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Chapter 37

Linear operators between function spaces

As everywhere in functional analysis, the function spaces of measure theory cannot be properly understood
without investigating linear operators between them. In this chapter I have collected a number of results
which rely on, or illuminate, the measure-theoretic aspects of the theory. §371 is devoted to a fundamental
property of linear operators on L-spaces, if considered abstractly, that is, of L1-spaces, if considered in
the languages of Chapters 24 and 36, and to an introduction to the class T of operators which are norm-
decreasing for both ‖ ‖1 and ‖ ‖∞. This makes it possible to prove a version of Birkhoff’s Ergodic Theorem for
operators which need not be positive (372D). In §372 I give various forms of this theorem, for linear operators
between function spaces, for measure-preserving Boolean homomorphisms between measure algebras, and for
inverse-measure-preserving functions between measure spaces, with an excursion into the theory of continued
fractions. In §373 I make a fuller analysis of the class T , with a complete characterization of those u, v
such that v = Tu for some T ∈ T . Using this we can describe ‘rearrangement-invariant’ function spaces and
extended Fatou norms (§374). Returning to ideas left on one side in §§364 and 368, I investigate positive
linear operators defined on L0 spaces (§375). In the penultimate section of the chapter (§376), I look at
operators which can be defined in terms of kernels on product spaces. Finally, in §377, I examine the function
spaces of reduced products, projective limits and inductive limits of probability algebras.

Version of 13.12.06

371 The Chacon-Krengel theorem

The first topic I wish to treat is a remarkable property of L-spaces: if U and V are L-spaces, then every
continuous linear operator T : U → V is order-bounded, and ‖|T |‖ = ‖T‖ (371D). This generalizes in various
ways to other V (371B, 371C). I apply the result to a special type of operator between M1,0 spaces which
will be conspicuous in the next section (371F-371H).

371A Lemma Let U be an L-space, V a Banach lattice and T : U → V a bounded linear operator. Take
u ≥ 0 in U and set

B = {
∑n

i=0 |Tui| : u0, . . . , un ∈ U+,
∑n

i=0 ui = u} ⊆ V +.

Then B is upwards-directed and supv∈B ‖v‖ ≤ ‖T‖‖u‖.

371B Theorem Let U be an L-space and V a Dedekind complete Banach lattice U with a Fatou norm.
Then the Riesz space L

∼(U ;V ) = L
×(U ;V ) is a closed linear subspace of the Banach space B(U ;V ) and is

in itself a Banach lattice with a Fatou norm.

371C Theorem Let U be an L-space and V a Dedekind complete Banach lattice with a Fatou norm
and the Levi property. Then B(U ;V ) = L

∼(U ;V ) = L
×(U ;V ) is a Dedekind complete Banach lattice with

a Fatou norm and the Levi property. In particular, |T | is defined and ‖|T |‖ = ‖T‖ for every T ∈ B(U ;V ).

371D Corollary Let U and V be L-spaces. Then L
∼(U ;V ) = L

×(U ;V ) = B(U ;V ) is a Dedekind
complete Banach lattice with a Fatou norm and the Levi property.

371F The class T (0): Definition Let (A, µ̄), (B, ν̄) be measure algebras. Write T (0) = T
(0)
µ̄,ν̄ for the

set of all linear operators T : M1,0(A, µ̄) → M1,0(B, ν̄) such that Tu ∈ L1(B, ν̄) and ‖Tu‖1 ≤ ‖u‖1 for
every u ∈ L1(A, µ̄), Tu ∈ L∞(B) and ‖Tu‖∞ ≤ ‖u‖∞ for every u ∈ L∞(A) ∩M1,0(A, µ̄).
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2 Linear operators between function spaces 371G

371G Proposition Let (A, µ̄) and (B, ν̄) be measure algebras.

(a) T (0) = T
(0)
µ̄,ν̄ is a convex set in the unit ball of B(M1,0(A, µ̄);M1,0(B, ν̄)). If T0 : L1(A, µ̄) → L1(B, ν̄) is

a linear operator of norm at most 1, and T0u ∈ L∞(B) and ‖T0u‖∞ ≤ ‖u‖∞ for every u ∈ L1(A, µ̄)∩L∞(A),
then T0 has a unique extension to a member of T (0).

(b) If T ∈ T (0) then T is order-bounded and |T |, taken in

L
∼(M1,0(A, µ̄);M1,0(B, ν̄)) = L

×(M1,0(A, µ̄);M1,0(B, ν̄)),

also belongs to T (0).
(c) If T ∈ T (0) then ‖Tu‖1,∞ ≤ ‖u‖1,∞ for every u ∈ M1,0(A, µ̄).

(d) If T ∈ T (0), p ∈ [1,∞[ and w ∈ Lp(A, µ̄) then Tw ∈ Lp(B, ν̄) and ‖Tw‖p ≤ ‖w‖p.

(e) If (C, λ̄) is another measure algebra then ST ∈ T
(0)

µ̄,λ̄
whenever T ∈ T

(0)
µ̄,ν̄ and S ∈ T

(0)

ν̄,λ̄
.

Version of 7.12.08/17.7.11

372 The ergodic theorem

I come now to one of the most remarkable topics in measure theory. I cannot do it justice in the space
I have allowed for it here, but I can give the basic theorem (372D, 372F) and a variety of the corollaries
through which it is regularly used (372E, 372G-372J), together with brief notes on one of its most famous and
characteristic applications (to continued fractions, 372L-372N) and on ‘ergodic’ and ‘mixing’ transformations
(372O-372S). In the first half of the section (down to 372G) I express the arguments in the abstract language
of measure algebras and their associated function spaces, as developed in Chapter 36; the second half, from
372H onwards, contains translations of the results into the language of measure spaces and measurable
functions, the more traditional, and more readily applicable, forms.

372A Lemma Let U be a reflexive Banach space and T : U → U a bounded linear operator of norm at
most 1. Then

V = {u+ v − Tu : u, v ∈ U, Tv = v}

is dense in U .

372B Lemma Let (A, µ̄) be a measure algebra, and T : L1 → L1 a positive linear operator of norm at
most 1, where L1 = L1(A, µ̄). Take any u ∈ L1 and m ∈ N, and set

a = [[u > 0]] ∪ [[u+ Tu > 0]] ∪ [[u+ Tu+ T 2u > 0]] ∪ . . . ∪ [[u+ Tu+ . . .+ Tmu > 0]].

Then
∫
a
u ≥ 0.

372C Maximal Ergodic Theorem Let (A, µ̄) be a measure algebra, and T : L1 → L1 a linear
operator, where L1 = L1(A, µ̄), such that ‖Tu‖1 ≤ ‖u‖1 for every u ∈ L1 and ‖Tu‖∞ ≤ ‖u‖∞ for every
u ∈ L1 ∩ L∞(A). Set An = 1

n+1

∑n
i=0 T

i for each n ∈ N. Then for any u ∈ L1, u∗ = supn∈N Anu is defined

in L0(A), and αµ̄[[u∗ > α]] ≤ ‖u‖1 for every α > 0.

372D The Ergodic Theorem: first form Let (A, µ̄) be a measure algebra, and set M1,0 = M1,0(A, µ̄),

T (0) = T
(0)
µ̄,µ̄ ⊆ B(M1,0;M1,0). Take any T ∈ T (0), and set An = 1

n+1

∑n
i=0 T

i : M1,0 → M1,0 for every n.

Then for any u ∈ M1,0, 〈Anu〉n∈N is order*-convergent and ‖ ‖1,∞-convergent to a member Pu of M1,0. The

operator P : M1,0 → M1,0 is a projection onto the linear subspace {u : u ∈ M1,0, Tu = u}, and P ∈ T (0).

372E Corollary Let (A, µ̄) be a measure algebra, and π : Af → Af a measure-preserving ring homo-
morphism, where Af = {a : µ̄a < ∞}. Let T : M1,0 → M1,0 be the corresponding Riesz homomorphism,
where M1,0 = M1,0(A, µ̄). Set An = 1

n+1

∑n
i=0 T

i for n ∈ N. Then for every u ∈ M1,0, 〈Anu〉n∈N is

order*-convergent and ‖ ‖1,∞-convergent to some v such that Tv = v.

372F The Ergodic Theorem: second form Let (A, µ̄) be a measure algebra, and let T : L1 → L1,
where L1 = L1(A, µ̄), be a linear operator of norm at most 1 such that Tu ∈ L∞ = L∞(A) and ‖Tu‖∞ ≤
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372Lc The ergodic theorem 3

‖u‖∞ whenever u ∈ L1∩L∞. Set An = 1
n+1

∑n
i=0 T

i : L1 → L1 for every n. Then for any u ∈ L1, 〈Anu〉n∈N

is order*-convergent to an element Pu of L1. The operator P : L1 → L1 is a projection of norm at most 1
onto the linear subspace {u : u ∈ L1, Tu = u}.

372G Corollary Let (A, µ̄) be a probability algebra, and π : A → A a measure-preserving Boolean
homomorphism. Let T : L1 → L1 be the corresponding Riesz homomorphism, where L1 = L1(A, µ̄). Set
An = 1

n+1

∑n
i=0 T

i for n ∈ N. Then for every u ∈ L1, 〈Anu〉n∈N is order*-convergent and ‖ ‖1-convergent.
If we set Pu = limn→∞ Anu for each u, P is the conditional expectation operator corresponding to the
fixed-point subalgebra C = {a : πa = a} of A.

372H Corollary Let (X,Σ, µ) be a measure space and φ : X → X an inverse-measure-preserving
function. Let f be a real-valued function which is integrable over X. Then

g(x) = limn→∞
1

n+1

∑n
i=0 f(φ

i(x))

is defined for almost every x ∈ X, and gφ(x) = g(x) for almost every x.

372I Lemma Let (X,Σ, µ) be a measure space with measure algebra (A, µ̄). Let φ : X → X be an inverse-
measure-preserving function and π : A → A the associated homomorphism. Set C = {c : c ∈ A, πc = c},
T = {E : E ∈ Σ, φ−1[E]△E is negligible} and T0 = {E : E ∈ Σ, φ−1[E] = E}. Then T and T0 are
σ-subalgebras of Σ; T0 ⊆ T, T = {E : E ∈ Σ, E• ∈ C}, and C = {E• : E ∈ T0}.

372J The Ergodic Theorem: third form Let (X,Σ, µ) be a probability space and φ : X → X an
inverse-measure-preserving function. Let f be a real-valued function which is integrable over X. Then

g(x) = limn→∞
1

n+1

∑n
i=0 f(φ

i(x))

is defined for almost every x ∈ X; gφ =a.e. g, and g is a conditional expectation of f on the σ-algebra
T = {E : E ∈ Σ, φ−1[E]△E is negligible}. If either f is Σ-measurable and defined everywhere in X
or φ[E] is negligible for every negligible set E, then g is a conditional expectation of f on the σ-algebra
T0 = {E : E ∈ Σ, φ−1[E] = E}.

372L Continued fractions (a) Set X = [0, 1] \ Q. For x ∈ X, set φ(x) = < 1
x
>, the fractional part

of 1
x
, and k1(x) = 1

x
− φ(x) = ⌊ 1

x
⌋, the integer part of 1

x
; then φ(x) ∈ X for each x ∈ X, so we may

define kn(x) = k1(φ
n−1(x)) for every n ≥ 1. The strictly positive integers k1(x), k2(x), k3(x), . . . are the

continued fraction coefficients of x. kn+1(x) = kn(φ(x)) for every n ≥ 1. Now define 〈pn(x)〉n∈N,
〈qn(x)〉n∈N inductively by setting

p0(x) = 0, p1(x) = 1, pn(x) = pn−2(x) + kn(x)pn−1(x) for n ≥ 1,

q0(x) = 1, q1(x) = k1(x), qn(x) = qn−2(x) + kn(x)qn−1(x) for n ≥ 1.

The continued fraction approximations to x are the quotients pn(x)/qn(x).

(c)(i) For any x ∈ X, n ≥ 1 we have

pn−1(x)qn(x)− pn(x)qn−1(x) = (−1)n, φn(x) =
pn(x)−xqn(x)

xqn−1(x)−pn−1(x)
,

x =
pn(x)+pn−1(x)φn(x)

qn(x)+qn−1(x)φn(x)
.

(ii) For any finite string m = (m1, . . . ,mn) of strictly positive integers the set Dm = {x : x ∈
X, ki(x) = mi for 1 ≤ i ≤ n} is an interval in X on which φn is monotonic, being strictly increasing if n is
even and strictly decreasing if n is odd.

(iii) We also need to know that if m = (m1, . . . ,mn), the length of Dm is at most 2−n+1.
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4 Linear operators between function spaces 372M

372M Theorem Set X = [0, 1]\Q, and define φ : X → X as in 372L. Then for every Lebesgue integrable
function f on X,

limn→∞
1

n+1

∑n
i=0 f(φ

i(x)) =
1

ln 2

∫ 1

0

f(t)

1+t
dt

for almost every x ∈ X.

372N Corollary For almost every x ∈ [0, 1] \Q,

limn→∞
1

n
#({i : 1 ≤ i ≤ n, ki(x) = k}) =

1

ln 2
(2 ln(k + 1)− ln k − ln(k + 2))

for every k ≥ 1, where k1(x), . . . are the continued fraction coefficients of x.

372O Mixing and ergodic transformations: Definitions (a)(i) Let A be a Boolean algebra. Then
a Boolean homomorphism π : A → A is ergodic if whenever a, b ∈ A \ {0} there are m, n ∈ N such that
πma ∩ πnb 6= 0.

(ii) Let (A, µ̄) be a probability algebra and π : A → A a measure-preserving Boolean homomorphism.
Then π is mixing if limn→∞ µ̄(πna ∩ b) = µ̄a · µ̄b for all a, b ∈ A.

(iii) Let (A, µ̄) be a probability algebra and π : A → A a measure-preserving Boolean homomorphism.

Then π is weakly mixing if limn→∞
1

n

∑n−1
i=0 |µ̄(πna ∩ b)− µ̄a · µ̄b| = 0 for all a, b ∈ A.

(b) Let (X,Σ, µ) be a probability space and φ : X → X an inverse-measure-preserving function.

(i) φ is ergodic if every measurable set E such that φ−1[E] = E is either negligible or conegligible.

(ii) φ is mixing if limn→∞ µ(F ∩ φ−n[E]) = µE · µF for all E, F ∈ Σ.

(iii) φ is weakly mixing if if limn→∞
1

n

∑n−1
i=0 |µ(F ∩ φ−n[E])− µE · µF | = 0 for all E, F ∈ Σ.

372P Proposition Let A be a Boolean algebra and π : A → A a Boolean homomorphism, with fixed-
point subalgebra C.

(a) If π is ergodic, then C = {0, 1}.
(b) If π is an automorphism, then π is ergodic iff supn∈Z π

na = 1 for every a ∈ A \ {0}.
(c) If π is an automorphism and A is Dedekind σ-complete, then π is ergodic iff C = {0, 1}.

372Q Proposition (a) Let (A, µ̄) be a probability algebra, π : A → A a measure-preserving Boolean
homomorphism, and T : L0 = L0(A) → L0 the Riesz homomorphism such that T (χa) = χπa for every
a ∈ A.

(i) If π is mixing, it is weakly mixing.
(ii) If π is weakly mixing, it is ergodic.
(iii) The following are equiveridical: (α) π is ergodic; (β) the only u ∈ L0 such that Tu = u are the

multiples of χ1; (γ) for every u ∈ L1 = L1(A, µ̄), 〈 1
n+1

∑n
i=0 T

iu〉n∈N order*-converges to (
∫
u)χ1.

(iv) The following are equiveridical: (α) π is mixing; (β) limn→∞(Tnu|v) =
∫
u
∫
v for all u, v ∈

L2(A, µ̄).

(v) The following are equiveridical: (α) π is weakly mixing; (β) limn→∞
1

n

∑n−1
k=0 |(T

ku|v)−
∫
u
∫
v| = 0

for all u, v ∈ L2(A, µ̄).
(b) Let (X,Σ, µ) be a probability space, with measure algebra (A, µ̄). Let φ : X → X be an inverse-

measure-preserving function and π : A → A the associated homomorphism such that πE• = (φ−1[E])• for
every E ∈ Σ.

(i) The following are equiveridical: (α) φ is ergodic; (β) π is ergodic; (γ) for every µ-integrable real-
valued function f , 〈 1

n+1

∑n
i=0 f(φ

i(x))〉n∈N converges to
∫
f for almost every x ∈ X.

(ii) φ is mixing iff π is, and in this case φ is weakly mixing.
(iii) φ is weakly mixing iff π is, and in this case φ is ergodic.
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373D Decreasing rearrangements 5

372S Proposition (a) Let (A, µ̄) be a probability algebra, and π : A → A a measure-preserving Boolean
homomorphism. If

⋂
n∈N

πn[A] = {0, 1}, then π is mixing.
(b) Let (X,Σ, µ) be a probability space, and φ : X → X an inverse-measure-preserving function. Set

T = {E : for every n ∈ N there is an F ∈ Σ such that E = φ−n[F ]}.

If every member of T is either negligible or conegligible, φ is mixing.

Version of 25.5.16

373 Decreasing rearrangements

I take a section to discuss operators in the class T (0) of 371F-371H and two associated classes T , T ×

(373A). These turn out to be intimately related to the idea of ‘decreasing rearrangement’ (373C). In 373D-
373F I give elementary properties of decreasing rearrangements; then in 373G-373O I show how they may
be used to characterize the set {Tu : T ∈ T } for a given u. The argument uses a natural topology on
the set T (373K). I conclude with remarks on the possible values of

∫
Tu × v for T ∈ T (373P-373Q) and

identifications between T
(0)
µ̄,ν̄ , T

(0)
ν̄,µ̄ and T ×

µ̄,ν̄ (373R-373T).

373A Definition Let (A, µ̄) and (B, ν̄) be measure algebras.

(a) Tµ̄,ν̄ will be the space of linear operators T : M1,∞(A, µ̄) → M1,∞(B, ν̄) such that ‖Tu‖1 ≤ ‖u‖1 for
every u ∈ L1(A, µ̄) and ‖Tu‖∞ ≤ ‖u‖∞ for every u ∈ L∞(A).

(b) If B is Dedekind complete, T ×
µ̄,ν̄ will be Tµ̄,ν̄ ∩ L

×(M1,∞(A, µ̄);M1,∞(A, µ̄)).

373B Proposition Let (A, µ̄) and (B, ν̄) be measure algebras.
(a) T = Tµ̄,ν̄ is a convex subset of the unit ball of B(M1,∞(A, µ̄);M1,∞(B, ν̄)).

(b) If T ∈ T then T ↾M1,0(A, µ̄) belongs to T
(0)
µ̄,ν̄ . So if T ∈ T , p ∈ [1,∞[ and u ∈ Lp(A, µ̄) then

Tu ∈ Lp(B, ν̄) and ‖Tu‖p ≤ ‖u‖p.
(c) If B is Dedekind complete, then T is a solid subset of L∼(M1,∞(A, µ̄);M1,∞(B, ν̄)).
(d) If π : A → B is a measure-preserving Boolean homomorphism, then we have a corresponding operator

T ∈ T defined by saying that T (χa) = χ(πa) for every a ∈ A. If π is order-continuous, then so is T .
(e) If (C, λ̄) is another measure algebra, T ∈ T and S ∈ Tν̄,λ̄ then ST ∈ Tµ̄,λ̄.

373C Decreasing rearrangements Let (A, µ̄) be a measure algebra. Write M0,∞(A, µ̄) for the set of
those u ∈ L0(A) such that µ̄[[|u| > α]] is finite for some α ∈ R. M0,∞(A, µ̄) is a solid linear subspace
of L0(A). Let (AL, µ̄L) be the measure algebra of Lebesgue measure on [0,∞[. For u ∈ M0,∞(A, µ̄) its
decreasing rearrangement is u∗ ∈ M0,∞(AL, µ̄L), defined by setting u∗ = g•, where

g(t) = min{α : α ≥ 0, µ̄[[|u| > α]] ≤ t}

for every t > 0.

373D Lemma Let (A, µ̄) be a measure algebra.
(a) For any u ∈ M0,∞(A, µ̄), its decreasing rearrangement u∗ may be defined by the formula

[[u∗ > α]] = [0, µ̄[[|u| > α]][
•

for every α ≥ 0,

that is,

µ̄L[[u
∗ > α]] = µ̄[[|u| > α]] for every α ≥ 0.

(b) If |u| ≤ |v| in M0,∞(A, µ̄), then u∗ ≤ v∗; |u|∗ = u∗.
(c)(i) If u =

∑n
i=0 αiχai, where a0 ⊇ a1 ⊇ . . . ⊇ an and αi ≥ 0 for each i, then u∗ =

∑n
i=0 αiχ [0, µ̄ai[

•

.
(ii) If u =

∑n
i=0 αiχai where a0, . . . , an are disjoint and |α0| ≥ |α1| ≥ . . . ≥ |αn|, then u∗ =∑n

i=0 |αi|χ [βi, βi+1[
•

, where βi =
∑

j<i µ̄ai for i ≤ n+ 1.

c© 1996 D. H. Fremlin
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6 Linear operators between function spaces 373D

(d) If E ⊆ ]0,∞[ is any Borel set, and u ∈ M0(A, µ̄), then µ̄L[[u
∗ ∈ E]] = µ̄[[|u| ∈ E]].

(e) Let h : [0,∞[ → [0,∞[ be a non-decreasing function such that h(0) = 0, and write h̄ for the
corresponding functions on L0(A)+ and L0(AL)

+. Then (h̄(u))∗ = h̄(u∗) whenever u ≥ 0 in M0(A, µ̄). If h
is continuous on the left, (h̄(u))∗ = h̄(u∗) whenever u ≥ 0 in M0,∞(A, µ̄).

(f) If u ∈ M0,∞(A, µ̄) and α ≥ 0, then

(u∗ − αχ1)+ = ((|u| − αχ1)+)∗.

(g) If u ∈ M0,∞(A, µ̄), then for any t > 0∫ t

0
u∗ = infα≥0 αt+

∫
(|u| − αχ1)+.

(h) If A ⊆ (M0,∞(A, µ̄))+ is non-empty and upwards-directed and has supremum u0 ∈ M0,∞(A, µ̄), then
u∗
0 = supu∈A u∗.

373E Theorem Let (A, µ̄) be a measure algebra. Then
∫
|u× v| ≤

∫
u∗ × v∗ for all u, v ∈ M0,∞(A, µ̄).

373F Theorem Let (A, µ̄) be a measure algebra, and u any member of M0,∞(A, µ̄).
(a) For any p ∈ [1,∞], u ∈ Lp(A, µ̄) iff u∗ ∈ Lp(AL, µ̄L), and in this case ‖u‖p = ‖u∗‖p.
(b)(i) u ∈ M0(A, µ̄) iff u∗ ∈ M0(AL, µ̄L);

(ii) u ∈ M1,∞(A, µ̄) iff u∗ ∈ M1,∞(AL, µ̄L), and in this case ‖u‖1,∞ = ‖u∗‖1,∞;
(iii) u ∈ M1,0(A, µ̄) iff u∗ ∈ M1,0(AL, µ̄L);
(iv) u ∈ M∞,1(A, µ̄) iff u∗ ∈ M∞,1(AL, µ̄L), and in this case ‖u‖∞,1 = ‖u∗‖∞,1.

373G Lemma Let (A, µ̄) and (B, ν̄) be measure algebras. If

either u ∈ M1,∞(A, µ̄) and T ∈ Tµ̄,ν̄

or u ∈ M1,0(A, µ̄) and T ∈ T
(0)
µ̄,ν̄ ,

then
∫ t

0
(Tu)∗ ≤

∫ t

0
u∗ for every t ≥ 0.

373H Lemma Let (A, µ̄) be a measure algebra, and θ : Af → R an additive functional, where Af = {a :
µ̄a < ∞}.

(a) The following are equiveridical:

(α) limt↓0 supµ̄a≤t |θa| = limt→∞
1

t
supµ̄a≤t |θa| = 0,

(β) there is some u ∈ M1,0(A, µ̄) such that θa =
∫
a
u for every a ∈ Af ,

and in this case u is uniquely defined.
(b) Now suppose that (A, µ̄) is localizable. Then the following are equiveridical:

(α) limt↓0 supµ̄a≤t |θa| = 0, lim supt→∞

1

t
supµ̄a≤t |θa| < ∞,

(β) there is some u ∈ M1,∞(A, µ̄) such that θa =
∫
a
u for every a ∈ Af ,

and again this u is uniquely defined.

373I Lemma Suppose that u, v, w ∈ M0,∞(AL, µ̄L) are all equivalence classes of non-negative non-

increasing functions. If
∫ t

0
u ≤

∫ t

0
v for every t ≥ 0, then

∫
u× w ≤

∫
v × w.

373J Corollary Suppose that (A, µ̄) and (B, ν̄) are measure algebras and v ∈ M0,∞(B, ν̄). If

either u ∈ M1,0(A, µ̄) and T ∈ T
(0)
µ̄,ν̄

or u ∈ M1,∞(A, µ̄) and T ∈ Tµ̄,ν̄
then

∫
|Tu× v| ≤

∫
u∗ × v∗.

373K The very weak operator topology Let (A, µ̄) and (B, ν̄) be two measure algebras. For u ∈
M1,∞(A, µ̄) and w ∈ M∞,1(B, ν̄) set

τuw(T ) = |
∫
Tu× w| for T ∈ B = B(M1,∞(A, µ̄);M1,∞(B, ν̄)).

Then τuw is a seminorm on B. I will call the topology generated by {τuw : u ∈ M1,∞(A, µ̄), w ∈ M∞,1(B, ν̄)}
the very weak operator topology on B.
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§374 intro. Rearrangement-invariant spaces 7

373L Theorem Let (A, µ̄) be a measure algebra and (B, ν̄) a localizable measure algebra. Then Tµ̄,ν̄ is
compact in the very weak operator topology.

373M Corollary Let (A, µ̄) be a measure algebra and (B, ν̄) a localizable measure algebra, and u
any member of M1,∞(A, µ̄). Then B = {Tu : T ∈ Tµ̄,ν̄} is compact in M1,∞(B, ν̄) for the topology
Ts(M

1,∞(B, ν̄),M∞,1(B, ν̄)).

373N Corollary Let (A, µ̄) be a measure algebra, (B, ν̄) a localizable measure algebra and u any member
of M1,∞(A, µ̄); set B = {Tu : T ∈ Tµ̄,ν̄}. If 〈vn〉n∈N is any non-decreasing sequence in B, then supn∈N vn is
defined in M1,∞(B, ν̄) and belongs to B.

373O Theorem Suppose that (A, µ̄), (B, ν̄) are measure algebras, u ∈ M1,∞(A, µ̄) and v ∈ M1,∞(B, ν̄).
Then the following are equiveridical:

(i) there is a T ∈ Tµ̄,ν̄ such that Tu = v,

(ii)
∫ t

0
v∗ ≤

∫ t

0
u∗ for every t ≥ 0.

In particular, given u ∈ M1,∞(A, µ̄), there are S ∈ Tµ̄,µ̄L
, T ∈ Tµ̄L,µ̄ such that Su = u∗ and Tu∗ = u.

373P Theorem Let (A, µ̄) be a measure algebra and (B, ν̄) a semi-finite measure algebra. Then for any
u ∈ M1,∞(A, µ̄) and v ∈ M0(B, ν̄), there is a T ∈ Tµ̄,ν̄ such that

∫
Tu× v =

∫
u∗ × v∗.

373Q Corollary Let (A, µ̄) be a measure algebra, (B, ν̄) a semi-finite measure algebra, u ∈ M1,∞(A, µ̄)
and v ∈ M0,∞(B, ν̄). Then∫

u∗ × v∗ = sup{
∫
|Tu× v| : T ∈ Tµ̄,ν̄} = sup{

∫
Tu× v : T ∈ Tµ̄,ν̄}.

373R Order-continuous operators: Proposition Let (A, µ̄) be a measure algebra, (B, ν̄) a localizable

measure algebra, and T0 ∈ T
(0)
µ̄,ν̄ . Then there is a T ∈ T × = T ×

µ̄,ν̄ extending T0. If (A, µ̄) is semi-finite, T is
uniquely defined.

373S Adjoints in T (0): Theorem Let (A, µ̄) and (B, ν̄) be measure algebras, and T any member

of T
(0)
µ̄,ν̄ . Then there is a unique operator T ′ ∈ T

(0)
ν̄,µ̄ such that

∫
a
T ′(χb) =

∫
b
T (χa) whenever a ∈ Af and

b ∈ Bf , and now
∫
u×T ′v =

∫
Tu×v whenever u ∈ M1,0(A, µ̄), v ∈ M1,0(B, ν̄) are such that

∫
u∗×v∗ < ∞.

373T Corollary Let (A, µ̄) and (B, ν̄) be localizable measure algebras. Then for any T ∈ T ×
µ̄,ν̄ there is a

unique T ′ ∈ T ×
ν̄,µ̄ such that

∫
u× T ′v =

∫
Tu× v whenever u ∈ M1,∞(A, µ̄), v ∈ M1,∞(B, ν̄) are such that∫

u∗ × v∗ < ∞.

373U Corollary Let (A, µ̄) and (B, ν̄) be localizable measure algebras, and π : A → B an order-
continuous measure-preserving Boolean homomorphism. Then the associated map T ∈ T ×

µ̄,ν̄ has an adjoint

P ∈ T ×
ν̄,µ̄ defined by the formula

∫
a
P (χb) = ν̄(b ∩ πa) for a ∈ Af , b ∈ Bf .

Version of 15.6.09

374 Rearrangement-invariant spaces

As is to be expected, many of the most important function spaces of analysis are symmetric in various
ways; in particular, they share the symmetries of the underlying measure algebras. The natural expression
of this is to say that they are ‘rearrangement-invariant’ (374E). In fact it turns out that in many cases
they have the stronger property of ‘T -invariance’ (374A). In this section I give a brief account of the most
important properties of these two kinds of invariance. In particular, T -invariance is related to a kind of
transfer mechanism, enabling us to associate function spaces on different measure algebras (374C-374D).
As for rearrangement-invariance, the salient fact is that on the most important measure algebras many
rearrangement-invariant spaces are T -invariant (374K, 374M).
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8 Linear operators between function spaces 374A

374A T -invariance: Definitions Let (A, µ̄) be a measure algebra.

(a) I will say that a subset A of M1,∞
µ̄ is T -invariant if Tu ∈ A whenever u ∈ A and T ∈ T = Tµ̄,µ̄.

(b) An extended Fatou norm τ on L0 is T -invariant if τ(Tu) ≤ τ(u) whenever u ∈ M1,∞
µ̄ and T ∈ T .

(c) I will write (AL, µ̄L) for the measure algebra of Lebesgue measure on [0,∞[, and u∗ ∈ M0,∞
µ̄L

for the

decreasing rearrangement of any u belonging to any M0,∞
µ̄ .

374B Theorem Let (A, µ̄) be a semi-finite measure algebra and τ a T -invariant extended Fatou norm
on L0(A). Let Lτ be the Banach lattice defined from τ , and τ ′ the associate extended Fatou norm. Then

(i) M∞,1
µ̄ ⊆ Lτ ⊆ M1,∞

µ̄ ;

(ii) τ ′ is also T -invariant, and
∫
u∗ × v∗ ≤ τ(u)τ ′(v) for all u, v ∈ M0,∞

µ̄ .

374C Theorem Let θ be a T -invariant extended Fatou norm on L0(AL), and (A, µ̄) a semi-finite measure
algebra.

(a) There is a T -invariant extended Fatou norm τ on L0(A) defined by setting

τ(u) = θ(u∗) if u ∈ M0,∞
µ̄ ,

= ∞ if u ∈ L0(A) \M0,∞
µ̄ .

(b) Writing θ′, τ ′ for the associates of θ and τ , we now have

τ ′(v) = θ′(v∗) if v ∈ M0,∞
µ̄ ,

= ∞ if v ∈ L0(A) \M0,∞
µ̄ .

(c) If θ is an order-continuous norm on the Banach lattice Lθ, then τ is an order-continuous norm on Lτ .

374D Theorem Let (A, µ̄) be a semi-finite measure algebra, and τ a T -invariant extended Fatou norm
on L0(A). Then there is a T -invariant extended Fatou norm θ on L0(AL) such that τ(u) = θ(u∗) for every

u ∈ M0,∞
µ̄ .

374E Let (A, µ̄) be a measure algebra.

(a) I will say that a subset A of L0 = L0(A) is rearrangement-invariant if Tπu ∈ A whenever u ∈ A
and π : A → A is a measure-preserving Boolean automorphism, writing Tπ : L0 → L0 for the isomorphism
corresponding to π.

(b) I will say that an extended Fatou norm τ on L0 is rearrangement-invariant if τ(Tπu) = τ(u)
whenever u ∈ L0 and π : A → A is a measure-preserving automorphism.

374F Remarks If (A, µ̄) is a semi-finite measure algebra and π : A → A is a sequentially order-continuous

measure-preserving Boolean homomorphism, then Tπ↾M
1,∞
µ̄ belongs to Tµ̄,µ̄. Accordingly, any T -invariant

extended Fatou norm τ on L0(A) must be rearrangement-invariant. Similarly, any T -invariant subset of

M1,∞
µ̄ will be rearrangement-invariant.

374G Definition I say that a measure algebra (A, µ̄) is quasi-homogeneous if for any non-zero a,
b ∈ A there is a measure-preserving Boolean automorphism π : A → A such that πa ∩ b 6= 0.

374H Proposition Let (A, µ̄) be a semi-finite measure algebra. Then the following are equiveridical:
(i) (A, µ̄) is quasi-homogeneous;
(ii) either A is purely atomic and every atom of A has the same measure or there is a κ ≥ ω such that

the principal ideal Aa is homogeneous, with Maharam type κ, for every a ∈ A of non-zero finite measure.
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374I Corollary Let (A, µ̄) be a quasi-homogeneous semi-finite measure algebra. Then
(a) whenever a, b ∈ A have the same finite measure, the principal ideals Aa, Ab are isomorphic as measure

algebras;
(b) there is a subgroup Γ of the additive group R such that (α) µ̄a ∈ Γ whenever a ∈ A and µ̄a < ∞ (β)

whenever a ∈ A, γ ∈ Γ and 0 ≤ γ ≤ µ̄a then there is a c ⊆ a such that µ̄c = γ.

374J Lemma Let (A, µ̄) be a quasi-homogeneous semi-finite measure algebra and u, v ∈ M0,∞
µ̄ . Let

Autµ̄ be the group of measure-preserving automorphisms of A. Then∫
u∗ × v∗ = supπ∈Autµ̄

∫
|u× Tπv|,

where Tπ : L0(A) → L0(A) is the isomorphism corresponding to π.

374K Theorem Let (A, µ̄) be a quasi-homogeneous semi-finite measure algebra, and τ a rearrangement
-invariant extended Fatou norm on L0 = L0(A). Then τ is T -invariant.

374L Lemma Let (A, µ̄) be a quasi-homogeneous semi-finite measure algebra. Suppose that u, v ∈

(M0,∞
µ̄ )+ are such that

∫
u∗ × v∗ = ∞. Then there is a measure-preserving automorphism π : A → A such

that
∫
u× Tπv = ∞.

374M Proposition Let (A, µ̄) be a quasi-homogeneous localizable measure algebra, and U ⊆ L0 = L0(A)
a solid linear subspace which, regarded as a Riesz space, is perfect. If U is rearrangement-invariant and
M∞,1

µ̄ ⊆ U ⊆ M1,∞
µ̄ , then U is T -invariant.

Version of 30.1.10

375 Kwapien’s theorem

In §368 and the first part of §369 I examined maps from various types of Riesz space into L0 spaces.
There are equally striking results about maps out of L0 spaces. I start with some relatively elementary facts
about positive linear operators from L0 spaces to Archimedean Riesz spaces in general (375A-375D), and
then turn to a remarkable analysis, due essentially to S.Kwapien, of the positive linear operators from a
general L0 space to the L0 space of a semi-finite measure algebra (375J), with a couple of simple corollaries.

375A Theorem Let A be a Dedekind σ-complete Boolean algebra and W an Archimedean Riesz space.
If T : L0(A) → W is a positive linear operator, it is sequentially order-continuous.

375B Proposition Let A be an atomless Dedekind σ-complete Boolean algebra. Then L0(A)× = {0}.

375C Theorem Let A be a Dedekind complete Boolean algebra, W an Archimedean Riesz space, and
T : L0(A) → W an order-continuous Riesz homomorphism. Then V = T [L0(A)] is an order-closed Riesz
subspace of W .

375D Corollary Let W be a Riesz space and V an order-dense Riesz subspace which is isomorphic to
L0(A) for some Dedekind complete Boolean algebra A. Then V = W .

375E Theorem Let (A, µ̄) be a semi-finite measure algebra, (B, ν̄) any measure algebra, and T : L0(A) →
L0(B) an order-continuous positive linear operator. Then T is continuous for the topologies of convergence
in measure.

375F Definition Let A and B be Boolean algebras. I will say that a function φ : A → B is a σ-
subhomomorphism if

φ(a ∪ a′) = φ(a) ∪ φ(a′) for all a, a′ ∈ A,

infn∈N φ(an) = 0 whenever 〈an〉n∈N is a non-increasing sequence in A with infimum 0.
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10 Linear operators between function spaces 375G

375G Lemma Let A and B be Boolean algebras and φ : A → B a σ-subhomomorphism.
(a) φ(0) = 0, φ(a) ⊆ φ(a′) whenever a ⊆ a′, and φ(a) \ φ(a′) ⊆ φ(a \ a′) for every a, a′ ∈ A.
(b) If µ̄, ν̄ are measures such that (A, µ̄) and (B, ν̄) are totally finite measure algebras, then for every

ǫ > 0 there is a δ > 0 such that ν̄φ(a) ≤ ǫ whenever µ̄a ≤ δ.

375H Lemma Let (A, µ̄) and (B, ν̄) be totally finite measure algebras and φ : A → B a σ-subho-
momorphism. Then for every non-zero b0 ∈ B there are a non-zero b ⊆ b0 and an m ∈ N such that
b ∩ infj≤m φ(aj) = 0 whenever a0, . . . , am ∈ A are disjoint.

375I Lemma Let (A, µ̄) and (B, ν̄) be totally finite measure algebras and φ : A → B a σ-subhomomor-
phism. Then for every non-zero b0 ∈ B there are a non-zero b ⊆ b0 and a finite partition of unity C ⊆ A

such that a 7→ b ∩ φ(a ∩ c) is a ring homomorphism for every c ∈ C.

375J Theorem Let A be any Dedekind σ-complete Boolean algebra and (B, ν̄) a semi-finite measure
algebra. Let T : L0(A) → L0(B) be a positive linear operator. Then we can find B, 〈Ab〉b∈B such that B
is a partition of unity in B, each Ab is a finite partition of unity in A, and u 7→ T (u × χa) × χb is a Riesz
homomorphism whenever b ∈ B and a ∈ Ab.

375K Corollary Let A be a Dedekind σ-complete Boolean algebra and U a Dedekind complete Riesz
space such that U× separates the points of U . If T : L0(A) → U is a positive linear operator, there is a
sequence 〈Tn〉n∈N of Riesz homomorphisms from L0(A) to U such that T =

∑∞

n=0 Tn, in the sense that
Tu = supn∈N

∑n
i=0 Tiu for every u ≥ 0 in L0(A).

375L Corollary (a) If A is a Dedekind σ-complete Boolean algebra, (B, ν̄) is a semi-finite measure
algebra, and there is any non-zero positive linear operator from L0(A) to L0(B), then there is a non-trivial
sequentially order-continuous ring homomorphism from A to B.

(b) If (A, µ̄) and (B, ν̄) are homogeneous probability algebras and τ(A) > τ(B), then L
∼(L0(A);L0(B)) =

{0}.

375Z Problem Let G be the regular open algebra of R, and L0 = L0(G). If T : L0 → L0 is a positive
linear operator, must T [L0] be order-closed?

Version of 8.4.10

376 Kernel operators

The theory of linear integral equations is in large part the theory of operators T defined from formulae
of the type

(Tf)(y) =
∫
k(x, y)f(x)dx

for some function k of two variables. I make no attempt to study the general theory here. However, the
concepts developed in this book make it easy to discuss certain aspects of such operators defined between
the ‘function spaces’ of measure theory, meaning spaces of equivalence classes of functions, and indeed allow
us to do some of the work in the abstract theory of Riesz spaces, omitting all formal mention of measures
(376D, 376H, 376P). I give a very brief account of two theorems characterizing kernel operators in the
abstract (376E, 376H), with corollaries to show the form these theorems can take in the ordinary language
of integral kernels (376J, 376N). To give an idea of the kind of results we can hope for in this area, I go a
bit farther with operators with domain L1 (376Mb, 376P, 376S).

I take the opportunity to spell out versions of results from §253 in the language of this volume (376B-
376C).

376B The canonical map L0 × L0 → L0: Proposition Let (A, µ̄) and (B, ν̄) be semi-finite measure
algebras, and (C, λ̄) their localizable measure algebra free product. Then we have a bilinear operator
(u, v) 7→ u⊗ v : L0(A)× L0(B) → L0(C) with the following properties.
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(a) For any u ∈ L0(A), v ∈ L0(B) and α ∈ R,

[[u⊗ χ1B > α]] = [[u > α]]⊗ 1B, [[χ1A ⊗ v > α]] = 1A ⊗ [[v > α]]

where for a ∈ A, b ∈ B I write a ⊗ b for the corresponding member of A ⊗B, identified with a subalgebra
of C.

(b)(i) For any u ∈ L0(A)+, the map v 7→ u ⊗ v : L0(B) → L0(C) is an order-continuous multiplicative
Riesz homomorphism.

(ii) For any v ∈ L0(B)+, the map u 7→ u ⊗ v : L0(A) → L0(C) is an order-continuous multiplicative
Riesz homomorphism.

(c) In particular, |u⊗ v| = |u| ⊗ |v| for all u ∈ L0(A) and v ∈ L0(B).
(d) For any u ∈ L0(A)+ and v ∈ L0(B)+, [[u⊗ v > 0]] = [[u > 0]]⊗ [[v > 0]].

376C Theorem Let (A, µ̄) and (B, ν̄) be semi-finite measure algebras with localizable measure algebra
free product (C, λ̄).

(a) If u ∈ L1
µ̄ = L1(A, µ̄) and v ∈ L1

ν̄ = L1(B, ν̄) then u⊗ v ∈ L1
λ̄
= L1(C, λ̄) and∫

u⊗ v =
∫
u
∫
v, ‖u⊗ v‖1 = ‖u‖1‖v‖1.

(b) Let W be a Banach space and φ : L1
µ̄ × L1

ν̄ → W a bounded bilinear operator. Then there is a

unique bounded linear operator T : L1
λ̄
→ W such that T (u ⊗ v) = φ(u, v) for all u ∈ L1

µ̄ and v ∈ L1
ν̄ , and

‖T‖ = ‖φ‖.
(c) Suppose, in (b), that W is a Banach lattice. Then

(i) T is positive iff φ(u, v) ≥ 0 for all u, v ≥ 0;
(ii) T is a Riesz homomorphism iff u 7→ φ(u, v0) : L1

µ̄ → W and v 7→ φ(u0, v) : L1
ν̄ → W are Riesz

homomorphisms for all v0 ≥ 0 in L1
ν̄ and u0 ≥ 0 in L1

µ̄.

376D Abstract integral operators: Definition Let U be a Riesz space and V a Dedekind complete
Riesz space. If f ∈ U× and v ∈ V write Pfvu = f(u)v for each u ∈ U ; then Pfv ∈ L

×(U ;V ). I call a
linear operator from U to V an abstract integral operator if it is in the band in L

×(U ;V ) generated by
{Pfv : f ∈ U×, v ∈ V }.

376E Theorem Let (A, µ̄) and (B, ν̄) be semi-finite measure algebras, with localizable measure algebra
free product (C, λ̄), and U ⊆ L0(A), V ⊆ L0(B) order-dense Riesz subspaces. Write W for the set of those
w ∈ L0(C) such that w × (u ⊗ v) is integrable for every u ∈ U and v ∈ V . Then we have an operator
w 7→ Tw : W → L

×(U ;V ×) defined by setting

Tw(u)(v) =
∫
w × (u⊗ v)

for every w ∈ W , u ∈ U and v ∈ V . The map w 7→ Tw is a Riesz space isomorphism between W and the
band of abstract integral operators in L

×(U ;V ×).

376F Corollary Let (A, µ̄) and (B, ν̄) be localizable measure algebras, with localizable measure algebra
free product (C, λ̄). Let U ⊆ L0(A), V ⊆ L0(B) be perfect order-dense solid linear subspaces, and T : U → V
a linear operator. Then the following are equiveridical:

(i) T is an abstract integral operator;
(ii) there is a w ∈ L0(C) such that

∫
w × (u⊗ v′) is defined and equal to

∫
Tu× v′ whenever u ∈ U and

v′ ∈ L0(B) is such that v′ × v is integrable for every v ∈ V .

376G Lemma Let U be a Riesz space, V an Archimedean Riesz space, T : U → V a linear operator,
f ∈ (U∼)+ and e ∈ V +. Suppose that 0 ≤ Tu ≤ f(u)e for every u ∈ U+. Then if 〈un〉n∈N is a sequence in
U such that limn→∞ g(un) = 0 whenever g ∈ U∼ and |g| ≤ f , 〈Tun〉n∈N order*-converges to 0 in V .

376H Theorem Let U be a Riesz space and V a weakly (σ,∞)-distributive Dedekind complete Riesz
space. Suppose that T ∈ L

×(U ;V ). Then the following are equiveridical:
(i) T is an abstract integral operator;
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(ii) whenever 〈un〉n∈N is an order-bounded sequence in U+ and limn→∞ f(un) = 0 for every f ∈ U×,
then 〈Tun〉n∈N order*-converges to 0 in V ;

(iii) whenever 〈un〉n∈N is an order-bounded sequence in U and limn→∞ f(un) = 0 for every f ∈ U×, then
〈Tun〉n∈N order*-converges to 0 in V .

376I Lemma Let (X,Σ, µ) be a σ-finite measure space and U an order-dense solid linear subspace of
L0(µ). Then there is a non-decreasing sequence 〈Xn〉n∈N of measurable subsets of X, with union X, such
that χX•

n ∈ U for every n ∈ N.

376J Corollary Let (X,Σ, µ) and (Y,T, ν) be σ-finite measure spaces, with product measure λ on X×Y .
Let U ⊆ L0(µ), V ⊆ L0(ν) be perfect order-dense solid linear subspaces, and T : U → V a linear operator.
Write U = {f : f ∈ L

0(µ), f• ∈ U}, V# = {h : h ∈ L
0(ν), h• × v ∈ L1 for every v ∈ V }. Then the following

are equiveridical:
(i) T is an abstract integral operator;
(ii) there is a k ∈ L

0(λ) such that
(α)

∫
|k(x, y)f(x)h(y)|d(x, y) < ∞ for every f ∈ U, h ∈ V

#,
(β) if f ∈ U and we set g(y) =

∫
k(x, y)f(x)dx wherever this is defined, then g ∈ L

0(ν) and Tf• = g•;
(iii) T ∈ L

∼(U ;V ) and whenever 〈un〉n∈N is an order-bounded sequence in U+ and limn→∞ h(un) = 0 for
every h ∈ U×, then 〈Tun〉n∈N order*-converges to 0 in V .

376K Lemma Let U and V be Riesz spaces. Then there is a Riesz space isomorphism T 7→ T ′ :
L
×(U ;V ×) → L

×(V ;U×) defined by the formula

(T ′v)(u) = (Tu)(v) for every u ∈ U , v ∈ V .

If we write Pfg(u) = f(u)g for f ∈ U×, g ∈ V × and u ∈ U , then Pfg ∈ L
×(U ;V ×) and P ′

fg = Pgf in

L
×(V ;U×). Consequently T is an abstract integral operator iff T ′ is.

376L Lemma Let U be a Banach lattice with an order-continuous norm. If w ∈ U+ there is a g ∈ (U×)+

such that for every ǫ > 0 there is a δ > 0 such that ‖u‖ ≤ ǫ whenever 0 ≤ u ≤ w and g(u) ≤ δ.

376M Theorem (a) Let U be a Banach lattice with an order-continuous norm and V a Dedekind
complete M -space. Then every bounded linear operator from U to V is an abstract integral operator.

(b) Let U be an L-space and V a Banach lattice with order-continuous norm. Then every bounded linear
operator from U to V × is an abstract integral operator.

376N Corollary: Dunford’s theorem Let (X,Σ, µ) and (Y,T, ν) be σ-finite measure spaces and
T : L1(µ) → Lp(ν) a bounded linear operator, where 1 < p ≤ ∞. Then there is a measurable function
k : X ×Y → R such that Tf• = g•

f , where gf (y) =
∫
k(x, y)f(x)dx almost everywhere, for every f ∈ L

1(µ).

376O Lemma Let U be a Riesz space, and W a solid linear subspace of U∼. If C ⊆ U is relatively
compact for the weak topology Ts(U,W ), then for every g ∈ W+ and ǫ > 0 there is a u∗ ∈ U+ such that
g(|u| − u∗)+ ≤ ǫ for every u ∈ C.

376P Theorem Let U be an L-space and V a perfect Riesz space. If T : U → V is a linear operator such
that {Tu : u ∈ U, ‖u‖ ≤ 1} is relatively compact for the weak topology Ts(V, V

×), then T is an abstract
integral operator.

376Q Corollary Let (X,Σ, µ) and (Y,T, ν) be σ-finite measure spaces and T : L1(µ) → L1(ν) a
weakly compact linear operator. Then there is a function k : X × Y → R such that Tf• = g•

f , where

gf (y) =
∫
k(x, y)f(x)dx almost everywhere, for every f ∈ L

1(µ).

376R Lemma Let (X,Σ, µ) be a measure space, (Y,T, ν) a σ-finite measure space, and λ the c.l.d.
product measure on X ×Y . Suppose that k is a λ-integrable real-valued function. Then for any ǫ > 0 there
is a finite partition E0, . . . , En of X into measurable sets such that ‖k − k1‖1 ≤ ǫ, where

Measure Theory (abridged version)
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k1(x, y) =
1

µEi

∫
Ei

k(t, y)dt whenever x ∈ Ei, 0 < µEi < ∞

and the integral is defined in R,

= 0 in all other cases.

376S Theorem Let (X,Σ, µ) be a complete locally determined measure space, (Y,T, ν) a σ-finite measure

space, and λ the c.l.d. product measure on X×Y . Let τ be an extended Fatou norm on L0(ν) and write Lτ ′

for {g : g ∈ L
0(ν), τ ′(g•) < ∞}, where τ ′ is the associate extended Fatou norm of τ . Suppose that k ∈ L

0(λ)

is such that k× (f ⊗ g) is integrable whenever f ∈ L1(µ) and g ∈ Lτ ′

. Then we have a corresponding linear
operator T : L1(µ) → Lτ defined by saying that

∫
(Tf•) × g• =

∫
k × (f ⊗ g) whenever f ∈ L

1(µ) and

g ∈ L
τ ′

.
For x ∈ X set kx(y) = k(x, y) whenever this is defined. Then kx ∈ L

0(ν) for almost every x; set
vx = k•

x ∈ L0(ν) for such x. In this case x 7→ τ(vx) is measurable and defined and finite almost everywhere,
and ‖T‖ = ess supx τ(vx).

Version of 30.12.09

*377 Function spaces of reduced products

In §328 I introduced ‘reduced products’ of probability algebras. In this section I seek to describe the
function spaces of reduced products as images of subspaces of products of function spaces of the original
algebras. I add a group of universal mapping theorems associated with the constructions of projective and
inductive limits of directed families of probability algebras (377G-377H).

377A Proposition If 〈Ai〉i∈I is a non-empty family of Boolean algebras with simple product A, then
L∞(A) can be identified, as normed space and f -algebra, with the subspace W∞ of

∏
i∈I L

∞(Ai) consisting
of families u = 〈ui〉i∈I such that ‖u‖∞ = supi∈I ‖ui‖∞ is finite.

377B Theorem Let 〈(Ai, µ̄i)〉i∈I be a non-empty family of probability algebras, and (B, ν̄) a probability
algebra. Let A be the simple product of 〈Ai〉i∈I , and π : A → B a Boolean homomorphism such that
ν̄π(〈ai〉i∈I) ≤ supi∈I µ̄iai whenever 〈ai〉i∈I ∈ A. Let W0 be the subspace of

∏
i∈I L

0(Ai) consisting of
families 〈ui〉i∈I such that infk∈N supi∈I µ̄i[[|ui| > k]] = 0.

(a) W0 is a solid linear subspace and a subalgebra of
∏

i∈I L
0(Ai), and there is a unique Riesz homo-

morphism T : W0 → L0(B) such that T (〈χai〉i∈I) = χπ(〈ai〉i∈I) whenever 〈ai〉i∈I ∈ A. Moreover, T is
multiplicative, and [[Tu > 0]] ⊆ π(〈[[ui > 0]]〉i∈I) whenever u = 〈ui〉i∈I belongs to W0.

(b) If h : R → R is a continuous function, and we write h̄ for the corresponding maps from L0 to itself
for any of the spaces L0 = L0(Ai), L

0 = L0(B), then 〈h̄(ui)〉i∈I ∈ W0 and T (〈h̄(ui)〉i∈I) = h̄(Tu) whenever
u = 〈ui〉i∈I belongs to W0.

377C Theorem Let 〈(Ai, µ̄i)〉i∈I be a non-empty family of probability algebras, (B, ν̄) a probability
algebra, and π :

∏
i∈I Ai → B a Boolean homomorphism such that ν̄π(〈ai〉i∈I) ≤ supi∈I µ̄iai whenever

〈ai〉i∈I ∈
∏

i∈I Ai. Let W0 ⊆
∏

i∈I L
0(Ai) and T : W0 → L0(B) be as in 377B. Suppose either that every

Ai is atomless or that there is an ultrafilter F on I such that ν̄π(〈ai〉i∈I) = limi→F µ̄iai whenever 〈ai〉i∈I

in
∏

i∈I Ai. For 1 ≤ p ≤ ∞ let Wp be the subspace of
∏

i∈I L
0(Ai) consisting of families 〈ui〉i∈I such that

supi∈I ‖ui‖p is finite. Then T [Wp] ⊆ Lp(B, ν̄), and ‖Tu‖p ≤ supi∈I ‖ui‖p whenever u = 〈ui〉i∈I belongs to
Wp.

377D Theorem Let 〈(Ai, µ̄i)〉i∈I be a family of probability algebras, F an ultrafilter on I, and (B, ν̄) a
probability algebra. Let A be the simple product

∏
i∈I Ai and π : A → B a Boolean homomorphism such

c© 2008 D. H. Fremlin
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14 Linear operators between function spaces 377D

that ν̄π(〈ai〉i∈I) = limi→F µ̄iai whenever 〈ai〉i∈I ∈ A. Let W0 ⊆
∏

i∈I L
0(Ai) and T : W0 → L0(B) be as in

377B-377C.
(a) If u = 〈ui〉i∈I belongs to W0 and {i : i ∈ I, ui = 0} ∈ F , then Tu = 0.
(b) For 1 ≤ p ≤ ∞, write Wp for the set of those families 〈ui〉i∈I ∈

∏
i∈I L

p(Ai, µ̄i) such that supi∈I ‖ui‖p
is finite. Then Tu ∈ Lp(B, ν̄) and ‖Tu‖p ≤ limi→F ‖ui‖p whenever u = 〈ui〉i∈I belongs to Wp.

(c) LetWui be the subspace of
∏

i∈I L
1(Ai, µ̄i) consisting of families 〈ui〉i∈I such that infk∈N supi∈I

∫
(|ui|−

kχ1Ai
)+ = 0. Then

∫
Tu = limi→F

∫
ui and ‖Tu‖1 = limi→F ‖ui‖1 whenever u = 〈ui〉i∈I belongs to Wui.

(d) Suppose now that π[A] = B.
(i) T [W0] = L0(B).
(ii) T [Wui] = L1(B, ν̄).
(iii) If p ∈ [1,∞], then T [Wp] = Lp(B, ν̄) and for every w ∈ Lp(B, ν̄) there is a u = 〈ui〉i∈I in Wp such

that Tu = w and supi∈I ‖ui‖p = ‖w‖p.

377E Proposition Let (A, µ̄) and (B, ν̄) be probability algebras, I a set and F an ultrafilter on I. Let
π : AI → B be a Boolean homomorphism such that ν̄π(〈ai〉i∈I) = limi→F µ̄ai whenever 〈ai〉i∈I ∈ AI . Let
W0 be the set of families in L0(A)I which are bounded for the topology of convergence in measure on L0(A).

(a)(i) W0 is a solid linear subspace and a subalgebra of L0(A)I , and there is a unique multiplicative Riesz
homomorphism T : W0 → L0(B) such that T (〈χai〉i∈I) = χπ(〈ai〉i∈I) whenever 〈ai〉i∈I ∈ AI .

(ii) [[Tu > 0]] ⊆ π(〈[[ui > 0]]〉i∈I) whenever u = 〈ui〉i∈I belongs to W0.
(iii) If h : R → R is a continuous function, and we write h̄ for the corresponding maps from L0 to

itself for either of the spaces L0 = L0(A), L0 = L0(B), then 〈h̄(ui)〉i∈I ∈ W0 and T (〈h̄(ui)〉i∈I) = h̄(Tu)
whenever u = 〈ui〉i∈I belongs to W0.

(b)(i) For 1 ≤ p ≤ ∞ let Wp be the subspace of Lp(A, µ̄)I consisting of ‖ ‖p-bounded families. Then
T [Wp] ⊆ Lp(B, ν̄), and ‖Tu‖p ≤ limi→F ‖ui‖p whenever u = 〈ui〉i∈I belongs to Wp.

(ii) Let Wui be the subspace of L1(Ai, µ̄i)
I consisting of uniformly integrable families. Then

∫
Tu =

limi→F

∫
ui and ‖Tu‖1 = limi→F ‖ui‖1 whenever u = 〈ui〉i∈I belongs to Wui.

(c)(i) We have a measure-preserving Boolean homomorphism π̃ : A → B defined by setting π̃a = π(〈a〉i∈I)
for each a ∈ A.

(ii) Let Pπ̃ : L1(B, ν̄) → L1(A, µ̄) be the conditional-expectation operator corresponding to π̃ : A → B.
If 〈ui〉i∈I is a uniformly integrable family in L1(A), then Pπ̃T (〈ui〉i∈I) is the limit limi→F ui for the weak
topology of L1(A, µ̄).

(iii) Suppose that 1 < p < ∞ and that 〈ui〉i∈I is a bounded family in Lp(A, µ̄). Then Pπ̃T (〈ui〉i∈I) is
the limit limi→F ui for the weak topology of Lp(A, µ̄).

377F Proposition Let (A, µ̄) and (A′, µ̄′) be probability algebras, I a set and F an ultrafilter on I;
let (B, ν̄) and (B′, ν̄′) be the reduced powers (A, µ̄)I |F , (A′, µ̄′)I |F , with corresponding homomorphisms

π : AI → B and π′ : A′I → B′.
(a) Writing W0, W ′

0 for the spaces of topologically bounded families in L0(A)I , L0(A′)I respectively,
we have unique Riesz homomorphisms T : W0 → L0(B) and T ′ : W ′

0 → L0(B′) such that T (〈χai〉i∈I) =
χπ(〈ai〉i∈I), T

′(〈χa′i〉i∈I) = χπ′(〈a′i〉i∈I) whenever 〈ai〉i∈I ∈ AI and 〈a′i〉i∈I ∈ (A′)I .
(b) Suppose that S : L1(A, µ̄) → L1(A′, µ̄′) is a bounded linear operator. Then we have a unique

bounded linear operator Ŝ : L1(B, ν̄) → L1(B′, ν̄′) such that ŜT (〈ui〉i∈I) = T ′(〈Sui〉i∈I) whenever 〈ui〉i∈I

is a uniformly integrable family in L1(A, µ̄).

(c) The map S 7→ Ŝ is a norm-preserving Riesz homomorphism from B(L1(A, µ̄);L1(A′, µ̄′)) to B(L1(B, ν̄);
L1(B′, ν̄′)).

377G Projective limits: Proposition Let (I,≤), 〈(Ai, µ̄i)〉i∈I and 〈πij〉i≤j be such that (I,≤) is a
non-empty upwards-directed partially ordered set, every (Ai, µ̄i) is a probability algebra, πij : Aj → Ai is
a measure-preserving Boolean homomorphism whenever i ≤ j in I, and πik = πijπjk whenever i ≤ j ≤ k.
Let (C, λ̄, 〈πi〉i∈I) be the corresponding projective limit. Write L1

µ̄i
for L1(Ai, µ̄i) and L1

λ̄
for L1(C, λ̄). For

i ≤ j in I, let Tij : L1
µ̄j

→ L1
µ̄i

and Pij : L1
µ̄i

→ L1
µ̄j

be the norm-preserving Riesz homomorphism and the

positive linear operator corresponding to πij : Aj → Ai, and Ti : L
1
λ̄
→ L1

µ̄i
, Pi : L

1
µ̄i

→ L1
λ̄
the operators

corresponding to πi : C → Ai. Let X be any set.
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(a) Suppose that for each i ∈ I we are given a function Si : L
1
µ̄i

→ X such that SiTij = Sj whenever

i ≤ j in I. Then there is a unique function S : L1
λ̄
→ X such that S = SiTi for every i ∈ I.

(b) Suppose that for each i ∈ I we are given a function Si : X → L1
µ̄i

such that TijSj = Si whenever

i ≤ j in I. Then there is a unique function S : X → L1
λ̄
such that TiS = Si for every i ∈ I.

(c) Suppose that X is a topological space, and for each i ∈ I we are given a norm-continuous function
Si : L

1
µ̄i

→ X such that SjPij = Si whenever i ≤ j in I. Then there is a unique function S : L1
λ̄
→ X such

that SPi = Si for every i ∈ I.
(d) Suppose that for each i ∈ I we are given a function Si : X → L1

µ̄i
such that PijSi = Sj whenever

i ≤ j in I. Then there is a unique function S : X → L1
λ̄
such that S = PiSi for every i ∈ I.

377H Inductive limits: Proposition Let (I,≤), 〈(Ai, µ̄i)〉i∈I and 〈πji〉i≤j be such that (I,≤) is a
non-empty upwards-directed partially ordered set, every (Ai, µ̄i) is a probability algebra, πji : Ai → Aj is
a measure-preserving Boolean homomorphism whenever i ≤ j in I, and πki = πkjπji whenever i ≤ j ≤ k.
Let (C, λ̄, 〈πi〉i∈I) be the corresponding inductive limit. Write L1

µ̄i
for L1(Ai, µ̄i) and L1

λ̄
for L1(C, λ̄). For

i ≤ j in I, let Tji : L
1
µ̄i

→ L1
µ̄j

and Pji : L
1
µ̄j

→ L1
µ̄i

be the Riesz homomorphism and the positive linear

operator corresponding to πji : Ai → Aj , and Ti : L
1
µ̄i

→ L1
λ̄
, Pi : L

1
λ̄
→ L1

µ̄i
the operators corresponding to

πi : Ai → C. Let X be a set.
(a) Suppose that for each i ∈ I we are given a function Si : L

1
µ̄i

→ X such that SjTji = Si whenever

i ≤ j in I. Then there is a function S : L1
λ̄
→ X such that Si = STi for every i ∈ I.

(b) Suppose that for each i ∈ I we are given a function Si : X → L1
µ̄i

such that TjiSi = Sj whenever

i ≤ j in I. Then there is a unique function S : X → L1
λ̄
such that TiSi = S for every i ∈ I.

(c) Suppose that for each i ∈ I we are given a function Si : L
1
µ̄i

→ X such that SiPji = Sj whenever

i ≤ j in I. Then there is a unique function S : L1
λ̄
→ X such that S = SiPi for every i ∈ I.

(d) Suppose that for each i ∈ I we are given a function Si : X → L1
µ̄i

such that PjiSj = Si whenever
i ≤ j in I, and that

infk∈N supi∈I

∫
(|Six| − kχ1Ai

)+ = 0

for every x ∈ X. Then there is a unique function S : X → L1
λ̄
such that Si = PiS for every i ∈ I.

Version of 7.12.08

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

372I The version of the Ergodic Theorem in 372I, referred to in the 2003 and 2006 editions of Volume
4, is now 372H.

372K The version of the Ergodic Theorem in 372K, referred to in the 2003 and 2006 editions of Volume
4, is now 372J.

372P Mixing and ergodic transformations The definitions in 372P are now in 372O.

372Xm The tent map, referred to in the 2003 and 2006 editions of Volume 4, is now in 372Xp.
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