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Chapter 37
Linear operators between function spaces

As everywhere in functional analysis, the function spaces of measure theory cannot be properly understood
without investigating linear operators between them. In this chapter I have collected a number of results
which rely on, or illuminate, the measure-theoretic aspects of the theory. §371 is devoted to a fundamental
property of linear operators on L-spaces, if considered abstractly, that is, of L!'-spaces, if considered in
the languages of Chapters 24 and 36, and to an introduction to the class T of operators which are norm-
decreasing for both || ||; and || ||so. This makes it possible to prove a version of Birkhoff’s Ergodic Theorem for
operators which need not be positive (372D). In §372 I give various forms of this theorem, for linear operators
between function spaces, for measure-preserving Boolean homomorphisms between measure algebras, and for
inverse-measure-preserving functions between measure spaces, with an excursion into the theory of continued
fractions. In §373 I make a fuller analysis of the class 7, with a complete characterization of those u, v
such that v = T'u for some T' € T. Using this we can describe ‘rearrangement-invariant’ function spaces and
extended Fatou norms (§374). Returning to ideas left on one side in §§364 and 368, I investigate positive
linear operators defined on L° spaces (§375). In the penultimate section of the chapter (§376), I look at
operators which can be defined in terms of kernels on product spaces. Finally, in §377, I examine the function
spaces of reduced products, projective limits and inductive limits of probability algebras.

Version of 13.12.06

371 The Chacon-Krengel theorem

The first topic I wish to treat is a remarkable property of L-spaces: if U and V are L-spaces, then every
continuous linear operator T : U — V is order-bounded, and |||T||| = ||T|| (371D). This generalizes in various
ways to other V' (371B, 371C). I apply the result to a special type of operator between MY spaces which
will be conspicuous in the next section (371F-371H).

371A Lemma Let U be an L-space, V a Banach lattice and T': U — V a bounded linear operator. Take
w > 0in U and set

B={3"o|Tui| :up,... ,upn €U, >0 jus=u} CV+.
Then B is upwards-directed and sup,cp ||| < ||T]|]ju|-

371B Theorem Let U be an L-space and V' a Dedekind complete Banach lattice U with a Fatou norm.
Then the Riesz space L~ (U; V) = L*(U;V) is a closed linear subspace of the Banach space B(U; V) and is
in itself a Banach lattice with a Fatou norm.

371C Theorem Let U be an L-space and V' a Dedekind complete Banach lattice with a Fatou norm
and the Levi property. Then B(U;V) =L~ (U;V) = L*(U;V) is a Dedekind complete Banach lattice with
a Fatou norm and the Levi property. In particular, |T| is defined and |||T||| = ||T|| for every T € B(U; V).

371D Corollary Let U and V be L-spaces. Then L~(U;V) = L*(U;V) = B(U;V) is a Dedekind
complete Banach lattice with a Fatou norm and the Levi property.

371F The class 7(°): Definition Let (2, i), (B,7) be measure algebras. Write 70 = 7;(?;) for the
set of all linear operators 7' : MYO0(2, u) — MYO(B,7) such that Tu € L'(B,7) and ||Tuljy < |lul; for
every u € LY (2, i), Tu € L>(B) and || Tul|co < |Ju]lso for every u € Lo°(20) N MO, ).
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2 Linear operators between function spaces 371G

371G Proposition Let (2, i) and (8, 7) be measure algebras.
(a) TO = 771(0,;) is a convex set in the unit ball of B(M19(2, 1); MY0(B,v)). If Ty : LY (A, 1) — L' (B, v) is
a linear operator of norm at most 1, and Tou € L (B) and ||Tou| s < ||u]loo for every u € LY(A, 1)NL>®(2A),

then Tp has a unique extension to a member of 7(?). -
(b) If T € T then T is order-bounded and |T|, taken in

L™ (MO, fi); MYO(B, 7)) = L (MO, o); MO (B, ),
also belongs to 7(©).
(c) T € TO then || Tull1.00 < |Jull1,00 for every u € MYO(A, ).
(A UTeTO pe(l,oo] and w € LP(A, i) then Tw € LP(B,7) and | Tw|, < |Jw],-
(e) If (¢, \) is another measure algebra then ST € 7;,(05\) whenever T € 771(09) and S € 7:7(05\)

Version of 7.12.08/17.7.11
372 The ergodic theorem

I come now to one of the most remarkable topics in measure theory. I cannot do it justice in the space
I have allowed for it here, but I can give the basic theorem (372D, 372F) and a variety of the corollaries
through which it is regularly used (372E, 372G-372J), together with brief notes on one of its most famous and
characteristic applications (to continued fractions, 372L-372N) and on ‘ergodic’ and ‘mixing’ transformations
(3720-372S). In the first half of the section (down to 372G) I express the arguments in the abstract language
of measure algebras and their associated function spaces, as developed in Chapter 36; the second half, from
372H onwards, contains translations of the results into the language of measure spaces and measurable
functions, the more traditional, and more readily applicable, forms.

372A Lemma Let U be a reflexive Banach space and T': U — U a bounded linear operator of norm at
most 1. Then
V={u+v—Tu:u,velU Tv=uv}

is dense in U.

372B Lemma Let (2, /i) be a measure algebra, and T': L' — L! a positive linear operator of norm at
most 1, where L! = L1(2, ji). Take any u € L' and m € N, and set
u Ju

a=Ju>0]ufu+Tu>0]ufu+Tu+T*u>0]u...ufut+Tu+...+T™u>0].

Then [ u > 0.

372C Maximal Ergodic Theorem Let (2, /i) be a measure algebra, and T : L' — L! a linear
operator, where L' = LY(2, 1), such that ||Tul|; < |lull; for every u € L' and ||Tul|oo < |lu|loo for every
ue L' N L2 (A). Set A, = =5 > T" for each n € N. Then for any u € L', u* = sup,,cy Apu is defined
in L9(21), and ofifu* > o < ||ul|; for every o > 0.

372D The Ergodic Theorem: first form Let (2, i) be a measure algebra, and set M0 = MY0(A, 1),
TO = 7:1(?1) C B(MY0; M'9), Take any T € T, and set A,, = %ﬂ ST MY — MO for every n.
Then for any u € M0, (A, u)en is order*-convergent and | ||1,0o-convergent to a member Pu of M9, The
operator P : M0 — MU0 is a projection onto the linear subspace {u:u € M0 Tu =u}, and P € T,

372E Corollary Let (2, i) be a measure algebra, and 7 : A — 2/ a measure-preserving ring homo-
morphism, where Af = {a : ia < co}. Let T : Ml’é — M0 be the corresponding Riesz homomorphism,
where M0 = MU0, ). Set A, = %_HZ;L:OTZ for n € N. Then for every u € M*Y, (A, u)nen is
order*-convergent and || ||1,00-convergent to some v such that Tv = v.

372F The Ergodic Theorem: second form Let (2, /i) be a measure algebra, and let T : L' — L!,
where L' = L'(2, i), be a linear operator of norm at most 1 such that Tu € L™ = L*(2) and ||Tu| s <
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372Lc The ergodic theorem 3

l[ullso Whenever u € L'NL>. Set Ay, = =5 Y1 T% : L' — L' for every n. Then for any u € L', (A,u)nen
is order*-convergent to an element Pu of L'. The operator P : L' — L' is a projection of norm at most 1

onto the linear subspace {u: u € L', Tu = u}.

372G Corollary Let (2, i) be a probability algebra, and 7 : 2 — 2/ a measure-preserving Boolean
homomorphism. Let T : L' — L! be the corresponding Riesz homomorphism, where L' = L(2, ji). Set
A, = =7 Yo, T for n € N. Then for every u € L', (A,u)nen is order*-convergent and || ||;-convergent.
If we set Pu = lim, ., A,u for each u, P is the conditional expectation operator corresponding to the
fixed-point subalgebra € = {a : 7a = a} of 2.

372H Corollary Let (X,X, u) be a measure space and ¢ : X — X an inverse-measure-preserving
function. Let f be a real-valued function which is integrable over X. Then

9(w) = limy o0 =5 31 (6 ()

is defined for almost every x € X, and g¢(z) = g(x) for almost every x.

3721 Lemma Let (X, X, 1) be a measure space with measure algebra (2, ii). Let ¢ : X — X be an inverse-
measure-preserving function and 7 : 2 — 2 the associated homomorphism. Set € = {c¢: ¢ € A, ¢ = ¢},
T={E:FE €Y, ¢ E]AFE is negligible} and Tg = {F : E € ¥, ¢ '[E] = E}. Then T and Ty are
o-subalgebras of 8; To CT, T={E: Ec X E* €€}, and €= {E*: E € Ty}.

372J The Ergodic Theorem: third form Let (X, 3, u) be a probability space and ¢ : X — X an
inverse-measure-preserving function. Let f be a real-valued function which is integrable over X. Then
1

g(x) = lim, 00 T_szzo f((;ﬁ’(x))

is defined for almost every x € X; g¢ =, ¢, and ¢ is a conditional expectation of f on the o-algebra
T ={FE : E € %, ¢ [E]AFE is negligible}. If either f is Y-measurable and defined everywhere in X
or ¢|E] is negligible for every negligible set E, then g is a conditional expectation of f on the o-algebra
To={E:E€%, ¢"\[E] = E}.

372L Continued fractions (a) Set X = [0,1] \ Q. For z € X, set ¢(x) = <%>7 the fractional part
of L and ki(z) = 1 — ¢(z) = 2], the integer part of 1; then ¢(z) € X for each z € X, so we may
define k,(x) = k1(¢" *(x)) for every n > 1. The strictly positive integers ki (z), k2(x), k3(z),... are the
continued fraction coefficients of z. k,1(x) = k,(¢(z)) for every n > 1. Now define (p,(x))nen,
(Gn(z)) nen inductively by setting

po(x) =0, pi(x) =1, pn(x) =pn-2(x) + kn(®)pp-1(x) for n > 1,
(@) =1, q@)=Fk), @(2)=g—2)+k(r)gn-1(z) for n > 1.
The continued fraction approximations to = are the quotients p,(x)/q,(x).

(c)(@) For any z € X, n > 1 we have

Pacr (£)0(x) = pa()gnr (@) = ()", 67(a) = Ll

z — Pn(@)Fpa—s(2)¢" ()
qn(2)+gn_1(2)p" (2

N2

(ii) For any finite string m = (mq,...,m,) of strictly positive integers the set Dy, = {z : = €
X, kij(x) =m; for 1 <i < n} is an interval in X on which ¢™ is monotonic, being strictly increasing if n is
even and strictly decreasing if n is odd.

(iii) We also need to know that if m = (m1,...,m,), the length of Dy, is at most 27" +1,
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4 Linear operators between function spaces 372M

372M Theorem Set X = [0,1]\Q, and define ¢ : X — X as in 372L. Then for every Lebesgue integrable
function f on X,
- 1 i)y — Lot i@

for almost every z € X.

372N Corollary For almost every z € [0,1] \ Q,
limy o ~#({i 2 1 <0 <, ki) = K}) = = (2In(k + 1) = Ink — In(k + 2))

for every k > 1, where kq(z),... are the continued fraction coefficients of x.

3720 Mixing and ergodic transformations: Definitions (a)(i) Let 2 be a Boolean algebra. Then
a Boolean homomorphism 7 : 24 — 2 is ergodic if whenever a, b € 2\ {0} there are m, n € N such that
man7™b # 0.

(ii) Let (2, i) be a probability algebra and 7 : 2 — 2 a measure-preserving Boolean homomorphism.
Then 7 is mixing if lim,,_,o, g(7"anb) = fa - 3b for all a, b € .

(iii) Let (2, ) be a probability algebra and 7 : 2 — 2 a measure-preserving Boolean homomorphism.

Then 7 is weakly mixing if lim,, % Z?;Ol |@(m"anb) — pa - pb] = 0 for all a, b € A.

(b) Let (X, X, 1) be a probability space and ¢ : X — X an inverse-measure-preserving function.
(i) ¢ is ergodic if every measurable set E such that ¢~ ![E] = E is either negligible or conegligible.
(ii) ¢ is mixing if lim, oo p(F N ¢ "[E]) = pE - pF for all E, F € ¥.

(iii) ¢ is weakly mixing if if lim, % Z?;Ol |W(FN¢~"[E]) — uE - uF| =0 for all E, F € .

372P Proposition Let 2 be a Boolean algebra and 7 : A — 2 a Boolean homomorphism, with fixed-
point subalgebra €.

(a) If 7 is ergodic, then € = {0, 1}.

(b) If 7 is an automorphism, then 7 is ergodic iff sup,,c; 7"a = 1 for every a € A\ {0}.

(c) If 7 is an automorphism and 2 is Dedekind o-complete, then 7 is ergodic iff € = {0,1}.

372Q Proposition (a) Let (2, i) be a probability algebra, 7 : 2 — 2 a measure-preserving Boolean

homomorphism, and T : LO = L%(2A) — L° the Riesz homomorphism such that T'(xya) = ywa for every
a €A

(i) If  is mixing, it is weakly mixing.

(ii) If 7 is weakly mixing, it is ergodic.

(iii) The following are equlverldlcal (o) 7 is ergodic; (B) the only u € LY such that Tu = u are the
multiples of x1; (v) for every u € L' = L*(2, i), <n_1~_1 St o T'u)pen order*-converges to ([ u)x1.

(iv) The following are equiveridical: (o) 7 is mixing; (8) lim,eo(T"ulv) = [u [v for all u, v €
L2(3A, ).

1

(v) The following are equiveridical: («) 7 is weakly mixing; () lim,— o -

for all u, v € L2(2, ji).

(b) Let (X,3, 1) be a probability space, with measure algebra (2, i). Let ¢ : X — X be an inverse-
measure-preserving function and 7 : 2 — 2 the associated homomorphism such that 7E* = (¢~![E])* for
every £ € X.

(i) The following are equiveridical: («) ¢ is ergodic; () 7 is ergodic; (7) for every p-integrable real-
valued function f, (%ﬂ St o f(#'(2)))nen converges to [ f for almost every z € X.

(i) ¢ is mixing iff 7 is, and in this case ¢ is weakly mixing.

(iii) ¢ is weakly mixing iff 7 is, and in this case ¢ is ergodic.

im0 |(TFulo) = fu fo] = 0
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373D Decreasing rearrangements 5

372S Proposition (a) Let (2, ) be a probability algebra, and 7 : 20 — 2( a measure-preserving Boolean
homomorphism. If (), .y 7" [A] = {0,1}, then 7 is mixing.
(b) Let (X,X, u) be a probability space, and ¢ : X — X an inverse-measure-preserving function. Set

T = {E: for every n € N there is an F' € ¥ such that E = ¢~ "[F]}.

If every member of T is either negligible or conegligible, ¢ is mixing.

Version of 25.5.16

373 Decreasing rearrangements

I take a section to discuss operators in the class 79 of 371F-371H and two associated classes T, T *
(373A). These turn out to be intimately related to the idea of ‘decreasing rearrangement’ (373C). In 373D-
373F 1 give elementary properties of decreasing rearrangements; then in 373G-3730 I show how they may
be used to characterize the set {Tw : T € T} for a given u. The argument uses a natural topology on
the set 7 (373K). I conclude with remarks on the possible values of [Tu x v for T € T (373P-373Q) and

identifications between ’7:1(0,7) , ’7;(%) and 7,5 (373R-373T).
373A Definition Let (2, /i) and (B, 7) be measure algebras.

(a) 7> will be the space of linear operators T : M1:°°(2A, i) — M>(B, ) such that ||Tul|; < |lul|, for
every u € L1 (2, 1) and ||Tul|oo < ||u|so for every u € L>(21).

(b) If B is Dedekind complete, 7.5 will be Tz 5 0L (MB(A, ); M2 (2, jz)).

373B Proposition Let (2, ) and (28, 7) be measure algebras.

(a) T = Ta is a convex subset of the unit ball of B(M1>°(2A, ii); M1°°(B, v)).

(b) It T € T then TIM“°(, i) belongs to Tow. Soif T € T, p € [1,00[ and u € LP(2, /i) then
Tu e LP(B,v) and ||Tullp, < |lullp.

(c) If B is Dedekind complete, then 7 is a solid subset of L™ (M1 (A, ii); MY (B, ).

(d) If 7 : A — B is a measure-preserving Boolean homomorphism, then we have a corresponding operator
T € T defined by saying that T'(xa) = x(ma) for every a € . If 7 is order-continuous, then so is T

(e) If (€, A) is another measure algebra, T € T and S € 7T, 5 then ST € Tax

373C Decreasing rearrangements Let (2, i) be a measure algebra. Write M%>°(2, 1) for the set of
those u € L%(A) such that pf|u| > o] is finite for some o € R. MO°°(2, 1) is a solid linear subspace
of LO(2). Let (A, jir) be the measure algebra of Lebesgue measure on [0,00[. For u € M%>(, 1) its
decreasing rearrangement is u* € M%° (2, fiz), defined by setting u* = g*, where

g(t) =min{a:a >0, if|u] > o] <t}
for every t > 0.

373D Lemma Let (2, 1) be a measure algebra.
(a) For any u € M (2, 1), its decreasing rearrangement u* may be defined by the formula

[u* > a] = [0, af|lul > ][ for every a > 0,
that is,
grfu* > a] = gflu| > ] for every a > 0.

(b) If |u| < |v| in M%°° (A, iz), then u* < v*; |ul* = u*.
(¢)d) If u=>"" jauxa;, where ag2a; 2 ... Da, and a; > 0 for each 4, then u* = 3" [ a;x [0, fia;[".
(i) If w = Y7 ja;xa; where ag,...,a, are disjoint and |ag| > |ou| > ... > |ay|, then u* =
>z lailx [Bi, Bis1[*, where 8; = 35, fa; for i <n+ 1.

(© 1996 D. H. Fremlin
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6 Linear operators between function spaces 373D

(d) If E C 10,00 is any Borel set, and u € M° (2, i), then jiy[u* € E] = ji[|u| € E]. B
(e) Let h : [0,00] — [0,00[ be a non-decreasing function such that h(0) = 0, and write h for the
corresponding functions on L°(2)* and LO(AL)*. Then (h(u))* = h(u*) whenever u > 0 in M°(, fz). If b
is continuous on the left, (h(u))* = h(u*) whenever u > 0 in M% (A, ji).
(f) If u € M9%>°(2, i) and a > 0, then
(u —ax1)™ = ((Ju] — ax1)™)".
(g) If u € M9>°(2, i), then for any t > 0
t .
fo u* =inf,>o ot + f(|u\ —ax)*t.
(h) If A C (M%°°(2, 1)) " is non-empty and upwards-directed and has supremum ug € M%>°(2l, fi), then
UGy = SUP,ca U

373E Theorem Let (2, 1) be a measure algebra. Then [ |u x v| < [u* x v* for all u, v € M%>®(A, ).

373F Theorem Let (2, ji) be a measure algebra, and u any member of M%>°(2, 11).
(a) For any p € [1,00], w € LP(A, ) iff u* € LP(Ar, i), and in this case ||ul|, = [Ju*||,.
(b)(i) u e MO, i) iff u* € MOy, jir);
(i) w € Moo (A, ) iff u* € MY>°(Ay, fir,), and in this case ||ul|1,c0 = [|[u* 1,005
(iii) w € MYO(A, ) iff u* € MBO(Ap, fir);
(iv) uw € MY, ) iff u* € M°1(Ay, fir,), and in this case [|ulloo,1 = [[u* oo 1-
373G Lemma Let (2, i) and (B, 7) be measure algebras. If
either u € M>>(U, i) and T € Ty »
oru€ MO Qi) and T € 7:1(3—,),
then fot (Tu)* < fot u* for every t > 0.
373H Lemma Let (2, i) be a measure algebra, and 0 : 21/ — R an additive functional, where 21/ = {a :
fia < 0o}
(a) The following are equiveridical:
. . 1
(o) limypo SUDja<t |fa| = lims—, o0 ~SUDpa< |fal =0,

(B) there is some u € M'O(2, i) such that fa = [ u for every a € A/,
and in this case v is uniquely defined.
(b) Now suppose that (2, 1) is localizable. Then the following are equiveridical:

. . 1
() limy o SUP;q<y |fa] =0, limsup,_, ., ~SUD;a<y |fa| < oo,
(B) there is some u € M'*°(2, i) such that fa = [, u for every a € A7,

and again this u is uniquely defined.

3731 Lemma Suppose that u, v, w € M%> (2, fir) are all equivalence classes of non-negative non-
increasing functions. If fot u < fotfu for every t > 0, then [uxw < [v x w.

373J Corollary Suppose that (2, ji) and (B, 7) are measure algebras and v € M%>(B,v). If
either u € M*O(2L, i) and T € 771(01—,)
oru€ MV, i) and T € Tr
then [ |Tu x v| < [u* x v*.

373K The very weak operator topology Let (2, i) and (8,7) be two measure algebras. For u €
MY (A, ji) and w € M>1(B, ) set

Tuw(T) = | [ Tu x w| for T € B = B(M>(2, ); M (B, 7).

Then 7, is a seminorm on B. I will call the topology generated by {7, : u € MY (A, ji), w € M>1(B, )}
the very weak operator topology on B.
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8374 intro. Rearrangement-invariant spaces 7

373L Theorem Let (2, i) be a measure algebra and (B, 7) a localizable measure algebra. Then 7 5 is
compact in the very weak operator topology.

373M Corollary Let (2, ) be a measure algebra and (8,7) a localizable measure algebra, and u
any member of M2, ). Then B = {Tu : T € Tpp} is compact in M1°°(B,r) for the topology
T (ML (B, 1), M1 (B, 1)).

373N Corollary Let (2, i) be a measure algebra, (B, 7) a localizable measure algebra and v any member
of MY (U, j1); set B={Tu:T € Ty} If (Uy)nen is any non-decreasing sequence in B, then sup,,cy vy, is
defined in M1°°(B,7) and belongs to B.

3730 Theorem Suppose that (2, 1), (B, 7) are measure algebras, u € M (2, i) and v € M1 (B, ).
Then the following are equiveridical:

(i) there is a T' € T 5 such that Tu = v,

(ii) fot v* < fg u* for every t > 0.
In particular, given u € M*>°(2, 1), there are S € T ;,, T € Ty, such that Su = u* and Tu* = u.

373P Theorem Let (2, i) be a measure algebra and (28, 7) a semi-finite measure algebra. Then for any
we ML, i) and v € M°(B, ), there is a T € T, 5 such that [Tu x v = [u* x v*.

373Q Corollary Let (2, ji) be a measure algebra, (8, 7) a semi-finite measure algebra, u € M1 (2, ji)
and v € M%>° (%8, 7). Then

fu*xv*=sup{f\Tu><v|:TEE,p}:sup{fTuxv:Teﬁ,;}.

373R Order-continuous operators: Proposition Let (2, i) be a measure algebra, (B, 7) a localizable
X

measure algebra, and Tp € 7;1(?;) Then there is a T' € T* = T, extending Ty. If (A, i) is semi-finite, T" is
uniquely defined.

373S Adjoints in 7(®: Theorem Let (A, ) and (B,7) be measure algebras, and T any member
of 7:—5017) Then there is a unique operator 7" € 7;(2—2 such that [ T"(xb) = [, T(xa) whenever a € 2/ and
be B/, and now [uxT'v = [ Tuxv whenever u € M**(A, i), v € M 0(B, ») are such that [ u* xv* < oco.

373T Corollary Let (2, i) and (B, 7) be localizable measure algebras. Then for any T' € 7., there is a
unique 77 € T, such that [u x T"v = [Tu x v whenever u € M (2, i), v € M">(B, ) are such that
Ju* xv* < oo.

373U Corollary Let (2, ) and (8,7) be localizable measure algebras, and = : 2 — 9 an order-
continuous measure-preserving Boolean homomorphism. Then the associated map T € 7?,; has an adjoint
P € T, defined by the formula [, P(xb) = v(bnma) for a € A7, b e BT

Version of 15.6.09

374 Rearrangement-invariant spaces

As is to be expected, many of the most important function spaces of analysis are symmetric in various
ways; in particular, they share the symmetries of the underlying measure algebras. The natural expression
of this is to say that they are ‘rearrangement-invariant’ (374E). In fact it turns out that in many cases
they have the stronger property of ‘T-invariance’ (374A). In this section I give a brief account of the most
important properties of these two kinds of invariance. In particular, 7-invariance is related to a kind of
transfer mechanism, enabling us to associate function spaces on different measure algebras (374C-374D).
As for rearrangement-invariance, the salient fact is that on the most important measure algebras many
rearrangement-invariant spaces are 7-invariant (374K, 374M).
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8 Linear operators between function spaces 374A
374A T-invariance: Definitions Let (2(, i) be a measure algebra.
(a) I will say that a subset A of M;’Oo is T-invariant if Tu € A whenever u € Aand T € T = Tz 5.
(b) An extended Fatou norm 7 on L° is T-invariant if 7(Tu) < 7(u) whenever u € M;’OO and T € T.

(c) I will write (U, ir) for the measure algebra of Lebesgue measure on [0, oo[, and u* € MS’LOO for the
decreasing rearrangement of any u belonging to any M, 3’00.

374B Theorem Let (2, i) be a semi-finite measure algebra and 7 a T-invariant extended Fatou norm
on L°(21). Let L™ be the Banach lattice defined from 7, and 7’ the associate extended Fatou norm. Then

(i) M2 C L™ € My

(ii) 7/ is also T-invariant, and [ u* x v* < 7(u)7’(v) for all u, v € MS’OO.

374C Theorem Let 6 be a T-invariant extended Fatou norm on L°(), and (2, fi) a semi-finite measure
algebra.
(a) There is a T-invariant extended Fatou norm 7 on L°(2() defined by setting
T(u) = 0(u*) if u e My,
= oo ifue LO(A) \ My>.

(b) Writing &', 7" for the associates of § and 7, we now have

'(v) =0 (v*) ifv e Mg’oo,
= oo if v e LO(A) \ M.

(c) If § is an order-continuous norm on the Banach lattice LY, then 7 is an order-continuous norm on L.

374D Theorem Let (2, i) be a semi-finite measure algebra, and 7 a T-invariant extended Fatou norm
on LY(2). Then there is a T-invariant extended Fatou norm 6 on L°(2(;) such that 7(u) = 6(u*) for every
ue MP™.

374E Let (2, ) be a measure algebra.

(a) I will say that a subset A of L = LO(2) is rearrangement-invariant if T,u € A whenever u € A
and 7 : A — 2A is a measure-preserving Boolean automorphism, writing T, : L — L° for the isomorphism
corresponding to .

(b) I will say that an extended Fatou norm 7 on LY is rearrangement-invariant if 7(T,u) = 7(u)
whenever u € L% and 7 : 2 — 2 is a measure-preserving automorphism.

374F Remarks If (2, i) is a semi-finite measure algebra and 7 : 2 — 2l is a sequentially order-continuous
measure-preserving Boolean homomorphism, then T [ M, é’oo belongs to T;.z. Accordingly, any T-invariant
extended Fatou norm 7 on LY(2l) must be rearrangement-invariant. Similarly, any 7-invariant subset of
M é’oo will be rearrangement-invariant.

374G Definition I say that a measure algebra (2, i) is quasi-homogeneous if for any non-zero a,
b € 2 there is a measure-preserving Boolean automorphism 7 : 2l — 2( such that wanb # 0.

374H Proposition Let (2, i) be a semi-finite measure algebra. Then the following are equiveridical:

(i) (A, i) is quasi-homogeneous;

(i) either 2 is purely atomic and every atom of 2 has the same measure or there is a k > w such that
the principal ideal 2, is homogeneous, with Maharam type &, for every a € 2 of non-zero finite measure.
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3741 Corollary Let (2, i) be a quasi-homogeneous semi-finite measure algebra. Then

(a) whenever a, b € 2 have the same finite measure, the principal ideals 2, 2, are isomorphic as measure
algebras;

(b) there is a subgroup I" of the additive group R such that («) fia € T' whenever a € 2 and fia < oo ()
whenever a € 2, v € I' and 0 < v < fia then there is a ¢ C a such that jc = 7.

374J Lemma Let (2, 1) be a quasi-homogeneous semi-finite measure algebra and u, v € MS’OO. Let
Auty be the group of measure-preserving automorphisms of 2. Then

* *
fu X v —SUPweAutﬁfWX Trvl,

where T, : L°(21) — L°(2A) is the isomorphism corresponding to 7.

374K Theorem Let (2, i) be a quasi-homogeneous semi-finite measure algebra, and 7 a rearrangement
-invariant extended Fatou norm on L° = L°(2). Then 7 is T-invariant.

374L Lemma Let (2, 1) be a quasi-homogeneous semi-finite measure algebra. Suppose that u, v €
(M S’OO)+ are such that [u* X v* = co. Then there is a measure-preserving automorphism m : 2 — 2 such
that [u x Trv = .

374M Proposition Let (2, Ji) be a quasi-homogeneous localizable measure algebra, and U C L° = L9(2()
a solid linear subspace which, regarded as a Riesz space, is perfect. If U is rearrangement-invariant and
Mgo’l CUC Mé’oo7 then U is T-invariant.

Version of 30.1.10

375 Kwapien’s theorem

In §368 and the first part of §369 I examined maps from various types of Riesz space into L° spaces.
There are equally striking results about maps out of L° spaces. I start with some relatively elementary facts
about positive linear operators from L° spaces to Archimedean Riesz spaces in general (375A-375D), and
then turn to a remarkable analysis, due essentially to S.Kwapien, of the positive linear operators from a
general L° space to the L? space of a semi-finite measure algebra (375J), with a couple of simple corollaries.

375A Theorem Let 2 be a Dedekind o-complete Boolean algebra and W an Archimedean Riesz space.
IfT:LO° () — W is a positive linear operator, it is sequentially order-continuous.

375B Proposition Let 2 be an atomless Dedekind o-complete Boolean algebra. Then L°(2()* = {0}.

375C Theorem Let 2 be a Dedekind complete Boolean algebra, W an Archimedean Riesz space, and
T : L%2) — W an order-continuous Riesz homomorphism. Then V = T[L°(2)] is an order-closed Riesz
subspace of W.

375D Corollary Let W be a Riesz space and V an order-dense Riesz subspace which is isomorphic to
LO(2) for some Dedekind complete Boolean algebra 21. Then V = W.

375E Theorem Let (2, ji) be a semi-finite measure algebra, (98, 7) any measure algebra, and T : L°(2) —
L°(B) an order-continuous positive linear operator. Then T is continuous for the topologies of convergence
in measure.

375F Definition Let 2 and B be Boolean algebras. I will say that a function ¢ : A — B is a o-
subhomomorphism if
plaua’) = @(a)ug(a’) for all a, a’ € A,
inf, ey ¢(a,) = 0 whenever (a,)nen is a non-increasing sequence in 2 with infimum 0.
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10 Linear operators between function spaces 375G

375G Lemma Let 2 and 8 be Boolean algebras and ¢ : A — 8 a o-subhomomorphism.

(a) ¢(0) =0, ¢(a) C ¢(a’) whenever a C @/, and ¢(a)\ ¢(a’) € ¢p(a\ a') for every a, a’ € .

(b) If @i, 7 are measures such that (2, i) and (8, 7) are totally finite measure algebras, then for every
€ > 0 there is a ¢ > 0 such that 7¢(a) < € whenever fia < 6.

375H Lemma Let (2, ) and (B,7) be totally finite measure algebras and ¢ : 2 — 9B a o-subho-
momorphism. Then for every non-zero by € B there are a non-zero b C by and an m € N such that
bninfj<,, ¢(a;) = 0 whenever aq, ... ,a, € A are disjoint.

3751 Lemma Let (2, ) and (B, 7) be totally finite measure algebras and ¢ : A — B a o-subhomomor-
phism. Then for every non-zero by € B there are a non-zero b C by and a finite partition of unity C' C A
such that a — bn¢(anc) is a ring homomorphism for every ¢ € C.

375J Theorem Let 2 be any Dedekind o-complete Boolean algebra and (28, 7) a semi-finite measure
algebra. Let T : LO(A) — L°(B) be a positive linear operator. Then we can find B, (A4;)pep such that B
is a partition of unity in 9B, each A, is a finite partition of unity in 2, and u — T'(u x xa) X xb is a Riesz
homomorphism whenever b € B and a € A,.

375K Corollary Let 2 be a Dedekind o-complete Boolean algebra and U a Dedekind complete Riesz
space such that U* separates the points of U. If T : LY(2l) — U is a positive linear operator, there is a
sequence (T},)nen of Riesz homomorphisms from L°(2A) to U such that T = Y7 T, in the sense that
Tu = sup,ey > i Tiu for every u > 0 in LO(2A).

375L Corollary (a) If 2 is a Dedekind o-complete Boolean algebra, (98,7) is a semi-finite measure
algebra, and there is any non-zero positive linear operator from L°(2() to L°(8), then there is a non-trivial
sequentially order-continuous ring homomorphism from 2( to 8.

(b) If (A, ji) and (B, ) are homogeneous probability algebras and 7(4) > 7(28), then L~ (L°(); L°(2B8)) =
{0}.

375Z Problem Let & be the regular open algebra of R, and L = L%(&). If T : L° — L° is a positive
linear operator, must T[L] be order-closed?

Version of 8.4.10

376 Kernel operators

The theory of linear integral equations is in large part the theory of operators 71" defined from formulae
of the type

(THy) = [ k(a,y)f(z)de

for some function k£ of two variables. I make no attempt to study the general theory here. However, the
concepts developed in this book make it easy to discuss certain aspects of such operators defined between
the ‘function spaces’ of measure theory, meaning spaces of equivalence classes of functions, and indeed allow
us to do some of the work in the abstract theory of Riesz spaces, omitting all formal mention of measures
(376D, 376H, 376P). I give a very brief account of two theorems characterizing kernel operators in the
abstract (376E, 376H), with corollaries to show the form these theorems can take in the ordinary language
of integral kernels (376J, 376N). To give an idea of the kind of results we can hope for in this area, I go a
bit farther with operators with domain L' (376Mb, 376P, 376S).

I take the opportunity to spell out versions of results from §253 in the language of this volume (376B-
376C).

376B The canonical map L° x L° — L°: Proposition Let (2, i) and (B, 7) be semi-finite measure
algebras, and (€, \) their localizable measure algebra free product. Then we have a bilinear operator

(u,v) = u®ov: LO(A) x LY(B) — LO(€) with the following properties.
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(a) For any u € LO(21), v € L9(B) and « € R,
[u@xlsg >a]=u>a]®1ly, [xla®v>a]=1yQ [v>a]

where for a € A, b € B 1 write a ® b for the corresponding member of 2 ® B, identified with a subalgebra
of €.

(b)(i) For any u € L°(A)*, the map v — u® v : L°(B) — L°(€) is an order-continuous multiplicative
Riesz homomorphism.

(ii) For any v € L°(®8)™, the map u — u® v : LO(2A) — L°(€) is an order-continuous multiplicative

Riesz homomorphism.

(¢) In particular, |u ® v| = |u| @ |v| for all u € LO(A) and v € LO(B).

(d) For any u € L))" and v € L°(B)™, [u®@v > 0] = [u > 0] ® [v > 0].

376C Theorem Let (2, /i) and (B,7) be semi-finite measure algebras with localizable measure algebra
free product (€, A). B
(a) Ifuwe L = LY(A,p) and v € L} = L'(B, ») then u @ v € L} = L*(¢, ) and

Juov=[ufv, Juoovlh=uliolh.

(b) Let W be a Banach space and ¢ : L}, x Ly — W a bounded bilinear operator. Then there is a
unique bounded linear operator T : L} — W such that T'(u ® v) = ¢(u,v) for all u € L} and v € L}, and
1T = llell-

(¢) Suppose, in (b), that W is a Banach lattice. Then

(i) T is positive iff ¢(u,v) > 0 for all u, v > 0;
(i) T is a Riesz homomorphism iff u — ¢(u,vo) : L, — W and v — ¢(ug,v) : L, — W are Riesz
homomorphisms for all vg > 0 in L}, and ug > 0 in L.

376D Abstract integral operators: Definition Let U be a Riesz space and V' a Dedekind complete
Riesz space. If f € U* and v € V write Pr,u = f(u)v for each u € U; then Py, € L*(U;V). I call a
linear operator from U to V an abstract integral operator if it is in the band in L*(U; V') generated by
{Pj,: feU*,veV}

376E Theorem Let (2, i) and (B, 7) be semi-finite measure algebras, with localizable measure algebra
free product (€, ), and U C LO(A), V C LO(B) order-dense Riesz subspaces. Write W for the set of those
w € L9%(€) such that w x (u ® v) is integrable for every uw € U and v € V. Then we have an operator
w— Ty : W — L*(U; V™) defined by setting

Tw(u)(v) = fw X (u® )

for every w € W, u € U and v € V. The map w +— T, is a Riesz space isomorphism between W and the
band of abstract integral operators in L*(U;V*).

376F Corollary Let (2, i) and (B, 7) be localizable measure algebras, with localizable measure algebra
free product (€, \). Let U C LO(A), V C L°(B) be perfect order-dense solid linear subspaces, and T': U — V/
a linear operator. Then the following are equiveridical:

(i) T is an abstract integral operator;

(ii) there is a w € L°(€) such that [w x (u® v') is defined and equal to [ Tu x v' whenever u € U and
v' € LP(%B) is such that v’ x v is integrable for every v € V.

376G Lemma Let U be a Riesz space, V an Archimedean Riesz space, T': U — V a linear operator,
f€(U™)T and e € V*. Suppose that 0 < Tu < f(u)e for every w € UT. Then if (un)nen is a sequence in
U such that lim, o g(u,) = 0 whenever g € U™ and |g| < f, (T'up)nen order*-converges to 0 in V.

376H Theorem Let U be a Riesz space and V' a weakly (o, co)-distributive Dedekind complete Riesz
space. Suppose that T'€ L*(U; V). Then the following are equiveridical:
(i) T is an abstract integral operator;
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12 Linear operators between function spaces 376H

(ii) whenever (uy)nen is an order-bounded sequence in U™ and lim, o f(u,) = 0 for every f € UX,
then (T'up)nen order*-converges to 0 in V;

(iii) whenever (u,)nen is an order-bounded sequence in U and lim,,_,« f(uy,) = 0 for every f € U*, then
(Tup)nen order*-converges to 0 in V.

3761 Lemma Let (X,X, 1) be a o-finite measure space and U an order-dense solid linear subspace of
L°(w). Then there is a non-decreasing sequence (X,,)nen of measurable subsets of X, with union X, such
that xX; € U for every n € N.

376J Corollary Let (X, X, 1) and (Y, T, v) be o-finite measure spaces, with product measure A on X xY.
Let U C L°(u), V C L°(v) be perfect order-dense solid linear subspaces, and T': U — V a linear operator.
Write U= {f: f € LOu), f* €U}, V¥ ={h:h e LO(v), h* x v € L! for every v € V}. Then the following
are equiveridical:
(i) T is an abstract integral operator;
(ii) there is a k € £%(\) such that
(@) [|k(z,y)f(2)h(y)|d(z,y) < oo for every f € U, h € V¥,
(B) if f € U and we set g(y) = [ k(z,y)f(x)dx wherever this is defined, then g € £L°(v) and T'f* = g*;
(iii) 7' € L~(U; V) and whenever (u,)nen is an order-bounded sequence in U™ and lim,, o h(uy,) = 0 for
every h € U*, then (Tu,)nen order*-converges to 0 in V.

376K Lemma Let U and V be Riesz spaces. Then there is a Riesz space isomorphism T +— T’ :
L*(U;V*) = L*(V;U*) defined by the formula

(T"v)(u) = (Tu)(v) for every u e U, v € V.

If we write Prg(u) = f(u)g for f € U, g € V> and u € U, then Pyy € L*(U;V>) and P;, = Pyy in
L*(V;U*). Consequently T is an abstract integral operator iff 7" is.

376L Lemma Let U be a Banach lattice with an order-continuous norm. If w € U™ thereisa g € (UX)™"
such that for every € > 0 there is a 6 > 0 such that ||u|] < e whenever 0 < u < w and g(u) < 4.

376M Theorem (a) Let U be a Banach lattice with an order-continuous norm and V' a Dedekind
complete M-space. Then every bounded linear operator from U to V is an abstract integral operator.

(b) Let U be an L-space and V' a Banach lattice with order-continuous norm. Then every bounded linear
operator from U to V* is an abstract integral operator.

376N Corollary: Dunford’s theorem Let (X,%, ) and (Y, T,v) be o-finite measure spaces and
T : L'(u) — LP(v) a bounded linear operator, where 1 < p < oco. Then there is a measurable function
k: X xY — Rsuch that T'f* = g3, where g¢(y) = [ k(z,y)f(x)dz almost everywhere, for every f € L£1(p).

3760 Lemma Let U be a Riesz space, and W a solid linear subspace of U~. If C C U is relatively
compact for the weak topology Ts(U, W), then for every g € W and € > 0 there is a u* € U™ such that
g(Ju| — u*)* < e for every u € C.

376P Theorem Let U be an L-space and V' a perfect Riesz space. If T': U — V is a linear operator such
that {Tu : v € U, |lu|| < 1} is relatively compact for the weak topology Ts(V, V), then T is an abstract
integral operator.

376Q Corollary Let (X,%,u) and (Y, T,v) be o-finite measure spaces and T : L'(u) — L'(v) a
weakly compact linear operator. Then there is a function k : X x Y — R such that 7'f* = g}, where

gf(y) = [ k(z,y)f(x)dz almost everywhere, for every f € L!(u).
376R Lemma Let (X,X%, ) be a measure space, (Y,T,v) a o-finite measure space, and A the c.l.d.
product measure on X X Y. Suppose that k is a A-integrable real-valued function. Then for any € > 0 there

is a finite partition Ey, ..., E, of X into measurable sets such that ||k — k1|1 < e, where
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1

kl(xvy) = wE;

/ k(t,y)dt whenever x € E;, 0 < pE; < 00
E;

and the integral is defined in R,

= 0 in all other cases.

376S Theorem Let (X, X, ) be a complete locally determined measure space, (Y, T, v) a o-finite measure
space, and \ the c.l.d. product measure on X x Y. Let 7 be an extended Fatou norm on L°(v) and write LT
for {g: g € L%(v), 7/(9*) < oo}, where 7/ is the associate extended Fatou norm of 7. Suppose that k € £(\)
is such that k x (f ® g) is integrable whenever f € £1(u) and g € £7'. Then we have a corresponding linear
operator T : L*(u) — L" defined by saying that [(Tf*) x g* = [k x (f ® g) whenever f € £'(u) and
gel™.

For x € X set k.(y) = k(z,y) whenever this is defined. Then k, € L%(v) for almost every wx; set
vy = k3 € L°(v) for such z. In this case x — 7(v,) is measurable and defined and finite almost everywhere,
and ||| = ess sup,, 7(vz)-

Version of 30.12.09

*377 Function spaces of reduced products

In §328 I introduced ‘reduced products’ of probability algebras. In this section I seek to describe the
function spaces of reduced products as images of subspaces of products of function spaces of the original
algebras. I add a group of universal mapping theorems associated with the constructions of projective and
inductive limits of directed families of probability algebras (377G-377H).

377A Proposition If (2;);cr is a non-empty family of Boolean algebras with simple product 2, then
L>°(2() can be identified, as normed space and f-algebra, with the subspace W, of [[;o; L°°(2l;) consisting
of families u = (u;)ser such that ||ul|cc = sup;e; ||us|oo is finite.

377B Theorem Let ((2;, fi;));cr be a non-empty family of probability algebras, and (B, 7) a probability
algebra. Let 2 be the simple product of (2;);cr, and 7 : A — 9B a Boolean homomorphism such that
vm((ai)ier) < sup;er fiia; whenever (a;)ie; € . Let Wy be the subspace of [],.; L°(2;) consisting of
families (u;);er such that infrensup;e; fif|us| > k] = 0.

(a) Wy is a solid linear subspace and a subalgebra of [],c; L°(2;), and there is a unique Riesz homo-
morphism 7 : Wy — L°(B) such that T'({(xa;)icr) = x7({a;)icr) whenever (a;);cr € 2. Moreover, T is
multiplicative, and [Tu > 0] € 7({Ju; > 0])icr) whenever u = (u;);cs belongs to Wy.

(b) If h : R — R is a continuous function, and we write h for the corresponding maps from L° to itself
for any of the spaces L® = LO(2;), L° = L°(B), then (h(u;))ic; € Wo and T((h(u;))icr) = h(Tu) whenever
u = (u;);er belongs to W.

377C Theorem Let ((2;, fi;))icr be a non-empty family of probability algebras, (*8,7) a probability
algebra, and 7 : [[,.;2; — 9B a Boolean homomorphism such that om({a;)icr) < sup;e; fisa; whenever
(ai)ier € [;cr s Let Wo C [[ie LO(2A;) and T : Wy — L°(®B) be as in 377B. Suppose either that every
2; is atomless or that there is an ultrafilter F on I such that om({a;)icr) = lim;_,  fi;a; whenever (a;)icr
in JT;c; 2. For 1 < p < oo let W), be the subspace of [],.; L°(2;) consisting of families (u;);es such that
sup;c; ||willp is finite. Then T[W,] C LP(B,7), and || Tu||, < sup,c; ||uill, whenever v = (u;);cr belongs to

W,.

377D Theorem Let ((2;, fi;))icr be a family of probability algebras, F an ultrafilter on I, and (B, 7) a
probability algebra. Let 2 be the simple product [],.;2l; and 7 : 2 — B a Boolean homomorphism such
(©) 2008 D. H. Fremlin
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14 Linear operators between function spaces 377D

that vm({ai)icr) = lim;, 7 fi;a; whenever (a;)ic; € . Let Wo C [],¢; LO(2A;) and T : Wy — L°(B8) be as in
377B-377C.

(a) If u = (u;)ier belongs to Wy and {i:i € I, u; =0} € F, then Tu = 0.

(b) For 1 < p < oo, write W, for the set of those families (u;)ier € [];c; LP (s, fi;) such that sup,c; [luql,
is finite. Then Tw € LP(*B, 7) and ||Tu||, < lim;, 7 ||u,||, whenever u = (u;);c; belongs to W,.

(c) Let Wy; be the subspace of [, ; L* (2, i;) consisting of families (u;);e such that infyen sup;e; [(|us|—

iel
kxly,)t =0. Then [Tu =lim;,r [u; and ||Tul|y = lim;_, 7 |Ju;||; whenever u = (u;);c; belongs to Wy;.
(d) Suppose now that 7[A] = B.
(i) TWo] = LO(‘B)
(il) T[Wy] = L' (B, 7).

(iii) If p € [1, 00], then T'[W,] = L?(B,7) and for every w € LP(*B, V) there is a u = (u;);ecr in W), such
that Tu = w and sup;¢; ||uillp = [|wllp.

377E Proposition Let (2, i) and (B, 7) be probability algebras, I a set and F an ultrafilter on I. Let
7 : A" — B be a Boolean homomorphism such that o7 ({a;)icr) = lim;_, 7 fia; whenever (a;);c; € A, Let
Wo be the set of families in L°(2A)! which are bounded for the topology of convergence in measure on L°(21).

(a)(i) Wy is a solid linear subspace and a subalgebra of L°(2()!, and there is a unique multiplicative Riesz
homomorphism 7 : Wy — L°(B) such that T((xa;)icr) = x7({a;)icr) whenever (a;);c; € AL.

(i) [Tw > 0] € 7((Ju; > 0])ier) whenever u = (u;);cs; belongs to Wy.

(iii) If h : R — R is a continuous function, and we write h for the corresponding maps from L° to
itself for either of the spaces LY = LO(A), L® = LO(B), then (h(u;))ier € Wo and T((h(u;))ier) = h(Tw)
whenever u = (u;);es belongs to Wy.

(b)(i) For 1 < p < oo let W, be the subspace of LP(2, 1)’ consisting of || ||,-bounded families. Then
T[W,] C LP(B,7), and [|[Tu||, < lim,, 7 ||ui||, whenever u = (u;);er belongs to W,

(ii) Let W,; be the subspace of L*(2;, fi;)’ consisting of uniformly integrable families. Then [Tu =
lim;, 7 [w; and ||Tully = lim,;—, 7 |lu; |1 whenever u = (u;);er belongs to W;.

(c)(i) We have a measure-preserving Boolean homomorphism 7 : 20 — B defined by setting 7a = 7({(a):er)
for each a € 2.

(i) Let P; : L'(%8,7) — L(, i) be the conditional-expectation operator corresponding to 7 : A — B.
If (u;)ies is a uniformly integrable family in L!(2(), then PzT({u;);cz) is the limit lim,; , 7 u; for the weak
topology of L(2, ji).

(iii) Suppose that 1 < p < co and that {u;);cs is a bounded family in LP(2(, ). Then P;T({u;)icr) is
the limit lim;_, 7 u; for the weak topology of LP(2, f).

377F Proposition Let (2, &) and (A, ') be probability algebras, I a set and F an ultrafilter on I;
let (B,7) and (B’,7') be the reduced powers (2, i)!|F, (A, @’)!|F, with corresponding homomorphisms
m — B and 7' AT — B

(a) Writing Wy, W{ for the spaces of topologically bounded families in L°(()f, L°(21")! respectively,
we have unique Riesz homomorphisms T : Wy — L°(B) and T’ : W} — L°(B’) such that T((xa;)ic1) =
x((aier), T'((xal)ier) = x7'({a)ier) whenever (ai)icy € 27 and {al)icr € ()]

(b) Suppose that S : LY, i) — LY, f) is a bounded linear operator. Then we have a unique
bounded linear operator S : L'(B,7) — L'(%’,7') such that ST((u;)icr) = T'((Su;)icr) whenever (u;)icr
is a uniformly integrable family in L*(2, f1).

(¢) The map S + S is a norm-preserving Riesz homomorphism from B(L (2, i); L' (', &) to B(L' (B, 7);
LY(B', 7).

377G Projective limits: Proposition Let (I, <), ((2;, &i))ier and (m;;)i<; be such that (I, <) is a
non-empty upwards-directed partially ordered set, every (;, fi;) is a probability algebra, m;; : 2, — ; is
a measure-preserving Boolean homomorphism whenever ¢ < j in I, and m;;, = 77, whenever ¢ < j < k.
Let (€, ), (mi)icr) be the corresponding projective limit. Write L), for L'(2;, ii;) and L for L'(€, A). For
i<jin I, let T : L}” — L, and Py : L}, — L}lj be the norm-preserving Riesz homomorphism and the
positive linear operator corresponding to m;; : 2; — 2A;, and T : L}\ — L;l-w P; L}]i — L%\ the operators
corresponding to m; : € — ;. Let X be any set.

MEASURE THEORY (abridged version)
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(a) Suppose that for each ¢ € I we are given a function S; : L}L — X such that S;T;; = S; whenever
i < 7 in I. Then there is a unique function S : L%\ — X such that S = S;T; for every i € I.

(b) Suppose that for each i € I we are given a function S; : X — L;l‘u such that 7;;S5; = S; whenever
i1 < jin I. Then there is a unique function S : X — L%\ such that T;5 = .5; for every i € I.

(c) Suppose that X is a topological space, and for each ¢ € I we are given a norm-continuous function
S; : L};i — X such that S;P;; = S; whenever ¢ < j in I. Then there is a unique function S : L%\ — X such
that SP; = 5; for every i € I.

(d) Suppose that for each i € I we are given a function S; : X — L}ii such that P;;S; = S; whenever
i1 < jin I. Then there is a unique function S : X — L%\ such that S = P;S; for every i € I.

377H Inductive limits: Proposition Let (I, <), (2, f;))ier and (m););<; be such that (I,<) is a
non-empty upwards-directed partially ordered set, every (2, fi;) is a probability algebra, m;; : 2; — 2; is
a measure-preserving Boolean homomorphism whenever ¢ < j in I, and m; = m;m;; whenever 4 < j < k.
Let (€, ), (m;)icr) be the corresponding inductive limit. Write Ly, for L'(A;, fi;) and L for L'(€, A). For
i < gjin I, let Tj; : Ly, — L}ij and Pj; : L}” — L}, be the Riesz homomorphism and the positive linear
operator corresponding to m;; : 2; — %;, and T; : L}“ — L%\, P;: L%\ — Lllii the operators corresponding to
7 2 A; — € Let X be a set.

(a) Suppose that for each i € I we are given a function S; : L}M — X such that S;7}; = S; whenever
i < jin I. Then there is a function S : L%\ — X such that S; = ST; for every i € I.

(b) Suppose that for each i € I we are given a function S; : X — L} such that T};S; = S; whenever
i < jin I. Then there is a unique function S : X — L%\ such that T;S5; = S for every ¢ € I.

(c¢) Suppose that for each i € I we are given a function S; : L}“ — X such that S;Pj; = S; whenever
i < jin I. Then there is a unique function S : L}\ — X such that S = S; P, for every i € [.

(d) Suppose that for each i € I we are given a function S; : X — L}-Li such that P;;S; = S; whenever
i1 < jin I, and that

Infren sup;e; f(\51$| — kxly,)" =
for every z € X. Then there is a unique function S : X — L% such that S; = P;S for every i € I.

Version of 7.12.08

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

3721 The version of the Ergodic Theorem in 3721, referred to in the 2003 and 2006 editions of Volume
4, is now 372H.

372K The version of the Ergodic Theorem in 372K, referred to in the 2003 and 2006 editions of Volume
4, is now 372J.

372P Mixing and ergodic transformations The definitions in 372P are now in 3720.

372Xm The tent map, referred to in the 2003 and 2006 editions of Volume 4, is now in 372Xp.
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