ′
i for finite i, while there is a measure-preserving automorphism θ : Acω → Acω such that

θHωθ
−1 = H ′

ω. Now we can define a measure-preserving automorphism θ1 : A → A by setting θ1a = θa
if a ⊆ cω, θ1a = a if a ∩ cω = 0, and we shall have θ1Gπ1

θ−1
1 = Gπ2

. Thus (A, µ̄, Gπ1
) and (A, µ̄, Gπ2

) are
isomorphic, as claimed.

388X Basic exercises >>>(a) Let (A, µ̄) be a Boolean algebra, and π : A → A an automorphism. Let
us say that a pseudo-cycle for π is a partition of unity 〈ai〉i<n, where n ≥ 1, such that πai = ai+1 for
i < n − 1 (so that πan−1 = a0). (i) Show that if we have pseudo-cycles 〈ai〉i<n and 〈bj〉j<m, where m is a
multiple of n, then we have a pseudo-cycle 〈cj〉j<m with c0 ⊆ a0, so that ai = sup{cj : j < m, j ≡ i mod
n} for every i < n. (ii) Show that π is weakly von Neumann iff it has a pseudo-cycle of length 2n for any
n ∈ N.

(b) Let (A1, µ̄1) and (A2, µ̄2) be probability algebras, and π1 : A1 → A2 and π2 : A2 → A2 measure-
preserving von Neumann automorphisms. Show that there is a measure-preserving Boolean isomorphism
θ : A1 → A2 such that π2 = θπ2θ

−1.

(c) Let A be a Boolean algebra and π : A → A a relatively von Neumann automorphism with fixed-
point subalgebra C and a dyadic cycle system 〈dmi〉m∈N,i<2m such that {dmi : m ∈ N, i < 2m} ∪ C τ -

generates A. Show that for any n ∈ N the fixed-point subalgebra of π2n is the subalgebra of A generated by
{dni : i < 2n} ∪ C.

(d) Let (A, µ̄) be a probability algebra, and π : A → A a measure-preserving automorphism. (i) Show
that π is weakly von Neumann iff it has a factor (definition: 387Ac) which is a von Neumann automorphism.
(ii) Show that if π is a relatively von Neumann automorphism then no non-trivial factor of π can be weakly
mixing.

(e) Let (A, µ̄) be an atomless probability algebra of countable Maharam type, and π : A→ A a measure-
preserving von Neumann automorphism. (i) Show that for any ultrafilter F on N there is a φF ∈ Autµ̄ A
defined by the formula φF (a) = limn→F π

na for every a ∈ A, the limit being taken in the measure-algebra
topology. (ii) Show that {φF : F is an ultrafilter on N} is a subgroup of Autµ̄ A homeomorphic to ZN

2 .
(Hint : 388E.)

(f) Let A be a Boolean algebra and π : A→ A a weakly von Neumann automorphism. Show that πn is
a weakly von Neumann automorphism for every n ∈ Z \ {0}. (Hint : consider n = 2, n = −1, odd n ≥ 3
separately. The formula of 388E may be useful.)

(g) Let A be a Boolean algebra and π : A → A a von Neumann automorphism. (i) Show that π2 is
not ergodic. (ii) Show that π2 is relatively von Neumann. (iii) Show that πn is von Neumann for every
odd n ∈ Z. (iv) Show that if (A, µ̄) is a probability algebra and π is a measure-preserving von Neumann
automorphism then π is ergodic.
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388Y Further exercises (a) Let X be a set, Σ a σ-algebra of subsets of X, and I a σ-ideal of Σ such
that the quotient algebra A = Σ/I is Dedekind complete and there is a countable subset of Σ separating
the points of X. Suppose that f and g are automorphisms of the structure (X,Σ, I) inducing π, φ ∈ AutA.
Show that the following are equiveridical: (i) φ belongs to the full subgroup of AutA generated by π; (ii)
{x : x ∈ X, f(x) /∈ {gn(x) : n ∈ Z}} ∈ I; (iii) {x : x ∈ X, {fn(x) : n ∈ Z} 6⊆ {gn(x) : n ∈ Z}} ∈ I.

(b)(i) Let π be a a weakly von Neumann automorphism of a Boolean algebra. Show that π is aperiodic.
(ii) Let π be a relatively von Neumann measure-preserving automorphism of a probability algebra. Show
that π has zero entropy.

(c) Give an example of an ergodic weakly von Neumann measure-preserving automorphism with zero
entropy which is not a relatively von Neumann automorphism.

(d) Let (A, µ̄) be a probability algebra and π ∈ AutA a relatively von Neumann automorphism; let
T = Tπ : L1

µ̄ → L1
µ̄ be the corresponding Riesz homomorphism (365N). (i) Show that

⋃
n≥1{u : Tnu = u} is

dense in L1
µ̄. (ii) Show that {Tn : n ∈ Z} is relatively compact in B(L1

µ̄;L1
µ̄) for the strong operator topology.

(e) Show that the odometer transformation on {0, 1}N is expressible as the product of two Borel measur-
able measure-preserving involutions.

(f) Give an example of a probability algebra (A, µ̄) and a von Neumann automorphism π ∈ AutA which
is not ergodic.

(g) Let A be a Dedekind σ-complete Boolean algebra and π, ψ two doubly recurrent automorphisms of
A. Suppose that ψ belongs to the full subgroup Gπ of AutA generated by π and that there is a b ∈ A such
that supn∈Z ψ

nb = 1 and the induced automorphisms ψb, πb on Ab are equal. Show that Gψ = Gπ.

(h) Let µ be Lebesgue measure on [0, 1]2, and (A, µ̄) its measure algebra; let C be the closed subalgebra of
elements expressible as (E × [0, 1])•, where E ⊆ [0, 1] is measurable. Suppose that π : A→ A is a measure-
preserving automorphism such that C = {c : πc = c}. Show that there is a family 〈fx〉x∈[0,1] of ergodic
measure space automorphisms of [0, 1] such that (x, y) 7→ (x, fx(y)) is a measure space automorphism of
[0, 1]2 representing π.

388 Notes and comments Dye’s theorem (Dye 59) is actually Theorem 388L in the case in which π1, π2
are ergodic, that is, in which C1 and C2 are both trivial. I take the trouble to give the generalized form here
(a simplified version of that in Krieger 76) because it seems a natural target, once we have a classification
of the relevant structures (A, µ̄,C) (333R). The essential mathematical ideas are the same in both cases.
You can find the special case worked out in Hajian Ito & Kakutani 75, from which I have taken the
argument used here; and you may find it useful to go through the version above, to check what kind of
simplifications arise if each C is taken to be {0, 1}. Essentially the difference will be that every ‘aperiodic’
turns into ‘ergodic’ (with an occasional ‘atomless’ thrown in) and ‘331B’ turns into ‘331C’. As far as I know,
there is no simplification available in the structure of the argument; of course the details become a bit easier,
but with the possible exception of 388I-388J I think there is little difference.

Of course modifying a general argument to give a simpler proof of a special case is a standard exercise in
this kind of mathematics. What is much more interesting is the reverse process. What kinds of theorem about
ergodic automorphisms will in fact be true of all automorphisms? A variety of very powerful approaches
to such questions have been developed in the last half-century, and I hope to describe some of the ideas in
Volumes 4 and 5. The methods used in this section are relatively straightforward and do not require any
deep theoretical underpinning beyond Maharam’s lemma 331B. But an alternative approach can be found
using 388Yh: in effect (at least for the Lebesgue measure algebra) any measure-preserving automorphism can
be disintegrated into ergodic measure space automorphisms (the fibre maps fx of 388Yh). It is sometimes
possible to guess which theorems about ergodic transformations are ‘uniformisable’ in the sense that they can
be applied to such a family 〈fx〉x∈[0,1], in a systematic way, to provide a structure which can be interpreted
on the product measure. The details tend to be complex, which is one of the reasons why I do not attempt
to work through them here; but such disintegrations can be a most valuable aid to intuition.
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In this section I use von Neumann automorphisms as an auxiliary tool: the point is, first, that two
von Neumann automorphisms are isomorphic – that is, the von Neumann automorphisms on a given totally
finite measure algebra (A, µ̄) (necessarily isomorphic to the Lebesgue measure algebra, since we must have A

atomless and τ(A) = ω) form a conjugacy class in the group Autµ̄ A of measure-preserving automorphisms;
and next, that for any ergodic measure-preserving automorphism π (on an atomless totally finite algebra
of countable Maharam type) there is a von Neumann automorphism φ such that Gπ = Gφ (388K). But
I think they are remarkable in themselves. A (weakly) von Neumann automorphism has a ‘pseudo-cycle’
(388Xa) for every power of 2. For some purposes, existence is all we need to know; but in the arguments of
388H-388K we need to keep track of named pseudo-cycles in what I call ‘dyadic cycle systems’ (388D).

In this volume I have systematically preferred arguments which deal directly with measure algebras,
rather than with measure spaces. I believe that such arguments can have a simplicity and clarity which
repays the extra effort of dealing with more abstract structures. But undoubtedly it is necessary, if you are
to have any hope of going farther in the subject, to develop methods of transferring intuitions and theorems
between the two contexts. I offer 381Xl as an example. The description there of ‘induced automorphism’
requires a certain amount of manoeuvering around negligible sets, but gives a valuably graphic description.
In the same way, 381Xf, 388A and 381Qc provide alternative ways of looking at full subgroups.

There are contexts in which it is useful to know whether an element of the full subgroup generated by π
actually belongs to the full semigroup generated by π (381Yb); for instance, this happens in 388C.
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Version of 14.1.15

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

385Xr Exercise 385Xr, referred to in the 2003, 2006 and 2013 editions of Volume 4, is now 385Xj.

c© 2015 D. H. Fremlin
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Kawada Y. [1944] ‘Über die Existenz der invarianten Integrale’, Jap. J. Math. 19 (1944) 81-95. [§395
notes .]

Kelley J.L. [59] ‘Measures on Boolean algebras’, Pacific J. Math. 9 (1959) 1165-1177. [§391 notes .]
Kolmogorov A.N. [58] ‘New metric invariants of transitive dynamical systems and automorphisms of

Lebesgue spaces’, Dokl. Akad. Nauk SSSR 119 (1958) 861-864. [385P.]

D.H.Fremlin



112 References

Kölzow D. & Maharam-Stone D. [82] (eds.) Measure Theory Oberwolfach 1981. Springer, 1982 (Lecture
Notes in Math. 945).

Koppelberg S. [89] General Theory of Boolean Algebras , vol. 1 of Monk 89. [Chap. 31 intro., §332 notes .]
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