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Chapter 36

Function Spaces

Chapter 24 of Volume 2 was devoted to the elementary theory of the ‘function spaces’ L0, L1, L2 and
L∞ associated with a given measure space. In this chapter I return to these spaces to show how they can
be related to the more abstract themes of the present volume. In particular, I develop constructions to
demonstrate, as clearly as I can, the way in which the function spaces associated with a measure space in
fact depend only on its measure algebra; and how many of their features can (in my view) best be understood
in terms of constructions involving measure algebras.

The chapter is very long, not because there are many essentially new ideas, but because the intuitions
I seek to develop depend, for their logical foundations, on technically complex arguments. This is perhaps
best exemplified by §364. If two measure spaces (X,Σ, µ) and (Y,T, ν) have isomorphic measure algebras
(A, µ̄), (B, ν̄) then the spaces L0(µ), L0(ν) are isomorphic as topological f -algebras; and more: for any
isomorphism between (A, µ̄) and (B, ν̄) there is a unique corresponding isomorphism between the L0 spaces.
The intuition involved is in a way very simple. If f , g are measurable real-valued functions on X and Y
respectively, then f• ∈ L0(µ) will correspond to g• ∈ L0(ν) if and only if [[f• > α]] = {x : f(x) > α}• ∈ A

corresponds to [[g• > α]] = {y : g(y) > α}• ∈ B for every α. But the check that this formula is consistent,
and defines an isomorphism of the required kind, involves a good deal of detailed work. It turns out, in
fact, that the measures µ and ν do not enter this part of the argument at all, except through their ideals
of negligible sets (used in the construction of A and B). This is already evident, if you look for it, in
the theory of L0(µ); in §241, as written out, you will find that the measure of an individual set is not
once mentioned, except in the exercises. Consequently there is an invitation to develop the theory with
algebras A which are not necessarily measure algebras. Here is another reason for the length of the chapter;
substantial parts of the work are being done in greater generality than the corresponding sections of Chapter
24, necessitating a degree of repetition. Of course this is not ‘measure theory’ in the strict sense; but for
thirty years now measure theory has been coloured by the existence of these generalizations, and I think it is
useful to understand which parts of the theory apply only to measure algebras, and which can be extended
to other σ-complete Boolean algebras, like the algebraic theory of L0, or even to all Boolean algebras, like
the theory of L∞.

Here, then, are two of the objectives of this chapter: first, to express the ideas of Chapter 24 in ways
making explicit their independence of particular measure spaces, by setting up constructions based exclu-
sively on the measure algebras involved; second, to set out some natural generalizations to other algebras.
But to justify the effort needed I ought to point to some mathematically significant idea which demands
these constructions for its expression, and here I mention the categorical nature of the constructions. Be-
tween Boolean algebras we have a variety of natural and important classes of ‘morphism’; for instance,
the Boolean homomorphisms and the order-continuous Boolean homomorphisms; while between measure
algebras we have in addition the measure-preserving Boolean homomorphisms. Now it turns out that if
we construct the Lp spaces in the natural ways then morphisms between the underlying algebras give rise
to morphisms between their Lp spaces. For instance, any Boolean homomorphism from A to B produces
a multiplicative norm-contractive Riesz homomorphism from L∞(A) to L∞(B); if A and B are Dedekind
σ-complete, then any sequentially order-continuous Boolean homomorphism from A to B produces a se-
quentially order-continuous multiplicative Riesz homomorphism from L0(A) to L0(B); and if (A, µ̄) and
(B, ν̄) are measure algebras, then any measure-preserving Boolean homomorphism from A to B produces
norm-preserving Riesz homomorphisms from Lp(A, µ̄) to Lp(B, ν̄) for every p ∈ [1,∞]. All of these are
‘functors’, that is, a composition of homomorphisms between algebras gives rise to a composition of the
corresponding operators between their function spaces, and are ‘covariant’, that is, a homomorphism from
A to B leads to an operator from Lp(A) to Lp(B). But the same constructions lead us to a functor which
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2 Function spaces Chap. 36 intro.

is ‘contravariant’: starting from an order-continuous Boolean homomorphism from a semi-finite measure
algebra (A, µ̄) to a measure algebra (B, ν̄), we have an operator from L1(B, ν̄) to L1(A, µ̄). This last is in
fact a kind of conditional expectation operator. In my view it is not possible to make sense of the theory of
measure-preserving transformations without at least an intuitive grasp of these ideas.

Another theme is the characterization of each construction in terms of universal mapping theorems: for
instance, each Lp space, for 1 ≤ p ≤ ∞, can be characterized as Banach lattice in terms of factorizations of
functions of an appropriate class from the underlying algebra to Banach lattices.

Now let me try to sketch a route-map for the journey ahead. I begin with two sections on the space
S(A); this construction applies to any Boolean algebra (indeed, any Boolean ring), and corresponds to the
space of ‘simple functions’ on a measure space. Just because it is especially close to the algebra (or ring) A,
there is a particularly large number of universal mapping theorems corresponding to different aspects of its
structure (§361). In §362 I seek to relate ideas on additive functionals on Boolean algebras from Chapter
23 and §§326-327 to the theory of Riesz space duals in §356. I then turn to a systematic discussion of the
function spaces of Chapter 24: L∞ (§363), L0 (§364), L1 (§365) and other Lp (§366), followed by an account
of convergence in measure (§367). While all these sections are dominated by the objectives sketched in the
paragraphs above, I do include a few major theorems not covered by the ideas of Volume 2, such as the
Kelley-Nachbin characterization of the Banach spaces L∞(A) for Dedekind complete A (363R). In the last
two sections of the chapter I turn to the use of L0 spaces in the representation of Archimedean Riesz spaces
(§368) and of Banach lattices which are separated by their order-continuous duals (§369).

Version of 6.2.08

361 S

This is the fundamental Riesz space associated with a Boolean ring A. When A is a ring of sets, S(A)
can be regarded as the linear space of ‘simple functions’ generated by the indicator functions of members of
A (361L). Its most important property is the universal mapping theorem 361F, which establishes a one-to-
one correspondence between (finitely) additive functions on A (361B-361C) and linear operators on S(A).
Simple universal mapping theorems of this type can be interesting, but do not by themselves lead to new
insights; what makes this one important is the fact that S(A) has a canonical Riesz space structure, norm
and multiplication (361E). From this we can deduce universal mapping theorems for many other classes of
function (361G, 361H, 361I, 361Xb). While the exact construction of S(A) can be varied (361D, 361L,
361M, 361Ya), its structure is uniquely defined, so homomorphisms between Boolean rings correspond to
maps between their S( )-spaces (361J), and (when A is a Boolean algebra) A can be recovered from the
Riesz space S(A) as the algebra of its projection bands (361K).

361A Boolean rings (b) If A and B are Boolean rings and π : A → B is a function, then the following
are equiveridical: (i) π is a ring homomorphism; (ii) π(a \ b) = πa \ πb for all a, b ∈ A; (iii) π is a lattice
homomorphism and π0 = 0.

(c) If A and B are Boolean rings and π : A → B is a ring homomorphism, then π is order-continuous
iff inf π[A] = 0 whenever A ⊆ A is non-empty and downwards-directed and inf A = 0 in A; while π is
sequentially order-continuous iff infn∈N πan = 0 whenever 〈an〉n∈N is a non-increasing sequence in A with
infimum 0.

(d) If (A, µ̄) is a measure algebra, then the ideal Af = {a : a ∈ A, µ̄a <∞} is a Boolean ring in its own
right. Now suppose that (B, ν̄) is another measure algebra and Bf ⊆ B the corresponding ring of elements
of finite measure. We can say that a ring homomorphism π : Af → Bf is measure-preserving if ν̄πa = µ̄a
for every a ∈ Af . In this case π is order-continuous.

361B Definition Let A be a Boolean ring and U a linear space. A function ν : A → U is finitely
additive, or just additive, if ν(a ∪ b) = νa+ νb whenever a, b ∈ A and a ∩ b = 0.

c© 1995 D. H. Fremlin

Measure Theory (abridged version)



361G S 3

361C Elementary facts Let A be a Boolean ring, U a linear space and ν : A → U an additive function.

(a) ν0 = 0.

(b) If a0, . . . , am are disjoint in A, then ν(supj≤m aj) =
∑m

j=0 νaj .

(c) If B is another Boolean ring and π : B → A is a ring homomorphism, then νπ : B → U is additive.
In particular, if B is a subring of A, then ν↾B : B → U is additive.

(d) If V is another linear space and T : U → V is a linear operator, then Tν : A → V is additive.

(e) If U is a partially ordered linear space, then ν is order-preserving iff it is non-negative, that is, νa ≥ 0
for every a ∈ A.

(f) If U is a partially ordered linear space and ν is non-negative, then (i) ν is order-continuous iff
inf ν[A] = 0 whenever A ⊆ A is a non-empty downwards-directed set with infimum 0 (ii) ν is sequentially
order-continuous iff infn∈N νan = 0 whenever 〈an〉n∈N is a non-increasing sequence in A with infimum 0.

361D Construction Let A be a Boolean ring, and Z its Stone space. For a ∈ A write χa for the
indicator function of the open-and-compact subset â of Z corresponding to a. Note that χa = 0 iff a = 0.
Let S(A) be the linear subspace of RZ generated by {χa : a ∈ A}. S(A) is a subspace of the M -space
ℓ∞(Z) of all bounded real-valued functions on Z, and ‖ ‖∞ is a norm on S(A). S(A) is closed under ×.

361E Proposition Let A be a Boolean ring, with Stone space Z. Write S for S(A).
(a) If a0, . . . , an ∈ A, there are disjoint b0, . . . , bm such that each ai is expressible as the supremum of

some of the bj .
(b) If u ∈ S, it is expressible in the form

∑m
j=0 βjχbj where b0, . . . , bm are disjoint members of A and

βj ∈ R for each j. If all the bj are non-zero then ‖u‖∞ = supj≤m |βj |.

(c) If u ∈ S is non-negative, it is expressible in the form
∑m

j=0 βjχbj where b0, . . . , bm are disjoint members

of A and βj ≥ 0 for each j, and simultaneously in the form
∑m

j=0 γjχcj where c0 ⊇ c1 ⊇ . . . ⊇ cm and γj ≥ 0
for every j.

(d) If u =
∑m

j=0 βjχbj where b0, . . . , bm are disjoint members of A and βj ∈ R for each j, then |u| =∑m
j=0 |βj |χbj ∈ S.

(e) S is a Riesz subspace of RZ ; in its own right, it is an Archimedean Riesz space. If A is a Boolean
algebra, then S has an order unit χ1 and ‖u‖∞ = min{α : α ≥ 0, |u| ≤ αχ1} for every u ∈ S.

(f) The map χ : A → S is injective, additive, non-negative, a lattice homomorphism and order-continuous.
(g) Suppose that u ≥ 0 in S and δ ≥ 0 in R. Then

[[u > δ]] = max{a : a ∈ A, (δ + η)χa ≤ u for some η > 0}

is defined in A, and

δχ[[u > δ]] ≤ u ≤ δχ[[u > 0]] ∨ ‖u‖∞[[u > δ]].

In particular, u ≤ ‖u‖∞χ[[u > 0]] and there is an η > 0 such that ηχ[[u > 0]] ≤ u. If u, v ≥ 0 in S then
u ∧ v = 0 iff [[u > 0]] ∩ [[v > 0]] = 0.

(h) Under ×, S is an f -algebra and a commutative normed algebra.
(i) For any u ∈ S, u ≥ 0 iff u = v × v for some v ∈ S.

361F Theorem Let A be a Boolean ring, and U any linear space. Then there is a one-to-one corre-
spondence between additive functions ν : A → U and linear operators T : S(A) → U , given by the formula
ν = Tχ.

361G Theorem Let A be a Boolean ring, and U a partially ordered linear space. Let ν : A → U be an
additive function, and T : S(A) → U the corresponding linear operator.

(a) ν is non-negative iff T is positive.

D.H.Fremlin



4 Function spaces 361G

(b) In this case,
(i) if T is order-continuous or sequentially order-continuous, so is ν;
(ii) if U is Archimedean and ν is order-continuous or sequentially order-continuous, so is T .

(c) If U is a Riesz space, then the following are equiveridical:
(i) T is a Riesz homomorphism;
(ii) νa ∧ νb = 0 in U whenever a ∩ b = 0 in A;
(iii) ν is a lattice homomorphism.

361H Theorem Let A be a Boolean ring and U a Dedekind complete Riesz space. Suppose that
ν : A → U is an additive function and T : S = S(A) → U is the corresponding linear operator. Then
T ∈ L

∼ = L
∼(S;U) iff {νb : b ⊆ a} is order-bounded in U for every a ∈ A, and in this case |T | ∈ L

∼

corresponds to |ν| : A → U , defined by setting

|ν|(a) = sup{
n∑

j=0

|νai| : a0, . . . , an ⊆ a are disjoint}

= sup{νb− ν(a \ b) : b ⊆ a}

for every a ∈ A.

361I Theorem Let A be a Boolean ring, U a normed space and ν : A → U an additive function. Give
S = S(A) its norm ‖ ‖∞, and let T : S → U be the linear operator corresponding to ν. Then T is a bounded
linear operator iff {νa : a ∈ A} is bounded, and in this case ‖T‖ = supa,b∈A ‖νa− νb‖.

361J Theorem Let A and B be Boolean rings and π : A → B a ring homomorphism.
(a) We have a Riesz homomorphism Tπ : S(A) → S(B) given by the formula

Tπ(χa) = χ(πa) for every a ∈ A.

For any u ∈ S(A), ‖Tπu‖∞ = min{‖u′‖∞ : u′ ∈ S(A), Tπu
′ = Tπu}; ‖Tπu‖∞ ≤ ‖u‖∞. Tπ(u × u′) =

Tπu× Tπu
′ for all u, u′ ∈ S(A).

(b) Tπ is surjective iff π is surjective, and in this case ‖v‖∞ = min{‖u‖∞ : u ∈ S(A), Tπu = v} for every
v ∈ S(B).

(c) The kernel of Tπ is just the set of those u ∈ S(A) such that π[[|u| > 0]] = 0, defining [[. . . > . . . ]] as in
361Eg.

(d) Tπ is injective iff π is injective, and in this case ‖Tπu‖∞ = ‖u‖∞ for every u ∈ S(A).
(e) Tπ is order-continuous iff π is order-continuous.
(f) Tπ is sequentially order-continuous iff π is sequentially order-continuous.
(g) If C is another Boolean ring and φ : B → C is another ring homomorphism, then Tφπ = TφTπ :

S(A) → S(C).

361K Proposition Let A be a Boolean algebra. For a ∈ A write Va for the solid linear subspace of S(A)
generated by χa. Then a 7→ Va is a Boolean isomorphism between A and the algebra of projection bands in
S(A).

361L Proposition Let X be a set, and Σ a ring of subsets of X, that is, a subring of the Boolean ring
PX. Then S(Σ) can be identified, as ordered linear space, with the linear subspace of ℓ∞(X) generated by
the indicator functions of members of Σ, which is a Riesz subspace of ℓ∞(X). The norm of S(Σ) corresponds
to the uniform norm on ℓ∞(X), and its multiplication to pointwise multiplication of functions.

361M Proposition Let X be a set, Σ a ring of subsets of X, and I an ideal of Σ; write A for the
quotient ring Σ/I. Let S be the linear span of {χE : E ∈ Σ} in RX , and write

V = {f : f ∈ S, {x : f(x) 6= 0} ∈ I}.

Measure Theory (abridged version)
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V is a solid linear subspace of S. S(A) becomes identified with the quotient Riesz space S/V , if for every
E ∈ Σ we identify χ(E•) ∈ S(A) with (χE)• ∈ S/V . If we give S its uniform norm inherited from ℓ∞(X),
V is a closed linear subspace of S, and the quotient norm on S/V corresponds to the norm of S(A):

‖f•‖ = min{α : {x : |f(x)| > α} ∈ I}.

If we write × for pointwise multiplication on S, then V is an ideal of the ring (S,+,×), and the multiplication
induced on S/V corresponds to the multiplication of S(A).

Version of 31.12.10

362 S∼

The next stage in our journey is the systematic investigation of linear functionals on spaces S = S(A).
We already know that these correspond to additive real-valued functionals on the algebra A (361F). My
purpose here is to show how the structure of the Riesz space dual S∼ and its bands is related to the classes
of additive functionals introduced in §§326-327. The first step is just to check the identification of the linear
and order structures of S∼ and the space M of bounded finitely additive functionals (362A); all the ideas
needed for this have already been set out, and the basic properties of S∼ are covered by the general results in
§356. Next, we need to be able to describe the operations on M corresponding to the Riesz space operations
| |, ∨, ∧ on S∼, and the band projections from S∼ onto S∼

c and S×; these are dealt with in 362B, with
a supplementary remark in 362D. In the case of measure algebras, we have some further important bands
which present themselves in M , rather than in S∼, and which are treated in 362C. Since all these spaces
are L-spaces, it is worth taking a moment to identify their uniformly integrable subsets; I do this in 362E.

While some of the ideas here have interesting extensions to the case in which A is a Boolean ring without
identity, these can I think be left to one side; the work of this section will be done on the assumption that
every A is a Boolean algebra.

362A Theorem Let A be a Boolean algebra. Write S for S(A).
(a) The partially ordered linear space of all finitely additive real-valued functionals on A may be identified

with the partially ordered linear space of all real-valued linear functionals on S.
(b) The linear space of bounded finitely additive real-valued functionals on A may be identified with the

L-space S∼ of order-bounded linear functionals on S. If f ∈ S∼ corresponds to ν : A → R, then f+ ∈ S∼

corresponds to ν+, where

ν+a = supb⊆a νb

for every a ∈ A, and

‖f‖ = supa∈A νa− ν(1 \ a).

(c) The linear space of bounded countably additive real-valued functionals on A may be identified with
the L-space S∼

c .
(d) The linear space of completely additive real-valued functionals on Amay be identified with the L-space

S×.

362B Spaces of finitely additive functionals: Theorem Let A be a Boolean algebra. Let M be
the Riesz space of bounded finitely additive real-valued functionals on A, Mσ ⊆ M the space of bounded
countably additive functionals, and Mτ ⊆Mσ the space of completely additive functionals.

(a) For any µ, ν ∈M , µ ∨ ν, µ ∧ ν and |ν| are defined by the formulae

(µ ∨ ν)(a) = supb⊆a µb+ ν(a \ b),

(µ ∧ ν)(a) = infb⊆a µb+ ν(a \ b),

|ν|(a) = supb⊆a νb− ν(a \ b) = supb,c⊆a νb− νc

for every a ∈ A. Setting

c© 1996 D. H. Fremlin
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6 Function spaces 362B

‖ν‖ = |ν|(1) = supa∈A νa− ν(1 \ a),

M becomes an L-space.
(b) Mσ and Mτ are projection bands in M , therefore L-spaces in their own right. In particular, |ν| ∈Mσ

for every ν ∈Mσ, and |ν| ∈Mτ for every ν ∈Mτ .
(c) The band projection Pσ :M →Mσ is defined by the formula

(Pσν)(c) = inf{supn∈N νan : 〈an〉n∈N is a non-decreasing sequence with supremum c}

whenever c ∈ A and ν ≥ 0 in M .
(d) The band projection Pτ :M →Mτ is defined by the formula

(Pτν)(c) = inf{supa∈A νa : A is a non-empty upwards-directed set with supremum c}

whenever c ∈ A and ν ≥ 0 in M .
(e) If A ⊆M is upwards-directed, then A is bounded above in M iff {ν1 : ν ∈ A} is bounded above in R,

and in this case (if A 6= ∅) supA is defined by the formula

(supA)(a) = supν∈A νa for every a ∈ A.

(f) Suppose that µ, ν ∈M .
(i) The following are equiveridical:

(α) ν belongs to the band in M generated by µ;
(β) for every ǫ > 0 there is a δ > 0 such that |νa| ≤ ǫ whenever |µ|a ≤ δ;
(γ) limn→∞ νan = 0 whenever 〈an〉n∈N is a non-increasing sequence in A such that limn→∞ |µ|(an) =

0.
(ii) Now suppose that µ, ν ≥ 0, and let ν1, ν2 be the components of ν in the band generated by µ and

its complement. Then

ν1c = supδ>0 infµa≤δ ν(c \ a), ν2c = infδ>0 supa⊆c,µa≤δ νa

for every c ∈ A.

Remark The L-space norm ‖ ‖ on M , described in (a) above, is the total variation norm.

362C Theorem Let (A, µ̄) be a measure algebra and M be the Riesz space of bounded finitely additive
real-valued functionals on A. Write

Mac = {ν : ν ∈M is absolutely continuous with respect to µ̄},

Mtc = {ν : ν ∈M is continuous with respect to the measure-algebra topology on A},

Mt = {ν : ν ∈M , |ν|1 = supµ̄a<∞ |ν|a}.

Then Mac, Mtc and Mt are bands in M .

362D Proposition Let A be a weakly (σ,∞)-distributive Boolean algebra. Let M be the space of
bounded finitely additive functionals on A, Mτ ⊆ M the space of completely additive functionals, and
Pτ :M →Mτ the band projection. Then for any ν ∈M+ and c ∈ A there is a non-empty upwards-directed
set A ⊆ A with supremum c such that (Pτν)(c) = supa∈A νa.

362E Uniformly integrable sets: Theorem Let A be a Boolean algebra and M the L-space of
bounded finitely additive functionals on A. Then a norm-bounded set C ⊆ M is uniformly integrable iff
limn→∞ supν∈C |νan| = 0 for every disjoint sequence 〈an〉n∈N in A.

Version of 4.3.08

363 L∞
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In this section I set out to describe an abstract construction for L∞ spaces on arbitrary Boolean algebras,
corresponding to the L∞(µ) spaces of §243. I begin with the definition of L∞(A) (363A) and elementary
facts concerning its own structure and the embedding S(A) ⊂→ L∞(A) (363B-363D). I give the basic universal
mapping theorems which define the Banach lattice structure of L∞ (363E) and a description of the action
of Boolean homomorphisms on L∞ spaces (363F-363G) before discussing the representation of L∞(Σ) and
L∞(Σ/I) for σ-algebras Σ and ideals I of sets (363H). This leads at once to the identification of L∞(µ), as
defined in Volume 2, with L∞(A), where A is the measure algebra of µ (363I). Like S(A), L∞(A) determines
the algebra A (363J). I briefly discuss the dual spaces of L∞; they correspond exactly to the duals of S
described in §362 (363K). Linear functionals on L∞ can for some purposes be treated as ‘integrals’ (363L).

In the second half of the section I present some of the theory of Dedekind complete and σ-complete
algebras. First, L∞(A) is Dedekind (σ-)complete iff A is (363M). The spaces L∞(A), for Dedekind σ-
complete A, are precisely the Dedekind σ-complete Riesz spaces with order unit (363N-363P). The spaces
L∞(A), for Dedekind complete A, are precisely the normed spaces which may be put in place of R in
the Hahn-Banach theorem (363R). Finally, I mention some equivalent forms of the Banach-Ulam problem
(363S).

363A Definition Let A be a Boolean algebra, with Stone space Z. I will write L∞(A) for the space
C(Z) = Cb(Z) of continuous real-valued functions from Z to R, endowed with the linear structure, order
structure, norm and multiplication of C(Z) = Cb(Z).

363B Theorem Let A be any Boolean algebra; write L∞ for L∞(A).
(a) L∞ is an M -space; its standard order unit is the constant function taking the value 1 at each point;

in particular, L∞ is a Banach lattice with a Fatou norm and the Levi property.
(b) L∞ is a commutative Banach algebra and an f -algebra.
(c) If u ∈ L∞ then u ≥ 0 iff there is a v ∈ L∞ such that u = v × v.

363C Proposition Let A be any Boolean algebra. Then S(A) is a norm-dense, order-dense Riesz
subspace of L∞(A), closed under multiplication.

363D Proposition Let A be a Boolean algebra. If we regard χa ∈ S(A) as a member of L∞(A) for each
a ∈ A, then χ : A → L∞(A) is additive, order-preserving, order-continuous and a lattice homomorphism.

363E Theorem Let A be a Boolean algebra, and U a Banach space. Let ν : A → U be a bounded
additive function.

(a) There is a unique bounded linear operator T : L∞(A) → U such that Tχ = ν; in this case ‖T‖ =
supa,b∈A ‖νa− νb‖.

(b) If U is a Banach lattice then T is positive iff ν is non-negative; and in this case T is order-continuous
iff ν is order-continuous, and sequentially order-continuous iff ν is sequentially order-continuous.

(c) If U is a Banach lattice then T is a Riesz homomorphism iff ν is a lattice homomorphism iff νa∧νb = 0
whenever a ∩ b = 0.

363F Theorem Let A and B be Boolean algebras, and π : A → B a Boolean homomorphism.
(a) There is an associated multiplicative Riesz homomorphism Tπ : L∞(A) → L∞(B), of norm at most

1, defined by saying that Tπ(χa) = χ(πa) for every a ∈ A.
(b) For any u ∈ L∞(A), there is a u′ ∈ L∞(A) such that Tπu = Tπu

′ and ‖u′‖∞ = ‖Tπu‖∞ ≤ ‖u‖∞.
(c)(i) The kernel of Tπ is the norm-closed linear subspace of L∞(A) generated by {χa : a ∈ A, πa = 0}.
(ii) The set of values of Tπ is the norm-closed linear subspace of L∞(B) generated by {χ(πa) : a ∈ A}.

(d) Tπ is surjective iff π is surjective, and in this case ‖v‖∞ = min{‖u‖∞ : Tπu = v} for every v ∈ L∞(B).
(e) Tπ is injective iff π is injective, and in this case ‖Tπu‖∞ = ‖u‖∞ for every u ∈ L∞(A).
(f) Tπ is order-continuous, or sequentially order-continuous, iff π is.
(g) If C is another Boolean algebra and θ : B → C is another Boolean homomorphism, then Tθπ = TθTπ :

L∞(A) → L∞(C).

D.H.Fremlin



8 Function spaces 363G

363G Corollary Let A be a Boolean algebra.
(a) If C is a subalgebra of A, then L∞(C) can be identified, as Banach lattice and as Banach algebra,

with the closed linear subspace of L∞(A) generated by {χc : c ∈ C}.
(b) If I is an ideal of A, then L∞(A/I) can be identified, as Banach lattice and as Banach algebra, with

the quotient space L∞(A)/V , where V is the closed linear subspace of L∞(A) generated by {χa : a ∈ I}.

363H Representations of L∞(A): Proposition Let X be a set and Σ an algebra of subsets of X.
(a) Write S(Σ) for the linear subspace of ℓ∞(X) generated by the indicator functions of members of Σ,

and L
∞ for its ‖ ‖∞-closure in ℓ∞(X).
(i) L∞(Σ) can be identified, as Banach lattice and Banach algebra, with L

∞; if E ∈ Σ, then χE,
defined in L∞(Σ) as in 361D, can be identified with the indicator function of E regarded as a subset of X.

(ii) A bounded function f : X → R belongs to L
∞ iff whenever α < β in R there is an E ∈ Σ such that

{x : f(x) > β} ⊆ E ⊆ {x : f(x) > α}.
(iii) In particular, L∞(PX) can be identified with ℓ∞(X).

(b) Now suppose that Σ is a σ-algebra of subsets of X.
(i) L∞ is just the set of bounded Σ-measurable real-valued functions on X.
(ii) If A is a Dedekind σ-complete Boolean algebra and π : Σ → A is a surjective sequentially order-

continuous Boolean homomorphism with kernel I, then L∞(A) can be identified, as Banach lattice and
Banach algebra, with L

∞/W, where W = {f : f ∈ L
∞, {x : f(x) 6= 0} ∈ I} is a solid linear subspace and

closed ideal of L∞. For f ∈ L
∞,

‖f•‖∞ = min{α : α ≥ 0, {x : |f(x)| > α} ∈ I}.

(iii) In particular, if I is any σ-ideal of Σ and E 7→ E• is the canonical homomorphism from Σ onto
A = Σ/I, then we have an identification of L∞(A) with a quotient of L∞, and for any E ∈ Σ we can identify
χ(E•) ∈ L∞(A) with the equivalence class (χE)• ∈ L

∞/W of the indicator function χE.

363I Corollary Let (X,Σ, µ) be a measure space, with measure algebra A. Then L∞(µ) can be identified,
as Banach lattice and Banach algebra, with L∞(A); the identification matches (χE)• ∈ L∞(µ) with χ(E•) ∈
L∞(A), for every E ∈ Σ.

363J Recovering the algebra A: Proposition Let A be a Boolean algebra. For a ∈ A write Va for
the solid linear subspace of L∞(A) generated by χa. Then a 7→ Va is a Boolean isomorphism between A

and the algebra of projection bands in L∞(A).

363K Dual spaces of L∞: Proposition Let A be a Boolean algebra. Let M , Mσ and Mτ be the
L-spaces of bounded finitely additive functionals, bounded countably additive functionals and completely
additive functionals on A. Then the embedding S(A) ⊂→ L∞(A) induces Riesz space isomorphisms between
S(A)∼ ∼=M and L∞(A)∼ = L∞(A)∗, S(A)∼c

∼=Mσ and L∞(A)∼c , and S(A)
× ∼=Mτ and L∞(A)×.

*363L Integration with respect to a finitely additive functional (a) If A is a Boolean algebra
and ν : A → R is a bounded additive functional, then we have a corresponding functional fν ∈ L∞(A)∗

defined by saying that fν(χa) = νa for every a ∈ A. There are contexts in which it is convenient to use the
formula

∫
u dν in place of fν(u) for u ∈ L∞ = L∞(A).

(b) Let M be the L-space of bounded finitely additive functionals on A. Then we have a function
(u, ν) 7→

∫
u dν : L∞ ×M → R. Now this map is bilinear.

(c) If ν is non-negative, we have
∫
u dν ≥ 0 whenever u ≥ 0. (u, ν) 7→

∫
u dν has norm at most 1. If

A 6= 0, the norm is exactly 1.

(e) If A is any Boolean algebra, and ν : A → [0,∞[ is a non-negative additive functional, and u ∈
L∞(A)+, then

∫
u dν =

∫∞

0
sup{νa : tχa ≤ u}dt.

Measure Theory (abridged version)
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363M Theorem Let A be a Boolean algebra.
(a) A is Dedekind σ-complete iff L∞(A) is Dedekind σ-complete.
(b) A is Dedekind complete iff L∞(A) is Dedekind complete.

363N Proposition Let U be a Dedekind σ-complete Riesz space with an order unit. Then U is isomor-
phic, as Riesz space, to L∞(A), where A is the algebra of projection bands in U .

363O Corollary Let U be a Dedekind σ-complete M -space. Then U is isomorphic, as Banach lattice,
to L∞(A), where A is the algebra of projection bands of U .

363P Corollary Let U be any Dedekind σ-complete Riesz space and e ∈ U+. Then the solid linear
subspace Ue of U generated by e is isomorphic, as Riesz space, to L∞(A) for some Dedekind σ-complete
Boolean algebra A; and if U is Dedekind complete, so is A.

363Q Proposition Let A be a Dedekind complete Boolean algebra. Then for any Banach lattice U , a
linear operator T : U → L∞ = L∞(A) is continuous iff it is order-bounded, and in this case ‖T‖ = ‖|T |‖,
where the modulus |T | is taken in L

∼(U ;L∞).

363R Theorem Let U be a normed space over R. Then the following are equiveridical:
(i) there is a Dedekind complete Boolean algebra A such that U is isomorphic, as normed space, to

L∞(A);
(ii) whenever V is a normed space, V0 a linear subspace of V , and T0 : V0 → U is a bounded linear

operator, there is an extension of T0 to a bounded linear operator T : V → U with ‖T‖ = ‖T0‖.

363S The Banach-Ulam problem: Theorem The following statements are equiveridical.
(i) There are a set X and a probability measure ν, with domain PX, such that ν{x} = 0 for every x ∈ X.
(ii) There are a localizable measure space (X,Σ, µ) and an absolutely continuous countably additive

functional ν : Σ → R which is not truly continuous, so has no Radon-Nikodým derivative.
(iii) There are a Dedekind complete Boolean algebra A and a countably additive functional ν : A → R

which is not completely additive.
(iv) There is a Dedekind complete Riesz space U such that U∼

c 6= U×.

Version of 16.7.11

364 L0

My next objective is to develop an abstract construction corresponding to the L0(µ) spaces of §241. These
generalized L0 spaces will form the basis of the work of the rest of this chapter and also the next; partly
because their own properties are remarkable, but even more because they form a framework for the study
of Archimedean Riesz spaces in general (see §368). There seem to be significant new difficulties, and I take
the space to describe an approach which can be made essentially independent of the route through Stone
spaces used in the last three sections. I embark directly on a definition in the new language (364A), and
relate it to the constructions of §241 (364B-364D, 364I) and §§361-363 (364J). The ideas of Chapter 27 can
also be expressed in this language; I make a start on developing the machinery for this in 364F-364G, with
the formula ‘[[u ∈ E]]’, ‘the region in which u belongs to E’, and some exercises (364Xe-364Xf). Following
through the questions addressed in §363, I discuss Dedekind completeness in L0 (364L-364M), properties of
its multiplication (364N), the expression of the original algebra in terms of L0 (364O), the action of Boolean
homomorphisms on L0 (364P) and product spaces (364R). In 364S-364V I describe representations of the
L0 space of a regular open algebra.

364A The set L0(A) (a) Definition Let A be a Dedekind σ-complete Boolean algebra. I will write
L0(A) for the set of all functions α 7→ [[u > α]] : R → A such that

(α) [[u > α]] = supβ>α [[u > β]] in A for every α ∈ R,
(β) infα∈R [[u > α]] = 0,
(γ) supα∈R [[u > α]] = 1.

c© 1996 D. H. Fremlin

D.H.Fremlin



10 Function spaces 364Ae

(e) In fact it will sometimes be convenient to note that the conditions of (a) can be replaced by

(α′) [[u > α]] = supq∈Q,q>α [[u > q]] for every α ∈ R,
(β′) infn∈N [[u > n]] = 0,
(γ′) supn∈N [[u > −n]] = 1;

the point being that we need look only at suprema and infima of countable subsets of A.

*(f) Indeed, we have the option of declaring L0(A) to be the set of functions α 7→ [[u > α]] : Q → A such
that

(α′′) [[u > q]] = supq′∈Q,q′>q [[u > q′]] for every q ∈ Q,
(β′) infn∈N [[u > n]] = 0,
(γ′) supn∈N [[u > −n]] = 1.

364B Proposition Let X be a set, Σ a σ-algebra of subsets of X, and I a σ-ideal of Σ.
(a) Write L

0 = L
0
Σ for the space of all Σ-measurable functions from X to R. Then L

0, with its lin-
ear structure, ordering and multiplication inherited from RX , is a Dedekind σ-complete f -algebra with
multiplicative identity.

(b) Set

W = WI = {f : f ∈ L
0, {x : f(x) 6= 0} ∈ I}.

Then
(i) W is a sequentially order-closed solid linear subspace and ideal of L0;
(ii) the quotient space L0/W, with its inherited linear, order and multiplicative structures, is a Dedekind

σ-complete Riesz space and an f -algebra with a multiplicative identity;
(iii) for f , g ∈ L

0, f• ≤ g• in L
0/W iff {x : f(x) > g(x)} ∈ I, and f• = g• in L

0/W iff {x : f(x) 6=
g(x)} ∈ I.

364C Theorem Let X be a set and Σ a σ-algebra of subsets of X. Let A be a Dedekind σ-complete
Boolean algebra and π : Σ → A a surjective Boolean homomorphism, with kernel a σ-ideal I; define L0 = L

0
Σ

and W = WI as in 364B, so that U = L
0/W is a Dedekind σ-complete f -algebra with multiplicative identity.

(a) We have a canonical bijection T : U → L0 = L0(A) defined by the formula

[[Tf• > α]] = π{x : f(x) > α}

for every f ∈ L
0 and α ∈ R.

(b)(i) For any u, v ∈ U ,

[[T (u+ v) > α]] = supq∈Q [[Tu > q]] ∩ [[Tv > α− q]]

for every α ∈ R.
(ii) For any u ∈ U and γ > 0,

[[T (γu) > α]] = [[Tu > α
γ ]]

for every α ∈ R.
(iii) For any u, v ∈ U ,

u ≤ v ⇐⇒ [[Tu > α]] ⊆ [[Tv > α]] for every α ∈ R.

(iv) For any u, v ∈ U+,

[[T (u× v) > α]] = supq∈Q,q>0 [[Tu > q]] ∩ [[Tv > α
q ]]

for every α ≥ 0.
(v) Writing e = (χX)• for the multiplicative identity of U , we have

[[Te > α]] = 1 if α < 1, 0 if α ≥ 1.

364D Theorem Let A be a Dedekind σ-complete Boolean algebra. Then L0 = L0(A) has the structure
of a Dedekind σ-complete f -algebra with multiplicative identity e, defined by saying

Measure Theory (abridged version)
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[[u+ v > α]] = supq∈Q [[u > q]] ∩ [[v > α− q]],

whenever u, v ∈ L0 and α ∈ R,

[[γu > α]] = [[u > α
γ ]]

whenever u ∈ L0, γ ∈ ]0,∞[ and α ∈ R,

u ≤ v ⇐⇒ [[u > α]] ⊆ [[v > α]] for every α ∈ R,

[[u× v > α]] = supq∈Q,q>0 [[u > q]] ∩ [[v > α
q ]]

whenever u, v ≥ 0 in L0 and α ≥ 0,

[[e > α]] = 1 if α < 1, 0 if α ≥ 1.

364E Lemma Let A be a Dedekind σ-complete Boolean algebra.
(a) If u, v ∈ L0 = L0(A) and α, β ∈ R,

[[u+ v > α+ β]] ⊆ [[u > α]] ∪ [[v > β]].

(b) If u, v ≥ 0 in L0 and α, β ≥ 0 in R,

[[u× v > αβ]] ⊆ [[u > α]] ∪ [[v > β]].

364F Proposition Let A be a Dedekind σ-complete Boolean algebra. Then there is a bijection between
L0 = L0(A) and the set Φ of sequentially order-continuous Boolean homomorphisms from the algebra B of
Borel subsets of R to A, defined by saying that u ∈ L0 corresponds to φ ∈ Φ iff [[u > α]] = φ(]α,∞[) for
every α ∈ R.

364G Definitions (a) In the context of 364F, I will write [[u ∈ E]], ‘the region where u takes values in
E’, for φ(E), where φ : B → A is the homomorphism corresponding to u ∈ L0. Thus [[u > α]] = [[u ∈ ]α,∞[ ]].
I write [[u ≥ α]] for [[u ∈ [α,∞[ ]] = infβ<α [[u > β]], [[u 6= 0]] = [[|u| > 0]] = [[u > 0]] ∪ [[u < 0]] and so on, so that
[[u = α]] = [[u ∈ {α}]] = [[u ≥ α]] \ [[u > α]] for u ∈ L0 and α ∈ R.

(b) If (A, µ̄) is a probability algebra, µ̄φ : B → [0, 1] is a probability measure, so that its completion ν is
a Radon probability measure on R; I will call ν the distribution of u.

364H Proposition Let A be a Dedekind σ-complete Boolean algebra, E ⊆ R a Borel set, and h : E → R

a Borel measurable function. Then whenever u ∈ L0 = L0(A) is such that [[u ∈ E]] = 1, there is an element
h̄(u) of L0 defined by saying that [[h̄(u) ∈ F ]] = [[u ∈ h−1[F ]]] for every Borel set F ⊆ R.

364I Examples (a) Let X be a set and Σ a σ-algebra of subsets of X. Then we may identify L0(Σ)
with the space L

0 = L
0
Σ of Σ-measurable real-valued functions on X. For f ∈ L

0, [[f ∈ E]] is just f−1[E],
for any Borel set E ⊆ R; and if h is a Borel measurable function, h̄(f) is just the composition hf , for any
f ∈ L

0.

(b) Now suppose that I is a σ-ideal of Σ and that A = Σ/I. Then, as in 364C, we identify L0(A) with
a quotient L0/WI . For f ∈ L

0, [[f• ∈ E]] = f−1[E]•, and h̄(f•) = (hf)•, for any Borel set E and any Borel
measurable function h : R → R.

(c) In particular, if (X,Σ, µ) is a measure space with measure algebra A, then L0(A) becomes identified
with L0(µ) as defined in §241, and the distribution of f ∈ L

0(µ), as defined in 271C, is the same as the
distribution of f• ∈ L0(µ) ∼= L0(A), as defined in 364Gb.

364J Embedding S and L∞ in L0: Proposition Let A be a Dedekind σ-complete Boolean algebra.
(a) We have a canonical embedding of L∞ = L∞(A) as an order-dense solid linear subspace of L0 = L0(A);

it is the solid linear subspace generated by the multiplicative identity e of L0. Consequently S = S(A) also
is embedded as an order-dense Riesz subspace and subalgebra of L0.

D.H.Fremlin
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(b) This embedding respects the linear, lattice and multiplicative structures of L∞ and S, and the
definition of [[u > δ]], for u ∈ S+ and δ ≥ 0, given in 361Eg.

(c) For a ∈ A, χa, when regarded as a member of L0, can be described by the formula

[[χa > α]] = 1 if α < 0,

= a if 0 ≤ α < 1,

= 0 if 1 ≤ α.

The function χ : A → L0 is additive, injective, order-continuous and a lattice homomorphism.
(d) For every u ∈ (L0)+ there is a non-decreasing sequence 〈un〉n∈N in S such that u0 ≥ 0 and supn∈N un =

u.

364K Corollary Let (A, µ̄) be a measure algebra. Then S(Af ) can be embedded as a Riesz subspace of
L0(A), which is order-dense iff (A, µ̄) is semi-finite.

364L Suprema and infima in L0: Proposition Let A be a Dedekind σ-complete Boolean algebra,
and L0 = L0(A).

(a) Let A be a subset of L0.
(i) A is bounded above in L0 iff there is a sequence 〈cn〉n∈N in A, with infimum 0, such that [[u > n]] ⊆ cn

for every u ∈ A.
(ii) If A is non-empty, then A has a supremum in L0 iff cα = supu∈A [[u > α]] is defined in A for every

α ∈ R and infn∈N cn = 0; and in this case cα = [[supA > α]] for every α.
(iii) If A is non-empty and bounded above, then A has a supremum in L0 iff supu∈A [[u > α]] is defined

in A for every α ∈ R.
(b)(i) If u, v ∈ L0, then [[u ∧ v > α]] = [[u > α]] ∩ [[v > α]] for every α ∈ R.

(ii) If A is a non-empty subset of (L0)+, then inf A = 0 in L0 iff infu∈A [[u > α]] = 0 in A for every
α > 0.

364M Theorem For a Dedekind σ-complete Boolean algebra A, L0 = L0(A) is Dedekind complete iff A

is.

364N The multiplication of L0: Proposition Let A be a Dedekind σ-complete Boolean algebra.
Then an element u of L0 = L0(A) has a multiplicative inverse in L0 iff |u| is a weak order unit in L0 iff
[[|u| > 0]] = 1.

364O Recovering the algebra: Proposition Let A be a Dedekind σ-complete Boolean algebra. For
a ∈ A write Va for the band in L0 = L0(A) generated by χa. Then a 7→ Va is a Boolean isomorphism
between A and the algebra of projection bands in L0.

364P Theorem Let A and B be Dedekind σ-complete Boolean algebras, and π : A → B a sequentially
order-continuous Boolean homomorphism.

(a) We have a multiplicative sequentially order-continuous Riesz homomorphism Tπ : L0(A) → L0(B)
defined by the formula

[[Tπu > α]] = π[[u > α]]

whenever α ∈ R and u ∈ L0(A).
(b) Defining χa ∈ L0(A) as in 364J, Tπ(χa) = χ(πa) in L0(B) for every a ∈ A. If we regard L∞(A) and

L∞(B) as embedded in L0(A) and L0(B) respectively, then Tπ, as defined here, agrees on L∞(A) with Tπ
as defined in 363F.

(c) Tπ is order-continuous iff π is order-continuous, injective iff π is injective, surjective iff π is surjective.
(d) [[Tπu ∈ E]] = π[[u ∈ E]] for every u ∈ L0(A) and every Borel set E ⊆ R; consequently h̄Tπ = Tπh̄ for

every Borel measurable h : R → R, writing h̄ indifferently for the associated maps from L0(A) to itself and
from L0(B) to itself.

(e) If C is another Dedekind σ-complete Boolean algebra and θ : B → C another sequentially order-
continuous Boolean homomorphism then Tθπ = TθTπ : L0(A) → L0(C).

Measure Theory (abridged version)
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364Q Proposition Let X and Y be sets, Σ, T σ-algebras of subsets of X, Y respectively, and I, J σ-
ideals of Σ, T. Set A = Σ/I and B = T/J . Suppose that φ : X → Y is a function such that φ−1[F ] ∈ Σ
for every F ∈ T and φ−1[F ] ∈ I for every F ∈ J .

(a) There is a sequentially order-continuous Boolean homomorphism π : B → A defined by saying that
πF • = φ−1[F ]• for every F ∈ T.

(b) Let Tπ : L0(B) → L0(A) be the Riesz homomorphism corresponding to π, as defined in 364P. If we
identify L0(B) with L

0
T/WJ and L0(A) with L

0
Σ/WI in the manner of 364B-364C, then Tπ(g

•) = (gφ)• for
every g ∈ L

0
T.

(c) Let Z be a third set, Υ a σ-algebra of subsets of Z, K a σ-ideal of Υ, and ψ : Y → Z a function such
that ψ−1[G] ∈ T for every G ∈ Υ and ψ−1[G] ∈ J for every G ∈ K. Let θ : C → B and Tθ : L0(C) → L0(B)
be the homomorphisms corresponding to ψ as in (a)-(b). Then πθ : C → A and TπTθ : L0(C) → L0(A)
correspond to ψφ : X → Y in the same way.

(d) Now suppose that µ and ν are measures with domains Σ, T and null ideals N (µ), N (ν) respectively,
and that I = Σ∩N (µ) and J = T∩N (ν). In this case, identifying L0(A), L0(B) with L0(µ) and L0(ν) as
in 364Ic, we have gφ ∈ L

0(µ) and Tπ(g
•) = (gφ)• for every g ∈ L

0(ν).

364R Products: Proposition Let 〈Ai〉i∈I be a family of Dedekind σ-complete Boolean algebras,
with simple product A. If πi : A → Ai is the coordinate map for each i, and Ti : L0(A) → L0(Ai) the
corresponding homomorphism, then u 7→ Tu = 〈Tiu〉i∈I : L0(A) →

∏
i∈I L

0(Ai) is a multiplicative Riesz

space isomorphism, so L0(A) may be identified with the f -algebra product
∏

i∈I L
0(Ai).

*364S Regular open algebras: Definition Let (X,T) be a topological space and f : X → R a
function. For x ∈ X write

ω(f, x) = infG∈T,x∈G supy,z∈G |f(y)− f(z)|

(allowing ∞).

*364T Theorem Let X be any topological space, and RO(X) its regular open algebra. Let U be the
set of functions f : X → R such that {x : ω(f, x) < ǫ} is dense in X for every ǫ > 0. Then U is a Riesz
subspace of RX , closed under multiplication, and we have a surjective multiplicative Riesz homomorphism
T : U → L0(RO(X)) defined by writing

[[Tf > α]] = supβ>α int {x : f(x) > β},

the supremum being taken in RO(X), for every α ∈ R and f ∈ U . The kernel of T is the set W of functions
f : X → R such that int{x : |f(x)| ≤ ǫ} is dense for every ǫ > 0, so L0(RO(X)) can be identified, as
f -algebra, with the quotient space U/W .

*364U Compact spaces Suppose now that X is a compact Hausdorff topological space. In this case
the space U of 364T is just the space of functions f : X → R such that {x : f is continuous at x} is dense
in X.

Now W , as defined in 364T, becomes {f : f ∈ U, {x : f(x) = 0} is dense}.

*364V Theorem Let X be a compact Hausdorff extremally disconnected space, and RO(X) its regular
open algebra. Write C∞ = C∞(X) for the space of continuous functions g : X → [−∞,∞] such that
{x : g(x) = ±∞} is nowhere dense. Then we have a bijection S : C∞ → L0 = L0(RO(X)) defined by saying
that

[[Sg > α]] = {x : g(x) > α}

for every α ∈ R. Addition and multiplication in L0 correspond to the operations +̇ , ×̇ on C∞ defined by
saying that g +̇ h, g ×̇ h are the unique elements of C∞ agreeing with g + h, g × h on {x : g(x), h(x) are
both finite}. Scalar multiplication in L0 corresponds to the operation

(γg)(x) = γg(x) for x ∈ X, g ∈ C∞, γ ∈ R

on C∞ (counting 0 · ∞ as 0), while the ordering of L0 corresponds to the relation

g ≤ h ⇐⇒ g(x) ≤ h(x) for every x ∈ X.

D.H.Fremlin
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Version of 20.1.15

365 L1

Continuing my programme of developing the ideas of Chapter 24 at a deeper level of abstraction, I arrive
at last at L1. As usual, the first step is to establish a definition which can be matched both with the
constructions of the previous sections and with the definition of L1(µ) in §242 (365A-365C, 365F). Next,
I give what I regard as the most characteristic internal properties of L1 spaces, including versions of the
Radon-Nikodým theorem (365E), before turning to abstract versions of theorems in §235 (365H, 365S) and
the duality between L1 and L∞ (365K-365M). As in §§361 and 363, the construction is associated with
universal mapping theorems (365I-365J) which define the Banach lattice structure of L1. As in §§361, 363
and 364, homomorphisms between measure algebras correspond to operators between their L1 spaces; but
now the duality theory gives us two types of operators (365N-365P), of which one class can be thought of as
abstract conditional expectations (365Q). For localizable measure algebras, the underlying algebra can be
recovered from its L1 space (365R), but the measure cannot.

365A Definition Let (A, µ̄) be a measure algebra. For u ∈ L0(A), write

‖u‖1 =
∫∞

0
µ̄[[|u| > α]] dα,

the integral being with respect to Lebesgue measure on R, and allowing ∞ as a value of the integral. Set
L1
µ̄ = L1(A, µ̄) = {u : u ∈ L0(A), ‖u‖1 <∞}.

365B Theorem Let (X,Σ, µ) be a measure space with measure algebra (A, µ̄). Then the canonical
isomorphism between L0(µ) and L0(A) matches L1(µ) ⊆ L0(µ) with L1(A, µ̄) ⊆ L0(A), and the standard
norm of L1(µ) with ‖ ‖1 : L1(A, µ̄) → [0,∞[.

365C Theorem For any measure algebra (A, µ̄), L1(A, µ̄) is a solid linear subspace of L0(A), and ‖ ‖1 is
a norm on L1(A, µ̄) under which L1(A, µ̄) is an L-space. Consequently L1(A, µ̄) is a perfect Riesz space with
an order-continuous norm which has the Levi property, and if 〈un〉n∈N is a non-decreasing norm-bounded
sequence in L1(A, µ̄) then it converges for ‖ ‖1 to supn∈N un.

365D Integration Let (A, µ̄) be any measure algebra.

(a) If u ∈ L1 = L1(A, µ̄), then u+ and u−, calculated in L0 = L0(A), belong to L1, and we may set
∫
u = ‖u+‖1 − ‖u−‖1 =

∫∞

0
µ̄[[u > α]] dα−

∫∞

0
µ̄[[−u > α]] dα.

Now
∫
: L1 → R is an order-continuous positive linear functional.

(b) ‖u‖1 =
∫
|u| ≥ |

∫
u| for every u ∈ L1.

(c) If u ∈ L1 and a ∈ A we may set
∫
a
u =

∫
u× χa. If γ > 0 and 0 6= a ⊆ [[u > γ]] then
∫
a
u > γµ̄a.

In particular, µ̄[[u > γ]] must be finite.

(d)(i) If u ∈ L1 then u ≥ 0 iff
∫
a
u ≥ 0 for every a ∈ Af .

(ii) If u, v ∈ L1 and
∫
a
u =

∫
a
v for every a ∈ Af then u = v.

(iii) If u ≥ 0 in L1 then
∫
u = sup{

∫
a
u : a ∈ Af}.

(e) If u ∈ L1, u ≥ 0 and
∫
u = 0 then u = 0. If u ∈ L1, u ≥ 0 and

∫
a
u = 0 then u × χa = 0, that is,

a ∩ [[u > 0]] = 0.

(f) If C ⊆ L1 is non-empty and upwards-directed and supv∈C

∫
v is finite, then supC is defined in L1

and
∫
supC = supv∈C

∫
v.
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(g) I may write
∫
u = ∞ if u ∈ L0, u− ∈ L1 and u+ /∈ L1, while

∫
u = −∞ if u+ ∈ L1 and u− /∈ L1.

(h) On this convention, if C ⊆ (L0)+ is non-empty and upwards-directed and has a supremum u in L0,
then

∫
u = supv∈C

∫
v in [0,∞].

365E The Radon-Nikodým theorem again (a) Let (A, µ̄) be a semi-finite measure algebra and
ν : A → R an additive functional. Then the following are equiveridical:

(i) there is a u ∈ L1 = L1(A, µ̄) such that νa =
∫
a
u for every a ∈ A;

(ii) ν is additive and continuous for the measure-algebra topology on A;
(iii) ν is completely additive.

(b) Let (A, µ̄) be any measure algebra, and ν : Af → R a function. Then the following are equiveridical:

(i) ν is additive and bounded and infa∈A |νa| = 0 whenever A ⊆ Af is downwards-directed
and has infimum 0;

(ii) there is a u ∈ L1 such that νa =
∫
a
u for every a ∈ Af .

365F Lemma Let (A, µ̄) be a measure algebra. Write Sf for the intersection S(A) ∩ L1(A, µ̄). Then
Sf is a norm-dense and order-dense Riesz subspace of L1(A, µ̄), and can be identified with S(Af ). The
function χ : Af → Sf ⊆ L1(A, µ̄) is an injective order-continuous additive lattice homomorphism. If u ≥ 0
in L1(A, µ̄), there is a non-decreasing sequence 〈un〉n∈N in (Sf )+ such that u = supn∈N un = limn→∞ un.

365G Semi-finite algebras: Lemma Let (A, µ̄) be a measure algebra.
(a) (A, µ̄) is semi-finite iff L1 = L1(A, µ̄) is order-dense in L0 = L0(A).
(b) In this case, writing Sf = S(A)∩L1,

∫
u = sup{

∫
v : v ∈ Sf , 0 ≤ v ≤ u} in [0,∞] for every u ∈ (L0)+.

365H Measurable transformations: Theorem Let (A, µ̄) and (B, ν̄) be measure algebras, and π :
A → B a sequentially order-continuous Boolean homomorphism. Let T : L0(A) → L0(B) be the sequentially
order-continuous Riesz homomorphism associated with π.

(a) Suppose that w ≥ 0 in L0(B) is such that
∫
πa
w dν̄ = µ̄a whenever a ∈ A and µ̄a <∞. Then for any

u ∈ L1(A, µ̄) and a ∈ A,
∫
πa
Tu× w dν̄ is defined and equal to

∫
a
u dµ̄.

(b) Suppose that w′ ≥ 0 in L0(A) is such that
∫
a
w′dµ̄ = ν̄(πa) for every a ∈ A. Then

∫
Tu dν̄ =

∫
u×w′ dµ̄

whenever u ∈ L0(A) and either integral is defined in [−∞,∞].

365I Theorem Let (A, µ̄) be a measure algebra and U a Banach space. Let ν : Af → U be a function.
Then the following are equiveridical:

(i) there is a continuous linear operator T from L1(A, µ̄) to U such that νa = T (χa) for every
a ∈ Af ;

(ii)(α) ν is additive
(β) there is an M ≥ 0 such that ‖νa‖ ≤Mµ̄a for every a ∈ Af .

Moreover, in this case, T is unique and ‖T‖ is the smallest number M satisfying the condition in (ii-β).

365J Theorem Let (A, µ̄) be a measure algebra, U a Banach lattice, and T a bounded linear operator
from L1 = L1(A, µ̄) to U . Let ν : Af → U be the corresponding additive function, as in 365I.

(a) T is a positive linear operator iff νa ≥ 0 in U for every a ∈ Af ; in this case, T is order-continuous.
(b) If U is Dedekind complete and T ∈ L

∼(L1;U), then |T | : L1 → U corresponds to |ν| : Af → U , where

|ν|(a) = sup{
∑n

i=0 |νai| : a0, . . . , an ⊆ a are disjoint}

for every a ∈ Af .
(c) T is a Riesz homomorphism iff ν is a lattice homomorphism.

365K The duality between L1 and L∞ Let (A, µ̄) be a measure algebra, and set L1 = L1(A, µ̄),
L∞ = L∞(A). If we identify L∞ with the solid linear subspace of L0 = L0(A) generated by e = χ1A, then
we have a bilinear operator (u, v) 7→ u× v : L1 ×L∞ → L1. ‖u× v‖1 ≤ ‖u‖1‖v‖∞, so the bilinear operator
(u, v) 7→ u×v has norm at most 1. Consequently we have a bilinear functional (u, v) 7→

∫
u×v : L1×L∞ → R,
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which also has norm at most 1, corresponding to linear operators S : L1 → (L∞)∗ and T : L∞ → (L1)∗,
both of norm at most 1, defined by the formula

(Su)(v) = (Tv)(u) =
∫
u× v for u ∈ L1, v ∈ L∞.

(L1)∗ = (L1)∼ and (L∞)∗ = (L∞)∼. (L1)∗ = (L1)×.

365L Theorem Let (A, µ̄) be a measure algebra, and set L1 = L1(A, µ̄), L∞ = L∞(A). Let S : L1 →
(L∞)∗ = (L∞)∼, T : L∞ → (L1)∗ = (L1)∼ = (L1)× be the canonical maps defined by the duality between
L1 and L∞. Then

(a) S and T are order-continuous Riesz homomorphisms, S[L1] ⊆ (L∞)×, S is norm-preserving and
T [L∞] is order-dense in (L1)∼.

(b) (A, µ̄) is semi-finite iff T is injective, and in this case T is norm-preserving, while S is a normed Riesz
space isomorphism between L1 and (L∞)×.

(c) (A, µ̄) is localizable iff T is bijective, and in this case T is a normed Riesz space isomorphism between
L∞ and (L1)∗ = (L1)∼ = (L1)×.

365M Corollary If (A, µ̄) is a localizable measure algebra, L∞(A) is a perfect Riesz space.

365N Theorem Let (A, µ̄) and (B, ν̄) be measure algebras. Let π : Af → Bf be a measure-preserving
ring homomorphism.

(a) There is a unique order-continuous norm-preserving Riesz homomorphism Tπ : L1(A, µ̄) → L1(B, ν̄)
such that Tπ(χa) = χ(πa) whenever a ∈ Af . We have Tπ(u × χa) = Tπu × χ(πa) whenever a ∈ Af and
u ∈ L1(A, µ̄).

(b)
∫
Tπu =

∫
u and

∫
πa
Tπu =

∫
a
u for every u ∈ L1(A, µ̄) and a ∈ Af .

(c) [[Tπu > α]] = π[[u > α]] for every u ∈ L1(A, µ̄) and α > 0.
(d) Tπ is surjective iff π is.
(e) If (C, λ̄) is another measure algebra and θ : Bf → Cf another measure-preserving ring homomorphism,

then Tθπ = TθTπ : L1(A, µ̄) → L1(C, λ̄).

365O Theorem Let (A, µ̄) and (B, ν̄) be measure algebras, and π : Af → B an order-continuous ring
homomorphism.

(a) There is a unique positive linear operator Pπ : L1(B, ν̄) → L1(A, µ̄) such that
∫
a
Pπv =

∫
πa
v for

every v ∈ L1(B, ν̄) and a ∈ Af .
(b) Pπ is order-continuous and norm-continuous, and ‖Pπ‖ ≤ 1.
(c) If a ∈ Af and v ∈ L1(B, ν̄) then Pπ(v × χπa) = Pπv × χa.
(d) If π[Af ] is order-dense in B then Pπ is a norm-preserving Riesz homomorphism; in particular, Pπ is

injective.
(e) If (B, ν̄) is semi-finite and π is injective, then Pπ is surjective, and there is for every u ∈ L1(A, µ̄) a

v ∈ L1(B, ν̄) such that Pπv = u and ‖v‖1 = ‖u‖1.
(f) Suppose again that (B, ν̄) is semi-finite. If (C, λ̄) is another measure algebra and θ : B → C an

order-continuous Boolean homomorphism, then Pθπ = PπPθ′ : L1(C, λ̄) → L1(A, µ̄), where I write θ′ for the
restriction of θ to Bf .

365P Proposition Let (A, µ̄) and (B, µ̄) be measure algebras and π : Af → Bf a measure-preserving
ring homomorphism.

(a) In the language of 365N-365O above, PπTπ is the identity operator on L1(A, µ̄).
(b) If π is surjective then Pπ = T−1

π = Tπ−1 and Tπ = P−1
π = Pπ−1 .

365Q Conditional expectations (a) Let (A, µ̄) be a probability algebra and B a closed subalgebra;
write ν̄ for the restriction µ̄↾B. The identity map from B to A induces operators T : L1(B, ν̄) → L1(A, µ̄)
and P : L1(A, µ̄) → L1(B, ν̄). If we take L0(A) to be defined as the set of functions from R to A described
in 364Aa, then L0(B) becomes a subset of L0(A) in the literal sense, and T is actually the identity operator
associated with the subset L1(B, ν̄) ⊆ L1(A, µ̄); L1(B, ν̄) is a norm-closed and order-closed Riesz subspace
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of L1(A, µ̄). P is a positive linear operator, while PT is the identity, so P is a projection from L1(A, µ̄) onto
L1(B, ν̄). P is defined by the formula∫

b
Pu =

∫
b
u for every u ∈ L1(A, µ̄), b ∈ B,

so is the conditional expectation operator in the sense of 242J. L1(B, ν̄) is just L1(A, µ̄)∩L0(B). P (u×v) =
Pu× v whenever u ∈ L1(A, µ̄), v ∈ L0(B) and u× v ∈ L1(A, µ̄).

(b) Let h : R → R be a convex function and h̄ : L0(A) → L0(A) the corresponding map. If u ∈ L1(A, µ̄),
then h(

∫
u) ≤

∫
h̄(u); and if h̄(u) ∈ L1(A, µ̄), then h̄(Pu) ≤ P (h̄(u)).

(c) If u ∈ L1(A, µ̄) is non-negative, then [[Pu > 0]] = upr([[u > 0]],B), the upper envelope of [[u > 0]] in
B.

(d) Suppose now that (C, λ̄) is another probability algebra and π : A → C is a measure-preserving Boolean
homomorphism. Then D = π[B] is a closed subalgebra of C. Let Q : L1(C, λ̄) → L1(D, λ̄↾D) ⊆ L1(C, λ̄)
be the conditional expectation associated with D, and Tπ : L1(A, µ̄) → L1(C, λ̄) the norm-preserving Riesz
homomorphism defined by π. Then TπP = QTπ.

365R Recovering the algebra: Proposition (a) Let (A, µ̄) be a localizable measure algebra. Then
A is isomorphic to the band algebra of L1(A, µ̄).

(b) Let A be a Dedekind σ-complete Boolean algebra, and µ̄, ν̄ two measures on A such that (A, µ̄) and
(A, ν̄) are both semi-finite measure algebras. Then L1(A, µ̄) is isomorphic, as Banach lattice, to L1(A, ν̄).

365S Proposition Let A be a Dedekind complete Boolean algebra, and µ̄ : A → [0,∞], ν̄ : A → [0,∞]
two functions such that (A, µ̄) and (A, ν̄) are both semi-finite measure algebras.

(a) There is a unique u ∈ L0 = L0(A) such that
∫
a
u dµ̄ = ν̄a for every a ∈ A.

(b) For v ∈ L0(A),
∫
v dν̄ =

∫
u× v dµ̄ if either is defined in [−∞,∞].

(c) u is strictly positive and, writing 1
u for the multiplicative inverse of u,

∫
a

1
udν̄ = µ̄a for every a ∈ A.

365T Uniform integrability: Theorem Let (A, µ̄) be a measure algebra. Set L1 = L1(A, µ̄).
(a) For a non-empty subset A of L1, the following are equiveridical:

(i) A is uniformly integrable in the sense of 354P;
(ii) for every ǫ > 0 there are an a ∈ Af and an M ≥ 0 such that

∫
(|u| −Mχa)+ ≤ ǫ for every u ∈ A;

(iii)(α) supu∈A |
∫
a
u| is finite for every atom a ∈ A,

(β) for every ǫ > 0 there are c ∈ Af and δ > 0 such that |
∫
a
u| ≤ ǫ whenever u ∈ A, a ∈ A and

µ̄(a ∩ c) ≤ δ;
(iv)(α) supu∈A |

∫
a
u| is finite for every atom a ∈ A,

(β) limn→∞ supu∈A |
∫
an

u| = 0 for every disjoint sequence 〈an〉n∈N in A;

(v) A is relatively weakly compact in L1.
(b) If (A, µ̄) is a probability algebra and A ⊆ L1 is uniformly integrable, then there is a solid convex

norm-closed uniformly integrable set C ⊇ A such that P [C] ⊆ C whenever P : L1 → L1 is the conditional
expectation operator associated with a closed subalgebra of A.

Version of 10.11.08

366 Lp

In this section I apply the methods of this chapter to Lp spaces, where 1 < p < ∞. The constructions
proceed without surprises up to 366E, translating the ideas of §244 by the methods used in §365. Turning
to the action of Boolean homomorphisms on Lp spaces, I introduce a space M0, which can be regarded as
the part of L0 that can be determined from the ring Af of elements of A of finite measure (366F), and which
includes Lp whenever 1 ≤ p <∞. Now a measure-preserving ring homomorphism from Af to Bf acts on the
M0 spaces in a way which includes injective Riesz homomorphisms from Lp(A, µ̄) to Lp(B, ν̄) and surjective

c© 1995 D. H. Fremlin
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positive linear operators from Lp(B, ν̄) to Lp(A, µ̄) (366H). The latter may be regarded as conditional
expectation operators (366J). The case p = 2 (366K-366L) is of course by far the most important. As with
the familiar spaces Lp(µ) of Chapter 24, we have complex versions Lp

C(A, µ̄) with the expected properties
(366M).

366A Definition Let (A, µ̄) be a measure algebra and suppose that 1 < p < ∞. For u ∈ L0(A), define
|u|p ∈ L0(A) by setting

[[|u|p > α]] = [[|u| > α1/p]] if α ≥ 0,

= 1 if α < 0.

Set

Lp
µ̄ = Lp(A, µ̄) = {u : u ∈ L0(A), |u|p ∈ L1(A, µ̄)},

and for u ∈ L0(A) set

‖u‖p = (
∫
|u|p)1/p = ‖|u|p‖

1/p
1 ,

counting ∞1/p as ∞

366B Theorem Let (X,Σ, µ) be a measure space, and (A, µ̄) its measure algebra. Then the canonical
isomorphism between L0(µ) and L0(A) makes Lp(µ) correspond to Lp(A, µ̄).

366C Corollary For any measure algebra (A, µ̄) and p ∈ ]1,∞[, Lp = Lp(A, µ̄) is a solid linear subspace of
L0(A). It is a Dedekind complete Banach lattice under its uniformly convex norm ‖ ‖p. Setting q = p/(p−1),
(Lp)∗ is identified with Lq(A, µ̄) by the duality (u, v) 7→

∫
u×v. Writing Af for the ring {a : a ∈ A, µ̄a <∞},

S(Af ) is norm-dense in Lp.

366D Theorem Let (A, µ̄) be a measure algebra, and p ∈ ]1,∞[.
(a) The norm ‖ ‖p on Lp = Lp(A, µ̄) is order-continuous.
(b) Lp has the Levi property.
(c) Setting q = p/(p − 1), the canonical identification of Lq = Lq(A, µ̄) with (Lp)∗ is a Riesz space

isomorphism between Lq and (Lp)∼ = (Lp)×.
(d) Lp is a perfect Riesz space.

366E Proposition Let (A, µ̄) be a semi-finite measure algebra, and p ∈ [1,∞]. Set q = p/(p − 1) if
1 < p <∞, q = ∞ if p = 1 and q = 1 if p = ∞. Then

Lq(A, µ̄) = {u : u ∈ L0(A), u× v ∈ L1(A, µ̄) for every v ∈ Lp(A, µ̄)}.

366F Definition Let (A, µ̄) be a measure algebra. Write

M0
µ̄ =M0(A, µ̄) = {u : u ∈ L0(A), µ̄[[|u| > α]] <∞ for every α > 0},

M1,0
µ̄ =M1,0(A, µ̄) = {u : u ∈M0

µ̄, u× χa ∈ L1(A, µ̄) whenever µ̄a <∞}.

366G Lemma Let (A, µ̄) be any measure algebra. Write M0 =M0(A, µ̄), etc.
(a)M0 andM1,0 are Dedekind complete solid linear subspaces of L0 which include Lp for every p ∈ [1,∞[;

moreover, M0 is closed under multiplication.
(b) If u ∈M0 and u ≥ 0, there is a non-decreasing sequence 〈un〉n∈N in S(Af ) such that u = supn∈N un.
(c) M1,0 = {u : u ∈ L0, (|u| − ǫχ1)+ ∈ L1 for every ǫ > 0} = L1 + (L∞ ∩M0).
(d) If u, v ∈ M1,0 and

∫
a
u ≤

∫
a
v whenever µ̄a < ∞, then u ≤ v; so if

∫
a
u =

∫
a
v whenever µ̄a < ∞,

u = v.
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366H Theorem Let (A, µ̄) and (B, ν̄) be measure algebras. Let π : Af → Bf be a measure-preserving
ring homomorphism.

(a)(i) We have a unique order-continuous Riesz homomorphism T = Tπ : M0(A, µ̄) → M0(B, ν̄) such
that T (χa) = χ(πa) for every a ∈ Af .

(ii) [[Tu > α]] = π[[u > α]] for every u ∈M0(A, µ̄) and α > 0.
(iii) T is injective and multiplicative.
(iv) For p ∈ [1,∞] and u ∈ M0(A, µ̄), ‖Tu‖p = ‖u‖p; in particular, Tu ∈ Lp(B, ν̄) iff u ∈ Lp(A, µ̄).∫

Tu =
∫
u whenever u ∈ L1(A, µ̄).

(v) For u ∈M0(A, µ̄), Tu ∈M1,0(B, ν̄) iff u ∈M1,0(A, µ̄).
(b)(i) We have a unique order-continuous positive linear operator P = Pπ : M1,0(B, ν̄) → M1,0(A, µ̄)

such that
∫
a
Pv =

∫
πa
v whenever v ∈M1,0(B, ν̄) and a ∈ Af .

(ii) If u ∈M0(A, µ̄), v ∈M1,0(B, ν̄) and v × Tu ∈M1,0(B, ν̄), then P (v × Tu) = u× Pv.
(iii) If q ∈ [1,∞[ and v ∈ Lq(B, ν̄), then Pv ∈ Lq(A, µ̄) and ‖Pv‖q ≤ ‖v‖q; if v ∈ L∞(B) ∩M0(B, ν̄),

then Pv ∈ L∞(A) and ‖Pv‖∞ ≤ ‖v‖∞.
(iv) PTu = u for every u ∈M1,0(A, µ̄); in particular, P [Lp(B, ν̄)] = Lp(A, µ̄) for every p ∈ [1,∞[.

(c) If (C, λ) is another measure algebra and θ : Bf → Cf another measure-preserving ring homomorphism,
then Tθπ = TθTπ :M0(A, µ̄) →M0(C, λ̄) and Pθπ = PπPθ :M1,0(C, λ̄) →M1,0(A, µ̄).

(d) Now suppose that π[Af ] = Bf , so that π is a measure-preserving isomorphism between the rings Af

and Bf .
(i) T is a Riesz space isomorphism between M0(A, µ̄) and M0(B, ν̄), and its inverse is Tπ−1 .
(ii) P is a Riesz space isomorphism between M1,0(B, ν̄) and M1,0(A, µ̄), and its inverse is Pπ−1 .
(iii) The restriction of T to M1,0(A, µ̄) is P−1 = Pπ−1 ; the restriction of T−1 = Tπ−1 to M1,0(B, ν̄) is

P .
(iv) For any p ∈ [1,∞[, T ↾Lp(A, µ̄) = Pπ−1↾Lp(A, µ̄) and P ↾Lp(B, ν̄) = Tπ−1↾Lp(B, ν̄) are the two

halves of a Banach lattice isomorphism between Lp(A, µ̄) and Lp(B, ν̄).

366I Corollary Let (A, µ̄) be a measure algebra, and B a σ-subalgebra of A. Then, for any p ∈ [1,∞[,
Lp(B, µ̄↾B) can be identified, as Banach lattice, with the closed linear subspace of Lp(A, µ̄) generated by
{χb : b ∈ B, µ̄b <∞}.

366J Corollary If (A, µ̄) is a probability algebra, B is a closed subalgebra of A, and P : L1(A, µ̄) →
L1(B, µ̄↾B) is the conditional expectation operator, then ‖Pu‖p ≤ ‖u‖p whenever p ∈ [1,∞] and u ∈
Lp(A, µ̄).

366K Corollary Let (A, µ̄) and (B, ν̄) be measure algebras, and π : Af → Bf a measure-preserving ring
homomorphism. Let T : L2(A, µ̄) → L2(B, ν̄) and P : L2(B, ν̄) → L2(A, µ̄) be the corresponding operators.
Then TP : L2(B, ν̄) → L2(B, ν̄) is an orthogonal projection, its range TP [L2(B, ν̄)] being isomorphic, as
Banach lattice, to L2(A, µ̄). The kernel of TP is just

{v : v ∈ L2(B, ν̄),
∫
πa
v = 0 for every a ∈ Af}.

366L Corollary Let (A, µ̄) be a measure algebra, and π : Af → Af a measure-preserving ring automor-
phism. Then there is a corresponding Banach lattice isomorphism T of L2 = L2(A, µ̄) defined by writing
T (χa) = χ(πa) for every a ∈ Af . Its inverse is defined by the formula∫

a
T−1u =

∫
πa
u for every u ∈ L2, a ∈ Af .

*366M Complex Lp spaces (a) Just as in §§241-244, we have ‘complex’ versions of all the spaces
considered in this chapter. Thus for any Boolean algebra A with Stone space Z, we can identify L∞

C (A) with
the space C(Z;C) of continuous functions from Z to C; inside this, we have a ‖ ‖∞-dense subspace SC(A)
consisting of complex linear combinations of indicator functions of open-and-closed sets. If A is a Dedekind
σ-complete Boolean algebra, identified with a quotient Σ/M where Σ is a σ-algebra of subsets of a set Z
and M is a σ-ideal of Σ, then we can write L

0
C for the set of functions from Z to C such that their real and
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imaginary parts are both Σ-measurable, WC for the set of those f ∈ L
0
C such that {z : f(z) 6= 0} belongs

to M, and L0
C = L0

C(A) for the linear space quotient L0
C/WC. As in 241J, we have a natural embedding of

L0 = L0(A) in L0
C and functions

Re : L0
C → L0, Im : L0

C → L0, | | : L0
C → L0, ¯ : L0

C → L0
C

such that

u = Re(u) + i Im(u), Re(u+ v) = Re(u) +Re(v), Im(u+ v) = Im(u) + Im(v),

Re(αu) = Re(α)Re(u)− Im(α) Im(u), Im(αu) = Re(α) Im(u) + Im(α)Re(u),

|αu| = |α||u|, |u+ v| ≤ |u|+ |v|, |u| = sup|γ|=1 Re(γu),

ū = Re(u)− i Im(u), u+ v = ū+ v̄, αu = ᾱū

for all u, v ∈ L0
C and α ∈ C.

I seem to have omitted to mention it in 241J, but of course we also have a multiplication

u× v = (Re(u)×Re(v)− Im(u)× Im(v)) + i(Re(u)× Im(v) + Im(u)×Re(v)),

for which we have

u× v = v × u, u× (v × w) = (u× v)× w, u× (v + w) = (u× v) + (u× w),

(αu)× v = u× (αv) = α(u× v),

u× v = ū× v̄, |u× v| = |u| × |v|, u× ū = |u|2 = (Re(u))2 + (Im(u))2

for u, v ∈ L0
C and α ∈ C.

(b) If (A, µ̄) is a measure algebra and 1 ≤ p < ∞, we can think of Lp
C(A, µ̄) as the set of those u ∈ L0

C

such that |u| ∈ Lp(A, µ̄), with its norm defined by the formula ‖u‖p = ‖|u|‖p; this will make Lp
C(A, µ̄) a

Banach space, with dual Lq(A, µ̄) where 1
p + 1

q = 1 if p > 1. (Similarly, if (A, µ̄) is localizable, the dual of

L1
C(A, µ̄) can be identified with L∞

C .)
Writing SC(A

f ) for the space of linear combinations of indicator functions of elements of A of finite
measure, SC(A

f ) is dense in Lp
C(A, µ̄) whenever 1 ≤ p <∞.

(c) L1- and L2-spaces have integrals and inner products. Here we set∫
u =

∫
Re(u) + i

∫
Im(u)

for u ∈ L1
C(A, µ̄), and

∫
: L1

C(A, µ̄) → C becomes a C-linear functional. As for L2,

|u× v| = |u| × |v| ∈ L1(A, µ̄), u× v ∈ L1
C(A, µ̄),

∫
u× ū = ‖u‖22

for u, v ∈ L2
C(A, µ̄). So if we set

(u|v) =
∫
u× v̄

for u, v ∈ L2
C(A, µ̄), L

2
C(A, µ̄) becomes a complex Hilbert space.

(d) If A, B are Dedekind σ-complete Boolean algebras and π : A → B is a sequentially order-continuous
Boolean homomorphism, then we have a linear operator Tπ : L0

C(A) → L0
C(B) defined by setting Tπu =

T real
π (Re(u)) + iT real

π (Im(u)), where T real
π : L0(A) → L0(B) is the Riesz homomorphism described in 364P.

Tπ, like T
real
π , will be multiplicative; Tπ|u| = |Tπu| for every u ∈ L0

C(A). Tπū = Tπu for every u ∈ L0
C(A).

Also, if C is another Dedekind σ-complete Boolean algebra and π : A → B and φ : B → C are sequentially
order-continuous Boolean homomorphisms, Tφπ = TφTπ. So if π : A → A is a Boolean automorphism, Tπ
will be a bijection with inverse Tπ−1 .

(e) Similarly, if (A, µ̄) is a measure algebra and π : A → A is a measure-preserving Boolean homomor-
phism,

∫
Tπu =

∫
u for every u ∈ L1

C(A, µ̄). If u, v ∈ L2
C(A, µ̄), then

(Tπu|Tπv) =
∫
Tπu× Tπv =

∫
Tπu× Tπ v̄ =

∫
Tπ(u× v̄) =

∫
u× v̄ = (u|v).
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If π is a measure-preserving Boolean automorphism, we shall have

(Tπu|v) = (Tπ−1Tπu|Tπ−1v) = (u|T−1
π v)

for all u, v ∈ L2
C(A, µ̄).

Version of 2.5.16/7.9.18

367 Convergence in measure

Continuing through the ideas of Chapter 24, I come to ‘convergence in measure’. The basic results of
§245 all translate easily into the new language (367L-367M, 367P). The associated concept of (sequential)
order-convergence can also be expressed in abstract terms (367A), and I take the trouble to do this in the
context of general lattices (367A-367B), since the concept can be applied in many ways (367C-367E, 367K).
In the particular case of L0 spaces, which are the first aim of this section, the idea is most naturally expressed
by 367F. It enables us to express some of the basic theorems in Volumes 1 and 2 in the language of this
chapter (367I-367J).

In 367N and 367O I give two of the most characteristic properties of the topology of convergence in
measure on L0; it is one of the fundamental types of topological Riesz space. Another striking fact is the
way it is determined by the Riesz space structure (367T). In 367U I set out a theorem which is the basis
of many remarkable applications of the concept; for the sake of a result in §369 I give one such application
(367V).

367A Order*-convergence: Definition Let P be a lattice, p an element of P and 〈pn〉n∈N a sequence
in P . I will say that 〈pn〉n∈N order*-converges to p if

p = inf{q : ∃n ∈ N, q ≥ (p′ ∨ pi) ∧ p
′′ ∀ i ≥ n}

= sup{q : ∃n ∈ N, q ≤ p′ ∨ (pi ∧ p
′′) ∀ i ≥ n}

whenever p′ ≤ p ≤ p′′ in P .

367B Lemma Let P be a lattice.
(a) A sequence in P can order*-converge to at most one point.
(b) A constant sequence order*-converges to its constant value.
(c) Any subsequence of an order*-convergent sequence is order*-convergent, with the same limit.
(d) If 〈pn〉n∈N and 〈p′n〉n∈N both order*-converge to p, and pn ≤ qn ≤ p′n for every n, then 〈qn〉n∈N

order*-converges to p.
(e) If 〈pn〉n∈N is an order-bounded sequence in P , then it order*-converges to p ∈ P iff

p = inf{q : ∃n ∈ N, q ≥ pi ∀ i ≥ n}

= sup{q : ∃n ∈ N, q ≤ pi ∀ i ≥ n}.

(f) If P is a Dedekind σ-complete lattice and 〈pn〉n∈N is an order-bounded sequence in P , then it order*-
converges to p ∈ P iff

p = supn∈N infi≥n pi = infn∈N supi≥n pi.

367C Proposition Let U be a Riesz space.
(a) Suppose that 〈un〉n∈N, 〈vn〉n∈N are two sequences in U order*-converging to u, v respectively.

(i) 〈un + w〉n∈N order*-converges to u+ w for every w ∈ U , and αun order*-converges to αu for every
α ∈ R.

(ii) 〈un ∨ vn〉n∈N order*-converges to u ∨ v and 〈un ∧ vn〉n∈N order*-converges to u ∧ v.
(iii) If 〈wn〉n∈N is any sequence in U , then it order*-converges to w ∈ U iff 〈|wn − w|〉n∈N order*-

converges to 0.

c© 1998 D. H. Fremlin
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(iv) 〈un + vn〉n∈N order*-converges to u+ v.
(v) If 〈wn〉n∈N and 〈zn〉n∈N are sequences in U , 〈wn〉n∈N order*-converges to 0 and |zn| ≤ |wn| for every

n, then 〈zn〉n∈N order*-converges to 0.
(b) Now suppose that U is Archimedean.
(i) If 〈αn〉n∈N is a sequence in R converging to α ∈ R, and 〈un〉n∈N is a sequence in U order*-converging

to u ∈ U , then 〈αnun〉n∈N order*-converges to αu.
(ii) A sequence 〈wn〉n∈N in U+ is not order*-convergent to 0 iff there is a w̃ > 0 such that w̃ =

supi≥n w̃ ∧ wi for every n ∈ N.

(iii) If 〈un〉n∈N is a sequence in U+ such that {
∑n

i=0 ui : n ∈ N} is bounded above, then 〈un〉n∈N

order*-converges to 0.

367D Proposition Let U be a Riesz space with a Riesz norm ‖ ‖.
(a) If a sequence in U is both order*-convergent and norm-convergent, the two limits are the same.
(b) ‖ ‖ is order-continuous iff every order-bounded order*-convergent sequence in U is norm-convergent.

367E Proposition Let U be an Archimedean Riesz space and V a regularly embedded Riesz subspace.
If 〈vn〉n∈N is a sequence in V and v ∈ V , then 〈vn〉n∈N order*-converges to v when regarded as a sequence
in V , iff it order*-converges to v when regarded as a sequence in U .

367F Proposition Let X be a set, Σ a σ-algebra of subsets of X, A a Boolean algebra and π : Σ → A

a sequentially order-continuous surjective Boolean homomorphism; let I be its kernel. Write L
0 for the

space of Σ-measurable functions from X to R, and let T = Tπ : L
0 → L0 = L0(A) be the canonical

Riesz homomorphism. Then for any 〈fn〉n∈N and f in L
0, 〈Tfn〉n∈N order*-converges to Tf in L0 iff

X \ {x : f(x) = limn→∞ fn(x)} ∈ I.

367G Corollary Let A be a Dedekind σ-complete Boolean algebra.
(a) Any order*-convergent sequence in L0 = L0(A) is order-bounded.
(b) If 〈un〉n∈N is a sequence in L0, then it is order*-convergent to u ∈ L0 iff

u = infn∈N supi≥n ui = supn∈N infi≥n ui.

367H Proposition Suppose that E ⊆ R is a Borel set and h : E → R is a continuous function. Let A be
a Dedekind σ-complete Boolean algebra and set QE = {u : u ∈ L0, [[u ∈ E]] = 1}, where L0 = L0(A). Let
h̄ : QE → L0 be the function defined by h. Then 〈h̄(un)〉n∈N order*-converges to h̄(u) whenever 〈un〉n∈N is
a sequence in QE order*-converging to u ∈ QE .

367I Dominated convergence: Theorem Let (A, µ̄) be a measure algebra. If 〈un〉n∈N is a sequence
in L1 = L1

µ̄ which is order-bounded and order*-convergent in L1, then 〈un〉n∈N is norm-convergent to some

u ∈ L1; in particular,
∫
u = limn→∞

∫
un.

367J The Martingale Theorem Let (A, µ̄) be a probability algebra, and 〈Bn〉n∈N a non-decreasing
sequence of closed subalgebras of A. For each n ∈ N let Pn : L1 = L1

µ̄ → L1 ∩ L0(Bn) be the conditional
expectation operator; let B be the closed subalgebra of A generated by

⋃
n∈N Bn, and P the conditional

expectation operator onto L1 ∩ L0(B).
(a) If 〈un〉n∈N is a norm-bounded sequence in L1 such that Pn(un+1) = un for every n ∈ N, then 〈un〉n∈N

is order*-convergent in L1.
(b) If u ∈ L1 then 〈Pnu〉n∈N is order*-convergent and ‖ ‖1-convergent to Pu.

367K Proposition Let X be a locally compact Hausdorff space, and 〈un〉n∈N a sequence in C(X). Then
〈un〉n∈N order*-converges to 0 in C(X) iff {x : x ∈ X, lim supn→∞ |un(x)| > 0} is meager. In particular,
〈un〉n∈N order*-converges to 0 if limn→∞ un(x) = 0 for every x.

Measure Theory (abridged version)



367S Convergence in measure 23

367L Convergence in measure Let (A, µ̄) be a measure algebra. For a ∈ Af = {a : µ̄a < ∞},
u ∈ L0 = L0(A) and ǫ > 0 set τa(u) =

∫
|u| ∧ χa and τaǫ(u) = µ̄(a ∩ [[|u| > ǫ]]). Then the topology of

convergence in measure on L0 is defined either as the topology generated by the F-seminorms τa or by
saying that G ⊆ L0 is open iff for every u ∈ G there are a ∈ Af and ǫ > 0 such that v ∈ G whenever
τaǫ(u− v) ≤ ǫ.

367M Theorem (a) For any measure algebra (A, µ̄), the topology T of convergence in measure on
L0 = L0(A) is a linear space topology, and any order*-convergent sequence in L0 is T-convergent to the
same limit.

(b) u 7→ |u| : L0 → L0 and (u, v) 7→ u ∨ v, (u, v) 7→ u× v : L0 × L0 → L0 are continuous.
(c) (A, µ̄) is semi-finite iff T is Hausdorff.
(d) (A, µ̄) is localizable iff T is Hausdorff and L0 is complete under the uniformity corresponding to T.
(e) (A, µ̄) is σ-finite iff T is metrizable.

367N Proposition Let (A, µ̄) be a measure algebra and give L0 = L0(A) its topology of convergence in
measure.

(a) If A ⊆ L0 is a non-empty, downwards-directed set with infimum 0, then for every neighbourhood G
of 0 in L0 there is a u ∈ A such that v ∈ G whenever |v| ≤ u.

(b) If U ⊆ L0 is an order-dense Riesz subspace, it is topologically dense.
(c) In particular, S(A) and L∞(A) are topologically dense.

367O Theorem Let U be a Banach lattice and (A, µ̄) a measure algebra. Give L0 = L0(A) its topology
of convergence in measure. If T : U → L0 is a positive linear operator, then it is continuous.

367P Proposition Let (A, µ̄) be a σ-finite measure algebra.
(a) A sequence 〈un〉n∈N in L0 = L0(A) converges in measure to u ∈ L0 iff every subsequence of 〈un〉n∈N

has a sub-subsequence which order*-converges to u.
(b) A set F ⊆ L0 is closed for the topology of convergence in measure iff u ∈ F whenever there is a

sequence 〈un〉n∈N in F order*-converging to u ∈ L0.

367Q Theorem Let (A, µ̄) be a probability algebra; for each closed subalgebra B of A, let PB be the
corresponding conditional expectation operator from L1 = L1

µ̄ to L1 ∩ L0(B) = L1
µ̄↾B.

(a) If B is a non-empty downwards-directed family of closed subalgebras of A with intersection C, and
u ∈ L1 = L1

µ̄, then PCu is the ‖ ‖1-limit limB→F(B↓) PBu, where F(B↓) is the filter on B generated by
{{B : B0 ⊇ B ∈ B} : B0 ∈ B}.

(b) If B is a non-empty upwards-directed family of closed subalgebras of A and C is the closed subalgebra
generated by

⋃
B, then for every u ∈ L1, PCu is the ‖ ‖1-limit limB→F(B↑) PBu, where F(B↑) is the filter on

B generated by {{B : B0 ⊆ B ∈ B} : B0 ∈ B}. as B decreases through B.
(c) Suppose that B is a non-empty upwards-directed family of closed subalgebras of A, and 〈uB〉B∈B is

a ‖ ‖1-bounded family in L1 such that uB = PBuC whenever B, C ∈ B and B ⊆ C. Then limB→F(B↑) uB is

defined for the topology of convergence in measure and belongs to L1.

367R Proposition Let (A, µ̄) be a measure algebra. Give A its measure-algebra topology and L0 =
L0(A) the topology of convergence in measure.

(a) The map χ : A → L0 is a homeomorphism between A and its image in L0.
(b) If A has countable Maharam type, then L0 is separable.
(c) Suppose that B is a subalgebra of A which is closed for the measure-algebra topology. Then L0(B)

is closed in L0(A).
(d) A non-empty setA ⊆ L0 is bounded in the linear topological space sense iff infk∈N supu∈A µ̄(a ∩ [[|u| > k]]) =

0 for every a ∈ Af .

367S Proposition Let E ⊆ R be a Borel set, and h : E → R a continuous function. Let (A, µ̄) be a
measure algebra, and h̄ : QE → L0 = L0(A) the associated function, where QE = {u : u ∈ L0, [[u ∈ E]] = 1}.
Then h̄ is continuous for the topology of convergence in measure.
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367T Intrinsic description of convergence in measure: Proposition Let (A, µ̄) be a semi-finite
measure algebra, and U an order-dense Riesz subspace of L0 = L0(A). Suppose that A ⊆ U and u∗ ∈ U .
Then u∗ belongs to the closure of A for the topology of convergence in measure iff

there is an order-dense Riesz subspace V of U such that
for every v ∈ V + there is a non-empty downwards-directed B ⊆ U , with infimum 0, such
that

for every w ∈ B there is a u ∈ A such that

|u− u∗| ∧ v ≤ w.

*367U Theorem Let (A, µ̄) be a semi-finite measure algebra; write L1 for L1
µ̄. Let P : (L1)∗∗ → L1

be the linear operator corresponding to the band projection from (L1)∗∗ = (L1)×∼ onto (L1)×× and the
canonical isomorphism between L1 and (L1)××. For A ⊆ L1 write A∗ for the weak* closure of the image of
A in (L1)∗∗. Then for every A ⊆ L1

P [A∗] ⊆ Γ(A),

where Γ(A) is the convex hull of A and Γ(A) is the closure of Γ(A) in L0 = L0(A) for the topology of
convergence in measure.

*367V Corollary Let (A, µ̄) be a localizable measure algebra. Let C be a family of convex subsets of
L0 = L0(A), all closed for the topology of convergence in measure, with the finite intersection property, and
suppose that for every non-zero a ∈ A there are a non-zero b ⊆ a and a C ∈ C such that supu∈C

∫
b
|u| <∞.

Then
⋂
C 6= ∅.

*367W Independence: Let (A, µ̄) be a probability algebra. Then a family 〈ui〉i∈I in L0(A) is
stochastically independent if µ̄(infi∈J [[ui > αi]]) =

∏
i∈J µ̄[[ui > αi]] whenever J ⊆ I is a non-empty

finite set and αi ∈ R for every i ∈ I.

Proposition Let (A, µ̄) be a probability algebra, and I any set. Give L0 = L0(A) its topology of convergence
in measure. Then the collection of independent families 〈ui〉i∈I is a closed set in (L0)I .

Version of 16.9.09

368 Embedding Riesz spaces in L0

In this section I turn to the representation of Archimedean Riesz spaces as function spaces. Any Archi-
medean Riesz space U can be represented as an order-dense subspace of L0(A), where A is its band algebra
(368E). Consequently we get representations of Archimedean Riesz spaces as quotients of subspaces of RX

(368F) and as subspaces of C∞(X) (368G), and a notion of ‘Dedekind completion’ (368I-368J). Closely
associated with these is the fact that we have a very general extension theorem for order-continuous Riesz
homomorphisms into L0 spaces (368B). I give a characterization of L0 spaces in terms of lateral completeness
(368M), and I discuss weakly (σ,∞)-distributive Riesz spaces (368N-368S).

368A Lemma Let A be a Dedekind σ-complete Boolean algebra, and A ⊆ (L0)+ a set with no upper
bound in L0, where L0 = L0(A). If either A is countable or A is Dedekind complete, there is a v > 0 in L0

such that nv = supu∈A u ∧ nv for every n ∈ N.

368B Theorem Let A be a Dedekind complete Boolean algebra, U an Archimedean Riesz space, V an
order-dense Riesz subspace of U and T : V → L0 = L0(A) an order-continuous Riesz homomorphism. Then

T has a unique extension to an order-continuous Riesz homomorphism T̃ : U → L0.

368C Corollary Let A and B be Dedekind complete Boolean algebras and U , V order-dense Riesz
subspaces of L0(A), L0(B) respectively. Then any Riesz space isomorphism between U and V extends
uniquely to a Riesz space isomorphism between L0(A) and L0(B); and in this case A and B must be
isomorphic as Boolean algebras.

c© 1997 D. H. Fremlin
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368D Corollary Suppose that A is a Dedekind σ-complete Boolean algebra, and that U is an order-
dense Riesz subspace of L0(A) which is isomorphic, as Riesz space, to L0(B) for some Dedekind complete
Boolean algebra B. Then U = L0(A) and A is isomorphic to B (so, in particular, is Dedekind complete).

368E Theorem Let U be any Archimedean Riesz space, and A its band algebra. Then U can be
embedded as an order-dense Riesz subspace of L0(A).

368F Corollary A Riesz space U is Archimedean iff it is isomorphic to a Riesz subspace of some reduced
power RX |F , where X is a set and F is a filter on X such that

⋂
n∈N Fn ∈ F whenever 〈Fn〉n∈N is a sequence

in F .

368G Corollary Every Archimedean Riesz space U is isomorphic to an order-dense Riesz subspace of
some space C∞(X), where X is an extremally disconnected compact Hausdorff space.

368H Corollary Any Dedekind complete Riesz space U is isomorphic to an order-dense solid linear
subspace of L0(A) for some Dedekind complete Boolean algebra A.

368I Corollary Let U be an Archimedean Riesz space. Then U can be embedded as an order-dense
Riesz subspace of a Dedekind complete Riesz space V in such a way that the solid linear subspace of V
generated by U is V itself, and this can be done in essentially only one way. If W is any other Dedekind
complete Riesz space and T : U → W is an order-continuous positive linear operator, there is a unique
positive linear operator T̃ : V →W extending T .

368J Definition If U is an Archimedean Riesz space, a Dedekind completion of U is a Dedekind
complete Riesz space V together with an embedding of U in V as an order-dense Riesz subspace of V such
that the solid linear subspace of V generated by U is V itself.

368K Lemma Let A be a Dedekind σ-complete Boolean algebra. Suppose that A ⊆ L0(A)+ is disjoint.
If either A is countable or A is Dedekind complete, A is bounded above in L0(A).

368L Definition A Riesz space U is called laterally complete or universally complete if A is
bounded above whenever A ⊆ U+ is disjoint.

368M Theorem Let U be an Archimedean Riesz space. Then the following are equiveridical:
(i) there is a Dedekind complete Boolean algebra A such that U is isomorphic to L0(A);
(ii) U is Dedekind σ-complete and laterally complete;
(iii) whenever V is an Archimedean Riesz space, V0 is an order-dense Riesz subspace of V and T : V0 → U

is an order-continuous Riesz homomorphism, there is a positive linear operator T̃ : V → U extending T .

368N Weakly (σ,∞)-distributive Riesz spaces: Definition Let U be a Riesz space. Then U is
weakly (σ,∞)-distributive if whenever 〈An〉n∈N is a sequence of non-empty downwards-directed subsets
of U+, each with infimum 0, and

⋃
n∈NAn has an upper bound in U , then

{u : u ∈ U , for every n ∈ N there is a v ∈ An such that v ≤ u}

has infimum 0 in U .

368O Lemma Let U be an Archimedean Riesz space. Then the following are equiveridical:
(i) U is not weakly (σ,∞)-distributive;
(ii) there are a u > 0 in U and a sequence 〈An〉n∈N of non-empty downwards-directed sets, all with

infimum 0, such that supn∈N un = u whenever un ∈ An for every n ∈ N.

368P Proposition (a) A regularly embedded Riesz subspace of an Archimedean weakly (σ,∞)-distribu-
tive Riesz space is weakly (σ,∞)-distributive.

(b) An Archimedean Riesz space with a weakly (σ,∞)-distributive order-dense Riesz subspace is weakly
(σ,∞)-distributive.

(c) If U is a Riesz space such that U× separates the points of U , then U is weakly (σ,∞)-distributive; in
particular, U∼ and U× are weakly (σ,∞)-distributive for every Riesz space U .
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368Q Theorem (a) For any Boolean algebra A, A is weakly (σ,∞)-distributive iff S(A) is weakly (σ,∞)-
distributive iff L∞(A) is weakly (σ,∞)-distributive.

(b) For a Dedekind σ-complete Boolean algebra A, L0(A) is weakly (σ,∞)-distributive iff A is weakly
(σ,∞)-distributive.

368R Corollary An Archimedean Riesz space is weakly (σ,∞)-distributive iff its band algebra is weakly
(σ,∞)-distributive.

368S Corollary If (A, µ̄) is a semi-finite measure algebra, any regularly embedded Riesz subspace (in
particular, any solid linear subspace and any order-dense Riesz subspace) of L0(A) is weakly (σ,∞)-dis-
tributive.

Version of 23.11.16

369 Banach function spaces

In this section I continue the work of §368 with results which involve measure algebras. The first step is
a modification of the basic representation theorem for Archimedean Riesz spaces. If U is any Archimedean
Riesz space, it can be represented as a subspace of L0 = L0(A), where A is its band algebra (368E); now if
U× separates the points of U , there is a measure rendering A a localizable measure algebra (369A). Moreover,
we get a simultaneous representation of U× as a subspace of L0 (369C-369D), the duality between U and
U× corresponding exactly to the familiar duality between Lp and Lq. In particular, every L-space can be
represented as an L1-space (369E).

Still drawing inspiration from the classical Lp spaces, we have a general theory of ‘associated Fatou
norms’ (369F-369M, 369R). I include notes on the spaces M1,∞, M∞,1 and M1,0 (369N-369Q), which will
be particularly useful in the next chapter.

369A Theorem Let U be a Riesz space such that U× separates the points of U . Then U can be
embedded as an order-dense Riesz subspace of L0(A) for some localizable measure algebra (A, µ̄).

369B Corollary Let U be a Banach lattice with order-continuous norm. Then U can be embedded as
an order-dense solid linear subspace of L0(A) for some localizable measure algebra (A, µ̄).

369C Theorem Let (A, µ̄) be a semi-finite measure algebra, and U ⊆ L0 = L0(A) an order-dense Riesz
subspace. Set

V = {v : v ∈ L0, v × u ∈ L1 for every u ∈ U},

writing L1 for L1(A, µ̄) ⊆ L0. Then V is a solid linear subspace of L0, and we have an order-continuous
injective Riesz homomorphism T : V → U× defined by setting

(Tv)(u) =
∫
u× v for all u ∈ U , v ∈ V .

The image of V is order-dense in U×. If (A, µ̄) is localizable, then T is surjective, so is a Riesz space
isomorphism between V and U×.

369D Corollary Let U be any Riesz space such that U× separates the points of U . Then there is a
localizable measure algebra (A, µ̄) such that the pair (U,U×) can be represented by a pair (V,W ) of order-
dense Riesz subspaces of L0 = L0(A) such that W = {w : w ∈ L0, v × w ∈ L1 for every v ∈ V }, writing L1

for L1(A, µ̄). In this case, U×× becomes represented by Ṽ = {v : v ∈ L0, v×w ∈ L1 for every w ∈W} ⊇ V .

369E Kakutani’s theorem If U is any L-space, there is a localizable measure algebra (A, µ̄) such that
U is isomorphic, as Banach lattice, to L1(A, µ̄).
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369F Definition Let A be a Dedekind σ-complete Boolean algebra. An extended Fatou norm on
L0 = L0(A) is a function τ : L0 → [0,∞] such that

(i) τ(u+ v) ≤ τ(u) + τ(v) for all u, v ∈ L0;
(ii) τ(αu) = |α|τ(u) whenever u ∈ L0 and α ∈ R;
(iii) τ(u) ≤ τ(v) whenever |u| ≤ |v| in L0;
(iv) supu∈A τ(u) = τ(v) whenever A ⊆ (L0)+ is a non-empty upwards-directed set with supremum v in

L0;
(v) τ(u) > 0 for every non-zero u ∈ L0;
(vi) whenever u > 0 in L0 there is a v ∈ L0 such that 0 < v ≤ u and τ(v) <∞.

369G Proposition Let A be a Dedekind σ-complete Boolean algebra and τ an extended Fatou norm
on L0 = L0(A). Then Lτ = {u : u ∈ L0, τ(u) < ∞} is an order-dense solid linear subspace of L0, and
τ , restricted to Lτ , is a Fatou norm under which Lτ is a Banach lattice. If 〈un〉n∈N is a non-decreasing
norm-bounded sequence in (Lτ )+, then it has a supremum in Lτ ; if A is Dedekind complete, then Lτ has
the Levi property.

369H Associate norms: Definition Let (A, µ̄) be a semi-finite measure algebra, and τ an extended
Fatou norm on L0 = L0(A). Define τ ′ : L0 → [0,∞] by setting

τ ′(u) = sup{‖u× v‖1 : v ∈ L0, τ(v) ≤ 1}

for every u ∈ L0; then τ ′ is the associate of τ .

369I Theorem Let (A, µ̄) be a semi-finite measure algebra, and τ an extended Fatou norm on L0 =
L0(A). Then

(i) its associate τ ′ is also an extended Fatou norm on L0;
(ii) τ is the associate of τ ′;
(iii) ‖u× v‖1 ≤ τ(u)τ ′(v) for all u, v ∈ L0.

369J Theorem Let (A, µ̄) be a semi-finite measure algebra, and τ an extended Fatou norm on L0 =
L0(A), with associate θ. Then

Lθ = {v : v ∈ L0, u× v ∈ L1(A, µ̄) for every u ∈ Lτ}.

369K Corollary Let (A, µ̄) be a localizable measure algebra, and τ an extended Fatou norm on L0(A),
with associate θ. Then Lθ may be identified, as normed Riesz space, with (Lτ )× ⊆ (Lτ )∗, and Lτ is a
perfect Riesz space.

369L LpLpLp Let (A, µ̄) be a semi-finite measure algebra and p ∈ [1,∞]. Then ‖ ‖p is an extended Fatou
norm.

As usual, set q = p/(p− 1) if 1 < p <∞, ∞ if p = 1, and 1 if p = ∞. Then ‖ ‖q is the associate extended
Fatou norm of ‖ ‖p.

369M Proposition Let (A, µ̄) be a semi-finite measure algebra and τ an extended Fatou norm on
L0 = L0(A). Then

(a) the embedding Lτ ⊂→ L0 is continuous for the norm topology of Lτ and the topology of convergence

in measure on L0;
(b) τ : L0 → [0,∞] is lower semi-continuous;
(c) if 〈un〉n∈N is a sequence in L0 which is order*-convergent to u ∈ L0, then τ(u) is at most lim infn→∞ τ(un).

369N Definition Let (A, µ̄) be a measure algebra. Set

M∞,1
µ̄ =M∞,1(A, µ̄) = L1(A, µ̄) ∩ L∞(A),

M1,∞
µ̄ =M1,∞(A, µ̄) = L1(A, µ̄) + L∞(A),
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and

‖u‖∞,1 = max(‖u‖1, ‖u‖∞)

for u ∈ L0(A).

369O Proposition Let (A, µ̄) be a semi-finite measure algebra.
(a) ‖ ‖∞,1 is an extended Fatou norm on L0 = L0(A), and the corresponding Banach lattice isM∞,1(A, µ̄).
(b) The associate of ‖ ‖∞,1 is ‖ ‖1,∞, which may be defined by any of the formulae

‖u‖1,∞ = sup{‖u× v‖1 : v ∈ L0, ‖v‖∞,1 ≤ 1}

= min{‖v‖1 + ‖w‖∞ : v ∈ L1, w ∈ L∞, v + w = u}

= min{α+

∫
(|u| − αχ1)+ : α ≥ 0}

=

∫ ∞

0

min(1, µ̄[[|u| > α]])dα

for every u ∈ L0, writing L1 = L1(A, µ̄), L∞ = L∞(A).
(c)

{u : u ∈ L0, ‖u‖1,∞ <∞} =M1,∞ =M1,∞(A, µ̄),

{u : u ∈ L0, ‖u‖∞,1 <∞} =M∞,1 =M∞,1(A, µ̄).

(d) Writing Af = {a : µ̄a <∞}, S(Af ) is norm-dense in M∞,1 and S(A) is norm-dense in M1,∞.
(e) For any p ∈ [1,∞],

‖u‖1,∞ ≤ ‖u‖p ≤ ‖u‖∞,1

for every u ∈ L0.

369P Proposition Let (A, µ̄) be a measure algebra.
(a) M1,0 =M1,0(A, µ̄) is a norm-closed solid linear subspace of M1,∞(A, µ̄).
(b) The norm ‖ ‖1,∞ is order-continuous on M1,0.
(c) S(Af ) and L1(A, µ̄) are norm-dense and order-dense in M1,0.

369Q Corollary Let (A, µ̄) be a localizable measure algebra. Set M1,∞ =M1,∞(A, µ̄), etc.
(a) (M1,∞)× and (M1,0)× can both be identified with M∞,1.
(b) (M∞,1)× can be identified with M1,∞; M1,∞ and M∞,1 are perfect Riesz spaces.

369R Theorem Let (A, µ̄) be a localizable measure algebra, and τ1, τ2 two extended Fatou norms on
L0 = L0(A) with associates τ ′1, τ

′
2. Then we have an extended Fatou norm τ defined by the formula

τ(u) = min{τ1(v) + τ2(w) : v, w ∈ L0, v + w = u}

for every u ∈ L0, and its associate τ ′ is given by the formula

τ ′(u) = max(τ ′1(u), τ
′
2(u))

for every u ∈ L0. Moreover, the corresponding function spaces are

Lτ = Lτ1 + Lτ2 , Lτ ′

= Lτ ′

1 ∩ Lτ ′

2 .
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Version of 20.7.11

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

364Be L0(A) This re-phrasing of the definition of L0(A), referred to in the 2008 edition of Volume 5, is
now 364Af.

364D L0 as f-algebra This paragraph, referred to in the 2008 edition of Volume 5, is now 364C.

364E Algebraic operations on L0 This paragraph, referred to in the 2008 edition of Volume 5, is now
364D.

364G The identification of L0(A) with the set of sequentially order-continuous Boolean homomorphisms
from B(R) to A, referred to in the 2008 edition of Volume 5, is now 364F.

364I Action of Borel functions on L0 This paragraph, referred to in the 2003 and 2006 editions of
Volume 4, is now 364H.

364J L0(Σ/I) The identification of L0(Σ/I) as a space of equivalence classes of functions, referred to in
the 2003 and 2206 editions of Volume 4 and the 2008 edition of Volume 5, is now 364I.

364K Embedding S and L∞ in L0 This paragraph, referred to in the 2003 and 2006 editions of Volume
4, is now 364J.

364M-364N Suprema and infima in L0(A) These paragraphs, referred to in the 2003 and 2006
editions of Volume 4 and the 2008 edition of Volume 5, have now been amalgamated as 364L.

364O Dedekind completeness of L0 This paragraph, referred to in the 2008 edition of Volume 5, is
now 364M.

364P Multiplicative inverses in L0 This paragraph, referred to in the 2003 and 2006 editions of
Volume 4, is now 364J.

364R Action of Boolean homomorphisms on L0 This paragraph, referred to the 2003 and 2006
editions of Volume 4 and in the 2008 edition of Volume 5, is now 364P.

364Xw Extension of
∫
This exercise, referred to in the 2008 edition of Volume 5, is now 364Xj.

364Yn L0
C(A) This exercise on complex L0 spaces, referred to in the 2003 and 2006 editions of Volume

4, has been moved to 366M.

365K Additive functions on Af and linear operators on L1 This theorem, referred to in the 2003,
2006 and 2013 printings of Volume 4, is now 365J.

365M L1 and L∞ This theorem, referred to in the 2008 printing of Volume 5, is now 365L.

365O Ring homomorphisms on Af and Riesz homomorphisms on L1 This theorem, referred to
in the 2013 printing of Volume 4 and the 2008 printing of Volume 5, is now 365N.
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365P Order-continuous ring homomorphisms on Af and conditional expectations This theo-
rem, referred to in the 2008 printing of Volume 5, is now 365O.

365R Conditional expectations These notes, referred to in the 2006 and 2013 printings of Volume 4
and the 2008 printing of Volume 5, is now 365Q.

365T Change of measure This proposition, referred to in the 2008 printing of Volume 5, is now 365S.
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