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Chapter 36

Function Spaces

Chapter 24 of Volume 2 was devoted to the elementary theory of the ‘function spaces’ L0, L1, L2 and
L∞ associated with a given measure space. In this chapter I return to these spaces to show how they can
be related to the more abstract themes of the present volume. In particular, I develop constructions to
demonstrate, as clearly as I can, the way in which the function spaces associated with a measure space in
fact depend only on its measure algebra; and how many of their features can (in my view) best be understood
in terms of constructions involving measure algebras.

The chapter is very long, not because there are many essentially new ideas, but because the intuitions
I seek to develop depend, for their logical foundations, on technically complex arguments. This is perhaps
best exemplified by §364. If two measure spaces (X,Σ, µ) and (Y,T, ν) have isomorphic measure algebras
(A, µ̄), (B, ν̄) then the spaces L0(µ), L0(ν) are isomorphic as topological f -algebras; and more: for any
isomorphism between (A, µ̄) and (B, ν̄) there is a unique corresponding isomorphism between the L0 spaces.
The intuition involved is in a way very simple. If f , g are measurable real-valued functions on X and Y
respectively, then f• ∈ L0(µ) will correspond to g• ∈ L0(ν) if and only if [[f• > α]] = {x : f(x) > α}• ∈ A

corresponds to [[g• > α]] = {y : g(y) > α}• ∈ B for every α. But the check that this formula is consistent,
and defines an isomorphism of the required kind, involves a good deal of detailed work. It turns out, in
fact, that the measures µ and ν do not enter this part of the argument at all, except through their ideals
of negligible sets (used in the construction of A and B). This is already evident, if you look for it, in
the theory of L0(µ); in §241, as written out, you will find that the measure of an individual set is not
once mentioned, except in the exercises. Consequently there is an invitation to develop the theory with
algebras A which are not necessarily measure algebras. Here is another reason for the length of the chapter;
substantial parts of the work are being done in greater generality than the corresponding sections of Chapter
24, necessitating a degree of repetition. Of course this is not ‘measure theory’ in the strict sense; but for
thirty years now measure theory has been coloured by the existence of these generalizations, and I think it is
useful to understand which parts of the theory apply only to measure algebras, and which can be extended
to other σ-complete Boolean algebras, like the algebraic theory of L0, or even to all Boolean algebras, like
the theory of L∞.

Here, then, are two of the objectives of this chapter: first, to express the ideas of Chapter 24 in ways
making explicit their independence of particular measure spaces, by setting up constructions based exclu-
sively on the measure algebras involved; second, to set out some natural generalizations to other algebras.
But to justify the effort needed I ought to point to some mathematically significant idea which demands
these constructions for its expression, and here I mention the categorical nature of the constructions. Be-
tween Boolean algebras we have a variety of natural and important classes of ‘morphism’; for instance,
the Boolean homomorphisms and the order-continuous Boolean homomorphisms; while between measure
algebras we have in addition the measure-preserving Boolean homomorphisms. Now it turns out that if
we construct the Lp spaces in the natural ways then morphisms between the underlying algebras give rise
to morphisms between their Lp spaces. For instance, any Boolean homomorphism from A to B produces
a multiplicative norm-contractive Riesz homomorphism from L∞(A) to L∞(B); if A and B are Dedekind
σ-complete, then any sequentially order-continuous Boolean homomorphism from A to B produces a se-
quentially order-continuous multiplicative Riesz homomorphism from L0(A) to L0(B); and if (A, µ̄) and
(B, ν̄) are measure algebras, then any measure-preserving Boolean homomorphism from A to B produces
norm-preserving Riesz homomorphisms from Lp(A, µ̄) to Lp(B, ν̄) for every p ∈ [1,∞]. All of these are
‘functors’, that is, a composition of homomorphisms between algebras gives rise to a composition of the
corresponding operators between their function spaces, and are ‘covariant’, that is, a homomorphism from
A to B leads to an operator from Lp(A) to Lp(B). But the same constructions lead us to a functor which
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2 Function spaces Chap. 36 intro.

is ‘contravariant’: starting from an order-continuous Boolean homomorphism from a semi-finite measure
algebra (A, µ̄) to a measure algebra (B, ν̄), we have an operator from L1(B, ν̄) to L1(A, µ̄). This last is in
fact a kind of conditional expectation operator. In my view it is not possible to make sense of the theory of
measure-preserving transformations without at least an intuitive grasp of these ideas.

Another theme is the characterization of each construction in terms of universal mapping theorems: for
instance, each Lp space, for 1 ≤ p ≤ ∞, can be characterized as Banach lattice in terms of factorizations of
functions of an appropriate class from the underlying algebra to Banach lattices.

Now let me try to sketch a route-map for the journey ahead. I begin with two sections on the space
S(A); this construction applies to any Boolean algebra (indeed, any Boolean ring), and corresponds to the
space of ‘simple functions’ on a measure space. Just because it is especially close to the algebra (or ring) A,
there is a particularly large number of universal mapping theorems corresponding to different aspects of its
structure (§361). In §362 I seek to relate ideas on additive functionals on Boolean algebras from Chapter
23 and §§326-327 to the theory of Riesz space duals in §356. I then turn to a systematic discussion of the
function spaces of Chapter 24: L∞ (§363), L0 (§364), L1 (§365) and other Lp (§366), followed by an account
of convergence in measure (§367). While all these sections are dominated by the objectives sketched in the
paragraphs above, I do include a few major theorems not covered by the ideas of Volume 2, such as the
Kelley-Nachbin characterization of the Banach spaces L∞(A) for Dedekind complete A (363R). In the last
two sections of the chapter I turn to the use of L0 spaces in the representation of Archimedean Riesz spaces
(§368) and of Banach lattices which are separated by their order-continuous duals (§369).

Version of 6.2.08

361 S

This is the fundamental Riesz space associated with a Boolean ring A. When A is a ring of sets, S(A)
can be regarded as the linear space of ‘simple functions’ generated by the indicator functions of members of
A (361L). Its most important property is the universal mapping theorem 361F, which establishes a one-to-
one correspondence between (finitely) additive functions on A (361B-361C) and linear operators on S(A).
Simple universal mapping theorems of this type can be interesting, but do not by themselves lead to new
insights; what makes this one important is the fact that S(A) has a canonical Riesz space structure, norm
and multiplication (361E). From this we can deduce universal mapping theorems for many other classes of
function (361G, 361H, 361I, 361Xb). (Particularly important are countably additive and completely additive
real-valued functionals, which will be dealt with in the next section.) While the exact construction of S(A)
(and the associated map from A to S(A)) can be varied (361D, 361L, 361M, 361Ya), its structure is uniquely
defined, so homomorphisms between Boolean rings correspond to maps between their S( )-spaces (361J),
and (when A is a Boolean algebra) A can be recovered from the Riesz space S(A) as the algebra of its
projection bands (361K).

361A Boolean rings In this section I speak of Boolean rings rather than algebras; there are ideas in §365
below which are more naturally expressed in terms of the ring of elements of finite measure in a measure
algebra than in terms of the whole algebra. I should perhaps therefore recall some of the ideas of §311,
which is the last time when Boolean rings without identity were mentioned, and set out some simple facts.

(a) Any Boolean ring A can be represented as the ring of compact open subsets of its Stone space Z,
which is a zero-dimensional locally compact Hausdorff space (311I); Z is just the set of surjective ring
homomorphisms from A onto Z2 (311E).

(b) If A and B are Boolean rings and π : A → B is a function, then the following are equiveridical: (i)
π is a ring homomorphism; (ii) π(a \ b) = πa \ πb for all a, b ∈ A; (iii) π is a lattice homomorphism and
π0 = 0. PPP See 312H. To prove (ii)⇒(iii), observe that if a, b ∈ A then

π(a ∩ b) = πa \ π(a \ b) = πa \ (πa \ πb) = πa ∩ πb,

πa = π((a ∪ b) ∩ a) = π(a ∪ b) ∩ πa ⊆ π(a ∪ b),

c© 1995 D. H. Fremlin
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π(b \ a) = π((a ∪ b) \ a) = π(a ∪ b) \ πa,

π(a ∪ b) = πa ∪ π(b \ a) = πa ∪ (πb \ πa) = πa ∪ πb. QQQ

(c) If A and B are Boolean rings and π : A → B is a ring homomorphism, then π is order-continuous
iff inf π[A] = 0 whenever A ⊆ A is non-empty and downwards-directed and inf A = 0 in A; while π is
sequentially order-continuous iff infn∈N πan = 0 whenever 〈an〉n∈N is a non-increasing sequence in A with
infimum 0. (See 313L.)

(d) The following will be a particularly important type of Boolean ring for us. If (A, µ̄) is a measure
algebra, then the ideal Af = {a : a ∈ A, µ̄a < ∞} is a Boolean ring in its own right. Now suppose that
(B, ν̄) is another measure algebra and Bf ⊆ B the corresponding ring of elements of finite measure. We
can say that a ring homomorphism π : Af → Bf is measure-preserving if ν̄πa = µ̄a for every a ∈ Af . In
this case π is order-continuous. PPP If A ⊆ Af is non-empty, downwards-directed and has infimum 0, then
infa∈A µ̄a = 0, by 321F; but this means that infa∈A ν̄πa = 0, and inf π[A] = 0 in Bf . QQQ

361B Definition Let A be a Boolean ring and U a linear space. A function ν : A → U is finitely
additive, or just additive, if ν(a ∪ b) = νa+ νb whenever a, b ∈ A and a ∩ b = 0.

361C Elementary facts We have the following immediate consequences of this definition, corresponding
to 326B and 313L. Let A be a Boolean ring, U a linear space and ν : A → U an additive function.

(a) ν0 = 0 (because ν0 = ν0 + ν0).

(b) If a0, . . . , am are disjoint in A, then ν(supj≤m aj) =
∑m
j=0 νaj . (Induce on m.)

(c) If B is another Boolean ring and π : B → A is a ring homomorphism, then νπ : B → U is additive.
In particular, if B is a subring of A, then ν↾B : B → U is additive.

(d) If V is another linear space and T : U → V is a linear operator, then Tν : A → V is additive.

(e) If U is a partially ordered linear space, then ν is order-preserving iff it is non-negative, that is, νa ≥ 0
for every a ∈ A. PPP (α) If ν is order-preserving, then of course 0 = ν0 ≤ νa for every a ∈ A. (β) If ν is
non-negative, and a ⊆ b in A, then

νa ≤ νa+ ν(b \ a) = νb. QQQ

(f) If U is a partially ordered linear space and ν is non-negative, then (i) ν is order-continuous iff
inf ν[A] = 0 whenever A ⊆ A is a non-empty downwards-directed set with infimum 0 (ii) ν is sequentially
order-continuous iff infn∈N νan = 0 whenever 〈an〉n∈N is a non-increasing sequence in A with infimum 0.

PPP(i) If ν is order-continuous, then of course inf ν[A] = ν0 = 0 whenever A ⊆ A is a non-empty downwards-
directed set with infimum 0. If ν satisfies the condition, and A ⊆ A is a non-empty upwards-directed set
with supremum c, then {c \ a : a ∈ A} is downwards-directed with infimum 0 (313Aa), so that

sup
a∈A

νa = sup
a∈A

νc− ν(c \ a) = νc− inf
a∈A

ν(c \ a)

(by 351Db)

= νc.

Similarly, if A ⊆ A is a non-empty downwards-directed set with infimum c, then

infa∈A νa = infa∈A νc+ ν(a \ c) = νc+ infa∈A ν(a \ c) = νc.

Putting these together, ν is order-continuous.

D.H.Fremlin
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(ii) If ν is sequentially order-continuous, then of course infn∈N νan = ν0 = 0 whenever 〈an〉n∈N is a
non-increasing sequence in A with infimum 0. If ν satisfies the condition, and 〈an〉n∈N is a non-decreasing
sequence in A with supremum c, then 〈c \ an〉n∈N is non-increasing and has infimum 0, so that

supn∈N νan = supn∈N νc− ν(c \ an) = νc− infn∈N ν(c \ an) = νc.

Similarly, if 〈an〉n∈N is a non-increasing sequence in A with infimum c, then 〈an \ c〉n∈N is non-increasing
and has infimum 0, so that

infn∈N νan = infn∈N νc+ ν(c \ an) = νc+ infn∈N ν(c \ an) = νc.

Thus ν is sequentially order-continuous. QQQ

361D Construction Let A be a Boolean ring, and Z its Stone space. For a ∈ A write χa for the
indicator function of the open-and-compact subset â of Z corresponding to a. Note that χa = 0 iff a = 0.
Let S(A) be the linear subspace of RZ generated by {χa : a ∈ A}. Because χa is a bounded function for
every a, S(A) is a subspace of the M -space ℓ∞(Z) of all bounded real-valued functions on Z (354Ha), and
‖ ‖∞ is a norm on S(A). Because χa× χb = χ(a ∩ b) for all a, b ∈ A (writing × for pointwise multiplication
of functions, as in 281B), S(A) is closed under ×.

361E I give a portmanteau proposition running through the elementary, mostly algebraic, properties of
S(A).

Proposition Let A be a Boolean ring, with Stone space Z. Write S for S(A).
(a) If a0, . . . , an ∈ A, there are disjoint b0, . . . , bm such that each ai is expressible as the supremum of

some of the bj .
(b) If u ∈ S, it is expressible in the form

∑m
j=0 βjχbj where b0, . . . , bm are disjoint members of A and

βj ∈ R for each j. If all the bj are non-zero then ‖u‖∞ = supj≤m |βj |.
(c) If u ∈ S is non-negative, it is expressible in the form

∑m
j=0 βjχbj where b0, . . . , bm are disjoint members

of A and βj ≥ 0 for each j, and simultaneously in the form
∑m
j=0 γjχcj where c0 ⊇ c1 ⊇ . . . ⊇ cm and γj ≥ 0

for every j.
(d) If u =

∑m
j=0 βjχbj where b0, . . . , bm are disjoint members of A and βj ∈ R for each j, then |u| =∑m

j=0 |βj |χbj ∈ S.

(e) S is a Riesz subspace of RZ ; in its own right, it is an Archimedean Riesz space. If A is a Boolean
algebra, then S has an order unit χ1 and ‖u‖∞ = min{α : α ≥ 0, |u| ≤ αχ1} for every u ∈ S.

(f) The map χ : A → S is injective, additive, non-negative, a lattice homomorphism and order-continuous.
(g) Suppose that u ≥ 0 in S and δ ≥ 0 in R. Then

[[u > δ]] = max{a : a ∈ A, (δ + η)χa ≤ u for some η > 0}
is defined in A, and

δχ[[u > δ]] ≤ u ≤ δχ[[u > 0]] ∨ ‖u‖∞[[u > δ]].

In particular, u ≤ ‖u‖∞χ[[u > 0]] and there is an η > 0 such that ηχ[[u > 0]] ≤ u. If u, v ≥ 0 in S then
u ∧ v = 0 iff [[u > 0]] ∩ [[v > 0]] = 0.

(h) Under ×, S is an f -algebra (352W) and a commutative normed algebra (2A4J).
(i) For any u ∈ S, u ≥ 0 iff u = v × v for some v ∈ S.

proof Write â for the open-and-compact subset of Z corresponding to a ∈ A.

(a) Induce on n. If n = 0 take m = 0, b0 = a0. For the inductive step to n ≥ 1, take disjoint
b0, . . . , bm such that ai is the supremum of some of the bj for each i < n; now replace b0, . . . , bm with
b0 ∩ an, . . . , bm ∩ an, b0 \ an, . . . , bm \ an, an \ supj≤m bj to obtain a suitable string for a0, . . . , an.

(b) If u = 0 set m = 0, b0 = 0, β0 = 0. Otherwise, express u as
∑n
i=0 αiχai where a0, . . . , an ∈ A

and α0, . . . , αn are real numbers. Let b0, . . . , bm be disjoint and such that every ai is expressible as the
supremum of some of the bj . Set γij = 1 if bj ⊆ ai, 0 otherwise, so that, because the bj are disjoint,
χai =

∑m
j=0 γijχbj for each i. Then

u =
∑n
i=0 αiχai =

∑n
i=0

∑m
j=0 αiγijχbj =

∑m
j=0 βjχbj ,
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setting βj =
∑n
i=0 αiγij for each j ≤ m.

The expression for ‖u‖∞ is now obvious.

(c)(i) If u ≥ 0 in (b), we must have βj = u(z) ≥ 0 whenever z ∈ b̂j , so that βj ≥ 0 whenever bj 6= 0;
consequently u =

∑m
j=0 |βj |χbj is in the required form.

(ii) If we suppose that every βj is non-negative, and rearrange the terms of the sum so that β0 ≤ . . . ≤
βm, then we may set γ0 = β0, γj = βj − βj−1 for 1 ≤ j ≤ m, cj = supi≥j bi to get

∑m
j=0 γjχcj =

∑m
j=0

∑m
i=j γjχbi =

∑m
i=0

∑i
j=0 γjχbi =

∑m
i=0 βiχbi = u.

(d) is trivial, because b̂0, . . . , b̂n are disjoint.

(e) By (d), |u| ∈ S for every u ∈ S, so S is a Riesz subspace of RZ , and in itself is an Archimedean Riesz
space. If A is a Boolean algebra, then χ1, the constant function with value 1, belongs to S, and is an order
unit of S; while

‖u‖∞ = min{α : α ≥ 0, |u(z)| ≤ α ∀ z ∈ Z} = min{α : α ≥ 0, |u| ≤ αχ1}
for every u ∈ S.

(f) χ is injective because â 6= b̂ whenever a 6= b. χ is additive because â ∩ b̂ = ∅ whenever a ∩ b = 0. Of
course χ is non-negative. It is a lattice homomorphism because a 7→ â : A → PZ and E 7→ χE : PZ → RZ

are. To see that ν is order-continuous, take a non-empty downwards-directed A ⊆ A with infimum 0. ???
Suppose, if possible, that {χa : a ∈ A} does not have infimum 0 in S. Then there is a u > 0 in S such that
u ≤ χa for every a ∈ A. Now u can be expressed as

∑m
j=0 βjχbj where b0, . . . , bm are disjoint. There must

be some z0 ∈ Z such that u(z0) > 0; take j such that z0 ∈ b̂j , so that bj 6= 0 and βj = u(z0) > 0. But now,

for any z ∈ b̂j , a ∈ A,

(χa)(z) ≥ u(z) = βj > 0

and z ∈ â. As z is arbitrary, b̂j ⊆ â and bj ⊆ a; as a is arbitrary, bj is a non-zero lower bound for A in A.
XXX So inf χ[A] = 0 in S. As A is arbitrary, χ is order-continuous, by the criterion of 361C(f-i).

(g) Express u as
∑m
j=0 βjχbj where b0, . . . , bm are disjoint and every βj ≥ 0. Then given δ ≥ 0, η > 0

and a ∈ A we have (δ+ η)χa ≤ u iff a ⊆ sup{bj : j ≤ m, βj ≥ δ+ η}. So [[u > δ]] = sup{bj : j ≤ m, βj > δ}.
Writing c = [[u > δ]], d = [[u > 0]] = sup{bj : βj > 0}, we have

u(z) ≤ ‖u‖∞ if z ∈ ĉ,

≤ δ if z ∈ d̂ \ ĉ,
= 0 if z ∈ Z \ d̂.

So

δχc ≤ u ≤ ‖u‖∞χc ∨ δχd,

as claimed. Taking δ = 0 we get u ≤ ‖u‖∞χd. Set

η = min({1} ∪ {βj : j ≤ m, βj > 0});

then η > 0 and ηχd ≤ u.

If u, v ∈ S+ take η, η′ > 0 such that

ηχ[[u > 0]] ≤ u, η′χ[[v > 0]] ≤ v.

Then

min(η, η′)χ([[u > 0]] ∩ [[v > 0]]) ≤ u ∧ v ≤ max(‖u‖∞, ‖v‖∞)χ([[u > 0]] ∩ [[v > 0]]).

So

u ∧ v = 0 =⇒ [[u > 0]] ∩ [[v > 0]] = 0 =⇒ u ∧ v = 0.

D.H.Fremlin



6 Function spaces 361E

(h) S is a commutative f -algebra and normed algebra just because it is a Riesz subspace of the f -algebra
and commutative normed algebra ℓ∞(Z) and is closed under multiplication.

(i) If u =
∑m
j=0 βjχbj where b0, . . . , bm are disjoint and βj ≥ 0 for every j, then u = v × v where

v =
∑m
j=0

√
βjχbj .

361F I now turn to the universal mapping theorems which really define the construction.

Theorem Let A be a Boolean ring, and U any linear space. Then there is a one-to-one correspondence
between additive functions ν : A → U and linear operators T : S(A) → U , given by the formula ν = Tχ.

proof (a) The core of the proof is the following observation. Let ν : A → U be additive. If a0, . . . , an ∈ A

and α0, . . . , αn ∈ R are such that
∑n
i=0 αiχai = 0 in S = S(A), then

∑n
i=0 αiνai = 0 in U . PPP By 361Ea,

we can find disjoint b0, . . . , bm such that each ai is the supremum of some of the bj ; set γij = 1 if bj ⊆ ai, 0
otherwise, so that χai =

∑m
j=0 γijχbj and νai =

∑m
j=0 γijνbj for each i. Set βj =

∑n
i=0 αiγij for each j, so

that

0 =
∑n
i=0 αiχai =

∑m
j=0 βjχbj .

Now βjνbj = 0 in U for each j, because either bj = 0 and νbj = 0, or there is some z ∈ b̂j so that βj must
be 0. Accordingly

0 =
∑m
j=0 βjνbj =

∑m
j=0

∑n
i=0 αiγijνbj =

∑n
i=0 αiνai. QQQ

(b) It follows that if u ∈ S is expressible simultaneously as
∑n
i=0 αiχai =

∑m
j=0 βjχbj , then

∑n
i=0 αiχai +

∑m
j=0(−βj)χbj = 0 in S,

so that
∑n
i=0 αiνai +

∑m
j=0(−βj)νbj = 0 in U ,

and
∑n
i=0 αiνai =

∑m
j=0 βjνbj .

We can therefore define T : S → U by setting

T (
∑n
i=0 αiχai) =

∑n
i=0 αiνai

whenever a0, . . . , an ∈ A and α0, . . . , αn ∈ R.

(c) It is now elementary to check that T is linear, and that Tχa = νa for every a ∈ A. Of course this
last condition uniquely defines T , because {χa : a ∈ A} spans the linear space S.

361G Theorem Let A be a Boolean ring, and U a partially ordered linear space. Let ν : A → U be an
additive function, and T : S(A) → U the corresponding linear operator.

(a) ν is non-negative iff T is positive.
(b) In this case,

(i) if T is order-continuous or sequentially order-continuous, so is ν;
(ii) if U is Archimedean and ν is order-continuous or sequentially order-continuous, so is T .

(c) If U is a Riesz space, then the following are equiveridical:
(i) T is a Riesz homomorphism;
(ii) νa ∧ νb = 0 in U whenever a ∩ b = 0 in A;
(iii) ν is a lattice homomorphism.

proof Write S for S(A).

(a) If T is positive, then surely νa = Tχa ≥ 0 for every a ∈ A, so ν = Tχ is non-negative. If ν is
non-negative, and u ≥ 0 in S, then u is expressible as

∑m
j=0 βjχbj where b0, . . . , bm ∈ A and βj ≥ 0 for

every j (361Ec), so that

Tu =
∑m
j=0 βjνbj ≥ 0.
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Thus T is positive.

(b)(i) If T is order-continuous (resp. sequentially order-continuous) then ν = Tχ is the composition of
two order-continuous (resp. sequentially order-continuous) functions (361Ef), so must be order-continuous
(resp. sequentially order-continuous).

(ii) Assume now that U is Archimedean.

(ααα) Suppose that ν is order-continuous and that A ⊆ S is non-empty, downwards-directed and has
infimum 0. Fix u0 ∈ A, set α = ‖u‖∞ and a0 = [[u > 0]] (in the language of 361Eg). If α = 0 then of course
infu∈A Tu = Tu0 = 0. Otherwise, take any w ∈ U such that w 6≤ 0. Then there is some δ > 0 such that
w 6≤ δνa0, because U is Archimedean. Set A′ = {u : u ∈ A, u ≤ u0}; because A is downwards-directed,
A′ has the same lower bounds as A, and inf A′ = 0, while A′ is still downwards-directed. For u ∈ A′ set
cu = [[u > δ]], so that

δχcu ≤ u ≤ αχcu + δχ[[u > 0]] ≤ αχcu + δχa0

(361Eg). If u, v ∈ A′ and u ≤ v, then cu ⊆ cv, so C = {cu : u ∈ A′} is downwards-directed; but if c is any
lower bound for C in A, δχc is a lower bound for A′ in S, so is zero, and c = 0 in A. Thus inf C = 0 in A,
and infu∈A′ νcu = 0 in U . But this means, in particular, that 1

α (w − δνa0) is not a lower bound for ν[C],

and there is some u ∈ A′ such that 1
α (w− δνa0) 6≤ νcu, that is, w− δνa0 6≤ ανcu, that is, w 6≤ δνa0 +ανcu.

As u ≤ αχcu + δχa0,

Tu ≤ T (αχcu + δχa0) = ανcu + δνa0,

and w 6≤ Tu. Since w is arbitrary, this means that 0 = inf T [A]; as A is arbitrary, T is order-continuous.

(βββ) The argument for sequential order-continuity is essentially the same. Suppose that ν is se-
quentially order-continuous and that 〈un〉n∈N is a non-increasing sequence in S with infimum 0. Again set
α = ‖u0‖, a0 = [[u0 > 0]]; again we may suppose that α > 0; again take any w ∈ U such that w 6≤ 0. As
before, there is some δ > 0 such that w 6≤ δνa0. For n ∈ N set cn = [[un > δ]], so that

δχcn ≤ un ≤ αχcn + δχa0.

The sequence 〈cn〉n∈N is non-increasing because 〈un〉n∈N is, and if c ⊆ cn for every n, then δχc ≤ un for
every n, so is zero, and c = 0 in A. Thus infn∈N cn = 0 in A, and infn∈N νcn = 0 in U , because ν is
sequentially order-continuous. Replacing A′, C in the argument above by {un : n ∈ N}, {cn : n ∈ N} we
find an n such that w 6≤ Tun. Since w is arbitrary, this means that 0 = infn∈N Tun; as 〈un〉n∈N is arbitrary,
T is sequentially order-continuous.

(c)(i)⇒(iii) If T : S(A) → U is a Riesz homomorphism, and ν = Tχ, then surely ν is a lattice homo-
morphism because T and χ are.

(iii)⇒(ii) is trivial.

(ii)⇒(i) If νa ∧ νb = 0 whenever a ∩ b = 0, then for any u ∈ S(A) we have an expression of u as∑m
j=0 βjχbj , where b0, . . . , bm ∈ A are disjoint. Now

|Tu| = |∑m
j=0 βjνbj | =

∑m
j=0 |βj |νbj = T (

∑m
j=0 |βj |χbj) = T (|u|)

by 352Fb and 361Ed. As u is arbitrary, T is a Riesz homomorphism (352G).

361H Theorem Let A be a Boolean ring and U a Dedekind complete Riesz space. Suppose that
ν : A → U is an additive function and T : S = S(A) → U is the corresponding linear operator. Then
T ∈ L

∼ = L
∼(S;U) iff {νb : b ⊆ a} is order-bounded in U for every a ∈ A, and in this case |T | ∈ L

∼

corresponds to |ν| : A → U , defined by setting

|ν|(a) = sup{
n∑

j=0

|νai| : a0, . . . , an ⊆ a are disjoint}

= sup{νb− ν(a \ b) : b ⊆ a}
for every a ∈ A.

D.H.Fremlin
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proof (a) Suppose that T ∈ L
∼ and a ∈ A. Then for any b ⊆ a, we have χb ≤ χa so

|νb| = |Tχb| ≤ |T |(χa).

Accordingly {νb : b ⊆ a} is order-bounded in U .

(b) Now suppose that {νb : b ⊆ a} is order-bounded in U for every a ∈ A. Then for any a ∈ A we can
define wa = sup{|νb| : b ⊆ a}; in this case, νb− ν(a \ b) ≤ 2wa whenever b ⊆ a, so θa = supb⊆a νb− ν(a \ b)
is defined in U . Considering b = a, b = 0 we see that θa ≥ |νa|. Next, θ : A → U is additive. PPP Take a1,
a2 ∈ A such that a1 ∩ a2 = 0; set a0 = a1 ∪ a2. For each j ≤ 2 set

Aj = {ν(aj ∩ b) − ν(aj \ b) : b ∈ A} ⊆ U .

Then A0 ⊆ A1 +A2, because

ν(a0 ∩ b) − ν(a0 \ b) = ν(a1 ∩ b) − ν(a1 \ b) + ν(a2 ∩ b) − ν(a2 \ b)

for every b ∈ A. But also A1 +A2 ⊆ A0, because if b1, b2 ∈ A then

ν(a1 ∩ b1) − ν(a1 \ b1) + ν(a2 ∩ b2) − ν(a2 \ b2) = ν(a0 ∩ b) − ν(a0 \ b)

where b = (a1 ∩ b1) ∪ (a2 ∩ b2). So A0 = A1 +A2, and

θa0 = supA0 = supA1 + supA2 = θa1 + θa2

(351Dc). QQQ
We therefore have a corresponding positive operator T1 : S → U such that θ = T1χ. But we also see that

θa = sup{∑n
i=0 |νai| : a0, . . . , an ⊆ a are disjoint} for every a ∈ A. PPP If a0, . . . , an are disjoint and included

in a, then
∑n
i=0 |νai| ≤

∑n
i=0 θai = θ(supi≤n ai) ≤ θa.

On the other hand,

θa ≤ supb⊆a |νb| + |ν(a \ b)| ≤ sup{∑n
i=0 |νai| : a0, . . . , an ⊆ a are disjoint}. QQQ

It follows that T ∈ L
∼. PPP Take any u ≥ 0 in S. Set a = [[u > 0]] (361Eg) and α = ‖u‖∞. If 0 < |v| ≤ u,

then v is expressible as
∑n
i=0 αiχai where a0, . . . , an are disjoint and no αi nor ai is zero. Since |v| ≤ αχa,

we must have |αi| ≤ α, ai ⊆ a for each i. So

|Tv| = |∑n
i=0 αiνai| ≤

∑n
i=0 |αi||νai| ≤ α

∑n
i=0 |νai| ≤ αθa.

Thus {|Tv| : |v| ≤ u} is bounded above by αθa. As u is arbitrary, T ∈ L
∼. QQQ

(c) Thus T ∈ L
∼ iff ν is order-bounded on the sets {b : b ⊆ a}, and in this case the two formulae offered

for |ν| are consistent and make |ν| = θ. Finally, θ = |T |χ. PPP Take a ∈ A. If a0, . . . , an ⊆ a are disjoint,
then

∑n
i=0 |νai| =

∑n
i=0 |Tχai| ≤

∑n
i=0 |T |(χai) ≤ |T |(χa);

so θa ≤ |T |(χa). On the other hand, the argument at the end of (b) above shows that |T |(χa) ≤ θa for
every a. Thus |T |(χa) = θa for every a ∈ A, as required. QQQ

361I Theorem Let A be a Boolean ring, U a normed space and ν : A → U an additive function. Give
S = S(A) its norm ‖ ‖∞, and let T : S → U be the linear operator corresponding to ν. Then T is a bounded
linear operator iff {νa : a ∈ A} is bounded, and in this case ‖T‖ = supa,b∈A ‖νa− νb‖.

proof (a) If T is bounded, then

‖νa− νb‖ = ‖T (χa− χb)‖ ≤ ‖T‖‖χa− χb‖∞ ≤ ‖T‖
for every a ∈ A, so ν is bounded and supa,b∈A ‖νa− νb‖ ≤ ‖T‖.

(b)(i) For the converse, we need a refinement of an idea in 361Ec. If u ∈ S and u ≥ 0 and ‖u‖∞ ≤ 1,
then u is expressible as

∑m
i=0 γiχci where γi ≥ 0 and

∑m
i=0 γi = 1. PPP If u = 0, take n = 0, c0 = 0, γ0 = 1.

Otherwise, start from an expression u =
∑n
j=0 γjχcj where c0 ⊇ . . . ⊇ cn and every γj is non-negative, as in

361Ec. We may suppose that cn 6= 0, in which case

Measure Theory
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∑n
j=0 γj = u(z) ≤ 1

for every z ∈ ĉn ⊆ Z, the Stone space of A. Set m = n+1, cm = 0 and γm = 1−∑n
j=0 γj to get the required

form. QQQ

(ii) The next fact we need is an elementary property of real numbers: if γ0, . . . , γm, γ′0, . . . , γ
′
n ≥ 0

and
∑m
i=0 γi =

∑n
j=0 γ

′
j , then there are δij ≥ 0 such that γi =

∑n
j=0 δij for every i ≤ m and γ′j =

∑m
i=0 δij

for every j ≤ n. PPP This is just the case U = R of 352Fd. QQQ

(iii) Now suppose that ν is bounded; set α0 = supa∈A ‖νa‖ <∞. Then

α = supa,b∈A ‖νa− νb‖ ≤ 2α0

is also finite. If u ∈ S and ‖u‖∞ ≤ 1, then we can express u as u+ − u− where u+, u− are non-negative and
also of norm at most 1. By (i), we can express these as

u+ =
∑m
i=0 γiχci, u− =

∑n
j=0 γ

′
jχc

′
j

where all the γi, γ
′
j are non-negative and

∑m
i=0 γi =

∑n
j=0 γ

′
j = 1. Take 〈δij〉i≤m,j≤n from (ii). Set cij = ci,

c′ij = c′j for all i, j, so that

u+ =
∑m
i=0

∑n
j=0 δijχcij , u− =

∑m
i=0

∑n
j=0 δijχc

′
ij ,

u =
∑m
i=0

∑n
j=0 δij(χcij − χc′ij),

Tu =
∑m
i=0

∑n
j=0 δij(νcij − νc′ij),

‖Tu‖ ≤ ∑m
i=0

∑n
j=0 δij‖νcij − νc′ij‖ ≤ ∑m

i=0

∑n
j=0 δijα = α.

As u is arbitrary, T is a bounded linear operator and ‖T‖ ≤ α, as required.

361J The last few paragraphs describe the properties of S(A) in terms of universal mapping theorems.
The next theorem looks at the construction as a functor which converts Boolean algebras into Riesz spaces
and ring homomorphisms into Riesz homomorphisms.

Theorem Let A and B be Boolean rings and π : A → B a ring homomorphism.
(a) We have a Riesz homomorphism Tπ : S(A) → S(B) given by the formula

Tπ(χa) = χ(πa) for every a ∈ A.

For any u ∈ S(A), ‖Tπu‖∞ = min{‖u′‖∞ : u′ ∈ S(A), Tπu
′ = Tπu}; in particular, ‖Tπu‖∞ ≤ ‖u‖∞.

Moreover, Tπ(u× u′) = Tπu× Tπu
′ for all u, u′ ∈ S(A).

(b) Tπ is surjective iff π is surjective, and in this case ‖v‖∞ = min{‖u‖∞ : u ∈ S(A), Tπu = v} for every
v ∈ S(B).

(c) The kernel of Tπ is just the set of those u ∈ S(A) such that π[[|u| > 0]] = 0, defining [[. . . > . . . ]] as in
361Eg.

(d) Tπ is injective iff π is injective, and in this case ‖Tπu‖∞ = ‖u‖∞ for every u ∈ S(A).
(e) Tπ is order-continuous iff π is order-continuous.
(f) Tπ is sequentially order-continuous iff π is sequentially order-continuous.
(g) If C is another Boolean ring and φ : B → C is another ring homomorphism, then Tφπ = TφTπ :

S(A) → S(C).

proof (a) The map χπ : A → S(B) is additive (361Cc), so corresponds to a linear operator T = Tπ : S(A) →
S(B), by 361F. χ and π are both lattice homomorphisms, so χπ also is, and T is a Riesz homomorphism
(361Gc). If u =

∑n
i=0 αiχai, where a0, . . . , an are disjoint, then look at I = {i : i ≤ n, πai 6= 0}. We have

Tu =
∑n
i=0 αiχ(πai) =

∑
i∈I αiχ(πai)

and πa0, . . . , πan are disjoint, so that

‖Tu‖∞ = supi∈I |αi| = ‖u′‖∞ ≤ supai 6=0 |αi| ≤ ‖u‖∞,

where u′ =
∑
i∈I αiχai, so that Tu′ = Tu. If a, a′ ∈ A, then

D.H.Fremlin
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T (χa× χa′) = Tχ(a ∩ a′) = χπ(a ∩ a′) = χπa× χπa′ = Tχa× Tχa′,

so T is multiplicative.

(b) If π is surjective, then T [S(A)] must be the linear span of

{T (χa) : a ∈ A} = {χ(πa) : a ∈ A} = {χb : b ∈ B},

so is the whole of S(B). If T is surjective, and b ∈ B, then there must be a u ∈ A such that Tu = χb. We
can express u as

∑n
i=0 αiχai where a0, . . . , an are disjoint; now

χb = Tu =
∑n
i=0 αiχ(πai),

and πa0, . . . , πan are disjoint in B, so we must have

b = supi∈I πai = π(supi∈I ai) ∈ π[A],

where I = {i : αi = 1}. As b is arbitrary, π is surjective. Of course the formula for ‖v‖∞ is a consequence
of the formula for ‖Tu‖∞ in (a).

(c)(i) If π[[|u| > 0]] = 0 then |u| ≤ αχa, where α = ‖u‖∞, and a = [[|u| > 0]], so

|Tu| = T |u| ≤ αT (χa) = αχ(πa) = 0,

and Tu = 0.

(ii) If u ∈ S(A) and Tu = 0, express u as
∑n
i=0 αiχai where a0, . . . , an are disjoint and every αi is

non-zero (361Eb). In this case

0 = |Tu| = T |u| =
∑n
i=0 |αi|χ(πai),

so πai = 0 for every i, and

π[[|u| > 0]] = π(supi≤n ai) = supi≤n πai = 0.

(d) If T is injective and a ∈ A \ {0}, then χ(πa) = T (χa) 6= 0, so πa 6= 0; as a is arbitrary, π is injective.
If π is injective then π[[|u| > 0]] 6= 0 for every non-zero u ∈ S(A), so T is injective, by (c). In this case the
formula in (a) shows that T is norm-preserving.

(e)(i) If T is order-continuous and A ⊆ A is a non-empty downwards-directed set with infimum 0 in A,
let b be any lower bound for π[A] in B. Then

χb ≤ χ(πa) = T (χa)

for any a ∈ A. But Tχ is order-continuous, by 361Ef, so infa∈A T (χa) = 0, and b must be 0. As b is
arbitrary, infa∈A πa = 0; as A is arbitrary, π is order-continuous.

(ii) If π is order-continuous, so is χπ : A → S(B), using 361Ef again; but now by 361G(b-ii) T must
be order-continuous.

(f)(i) If T is sequentially order-continuous, and 〈an〉n∈N is a non-increasing sequence in A with infimum
0, let b be any lower bound for {πan : n ∈ N} in B. Then

χb ≤ χ(πan) = T (χan)

for any a ∈ A. But Tχ is sequentially order-continuous so infn∈N T (χan) = 0, and b must be 0. As b is
arbitrary, infn∈N πan = 0; as A is arbitrary, π is sequentially order-continuous.

(ii) If π is sequentially order-continuous, so is χπ : A → S(B); but now T must be sequentially
order-continuous.

(g) We need only check that

Tφπ(χa) = χ(φ(πa)) = Tφ(χ(πa)) = TφTπ(χa)

for every a ∈ A.

361K Proposition Let A be a Boolean algebra. For a ∈ A write Va for the solid linear subspace of S(A)
generated by χa. Then a 7→ Va is a Boolean isomorphism between A and the algebra of projection bands in
S(A).
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proof Write S for S(A).

(a) The point is that, for any a ∈ A,
(i) |u| ∧ |v| = 0 whenever u ∈ Va, v ∈ V1\a,
(ii) Va + V1\a = S.

PPP (i) is just because χa ∧ χ(1 \ a) = 0. As for (ii), if w ∈ S then

w = (w × χa) + (w × χ(1 \ a)) ∈ Va + V1\a. QQQ

(b) Accordingly Va + V ⊥
a ⊇ Va + V1\a = S and Va is a projection band (352R). Next, any projection

band U ⊆ S is of the form Va. PPP We know that χ1 = u+ v where u ∈ U , v ∈ U⊥. Since |u| ∧ |v| = 0, u and
v must be the indicator functions of complementary subsets of Z, the Stone space of A. But {z : u(z) 6=
0} = {z : u(z) ≥ 1} must be of the form â, where a = [[u > 0]], in which case u = χa and v = χ(1 \ a).
Accordingly U ⊇ Va and U⊥ ⊇ V1\a. But this means that U must be Va precisely. QQQ

(c) Thus a 7→ Va is a surjective function from A onto the algebra of projection bands in S. Now

a ⊆ b ⇐⇒ χa ∈ Vb ⇐⇒ Va ⊆ Vb,

so a 7→ Va is order-preserving and bijective. By 312M it is a Boolean isomorphism.

361L Proposition Let X be a set, and Σ a ring of subsets of X, that is, a subring of the Boolean ring
PX. Then S(Σ) can be identified, as ordered linear space, with the linear subspace of ℓ∞(X) generated by
the indicator functions of members of Σ, which is a Riesz subspace of ℓ∞(X). The norm of S(Σ) corresponds
to the uniform norm on ℓ∞(X), and its multiplication to pointwise multiplication of functions.

proof Let Z be the Stone space of Σ, and for E ∈ Σ write χE for the indicator function of E as a subset
of X, χ̂E for the indicator function of the open-and-compact subset of Z corresponding to E. Of course
χ : Σ → ℓ∞(X) is additive, so by 361F there is a linear operator T : S → ℓ∞(X), writing S for S(Σ), such
that T (χ̂E) = χE for every E ∈ Σ.

If u ∈ S, Tu ≥ 0 iff u ≥ 0. PPP Express u as
∑m
j=0 βjχ̂Ej where E0, . . . , Em are disjoint. Then

Tu =
∑m
j=0 βjχEj , so

u ≥ 0 ⇐⇒ βj ≥ 0 whenever Ej 6= ∅ ⇐⇒ Tu ≥ 0. QQQ

But this means (α) that

Tu = 0 ⇐⇒ Tu ≥ 0 & T (−u) ≥ 0 ⇐⇒ u ≥ 0 & − u ≥ 0 ⇐⇒ u = 0,

so that T is injective and is a linear space isomorphism between S and its image S, which must be the linear
space spanned by {χE : E ∈ Σ} (β) that T is an order-isomorphism between S and S.

Because χE ∧ χF = 0 whenever E, F ∈ Σ and E ∩ F = ∅, T is a Riesz homomorphism and S is a Riesz
subspace of ℓ∞(X) (361Gc). Now

‖u‖∞ = inf{α : |u| ≤ αχ̂X} = inf{α : |Tu| ≤ αχX} = ‖Tu‖∞
for every u ∈ S. Finally,

T (χ̂E × χ̂F ) = T (χ̂(E ∩ F )) = χ(E ∩ F ) = T (χ̂E) × T (χ̂F )

for all E, F ∈ Σ, so S is closed under pointwise multiplication and the multiplications of S, S are identified
by T .

361M Proposition Let X be a set, Σ a ring of subsets of X, and I an ideal of Σ; write A for the
quotient ring Σ/I. Let S be the linear span of {χE : E ∈ Σ} in RX , and write

V = {f : f ∈ S, {x : f(x) 6= 0} ∈ I}.

Then V is a solid linear subspace of S. Now S(A) becomes identified with the quotient Riesz space S/V , if
for every E ∈ Σ we identify χ(E•) ∈ S(A) with (χE)• ∈ S/V . If we give S its uniform norm inherited from
ℓ∞(X), V is a closed linear subspace of S, and the quotient norm on S/V corresponds to the norm of S(A):

‖f•‖ = min{α : {x : |f(x)| > α} ∈ I}.
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If we write × for pointwise multiplication on S, then V is an ideal of the ring (S,+,×), and the multiplication
induced on S/V corresponds to the multiplication of S(A).

proof Use 361J and 361L. We can identify S with S(Σ). Now the canonical ring homomorphism E 7→ E•

corresponds to a surjective Riesz homomorphism T from S(Σ) to S(A) which takes χE to χ(E•). For f ∈ S,
[[|f | > 0]] is just {x : f(x) 6= 0}, so the kernel of T is just the set of those f ∈ S such that {x : f(x) 6= 0} ∈ I,
which is V . So

S(A) = T [S] ∼= S/V .

As noted in 361Ja, T (f × g) = Tf × Tg for all f , g ∈ S, so the multiplications of S/V and S(A) match.
As for the norms, the norm of S(A) corresponds to the norm of S/V by the formulae in 361Ja or 361Jb. To
see that V is closed in S, we need note only that if f ∈ V then

‖Tf‖∞ = infg∈V ‖f + g‖∞ = infg∈V ‖f − g‖∞ = 0,

so that Tf = 0 and f ∈ V . To check the formula for ‖f•‖, take any f ∈ S. Express it as
∑n
i=0 αiχEi where

E0, . . . , En ∈ Σ are disjoint. Set I = {i : Ei /∈ I}; then

‖Tf‖∞ = maxi∈I |αi| = min{α : {x : |f(x)| > α} ∈ I}.

361X Basic exercises (a) Let A be a Boolean ring and U a linear space. Show that a function ν : A → U
is additive iff ν0 = 0 and ν(a ∪ b) + ν(a ∩ b) = νa+ νb for all a, b ∈ A.

>>>(b) Let U be an algebra over R, that is, a real linear space endowed with a multiplication × such
that (U,+,×) is a ring and α(w × z) = (αw) × z = w × (αz) for all w, z ∈ U and all α ∈ R. Let A be a
Boolean ring, ν : A → U an additive function and T : S(A) → U the corresponding linear operator. Show
that T is multiplicative iff ν(a ∩ b) = νa× νb for all a, b ∈ A.

>>>(c) Let A be a Boolean ring, and U a Dedekind complete Riesz space. Suppose that ν : A → U is an
additive function such that the corresponding linear operator T : S(A) → U belongs to L

∼ = L
∼(S(A);U).

Show that T+ ∈ L
∼ corresponds to ν+ : A → U , where ν+a = supb⊆a νb for every a ∈ A.

(d) Let A and B be Boolean algebras. Show that there is a natural one-to-one correspondence between
Boolean homomorphisms π : A → B and Riesz homomorphisms T : S(A) → S(B) such that T (χ1A) = χ1B,
given by setting T (χa) = χ(πa) for every a ∈ A.

(e) Let A, B be Boolean rings and T : S(A) → S(B) a linear operator such that T (u× v) = Tu×Tv for
all u, v ∈ S(A). Show that there is a ring homomorphism π : A → B such that T (χa) = χ(πa) for every
a ∈ A.

(f) Let A and B be Boolean rings. Show that any isomorphism of the algebras S(A) and S(B) (using
the word ‘algebra’ in the sense of 361Xb) must be a Riesz space isomorphism, and therefore corresponds to
an isomorphism between A and B.

(g) Let A, B be Boolean algebras and T : S(A) → S(B) a Riesz homomorphism. Show that there are a
ring homomorphism π : A → B and a non-negative v ∈ S(B) such that T (χa) = v× χ(πa) for every a ∈ A.

(h) Let A be a Boolean algebra, π : A → A a Boolean homomorphism and Tπ : S(A) → S(A) the
associated Riesz homomorphism. Let C be the fixed-point subalgebra of π (312K). Show that S(C) may
be identified with the linear subspace of S(A) generated by {χc : c ∈ C}, and that this is {u : u ∈ S(A),
Tπu = u}.

(i) Let A be a Boolean ring. Show that for any u ∈ S(A) the solid linear subspace of S(A) generated by
u is a projection band in S(A). Show that the set of such bands is an ideal in the algebra of all projection
bands, and is isomorphic to A.

>>>(j) Let X be a set and Σ a σ-algebra of subsets of X. Show that the linear span S in RX of {χE : E ∈ Σ}
is just the set of Σ-measurable functions f : X → R which take only finitely many values.
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(k) For any Boolean ring A, we may define its ‘complex S-space’ SC(A) as the linear span in CZ of
the indicator functions of open-and-compact subsets of the Stone space Z of A. State and prove results
corresponding to 361Eb, 361Ed, 361Eh, 361F, 361L and 361M.

(l) Let A be a Boolean algebra, U a partially ordered linear space and ν : A → U a non-negative additive
function. (i) Show that ν is order-continuous iff ν1 = supJ⊆I is finite

∑
i∈J νai whenever 〈ai〉i∈I is a partition

of unity in U . (i) Show that ν is order-continuous iff ν1 = supn∈N

∑n
i=0 νai whenever 〈ai〉i∈N is a partition

of unity in U .

361Y Further exercises (a) Let A be a Boolean ring. For a ∈ A let ea ∈ RA be the function such
that ea(a) = 1, ea(b) = 0 for b ∈ A \ {a}; let V be the linear subspace of RA generated by {ea : a ∈ A}.
Let W ⊆ V be the linear subspace spanned by members of V of the form ea∪b − ea − eb where a, b ∈ A are
disjoint. Define χ′ : A → V/W by taking χ′a = e•a to be the image in V/W of ea ∈ V . Show, without using
the axiom of choice, that the pair (V/W,χ′) has the universal mapping property of (S(A), χ) as described
in 361F and that V/W has a Riesz space structure, a norm and a multiplicative structure as described in
361D-361E. Prove results corresponding to 361E-361M.

(b) Let 〈Ai〉i∈I be a non-empty family of Boolean algebras, with free product A; write εi : Ai → A for
the canonical maps, and

C = {infj∈J εj(aj) : J ⊆ I is finite, aj ∈ Aj for every j ∈ J}.

Suppose that U is a linear space and θ : C → U is such that

θc = θ(c ∩ εi(a)) + θ(c ∩ εi(1 \ a))

whenever c ∈ C, i ∈ I and a ∈ Ai. Show that there is a unique additive function ν : A → U extending θ.
(Hint : 326E.)

(c) Let A be a Boolean ring and U a Dedekind complete Riesz space. Let A ⊆ L
∼ = L

∼(S(A);U) be a

non-empty set. Suppose that T̃ = supA is defined in L
∼, and that ν̃ = T̃ χ. Show that for any a ∈ A,

ν̃a = sup{∑n
i=0 Ti(χai) : T0, . . . , Tn ∈ A, a0, . . . , an ⊆ a are disjoint, supi≤n ai = a}.

(d) Let A be a Boolean algebra. Show that the algebra of all bands of S(A) can be identified with the
Dedekind completion of A (314U).

(e) Let A be a Boolean ring, and U a complex normed space. Let ν : A → U be an additive function
and T : SC(A) → U the corresponding linear operator (cf. 361Xk). Show that (giving SC(A) its usual norm
‖ ‖∞)

‖T‖ = sup{‖∑n
j=0 ζjνaj‖ : a0, . . . , an ∈ A are disjoint, |ζj | = 1 for every j}

if either is finite.

(f) Let U be a Riesz space. Show that it is isomorphic to S(A), for some Boolean algebra A, iff it has an
order unit and every solid linear subspace of U is a projection band.

361 Notes and comments The space S(A) corresponds of course to the idea of ‘simple function’ which
belongs to the very beginnings of the theory of integration (122A). All that 361D is trying to do is to set up
a logically sound description of this obvious concept which can be derived from the Boolean ring A itself. To
my eye, there is a defect in the construction there. It relies on the axiom of choice, since it uses the Stone
space; but none of the elementary properties of S(A) have anything to do with the axiom of choice. In 361Ya
I offer an alternative construction which is in a formal sense more ‘elementary’. If you work through the
suggestion there you will find, however, that the technical details become significantly more complicated, and
would be intolerable were it not for the intuition provided by the Stone space construction. Of course this
intuition is chiefly valuable in the finitistic arguments used in 361E, 361F and 361I; and for these arguments
we really need the Stone representation only for finite Boolean rings, which does not depend on the axiom
of choice.
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14 Function spaces 361 Notes

It is quite true that in most of this volume (and in most of this chapter) I use the axiom of choice without
scruple and without comment. I mention it here only because I find myself using arguments dependent on
choice to prove theorems of a type to which the axiom cannot be relevant.

The linear space structure of S(A), together with the map χ, are uniquely determined by the first universal
mapping theorem here, 361F. This result says nothing about the order structure, which needs the further
refinement in 361Ga. What is striking is that the partial order defined by 361Ga is actually a lattice ordering,
so that we can have a universal mapping theorem for functions to Riesz spaces, as in 361Gc and 361Ja.
Moreover, the same ordering provides a happy abundance of results concerning order-continuous functions
(361Gb, 361Je-361Jf). When the codomain is a Dedekind complete Riesz space, so that we have a Riesz
space L

∼(S;U), and a corresponding modulus function T 7→ |T | for linear operators, there are reasonably
natural formulae for |T |χ in terms of Tχ (361H); see also 361Xc and 361Yc. The multiplicative structure
of S(A) is defined by 361Xb, and its norm by 361I.

The Boolean ring A cannot be recovered from the linear space structure of S(A) alone (since this tells us
only the cardinality of A), but if we add either the ordering or the multiplication of S(A) then A is easy to
identify (361K, 361Xf).

The most important Boolean algebras of measure theory arise either as algebras of sets or as their
quotients, so it is a welcome fact that in such cases the spaces S(A) have straightforward representations in
terms of the construction of A (361L-361M).

In Chapter 24 I offered a paragraph in each section to sketch a version of the theory based on the field of
complex numbers rather than the field of real numbers. This was because so many of the most important
applications of these ideas involve complex numbers, even though (in my view) the ideas themselves are
most clearly and characteristically expressed in terms of real numbers. In the present chapter we are one
step farther away from these applications, and I therefore relegate complex numbers to the exercises, as in
361Xk and 361Ye.

Version of 31.12.10

362 S∼

The next stage in our journey is the systematic investigation of linear functionals on spaces S = S(A).
We already know that these correspond to additive real-valued functionals on the algebra A (361F). My
purpose here is to show how the structure of the Riesz space dual S∼ and its bands is related to the classes
of additive functionals introduced in §§326-327. The first step is just to check the identification of the linear
and order structures of S∼ and the space M of bounded finitely additive functionals (362A); all the ideas
needed for this have already been set out, and the basic properties of S∼ are covered by the general results in
§356. Next, we need to be able to describe the operations on M corresponding to the Riesz space operations
| |, ∨, ∧ on S∼, and the band projections from S∼ onto S∼

c and S×; these are dealt with in 362B, with
a supplementary remark in 362D. In the case of measure algebras, we have some further important bands
which present themselves in M , rather than in S∼, and which are treated in 362C. Since all these spaces
are L-spaces, it is worth taking a moment to identify their uniformly integrable subsets; I do this in 362E.

While some of the ideas here have interesting extensions to the case in which A is a Boolean ring without
identity, these can I think be left to one side; the work of this section will be done on the assumption that
every A is a Boolean algebra.

362A Theorem Let A be a Boolean algebra. Write S for S(A).
(a) The partially ordered linear space of all finitely additive real-valued functionals on A may be identified

with the partially ordered linear space of all real-valued linear functionals on S.
(b) The linear space of bounded finitely additive real-valued functionals on A may be identified with the

L-space S∼ of order-bounded linear functionals on S. If f ∈ S∼ corresponds to ν : A → R, then f+ ∈ S∼

corresponds to ν+, where

ν+a = supb⊆a νb

for every a ∈ A, and

c© 1996 D. H. Fremlin
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362A S∼ 15

‖f‖ = supa∈A νa− ν(1 \ a).

(c) The linear space of bounded countably additive real-valued functionals on A may be identified with
the L-space S∼

c .
(d) The linear space of completely additive real-valued functionals on A may be identified with the L-space

S×.

proof By 361F, we have a canonical one-to-one correspondence between linear functionals f : S → R and
additive functionals νf : A → R, given by setting νf = fχ.

(a) Now it is clear that νf+g = νf + νg, ναf = ανf for all f , g and α, so this one-to-one correspondence
is a linear space isomorphism. To see that it is also an order-isomorphism, we need note only that νf is
non-negative iff f is, by 361Ga.

(b) Recall from 356N that, because S is a Riesz space with order unit (361Ee), S∼ has a corresponding
norm under which it is an L-space.

(i) If f ∈ S∼, then

supb∈A |νf b| = supb∈A |f(χb)| ≤ sup{|f(u)| : u ∈ S, |u| ≤ χ1}
is finite, and νf is bounded.

(ii) Now suppose that νf is bounded and that v ∈ S+. Then there is an α ≥ 0 such that v ≤ αχ1
(361Ee). If u ∈ S and |u| ≤ v, then we can express u as

∑n
i=0 αiχai where a0, . . . , an are disjoint (361Eb);

now |αi| ≤ α whenever ai 6= 0, so

|f(u)| = |∑n
i=0 αiνfai| ≤ α

∑n
i=0 |νfai| = α(νfc1 − νfc2) ≤ 2α supb∈A |νfb|,

setting c1 = sup{ai : i ≤ n, νfai ≥ 0}, c2 = sup{ai : i ≤ n, νfai < 0}. This shows that {f(u) : |u| ≤ v} is
bounded. As v is arbitrary, f ∈ S∼ (356Aa).

(iii) To check the correspondence between f+ and ν+f , refine the arguments of (i) and (ii) as follows.
Take any f ∈ S∼. If a ∈ A,

ν+f a = supb⊆a νfb = supb⊆a f(χb) ≤ sup{f(u) : u ∈ S, 0 ≤ u ≤ χa} = f+(χa).

On the other hand, if u ∈ S and 0 ≤ u ≤ χa, then we can express u as
∑n
i=0 αiχai where a0, . . . , an are

disjoint; now 0 ≤ αi ≤ 1 whenever ai 6= 0, so

f(u) =
∑n
i=0 αiνfai ≤ νfc ≤ ν+f a,

where c = sup{ai : i ≤ n, νfai ≥ 0}. As u is arbitrary, f+(χa) ≤ ν+f a. This shows that ν+f = f+χ is finitely

additive, and that ν+f = νf+ , as claimed.

(iv) Now, for any f ∈ S∼,

‖f‖ = |f |(χ1)

(356N)

= (2f+ − f)(χ1) = 2ν+f 1 − νf1

(by (iii) just above)

= sup
a∈A

2νfa− νf1 = sup
a∈A

νfa− νf (1 \ a).

(c) If f ≥ 0 in S∼, then f is sequentially order-continuous iff νf is sequentially order-continuous (361Gb),
that is, iff νf is countably additive (326Kc). Generally, an order-bounded linear functional belongs to S∼

c

iff it is expressible as the difference of two sequentially order-continuous positive linear functionals (356Ab),
while a bounded finitely additive functional is countably additive iff it is expressible as the difference of two
non-negative countably additive functionals (326L); so in the present context f ∈ S∼

c iff νf is bounded and
countably additive.
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16 Function spaces 362A

(d) If f ≥ 0 in S∼, then f is order-continuous iff νf is order-continuous (361Gb), that is, iff νf is com-
pletely additive (326Oc). Generally, an order-bounded linear functional belongs to S× iff it is expressible
as the difference of two order-continuous positive linear functionals (356Ac), while a finitely additive func-
tional is completely additive iff it is expressible as the difference of two non-negative completely additive
functionals (326Q); so in the present context f ∈ S× iff νf is completely additive.

362B Spaces of finitely additive functionals The identifications in the last theorem mean that we
can relate the Riesz space structure of S(A)∼ to constructions involving finitely additive functionals. I have
already set out the most useful facts as exercises (326Yd, 326Ym, 326Yn, 326Yp, 326Yq); it is now time to
repeat them more formally.

Theorem Let A be a Boolean algebra. Let M be the Riesz space of bounded finitely additive real-valued
functionals on A, Mσ ⊆ M the space of bounded countably additive functionals, and Mτ ⊆ Mσ the space
of completely additive functionals.

(a) For any µ, ν ∈M , µ ∨ ν, µ ∧ ν and |ν| are defined by the formulae

(µ ∨ ν)(a) = supb⊆a µb+ ν(a \ b),

(µ ∧ ν)(a) = infb⊆a µb+ ν(a \ b),

|ν|(a) = supb⊆a νb− ν(a \ b) = supb,c⊆a νb− νc

for every a ∈ A. Setting

‖ν‖ = |ν|(1) = supa∈A νa− ν(1 \ a),

M becomes an L-space.

(b) Mσ and Mτ are projection bands in M , therefore L-spaces in their own right. In particular, |ν| ∈Mσ

for every ν ∈Mσ, and |ν| ∈Mτ for every ν ∈Mτ .

(c) The band projection Pσ : M →Mσ is defined by the formula

(Pσν)(c) = inf{supn∈N νan : 〈an〉n∈N is a non-decreasing sequence with supremum c}
whenever c ∈ A and ν ≥ 0 in M .

(d) The band projection Pτ : M →Mτ is defined by the formula

(Pτν)(c) = inf{supa∈A νa : A is a non-empty upwards-directed set with supremum c}
whenever c ∈ A and ν ≥ 0 in M .

(e) If A ⊆M is upwards-directed, then A is bounded above in M iff {ν1 : ν ∈ A} is bounded above in R,
and in this case (if A 6= ∅) supA is defined by the formula

(supA)(a) = supν∈A νa for every a ∈ A.

(f) Suppose that µ, ν ∈M .

(i) The following are equiveridical:

(α) ν belongs to the band in M generated by µ;

(β) for every ǫ > 0 there is a δ > 0 such that |νa| ≤ ǫ whenever |µ|a ≤ δ;

(γ) limn→∞ νan = 0 whenever 〈an〉n∈N is a non-increasing sequence in A such that limn→∞ |µ|(an) =
0.

(ii) Now suppose that µ, ν ≥ 0, and let ν1, ν2 be the components of ν in the band generated by µ and
its complement. Then

ν1c = supδ>0 infµa≤δ ν(c \ a), ν2c = infδ>0 supa⊆c,µa≤δ νa

for every c ∈ A.

proof (a) Of course µ ∨ ν = ν + (µ− ν)+, µ ∧ ν = ν − (ν − µ)+, |ν| = ν ∨ (−ν) (352D), so the formula of
362Ab gives
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(µ ∨ ν)(a) = νa+ sup
b⊆a

µb− νb = sup
b⊆a

µb+ ν(a \ b),

(µ ∧ ν)(a) = νa− sup
b⊆a

νb− µb = inf
b⊆a

µb+ ν(a \ b),

|ν|(a) = sup
b⊆a

νb− ν(a \ b) ≤ sup
b,c⊆a

νb− νc = sup
b,c⊆a

ν(b \ c) − ν(c \ b)

≤ sup
b,c⊆a

|ν|(b \ c) + |ν|(c \ b) = sup
b,c⊆a

|ν|(b△ c) ≤ |ν|(a).

The formula offered for ‖ν‖ corresponds exactly to the formula in 362Ab for the norm of the associated
member of S(A)∼; because S(A)∼ is an L-space under its norm, so is M .

(b) By 362Ac-362Ad, Mσ and Mτ may be identified with S(A)∼c and S(A)×, which are bands in S(A)∼

(356B), therefore projection bands (353J); so that Mσ and Mτ are projection bands in M , and are L-spaces
in their own right (354O).

(c) Take any ν ≥ 0 in M . Set

νσc = inf{supn∈N νan : 〈an〉n∈N is a non-decreasing sequence with supremum c}
for every c ∈ A. Then of course 0 ≤ νσc ≤ νc for every c. The point is that νσ is countably additive. PPP Let
〈ci〉i∈N be a disjoint sequence in A, with supremum c. Then for any ǫ > 0 we have non-decreasing sequences
〈an〉n∈N, 〈ain〉n∈N, for i ∈ N, such that

supn∈N an = c, supn∈N ain = ci for i ∈ N,

supn∈N νan ≤ νσc+ ǫ,

supn∈N νain ≤ νσci + 2−iǫ for every i ∈ N.

Set bn = supi≤n ain for each n; then 〈bn〉n∈N is non-decreasing, and

supn∈N bn = supi,n∈N ain = supi∈N ci = c,

so

νσc ≤ sup
n∈N

νbn = sup
n∈N

n∑

i=0

νain

=

∞∑

i=0

sup
n∈N

νain ≤
∞∑

i=0

νσci + 2−iǫ =

∞∑

i=0

νσci + 2ǫ.

On the other hand, 〈an ∩ ci〉n∈N is a non-decreasing sequence with supremum c ∩ ci = ci for each i, so
νσci ≤ supn∈N ν(an ∩ ci), and

∞∑

i=0

νσci ≤
∞∑

i=0

sup
n∈N

ν(an ∩ ci) = sup
n∈N

∞∑

i=0

ν(an ∩ ci)

(because 〈an〉n∈N is non-decreasing)

≤ sup
n∈N

νan

(because 〈ci〉i∈N is disjoint)

≤ νσc+ ǫ.

As ǫ is arbitrary, νσc =
∑∞
i=0 νσci; as 〈ci〉i∈N is arbitrary, νσ is countably additive. QQQ

Thus νσ ∈ Mσ. On the other hand, if ν ′ ∈ Mσ and 0 ≤ ν ′ ≤ ν, then whenever c ∈ A and 〈an〉n∈N is a
non-decreasing sequence with supremum c,

ν ′c = supn∈N ν
′an ≤ supn∈N νan.
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18 Function spaces 362B

So we must have ν ′c ≤ νσc. This means that

νσ = sup{ν ′ : ν ′ ∈Mσ, ν
′ ≤ ν} = Pσν,

as claimed.

(d) The same ideas, with essentially elementary modifications, deal with the completely additive part.
Take any ν ≥ 0 in M . Set

ντ c = inf{supa∈A νa : A is a non-empty upwards-directed set with supremum c}
for every c ∈ A. Then of course 0 ≤ ντ c ≤ νc for every c. The point is that ντ is completely additive.
PPP Note first that if c ∈ A, ǫ > 0 there is a non-empty upwards-directed A, with supremum c, such that
supa∈A νa ≤ ντ c+ ǫνc; for if νc = 0 we can take A = {c}. Now let 〈ci〉i∈I be a partition of unity in A. Then
for any ǫ > 0 we have non-empty upwards-directed sets A, Ai, for i ∈ I, such that

supA = 1, supAi = ci for i ∈ I, supa∈A νa ≤ ντ1 + ǫν1,

supa∈Ai
νa ≤ ντ ci + ǫνci for every i ∈ I.

Set

B = {supi∈J ai : J ⊆ I is finite, ai ∈ Ai for every i ∈ J};

then B is non-empty and upwards-directed, and

supB = sup(
⋃
i∈I Ai) = 1,

so

ντ1 ≤ sup
b∈B

νb = sup{
∑

i∈J

νai : J ⊆ I is finite, ai ∈ Ai ∀ i ∈ J}

≤
∑

i∈I

ντ ci + ǫνci ≤ ǫν1 +
∑

i∈I

ντ ci.

On the other hand, A′
i = {a ∩ ci : a ∈ A} is a non-empty upwards-directed set with supremum ci for each i,

so ντ ci ≤ supa∈A′
i
νa, and

∑

i∈I

ντ ci ≤
∑

i∈I

sup
a∈A

ν(a ∩ ci) = sup
a∈A

∑

i∈I

ν(a ∩ ci)

≤ sup
a∈A

νa ≤ ντ1 + ǫν1.

As ǫ is arbitrary, ντ c =
∑
i∈I ντ ci; as 〈ci〉i∈I is arbitrary, ντ is completely additive, by 326R. QQQ

Thus ντ ∈Mτ . On the other hand, if ν ′ ∈Mτ and 0 ≤ ν ′ ≤ ν, then whenever c ∈ A and A is a non-empty
upwards-directed set with supremum c,

ν ′c = supa∈A ν
′a ≤ supa∈A νa

(using 326Oc). So we must have ν ′c ≤ ντ c. This means that

ντ = sup{ν ′ : ν ′ ∈Mτ , ν
′ ≤ ν} = Pτν,

as claimed.

(e) If A is empty, of course it is bounded above in M , and {ν1 : ν ∈ A} = ∅ is bounded above in R; so
let us suppose that A is not empty. In this case, if λ0 ∈ M is an upper bound for A, then λ01 is an upper
bound for {ν1 : ν ∈ A}. On the other hand, if supν∈A ν1 = γ is finite, γ∗ = sup{νa : ν ∈ A, a ∈ A} is finite.
PPP Fix ν0 ∈ A. Set γ1 = supa∈A |ν0a| < ∞. Then for any ν ∈ A and a ∈ A there is a ν ′ ∈ A such that
ν0 ∨ ν ≤ ν ′, so that

νa ≤ ν ′a = ν ′1 − ν ′(1 \ a) ≤ γ − ν0(1 \ a) ≤ γ + γ1.

So
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γ∗ ≤ γ + γ1 <∞. QQQ

Set λa = supν∈A νa for every a ∈ A. Then λ : A → R is additive. PPP If a, b ∈ A are disjoint, then

λ(a ∪ b) = sup
ν∈A

ν(a ∪ b) = sup
ν∈A

νa+ νb = sup
ν∈A

νa+ sup
ν∈A

νb

(because A is upwards-directed)

= λa+ λb. QQQ

Also λa ≤ γ∗ for every a, so

|λa| = max(λa,−λa) = max(λa, λ(1 \ a) − λ1) ≤ γ∗ + |λ1|
for every a ∈ A, and λ is bounded.

This shows that λ ∈M , so that A is bounded above in M . Of course λ must be actually the least upper
bound of A in M .

(f)(i)(ααα)⇒(βββ) Suppose that ν belongs to the band in M generated by µ, that is, |ν| = supn∈N |ν| ∧ n|µ|
(352Vb). Let ǫ > 0. Then there is an n ∈ N such that |ν|(1) ≤ 1

2ǫ + (|ν| ∧ n|µ|)(1) ((e) above). Set

δ = 1
2n+1ǫ > 0. If |µ|(a) ≤ δ, then

|νa| ≤ |ν|(a) = (|ν| ∧ n|µ|)(a) + (|ν| − |ν| ∧ n|µ|)(a)

≤ n|µ|(a) + (|ν| − |ν| ∧ n|µ|)(1) ≤ nδ +
1

2
ǫ ≤ ǫ.

So (β) is satisfied.

not-(ααα)⇒not-(βββ) Suppose that ν does not belong to the band in M generated by |µ|. Then there
is a ν1 > 0 such that ν1 ≤ |ν| and ν1 ∧ |µ| = 0 (353C). For any δ > 0, there is an a ∈ A such that
ν1(1 \ a) + |µ|(a) ≤ min(δ, 12ν11) ((a) above); now |µ|(a) ≤ δ but

|ν|(a) ≥ ν1a = ν11 − ν1(1 \ a) ≥ ν11 − 1
2ν11 = 1

2ν11.

Thus µ, ν do not satisfy (β) (with ǫ = 1
2ν11).

(βββ)⇒(γγγ) is trivial.

(γγγ)⇒(ααα) Observe first that if 〈ck〉k∈N is a non-increasing sequence in A such that limk→∞ |µ|ck = 0,
then limk→∞ ν+ck = 0. PPP Let ǫ > 0. Because ν+ ∧ ν− = 0, there is a b ∈ A such that ν+b+ ν−(1 \ b) ≤ ǫ,
by part (a). Now 〈ck \ b〉k∈N is non-increasing and limk→∞ |µ|(ck \ b) = 0, so limk→∞ ν(ck \ b) = 0 and

lim sup
k→∞

ν+ck = lim sup
k→∞

ν+(ck ∩ b) + ν(ck \ b) + ν−(ck \ b)

≤ ν+b+ ν−(1 \ b) ≤ ǫ.

As ǫ is arbitrary, limk→∞ ν+ck = 0. QQQ
??? Now suppose, if possible, that ν+ does not belong to the band generated by µ. Then there is a ν1 > 0

such that ν1 ≤ ν+ and ν1 ∧ |µ| = 0. Set ǫ = 1
4ν11 > 0. For each n ∈ N, we can choose an ∈ A such that

|µ|an + ν1(1 \ an) ≤ 2−nǫ, by part (a) again. For n ≥ k, set bkn = supk≤i≤n ai; then

|µ|bkn ≤ ∑n
i=k |µ|ai ≤ 2−k+1ǫ,

and 〈bkn〉n≥k is non-decreasing. Set γk = supn≥k ν1bkn and choose m(k) ≥ k such that ν1bk,m(k) ≥ γk−2−kǫ.
Setting bk = bk,m(k), we see that bk ∪ bk+1 = bkn where n = max(m(k),m(k + 1)), so that

ν1(bk ∪ bk+1) ≤ γk ≤ ν1bk + 2−kǫ

and ν1(bk+1 \ bk) ≤ 2−kǫ. Set ck = infi≤k bi for each k; then

ν1(bk+1 \ ck+1) = ν1(bk+1 \ ck) ≤ ν1(bk+1 \ bk) + ν1(bk \ ck) ≤ 2−kǫ+ ν1(bk \ ck)

for each k; inducing on k, we see that
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ν1(bk \ ck) ≤ ∑k−1
i=0 2−iǫ ≤ 2ǫ

for every k. This means that

ν+ck ≥ ν1ck ≥ ν1bk − 2ǫ ≥ ν1ak − 2ǫ = ν11 − ν1(1 \ ak) − 2ǫ ≥ 4ǫ− ǫ− 2ǫ = ǫ

for every k ∈ N. On the other hand, 〈ck〉k∈N is a non-increasing sequence and

|µ|ck ≤ |µ|bk ≤ 2−k+1ǫ

for every k, which contradicts the paragraph just above. XXX
This means that ν+ must belong to the band generated by µ. Similarly ν− = (−ν)+ belongs to the band

generated by µ and ν = ν+ + ν− also does.

(ii) Take c ∈ A. Set

β1 = supδ>0 infµa≤δ ν(c \ a), β2 = infδ>0 supa⊆c,µa≤δ νa.

Then

β1 = supδ>0 infa⊆c,µa≤δ ν(c \ a) = νc− β2.

Take any ǫ > 0. Because ν1 belongs to the band generated by µ, part (i) tells us that there is a δ > 0 such
that ν1a ≤ ǫ whenever µa ≤ δ. In this case, if µa ≤ δ,

ν(c \ a) = νc− ν(c ∩ a) ≥ νc− ǫ ≥ ν1c− ǫ;

thus

β1 ≥ infµa≤δ ν(c \ a) ≥ ν1c− ǫ.

As ǫ is arbitrary, β1 ≥ ν1c. On the other hand, given ǫ, δ > 0, there is an a ⊆ c such that µa + ν2(c \ a) ≤
min(δ, ǫ), because µ ∧ ν2 = 0 (using (a) again). In this case, of course, µa ≤ δ, while

νa ≥ ν2a = ν2c− ν2(c \ a) ≥ ν2c− ǫ.

Thus supa⊆c,µa≤δ νa ≥ ν2c− ǫ. As δ is arbitrary, β2 ≥ ν2c− ǫ. As ǫ is arbitrary, β2 ≥ ν2c; but as

β1 + β2 = νc = ν1c+ ν2c,

βi = νic for both i, as claimed.

Remark The L-space norm ‖ ‖ on M , described in (a) above, is the total variation norm.

362C The formula in 362B(f-i) has, I hope, already reminded you of the concept of ‘absolutely continuous’
additive functional from the Radon-Nikodým theorem (Chapter 23, §327). The expressions in 362Bf are
limited by the assumption that µ, like ν, is finite-valued. If we relax this we get an alternative version of
some of the same ideas.

Theorem Let (A, µ̄) be a measure algebra and M be the Riesz space of bounded finitely additive real-valued
functionals on A. Write

Mac = {ν : ν ∈M is absolutely continuous with respect to µ̄}
(see 327A),

Mtc = {ν : ν ∈M is continuous with respect to the measure-algebra topology on A},

Mt = {ν : ν ∈M , |ν|1 = supµ̄a<∞ |ν|a}.

Then Mac, Mtc and Mt are bands in M .

proof (a)(i) It is easy to check that Mac is a linear subspace of M .

(ii) If ν ∈ Mac, ν
′ ∈ M and |ν ′| ≤ |ν| then ν ′ ∈ Mac. PPP Given ǫ > 0 there is a δ > 0 such that

|νa| ≤ 1
2ǫ whenever µ̄a ≤ δ. Now

|ν ′a| ≤ |ν ′|(a) ≤ |ν|(a) ≤ 2 supc⊆a |νc| ≤ ǫ

(using the formula for |ν| in 362Ba) whenever µ̄a ≤ δ. As ǫ is arbitrary, ν ′ is absolutely continuous. QQQ
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(iii) If A ⊆Mac is non-empty and upwards-directed and ν = supA in M , then ν ∈Mac. PPP Let ǫ > 0.
Then there is a ν ′ ∈ A such that ν1 ≤ ν ′1 + 1

2ǫ (362Be). Now there is a δ > 0 such that |νa| ≤ 1
2ǫ whenever

µ̄a ≤ δ. If now µ̄a ≤ δ,

|νa| ≤ |ν ′a| + (ν − ν ′)(a) ≤ 1
2ǫ+ (ν − ν ′)(1) ≤ ǫ.

As ǫ is arbitrary, ν is absolutely continuous with respect to µ̄. QQQ
Putting these together, we see that Mac is a band.

(b)(i) We know that Mtc consists just of those ν ∈M which are continuous at 0 (327Bc). Of course this
is a linear subspace of M .

(ii) If ν ∈Mtc, ν
′ ∈M and |ν ′| ≤ |ν| then |ν| ∈Mtc. PPP Write Af = {d : d ∈ A, µ̄d <∞}. Given ǫ > 0

there are d ∈ Af , δ > 0 such that |νa| ≤ 1
2ǫ whenever µ̄(a ∩ d) ≤ δ. Now

|ν ′a| ≤ |ν ′|(a) ≤ |ν|(a) ≤ 2 supc⊆a |νc| ≤ ǫ

whenever µ̄(a ∩ d) ≤ δ. As ǫ is arbitrary, ν ′ is continuous at 0 and belongs to Mtc. QQQ

(iii) If A ⊆Mtc is non-empty and upwards-directed and ν = supA in M , then ν ∈Mtc. PPP Let ǫ > 0.
Then there is a ν ′ ∈ A such that ν1 ≤ ν ′1 + 1

2ǫ. There are d ∈ Af , δ > 0 such that |νa| ≤ 1
2ǫ whenever

µ̄(a ∩ d) ≤ δ. If now µ̄(a ∩ d) ≤ δ,

|νa| ≤ |ν ′a| + (ν − ν ′)(a) ≤ 1
2ǫ+ (ν − ν ′)(1) ≤ ǫ.

As ǫ is arbitrary, ν is continuous at 0, therefore belongs to Mtc. QQQ
Putting these together, we see that Mtc is a band.

(c)(i) Mt is a linear subspace of M . PPP Suppose that ν1, ν2 ∈Mt and α ∈ R. Given ǫ > 0, there are a1,
a2 ∈ Af such that |ν1|(1 \ a1) ≤ ǫ

1+|α| and |ν2|(1 \ a2) ≤ ǫ. Set a = a1 ∪ a2; then µ̄a <∞ and

|ν1 + ν2|(1 \ a) ≤ 2ǫ, |αν1|(1 \ a) ≤ ǫ.

As ǫ is arbitrary, ν1 + ν2 and αν1 belong to Mt; as ν1, ν2 and α are arbitrary, Mt is a linear subspace of M .
QQQ

(ii) If ν ∈Mt, ν
′ ∈M and |ν ′| ≤ |ν| then

inf µ̄a<∞ |ν ′|(1 \ a) ≤ inf µ̄a<∞ |ν|(1 \ a) = 0,

so ν ′ ∈Mt. Thus Mt is a solid linear subspace of M .

(iii) If A ⊆M+
t is non-empty and upwards-directed and ν = supA is defined in M , then ν ∈Mt. PPP

|ν|1 = ν1 = supν ′∈A ν
′1 = supν ′∈A,µ̄a<∞ ν ′a = supµ̄a<∞ νa.

As A is arbitrary, ν ∈Mt. QQQ Thus Mt is a band in M .

362D For semi-finite measure algebras, among others, the formula of 362Bd takes a special form.

Proposition Let A be a weakly (σ,∞)-distributive Boolean algebra. Let M be the space of bounded finitely
additive functionals on A, Mτ ⊆ M the space of completely additive functionals, and Pτ : M → Mτ the
band projection, as in 362B. Then for any ν ∈ M+ and c ∈ A there is a non-empty upwards-directed set
A ⊆ A with supremum c such that (Pτν)(c) = supa∈A νa; that is, the ‘inf’ in 362Bd can be read as ‘min’.

proof By 362Bd, we can find for each n a non-empty upwards-directed An, with supremum c, such that
supa∈An

νa ≤ (Pτν)(c) + 2−n. Set Bn = {c \ a : a ∈ An} for each n, so that Bn is downwards-directed and
has infimum 0. Because A is weakly (σ,∞)-distributive,

B = {b : for every n ∈ N there is a b′ ∈ Bn such that b ⊇ b′}
is also a downwards-directed set with infimum 0. Consequently A = {c \ b : b ∈ B} is upwards-directed and
has supremum c. Moreover, for any n ∈ N and a ∈ A, there is an a′ ∈ An such that a ⊆ a′; so, using 362Bd
again and referring to the choice of An,

(Pτν)(c) ≤ supa∈A νa ≤ supa′∈An
νa′ ≤ (Pτν)(c) + 2−n.

As n is arbitrary, A has the required property.
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362E Uniformly integrable sets The spaces S∼, S∼
c and S× of 362A, or, if you prefer, the spaces

M , Mσ, Mτ , Mac, Mtc, Mt of 362B-362C, are all L-spaces, and any serious study of them must involve a
discussion of their uniformly integrable ( = relatively weakly compact) subsets. The basic work has been
done in 356O; I spell out its application in this context.

Theorem Let A be a Boolean algebra and M the L-space of bounded finitely additive functionals on A.
Then a norm-bounded set C ⊆ M is uniformly integrable iff limn→∞ supν∈C |νan| = 0 for every disjoint
sequence 〈an〉n∈N in A.

proof Write S for S(A) and C̃ for the set {f : f ∈ S∼, fχ ∈ C}. Because the map f 7→ fχ is a normed

Riesz space isomorphism between S∼ and M , C̃ is uniformly integrable in M iff C is uniformly integrable
in S∼.

(a) Suppose that C is uniformly integrable and that 〈an〉n∈N is a disjoint sequence in A. Then 〈χan〉n∈N

is a disjoint order-bounded sequence in S∼, while C̃ is uniformly integrable, so limn→∞ supf∈C̃ |f(χan)| = 0,

by 356O; but this means that limn→∞ supν∈C |νan| = 0. Thus the condition is satisfied.

(b) Now suppose that C is not uniformly integrable. By 356O, in the other direction, there is a disjoint
sequence 〈un〉n∈N in S such that 0 ≤ un ≤ χ1 for each n and lim supn→∞ supf∈C̃ |f(un)| > 0. For each n,

take cn = [[un > 0]] (361Eg); then 0 ≤ un ≤ χcn and 〈cn〉n∈N is disjoint. Now

lim sup
n→∞

sup
ν∈C

|ν|(cn) = lim sup
n→∞

sup
f∈C̃

|f |(χcn)

≥ lim sup
n→∞

sup
f∈C̃

|f(un)| > 0.

So if we choose νn ∈ C such that |νn|(cn) ≥ 1
2 supν∈C |ν|(cn), we shall have lim supn→∞ |νn|(cn) > 0. Next,

for each n, we can find an ⊆ cn such that |νnan| ≥ 1
2 |νn|(cn), so that

lim supn∈N supν∈C |νan| ≥ lim supn→∞ |νnan| > 0.

Since 〈an〉n∈N, like 〈cn〉n∈N, is disjoint, the condition is not satisfied. This completes the proof.

362X Basic exercises >>>(a) Let A be a Dedekind σ-complete Boolean algebra and ν1, ν2 two countably
additive functionals on A. Show that |ν1|∧|ν2| = 0 in the Riesz space of bounded finitely additive functionals
on A iff there is a c ∈ A such that ν1a = ν1(a ∩ c) and ν2a = ν2(a \ c) for every a ∈ A.

(b) Let (A, µ̄) be a measure algebra, and take M , Mac as in 362C. Show that for any non-negative ν ∈M ,
the component νac of ν in Mac is given by the formula

νacc = supδ>0 inf µ̄a≤δ ν(c \ a).

(c) Let (A, µ̄) be a measure algebra, and take M , Mt as in 362C. (i) Show that Mt is just the set of
those ν ∈ M such that νa = limb→F ν(a ∩ b) for every a ∈ A, where F is the filter on A generated by the
sets {b : b ∈ Af , b ⊇ b0} as b0 runs over the set Af of elements of A of finite measure. (ii) Show that the
complementary band M⊥

t of Mt in M is just the set of those ν ∈M such that νa = 0 for every a ∈ Af . (iii)
Show that for any ν ∈ M , its component νt in Mt is given by the formula νta = limb→F ν(a ∩ b) for every
a ∈ A.

(d) Let (A, µ̄) be a measure algebra. Write M , Mσ, Mτ , Mac, Mtc and Mt as in 362B-362C. Show that
(i) Mσ ⊆Mac (ii) Mac ∩Mt = Mtc ⊆Mτ (iii) if (A, µ̄) is σ-finite, then Mσ = Mtc.

(e) Let A be a Boolean algebra, and M the space of bounded additive functionals on A. Let us say that
a non-zero finitely additive functional ν : A → R is atomic if whenever a, b ∈ A and a ∩ b = 0 then at
least one of νa, νb is zero. (i) Show that for a non-zero finitely additive functional ν on A the following
are equiveridical: (α) ν is atomic; (β) ν ∈ M and |ν| is atomic; (γ) ν ∈ M and the corresponding linear
functional f|ν| = |fν | ∈ S(A)∼ is a Riesz homomorphism; (δ) there are a multiplicative linear functional
f : S(A) → R and an α ∈ R such that νa = αf(χa) for every a ∈ A; (ǫ) ν ∈M and the band in M generated
by ν is the set of multiples of ν. (ii) Show that a completely additive functional ν : A → R is atomic iff
there are a ∈ A and α ∈ R \ {0} such that a is an atom in A and νb = α when a ⊆ b, 0 when a ∩ b = 0.
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(f) Let A be a Boolean algebra. (i) Show that the properly atomless functionals (definition: 326F)
form a band Mc in the Riesz space M of all bounded finitely additive functionals on A. (ii) Show that
the complementary band M⊥

c consists of just those ν ∈M expressible as a sum
∑
i∈I νi of countably many

atomic functionals νi ∈M . (iii) Show that if A is purely atomic then a properly atomless completely additive
functional on A must be 0.

(g) Let X be a set and Σ an algebra of subsets of X. Let M be the Riesz space of bounded finitely
additive functionals on Σ, Mτ the space of completely additive functionals and Mp the space of functionals
expressible in the form νE =

∑
x∈E αx for some absolutely summable family 〈αx〉x∈X of real numbers. (i)

Show that Mp is a band in M . (ii) Show that if all singleton subsets of X belong to Σ then Mp = Mτ .
(iii) Show that if Σ is a σ-algebra then every member of Mp is countably additive. (iv) Show that if X is
a compact zero-dimensional Hausdorff space and Σ is the algebra of open-and-closed subsets of X then the
complementary band M⊥

p of Mp in M is the band Mc of properly atomless functionals described in 362Xf.

(h) Let (X,Σ, µ) be a measure space. Let M be the Riesz space of bounded finitely additive functionals
on Σ and Mσ the space of bounded countably additive functionals. Let Mtc, Mac be the spaces of truly
continuous and bounded absolutely continuous additive functionals as defined in 232A. Show that Mtc and
Mac are bands in M and that Mtc ⊆Mσ ∩Mac. Show that if µ is σ-finite then Mtc = Mσ ∩Mac.

(i) Let A be a Boolean algebra and M the Riesz space of bounded finitely additive functionals on A.
(i) For any non-empty downwards-directed set A ⊆ A set NA = {ν : ν ∈ M, infa∈A |ν|a = 0}. Show
that NA is a band in M . (ii) For any non-empty set A of non-empty downwards-directed sets in A set
MA = {ν : ν ∈M, infa∈A |ν|a = 0 ∀ A ∈ A}. Show that MA is a band in M . (iii) Explain how to represent
as such MA the bands Mσ, Mτ , Mt, Mac, Mtc described in 362B-362C, and also any band generated by a
single element of M . (iv) Suppose, in (ii), that A has the property that for any A, A′ ∈ A there is a B ∈ A
such that for every b ∈ B there are a ∈ A, a′ ∈ A′ such that a ∪ a′ ⊆ b. Show that for any non-negative
ν ∈ M , the component ν1 of ν in MA is given by the formula ν1c = infA∈A supa∈A ν(c \ a), so that the
component ν2 of ν in M⊥

A is given by the formula ν2c = supA∈A infa∈A ν(c ∩ a). (Cf. 356Yb.)

362Y Further exercises (a) Let A be a Boolean algebra. Let C be the band algebra of the Riesz space
M of bounded finitely additive functionals on A (353B). Show that the bands Mσ, Mτ , Mc (362B, 362Xf)
generate a subalgebra C0 of C with at most six atoms. Give an example in which C0 has six atoms. How
many atoms can it have if (i) A is atomless (ii) A is purely atomic (iii) A is Dedekind σ-complete?

(b) Let (A, µ̄) be a measure algebra. Let C be the band algebra of the Riesz space M of bounded finitely
additive functionals on A. Show that the bands Mσ, Mτ , Mc, Mac, Mtc, Mt (362B, 362C, 362Xf) generate
a subalgebra C0 of C with at most twelve atoms. Give an example in which C0 has twelve atoms. How many
atoms can it have if (i) A is atomless (ii) A is purely atomic (iii) (A, µ̄) is semi-finite (iv) (A, µ̄) is localizable
(v) (A, µ̄) is σ-finite (vi) (A, µ̄) is totally finite?

(c) Give an example of a set X, a σ-algebra Σ of subsets of X, and a functional in Mp (as defined in
362Xg) which is not completely additive.

(d) Let U be a Riesz space and f , g ∈ U∼. Show that the following are equiveridical: (α) g is in the
band in U∼ generated by f ; (β) for every u ∈ U+, ǫ > 0 there is a δ > 0 such that |g(v)| ≤ ǫ whenever
0 ≤ v ≤ u and |f |(v) ≤ δ; (γ) limn→∞ g(un) = 0 whenever 〈un〉n∈N is a non-increasing sequence in U+ and
limn→∞ |f |(un) = 0.

(e) Let A be a weakly σ-distributive Boolean algebra (316Ye). Show that the ‘inf’ in the formula for Pσν
in 362Bc can be replaced by ‘min’.

(f) Let A be any Boolean algebra and M the space of bounded finitely additive functionals on A. Let
C ⊆M be such that supν∈C |νa| <∞ for every a ∈ A. (i) Suppose that supn∈N supν∈C |νan| is finite for every
disjoint sequence 〈an〉n∈N in A. Show that C is norm-bounded. (ii) Suppose that limn→∞ supν∈C |νan| = 0
for every disjoint sequence 〈an〉n∈N in A. Show that C is uniformly integrable.

D.H.Fremlin



24 Function spaces 362Yg

(g) Let A be a Boolean algebra and Mτ the space of completely additive functionals on A. Let C ⊆Mτ

be such that supν∈C |νa| <∞ for every atom a ∈ A. (i) Suppose that supn∈N supν∈C |νan| is finite for every
disjoint sequence 〈an〉n∈N in A. Show that C is norm-bounded. (ii) Suppose that limn→∞ supν∈C |νan| = 0
for every disjoint sequence 〈an〉n∈N in A. Show that C is uniformly integrable.

(h) Let A be a Dedekind σ-complete Boolean algebra and 〈νn〉n∈N a sequence of countably additive
real-valued functionals on A. Suppose that νa = limn→∞ νna is defined in R for every a ∈ A. Show that ν
is countably additive and that {νn : n ∈ N} is uniformly integrable. (Hint : 246Yg.) Show that if every νn
is completely additive, so is ν.

(i) Let A be a Boolean algebra, M the Riesz space of bounded finitely additive functionals on A, and
Mc ⊆ M the band of properly atomless functionals (362Xf). Show that for a non-negative ν ∈ M the
component νc of ν in Mc is given by the formula

νca = infδ>0 sup{∑n
i=0 νai : a0, . . . , an ⊆ a are disjoint, νai ≤ δ for every i}

for each a ∈ A.

(j) Let A be a Boolean algebra and M the L-space of bounded additive real-valued functionals on A. Show
that the complexification of M , as defined in 354Yl, can be identified with the Banach space of bounded
additive functionals ν : A → C, writing

‖ν‖ = sup{∑n
i=0 |νai| : a0, . . . , an are disjoint elements of A}

for such ν.

(k) Let A be a Boolean algebra and M the L-space of bounded additive real-valued functionals on A.
Suppose that M0 is a norm-closed linear subspace of M and that a 7→ ν(a ∩ c) : A → R belongs to M0

whenever ν ∈M0 and c ∈ A. Show that M0 is a band in M . (Hint : 436L.)

362 Notes and comments The Boolean algebras most immediately important in measure theory are of
course σ-algebras of measurable sets and their quotient measure algebras. It is therefore natural to begin any
investigation by concentrating on Dedekind σ-complete algebras. Nevertheless, in this section and the last
(and in §326), I have gone to some trouble not to specialize to σ-complete algebras except when necessary.
Partly this is just force of habit, but partly it is because I wish to lay a foundation for a further step forward:
the investigation of the ways in which additive functionals on general Boolean algebras reflect the concepts
of measure theory, and indeed can generate them. Some of the results in this direction can be surprising. I
do not think it obvious that the condition (γ) in 362B(f-i), for instance, is sufficient in the absence of any
hypothesis of Dedekind σ-completeness or countable additivity.

Given a Boolean algebra A with the associated Riesz space M ∼= S(A)∼ of bounded additive functionals
on A, we now have a substantial list of bands in M : Mσ, Mτ , Mc (362Xf), and for a measure algebra the
further bands Mac, Mtc and Mt; for an algebra of sets we also have Mp (362Xg). These bands can be used
to generate finite subalgebras of the band algebra of M (362Ya-362Yb), and for any such finite subalgebra
we have a corresponding decomposition of M as a direct sum of the bands which are the atoms of the
subalgebra (352Tb). This decomposition of M can be regarded as a recipe for decomposing its members
into finite sums of functionals with special properties. What I called the ‘Lebesgue decomposition’ in 232I
is just such a recipe. In that context I had a measure space (X,Σ, µ) and was looking at the countably
additive functionals from Σ to R, that is, at Mσ in the language of this section, and the bands involved
in the decomposition were Mp, Mac and Mtc. But I hope that it will be plain that these ideas can be
refined indefinitely, as we refine the classification of additive functionals. At each stage, of course, the exact
enumeration of the subalgebra of bands generated by the classification (as in 362Ya-362Yb) is a necessary
check that we have understood the relationships between the classes we have described.

These decompositions are of such importance that it is worth examining the corresponding band pro-
jections. I give formulae for the action of band projections on (non-negative) functionals in 362Bc, 362Bd,
362B(f-ii), 362Xb, 362Xc(iii), 362Xi(iv) and 362Yi. Of course these are readily adapted to give formulae for
the projections onto the complementary bands, as in 362Bf and 362Xi.
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If we have an algebra of sets, the completely additive functionals are (usually) of relatively minor impor-
tance; in the standard examples, they correspond to functionals defined as weighted sums of point masses
(362Xg(ii)). The point is that measure algebras A appear as quotients of σ-algebras Σ of sets by σ-ideals I;
consequently the countably additive functionals on A correspond exactly to the countably additive function-
als on Σ which are zero on I; but the canonical homomorphism from Σ to A is hardly ever order-continuous,
so completely additive functionals on A rarely correspond to completely additive functionals on Σ. On the
other hand, when we are looking at countably additive functionals on Σ, we have to consider the possibility
that they are singular in the sense that they are carried on some member of I; in the measure algebra
context this possibility disappears, and we can often be sure that every countably additive functional is
absolutely continuous, as in 327Bb.

For any Boolean algebra A, we can regard it as the algebra of open-and-closed subsets of its Stone space
Z; the points of Z correspond to Boolean homomorphisms from A to {0, 1}, which are the normalised ‘atomic
elements’ in the space of additive functionals on A (362Xe, 362Xg(iv)). It is the case that all non-negative
additive functionals on a Boolean algebra A can be represented by appropriate measures on its Stone space
(see 416Q in Volume 4), but I prefer to hold this result back until it can take its place among other theorems
on representing functionals by measures and integrals.

It is one of the leitmotivs of this chapter, that Boolean algebras and Riesz spaces are Siamese twins; again
and again, matching results are proved by the application of identical ideas. A typical example is the pair
362B(f-i) and 362Yd. Many of us have been tempted to try to describe something which would provide a
common generalization of Boolean algebras and Riesz spaces (and lattice-ordered groups). I have not yet
seen any such structure which was worth the trouble. Most of the time, in this chapter, I shall be using
ideas from the general theory of Riesz spaces to suggest and illuminate questions in measure theory; but if
you pursue this subject you will surely find that intuitions often come to you first in the context of Boolean
algebras, and the applications to Riesz spaces are secondary.

In 362E I give a condition for uniform integrability in terms of disjoint sequences, following the pattern
established in 246G and repeated in 354R and 356O. The condition of 362E assumes that the set is norm-
bounded; but if you have 246G to hand, you will see that it can be done with weaker assumptions involving
atoms, as in 362Yf-362Yg.

I mention once again the Banach-Ulam problem: if A is Dedekind complete, can S(A)∼c be different from
S(A)×? This is obviously equivalent to the form given in the notes to §326 above. See 363S below.

Version of 4.3.08

363 L∞

In this section I set out to describe an abstract construction for L∞ spaces on arbitrary Boolean algebras,
corresponding to the L∞(µ) spaces of §243. I begin with the definition of L∞(A) (363A) and elementary
facts concerning its own structure and the embedding S(A) ⊂→ L∞(A) (363B-363D). I give the basic universal
mapping theorems which define the Banach lattice structure of L∞ (363E) and a description of the action
of Boolean homomorphisms on L∞ spaces (363F-363G) before discussing the representation of L∞(Σ) and
L∞(Σ/I) for σ-algebras Σ and ideals I of sets (363H). This leads at once to the identification of L∞(µ), as
defined in Volume 2, with L∞(A), where A is the measure algebra of µ (363I). Like S(A), L∞(A) determines
the algebra A (363J). I briefly discuss the dual spaces of L∞; they correspond exactly to the duals of S
described in §362 (363K). Linear functionals on L∞ can for some purposes be treated as ‘integrals’ (363L).

In the second half of the section I present some of the theory of Dedekind complete and σ-complete
algebras. First, L∞(A) is Dedekind (σ-)complete iff A is (363M). The spaces L∞(A), for Dedekind σ-
complete A, are precisely the Dedekind σ-complete Riesz spaces with order unit (363N-363P). The spaces
L∞(A), for Dedekind complete A, are precisely the normed spaces which may be put in place of R in
the Hahn-Banach theorem (363R). Finally, I mention some equivalent forms of the Banach-Ulam problem
(363S).

363A Definition Let A be a Boolean algebra, with Stone space Z. I will write L∞(A) for the space
C(Z) = Cb(Z) of continuous real-valued functions from Z to R, endowed with the linear structure, order

c© 2000 D. H. Fremlin
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structure, norm and multiplication of C(Z) = Cb(Z). (Recall that because Z is compact (311I), {u(z) : z ∈
Z} is bounded for every u ∈ L∞(A) = C(Z) (2A3N(b-iii)), that is, C(Z) = Cb(Z). Of course if A = {0}, so
that Z = ∅, then C(Z) has just one member, the empty function.)

363B Theorem Let A be any Boolean algebra; write L∞ for L∞(A).
(a) L∞ is an M -space; its standard order unit is the constant function taking the value 1 at each point;

in particular, L∞ is a Banach lattice with a Fatou norm and the Levi property.
(b) L∞ is a commutative Banach algebra and an f -algebra.
(c) If u ∈ L∞ then u ≥ 0 iff there is a v ∈ L∞ such that u = v × v.

proof (a) See 354Hb and 354J.

(b)-(c) are obvious from the definitions of Banach algebra (2A4J) and f -algebra (352W) and the ordering
of L∞ = C(Z).

363C Proposition Let A be any Boolean algebra. Then S(A) is a norm-dense, order-dense Riesz
subspace of L∞(A), closed under multiplication.

proof Let Z be the Stone space of A. Using the definition of S = S(A) set out in 361D, it is obvious that
S is a linear subspace of L∞ = L∞(A) = C(Z) closed under multiplication. Because S, like L∞, is a Riesz
subspace of RZ (361Ee), S is a Riesz subspace of L∞. By the Stone-Weierstrass theorem (in either of the
forms given in 281A and 281E), S is norm-dense in L∞. Consequently it is order-dense (354I).

363D Proposition Let A be a Boolean algebra. If we regard χa ∈ S(A) (361D) as a member of
L∞(A) for each a ∈ A, then χ : A → L∞(A) is additive, order-preserving, order-continuous and a lattice
homomorphism.

proof Because the embedding S = S(A) ⊂→ L∞(A) = L∞ is a Riesz homomorphism, χ : A → L∞ is additive
and a lattice homomorphism (361F-361G). Because S is order-dense in L∞ (363C), the embedding S ⊂→ L∞

is order-continuous (352Nb), so χ : A → L∞ is order-continuous (361Gb).

363E Theorem Let A be a Boolean algebra, and U a Banach space. Let ν : A → U be a bounded
additive function.

(a) There is a unique bounded linear operator T : L∞(A) → U such that Tχ = ν; in this case ‖T‖ =
supa,b∈A ‖νa− νb‖.

(b) If U is a Banach lattice then T is positive iff ν is non-negative; and in this case T is order-continuous
iff ν is order-continuous, and sequentially order-continuous iff ν is sequentially order-continuous.

(c) If U is a Banach lattice then T is a Riesz homomorphism iff ν is a lattice homomorphism iff νa∧νb = 0
whenever a ∩ b = 0.

proof Write S = S(A), L∞ = L∞(A).

(a) By 361I there is a unique bounded linear operator T0 : S → U such that T0χ = ν, and ‖T0‖ =
sup{‖νa − νb‖ : a, b ∈ A}. But because U is a Banach space and S is dense in L∞, T0 has a unique
extension to a bounded linear operator T : L∞ → U with the same norm (2A4I).

(b)(i) If T is positive then T0 is positive so ν is non-negative, by 361Ga.

(ii) If ν is non-negative then T0 is positive, by 361Ga in the other direction. But if u ∈ L∞+ and ǫ > 0,
then by 354I there is a v ∈ S+ such that ‖u− v‖∞ ≤ ǫ; now ‖Tu− Tv‖ ≤ ǫ‖T‖. But Tv = T0v belongs to
the positive cone U+ of U . As ǫ is arbitrary, Tu belongs to the closure of U+, which is U+ (354Bc). As u
is arbitrary, T is positive.

(iii) Now suppose that ν is order-continuous as well as non-negative, and that A ⊆ L∞ is a non-empty
downwards-directed set with infimum 0. Set

B = {v : v ∈ S, there is some u ∈ A such that v ≥ u}.

Then B is downwards-directed (indeed, v1 ∧ v2 ∈ B for every v1, v2 ∈ B), and u = inf{v : v ∈ B, u ≤ v}
for every u ∈ A (354I again), so B has the same lower bounds as A and inf B = 0 in L∞ and in S. But we
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know from 361Gb that T0 is order-continuous, while any lower bound for {Tu : u ∈ A} in U must also be a
lower bound for {Tv : v ∈ B} = {T0v : v ∈ B}, so infu∈A Tu = infv∈B T0v = 0 in U . As A is arbitrary, T is
order-continuous (351Ga).

(iv) Suppose next that ν is only sequentially order-continuous, and that 〈un〉n∈N is a non-increasing
sequence in L∞ with infimum 0. For each n, k choose wnk ∈ S such that un ≤ wnk and ‖wnk−un‖∞ ≤ 2−k

(354I once more), and set w′
n = infj,k≤n wjk for each n. Then 〈w′

n〉n∈N is a non-increasing sequence in S,
and any lower bound of {w′

n : n ∈ N} is also a lower bound of {un : n ∈ N}, so 0 = infn∈N w
′
n in S and L∞.

Since T0 : S → U is sequentially order-continuous (361Gb),

infn∈N Tun ≤ infn∈N Tw
′
n = infn∈N T0w

′
n = 0

in U . As 〈un〉n∈N is arbitrary, T is sequentially order-continuous.

(v) On the other hand, if T is order-continuous or sequentially order-continuous, so is ν = Tχ, because
χ is order-continuous (363D).

(c) We know that T0 : S → U is a Riesz homomorphism iff ν is a lattice homomorphism iff νa ∧ νb = 0
whenever a ∩ b = 0, by 361Gc. But T0 is a Riesz homomorphism iff T is. PPP If T is a Riesz homomorphism
so is T0, because the embedding S ⊂→ L∞ is a Riesz homomorphism. On the other hand, if T0 is a Riesz
homomorphism, then the functions u 7→ u+ 7→ T (u+), u 7→ Tu 7→ (Tu)+ are continuous (by 354Bb) and
agree on S, so agree on L∞, and T is a Riesz homomorphism, by 352G. QQQ

363F Theorem Let A and B be Boolean algebras, and π : A → B a Boolean homomorphism.
(a) There is an associated multiplicative Riesz homomorphism Tπ : L∞(A) → L∞(B), of norm at most

1, defined by saying that Tπ(χa) = χ(πa) for every a ∈ A.
(b) For any u ∈ L∞(A), there is a u′ ∈ L∞(A) such that Tπu = Tπu

′ and ‖u′‖∞ = ‖Tπu‖∞ ≤ ‖u‖∞.
(c)(i) The kernel of Tπ is the norm-closed linear subspace of L∞(A) generated by {χa : a ∈ A, πa = 0}.

(ii) The set of values of Tπ is the norm-closed linear subspace of L∞(B) generated by {χ(πa) : a ∈ A}.
(d) Tπ is surjective iff π is surjective, and in this case ‖v‖∞ = min{‖u‖∞ : Tπu = v} for every v ∈ L∞(B).
(e) Tπ is injective iff π is injective, and in this case ‖Tπu‖∞ = ‖u‖∞ for every u ∈ L∞(A).
(f) Tπ is order-continuous, or sequentially order-continuous, iff π is.
(g) If C is another Boolean algebra and θ : B → C is another Boolean homomorphism, then Tθπ = TθTπ :

L∞(A) → L∞(C).

proof Let Z and W be the Stone spaces of A and B. By 312Q there is a continuous function φ : W → Z
such that π̂a = φ−1[â] for every a ∈ A, where â is the open-and-closed subset of Z corresponding to a ∈ A.
Write T for Tπ.

(a) For u ∈ L∞(A) = C(Z), set Tu = uφ : W → R. Then Tu ∈ C(W ) = L∞(B). It is obvious, or at
any rate very easy to check, that T : L∞(A) → L∞(B) is linear, multiplicative, a Riesz homomorphism and
of norm 1 unless B = {0}, W = ∅. If a ∈ A, then

T (χa) = (χa)φ = (χâ)φ = χ(φ−1[â]) = χ(πa),

identifying χa ∈ L∞(A) with the indicator function χâ : Z → {0, 1} of the set â. Of course Tπ = T is the
only continuous linear operator with these properties, by 363Ea.

(b) Set α = ‖Tu‖∞, u′(z) = med(−α, u(z), α) for z ∈ Z; that is, u′ = med(−αe, u, αe) in L∞(A), where
e is the standard order unit of L∞(A). Then Te is the standard order unit of L∞(B), so

Tu′ = med(−αTe, Tu, αTe) = Tu

(because T is a lattice homomorphism, see 3A1Ic), while

‖u′‖∞ ≤ α = ‖Tu‖∞ = ‖Tu′‖∞ ≤ ‖u′‖∞ ≤ ‖u‖∞.

(c)(i) Let U be the closed linear subspace of L∞(A) generated by {χa : πa = 0}, and U0 the kernel of T .
Because T is continuous and linear, U0 is a closed linear subspace, and T (χa) = χ0 = 0 whenever πa = 0;
so U ⊆ U0. Now take any u ∈ U0 and ǫ > 0. Then T (u+) = (Tu)+ = 0, so u+ ∈ U0. By 354I there is a
u′ ∈ S(A) such that 0 ≤ u′ ≤ u+ and ‖u+ − u′‖∞ ≤ ǫ. Now 0 ≤ Tu′ ≤ Tu+ = 0, so Tu′ = 0. Express
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u′ as
∑n
i=0 αiχai where αi ≥ 0 for each i. For each i, αiχ(πai) = T (αiχai) = 0, so πai = 0 or αi = 0;

in either case αiχai ∈ U . Consequently u′ ∈ U . As ǫ is arbitrary and U is closed, u+ ∈ U . Similarly,
u− = (−u)+ ∈ U and u = u+ − u− ∈ U . As u is arbitrary, U0 ⊆ U and U0 = U .

(ii) Let V be the closed linear subspace of L∞(B) generated by {χ(πa) : a ∈ A}, and V0 = T [L∞(A)].
Then T [S(A)] ⊆ V , so

V0 = T [S(A)] ⊆ T [S(A)] ⊆ V = V .

On the other hand, V0 is a closed linear subspace in L∞(B). PPP It is a linear subspace because T is a linear
operator. To see that it is closed, take any v ∈ V 0. Then there is a sequence 〈vn〉n∈N in V0 such that
‖v − vn‖∞ ≤ 2−n for every n ∈ N. Choose un ∈ L∞(A) such that Tu0 = v0, while Tun = vn − vn−1 and
‖un‖∞ = ‖vn − vn−1‖∞ for n ≥ 1 (using (b) above). Then

∑∞
n=1 ‖un‖∞ ≤ ∑∞

n=1 ‖v − vn‖∞ + ‖v − vn−1‖∞
is finite, so u = limn→∞

∑n
i=0 ui is defined in the Banach space L∞(A), and

Tu = limn→∞

∑n
i=0 Tui = limn→∞ vn = v.

As v is arbitrary, V0 is closed. QQQ Since χ(πa) = T (χa) ∈ V0 for every a ∈ A, V ⊆ V0 and V = V0, as
required.

(d) If π is surjective, then T is surjective, by (c-ii). If T is surjective and b ∈ B, then there is a u ∈ L∞(A)
such that Tu = χb. Now there is a u′ ∈ S(A) such that ‖u− u′‖∞ ≤ 1

3 , so that ‖Tu′ − χb‖∞ ≤ 1
3 . Taking

a ∈ A such that {z : u′(z) ≥ 1
2} = â, we must have πa = b, since

b̂ = {w : (Tu′)(w) ≥ 1
2} = φ−1[â] = π̂a.

As b is arbitrary, π is surjective.
Now (b) tells us that in this case ‖v‖∞ = min{‖u‖∞ : Tu = v} for every v ∈ L∞(B).

(e) By (c-i), T is injective iff π is injective. In this case, for any u ∈ L∞(A),

‖Tu‖∞ = ‖T |u|‖∞
(because T is a Riesz homomorphism)

≥ sup{‖Tu′‖∞ : u′ ∈ S(A), u′ ≤ |u|}
= sup{‖u′‖∞ : u′ ∈ S(A), u′ ≤ |u|}

(by 361Jd)

= ‖u‖∞
(by 354I)

≥ ‖Tu‖∞,

and ‖Tu‖∞ = ‖u‖∞.

(f) If T is (sequentially) order-continuous then π = Tχ is (sequentially) order-continuous, by 363D.
If π is (sequentially) order-continuous then χπ : A → L∞(B) is (sequentially) order-continuous, so T is
(sequentially) order-continuous, by 363Eb.

(g) This is elementary, in view of the uniqueness of Tθπ.

363G Corollary Let A be a Boolean algebra.
(a) If C is a subalgebra of A, then L∞(C) can be identified, as Banach lattice and as Banach algebra,

with the closed linear subspace of L∞(A) generated by {χc : c ∈ C}.
(b) If I is an ideal of A, then L∞(A/I) can be identified, as Banach lattice and as Banach algebra, with

the quotient space L∞(A)/V , where V is the closed linear subspace of L∞(A) generated by {χa : a ∈ I}.

proof Apply 363Fc-363Fd to the identity map from C to A and the canonical map from A onto A/I.
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363H Representations of L∞(A) Much of the importance of the concept of L∞(A) arises from the
way it is naturally represented in the contexts in which the most familiar Boolean algebras appear.

Proposition Let X be a set and Σ an algebra of subsets of X.
(a) Write S(Σ) for the linear subspace of ℓ∞(X) generated by the indicator functions of members of Σ,

and L
∞ for its ‖ ‖∞-closure in ℓ∞(X).

(i) L∞(Σ) can be identified, as Banach lattice and Banach algebra, with L
∞; if E ∈ Σ, then χE,

defined in L∞(Σ) as in 361D, can be identified with the indicator function of E regarded as a subset of X.
(ii) A bounded function f : X → R belongs to L

∞ iff whenever α < β in R there is an E ∈ Σ such that
{x : f(x) > β} ⊆ E ⊆ {x : f(x) > α}.

(iii) In particular, L∞(PX) can be identified with ℓ∞(X).
(b) Now suppose that Σ is a σ-algebra of subsets of X.

(i) L
∞ is just the set of bounded Σ-measurable real-valued functions on X.

(ii) If A is a Dedekind σ-complete Boolean algebra and π : Σ → A is a surjective sequentially order-
continuous Boolean homomorphism with kernel I, then L∞(A) can be identified, as Banach lattice and
Banach algebra, with L

∞/W, where W = {f : f ∈ L
∞, {x : f(x) 6= 0} ∈ I} is a solid linear subspace and

closed ideal of L∞. For f ∈ L
∞,

‖f•‖∞ = min{α : α ≥ 0, {x : |f(x)| > α} ∈ I}.

(iii) In particular, if I is any σ-ideal of Σ and E 7→ E• is the canonical homomorphism from Σ onto
A = Σ/I, then we have an identification of L∞(A) with a quotient of L∞, and for any E ∈ Σ we can identify
χ(E•) ∈ L∞(A) with the equivalence class (χE)• ∈ L

∞/W of the indicator function χE.

proof (a)(i) By 361L, S(Σ), as described here, can be identified with S(Σ) as defined in 361D. Because
the normed space ℓ∞(X) is complete, L∞ can be identified with the normed space completion of S(Σ) for
‖ ‖∞; but 363C shows that the same is true of L∞(Σ). Thus we have a canonical Banach space isomorphism
between L

∞ and L∞(Σ). Because multiplication and the lattice operations are ‖ ‖∞-continuous, both in L
∞

and in L∞(Σ), this isomorphism is multiplicative and order-preserving, that is, identifies L
∞ with L∞(Σ)

as Banach algebra and Banach lattice. In the language of 363E, L∞ is the image of L∞(Σ) in ℓ∞(X) under
the operator associated with the additive function E 7→ χE : Σ → ℓ∞(X).

(ii)(ααα) If f ∈ L
∞ and α < β in R, let g ∈ S(Σ) be such that ‖f − g‖∞ ≤ 1

2 (β − α). Set E = {x :

g(x) > 1
2 (α+ β)}; by 361G or otherwise, E ∈ Σ, and {x : f(x) > β} ⊆ E ⊆ {x : f(x) > α}.

(βββ) If f satisfies the condition, take any ǫ > 0. Let n ∈ N be such that ‖f‖∞ < nǫ. For −n ≤ i ≤ n,
let Ei ∈ Σ be such that {x : f(x) > (i + 1)ǫ} ⊆ Ei ⊆ {x : f(x) > iǫ}. Set g(x) = ǫ

∑n
i=−n χEi − ǫn for

x ∈ X; then g ∈ S(Σ) and ‖f − g‖∞ ≤ ǫ. As ǫ is arbitrary, f ∈ L
∞.

(iii) Now (ii) shows that if Σ = PX we shall have L
∞ = ℓ∞(X) and L∞(PX) becomes identified with

ℓ∞(X).

(b)(i) If Σ is a σ-algebra and f : X → R is bounded then

f is Σ-measurable ⇐⇒ {x : f(x) > α} ∈ Σ for every α ∈ R

⇐⇒ whenever α ∈ R, n ∈ N there is an E ∈ Σ

such that {x : f(x) > α+ 2−n} ⊆ E ⊆ {x : f(x) > α}
⇐⇒ whenever β > α there is an E ∈ Σ

such that {x : f(x) > β} ⊆ E ⊆ {x : f(x) > α}
⇐⇒ f ∈ L

∞

by (a-ii) above.

(ii)(ααα) By 363F, we have a multiplicative Riesz homomorphism T = Tπ from L∞(Σ) to L∞(A) which
is surjective (363Fd) and has kernel the closed linear subspace W of L∞(Σ) generated by {χE : E ∈ I}.
Now under the identification described in (a), W corresponds to W. PPP W is a linear subspace of L∞ because

{x : (f + g)(x) 6= 0} ⊆ {x : f(x) 6= 0} ∪ {x : g(x) 6= 0} ∈ I,
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{x : (αf)(x) 6= 0} ⊆ {x : f(x) 6= 0} ∈ I
whenever f , g ∈ W and α ∈ R. If 〈fn〉n∈N is a sequence in W converging to f ∈ L

∞, then

{x : f(x) 6= 0} ⊆ ⋃
n∈N{x : fn(x) 6= 0} ∈ I,

so f ∈ W. Thus W is a closed linear subspace of L
∞. If E ∈ I, then χE, taken in S(Σ) or L∞(Σ),

corresponds to the function χE : X → {0, 1}, which belongs to W; so that W must correspond to the closed
linear span in L

∞ of such indicator functions, which is a subspace of W. On the other hand, if f ∈ W and
ǫ > 0, set

En = {x : nǫ < f(x) ≤ (n+ 1)ǫ}, E′
n = {x : −(n+ 1)ǫ ≤ f(x) < −nǫ}

for n ∈ N; all these belong to I, so g = ǫ
∑∞
n=0(χEn − χE′

n) ∈ W corresponds to a member of W , while
‖f − g‖∞ ≤ ǫ. As W is closed, f also must correspond to some member of W . As f is arbitrary, W and W

match exactly. QQQ

(βββ) Because T is a multiplicative Riesz homomorphism, L∞(A) ∼= L∞(Σ)/W is matched canonically,
in its linear, order and multiplicative structures, with L

∞/W. We know also that

‖v‖∞ = min{‖u‖∞ : u ∈ L∞(Σ), Tu = v}
for every v ∈ L∞(A) (363Fd), that is, that the norm of L∞(A) corresponds to the quotient norm on
L∞(Σ)/W .

As for the given formula for the norm, take any f ∈ L
∞. There is a g ∈ L

∞ such that Tf = Tg and
‖Tf‖∞ = ‖g‖∞. (Here I am treating T as an operator from L

∞ onto L∞(A).) In this case

{x : |f(x)| > ‖Tf‖∞} ⊆ {x : f(x) 6= g(x)} ∈ I.

On the other hand, if α ≥ 0 and {x : |f(x)| > α} ∈ I, and we set h = med(−αχX, f, αχX), then Th = Tf ,
so ‖Tf‖∞ ≤ ‖h‖∞ ≤ α.

(iii) Put (a-i) and (ii) just above together.

363I Corollary Let (X,Σ, µ) be a measure space, with measure algebra A. Then L∞(µ) can be identified,
as Banach lattice and Banach algebra, with L∞(A); the identification matches (χE)• ∈ L∞(µ) with χ(E•) ∈
L∞(A), for every E ∈ Σ.

Remark The space I called L
∞(µ) in Chapter 24 is not strictly speaking the space L

∞ ∼= L∞(Σ) of 363H;
I took L

∞(µ) ⊆ L
0(µ) to be the set of essentially bounded, virtually measurable functions defined almost

everywhere in X, and in general this is larger. But, as remarked in the notes to §243, L∞(µ) can equally
well be regarded as a quotient of what I there called L

∞
Σ , which is the L

∞ above, because every function in
L

∞(µ) is equal almost everywhere to some member of L∞
Σ .

363J Recovering the algebra A: Proposition Let A be a Boolean algebra. For a ∈ A write Va for
the solid linear subspace of L∞(A) generated by χa. Then a 7→ Va is a Boolean isomorphism between A

and the algebra of projection bands in L∞(A).

proof The proof is nearly identical to that of 361K. If a ∈ A, u ∈ Va and v ∈ V1\a, then |u| ∧ |v| = 0
because χa ∧ χ(1 \ a) = 0; and if w ∈ L∞(A) then

w = (w × χa) + (w × χ(1 \ a)) ∈ Va + V1\a

because |w×χa| ≤ ‖w‖∞χa and |w×χ(1 \ a)| ≤ ‖w‖∞χ(1 \ a). So Va and V1\a are complementary projection
bands in L∞ = L∞(A). Next, if U ⊆ L∞ is a projection band, then χ1 is expressible as u+ v where u ∈ U ,
v ∈ U⊥; thinking of L∞ as the space of continuous real-valued functions on the Stone space Z of A, u and
v must be the indicator functions of complementary subsets E, F of Z, which must be open-and-closed, so

that E = â, F = 1̂ \ a. In this case Va ⊆ U and V1\a ⊆ U⊥, so U must be Va precisely. Thus a 7→ Va is
surjective. Finally, just as in 361K, a ⊆ b ⇐⇒ Va ⊆ Vb, so we have a Boolean isomorphism.

363K Dual spaces of L∞ The questions treated in §362 yield nothing new in the present context. I
spell out the details.
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Proposition Let A be a Boolean algebra. Let M , Mσ and Mτ be the L-spaces of bounded finitely additive
functionals, bounded countably additive functionals and completely additive functionals on A. Then the
embedding S(A) ⊂→ L∞(A) induces Riesz space isomorphisms between S(A)∼ ∼= M and L∞(A)∼ = L∞(A)∗,
S(A)∼c

∼= Mσ and L∞(A)∼c , and S(A)× ∼= Mτ and L∞(A)×.

proof Write S = S(A), L∞ = L∞(A).

(a) For the identifications S∼ ∼= M , S∼
c

∼= Mσ and S× ∼= Mτ see 362A.

(b) L∞∗ = L∞∼ either because L∞ is a Banach lattice (356Dc) or because L∞ has an order-unit norm,
so that a linear functional on L∞ is order-bounded iff it is bounded on the unit ball.

(c) If f is a positive linear functional on L∞, then f↾S is a positive linear functional. Because S is order-
dense in L∞ (363C), the embedding is order-continuous (352Nb); so if f is (sequentially) order-continuous,
so is f↾S. Accordingly the restriction operator f 7→ f↾S gives maps from L∞∼ to S∼, (L∞)∼c to S∼

c and
L∞× to S×. If f ∈ L∞∼ and f↾S ≥ 0, then f(u+) ≥ 0 for every u ∈ S and therefore for every u ∈ L∞, and
f ≥ 0; so all these restriction maps are injective positive linear operators.

(d) I need to show that they are surjective.

(i) If g ∈ S∼, then g is bounded on the unit ball {u : u ∈ S, ‖u‖∞ ≤ 1}, so has an extension to a
continuous linear f : L∞ → R (2A4I); thus S∼ = {f↾S : f ∈ L∞∼}. This means that f 7→ f↾S is actually
a Riesz space isomorphism between L∞∼ and S∼. In particular, |f |↾S = |f↾S| for any f ∈ L∞∼.

(ii) If f : L∞ → R is a positive linear operator and f↾S ∈ S∼
c , let 〈un〉n∈N be a non-increasing sequence

in L∞ with infimum 0. For each n, k ∈ N there is a vnk ∈ S such that un ≤ vnk ≤ un + 2−ke, where e is the
standard order unit of L∞ (354I, as usual); set wn = infi,k≤n vik; then 〈wn〉n∈N is a non-increasing sequence
in S with infimum 0, so

0 ≤ infn∈N f(un) ≤ infn∈N f(wn) = 0.

As 〈un〉n∈N is arbitrary, f ∈ (L∞)∼c . Consequently, for general f ∈ L∞∼,

f ∈ (L∞)∼c ⇐⇒ |f | ∈ (L∞)∼c ⇐⇒ |f↾S| ∈ S∼
c ⇐⇒ f↾S ∈ S∼

c ,

and the map f 7→ f↾S : (L∞)∼c → S∼
c is a Riesz space isomorphism.

(iii) Similarly, if f ∈ L∞∼ is non-negative and f↾S ∈ S×, then whenever A ⊆ L∞ is non-empty,
downwards-directed and has infimum 0, B = {w : w ∈ S, ∃u ∈ A, w ≥ u} has infimum 0, so infu∈A f(u) ≤
infw∈B f(w) ≤ 0 and f ∈ L∞×. As in (ii), it follows that f 7→ f↾S is a surjection from L∞× onto S×.

*363L Integration with respect to a finitely additive functional (a) If A is a Boolean algebra and
ν : A → R is a bounded additive functional, then by 363K we have a corresponding functional fν ∈ L∞(A)∗

defined by saying that fν(χa) = νa for every a ∈ A. There are contexts in which it is convenient, and
even helpful, to use the formula

∫
u dν in place of fν(u) for u ∈ L∞ = L∞(A). When doing so, we must of

course remember that we may have lost some of the standard properties of ‘integration’. But enough of our
intuitions (including, for instance, the idea of stochastic independence) remain valid to make the formula a
guide to interesting ideas.

(b) Let M be the L-space of bounded finitely additive functionals on A (362B). Then we have a function
(u, ν) 7→

∫
u dν : L∞ ×M → R. Now this map is bilinear. PPP For µ, ν ∈M , u, v ∈ L∞ and α ∈ R,∫

u+ v dν =
∫
u dν +

∫
v dν,

∫
αudν = α

∫
u dν

just because fν is linear. On the other side, we have

(fµ + fν)(χa) = fµ(χa) + fν(χa) = µa+ νa = (µ+ ν)(a) = fµ+ν(χa)

for every a ∈ A, so that fµ + fν and fµ+ν must agree on S(A) and therefore on L∞. But this means that∫
u d(µ+ ν) =

∫
u dµ+

∫
u dν. Similarly,

∫
u d(αµ) = α

∫
u dµ. QQQ

(c) If ν is non-negative, we have
∫
u dν ≥ 0 whenever u ≥ 0, as in part (c) of the proof of 363K.

Consequently, for any ν ∈M and u ∈ L∞,

D.H.Fremlin



32 Function spaces 363Lc

| −
∫
u dν| = | −

∫
u+ dν+ −−

∫
u−dν+ −−

∫
u+dν− + −

∫
u−dν−|

≤ −
∫
u+ dν+ + −

∫
u−dν+ + −

∫
u+dν− + −

∫
u−dν−

= −
∫

|u|d|ν| ≤ −
∫

‖u‖∞χ1 d|ν| = ‖u‖∞|ν|(1) = ‖u‖∞‖ν‖.

So (u, ν) 7→
∫
u dν has norm (as defined in 253Ab) at most 1. If A 6= 0, the norm is exactly 1. (For this we

need to know that there is a ν ∈M+ such that ν1 = 1. Take any z in the Stone space of A and set νa = 1
if z ∈ â, 0 otherwise.)

(d) We do not have any result corresponding to B.Levi’s theorem in this language, because (even if
ν is non-negative and countably additive) there is no reason to suppose that supn∈N un is defined in L∞

just because supn∈N

∫
undν is finite. But if ν is countably additive and A is Dedekind σ-complete, we have

something corresponding to Lebesgue’s Dominated Convergence Theorem (363Yg).

(e) One formula which we can imitate in the present context is that of 252O, where the ordinary integral
is represented in the form ∫

fdµ =
∫∞

0
µ{x : f(x) ≥ t}dt

for non-negative f . In the context of general Boolean algebras, we cannot directly represent the set [[f ≥ t]] =
{x : f(x) ≥ t} (though in the next section I will show that in Dedekind σ-complete Boolean algebras there
is an effective expression of this idea). But what we can say is the following. If A is any Boolean algebra,
and ν : A → [0,∞[ is a non-negative additive functional, and u ∈ L∞(A)+, then∫

u dν =
∫∞

0
sup{νa : tχa ≤ u}dt,

where the right-hand integral is taken with respect to Lebesgue measure. PPP (i) For t ≥ 0 set h(t) =
sup{νa : tχa ≤ u}. Then h is non-increasing and zero for t > ‖u‖∞, so

∫∞

0
h(t)dt is defined in R. If

we set hn(t) = h(2−n(k + 1)) whenever k, n ∈ N and 2−nk ≤ t < 2−n(k + 1), then 〈hn(t)〉n∈N is a non-
decreasing sequence which converges to h(t) whenever h is continuous at t, which is almost everywhere
(222A, or otherwise); so

∫∞

0
h(t)dt = limn→∞

∫∞

0
hn(t)dt. Next, given n ∈ N and ǫ > 0, we can choose for

each k ≤ k∗ = ⌊2n‖u‖∞⌋ an ak such that 2−n(k + 1)χak ≤ u and νak ≥ h(2−n(k + 1)) − ǫ. In this case∑k∗

k=0 2−nχak ≤ u, so

∫ ∞

0

hn(t)dt = 2−n
k∗∑

k=0

h(2−n(k + 1)) ≤ ‖u‖∞ǫ+ 2−n
k∗∑

k=0

νak

= ‖u‖∞ǫ+ −
∫ k∗∑

k=0

2−nχakdν ≤ ‖u‖∞ǫ+ −
∫
u dν.

As n and ǫ are arbitrary,
∫∞

0
h(t)dt ≤

∫
u dν. (ii) In the other direction, there is for any ǫ > 0 a v ∈ S(A)

such that v ≤ u ≤ v + ǫχ1. If we express v as
∑m
j=0 γjχcj where c0 ⊇ . . . ⊇ cm and γj ≥ 0 for every j

(361Ec), then we shall have h(t) ≥ νck whenever t ≤ ∑k
j=0 γj , so

∫∞

0
h(t)dt ≥ ∑m

k=0 γkνck =
∫
v dν ≥

∫
u dν − ǫν1.

As ǫ is arbitrary,
∫∞

0
h(t)dt ≥

∫
u dν and the two ‘integrals’ are equal. QQQ

(f) The formula
∫
dν is especially natural when A is an algebra of sets, so that L∞ can be directly

interpreted as a space of functions (363Ha); better still, when A is actually a σ-algebra of subsets of a set
X, L∞ can be identified with the space of bounded A-measurable functions on X, as in 363Hb. So in
such contexts I may write

∫
g dν or even

∫
g(x)ν(dx) when g : X → R is bounded and A-measurable, and

ν : A → R is a bounded additive functional. But I will try to take care to signal any such deviation from
the normal principle that the symbol

∫
refers to the sequentially order-continuous integral defined in §122

with the minor modifications introduced in §§133 and 135.
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363M Now I come to a fundamental fact underlying a number of theorems in both this volume and the
last.

Theorem Let A be a Boolean algebra.
(a) A is Dedekind σ-complete iff L∞(A) is Dedekind σ-complete.
(b) A is Dedekind complete iff L∞(A) is Dedekind complete.

proof (a)(i) Suppose that A is Dedekind σ-complete. By 314M, we may identify A with a quotient Σ/M,
where M is the ideal of meager subsets of the Stone space Z of A, and Σ = {E△A : E ∈ E , A ∈ M},
writing E = {â : a ∈ A} for the algebra of open-and-closed subsets of Z. By 363Hb, L∞ = L∞(A) can be
identified with L

∞/V, where L
∞ is the space of bounded Σ-measurable functions from Z to R, and V is the

space of functions zero except on a member of M.
Now suppose that 〈un〉n∈N is a sequence in L∞ with an upper bound u ∈ L∞. Express un, u as f•

n, f•

where fn, f ∈ L
∞. Set g(z) = supn∈N min(fn(z), f(z)) for every z ∈ Z; then g ∈ L

∞ (121F), so we have a
corresponding member v = g• of L∞. For each n ∈ N, u ≥ un so (fn − f)+ ∈ V,

{z : fn(z) > g(z)} ⊆ {z : fn(z) > f(z)} ∈ M
and v ≥ un. If w ∈ L∞ and w ≥ un for every n, then express w as h• where h ∈ L

∞; we have (fn−h)+ ∈ V

for every n, so

{z : g(z) > h(z)} ⊆ ⋃
n∈N{z : fn(z) > h(z)} ∈ M

because M is a σ-ideal, and (g − h)+ ∈ V, so w ≥ v. Thus v = supn∈N un in L∞. As 〈un〉n∈N is arbitrary,
L∞ is Dedekind σ-complete (using 353H).

(ii) Now suppose that L∞ is Dedekind σ-complete, and that A is a countable non-empty set in A.
In this case {χa : a ∈ A} has a least upper bound u in L∞. Take v ∈ S(A) such that 0 ≤ v ≤ u and
‖u − v‖∞ ≤ 1

3 ; set b = [[v > 1
3 ]], as defined in 361Eg. If a ∈ A, then ‖(χa − v)+‖∞ ≤ ‖u − v‖∞ ≤ 1

3 , so
2
3χa ≤ v and a ⊆ b. If c ∈ A is any upper bound for A, then v ≤ u ≤ χc so b ⊆ c. Thus b = supA in A. As
A is arbitrary, A is Dedekind σ-complete.

(b)(i) For the second half of this theorem I use an argument which depends on joining the representation
described in (a-i) above with the original definition of L∞ in 363A. The point is that C(Z) ⊆ L

∞, and for
any f ∈ C(Z) = L∞(A) its equivalence class f• in L

∞/V corresponds to f itself. PPP Perhaps it will help
to give a name T to the canonical isomorphism from L

∞/V to L∞. Then V = {f : Tf• = f} is a closed
linear subspace of C(Z), because f 7→ f• and T are continuous linear operators. But if a ∈ A, then (â)•, the
equivalence class of â ∈ Σ in Σ/M, corresponds to a (see the proof of 314M), so (χâ)• ∈ L

∞/V corresponds
to χa; that is, T (χâ)• = χâ, if we identify χa ∈ L∞ with χâ : Z → {0, 1}. So V contains χâ for every a ∈ A;
because V is a linear subspace, S(A) ⊆ V ; because V is closed, L∞ ⊆ V . QQQ

For a general f ∈ L
∞, g = Tf• must be the unique member of C(Z) such that g• = f•, that is, such

that {z : g(z) 6= f(z)} is meager.

(ii) Suppose now that A is actually Dedekind complete. In this case Z is extremally disconnected
(314S). Consequently every open set belongs to Σ. PPP If G is open, then G is open-and-closed; but A = G\G
is a closed set with empty interior, so is meager, and G = G△A ∈ Σ. QQQ

Let A ⊆ L∞ = C(Z) be any non-empty set with an upper bound in C(Z). For each z ∈ Z set
g(z) = supu∈A u(z). Then

Gα = {z : g(z) > α} =
⋃
u∈A{z : u(z) > α}

is open for every α ∈ R (that is, g is lower semi-continuous). Thus Gα ∈ Σ for every α, so g ∈ L
∞, and

v = Tg• is defined in C(Z). For any u ∈ A, g ≥ u in L
∞, so

v = Tg• ≥ Tu• = u

in L∞; thus v is an upper bound for A in L∞. On the other hand, if w is any upper bound for A in
L∞ = C(Z), then surely w(z) ≥ u(z) for every z ∈ Z and u ∈ A, so w ≥ g and

w = Tw• ≥ Tg• = v.

This means that v is the least upper bound of A. As A is arbitrary, L∞ is Dedekind complete.
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(iii) Finally, if L∞ is Dedekind complete, then the argument of (a-ii), applied to arbitrary non-empty
subsets A of A, shows that A also is Dedekind complete.

363N Much of the importance of L∞ spaces in the theory of Riesz spaces arises from the next result.

Proposition Let U be a Dedekind σ-complete Riesz space with an order unit. Then U is isomorphic, as
Riesz space, to L∞(A), where A is the algebra of projection bands in U .

proof (a) By 353N, U is isomorphic to a norm-dense Riesz subspace of C(X) for some compact Hausdorff
space X; for the rest of this argument, therefore, we may suppose that U actually is such a subspace.

(b) U = C(X). PPP If g ∈ C(X) then by 354I there are sequences 〈fn〉n∈N, 〈f ′n〉n∈N in U such that
fn ≤ g ≤ gn and ‖gn − fn‖∞ ≤ 2−n for every n. Now {fn : n ∈ N} has a least upper bound f in U ; since
we must have fn ≤ f ≤ gn for every n, f = g and g ∈ U . QQQ

(c) Next, X is zero-dimensional. PPP Suppose that G ⊆ X is open and x ∈ G. Then there is an open set
G1 such that x ∈ G1 ⊆ G1 ⊆ G (3A3Bb). There is an f ∈ C(X) such that 0 ≤ f ≤ χG1 and f(x) > 0 (also
by 3A3Bb); write H for {y : f(y) > 0}. Set g = supn∈N(nf ∧χX), the supremum being taken in U = C(X).
For each y ∈ H, we must have g(y) ≥ min(1, nf(y)) for every n, so that g(y) = 1. On the other hand, if
y ∈ X \H, there is an h ∈ C(X) such that h(y) > 0 and 0 ≤ h ≤ χ(X \H); now h∧ f = 0 so h∧ g = 0 and
g(y) = 0. Thus χH ≤ g ≤ χH. The set {y : g(y) ∈ {0, 1}} is closed and includes H ∪ (X \H) so must be
the whole of X; thus G2 = {y : g(y) > 1

2} = {y : g(y) ≥ 1
2} is open-and-closed, and we have

x ∈ H ⊆ G2 ⊆ H ⊆ G1 ⊆ G.

As x, G are arbitrary, the set of open-and-closed subsets of X is a base for the topology of X, and X is
zero-dimensional. QQQ

(d) We can therefore identify X with the Stone space of its algebra E of open-and-closed sets (311J).
But in this case 363A immediately identifies U = C(X) with L∞(E). By 363J, E is isomorphic to A, so
U ∼= L∞(A).

Remark Note that in part (c) of the argument above, we have to take care over the interpretation of ‘sup’.
In the space of all real-valued functions on X, the supremum of {nf ∧ χX : n ∈ N} is just χH. But g is
supposed to be the least continuous function greater than or equal to nf ∧ χX for every n, and is therefore
likely to be strictly greater than χH, even though sandwiched between χH and χH.

363O Corollary Let U be a Dedekind σ-complete M -space. Then U is isomorphic, as Banach lattice,
to L∞(A), where A is the algebra of projection bands of U .

proof This is merely the special case of 363N in which U is known from the start to be complete under an
order-unit norm.

363P Corollary Let U be any Dedekind σ-complete Riesz space and e ∈ U+. Then the solid linear
subspace Ue of U generated by e is isomorphic, as Riesz space, to L∞(A) for some Dedekind σ-complete
Boolean algebra A; and if U is Dedekind complete, so is A.

proof Because U is Dedekind σ-complete, so is Ue (353K(a-i)). Apply 363N to Ue to see that Ue ∼= L∞(A)
for some A. Because Ue is Dedekind σ-complete, so is A, by 363Ma; while if U is Dedekind complete, so are
Ue and A, by 353K(b-i) and 363Mb.

363Q The next theorem will be a striking characterization of the Dedekind complete L∞ spaces as
normed spaces. As a warming-up exercise I give a much simpler result concerning their nature as Banach
lattices.

Proposition Let A be a Dedekind complete Boolean algebra. Then for any Banach lattice U , a linear
operator T : U → L∞ = L∞(A) is continuous iff it is order-bounded, and in this case ‖T‖ = ‖|T |‖, where
the modulus |T | is taken in L

∼(U ;L∞).
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proof It is generally true that order-bounded operators between Banach lattices are continuous (355C). If
T : U → L∞ is continuous, then for any w ∈ U+

|u| ≤ w =⇒ ‖u‖ ≤ ‖w‖ =⇒ ‖Tu‖∞ ≤ ‖T‖‖w‖ =⇒ |Tu| ≤ ‖T‖‖w‖ee,
where e is the standard order unit of L∞. So T is order-bounded. As L∞ is Dedekind complete (363Mb),
|T | is defined in L

∼(U ;L∞) (355Ea). For any w ∈ U ,

|T ||w| = sup{|Tu| : |u| ≤ |w|} ≤ ‖T‖‖w‖e,
so ‖|T |(w)‖ ≤ ‖T‖‖w‖; accordingly ‖|T |‖ ≤ ‖T‖. On the other hand, of course,

|Tw| ≤ |T ||w| ≤ ‖|T |‖‖w‖e
for every w ∈ U , so ‖T‖ ≤ ‖|T |‖ and the two norms are equal.

Remark Of course what is happening here is that the spaces L∞(A), for Dedekind complete A, are just
the Dedekind complete M -spaces; this is an elementary consequence of 363N and 363M.

363R Now for something much deeper.

Theorem Let U be a normed space over R. Then the following are equiveridical:
(i) there is a Dedekind complete Boolean algebra A such that U is isomorphic, as normed space, to

L∞(A);
(ii) whenever V is a normed space, V0 a linear subspace of V , and T0 : V0 → U is a bounded linear

operator, there is an extension of T0 to a bounded linear operator T : V → U with ‖T‖ = ‖T0‖.

proof For the purposes of the argument below, let us say that a normed space U satisfying the condition
(ii) has the ‘Hahn-Banach property’.

Part A: (i)⇒(ii) I have to show that L∞(A) has the Hahn-Banach property for every Dedekind complete
Boolean algebra A. Let V be a normed space, V0 a linear subspace of V , and T0 : V0 → L∞ = L∞(A) a
bounded linear operator. Set γ = ‖T0‖.

Let P be the set of all functions T such that domT is a linear subspace of V including V0 and T :
domT → U is a bounded linear operator extending T0 and with norm at most γ. Order P by saying that
T1 ≤ T2 if T2 extends T1. Then any non-empty totally ordered subset Q of P has an upper bound in P. PPP
Set domT =

⋃{domT1 : T1 ∈ Q}, Tv = T1v whenever T1 ∈ Q and v ∈ domT1; it is elementary to check
that T ∈ P, so that T is an upper bound for Q in P. QQQ

By Zorn’s Lemma, P has a maximal element T̃ . Now dom T̃ = V . PPP??? Suppose, if possible, otherwise.
Write Ṽ = dom T̃ and take any ṽ ∈ V \Ṽ ; let V1 be the linear span of Ṽ ∪{ṽ}, that is, {v+αṽ : v ∈ Ṽ , α ∈ R}.

If v1, v2 ∈ Ṽ then, writing e for the standard order unit of L∞,

T̃ v1 + T̃ v2 = T̃ (v1 + v2) ≤ ‖T̃ (v1 + v2)‖∞e
≤ γ‖v1 + v2‖e ≤ γ‖v1 − ṽ‖e+ γ‖v2 + ṽ‖e,

so

T̃ v1 − γ‖v1 − ṽ‖e ≤ γ‖v2 + ṽ‖e− T̃ v2.

Because L∞ is Dedekind complete (363Mb),

ũ = supv1∈Ṽ T̃ v1 − γ‖v1 − ṽ‖e
is defined in L∞ and ũ ≤ γ‖v2 + ṽ‖e− Tv2 for every v2 ∈ Ṽ . Putting these together, we have

T̃ v + ũ ≤ γ‖v + ṽ‖e, T̃ v − ũ ≤ γ‖v − ṽ‖e
for all v ∈ Ṽ . Consequently, if v ∈ Ṽ , then for α > 0

T̃ v + αũ = α(T̃ ( 1
αv) + ũ) ≤ αγ‖ 1

αv + ṽ‖e = γ‖v + αṽ‖e,
while for α < 0

T̃ v + αũ = |α|(T̃ (− 1
αv) − ũ) ≤ |α|γ‖ − 1

αv − ṽ‖e = γ‖v + αṽ‖e,
and of course
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T̃ v ≤ ‖T̃ v‖∞e ≤ γ‖v‖e.
So we have

T̃ v + αũ ≤ γ‖v + αṽ‖e
for every v ∈ Ṽ , α ∈ R.

Define T1 : V1 → L∞ by setting T1(v + αṽ) = T̃ v + αũ for every v ∈ Ṽ , α ∈ R. (This is well-defined

because ṽ /∈ Ṽ , so any member of V1 is uniquely expressible as v + αṽ where v ∈ Ṽ and α ∈ R.) Then T1
is a linear operator, extending T0, from a linear subspace of V to L∞. But from the calculations above we
know that T1v ≤ γ‖v‖e for every v ∈ V1; since we also have

T1v = −T1(−v) ≥ −γ‖ − v‖e = −γ‖v‖e,
‖T1v‖∞ ≤ γ‖v‖ for every v ∈ V1, and T1 ∈ P. But now T1 is a member of P properly extending T̃ , which
is supposed to be impossible. XXXQQQ

Accordingly T̃ : V → L∞ is an extension of T0 to the whole of V , with the same norm as T0. As V and
T0 are arbitrary, L∞ has the Hahn-Banach property.

Part B: (ii)⇒(i) Now let U be a normed space with the Hahn-Banach property. If U = {0} then of
course it is isomorphic to L∞(A), where A = {0}, so henceforth I will take it for granted that U 6= {0}.

(a) Let Z be the unit ball of the dual U∗ of U , with the weak* topology. Then Z is a compact Hausdorff
space (3A5F). For u ∈ U set Zu = {z : z ∈ Z, |z(u)| = ‖u‖}; then Zu is a closed subset of Z (because
f 7→ f(u) is continuous), and is non-empty, by the Hahn-Banach theorem (3A5Ab, or Part A above!) Now
let P be the set of those closed sets X ⊆ Z such that X ∩ Zu 6= ∅ for every u ∈ U . If Q ⊆ P is non-empty
and totally ordered, then

⋂
Q ∈ P, because for any u ∈ U

{X ∩ Zu : X ∈ Q}
is a downwards-directed family of non-empty compact sets, so must have non-empty intersection. By Zorn’s
Lemma, upside down, P has a minimal element X; with its relative topology, X is a compact Hausdorff
space.

(b) We have a linear operator R : U → C(X) given by setting (Ru)(x) = x(u) for every u ∈ U , x ∈ X;
because X ⊆ Z, ‖Ru‖∞ ≤ ‖u‖, and because X ∈ P, ‖Ru‖∞ = ‖u‖, for every u ∈ U . Moreover, if G ⊆ X is
a non-empty open set (in the relative topology of X) then X \G cannot belong to P, because X is minimal,
so there is a (non-zero) u ∈ U such that |x(u)| < ‖u‖ for every x ∈ X \G. Replacing u by ‖u‖−1u if need
be, we may suppose that ‖u‖ = 1.

What this means is that W = R[U ] is a linear subspace of C(X) which is isomorphic, as normed space,
to U , and has the property that whenever G ⊆ X is a non-empty relatively open set there is an f ∈W such
that ‖f‖∞ = 1 and |f(x)| < 1 for every x ∈ X \G. Observe that, because X \G is compact, there is now
some α < 1 such that |f(u)| ≤ α for every f ∈ X \G.

Because W is isomorphic to U , it has the Hahn-Banach property.

(c) Now consider V = ℓ∞(X), V0 = W , T0 : V0 →W the identity map. Because W has the Hahn-Banach
property, there is a linear operator T : ℓ∞(X) →W , extending T0, and of norm ‖T0‖ = 1.

(d) If h ∈ ℓ∞(X) and x0 ∈ X \ {x : h(x) 6= 0}, then (Th)(x0) = 0. PPP??? Otherwise, set G = {y : y ∈
X \ {x : h(x) 6= 0}, (Th)(y) 6= 0}. This is a non-empty open set in X, so there are f ∈ W , α < 1 such that
‖f‖∞ = 1 and |f(x)| ≤ α for every x ∈ X \G.

Because ‖f‖∞ = 1, there must be some x1 ∈ X such that |f(x1)| = 1, and of course x1 ∈ G, so
that (Th)(x1) 6= 0. But let δ > 0 be such that δ‖h‖∞ ≤ 1 − α. Then, because h(x) = 0 for x ∈ G,
|f(x)|+ |δh(x)| ≤ 1 for every x ∈ X, and ‖f + δh‖∞, ‖f − δh‖∞ are both less than or equal to 1. As Tf = f
and ‖T‖ = 1, this means that

‖f + δTh‖∞ ≤ 1, ‖f − δTh‖∞ ≤ 1;

consequently

|f(x1)| + δ|(Th)(x1)| = max(|(f + δTh)(x1)|, |(f − δTh)(x1)|) ≤ 1.

But |f(x1)| = 1 and δ(Th)(x1) 6= 0, so this is impossible. XXXQQQ
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(e) It follows that Th = h for every h ∈ C(X). PPP??? Suppose, if possible, otherwise. Then there is a δ > 0
such that G = {x : |(Th)(x) − h(x)| > δ} is not empty. Let f ∈ W be such that ‖f‖ = 1 but |f(x)| < 1
for every x ∈ X \ G. Then there is an x0 ∈ X such that |f(x0)| = 1; of course x0 must belong to G. Set

f1 =
h(x0)

f(x0)
f , so that f1 ∈W and f1(x0) = h(x0). Set

h1(x) = med(h(x) − δ, f1(x), h(x) + δ)

for x ∈ X. Then h1 ∈ C(X). Setting

H = {x : |h(x) − h(x0)| + |f1(x) − f1(x0)| < δ},

H is an open set containing x0 and

|f1(x) − h(x)| ≤ |f1(x0) − h(x0)| + δ = δ, h1(x) = f1(x)

for every x ∈ H. Consequently x0 /∈ {x : (f1 − h1)(x) 6= 0}, and T (f1 −h1)(x0) = 0, by (d). But this means
that

(Th1)(x0) = (Tf1)(x0) = f1(x0) = h(x0),

so that

|h(x0) − (Th)(x0)| = |T (h1 − h)(x0)| ≤ ‖T (h1 − h)‖∞ ≤ ‖h1 − h‖∞ ≤ δ,

which is impossible, because x0 ∈ G. XXXQQQ

(f) This tells us at once that W = C(X). But (d) also tells us that X is extremally disconnected. PPP Let
G ⊆ X be any open set. Then χX = χG+ χ(X \G), so

χX = T (χX) = h1 + h2,

where h1 = T (χG), h2 = T (χ(X \G)). Now from (d) we see that h1 must be zero on X \G while h2 must
be zero on G. Thus we have h1(x) = 1 for x ∈ G; as h1 is continuous, h1(x) = 1 for x ∈ G, and h1 = χG.
Of course it follows that G is open. As G is arbitrary, X is extremally disconnected. QQQ

(g) Being also compact and Hausdorff, therefore regular (3A3Bb), X is zero-dimensional (3A3Bd). We
may therefore identifyX with the Stone space of its regular open algebra RO(X) (314S), andW = C(X) with
L∞(RO(X)). Thus R : U → C(X) is a Banach space isomorphism between U and C(X) ∼= L∞(RO(X));
so U is of the type declared.

363S The Banach-Ulam problem At a couple of points already (232Hc, the notes to §326) I have
remarked on a problem which was early recognised as a fundamental question in abstract measure theory.
I now set out some formulations of the problem which arise naturally from the work done so far. I will do
this by writing down a list of equiveridical statements; the ‘Banach-Ulam problem’ asks whether they are
true.

I should remark that this is not generally counted as an ‘open’ problem. It is in fact believed by most of
us that these statements are independent of the usual axioms of Zermelo-Fraenkel set theory, including the
axiom of choice and even the continuum hypothesis. As such, this problem belongs to Volume 5 rather than
anywhere earlier, but its manifestations will become steadily more obtrusive as we continue through this
volume and the next, and I think it will be helpful to begin collecting them now. The ideas needed to show
that the statements here imply each other are already accessible; in particular, they involve no set theory
beyond Zorn’s Lemma. These implications constitute the following theorem, derived from Luxemburg 67a.

Theorem The following statements are equiveridical.
(i) There are a set X and a probability measure ν, with domain PX, such that ν{x} = 0 for every x ∈ X.
(ii) There are a localizable measure space (X,Σ, µ) and an absolutely continuous countably additive

functional ν : Σ → R which is not truly continuous, so has no Radon-Nikodým derivative (definitions:
232Ab, 232Hf).

(iii) There are a Dedekind complete Boolean algebra A and a countably additive functional ν : A → R

which is not completely additive.
(iv) There is a Dedekind complete Riesz space U such that U∼

c 6= U×.
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proof (a)(i)⇒(ii) Let X be a set with a probability measure ν, defined on PX, such that ν{x} = 0 for
every x ∈ X. Let µ be counting measure on X. Then (X,PX,µ) is strictly localizable, and ν : PX → R

is countably additive; also νE = 0 whenever µE is finite, so ν is absolutely continuous with respect to µ.
But if µE <∞ then E is finite and ν(X \E) = 1, so ν is not truly continuous, and has no Radon-Nikodým
derivative (232D).

(b)(ii)⇒(iii) Let (X,Σ, µ) be a localizable measure space and ν : Σ → R an absolutely continuous
countably additive functional which is not truly continuous. Let (A, µ̄) be the measure algebra of µ; then
we have an absolutely continuous countably additive functional ν̄ : A → R defined by setting ν̄E• = νE
for every E ∈ Σ (327C). Since ν is not truly continuous, ν̄ is not completely additive (327Ce). Also A is
Dedekind complete, because µ is localizable, so A and ν̄ witness (iii).

(c)(iii)⇒(i) Let A be a Dedekind complete Boolean algebra and ν : A → R a countably additive
functional which is not completely additive. Because ν is bounded (326M), therefore expressible as the
difference of non-negative countably additive functionals (326L), there must be a non-negative countably
additive functional ν ′ on A which is not completely additive.

By 326R, there is a partition of unity 〈ai〉i∈I in A such that
∑
i∈I ν

′ai < ν ′1. Set K = {i : i ∈ I, ν ′ai > 0};
then K must be countable, so

ν ′(supi∈I\K ai) = ν ′1 − ν ′(supi∈K ai) = ν ′1 −∑
i∈K ν

′ai > 0.

For J ⊆ I set µJ = ν ′(supi∈J\K ai); the supremum is always defined because A is Dedekind complete.

Because ν ′ is countably additive and non-negative, so is µ; because ν ′ai = 0 for i ∈ J \ K, µ{i} = 0 for
every i ∈ I. Multiplying µ by a suitable scalar, if need be, (I,PI, µ) witnesses that (i) is true.

(d)(iii)⇒(iv) If A is a Dedekind complete Boolean algebra with a countably additive functional which
is not completely additive, then U = L∞(A) is a Dedekind complete Riesz space (363Mb) and U∼

c 6= U×,
by 363K (recalling, as in (c) above, that the functional must be bounded).

(e)(iv)⇒(iii) Let U be a Dedekind complete Riesz space such that U× 6= U∼
c . Take f ∈ U∼

c \ U×;
replacing f by |f | if need be, we may suppose that f ≥ 0 is sequentially order-continuous but not order-
continuous (355H, 355I). Let A be a non-empty downwards-directed set in U , with infimum 0, such that
infu∈A f(u) > 0 (351Ga). Take e ∈ A, and consider the solid linear subspace Ue of U generated by e; write
g for the restriction of f to Ue. Because the embedding of Ue in U is order-continuous, g ∈ (Ue)

∼
c ; because

A ∩ Ue is downwards-directed and has infimum 0, and

infu∈A∩Ue
g(u) = infu∈A f(u) > 0,

g /∈ U×
e . But Ue is a Riesz space with order unit e, and is Dedekind complete because U is; so it can be

identified with L∞(A) for some Boolean algebra A (363N), and A is Dedekind complete, by 363M.
Accordingly we have a Dedekind complete Boolean algebra A such that L∞(A)∼c 6= L∞(A)×. By 363K,

there is a (bounded) countably additive functional on A which is not completely additive, and (iii) is true.

363X Basic exercises (a) Let A be a Boolean algebra and U a Banach algebra. Let ν : A → U be a
bounded additive function and T : L∞(A) → U the corresponding bounded linear operator. Show that T is
multiplicative iff ν(a ∩ b) = νa× νb for all a, b ∈ A.

>>>(b) Let A, B be Boolean algebras and T : L∞(A) → L∞(A) a linear operator. Show that the following
are equiveridical: (i) there is a Boolean homomorphism π : A → A such that T = Tπ (ii) T (u×v) = Tu×Tv
for all u, v ∈ L∞(A) (iii) T is a Riesz homomorphism and TeA = eB, where eA is the standard order unit of
L∞(A).

(c) Let A, B be Boolean algebras and T : L∞(A) → L∞(B) a Riesz homomorphism. Show that there are
a Boolean homomorphism π : A → B and a v ≥ 0 in L∞(B) such that Tu = v × Tπu for every u ∈ L∞(A),
where Tπ is the operator associated with π (363F).

(d) Let A be a Boolean algebra and C a subalgebra of A. Show that L∞(C), regarded as a subspace of
L∞(A) (363Ga), is order-dense in L∞(A) iff C is order-dense in A.
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>>>(e) Let (X,Σ, µ) be a measure space with measure algebra A, and L
∞ the space of bounded Σ-

measurable real-valued functions on X. A linear lifting of µ is a positive linear operator T : L∞(A) → L
∞

such that T (χ1A) = χX and (Tu)• = u for every u ∈ L∞(A), writing f 7→ f• for the canonical map from
L

∞ to L∞(A) (363H-363I). (i) Show that if θ : A → Σ is a lifting in the sense of 341A then Tθ, as defined in
363F, is a linear lifting. (ii) Show that if T : L∞(A) → L

∞ is a linear lifting, then there is a corresponding
lower density θ : A → Σ defined by setting θa = {x : T (χa)(x) = 1} for each a ∈ A. (iii) Show that θ, as
defined in (ii), is a lifting iff T is a Riesz homomorphism iff T is multiplicative.

(f) Let U be any commutative ring with multiplicative identity 1. Show that the set A of idempotents
in U (that is, elements a ∈ U such that a2 = a) is a Boolean algebra with identity 1, writing a ∩ b = ab,
1 \ a = 1 − a for a, b ∈ A.

(g) Let A be a Boolean algebra. Show that A is isomorphic to the Boolean algebras of multiplicative
idempotents of S(A) and L∞(A).

(h) Let A be a Dedekind σ-complete Boolean algebra. (i) Show that for any u ∈ L∞(A), α ∈ R there
are elements [[u ≥ α]], [[u > α]] ∈ A, where [[u ≥ α]] is the largest a ∈ A such that u × χa ≥ αχa, and
[[u > α]] = supβ>α [[u ≥ β]]. (ii) Show that in the context of 363Hb, if u corresponds to f• for f ∈ L

∞, then
[[u ≥ α]] = {x : f(x) ≥ α}•, [[u > α]] = {x : f(x) > α}•. (iii) Show that if A ⊆ L∞ is non-empty and v ∈ L∞,
then v = supA iff [[v > α]] = supu∈A [[u > α]] for every α ∈ R; in particular, v = u iff [[v > α]] = [[u > α]] for
every α. (iv) Show that a function φ : R → A is of the form φ(α) = [[u > α]] iff (α) φ(α) = supβ>α φ(β) for
every α ∈ R (β) there is an M such that φ(M) = 0, φ(−M) = 1. (v) Put (iii) and (iv) together to give a
proof that L∞ is Dedekind σ-complete if A is.

(i) Let A be a Dedekind σ-complete Boolean algebra and U ⊆ L∞(A) a (sequentially) order-closed Riesz
subspace containing χ1. Show that U can be identified with L∞(B) for some (sequentially) order-closed
subalgebra B ⊆ A. (Hint : set B = {b : χb ∈ U} and use 363N.)

363Y Further exercises (a) Let A be a Boolean algebra. Given the linear structure, ordering, multi-
plication and norm of S(A) as described in §361, show that a norm completion of S(A) will serve for L∞(A)
in the sense that all the results of 363B-363Q can be proved with no use of the axiom of choice except an
occasional appeal to countably many choices in sequential forms of the theorems.

(b) Let A be a Boolean algebra. Show that A is ccc iff L∞(A) has the countable sup property (241Ye,
353Yd).

(c) Let X be an extremally disconnected topological space, and RO(X) its regular open algebra. Show
that there is a natural isomorphism between L∞(RO(X)) and Cb(X).

(d) Let A be a Boolean algebra. (i) If u ∈ L∞ = L∞(A), show that |u| = e, the standard order unit of
L∞, iff max(‖u+ v‖∞, ‖u− v‖∞) > 1 whenever v ∈ L∞ \ {0}. (ii) Show that if u, v ∈ L∞ then |u| ∧ |v| = 0
iff ‖αu + v + w‖∞ ≤ max(‖αu + w‖∞, ‖v + w‖∞) whenever α = ±1 and w ∈ L∞. (iii) Show that if
T : L∞ → L∞ is a normed space automorphism then there are a Boolean automorphism π : A → A and a
w ∈ L∞ such that |w| = e and Tu = w × Tπu for every u ∈ L∞.

(e) Let X be a set, Σ an algebra of subsets of X, and I an ideal in Σ, and L
∞ the set of bounded functions

f : X → R such that whenever α < β in R there is an E ∈ Σ such that {x : f(x) ≤ α} ⊆ E ⊆ {x : f(x) ≤ β},
as in 363H. (i) Show that L

∞ = {gφ : g ∈ C(Z)}, where Z is the Stone space of Σ and φ : X → Z is a
function (to be described). (ii) Show that L∞(Σ/I) can be identified, as Banach lattice and Banach algebra,
with L

∞/V, where V is the set of those functions f ∈ L
∞ such that for every ǫ > 0 there is a member of I

including {x : |f(x)| ≥ ǫ}.

(f) Let (X,Σ, µ) be a complete probability space with measure algebra A. Let 〈Bn〉n∈N be a non-
decreasing sequence of closed subalgebras of A such that A is the closed subalgebra of itself generated by⋃
n∈N Bn, and set Σn = {F : F • ∈ Bn} for each n. Let Pn : L1(µ) → L1(µ↾Σn) be the conditional

expectation operator for each n, so that Pn↾L
∞(µ) is a positive linear operator from L∞(µ) ∼= L∞(A) to
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L∞(µ↾Σn) ∼= L∞(Bn). Suppose that we are given for each n a lifting θn : Bn → Σn and that θn+1b = θnb
whenever n ∈ N and b ∈ Bn. Let Tn : L∞(Bn) → L

∞ be the corresponding linear liftings (363Xe), and
F any non-principal ultrafilter on N. (i) Show that for any u ∈ L∞(A), 〈TnPnu〉n∈N converges almost
everywhere. (ii) For u ∈ L∞(A) set (Tu)(x) = limn→F (TnPnu)(x) for x ∈ X, u ∈ L∞(A). Show that T
is a linear lifting for µ. (iii) Use 363Xe(ii) and 341J to show that there is a lifting θ of µ extending every
θn. (iv) Use this as the countable-cofinality inductive step in a proof of the Lifting Theorem (using partial
liftings rather than partial lower densities, as suggested in 341Li).

(g) Let A be a Boolean algebra and ν : A → R a bounded countably additive functional. Suppose that
〈un〉n∈N is an order-bounded sequence in L∞(A) such that infn∈N supm≥n um and supn∈N infm≥n um are

defined in L∞(A) and equal to u say. Show that
∫
u dν = limn→∞

∫
undν.

(h) Let Σ be the family of those sets E ⊆ [0, 1] such that µ(intE) = µE, where µ is Lebesgue measure.
(i) Show that Σ is an algebra of subsets of [0, 1] and that every member of Σ is Lebesgue measurable. (ii)
Show that if we identify L∞(Σ) with a set of real-valued functions on [0, 1], as in 363H, then we get just the
space of Riemann integrable functions. (iii) Show that if we write ν for µ↾Σ, then

∫
dν, as defined in 363L,

is just the Riemann integral.

(i) Let X be a compact Hausdorff space. Let us say that a linear subspace U of C(X) is ℓ∞-comple-
mented in C(X) if there is a linear subspace V such that C(X) = U⊕V and ‖u+v‖∞ = max(‖u‖∞, ‖v‖∞)
for all u ∈ U , v ∈ V . Show that there is a one-to-one correspondence between such subspaces U and open-
and-closed subsets E of X, given by setting U = {u : u ∈ C(X), u(x) = 0 ∀ x ∈ X \ E}. Hence show that
if A is any Boolean algebra, there is a canonical isomorphism between A and the partially ordered set of
ℓ∞-complemented subspaces of L∞(A).

363 Notes and comments As with S(A), I have chosen a definition of L∞(A) in terms of the Stone space
of A; but as with S(A), this is optional (363Ya). By and large the basic properties of L∞ are derived very
naturally from those of S. The spaces L∞(A), for general Boolean algebras A, are not in fact particularly
important; they have too few properties not shared by all the spaces C(X) for compact Hausdorff X. The
point at which it becomes helpful to interpret C(X) as L∞(A) is when C(X) is Dedekind σ-complete. The
spaces X for which this is true are difficult to picture, and alternative representations of L∞ along the lines
of 363H-363I can be easier on the imagination.

For Dedekind σ-complete A, there is an alternative description of members of L∞(A) in terms of objects
‘[[u > α]]’ (363Xh); I will return to this idea in the next section. For the moment I remark only that it gives
an alternative approach to 363M not necessarily depending on the representation of L∞ as a quotient L∞/V
nor on an analysis of a Stone space. I used a version of such an argument in the proof of 363M which I gave
in Fremlin 74a, 43D.

I spend so much time on 363M not only because Dedekind completeness is one of the basic properties of
any lattice, but because it offers an abstract expression of one of the central results of Chapter 24. In 243H
I showed that L∞(µ) is always Dedekind σ-complete, and that it is Dedekind complete if µ is localizable.
We can now relate this to the results of 321H and 322Be: the measure algebra of any measure is Dedekind
σ-complete, and the measure algebra of a localizable measure is Dedekind complete.

The ideas of the proof of 363M can of course be rearranged in various ways. One uses 353Yb: for
completely regular spaces X, C(X) is Dedekind complete iff X is extremally disconnected; while for compact
Hausdorff spaces, X is extremally disconnected iff it is the Stone space of a Dedekind complete algebra.
With the right modification of the concept ‘extremally disconnected’ (314Yf), the same approach works for
Dedekind σ-completeness.

363R is the ‘Nachbin-Kelley theorem’; it is commonly phrased ‘a normed space U has the Hahn-Banach
extension property iff it is isomorphic, as normed space, to C(X) for some compact extremally disconnected
Hausdorff space X’, but the expression in terms of L∞ spaces seems natural in the present context. The
implication in one direction (Part A of the proof) calls for nothing but a check through one of the standard
proofs of the Hahn-Banach theorem to make sure that the argument applies in the generalized form. Part
B of the proof has ideas in it; I have tried to set it out in a way suggesting that if you can remember the
construction of the set X the rest is just a matter of a little ingenuity.
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One way of trying to understand the multiple structures of L∞ spaces is by looking at the corresponding
automorphisms. We observe, for instance, that an operator T from L∞(A) to itself is a Banach algebra
automorphism iff it is a Banach lattice automorphism preserving the standard order unit iff it corresponds
to an automorphism of the algebra A (363Xb). Of course there are Banach space automorphisms of L∞

which do not respect the order or multiplicative structure; but they have to be closely related to algebra
isomorphisms (363Yd).

I devote a couple of exercises (363Xe, 363Yf) to indications of how the ideas here are relevant to the
Lifting Theorem. If you found the formulae of the proof of 341G obscure it may help to work through the
parallel argument.

A lecture by W.A.J.Luxemburg on the equivalence between (i) and (iv) in 363S was one of the turning
points in my mathematical apprenticeship. I introduce it here, even though the real importance of the
Banach-Ulam problem lies in the metamathematical ideas it has nourished, because these formulations pro-
vide a focus for questions which arise naturally in this volume and which otherwise might prove distracting.
The next group of significant ideas in this context will appear in §438.

Version of 16.7.11

364 L0

My next objective is to develop an abstract construction corresponding to the L0(µ) spaces of §241. These
generalized L0 spaces will form the basis of the work of the rest of this chapter and also the next; partly
because their own properties are remarkable, but even more because they form a framework for the study of
Archimedean Riesz spaces in general (see §368). There seem to be significant new difficulties, and I take the
space to describe an approach which can be made essentially independent of the route through Stone spaces
used in the last three sections (364Ya). I embark directly on a definition in the new language (364A), and
relate it to the constructions of §241 (364B-364D, 364I) and §§361-363 (364J). The ideas of Chapter 27 can
also be expressed in this language; I make a start on developing the machinery for this in 364F-364G, with
the formula ‘[[u ∈ E]]’, ‘the region in which u belongs to E’, and some exercises (364Xe-364Xf). Following
through the questions addressed in §363, I discuss Dedekind completeness in L0 (364L-364M), properties of
its multiplication (364N), the expression of the original algebra in terms of L0 (364O), the action of Boolean
homomorphisms on L0 (364P) and product spaces (364R). In 364S-364V I describe representations of the
L0 space of a regular open algebra.

364A The set L0(A) (a) Definition Let A be a Dedekind σ-complete Boolean algebra. I will write
L0(A) for the set of all functions α 7→ [[u > α]] : R → A such that

(α) [[u > α]] = supβ>α [[u > β]] in A for every α ∈ R,
(β) infα∈R [[u > α]] = 0,
(γ) supα∈R [[u > α]] = 1.

(b) My reasons for using the notation ‘[[u > α]]’ rather than ‘u(α)’ will I hope become clear in the next
few paragraphs. For the moment, if you think of A as a σ-algebra of sets and of L0(A) as the family of
A-measurable real-valued functions, then [[u > α]] corresponds to the set {x : u(x) > α} (364Ia).

(c) Some readers will recognise the formula ‘[[. . . ]]’ as belonging to the language of forcing, so that [[u > α]]
could be read as ‘the Boolean value of the proposition “u > α”’. But a vocalisation closer to my intention
might be ‘the region where u > α’.

(d) Note that condition (α) of (a) automatically ensures that [[u > α]] ⊆ [[u > α′]] whenever α′ ≤ α in R.

(e) In fact it will sometimes be convenient to note that the conditions of (a) can be replaced by

(α′) [[u > α]] = supq∈Q,q>α [[u > q]] for every α ∈ R,
(β′) infn∈N [[u > n]] = 0,
(γ′) supn∈N [[u > −n]] = 1;

the point being that we need look only at suprema and infima of countable subsets of A.

c© 1996 D. H. Fremlin
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*(f) Indeed, because the function α 7→ [[u > α]] is determined by its values on Q, we have the option of
declaring L0(A) to be the set of functions α 7→ [[u > α]] : Q → A such that

(α′′) [[u > q]] = supq′∈Q,q′>q [[u > q′]] for every q ∈ Q,

(β′) infn∈N [[u > n]] = 0,

(γ′) supn∈N [[u > −n]] = 1.

However I shall hold this in reserve until I come to forcing constructions in Chapter 55 of Volume 5.

(g) In order to integrate this construction into the framework of the rest of this book, I match it with an
alternative route to the same object, based on σ-algebras and σ-ideals of sets, as follows.

364B Proposition Let X be a set, Σ a σ-algebra of subsets of X, and I a σ-ideal of Σ.

(a) Write L
0 = L

0
Σ for the space of all Σ-measurable functions from X to R. Then L

0, with its lin-
ear structure, ordering and multiplication inherited from RX , is a Dedekind σ-complete f -algebra with
multiplicative identity.

(b) Set

W = WI = {f : f ∈ L
0, {x : f(x) 6= 0} ∈ I}.

Then

(i) W is a sequentially order-closed solid linear subspace and ideal of L0;

(ii) the quotient space L0/W, with its inherited linear, order and multiplicative structures, is a Dedekind
σ-complete Riesz space and an f -algebra with a multiplicative identity;

(iii) for f , g ∈ L
0, f• ≤ g• in L

0/W iff {x : f(x) > g(x)} ∈ I, and f• = g• in L
0/W iff {x : f(x) 6=

g(x)} ∈ I.

proof (Compare 241A-241H.)

(a) The point is just that L
0 is a sequentially order-closed Riesz subspace and subalgebra of RX . The

facts we need to know – that constant functions belong to L
0, that f + g, αf , f × g, supn∈N fn belong to L

0

whenever f , g, fn do and {fn : n ∈ N} is bounded above – are all covered by 121E-121F. Its multiplicative
identity is of course the constant function χX.

(b)(i) The necessary verifications are all elementary.

(ii) Because W is a solid linear subspace of the Riesz space L
0, the quotient inherits a Riesz space

structure (351J, 352Jb); because W is an ideal of the ring (L0,+,×), L0/W inherits a multiplication; it is
a commutative algebra because L

0 is; and has a multiplicative identity e = χX• because χX is the identity
of L0.

To check that L
0/W is an f -algebra it is enough to observe that, for any non-negative f , g , h ∈ L

0,

f• × g• = (f × g)• ≥ 0,

and if f• ∧ g• = 0 then {x : f(x) > 0} ∩ {x : g(x) > 0} ∈ I, so that {x : f(x)h(x) > 0} ∩ {x : g(x) > 0} ∈ I
and

(f• × h•) ∧ g• = (h• × f•) ∧ g• = 0.

Finally, L0/W is Dedekind σ-complete, by 353K(a-iii).

(iii) For f , g ∈ L
0,

f• ≤ g• ⇐⇒ (f − g)+ ∈ W ⇐⇒ {x : f(x) > g(x)} = {x : (f − g)+(x) 6= 0} ∈ I
(using the fact that the canonical map from L

0 to L
0/W is a Riesz homomorphism, so that ((f − g)+)• =

(f• − g•)+). Similarly

f• = g• ⇐⇒ f − g ∈ W ⇐⇒ {x : f(x) 6= g(x)} = {x : (f − g)(x) 6= 0} ∈ I.
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364C Theorem Let X be a set and Σ a σ-algebra of subsets of X. Let A be a Dedekind σ-complete
Boolean algebra and π : Σ → A a surjective Boolean homomorphism, with kernel a σ-ideal I; define L

0 = L
0
Σ

and W = WI as in 364B, so that U = L
0/W is a Dedekind σ-complete f -algebra with multiplicative identity.

(a) We have a canonical bijection T : U → L0 = L0(A) defined by the formula

[[Tf• > α]] = π{x : f(x) > α}
for every f ∈ L

0 and α ∈ R.
(b)(i) For any u, v ∈ U ,

[[T (u+ v) > α]] = supq∈Q [[Tu > q]] ∩ [[Tv > α− q]]

for every α ∈ R.
(ii) For any u ∈ U and γ > 0,

[[T (γu) > α]] = [[Tu > α
γ ]]

for every α ∈ R.
(iii) For any u, v ∈ U ,

u ≤ v ⇐⇒ [[Tu > α]] ⊆ [[Tv > α]] for every α ∈ R.

(iv) For any u, v ∈ U+,

[[T (u× v) > α]] = supq∈Q,q>0 [[Tu > q]] ∩ [[Tv > α
q ]]

for every α ≥ 0.
(v) Writing e = (χX)• for the multiplicative identity of U , we have

[[Te > α]] = 1 if α < 1, 0 if α ≥ 1.

proof (a)(i) Given f ∈ L
0, set ζf (α) = π{x : f(x) > α} for α ∈ R. Then it is easy to see that ζf satisfies

the conditions (α)′-(γ)′ of 364Ae, because π is sequentially order-continuous (313Qb). Moreover, if f• = g•

in U , then

ζf (α) △ ζg(α) = π({x : f(x) > α}△{x : g(x) > α}) = 0

for every α ∈ R, because

{x : f(x) > α}△{x : g(x) > α} ⊆ {x : f(x) 6= g(x)} ∈ I,

and ζf = ζg. So we have a well-defined member Tu of L0 defined by the given formula, for any u ∈ U .

(ii) Next, given w ∈ L0, there is a u ∈ L
0/W such that Tu = w. PPP For each q ∈ Q, choose Fq ∈ Σ

such that πFq = [[w > q]] in A. Note that if q′ ≥ q then

π(Fq′ \ Fq) = [[u > q′]] \ [[u > q]] = 0,

so Fq′ \ Fq ∈ I. Set

H =
⋃
q∈Q Fq \

⋂
n∈N

⋃
q∈Q,q≥n Fq ∈ Σ,

and for x ∈ X set

f(x) = sup{q : q ∈ Q, x ∈ Fq} if x ∈ H,

= 0 otherwise.

(H is chosen just to make the formula here give a finite value for every x.) We have

πH = sup
q∈Q

[[w > q]] \ inf
n∈N

sup
q∈Q,q≥n

[[w > q]]

= 1A \ inf
n∈N

[[w > n]] = 1A \ 0A = 1A,

so X \H ∈ I. Now, for any α ∈ R,

D.H.Fremlin



44 Function spaces 364C

{x : f(x) > α} =
⋃

q∈Q,q>α

Fq ∪ (X \H) if α < 0,

=
⋃

q∈Q,q>α

Fq \ (X \H) if α ≥ 0,

and in either case belongs to Σ; so that f ∈ L
0 and f• is defined in L0. Next, for any α ∈ R,

[[Tf• > α]] = π{x : f(x) > α} = π(
⋃

q∈Q,q>α

Fq)

= sup
q∈Q,q>α

[[w > q]] = [[w > α]],

and Tf• = w. QQQ

(iii) Thus T is surjective. To see that it is injective, observe that if f , g ∈ L
0, then

Tf• = Tg• =⇒ [[Tf• > α]] = [[Tg• > α]] for every α ∈ R

=⇒ π{x : f(x) > α} = π{x : g(x) > α} for every α ∈ R

=⇒ {x : f(x) > α}△{x : g(x) > α} ∈ I for every α ∈ R

=⇒ {x : f(x) 6= g(x)} =
⋃

q∈Q

({x : f(x) > q}△{x : g(x) > q}) ∈ I

=⇒ f• = g•.

So we have the claimed bijection.

(b)(i) Let f , g ∈ L
0 be such that u = f• and v = g•, so that u+ v = (f + g)•. For any α ∈ R,

[[T (u+ v) > α]] = π{x : f(x) + g(x) > α}
= π(

⋃

q∈Q

{x : f(x) > q} ∩ {x : g(x) > α− q})

= sup
q∈Q

π{x : f(x) > q} ∩ π{x : g(x) > α− q}

(because π is a sequentially order-continuous Boolean homomorphism)

= sup
q∈Q

[[Tu > q]] ∩ [[Tv > α− q]].

(ii) Let f ∈ L
0 be such that f• = u, so that (γf)• = γu. For any α ∈ R,

[[T (γu) > α]] = π{x : γf(x) > α} = π{x : f(x) >
α

γ
} = [[Tu > α

γ ]].

(iii) Let f , g ∈ L
0 be such that f• = u and g• = v. Then

u ≤ v ⇐⇒ {x : f(x) > g(x)} ∈ I
(see 364B(b-iii))

⇐⇒
⋃

q∈Q

{x : f(x) > q ≥ g(x)} ∈ I

⇐⇒ {x : f(x) > α} \ {x : g(x) > α} ∈ I for every α ∈ R

⇐⇒ π{x : f(x) > α} \ π{x : g(x) > α} = 0 for every α

⇐⇒ [[Tu > α]] ⊆ [[Tv > α]] for every α.
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(iv) Now suppose that u, v ≥ 0, so that they can be expressed as f•, g• where f , g ≥ 0 in L
0 (351J),

and u× v = (f × g)•. If α ≥ 0, then

[[T (u× v) > α]] = π(
⋃

q∈Q,q>0

{x : f(x) > q} ∩ {x : g(x) >
α

q
})

= sup
q∈Q,q>0

π{x : f(x) > q} ∩ π{x : g(x) >
α

q
}

= sup
q∈Q,q>0

[[Tu > q]] ∩ [[Tv > α
q ]].

(v) This is trivial, because

[[T (χX)• > α]] = π{x : (χX)(x) > α}
= πX = 1 if α < 1,

= π∅ = 0 if α ≥ 1.

364D Theorem Let A be a Dedekind σ-complete Boolean algebra. Then L0 = L0(A) has the structure
of a Dedekind σ-complete f -algebra with multiplicative identity e, defined by saying

[[u+ v > α]] = supq∈Q [[u > q]] ∩ [[v > α− q]],

whenever u, v ∈ L0 and α ∈ R,

[[γu > α]] = [[u > α
γ ]]

whenever u ∈ L0, γ ∈ ]0,∞[ and α ∈ R,

u ≤ v ⇐⇒ [[u > α]] ⊆ [[v > α]] for every α ∈ R,

[[u× v > α]] = supq∈Q,q>0 [[u > q]] ∩ [[v > α
q ]]

whenever u, v ≥ 0 in L0 and α ≥ 0,

[[e > α]] = 1 if α < 1, 0 if α ≥ 1.

proof (a) By the Loomis-Sikorski theorem (314M), we can find a set Z (the Stone space of A), a σ-algebra
Σ of subsets of Z (the algebra generated by the open-and-closed sets and the ideal M of meager sets)
and a surjective sequentially order-continuous Boolean homomorphism π : Σ → A (corresponding to the
identification between A and the quotient Σ/M). Consequently, defining L

0 = L
0
Σ and W = WM as in

364B, we have a bijection between the Dedekind σ-complete f -algebra L
0/W and L0 (364Ca). Of course

this endows L0 itself with the structure of a Dedekind σ-complete f -algebra; and 364Cb tells us that the
description of the algebraic operations above is consistent with this structure.

(b) In fact the f -algebra structure is completely defined by the description offered. For while scalar
multiplication is not described for γ ≤ 0, the assertion that L0 is a Riesz space implies that 0u = 0 and that
γu = (−γ)(−u) for γ < 0; so if we have formulae to describe u+ v and γu for γ > 0, this suffices to define
the linear structure of L0. Note that we have an element 0 in L0 defined by setting

[[0 > α]] = 0 if α ≥ 0, 1 if α < 0,

and the formula for u+ v shows us that

[[0 + u > α]] = supq∈Q [[0 > q]] ∩ [[u > α− q]] = supq∈Q,q<0 [[u > α− q]] = [[u > α]]

for every α, so that 0 is the zero of L0. As for multiplication, if L0 is to be an f -algebra we must have

[[u× v > α]] ⊇ [[0 > α]] = 1

whenever u, v ∈ (L0)+ and α < 0, because u× v ≥ 0. So the formula offered is sufficient to determine u× v
for non-negative u and v; and for others we know that
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u× v = (u+ × v+) − (u+ × v−) − (u− × v+) + (u− × v−),

so the whole of the multiplication of L0 is defined.

364E The rest of this section will be devoted to understanding the structure just established. I start
with a pair of elementary facts.

Lemma Let A be a Dedekind σ-complete Boolean algebra.
(a) If u, v ∈ L0 = L0(A) and α, β ∈ R,

[[u+ v > α+ β]] ⊆ [[u > α]] ∪ [[v > β]].

(b) If u, v ≥ 0 in L0 and α, β ≥ 0 in R,

[[u× v > αβ]] ⊆ [[u > α]] ∪ [[v > β]].

proof (a) For any q ∈ Q, either q ≥ α and [[u > q]] ⊆ [[u > α]], or q ≤ α and [[v > α+ β − q]] ⊆ [[v > β]]; thus
in all cases

[[u > q]] ∩ [[v > α+ β − q]] ⊆ [[u > α]] ∪ [[v > β]];

taking the supremum over q, we have the result.

(b) The same idea works, replacing α+ β − q by αβ/q for q > 0.

364F Yet another description of L0 is sometimes appropriate, and leads naturally to an important
construction (364H).

Proposition Let A be a Dedekind σ-complete Boolean algebra. Then there is a bijection between L0 =
L0(A) and the set Φ of sequentially order-continuous Boolean homomorphisms from the algebra B of Borel
subsets of R to A, defined by saying that u ∈ L0 corresponds to φ ∈ Φ iff [[u > α]] = φ(]α,∞[) for every
α ∈ R.

proof (a) If φ ∈ Φ, then the map α 7→ φ(]α,∞[) satisfies the conditions of 364Ae, so corresponds to an
element uφ of L0.

(b) If φ, ψ ∈ Φ and uφ = uψ, then φ = ψ. PPP Set A = {E : E ∈ B, φ(E) = ψ(E)}. Then A is a
σ-subalgebra of B, because φ and ψ are both sequentially order-continuous Boolean homomorphisms, and
contains ]α,∞[ for every α ∈ R. Now A contains ]−∞, α] for every α, and therefore includes B (121J). But
this means that φ = ψ. QQQ

(c) Thus φ 7→ uφ is injective. But it is also surjective. PPP As in 364D, take a set Z, a σ-algebra Σ
of subsets of Z and a surjective sequentially order-continuous Boolean homomorphism π : Σ → A; let
T : L0

Σ/Wπ−1[{0}] → L0 be the bijection described in 364C. If u ∈ L0, there is an f ∈ L
0
Σ such that Tf• = u.

Now consider φE = πf−1[E] for E ∈ B. f−1[E] always belongs to Σ (121Ef), so φE is always well-defined;
E 7→ f−1[E] and π are sequentially order-continuous, so φ also is; and

φ(]α,∞[) = π{z : f(z) > α} = [[u > α]]

for every α, so u = uφ. QQQ
Thus we have the declared bijection.

364G Definitions (a) In the context of 364F, I will write [[u ∈ E]], ‘the region where u takes values in
E’, for φ(E), where φ : B → A is the homomorphism corresponding to u ∈ L0. Thus [[u > α]] = [[u ∈ ]α,∞[ ]].
In the same spirit I write [[u ≥ α]] for [[u ∈ [α,∞[ ]] = infβ<α [[u > β]], [[u 6= 0]] = [[|u| > 0]] = [[u > 0]] ∪ [[u < 0]]
and so on, so that (for instance) [[u = α]] = [[u ∈ {α}]] = [[u ≥ α]] \ [[u > α]] for u ∈ L0 and α ∈ R.

(b) If (A, µ̄) is a probability algebra, µ̄φ : B → [0, 1] is a probability measure, so that its completion ν is
a Radon probability measure on R (256C); I will call ν the distribution of u (cf. 271C).

364H Proposition Let A be a Dedekind σ-complete Boolean algebra, E ⊆ R a Borel set, and h : E → R

a Borel measurable function. Then whenever u ∈ L0 = L0(A) is such that [[u ∈ E]] = 1, there is an element
h̄(u) of L0 defined by saying that [[h̄(u) ∈ F ]] = [[u ∈ h−1[F ]]] for every Borel set F ⊆ R.
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proof All we have to observe is that F 7→ [[u ∈ h−1[F ]]] is a sequentially order-continuous Boolean homo-
morphism. (The condition ‘[[u ∈ E]] = 1’ ensures that [[u ∈ h−1[R]]] = 1.)

364I Examples Perhaps I should spell out the most important contexts in which we apply these ideas,
even though they have in effect already been mentioned.

(a) Let X be a set and Σ a σ-algebra of subsets of X. Then we may identify L0(Σ) with the space
L

0 = L
0
Σ of Σ-measurable real-valued functions on X. (This is the case A = Σ of 364C.) For f ∈ L

0,
[[f ∈ E]] (364G) is just f−1[E], for any Borel set E ⊆ R; and if h is a Borel measurable function, h̄(f)
(364H) is just the composition hf , for any f ∈ L

0.

(b) Now suppose that I is a σ-ideal of Σ and that A = Σ/I. Then, as in 364C, we identify L0(A) with
a quotient L

0/WI . For f ∈ L
0, [[f• ∈ E]] = f−1[E]•, and h̄(f•) = (hf)•, for any Borel set E and any Borel

measurable function h : R → R.

(c) In particular, if (X,Σ, µ) is a measure space with measure algebra A, then L0(A) becomes identified
with L0(µ) as defined in §241, and the distribution of f ∈ L

0(µ), as defined in 271C, is the same as the
distribution of f• ∈ L0(µ) ∼= L0(A), as defined in 364Gb.

The same remarks as in 363I apply here; the space L
0(µ) of 241A is larger than the space L

0 = L
0
Σ

considered here. But for every f ∈ L
0(µ) there is a g ∈ L

0
Σ such that g =a.e. f (241Bk), so that L0(µ) =

L
0(µ)/ =a.e. can be identified with L

0
Σ/N, where N is the set of functions in L

0 which are zero almost
everywhere (241Yc).

364J Embedding S and L∞ in L0: Proposition Let A be a Dedekind σ-complete Boolean algebra.
(a) We have a canonical embedding of L∞ = L∞(A) as an order-dense solid linear subspace of L0 = L0(A);

it is the solid linear subspace generated by the multiplicative identity e of L0. Consequently S = S(A) also
is embedded as an order-dense Riesz subspace and subalgebra of L0.

(b) This embedding respects the linear, lattice and multiplicative structures of L∞ and S, and the
definition of [[u > δ]], for u ∈ S+ and δ ≥ 0, given in 361Eg.

(c) For a ∈ A, χa, when regarded as a member of L0, can be described by the formula

[[χa > α]] = 1 if α < 0,

= a if 0 ≤ α < 1,

= 0 if 1 ≤ α.

The function χ : A → L0 is additive, injective, order-continuous and a lattice homomorphism.
(d) For every u ∈ (L0)+ there is a non-decreasing sequence 〈un〉n∈N in S such that u0 ≥ 0 and supn∈N un =

u.

proof Let Z, Σ, M, L0 = L
0
Σ, W = WM and π be as in the proof of 364D. I defined L∞ to be the space

C(Z) of continuous real-valued functions on Z (363A); but because A is Dedekind σ-complete, there is an
alternative representation as L

∞/W∩L
∞, where L

∞ is the space of bounded Σ-measurable functions from
Z to R (363Hb). Put like this, we clearly have an embedding of L∞ ∼= L

∞/W ∩ L
∞ in L0 ∼= L

0/W; and
this embedding represents L∞ as a Riesz subspace and subalgebra of L0, because L

∞ is a Riesz subspace
and subalgebra of L0. L∞ becomes the solid linear subspace of L0 generated by (χZ)• = e, because L

∞ is
the solid linear subspace of L0 generated by χZ. To see that L∞ is order-dense in L0, we have only to note
that f = supn∈N f ∧ nχZ in L

0 for every f ∈ L
0, and therefore (because the map f 7→ f• is sequentially

order-continuous) u = supn∈N u ∧ ne in L0 for every u ∈ L0.
To identify χa, we have the formula χ(πE) = (χE)•, as in 363H(b-iii); but this means that, if a = πE,

[[χa > α]] = π{z : χE(z) > α} = πZ = 1 if α < 0,

= πE = a if 0 ≤ α < 1,

= π∅ = 0 if α ≥ 1,

using the formula in 364Ca. Evidently χ is injective.
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Because S is an order-dense Riesz subspace and subalgebra of L∞ (363C), the same embedding represents
it as an order-dense Riesz subspace and subalgebra of L0. (For ‘order-dense’, use 352N(c-iii).) Concerning
the formula [[u > δ]], suppose that u ∈ S+ and δ ≥ 0; express u as

∑m
j=0 βjχbj , where b0, . . . , bm ∈ A are

disjoint and βj ≥ 0 for every j. Then we have disjoint sets F0, . . . , Fm ∈ Σ such that πFj = bj for every j,
and u is identified with (

∑m
j=0 βjχFj)

•. Using 364Ca, we have

[[u > δ]] = π{z :
∑m
j=0 βjχFj(z) > δ} = π(

⋃{Fj : βj > δ}) = sup{bj : βj > δ},

matching the expression in the proof of 361Eg. So the new interpretation of [[. . . ]] matches the former
definition in the special case envisaged in 361E.

Because χ : A → L∞ is additive, order-continuous and a lattice homomorphism (363D), and the embed-
ding map L∞ ⊂→ L0 also is, χ : A → L0 has the same properties.

Finally, if u ≥ 0 in L0, we can represent it as f• where f ≥ 0 in L
0. For n ∈ N set

fn(z) = 2−nk if 2−nk ≤ f(z) < 2−n(k + 1) where 0 ≤ k < 4n,

= 0 if f(z) ≥ 2n;

then 〈f•
n〉n∈N is a non-decreasing sequence in S+ with supremum u.

364K Corollary Let (A, µ̄) be a measure algebra. Then S(Af ) can be embedded as a Riesz subspace of
L0(A), which is order-dense iff (A, µ̄) is semi-finite.

proof (Recall that Af is the ring {a : µ̄a < ∞}.) The embedding Af ⊂→ A is an injective ring homomor-

phism, so induces an embedding of S(Af ) as a Riesz subspace of S(A), by 361J. Now S(Af ) is order-dense
in S(A) iff (A, µ̄) is semi-finite. PPP (i) If (A, µ̄) is semi-finite and v > 0 in S(A), then v is expressible as∑n
j=0 βjχbj where βj ≥ 0 for each j and some βjχbj is non-zero; now there is a non-zero a ∈ Af such that

a ⊆ bj , so that 0 < βjχa ∈ S(Af ) and βjχa ≤ v. As v is arbitrary, S(Af ) is quasi-order-dense, therefor
order-dense (353A). (ii) If S(Af ) is order-dense in S(A) and b ∈ A \ {0}, there is a u > 0 in S(Af ) such that
u ≤ χb; now there are α > 0, a ∈ Af \ {0} such that αχa ≤ u, in which case a ⊆ b. QQQ

Now because S(Af ) ⊆ S(A) and S(A) is order-dense in L0(A), we must have

S(Af ) is order-dense in L0(A) ⇐⇒ S(Af ) is order-dense in S(A)

⇐⇒ (A, µ̄) is semi-finite.

364L Suprema and infima in L0 We know that any L0(A) is a Dedekind σ-complete partially ordered
set. There is a useful description of suprema for this ordering in (a) of the next result. We do not have such
a simple formula for general infima (though see 364Xm), but facts in (b) are useful.

Proposition Let A be a Dedekind σ-complete Boolean algebra, and L0 = L0(A).
(a) Let A be a subset of L0.

(i) A is bounded above in L0 iff there is a sequence 〈cn〉n∈N in A, with infimum 0, such that [[u > n]] ⊆ cn
for every u ∈ A.

(ii) If A is non-empty, then A has a supremum in L0 iff cα = supu∈A [[u > α]] is defined in A for every
α ∈ R and infn∈N cn = 0; and in this case cα = [[supA > α]] for every α.

(iii) If A is non-empty and bounded above, then A has a supremum in L0 iff supu∈A [[u > α]] is defined
in A for every α ∈ R.

(b)(i) If u, v ∈ L0, then [[u ∧ v > α]] = [[u > α]] ∩ [[v > α]] for every α ∈ R.
(ii) If A is a non-empty subset of (L0)+, then inf A = 0 in L0 iff infu∈A [[u > α]] = 0 in A for every

α > 0.

proof (a)(i)(ααα) If A has an upper bound u0, set cn = [[u0 > n]] for each n; then 〈cn〉n∈N satisfies the
conditions.

(βββ) If 〈cn〉n∈N satisfies the conditions, set
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φ(α) = 1 if α < 0,

= inf
i≤n

ci if n ∈ N, α ∈ [n, n+ 1[ .

Then it is easy to check that φ satisfies the conditions of 364Aa, since infn∈N cn = 0. So there is a u0 ∈ L0

such that φ(α) = [[u0 > α]] for each α. Now, given u ∈ A and α ∈ R,

[[u > α]] ⊆ 1 = [[u0 > α]] if α < 0,

⊆ inf
i≤n

[[u > i]] ⊆ inf
i≤n

ci = [[u0 > α]] if n ∈ N, α ∈ [n, n+ 1[ .

Thus u0 is an upper bound for A in L0.

(ii)(ααα) Suppose that cα = supu∈A [[u > α]] is defined in A for every α, and that infn∈N cn = 0. Then,
for any α,

supq∈Q,q>α cq = supu∈A,q∈Q,q>α [[u > q]] = supu∈A [[u > α]] = cα.

Also, we are supposing that A contains some u0, so that

supn∈N c−n ⊇ supn∈N [[u0 > −n]] = 1.

Accordingly there is a u∗ ∈ L0 such that [[u∗ > α]] = cα for every α ∈ R. But now, for v ∈ L0,

v is an upper bound for A ⇐⇒ [[u > α]] ⊆ [[v > α]] for every u ∈ A, α ∈ R

⇐⇒ [[u∗ > α]] ⊆ [[v > α]] for every α

⇐⇒ u∗ ≤ v,

so that u∗ = supA in L0.

(βββ)Now suppose that u∗ = supA is defined in L0. Of course [[u∗ > α]] must be an upper bound for
{[[u > α]] : u ∈ A} for every α. ??? Suppose we have an α for which it is not the least upper bound, that is,
there is a c ⊂ [[u∗ > α]] which is an upper bound for {[[u > α]] : u ∈ A}. Define φ : R → A by setting

φ(β) = c ∩ [[u∗ > β]] if β ≥ α,

= [[u∗ > β]] if β < α.

It is easy to see that φ satisfies the conditions of 364Aa (we need the distributive law 313Ba to check that
φ(β) = supγ>β φ(γ) if β ≥ α), so corresponds to a member v of L0. But we now find that v is an upper
bound for A (because if u ∈ A and β ≥ α then

[[u > β]] ⊆ [[u > α]] ∩ [[u∗ > β]] ⊆ c ∩ [[u∗ > β]] = [[v > β]],)

that v ≤ u∗ and that v 6= u∗ (because [[v > α]] = c 6= [[u∗ > α]]); but this is impossible, because u∗ is
supposed to be the supremum of A. XXX Thus if u∗ = supA is defined in L0, then supu∈A [[u > α]] = [[u∗ > α]]
is defined in A for every α ∈ R. Also, of course,

infn∈N supu∈A [[u > n]] = infn∈N [[u∗ > n]] = 0.

(iii) This is now easy. If A has a supremum, then surely it satisfies the condition, by (b). If A satisfies
the condition, then we have a family 〈cα〉α∈R as required in (b); but also, by (a) or otherwise, there is a
sequence 〈c′n〉n∈N such that cn ⊆ c′n for every n and infn∈N c

′
n = 0, so infn∈N cn also is 0, and both conditions

in (b) are satisfied, so A has a supremum.

(b)(i) Take Z, L
0 and π as in the proof of 364D. Express u as f•, v as g• where f , g ∈ L

0, so that
u ∧ v = (f ∧ g)•, because the canonical map from L

0 to L0 is a Riesz homomorphism (351J). Then

[[u ∧ v > α]] = π{z : min(f(z), g(z)) > α} = π({z : f(z) > α} ∩ {z : g(z) > α})

= π{z : f(z) > α} ∩ π{z : g(z) > α} = [[u > α]] ∩ [[v > α]]

for every α.
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(ii)(ααα) If infu∈A [[u > α]] = 0 for every α > 0, and v is any lower bound for A, then [[v > α]] must be 0
for every α > 0, so that [[v > 0]] = 0; now since [[0 > α]] = 0 for α ≥ 0, 1 for α < 0, v ≤ 0. As v is arbitrary,
inf A = 0.

(βββ)If α > 0 is such that infu∈A [[u > α]] is undefined, or not equal to 0, let c ∈ A be such that

0 6= c ⊆ [[u > α]] for every u ∈ A, and consider v = αχc. Then [[v > β]] = [[χc > β
α ]] is 1 if β < 0, c if

0 ≤ β < α and 0 if β ≥ α. If u ∈ A then [[u > β]] is 1 if β < 0 (since u ≥ 0), at least [[u > α]] ⊇ c if 0 ≤ β < α,
and always includes 0; so that v ≤ u. As u is arbitrary, inf A is either undefined in L0 or not 0.

364M Now we have a reward for our labour, in that the following basic theorem is easy.

Theorem For a Dedekind σ-complete Boolean algebra A, L0 = L0(A) is Dedekind complete iff A is.

proof The description of suprema in 364L(a-iii) makes it obvious that if A is Dedekind complete, so that
supu∈A [[u > α]] is always defined, then L0 must be Dedekind complete. On the other hand, if L0 is Dedekind
complete, then so is L∞(A) (by 364J and 353K(b-i)), so that A also is Dedekind complete, by 363Mb.

364N The multiplication of L0 I have already observed that L0 is always an f -algebra with identity;
in particular (because L0 is surely Archimedean) the map u 7→ u × v is order-continuous for every v ≥ 0
(353Pa), and multiplication is commutative (353Pb, or otherwise). The multiplicative identity is χ1 (364D,
364Jc). By 353Qb, or otherwise, u× v = 0 iff |u| ∧ |v| = 0. There is one special feature of multiplication in
L0 which I can mention here.

Proposition Let A be a Dedekind σ-complete Boolean algebra. Then an element u of L0 = L0(A) has a
multiplicative inverse in L0 iff |u| is a weak order unit in L0 iff [[|u| > 0]] = 1.

proof If u is invertible, then |u| is a weak order unit, by 353Qc or otherwise. In this case, setting
c = 1 \ [[|u| > 0]], we see that

[[|u| ∧ χc > 0]] = [[|u| > 0]] ∩ c = 0

(364L(b-i)), so that |u| ∧ χc ≤ 0 and χc = 0, that is, c = 0; so [[|u| > 0]] must be 1. To complete the circuit,
suppose that [[|u| > 0]] = 1. Let Z, Σ, L0 = L

0
Σ, π, M be as in the proof of 364D, and S : L0 → L0 the

canonical map, so that [[Sh > α]] = π{z : h(z) > α} for every h ∈ L
0, α ∈ R. Express u as Sf where f ∈ L

0.
Then π{z : |f(z)| > 0} = [[S|f | > 0]] = 1, so {z : f(z) = 0} ∈ M. Set

g(z) =
1

f(z)
if f(z) 6= 0, g(z) = 0 if f(z) = 0.

Then {z : f(z)g(z) 6= 1} ∈ M so

u× Sg = S(f × g) = S(χZ) = χ1

and u is invertible.

Remark The repeated phrase ‘by 353x or otherwise’ reflects the fact that the abstract methods there can
all be replaced in this case by simple direct arguments based on the construction in 364B-364D.

364O Recovering the algebra: Proposition Let A be a Dedekind σ-complete Boolean algebra. For
a ∈ A write Va for the band in L0 = L0(A) generated by χa. Then a 7→ Va is a Boolean isomorphism
between A and the algebra of projection bands in L0.

proof I copy from the argument for 363J, itself based on 361K. If a ∈ A and w ∈ L0 then w× χa ∈ Va. PPP
If v ∈ V ⊥

a then |χa| ∧ |v| = 0, so χa× v = 0, so (w×χa)× v = 0, so |w×χa| ∧ |v| = 0; thus w×χa ∈ V ⊥⊥
a ,

which is equal to Va because L0 is Archimedean (353Ba). QQQ Now, if a ∈ A, u ∈ Va and v ∈ V1\a, then
|u| ∧ |v| = 0 because χa ∧ χ(1 \ a) = 0; and if w ∈ L0(A) then

w = (w × χa) + (w × χ(1 \ a)) ∈ Va + V1\a.

So Va and V1\a are complementary projection bands in L0. Next, if U ⊆ L0 is a projection band, then χ1 is
expressible as u+v = u∨v where u ∈ U , v ∈ U⊥. Setting a = [[u > 1

2 ]], a′ = [[v > 1
2 ]] we must have a ∪ a′ = 1

and a ∩ a′ = 0 (using 364L), so that a′ = 1 \ a; also 1
2χa ≤ u, so that χa ∈ U , and similarly χ(1 \ a) ∈ U⊥.

In this case Va ⊆ U and V1\a ⊆ U⊥, so U must be Va precisely. Thus a 7→ Va is surjective. Finally, just as
in 361K, a ⊆ b ⇐⇒ Va ⊆ Vb, so we have a Boolean isomorphism.
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364P I come at last to the result corresponding to 361J and 363F.

Theorem Let A and B be Dedekind σ-complete Boolean algebras, and π : A → B a sequentially order-
continuous Boolean homomorphism.

(a) We have a multiplicative sequentially order-continuous Riesz homomorphism Tπ : L0(A) → L0(B)
defined by the formula

[[Tπu > α]] = π[[u > α]]

whenever α ∈ R and u ∈ L0(A).
(b) Defining χa ∈ L0(A) as in 364J, Tπ(χa) = χ(πa) in L0(B) for every a ∈ A. If we regard L∞(A) and

L∞(B) as embedded in L0(A) and L0(B) respectively, then Tπ, as defined here, agrees on L∞(A) with Tπ
as defined in 363F.

(c) Tπ is order-continuous iff π is order-continuous, injective iff π is injective, surjective iff π is surjective.
(d) [[Tπu ∈ E]] = π[[u ∈ E]] for every u ∈ L0(A) and every Borel set E ⊆ R; consequently h̄Tπ = Tπh̄ for

every Borel measurable h : R → R, writing h̄ indifferently for the associated maps from L0(A) to itself and
from L0(B) to itself (364H).

(e) If C is another Dedekind σ-complete Boolean algebra and θ : B → C another sequentially order-
continuous Boolean homomorphism then Tθπ = TθTπ : L0(A) → L0(C).

proof I write T for Tπ.

(a)(i) To see that Tu is well-defined in L0(B) for every u ∈ L0(A), all we need to do is to check that
the map α 7→ π[[u > α]] : R → B satisfies the conditions of 364Ae, and this is easy, because π preserves all
countable suprema and infima.

(ii) To see that T is linear and order-preserving and multiplicative, we can use the formulae of 364D.
For instance, if u, v ∈ L0(A), then

[[Tu+ Tv > α]] = sup
q∈Q

[[Tu > q]] ∩ [[Tv > α− q]] = sup
q∈Q

π[[u > q]] ∩ π[[v > α− q]]

= π(sup
q∈Q

[[u > q]] ∩ [[v > α− q]]) = π[[u+ v > α]] = [[T (u+ v) > α]]

for every α ∈ R, so that Tu+ Tv = T (u+ v). In the same way,

T (γu) = γTu whenever γ > 0,

Tu ≤ Tv whenever u ≤ v,

Tu× Tv = T (u× v) whenever u, v ≥ 0,

so that, using the distributive laws, T is linear and multiplicative.
To see that T is a sequentially order-continuous Riesz homomorphism, suppose that A ⊆ L0(A) is a

countable non-empty set with a supremum u∗ ∈ L0(A); then T [A] is a non-empty subset of L0(B) with an
upper bound Tu∗, and

sup
u∈A

[[Tu > α]] = sup
u∈A

π[[u > α]] = π(sup
u∈A

[[u > α]]) = π[[u∗ > α]]

(using 364La)

= [[Tu∗ > α]]

for every α ∈ R. So using 364La again, Tu∗ = supu∈A Tu. Now this is true, in particular, for doubleton
sets A, so that T is a Riesz homomorphism; and also for non-decreasing sequences, so that T is sequentially
order-continuous.

(b) The identification of T (χa) with χ(πa) is another almost trivial verification. It follows that T agrees
with the map of 363F on S(A), if we think of S(A) as a subspace of L0(A). Next, if u ∈ L∞(A) ⊆ L0(A),
and γ = ‖u‖∞, then |u| ≤ γχ1A, so that |Tu| ≤ γχ1B, and Tu ∈ L∞(B), with ‖Tu‖∞ ≤ γ. Thus T ↾L∞(A)
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has norm at most 1. As it agrees with the map of 363F on S(A), which is ‖ ‖∞-dense in L∞(A) (363C), and
both are continuous, they must agree on the whole of L∞(A).

(c)(i)(ααα) Suppose that π is order-continuous, and that A ⊆ L0(A) is a non-empty set with a supremum
u∗ ∈ L0(A). Then for any α ∈ R,

[[Tu∗ > α]] = π[[u∗ > α]] = π(sup
u∈A

[[u > α]])

(by 364La)

= sup
u∈A

π[[u > α]]

(because π is order-continuous)

= sup
u∈A

[[Tu > α]].

As α is arbitrary, Tu∗ = supT [A], by 364La again. As A is arbitrary, T is order-continuous (351Ga).

(βββ) Now suppose that T is order-continuous and that A ⊆ A is a non-empty set with supremum c
in A. Then χc = supa∈A χa (364Jc) so

χ(πc) = T (χc) = supa∈A T (χa) = supa∈A χ(πa).

But now

πc = [[χ(πc) > 0]] = supa∈A [[χ(πa) > 0]] = supa∈A πa.

As A is arbitrary, π is order-continuous.

(ii)(ααα) If π is injective and u, v are distinct elements of L0(A), then there must be some α such that
[[u > α]] 6= [[v > α]], in which case [[Tu > α]] 6= [[Tv > α]] and Tu 6= Tv.

(βββ) Now suppose that T is injective. It is easy to see that χ : A → L0(A) is injective, so that
Tχ : A → L0(B) is injective; but this is the same as χπ (by (b)), so π must also be injective.

(iii)(ααα) Suppose that π is surjective. Let Σ be a σ-algebra of sets such that there is a sequentially
order-continuous Boolean surjection φ : Σ → A. Then πφ : Σ → B is surjective. So given w ∈ L0(B), there
is an f ∈ L

0
Σ such that [[w > α]] = πφ{x : f(x) > α} for every α ∈ R (364C). But, also by 364C, there is a

u ∈ L0(A) such that [[u > α]] = φ{x : f(x) > α} for every α. And now of course Tu = w. As w is arbitrary,
T is surjective.

(βββ) If T is surjective, and b ∈ B, there must be some u ∈ L0(A) such that Tu = χb. Now set
a = [[u > 0]] and see that πa = [[χb > 0]] = b. As b is arbitrary, π is surjective.

(d) The map E 7→ π[[u ∈ E]] is a sequentially order-continuous Boolean homomorphism, equal to [[Tu ∈ E]]
when E is of the form ]α,∞[; so by 364F the two are equal for all Borel sets E.

If h : R → R is a Borel measurable function, u ∈ L0(A) and E ⊆ R is a Borel set, then

[[h̄(Tu) ∈ E]] = [[Tu ∈ h−1[E]]] = π[[u ∈ h−1[E]]]

= π[[h̄(u) ∈ E]] = [[T (h̄(u)) ∈ E]].

As E and u are arbitrary, T h̄ = h̄T .

(e) This is immediate from (a).

364Q Proposition Let X and Y be sets, Σ, T σ-algebras of subsets of X, Y respectively, and I, J σ-
ideals of Σ, T. Set A = Σ/I and B = T/J . Suppose that φ : X → Y is a function such that φ−1[F ] ∈ Σ
for every F ∈ T and φ−1[F ] ∈ I for every F ∈ J .

(a) There is a sequentially order-continuous Boolean homomorphism π : B → A defined by saying that
πF • = φ−1[F ]• for every F ∈ T.
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(b) Let Tπ : L0(B) → L0(A) be the Riesz homomorphism corresponding to π, as defined in 364P. If we
identify L0(B) with L

0
T/WJ and L0(A) with L

0
Σ/WI in the manner of 364B-364C, then Tπ(g•) = (gφ)• for

every g ∈ L
0
T.

(c) Let Z be a third set, Υ a σ-algebra of subsets of Z, K a σ-ideal of Υ, and ψ : Y → Z a function such
that ψ−1[G] ∈ T for every G ∈ Υ and ψ−1[G] ∈ J for every G ∈ K. Let θ : C → B and Tθ : L0(C) → L0(B)
be the homomorphisms corresponding to ψ as in (a)-(b). Then πθ : C → A and TπTθ : L0(C) → L0(A)
correspond to ψφ : X → Y in the same way.

(d) Now suppose that µ and ν are measures with domains Σ, T and null ideals N (µ), N (ν) respectively,
and that I = Σ∩N (µ) and J = T∩N (ν). In this case, identifying L0(A), L0(B) with L0(µ) and L0(ν) as
in 364Ic, we have gφ ∈ L

0(µ) and Tπ(g•) = (gφ)• for every g ∈ L
0(ν).

proof (a) The argument is essentially that of 324A-324B, somewhat simplified. Explicitly: if F1, F2 ∈ T
and F •

1 = F •
2 , then F1△F2 ∈ J so φ−1[F1]△φ−1[F2] = φ−1[F1△F2] belongs to I and φ−1[F1]• = φ−1[F2]•.

So the formula offered defines a map π : B → A. It is a Boolean homomorphism, because if F1, F2 ∈ T then

πF •

1 △ πF •

2 = φ−1[F1]• △ φ−1[F2]• = (φ−1[F1]△φ−1[F2])•

= φ−1[F1△F2]• = π(F1△F2)• = π(F •

1 △ F •

2 ),

so π(b1 △ b2) = πb1 △ b2 for all b1, b2 ∈ B. Similarly π(b1 ∩ b2) = πb1 ∩ b2 for all b1, b2 ∈ B, and of course

π1B = πY • = φ−1[Y ]• = X• = 1A.

To see that π is sequentially order-continuous, let 〈bn〉n∈N be a sequence in B. For each n we may choose
an Fn ∈ T such that F •

n = bn, and set F =
⋃
n∈N Fn. As the map H 7→ H• : T → B is sequentially

order-continuous (313Qb), F • = supn∈N bn in B. Now

π(sup
n∈N

bn) = πF • = φ−1[F ]• = (
⋃

n∈N

φ−1[Fn])•

= sup
n∈N

φ−1[Fn]• = sup
n∈N

πF •

n = sup
n∈N

πbn.

So π is sequentially order-continuous, by 313Lc.

(b) Now suppose that g : Y → R is T-measurable; write v for g• in L
0
T/WJ

∼= L0(B). Set f = gφ; then

{x : f(x) > α} = φ−1[{y : g(y) > α}]

belongs to Σ for every α ∈ R, so f is Σ-measurable and we can speak of u = f• in L
0
Σ/WI

∼= L0(A). Now,
by 364Ca,

[[u > α]] = {x : f(x) > α}• = φ−1[{y : g(y) > α}]•

= π{y : g(y) > α}• = π[[v > α]] = [[Tπv > α]]

for every α ∈ R, and

(gφ)• = f• = u = Tπv = Tπg
•,

as claimed.

(c) Starting from the facts that (ψφ)−1[G] = φ−1[ψ−1[G]] for every G ∈ Υ and h(ψφ) = (hψ)φ for every
h ∈ L

0
Υ, we just have to run through the formulae.

(d) If g ∈ L
0(ν), there are a g0 ∈ L

0
T and an F ∈ J such that g(y) is defined and equal to g0(y) for every

y ∈ Y \ F . In this case, φ−1[F ] ∈ I and gφ(x) is defined and equal to g0φ(x) for every x ∈ X \ φ−1[F ], so
gφ ∈ L

0(µ) and

(gφ)• = (g0φ)• = Tπ(g•
0) = Tπ(g•)

by (b).

364R Products: Proposition Let 〈Ai〉i∈I be a family of Dedekind σ-complete Boolean algebras,
with simple product A. If πi : A → Ai is the coordinate map for each i, and Ti : L0(A) → L0(Ai) the
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corresponding homomorphism, then u 7→ Tu = 〈Tiu〉i∈I : L0(A) → ∏
i∈I L

0(Ai) is a multiplicative Riesz

space isomorphism, so L0(A) may be identified with the f -algebra product
∏
i∈I L

0(Ai) (352Wc).

proof Because each πi is a surjective order-continuous Boolean homomorphism, 364P assures us that there
are corresponding surjective multiplicative Riesz homomorphisms Ti. So all we need to check is that the
multiplicative Riesz homomorphism T : L0(A) → ∏

i∈I L
0(Ai) is a bijection.

If u, v ∈ L0(A) are distinct, there must be some α ∈ R such that [[u > α]] 6= [[v > α]]. In this case there
must be an i ∈ I such that πi[[u > α]] 6= πi[[v > α]], that is, [[Tiu > α]] 6= [[Tiv > α]]. So Tiu 6= Tiv and
Tu 6= Tv. As u, v are arbitrary, T is injective.

If w = 〈wi〉i∈I is any member of
∏
i∈I L

0(Ai), then for α ∈ R set

φ(α) = 〈[[wi > α]]〉i∈I ∈ A.

It is easy to check that φ satisfies the conditions of 364Aa, because, for instance,

supβ>α πiφ(β) = supβ>α [[wi > β]] = [[wi > α]] = πiφ(α)

for every i, so that supβ>α φ(β) = φ(α), for every α ∈ R; and the other two conditions are also satisfied

because they are satisfied coordinate-by-coordinate. So there is a u ∈ L0(A) such that φ(α) = [[u > α]] for
every α, that is, πi[[u > α]] = [[wi > α]] for all α, i, that is, Tiu = wi for every i, that is, Tu = w. As w is
arbitrary, T is surjective and we are done.

*364S Regular open algebras I noted in 314P that for every topological space X there is a corre-
sponding Dedekind complete Boolean algebra RO(X) of regular open sets. We have an identification of
L0(RO(X)) as a space of equivalence classes of functions, different in kind from the representations above,
as follows. This is hard work (especially if we do it in full generality), but instructive. I start with a
temporary definition.

Definition Let (X,T) be a topological space and f : X → R a function. For x ∈ X write

ω(f, x) = infG∈T,x∈G supy,z∈G |f(y) − f(z)|
(allowing ∞).

*364T Theorem Let X be any topological space, and RO(X) its regular open algebra. Let U be the
set of functions f : X → R such that {x : ω(f, x) < ǫ} is dense in X for every ǫ > 0. Then U is a Riesz
subspace of RX , closed under multiplication, and we have a surjective multiplicative Riesz homomorphism
T : U → L0(RO(X)) defined by writing

[[Tf > α]] = supβ>α int {x : f(x) > β},

the supremum being taken in RO(X), for every α ∈ R and f ∈ U . The kernel of T is the set W of functions
f : X → R such that int{x : |f(x)| ≤ ǫ} is dense for every ǫ > 0, so L0(RO(X)) can be identified, as
f -algebra, with the quotient space U/W .

proof (a)(i)(ααα) The first thing to observe is that for any f ∈ RX and ǫ > 0 the set

{x : ω(f, x) < ǫ} =
⋃

{G : G ⊆ X is open and non-empty

and sup
y,z∈G

|f(y) − f(z)| < ǫ}

is open.

(βββ) Next, it is easy to see that

ω(f + g, x) ≤ ω(f, x) + ω(g, x),

ω(γf, x) = |γ|ω(f, x),

ω(|f |, x) ≤ ω(f, x),

for all f , g ∈ RX and γ ∈ R.
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(γγγ) Thirdly, it is useful to know that if f ∈ U and G ⊆ X is a non-empty open set, then there is a
non-empty open set G′ ⊆ G on which f is bounded. PPP Take any x0 ∈ G such that ω(f, x0) < 1; then there
is a non-empty open set G′ containing x0 such that |f(y) − f(z)| < 1 for all y, z ∈ G′, and we may suppose
that G′ ⊆ G. But now |f(x)| ≤ 1 + |f(x0)| for every x ∈ G′. QQQ

(ii) So if f , g ∈ U and γ ∈ R then

{x : ω(f + g, x) < ǫ} ⊇ {x : ω(f, x) <
1

2
ǫ} ∩ {x : ω(g, x) <

1

2
ǫ}

is the intersection of two dense open sets and is therefore dense, while

{x : ω(γf, x) < ǫ} ⊇ {x : ω(f, x) <
ǫ

1+|γ|
},

{x : ω(|f |, x) < ǫ} ⊇ {x : ω(f, x) < ǫ}
are also dense. As ǫ is arbitrary, f + g, γf and |f | all belong to U ; as f , g and γ are arbitrary, U is a Riesz
subspace of RX .

(iii) If f , g ∈ U then f × g ∈ U . PPP Take ǫ > 0 and let G0 be a non-empty open subset of X. By the
last remark in (i) above, there is a non-empty open set G1 ⊆ G0 such that |f | ∨ |g| is bounded on G1; say
max(|f(x)|, |g(x)|) ≤ γ for every x ∈ G1.

Set δ =
ǫ

2γ+1
> 0. Then there is an x ∈ G1 such that ω(f, x) < δ and ω(g, x) < δ. Let H, H ′ be open

sets containing x such that |f(y)−f(z)| ≤ δ for all y, z ∈ H and |g(y)−g(z)| ≤ δ for all y, z ∈ H ′. Consider
G = G1 ∩H ∩H ′. This is an open set containing x, and if y, z ∈ G then

|f(y)g(y) − f(z)g(z)| ≤ |f(y) − f(z)||g(z)| + |f(z)||g(y) − g(z)|
≤ δγ + γδ.

Accordingly

ω(f × g, x) ≤ 2δγ < ǫ,

while x ∈ G0. As G0 is arbitrary, {x : ω(f × g, x) < ǫ} is dense; as ǫ is arbitrary, f × g ∈ U . QQQ
Thus U is a subalgebra of RX .

(b) Now, for f ∈ U , consider the map φf : R → RO(X) defined by setting

φf (α) = supβ>α int {x : f(x) > β}
for every α ∈ R. Then φf satisfies the conditions of 364Aa. PPP (See 314P for the calculation of suprema and
infima in RO(X).) (i) If α ∈ R then

φf (α) = sup
β>α

int {x : f(x) > β} = sup
γ>β>α

int {x : f(x) > γ}

= sup
β>α

sup
γ>β

int {x : f(x) > γ} = sup
β>α

φf (β).

(ii) If G0 ⊆ X is a non-empty open set, then there is a non-empty open set G1 ⊆ G0 such that f is
bounded on G1; say |f(x)| < γ for every x ∈ G1. If β > γ then G1 does not meet {x : f(x) > β}, so

G1 ∩ int {x : f(x) > γ} = ∅; as β is arbitrary, G1 ∩ φf (γ) = ∅ and G0 6⊆ infα∈R φf (α). On the other hand,
G1 ⊆ {x : f(x) > −γ}, so

G1 ⊆ int {x : f(x) > −γ} ⊆ φf (−γ)

and G0 ∩ supα∈R φf (α) 6= ∅. As G0 is arbitrary, infα∈R φf (α) = ∅ and supα∈R φf (α) = X. QQQ

(c) Thus we have a map T : U → L0 = L0(RO(X)) defined by setting [[Tf > α]] = φf (α) whenever α ∈ R

and f ∈ U .
It is worth noting that

{x : f(x) > α+ ω(f, x)} ⊆ [[Tf > α]] ⊆ {x : f(x) + ω(f, x) ≥ α}
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for every f ∈ U and α ∈ R. PPP (i) If f(x) > α + ω(f, x), set δ = 1
2 (f(x) − α − ω(f, x)) > 0. Then there is

an open set G containing x such that |f(y) − f(z)| < ω(f, x) + δ for every y, z ∈ G, so that f(y) > α + δ
for every y ∈ G, and

x ∈ int{y : f(y) > α+ δ} ⊆ [[Tf > α]].

(ii) If f(x) + ω(f, x) < α, set δ = 1
2 (α − f(x) − ω(f, x)) > 0; then there is an open neighbourhood G of x

such that |f(y) − f(z)| < ω(f, x) + δ for every y, z ∈ G, so that f(y) < α for every y ∈ G. Accordingly G

does not meet {y : f(y) > β} nor {y : f(y) > β} for any β > α, G ∩ [[Tf > α]] = ∅ and x /∈ [[Tf > α]]. QQQ

(d) T is additive. PPP Let f , g ∈ U and α < β ∈ R. Set δ = 1
5 (β−α) > 0, H = {x : ω(f, x) < δ, ω(g, x) <

δ}; then H is the intersection of two dense open sets, so is itself dense and open.

(i) If x ∈ H ∩ [[T (f + g) > β]], then (f + g)(x) + ω(f + g, x) ≥ β; but ω(f + g, x) ≤ 2δ (see (a-i-β)
above), so f(x) + g(x) ≥ β − 2δ > α+ 2δ and there is a q ∈ Q such that

f(x) > q + δ ≥ q + ω(f, x), g(x) > α− q + δ ≥ α− q + ω(g, x).

Accordingly

x ∈ [[Tf > q]] ∩ [[Tg > α− q]] ⊆ [[Tf + Tg > α]].

Thus H ∩ [[T (f + g) > β]] ⊆ [[Tf + Tg > α]]. Because H is dense, [[T (f + g) > β]] ⊆ [[Tf + Tg > α]].

(ii) If x ∈ H, then

x ∈
⋃

q∈Q

([[Tf > q]] ∩ [[Tg > β − q]])

=⇒ ∃ q ∈ Q, f(x) + ω(f, x) ≥ q, g(x) + ω(g, x) ≥ β − q

=⇒ f(x) + g(x) + 2δ ≥ β

=⇒ (f + g)(x) ≥ α+ 3δ > α+ ω(f + g, x)

=⇒ x ∈ [[T (f + g) > α]].

Thus

H ∩⋃
q∈Q([[Tf > q]] ∩ [[Tg > β − q]]) ⊆ [[T (f + g) > α]].

Because H is dense and
⋃
q∈Q([[Tf > q]] ∩ [[Tg > β − q]]) is open,

[[Tf + Tg > β]] = int
⋃

q∈Q

[[Tf > q]] ∩ [[Tg > β − q]]

⊆ int [[T (f + g) > α]] = [[T (f + g) > α]].

(iii) Now let β ↓ α; we have

[[T (f + g) > α]] = sup
β>α

[[T (f + g) > β]] ⊆ [[Tf + Tg > α]]

= sup
β>α

[[Tf + Tg > β]] ⊆ [[T (f + g) > α]],

so [[T (f + g) > α]] = [[Tf + Tg > α]]. As α is arbitrary, T (f + g) = Tf + Tg; as f and g are arbitrary, T is
additive. QQQ

(e) It is now easy to see that T is linear. PPP If γ > 0, f ∈ U and α ∈ R then

[[T (γf) > α]] = sup
β>α

int {x : γf(x) > β} = sup
β>α

int {x : f(x) >
β

γ
}

= sup
β>α/γ

int {x : f(x) > β} = [[Tf >
α

γ
]] = [[γTf > α]].
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As α is arbitrary, T (γf) = γTf ; because we already know that T is additive, this is enough to show that T
is linear. QQQ

(f) In fact T is a Riesz homomorphism. PPP If f ∈ U and α ≥ 0 then

[[T (f+) > α]] = sup
β>α

int {x : f+(x) > β} = sup
β>α

int {x : f(x) > β}

= [[Tf > α]] = [[(Tf)+ > α]].

If α < 0 then

[[T (f+) > α]] = supβ>α int {x : f+(x) > β} = X = [[(Tf)+ > α]]. QQQ

(g) Of course the constant function χX belongs to U , and is its multiplicative identity; and T (χX) is
the multiplicative identity of L0, because

[[T (χX) > α]] = sup
β>α

int {x : (χX)(x) > β}

= X if α < 1, ∅ if α ≥ 1.

By 353Qd, or otherwise, T is multiplicative.

(h) The kernel of T is W . PPP (i) For f ∈ U ,

Tf = 0 =⇒ [[T |f | > 0]] = [[|Tf | > 0]] = ∅
=⇒ {x : |f(x)| > ω(|f |, x)} = ∅
=⇒ int{x : |f(x)| ≤ ǫ} ⊇ {x : ω(|f |, x) < ǫ} is dense for every ǫ > 0

=⇒ f ∈W.

(ii) If f ∈W , then, first,

{x : ω(f, x) < ǫ} ⊇ int{x : |f(x)| ≤ 1

3
ǫ}

is dense for every ǫ > 0, so f ∈ U ; and next, for any β > 0, {x : |f(x)| > β} does not meet the dense open
set int{x : |f(x)| ≤ β}, so

[[|Tf | > 0]] = [[T |f | > 0]] = supβ>0 int {x : |f(x)| > β} = ∅
and Tf = 0. QQQ

(i) Finally, T is surjective. PPP Take any u ∈ L0. Define f̃ : X → [−∞,∞] by setting f̃(x) = sup{α : x ∈
[[u > α]]} for each x, counting inf ∅ as −∞. Then

{x : f̃(x) > α} =
⋃
β>α [[u > β]]

is open, for every α ∈ R. The set

{x : f̃(x) = ∞} =
⋂
α∈R [[u > α]]

is nowhere dense, because infα∈R [[u > α]] = ∅ in RO(X); while

{x : f̃(x) = −∞} = X \⋃α∈R [[u > α]]

also is nowhere dense, because supα∈R [[u > α]] = X in RO(X). Accordingly E = int{x : f̃(x) ∈ R} is dense.

Set f(x) = f̃(x) for x ∈ E, 0 for x ∈ X \ E.

Let ǫ > 0. If G ⊆ X is a non-empty open set, there is an α ∈ R such that G 6⊆ [[u > α]], so G1 =

G \ [[u > α]] 6= ∅, and f̃(x) ≤ α for every x ∈ G1. Set

α′ = supx∈G1
f̃(x) ≤ α <∞.

D.H.Fremlin



58 Function spaces *364T

Because E meets G1, α′ > −∞. Then G2 = G1 ∩ [[u > α′ − 1
2ǫ]] is a non-empty open subset of G and

α′ − 1
2ǫ ≤ f̃(x) ≤ α′ for every x ∈ G2. Accordingly |f(y) − f(z)| ≤ 1

2ǫ for all y, z ∈ G2, and ω(f, x) < ǫ for
all x ∈ G2. As G is arbitrary, {x : ω(f, x) < ǫ} is dense; as ǫ is arbitrary, f ∈ U .

Take α < β in R, and set δ = 1
2 (β − α). Then H = E ∩ {x : ω(f, x) < δ} is a dense open set, and

H ∩ [[Tf > β]] ⊆ H ∩ {x : f(x) + ω(f, x) ≥ β} ⊆ E ∩ {x : f(x) > α}
⊆ {x : f̃(x) > α} ⊆ [[u > α]].

As H is dense, [[Tf > β]] ⊆ [[u > α]]. In the other direction

H ∩ [[u > β]] ⊆ H ∩ {x : f̃(x) ≥ β} = H ∩ {x : f(x) ≥ β}
⊆ {x : f(x) > α+ ω(f, x)} ⊆ [[Tf > α]],

so [[u > β]] ⊆ [[Tf > α]]. Just as in (d) above, this is enough to show that Tf = u. As u is arbitrary, T is
surjective. QQQ

This completes the proof.

*364U Compact spaces Suppose now that X is a compact Hausdorff topological space. In this case
the space U of 364T is just the space of functions f : X → R such that {x : f is continuous at x} is dense
in X. PPP It is easy to see that

{x : f is continuous at x} = {x : ω(f, x) = 0} =
⋂
n∈NHn

where Hn = {x : ω(f, x) < 2−n} for each n. Each Hn is an open set (see part (a-i-α) of the proof of 364T),
so by Baire’s theorem (3A3G)

⋂
n∈NHn is dense iff every Hn is dense, that is, iff f ∈ U . QQQ

Now W , as defined in 364T, becomes {f : f ∈ U, {x : f(x) = 0} is dense}. PPP (i) If f ∈W , then T |f | = 0,
so (by the formula in (c) of the proof of 364T) |f(x)| ≤ ω(|f |, x) for every x. But {x : ω(f, x) = 0} is dense,
because f ∈ U , so {x : f(x) = 0} also is dense. (ii) If f ∈ U and {x : f(x) = 0} is dense, then

ω(f, x) ≥ infx∈G is open supy∈G |f(y) − f(x)| ≥ |f(x)|
for every x ∈ X. So for any ǫ > 0, int{x : |f(x)| ≤ ǫ} ⊇ {x : ω(f, x) < ǫ} is dense, and f ∈W . QQQ

In the case of extremally disconnected spaces, we can go farther.

*364V Theorem Let X be a compact Hausdorff extremally disconnected space, and RO(X) its regular
open algebra. Write C∞ = C∞(X) for the space of continuous functions g : X → [−∞,∞] such that
{x : g(x) = ±∞} is nowhere dense. Then we have a bijection S : C∞ → L0 = L0(RO(X)) defined by saying
that

[[Sg > α]] = {x : g(x) > α}
for every α ∈ R. Addition and multiplication in L0 correspond to the operations +̇ , ×̇ on C∞ defined by
saying that g +̇ h, g ×̇ h are the unique elements of C∞ agreeing with g + h, g × h on {x : g(x), h(x) are
both finite}. Scalar multiplication in L0 corresponds to the operation

(γg)(x) = γg(x) for x ∈ X, g ∈ C∞, γ ∈ R

on C∞ (counting 0 · ∞ as 0), while the ordering of L0 corresponds to the relation

g ≤ h ⇐⇒ g(x) ≤ h(x) for every x ∈ X.

proof (a) For g ∈ C∞, set Hg = {x : g(x) ∈ R}, so that Hg is a dense open set, and define Rg : X → R by
setting (Rg)(x) = g(x) if x ∈ Hg, 0 if x ∈ X \Hg. Then Rg is continuous at every point of Hg, so belongs
to the space U of 364T-364U. Set Sg = T (Rg), where T : U → L0 is the map of 364T. Then

[[Sg > α]] = {x : g(x) > α}
for every α ∈ R. PPP (i) ω(g, x) = 0 for every x ∈ Hg, so, if β > α,

Hg ∩ [[Sg > β]] ⊆ {x : x ∈ Hg, (Rg)(x) ≥ β} ⊆ {x : g(x) ≥ β}
by the formula in part (c) of the proof of 364T. As [[Sg > β]] is open and Hg is dense,
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[[Sg > β]] ⊆ Hg ∩ [[Sg > β]] ⊆ {x : g(x) ≥ β} ⊆ {x : g(x) > α}.

Now

[[Sg > α]] = supβ>α [[Sg > β]] = int
⋃
β>α [[Sg > β]] ⊆ {x : g(x) > α}.

(ii) In the other direction, Hg ∩ {x : g(x) > α} ⊆ [[Sg > α]], by the other half of the formula in the proof of
364T. Again because {x : g(x) > α} is open and Hg is dense,

{x : g(x) > α} ⊆ [[Sg > α]] = [[Sg > α]]

because X is extremally disconnected (see 314S). QQQ

(b) Thus S = TR defined by the formula offered. Now if g, h ∈ C∞ and g ≤ h, we surely have
{x : g(x) > α} ⊆ {x : h(x) > α} for every α, so [[Sg > α]] ⊆ [[Sh > α]] for every α and Sg ≤ Sh. On
the other hand, if g 6≤ h then Sg 6≤ Sh. PPP Take x0 such that g(x0) > h(x0), and α ∈ R such that
g(x0) > α > h(x0); set H = {x : g(x) > α > h(x)}; this is a non-empty open set and H ⊆ [[Sg > α]]. On
the other hand, H ∩ {x : h(x) > α} = ∅ so H ∩ [[Sh > α]] = ∅. Thus [[Sg > α]] 6⊆ [[Sh > α]] and Sg 6≤ Sh. QQQ
In particular, S is injective.

(c) S is surjective. PPP If u ∈ L0, set

g(x) = sup{α : x ∈ [[u > α]]} ∈ [−∞,∞]

for every x ∈ X, taking sup ∅ = −∞. Then, for any α ∈ R, {x : g(x) > α} =
⋃
β>α [[u > α]] is open. On the

other hand,

{x : g(x) < α} =
⋃
β<α{x : x /∈ [[u > β]]}

also is open, because all the sets [[u > β]] are open-and-closed. So g : X → [−∞,∞] is continuous. Also

{x : g(x) > −∞} =
⋃
α∈R [[u > α]],

{x : g(x) <∞} =
⋃
α∈RX \ [[u > α]]

are dense, so g ∈ C∞. Now, for any α ∈ R,

[[Sg > α]] = {x : g(x) > α} =
⋃

β>α

[[u > β]]

= int
⋃

β>α

[[u > β]] = sup
β>α

[[u > β]] = [[u > α]].

So Sg = u. As u is arbitrary, S is surjective. QQQ

(d) Accordingly S is a bijection. I have already checked (in part (b)) that it is an isomorphism of the
order structures. For the algebraic operations, observe that if g, h ∈ C∞ then there are f1, f2 ∈ C∞ such
that Sg + Sh = Sf1 and Sg × Sh = Sf2, that is,

T (Rg +Rh) = TRg + TRh = TRf1, T (Rg ×Rh) = TRg × TRh = TRf2.

But this means that

T (Rg +Rh−Rf1) = T ((Rg ×Rh) −Rf2) = 0,

so that Rg+Rh−Rf1, (Rg×Rh)−Rf2 belong to W , as defined in 364T-364U, and are zero on dense sets
(364U). Since we know also that the set G = {x : g(x), h(x) are both finite} is a dense open set, while g, h,
f1 and f2 are all continuous, we must have f1(x) = g(x) + h(x), f2(x) = g(x)h(x) for every x ∈ G. And of
course this uniquely specifies f1 and f2 as members of C∞.

Thus we do have operations +̇ , ×̇ as described, rendering S additive and multiplicative. As for scalar
multiplication, it is easy to check that R(γg) = γRg (at least, unless γ = 0, which is trivial), so that
S(γg) = γSg for every g ∈ C∞.

364X Basic exercises >>>(a) Let A be a Dedekind σ-complete Boolean algebra. For u, v ∈ L0 = L0(A)
set [[u < v]] = [[v > u]] = [[v − u > 0]], [[u ≤ v]] = [[v ≥ u]] = 1 \ [[v < u]], [[u = v]] = [[u ≤ v]] ∩ [[v ≤ u]]. (i) Show
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that ([[u < v]], [[u = v]], [[u > v]]) is always a partition of unity in A. (ii) Show that for any u, u′, v, v′ ∈ L0,
[[u ≤ u′]] ∩ [[v ≤ v′]] ⊆ [[u+ v ≤ u′ + v′]] and [[u = u′]] ∩ [[v = v′]] ⊆ [[u× v = u′ × v′]].

(b) Let A be a Dedekind σ-complete Boolean algebra. (i) Show that if u, v ∈ L0 = L0(A) and α,
β ∈ R then [[u+ v ≥ α+ β]] ⊆ [[u ≥ α]] ∪ [[v ≥ β]]. (ii) Show that if u, v ∈ (L0)+ and α, β ≥ 0 then
[[u× v ≥ αβ]] ⊆ [[u ≥ α]] ∪ [[v ≥ β]].

(c) Let A be a Dedekind σ-complete Boolean algebra and u ∈ L0(A). Show that {[[u ∈ E]] : E ⊆ R is
Borel} is the σ-subalgebra of A generated by {[[u > α]] : α ∈ R}.

>>>(e) Let (A, µ̄) be a probability algebra, and 〈ui〉i∈I any family in L0(A); for each i ∈ I let Bi be the
closed subalgebra of A generated by {[[ui > α]] : α ∈ R}. Show that the following are equiveridical: (i)
µ̄(infi∈J [[ui > αi]]) =

∏
i∈J µ̄[[ui > αi]] whenever J ⊆ I is finite and αi ∈ R for each i ∈ J (ii) 〈Bi〉i∈I is

stochastically independent in the sense of 325L. (In this case we may call 〈ui〉i∈I independent.)

>>>(f) Let (A, µ̄) be a probability algebra and u, v two µ̄-independent members of L0(A). Show that the
distribution of their sum is the convolution of their distributions. (Hint : 272T).

>>>(g) Let A be a Dedekind σ-complete Boolean algebra and g, h : R → R Borel measurable functions. (i)
Show that ḡh̄ = ḡh, where ḡ, h̄ : L0 → L0 are defined as in 364H. (ii) Show that g + h(u) = ḡ(u) + h̄(u),
g × h(u) = ḡ(u) × h̄(u) for every u ∈ L0 = L0(A). (iii) Show that if 〈hn〉n∈N is a sequence of Borel
measurable functions on R and supn∈N hn = h, then supn∈N h̄n(u) = h̄(u) for every u ∈ L0. (iv) Show that
if h is non-decreasing and continuous on the left, then h̄(supA) = sup h̄[A] whenever A ⊆ L0 is a non-empty
set with a supremum in L0.

(h) Let A be a Dedekind σ-complete Boolean algebra. (i) Show that S(A) can be identified (α) with the
set of those u ∈ L0 = L0(A) such that {[[u > α]] : α ∈ R} is finite (β) with the set of those u ∈ L0 such that
[[u ∈ I]] = 1 for some finite I ⊆ R. (ii) Show that L∞(A) can be identified with the set of those u ∈ L0 such
that [[u ∈ [−α, α]]] = 1 for some α ≥ 0, and that ‖u‖∞ is the smallest such α.

(i) Show that if A is a Dedekind σ-complete Boolean algebra, and u ∈ L0(A), then for any α ∈ R

[[u > α]] = infβ>α sup{a : a ∈ A, u× χa ≥ βχa}
(compare 363Xh).

>>>(j) Let A be a Dedekind σ-complete Boolean algebra and ν : A → R a non-negative finitely additive
functional. Let ∫ : L∞(A) → R be the corresponding linear functional, as in 363L. Write U for the set
of those u ∈ L0(A) such that sup{∫ v : v ∈ L∞(A), v ≤ |u|} is finite. Show that ∫ has an extension to a
non-negative linear functional on U .

(k) Let A be a Dedekind σ-complete Boolean algebra and u ≥ 0 in L0 = L0(A). Show that u =
supq∈Q qχ[[u > q]] in L0.

(l)(i) Let A be a Dedekind σ-complete Boolean algebra and A ⊆ L0(A) a non-empty countable set with
supremum w. Show that [[w ∈ G]] ⊆ supu∈A [[u ∈ G]] for every open set G ⊆ R. (ii) Let (A, µ̄) be a localizable
measure algebra and A ⊆ L0(A) a non-empty set with supremum w. Show that [[w ∈ G]] ⊆ supu∈A [[u ∈ G]]
for every open set G ⊆ R.

(m) Let A be a Dedekind σ-complete Boolean algebra and A ⊆ L0 = L0(A) a non-empty set which is
bounded below in L0. Suppose that φ0(α) = infu∈A [[u > α]] is defined in A for every α ∈ R. Show that
v = inf A is defined in L0, and that [[v > α]] = supβ>α φ0(β) for every α ∈ R.

>>>(n) Let (X,Σ, µ) be a measure space and f : X → [0,∞[ a function; set A = {g• : g ∈ L
0(µ), g ≤a.e. f}.

(i) Show that if (X,Σ, µ) either is localizable or has the measurable envelope property (213Xl), then supA
is defined in L0(µ). (ii) Show that if (X,Σ, µ) is complete and locally determined and w = supA is defined
in L0(µ), then w ∈ A.
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(o) Let A be a Dedekind σ-complete Boolean algebra. Show that if u, v ∈ L0 = L0(A) then the following
are equiveridical: (α) [[|v| > 0]] ⊆ [[|u| > 0]] (β) v belongs to the band in L0 generated by u (γ) there is a
w ∈ L0 such that u× w = v.

>>>(p) Let A be a Dedekind σ-complete Boolean algebra and a ∈ A; let Aa be the principal ideal of A

generated by a. Show that L0(Aa) can be identified, as f -algebra, with the band in L0(A) generated by χa.

(q) Let A and B be Dedekind σ-complete Boolean algebras, and π : A → B a sequentially order-
continuous Boolean homomorphism. Let T : L0(A) → L0(B) be the corresponding Riesz homomorphism
(364P). Show that (i) the kernel of T is the sequentially order-closed solid linear subspace of L0(A) generated
by {χa : a ∈ A, πa = 0} (ii) the set of values of T is the sequentially order-closed linear subspace of L0(B)
generated by {χ(πa) : a ∈ A}.

(r) Let A and B be Dedekind σ-complete Boolean algebras, and π : A → B a sequentially order-
continuous Boolean homomorphism, with T : L0(A) → L0(B) the associated operator. Suppose that h is a
Borel measurable real-valued function defined on a Borel subset of R. Show that h̄(Tu) = T h̄(u) whenever
u ∈ L0(A) and h̄(u) is defined in the sense of 364H.

(s) Let (A, µ̄) and (B, ν̄) be probability algebras, and π : A → B a measure-preserving Boolean homo-
morphism; let T : L0(A) → L0(B) be the corresponding Riesz homomorphism. Show that if 〈ui〉i∈I is a
family in L0(A), it is µ̄-independent iff 〈Tui〉i∈I is ν̄-independent.

>>>(t) Let A be a Dedekind σ-complete Boolean algebra and B a σ-subalgebra of A. Show that L0(B)
can be identified with the sequentially order-closed Riesz subspace of L0(A) generated by {χb : b ∈ B}.

(u) Let A be a Dedekind σ-complete Boolean algebra and π : A → A a sequentially order-continuous
Boolean homomorphism; let Tπ : L0(A) → L0(A) be the corresponding Riesz homomorphism. Let C be the
fixed-point subalgebra of π. Show that {u : u ∈ L0(A), Tπu = u} can be identified with L0(C).

(v) Use the ideas of part (d) of the proof of 364T to show that the operator T there is multiplicative,
without appealing to 353Q.

(w) Let A be a Dedekind σ-complete Boolean algebra and B an order-closed subalgebra of A. Show that
L0(B), regarded as a subset of L0(A), is order-closed in L0(A).

(x) (W.Ricker) Let X be a set, Σ a σ-algebra of subsets of X, and I a σ-ideal of Σ such that Σ/I is
Dedekind complete. Suppose that Φ is a family of Σ-measurable real-valued functions, all with domains
belonging to Σ, such that {x : x ∈ dom f ∩ dom g, f(x) 6= g(x)} ∈ I whenever f , g ∈ Φ. Show that there is
a Σ-measurable function h : X → R such that {x : x ∈ dom f , f(x) 6= h(x)} ∈ I for every f ∈ Φ. (Hint :
213N.)

364Y Further exercises >>>(a)(i) Show directly, without using the Loomis-Sikorski theorem or the Stone
representation, that if A is any Dedekind σ-complete Boolean algebra then the formulae of 364D define a
group operation + on L0(A), and generally an f -algebra structure. (ii) Defining χ : A → L0(A) by the
formula in 364Jc, show that S(A) and L∞(A) can be identified with the linear span of {χa : a ∈ A} and the
solid linear subspace of L0(A) generated by e = χ1. (iii) Still without using the Loomis-Sikorski theorem,
explain how to define h̄ : L0(A) → L0(A) for continuous functions h : R → R. (iv) Check that these ideas
are sufficient to yield 364L-364R, except that in 364Pd we may have difficulty with arbitrary Borel functions
h.

(b) Let A be a Dedekind σ-complete Boolean algebra and uuu = (u1, . . . , un) a member of L0(A)n. Write
Bn for the algebra of Borel sets in Rn. (i) Show that there is a unique sequentially order-continuous Boolean
homomorphism E 7→ [[uuu ∈ E]] : Bn → A such that [[uuu ∈ E]] = infi≤n [[ui > αi]] when E =

∏
i≤n ]αi,∞[. (ii)

Show that for every sequentially order-continuous Boolean homomorphism φ : Bn → A there is a unique
uuu ∈ L0(A)n such that φE = [[uuu ∈ E]] for every E ∈ Bn.
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(c) Let A be a Dedekind σ-complete Boolean algebra, n ≥ 1 and h : Rn → R a Borel measurable function.
Show that we have a corresponding function h̄ : L0(A)n → L0(A) defined by saying that [[h̄(uuu) ∈ E]] =
[[uuu ∈ h−1[E]]] for every Borel set E ⊆ R and uuu ∈ L0(A)n.

(d) Suppose that h1(x, y) = x+ y, h2(x, y) = xy, h3(x, y) = max(x, y) for all x, y ∈ R. Show that, in the
language of 364Yc, h̄1(u, v) = u+ v, h̄2(u, v) = u× v, h̄3(u, v) = u ∨ v for all u, v ∈ L0.

(e) Let A be a Dedekind σ-complete Boolean algebra. Show that A is ccc iff L0(A) has the countable
sup property.

(f) Let A and B be Dedekind σ-complete Boolean algebras, and T : L0(A) → L0(B) a Riesz homomor-
phism such that Te = e′, where e, e′ are the multiplicative identities of L0(A), L0(B) respectively. Show
that there is a unique sequentially order-continuous Boolean homomorphism π : A → B such that T = Tπ
in the sense of 364P. (Compare 375A below.)

(g) Let A and B be Dedekind σ-complete Boolean algebras and π : A → B a sequentially order-
continuous ring homomorphism. (i) Show that we have a multiplicative sequentially order-continuous Riesz
homomorphism Tπ : L0(A) → L0(B) defined by the formula

[[Tπu > α]] = π[[u > α]]

whenever u ∈ L0(A) and α > 0. (ii) Show that Tπ is order-continuous iff π is order-continuous, injective
iff π is injective, and surjective iff π is surjective. (iii) Show that if C is another Dedekind σ-complete
Boolean algebra and θ : B → C another sequentially order-continuous ring homomorphism then Tθπ =
TθTπ : L0(A) → L0(C).

(h) Suppose, in 364T, that X = Q. (i) Show that there is an f ∈W such that f(q) > 0 for every q ∈ Q.
(ii) Show that there is a u ∈ L0 such that no f ∈ U representing u can be continuous at any point of Q.

(i) Let X and Y be topological spaces and φ : X → Y a continuous function such that φ−1[M ] is nowhere
dense in X for every nowhere dense subset M of Y . (Cf. 313R.) (i) Show that we have an order-continuous
Boolean homomorphism π from the regular open algebra RO(Y ) of Y to the regular open algebra RO(X)

of X defined by the formula πG = intφ−1[G] for every G ∈ RO(Y ). (ii) Show that if UX , UY are the
function spaces of 364T then gφ ∈ UX for every g ∈ UY . (iii) Show that if TX : UX → L0(RO(X)), TY :
UY → L0(RO(Y )) are the canonical surjections, and T : L0(RO(Y )) → L0(RO(X)) is the homomorphism
corresponding to π, then T (TY g) = TX(gφ) for every g ∈ UY . (iv) Rewrite these ideas for the special
case in which X is a dense subset of Y and φ is the identity map, showing that in this case π and T are
isomorphisms.

(j) Let X be a Baire space, RO(X) its algebra of regular open sets, M its ideal of meager sets, and B̂
the Baire-property σ-algebra {G△A : G ⊆ X is open, A ∈ M}, so that RO(X) can be identified with B̂/M
(314Yd). (i) Repeat the arguments of 364U in this context. (ii) Show that the space U of 364T-364U is a
subspace of L0 = L

0
B̂

, and that W = U ∩ W where W = {f : f ∈ RX , {x : f(x) 6= 0} ∈ M}, so that the

representations of L0(RO(X)) as U/W , L0/W are consistent.

(k) Work through the arguments of 364T and 364Yj for the case of compact Hausdorff X, seeking
simplifications based on 364U.

(l) Let X be an extremally disconnected compact Hausdorff space with regular open algebra RO(X). Let
U0 be the space of real-valued functions f : X → R such that int{x : f is continuous at x} is dense. Show
that U0 is a Riesz subspace of the space U of 364T, and that every member of L0(RO(X)) is represented
by a member of U0.

(m) Let X be a Baire space. Let Q be the set of all continuous real-valued functions defined on subsets
of X, and Q∗ the set of all members of Q which are maximal in the sense that there is no member of Q
properly extending them. (i) Show that the domain of any member of Q∗ is a dense Gδ set. (ii) Show that
we can define addition and multiplication and scalar multiplication on Q∗ by saying that f +̇ g, f ×̇ g, γ.f
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are to be the unique members of Q∗ extending the partially-defined functions f + g, f × g, γf , and that
these definitions render Q∗ an f -algebra if we say that f ≤ g iff f(x) ≤ g(x) for every x ∈ dom f ∩ dom g.
(iii) Show that every member of Q∗ has an extension to a member of U , as defined in 364T, and that these
extensions define an isomorphism between Q∗ and L0(RO(X)), where RO(X) is the regular open algebra of
X. (iv) Show that if X is compact, Hausdorff and extremally disconnected, then every member of Q∗ has
a unique extension to a member of C∞(X), as defined in 364V.

(n) Let X be an extremally disconnected Hausdorff space, and Z any compact Hausdorff space. Show
that if D ⊆ X is dense and f : D → Z is continuous, there is a continuous g : X → Z extending f .

(o) Let (A, µ̄) be a probability algebra. (i) Show that for any uuu = (u1, . . . , un) ∈ L0(A)n there is
a unique Radon probability measure ν on Rn such that ν(

∏
1≤i≤n ]α,∞[) = µ̄(inf1≤i≤n [[ui > αi]]) for all

α1, . . . , αn ∈ R, and that now νE = µ̄[[uuu ∈ E]] for every Borel set E ⊆ Rn. I will call ν the distribution
of uuu. (ii) Show that (u1, . . . , un) is independent iff ν is expressible as

∏
1≤i≤n νi where νi is a Radon

probability measure on R for each i. (iii) Write Auuu for the closed subalgebra {[[uuu ∈ E]] : E ⊆ Rn is a
Borel set}; check that ui ∈ L0(Auuu) for every i. Suppose that (B, ν̄) is another probability algebra and that
vvv = (v1, . . . , vn) ∈ (L0(B))n. Show that the following are equiveridical: (α) there is a measure-preserving
isomorphism π : Auuu → Bvvv such that Tπui = vi for every i (β) uuu and vvv have the same distribution.

(p) X be a set, Σ a σ-algebra of subsets of X and I a σ-ideal of Σ; let A be the quotient algebra Σ/I.
Set L0 = L0

Σ as as in 364B-364C; for f ∈ L0 write Tf• for the corresponding member of L0 = L0(A) (364C).
Suppose that A is ccc. Let g : X → [0,∞[ be any function. Show that {Tf• : f ∈ L0, f ≤ g} is bounded
above in L0.

364 Notes and comments This has been a long section, and so far all we have is a supposedly thorough
grasp of the construction of L0 spaces; discussion of their properties still lies ahead. The difficulties seem
to stem from a variety of causes. First, L0 spaces have a rich structure, being linear ordered spaces with
multiplications; consequently all the main theorems have to check rather a lot of different aspects. Second,
unlike L∞ spaces, they are not accessible by means of the theory of normed spaces, so I must expect to do
more of the work here rather than in an appendix. But this is in fact a crucial difference, because it affects
the proof of the central theorem 364D. The point is that a given algebra A will be expressible in the form
Σ/I for a variety of algebras Σ of sets. Consequently any definition of L0(A) as a quotient L

0
Σ/WI must

include a check that the structure produced is independent of the particular pair Σ, I chosen.
The same question arises with S(A) and L∞(A). But in the case of S, I was able to use a general theory

of additive functions on A (see the proof of 361L), while in the case of L∞ I could quote the result for S
and a little theory of normed spaces (see the proof of 363H). The theorems of §368 will show, among other
things, that a similar approach (describing L0 as a special kind of extension of S or L∞) can be made to
work in the present situation. I have chosen, however, an alternative route using a novel technique. The
price is the time required to develop skill in the technique, and to relate it to the earlier approach (364C,
364D, 364J). The reward is a construction which is based directly on the algebra A, independent of any
representation (364A), and methods of dealing with it which are complementary to those of the previous
three sections. In particular, they can be used in the absence of the full axiom of choice (364Ya).

I have deliberately chosen the notation [[u > α]] from the theory of forcing. I do not propose to try to
explain myself here, but I remark that much of the labour of this section is a necessary basis for understanding
real analysis in Boolean-valued models of set theory. The idea is that just as a function f : X → R can
be described in terms of the sets {x : f(x) > α}, so can an element u of L0(A) be described in terms
of the regions [[u > α]] of A where in some sense u is greater than α. This description is well adapted to
discussion of the order struction of L0(A) (see 364L-364M), but rather ill-adapted to discussion of its linear
and multiplicative structures, which leads to a large part of the length of the work above. Once we have
succeeded in describing the algebraic operations on L0 in terms of the values of [[u > α]], however, as in
364D, the fundamental result on the action of Boolean homomorphisms (364P) is elegant and reasonably
straightforward.

The concept ‘[[u > α]]’ can be dramatically generalized to the concept ‘[[(u1, . . . , un) ∈ E]]’, where E is
a Borel subset of Rn and u1, . . . , un ∈ L0(A) (364G, 364Yb). This is supposed to recall the notation
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Pr(X ∈ E), already used in Chapter 27. If, as sometimes seems reasonable, we wish to regard a random
variable as a member of L0(µ) rather than of L0(µ), then ‘[[u ∈ E]]’ is the appropriate translation of ‘X−1[E]’.
The reasons why we can reach all Borel sets E here, but then have to stop, seem to lie fairly deep; I will
return to this question in 566O in Volume 5. We see that we have here another potential definition of
L0(A), as the set of sequentially order-continuous Boolean homomorphisms from the Borel σ-algebra of R
to A. This is suitably independent of realizations of A, but makes the f -algebra structure of L0 difficult to
elucidate, unless we move to a further level of abstraction in the definitions, as in 364Yd.

I take the space to describe the L0 spaces of general regular open algebras in detail (364T) partly to offer
a demonstration of an appropriate technique, and partly to show that we are not limited to σ-algebras of sets
and their quotients. This really is a new representation; for instance, it does not meld in any straightforward
way with the constructions of 364F-364H. Of course the most important examples are compact Hausdorff
spaces, for which alternative methods are available (364U-364V, 364Yj, 364Yl, 364Ym); from the point of
view of applications, indeed, it is worth working through the details of the theory for compact Hausdorff
spaces (364Yk). The version in 364V is derived from Vulikh 67. But I have starred everything from 364S
on, because I shall not rely on this work later for anything essential.

Version of 20.1.15

365 L1

Continuing my programme of developing the ideas of Chapter 24 at a deeper level of abstraction, I arrive
at last at L1. As usual, the first step is to establish a definition which can be matched both with the
constructions of the previous sections and with the definition of L1(µ) in §242 (365A-365C, 365F). Next,
I give what I regard as the most characteristic internal properties of L1 spaces, including versions of the
Radon-Nikodým theorem (365E), before turning to abstract versions of theorems in §235 (365H, 365S) and
the duality between L1 and L∞ (365K-365M). As in §§361 and 363, the construction is associated with
universal mapping theorems (365I-365J) which define the Banach lattice structure of L1. As in §§361, 363
and 364, homomorphisms between measure algebras correspond to operators between their L1 spaces; but
now the duality theory gives us two types of operators (365N-365P), of which one class can be thought of as
abstract conditional expectations (365Q). For localizable measure algebras, the underlying algebra can be
recovered from its L1 space (365R), but the measure cannot.

365A Definition Let (A, µ̄) be a measure algebra. For u ∈ L0(A), write

‖u‖1 =
∫∞

0
µ̄[[|u| > α]] dα,

the integral being with respect to Lebesgue measure on R, and allowing ∞ as a value of the integral. (Because
the integrand is monotonic, it is certainly measurable.) Set L1

µ̄ = L1(A, µ̄) = {u : u ∈ L0(A), ‖u‖1 <∞}.

It is convenient to note at once that if u ∈ L1
µ̄, then µ[[|u| > α]] must be finite for almost every α > 0,

and therefore for every α > 0, since it is a non-increasing function of α; so that [[u > α]] also belongs to the
Boolean ring Af = {a : µ̄a <∞} for every α > 0.

365B Theorem Let (X,Σ, µ) be a measure space with measure algebra (A, µ̄). Then the canonical
isomorphism between L0(µ) and L0(A) (364Ic) matches L1(µ) ⊆ L0(µ), defined in §242, with L1(A, µ̄) ⊆
L0(A), and the standard norm of L1(µ) with ‖ ‖1 : L1(A, µ̄) → [0,∞[, as defined in 365A.

proof Take any Σ-measurable function f : X → R (364B); write f• for its equivalence class in L0(µ), and
u for the corresponding element of L0(A). Then [[|u| > α]] = {x : |f(x)| > α}• in A for every α ∈ R, and

‖u‖1 =
∫∞

0
µ{x : |f(x)| > α} dα =

∫
|f |dµ

by 252O. In particular, u ∈ L1(A, µ̄) iff f ∈ L
1(µ) iff f• ∈ L1(µ), and in this case ‖u‖1 = ‖f•‖1.

365C Accordingly we can apply everything we know about L1(µ) spaces to L1
µ̄ spaces. For instance:
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Theorem For any measure algebra (A, µ̄), L1(A, µ̄) is a solid linear subspace of L0(A), and ‖ ‖1 is a norm on
L1(A, µ̄) under which L1(A, µ̄) is an L-space. Consequently L1(A, µ̄) is a perfect Riesz space with an order-
continuous norm which has the Levi property, and if 〈un〉n∈N is a non-decreasing norm-bounded sequence
in L1(A, µ̄) then it converges for ‖ ‖1 to supn∈N un.

proof (A, µ̄) is isomorphic to the measure algebra of some measure space (X,Σ, µ) (321J). L1(µ) is a solid
linear subspace of L0(µ) (242Cb), so L1

µ̄ is a solid linear subspace of L0(A). L1(µ) is an L-space (354M), so

L1
µ̄ also is. The rest of the properties claimed are general features of L-spaces (354N, 354E, 356P).

365D Integration Let (A, µ̄) be any measure algebra.

(a) If u ∈ L1 = L1(A, µ̄), then u+ and u−, calculated in L0 = L0(A), belong to L1, and we may set∫
u = ‖u+‖1 − ‖u−‖1 =

∫∞

0
µ̄[[u > α]] dα−

∫∞

0
µ̄[[−u > α]] dα.

Now
∫

: L1 → R is an order-continuous positive linear functional (356Pc), and under the translation of
365B matches the integral on L1(µ) as defined in 242Ab. Note that if a ∈ A then

∫
χa =

∫∞

0
µ̄[[χa > α]]dα =

∫ 1

0
µ̄a dα = µ̄a,

so that if µ̄ is totally finite then the integral here agrees with that of 363L on L∞(A). I will sometimes write∫
u dµ̄ if it seems helpful to indicate the measure.

(b) Of course ‖u‖1 =
∫
|u| ≥ |

∫
u| for every u ∈ L1.

(c) If u ∈ L1 and a ∈ A we may set
∫
a
u =

∫
u × χa. (Compare 242Ac.) If γ > 0 and 0 6= a ⊆ [[u > γ]]

then there is a δ > γ such that a′ = a ∩ [[u > δ]] 6= 0, so that
∫
a
u =

∫∞

0
µ̄(a ∩ [[u > α]])dα ≥

∫ γ
0
µ̄a dα+

∫ δ
γ
µ̄a′ > γµ̄a.

In particular, setting a = [[u > γ]], µ̄[[u > γ]] must be finite.

(d)(i) If u ∈ L1 then u ≥ 0 iff
∫
a
u ≥ 0 for every a ∈ Af , writing Af = {a : µ̄a < ∞}, as usual. PPP If

u ≥ 0 then u×χa ≥ 0 and
∫
a
u ≥ 0 for every a ∈ A. If u 6≥ 0, then [[u− > 0]] 6= 0 and there is an α > 0 such

that a = [[u− > α]] 6= 0. But now µ̄a is finite ((c) above) and∫
u× χa = −

∫
u− × χa = −

∫
µ̄(a ∩ [[u− ≥ β]])dβ ≤ −αµ̄a < 0,

so
∫
a
u < 0. QQQ

(ii) If u, v ∈ L1 and
∫
a
u =

∫
a
v for every a ∈ Af then u = v (cf. 242Ce).

(iii) If u ≥ 0 in L1 then
∫
u = sup{

∫
a
u : a ∈ Af}. PPP Of course u×χa ≤ u so

∫
a
u ≤ u for every a ∈ A.

On the other hand, setting an = [[u > 2−n]], 〈u × χan〉n∈N is a non-decreasing sequence with supremum u,
so

∫
u = limn→∞

∫
an
u, while µ̄an is finite for every n. QQQ

(e) If u ∈ L1, u ≥ 0 and
∫
u = 0 then u = 0 (put 365B and 122Rc together). If u ∈ L1, u ≥ 0 and∫

a
u = 0 then u× χa = 0, that is, a ∩ [[u > 0]] = 0.

(f) If C ⊆ L1 is non-empty and upwards-directed and supv∈C
∫
v is finite, then supC is defined in L1

and
∫

supC = supv∈C
∫
v (356Pc).

(g) It will occasionally be convenient to adapt the conventions of §133 to the new context; so that I may
write

∫
u = ∞ if u ∈ L0, u− ∈ L1 and u+ /∈ L1, while

∫
u = −∞ if u+ ∈ L1 and u− /∈ L1.

(h) On this convention, we can restate (f) as follows: if C ⊆ (L0)+ is non-empty and upwards-directed
and has a supremum u in L0, then

∫
u = supv∈C

∫
v in [0,∞]. PPP For if supv∈C

∫
v is infinite, then surely∫

u = ∞; while otherwise we can apply (f). QQQ
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365E The Radon-Nikodým theorem again (a) Let (A, µ̄) be a semi-finite measure algebra and
ν : A → R an additive functional. Then the following are equiveridical:

(i) there is a u ∈ L1 = L1(A, µ̄) such that νa =
∫
a
u for every a ∈ A;

(ii) ν is additive and continuous for the measure-algebra topology on A;
(iii) ν is completely additive.

(b) Let (A, µ̄) be any measure algebra, and ν : Af → R a function. Then the following are equiveridical:

(i) ν is additive and bounded and infa∈A |νa| = 0 whenever A ⊆ Af is downwards-directed
and has infimum 0;

(ii) there is a u ∈ L1 such that νa =
∫
a
u for every a ∈ Af .

proof (a) The equivalence of (ii) and (iii) is 327Bd. The equivalence of (i) and (iii) is just a translation of
327D into the new context, since (A, µ̄) is isomorphic to the measure algebra of a measure space which by
322Bd will be semi-finite.

(b)(i)⇒(ii)(ααα) Set M = supa∈Af |νa| <∞.

Let D ⊆ Af be a maximal disjoint set. For each d ∈ D, write Ad for the principal ideal of A generated by
d, and µ̄d for the restriction of µ̄ to Ad, so that (Ad, µ̄d) is a totally finite measure algebra. Set νd = ν↾Ad;
then νd : Ad → R is completely additive. By (a), there is a ud ∈ L1(Ad, µ̄d) such that

∫
a
ud = νda = νa for

every a ⊆ d.
Now u+d ∈ L0(Ad) corresponds to a member ũ+d of L0(A)+ defined by saying

[[ũ+d > α]] = [[u+d > α]] = [[ud > α]] if α ≥ 0,

= 1 if α < 0.

If a ∈ A, then ∫
a
ũ+d dµ̄ =

∫∞

0
µ̄(a ∩ [[ũ+d > α]])dα =

∫∞

0
µ̄d(a ∩ [[u+d > α]])dα =

∫
a∩d

u+d dµ̄d;

taking a = 1, we see that ‖ũ+d ‖1 = ‖u+d ‖1 = ν[[ud > 0]] is finite, so that ũ+d ∈ L1.

(βββ) For any finite I ⊆ D, set vI =
∑
d∈I ũ

+
d . Then

∫
vI = ν(supd∈I [[ud > 0]]) ≤M ;

consequently the upwards-directed set A = {vI : I ⊆ D is finite} is bounded above in L1, and we can set
v = supA in L1. If a ∈ A, then

∫
a
vI =

∑
d∈I

∫
a∩d

u+d for each finite I ⊆ D, so
∫
a
v =

∑
d∈D

∫
a∩d

u+d .

Applying the same arguments to −ν, there is a w ∈ L1 such that∫
a
w =

∑
d∈D

∫
a∩d

u−d

for every a ∈ A. Try u = v − w; then∫
a
u =

∑
d∈D

∫
a∩d

u+d −
∫
a∩d

u−d =
∑
d∈D

∫
a∩d

ud =
∑
d∈D ν(a ∩ d)

for every a ∈ A.

(γγγ) Now take any a ∈ Af . For J ⊆ D set aJ = supd∈J a ∩ d. Let ǫ > 0. Then there is a finite I ⊆ D
such that

|
∫
a
u− νaJ | = |∑d∈D ν(a ∩ d) −∑

d∈J ν(a ∩ d)| ≤ ǫ

whenever I ⊆ J ⊆ D and J is finite. But now consider

A = {a \ aJ : I ⊆ J ⊆ D, J is finite}.

Then inf A = 0, so there is a finite J such that I ⊆ J ⊆ D and

|νa− νaJ | = |ν(a \ aJ)| ≤ ǫ.

Consequently

|νa−
∫
a
u| ≤ |νa− νaJ | + |

∫
a
u− νaJ | ≤ 2ǫ.

As ǫ is arbitrary, νa =
∫
a
u. As a is arbitrary, (ii) is proved.
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(ii)⇒(i) From where we now are, this is nearly trivial. Thinking of νa as
∫
u×χa, ν is surely additive

and bounded. Also |νa| ≤
∫
|u| × χa. If A ⊆ Af is non-empty, downwards-directed and has infimum 0, the

same is true of {|u| × χa : a ∈ A}, because a 7→ |u| × χa is order-continuous, so

infa∈A |νa| ≤ infa∈A
∫
|u| × χa = infa∈A ‖|u| × χa‖1 = 0.

365F It will be useful later to have spelt out the following elementary facts.

Lemma Let (A, µ̄) be a measure algebra. Write Sf for the intersection S(A) ∩ L1(A, µ̄). Then Sf is a
norm-dense and order-dense Riesz subspace of L1(A, µ̄), and can be identified with S(Af ). The function
χ : Af → Sf ⊆ L1(A, µ̄) is an injective order-continuous additive lattice homomorphism. If u ≥ 0 in
L1(A, µ̄), there is a non-decreasing sequence 〈un〉n∈N in (Sf )+ such that u = supn∈N un = limn→∞ un.

proof As in 364K, we can think of S(Af ) as a Riesz subspace of S = S(A), embedded in L0(A). If u ∈ S,
it is expressible as

∑n
i=0 αiχai where a0, . . . , an ∈ A are disjoint and no αi is zero. Now |u| =

∑n
i=0 |αi|χai,

so u ∈ L1 iff µ̄ai <∞ for every i, that is, iff u ∈ S(Af ); thus Sf ∼= S(Af ).
Now suppose that u ≥ 0 in L1. By 364Jd, there is a non-decreasing sequence 〈un〉n∈N in S(A)+ such that

u0 ≥ 0 and u = supn∈N un in L0. Because L1 is a solid linear subspace of L0, every un belongs to L1 and
therefore to Sf . By 365C, 〈un〉n∈N is norm-convergent to u. This shows also that Sf is order-dense in L1.

The map χ : Af → Sf is an injective order-continuous additive lattice homomorphism; because Sf is
regularly embedded in L1 (352Ne), χ has the same properties when regarded as a map into L1.

For general u ∈ L1, there are sequences in Sf converging to u+ and to u−, so that their difference is a
sequence in Sf converging to u, and u belongs to the closure of Sf ; thus Sf is norm-dense in L1.

Remark Of course Sf here corresponds to the space of (equivalence classes of) simple functions, as in
242Mb.

365G Semi-finite algebras: Lemma Let (A, µ̄) be a measure algebra.
(a) (A, µ̄) is semi-finite iff L1 = L1(A, µ̄) is order-dense in L0 = L0(A).
(b) In this case, writing Sf = S(A) ∩ L1 (as in 365F),

∫
u = sup{

∫
v : v ∈ Sf , 0 ≤ v ≤ u} in [0,∞] for

every u ∈ (L0)+.

proof (a) If (A, µ̄) is semi-finite then Sf is order-dense in L0 (364K), so L1 also must be. If L1 is order-dense
in L0, then so is Sf , by 365F and 352Nc, so (A, µ̄) is semi-finite, by 364K in the other direction.

(b) Set C = {v : v ∈ Sf , 0 ≤ v ≤ u}. Then C is an upwards-directed set with supremum u, because Sf

is order-dense in L0. So
∫
u = supv∈C

∫
v by 365Dh.

365H Measurable transformations We have a generalization of the ideas of §235 in this abstract
context.

Theorem Let (A, µ̄) and (B, ν̄) be measure algebras, and π : A → B a sequentially order-continuous
Boolean homomorphism. Let T : L0(A) → L0(B) be the sequentially order-continuous Riesz homomorphism
associated with π (364P).

(a) Suppose that w ≥ 0 in L0(B) is such that
∫
πa
w dν̄ = µ̄a whenever a ∈ A and µ̄a <∞. Then for any

u ∈ L1(A, µ̄) and a ∈ A,
∫
πa
Tu× w dν̄ is defined and equal to

∫
a
u dµ̄.

(b) Suppose that w′ ≥ 0 in L0(A) is such that
∫
a
w′dµ̄ = ν̄(πa) for every a ∈ A. Then

∫
Tu dν̄ =

∫
u×w′ dµ̄

whenever u ∈ L0(A) and either integral is defined in [−∞,∞].

Remark I am using the convention of 365Dg concerning ‘∞’ as the value of an integral.

proof (a) If u ∈ Sf = L1
µ̄ ∩ S(A) then u is expressible as

∑n
i=0 αiχai where a0, . . . , an have finite measure,

so that Tu =
∑n
i=0 αiχ(πai) and∫

Tu× w dν̄ =
∑n
i=0 αi

∫
w × χπai dν̄ =

∑n
i=0 αiµ̄ai =

∫
u dµ̄.

If u ≥ 0 in L1
µ̄ there is a non-decreasing sequence 〈un〉n∈N in Sf with supremum u, so that Tu = supn∈N Tun

and w × Tu = supn∈N w × Tun in L0(B), and
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∫
Tu× w = supn∈N

∫
Tun × w = supn∈N

∫
un =

∫
u.

(365Df tells us that in this context Tu× w ∈ L1
ν̄ .) Finally, for general u ∈ L1

µ̄,
∫
Tu× w =

∫
Tu+ × w −

∫
Tu− × w =

∫
u+ −

∫
u− =

∫
u.

(b) The argument follows the same lines: start with u = χa for a ∈ A, then with u ∈ S(A), then with
u ∈ L0(A)+ and conclude with general u ∈ L0(A). The point is that T is a Riesz homomorphism, so that
at the last step

∫
Tu =

∫
(Tu)+ −

∫
(Tu)− =

∫
T (u+) −

∫
T (u−)

=

∫
u+ × w′ −

∫
u− × w′ =

∫
(u× w′)+ −

∫
(u× w′)− =

∫
u× w′

whenever either side is defined in [−∞,∞].

365I Theorem Let (A, µ̄) be a measure algebra and U a Banach space. Let ν : Af → U be a function.
Then the following are equiveridical:

(i) there is a continuous linear operator T from L1 = L1(A, µ̄) to U such that νa = T (χa) for
every a ∈ Af ;

(ii)(α) ν is additive
(β) there is an M ≥ 0 such that ‖νa‖ ≤Mµ̄a for every a ∈ Af .

Moreover, in this case, T is unique and ‖T‖ is the smallest number M satisfying the condition in (ii-β).

proof (a)(i)⇒(ii) If T : L1 → U is a continuous linear operator, then χa ∈ L1 for every a ∈ Af , so ν = Tχ
is a function from Af to U . If a, b ∈ Af and a ∩ b = 0, then χ(a ∪ b) = χa+χb in L0 = L0(A) and therefore
in L1, so

ν(a ∪ b) = Tχ(a ∪ b) = T (χa+ χb) = T (χa) + T (χb) = νa+ νb.

If a ∈ Af then ‖χa‖1 = µ̄a (using the formula in 365A, or otherwise), so

‖νa‖ = ‖T (χa)‖ ≤ ‖T‖‖χa‖1 = ‖T‖µ̄a.

(b)(ii)⇒(i) Now suppose that ν : Af → U is additive and that ‖νa‖ ≤ Mµ̄a for every a ∈ Af . Write
Sf for L1 ∩ S(A), as in 365F. Then there is a linear operator T0 : Sf → U such that T0(χa) = νa for every
a ∈ Af (361F). Next, ‖T0u‖ ≤ M‖u‖1 for every u ∈ Sf . PPP If u ∈ Sf ∼= S(Af ), then u is expressible as∑m
j=0 βjχbj where b0, . . . , bm ∈ Af are disjoint (361Eb). So

‖T0u‖ = ‖∑m
j=0 βjνbj‖ ≤M

∑m
j=0 |βj |µ̄bj = M‖u‖1. QQQ

There is therefore a continuous linear operator T : L1 → U , extending T0, and with ‖T‖ ≤ ‖T0‖ ≤ M
(2A4I). Of course we still have ν = Tχ.

(c) The argument in (b) shows that T0 = T ↾Sf and T are uniquely defined from ν. We have also seen
that if T , ν correspond to each other then

‖νa‖ ≤ ‖T‖µ̄a for every a ∈ Af ,

‖T‖ ≤M whenever ‖νa‖ ≤Mµ̄a for every a ∈ Af ,

so that

‖T‖ = min{M : M ≥ 0, ‖νa‖ ≤Mµ̄a for every a ∈ Af}.

365J Theorem Let (A, µ̄) be a measure algebra, U a Banach lattice, and T a bounded linear operator
from L1 = L1(A, µ̄) to U . Let ν : Af → U be the corresponding additive function, as in 365I.

(a) T is a positive linear operator iff νa ≥ 0 in U for every a ∈ Af ; in this case, T is order-continuous.
(b) If U is Dedekind complete and T ∈ L

∼(L1;U), then |T | : L1 → U corresponds to |ν| : Af → U , where
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|ν|(a) = sup{∑n
i=0 |νai| : a0, . . . , an ⊆ a are disjoint}

for every a ∈ Af .
(c) T is a Riesz homomorphism iff ν is a lattice homomorphism.

proof As in 365F, let Sf be L1 ∩ S(A), identified with S(Af ).

(a)(i) If T is a positive linear operator and a ∈ Af , then χa ≥ 0 in L1, so νa = T (χa) ≥ 0 in U .

(ii) Now suppose that νa ≥ 0 in U for every a ∈ Af , and take u ≥ 0 in L1, ǫ > 0 in R. Then there is
a v ∈ Sf such that 0 ≤ v ≤ u and ‖u− v‖1 ≤ ǫ (365F). Express v as

∑n
i=0 αiχai where ai ∈ Af , αi ≥ 0 for

each i. Now

‖Tu− Tv‖ ≤ ‖T‖‖u− v‖1 ≤ ǫ‖T‖.

On the other hand,

Tv =
∑n
i=0 αiνai ∈ U+.

As U+ is norm-closed in U (354Bc), and ǫ is arbitrary, Tu ∈ U+. As u is arbitrary, T is a positive linear
operator.

(iii) By 355Ka, T is order-continuous.

(b) If a ∈ Af , then

|νb| = |T (χb)| ≤ |T |(χb) ≤ |T |(χa)

for every b ⊆ a, so {νb : b ⊆ a} is order-bounded in U . As a is arbitrary, we have an additive function
|ν| : Af → U given by the proposed formula, by 361H. Next, |T | : L1 → U is a bounded linear operator
(355C), so we can speak of ‖|T |‖; and we also have an additive function ν1 : Af → U corresponding to |T |.

If b ⊆ a ∈ Af , then

νb− ν(a \ b) = T (χb) − T (χ(a \ b)) ≤ |T |(χb) + |T |(χ(a \ b)) = |T |(χa) = ν1a;

taking the supremum over b, the other formula in 361H tells us that |ν|a ≤ ν1a, so

‖|ν|a‖ ≤ ‖ν1a‖ = ‖|T |(χa)‖ ≤ ‖|T |‖‖χa‖1 = ‖|T |‖µ̄a.

By 365I, there is a bounded linear operator S : L1 → U such that S(χa) = |ν|a for every a ∈ Af .
We now have (S−T )(χa) = |ν|a− νa ≥ 0 for every a ∈ Af , so S−T ≥ 0 in L

∼(L1;U), by (a) above, and
T ≤ S; similarly, −T ≤ S and |T | ≤ S. On the other hand, |ν|a ≤ ν1a for every a, so the same argument
shows that S ≤ |T |. Thus S = |T | and |ν| corresponds to |T |, as claimed.

(c)(i) If T is a lattice homomorphism, then so is ν = Tχ, because χ : Af → Sf is a lattice homomorphism.

(ii) Now suppose that χ is a lattice homomorphism. In this case T ↾Sf is a Riesz homomorphism
(361Gc), that is, |Tv| = T |v| for every v ∈ Sf . Because Sf is norm-dense in L1 and the map u 7→ |u| is
continuous both in L1 and in U (354Bb), |Tu| = T |u| for every u ∈ L1, and T is a Riesz homomorphism.

365K The duality between L1 and L∞ Let (A, µ̄) be a measure algebra, and set L1 = L1(A, µ̄),
L∞ = L∞(A). If we identify L∞ with the solid linear subspace of L0 = L0(A) generated by e = χ1A (364J),
then we have a bilinear operator (u, v) 7→ u× v : L1×L∞ → L1, because |u× v| ≤ ‖v‖∞|u| and L1 is a solid
linear subspace of L0. Note that ‖u × v‖1 ≤ ‖u‖1‖v‖∞, so that the bilinear operator (u, v) 7→ u × v has
norm at most 1 (253Ab, 253E). Consequently we have a bilinear functional (u, v) 7→

∫
u× v : L1×L∞ → R,

which also has norm at most 1, corresponding to linear operators S : L1 → (L∞)∗ and T : L∞ → (L1)∗,
both of norm at most 1, defined by the formula

(Su)(v) = (Tv)(u) =
∫
u× v for u ∈ L1, v ∈ L∞.

Because L1 and L∞ are both Banach lattices, we have (L1)∗ = (L1)∼ and (L∞)∗ = (L∞)∼ (356Dc).
Because the norm of L1 is order-continuous, (L1)∗ = (L1)× (356Dd).

365L Theorem Let (A, µ̄) be a measure algebra, and set L1 = L1(A, µ̄), L∞ = L∞(A). Let S : L1 →
(L∞)∗ = (L∞)∼, T : L∞ → (L1)∗ = (L1)∼ = (L1)× be the canonical maps defined by the duality between
L1 and L∞, as in 365K. Then
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(a) S and T are order-continuous Riesz homomorphisms, S[L1] ⊆ (L∞)×, S is norm-preserving and
T [L∞] is order-dense in (L1)∼.

(b) (A, µ̄) is semi-finite iff T is injective, and in this case T is norm-preserving, while S is a normed Riesz
space isomorphism between L1 and (L∞)×.

(c) (A, µ̄) is localizable iff T is bijective, and in this case T is a normed Riesz space isomorphism between
L∞ and (L1)∗ = (L1)∼ = (L1)×.

proof (a)(i) If u ≥ 0 in L1 and v ≥ 0 in L∞ then u× v ≥ 0 and

(Tv)(u) =
∫
u× v ≥ 0.

As u is arbitrary, Tv ≥ 0 in (L1)×; as v is arbitrary, T is a positive linear operator.
If v ∈ L∞, set a = [[v > 0]] ∈ A. (Remember that we are identifying L0(µ), as defined in §241, with

L0(A), as defined in §364.) Then v+ = v × χa, so for any u ≥ 0 in L1

(Tv+)(u) =
∫
u× v × χa = (Tv)(u× χa) ≤ (Tv)+(u).

As u is arbitrary, Tv+ ≤ (Tv)+. On the other hand, because T is a positive linear operator, Tv+ ≥ Tv and
Tv+ ≥ 0, so Tv+ ≥ (Tv)+. Thus Tv+ = (Tv)+. As v is arbitrary, T is a Riesz homomorphism (352G).

(ii) Exactly the same arguments show that S is a Riesz homomorphism.

(iii) Given u ∈ L1, set a = [[u > 0]]; then

‖Su‖ ≥ (Su)(χa− χ(1 \ a)) =
∫
a
u−

∫
1\a

u =
∫
|u| = ‖u‖1 ≥ ‖Su‖.

So S is norm-preserving.

(iv) By 355Ka, S is order-continuous.

(v) If A ⊆ L∞ is a non-empty downwards-directed set with infimum 0, and u ∈ (L1)+, then infv∈A u×
v = 0 for every u ∈ (L1)+, because v 7→ u× v : L0 → L0 is order-continuous. So

infv∈A(Tv)(u) = infv∈A
∫
u× v = infv∈A ‖u× v‖1 = 0.

As a is arbitrary, the only possible non-negative lower bound for T [A] in (L1)× is 0. As A is arbitrary, T is
order-continuous.

(vi) The ideas of (v) show also that S[L1] ⊆ (L∞)×. PPP If u ∈ (L1)+ and A ⊆ L∞ is non-empty,
downwards-directed and has infimum 0, then

infv∈A(Su)(v) = infv∈A
∫
u× v = 0.

As A is arbitrary, Su is order-continuous. For general u ∈ L1, Su = Su+ − Su− belongs to (L∞)×. QQQ

(vii) Now suppose that h > 0 in (L1)∼ = (L1)∗ = (L1)×. By 365Ja, applied to −h, there must be
an a ∈ Af such that h(χa) > 0. Set νb = h(χ(a ∩ b)) for b ∈ Af . Then ν is additive and non-negative and
bounded by ‖h‖µ̄a. If A ⊆ Af is a non-empty downwards-directed set with infimum 0, then C = {χb : b ∈ A}
is downwards-directed and has infimum 0 in L0(A) (364Jc), so infb∈A νb = infu∈C h(u) = 0. By 365Eb, there
is a v ∈ L1 such that νb =

∫
b
v for every b ∈ Af . As

∫
b
v ≥ 0 for every b ∈ Af , v ≥ 0 (365C(d-i)). Setting

b = [[v > ‖h‖]], we have ∫
b
v ≤ h(χb) ≤ ‖h‖‖χb‖1 = ‖h‖µ̄b;

so b = 0 (365Cc). Accordingly 0 ≤ v ≤ ‖h‖χ1 and v ∈ L∞. Consider Tv ∈ (L1)×. We have Tv ≥ 0 because
T is positive; also

(Tv)(χa) =
∫
a
v = νa = h(χa) > 0,

so Tv > 0. Next, for every b ∈ Af ,

(Tv)(χb) =
∫
b
v = h(χ(a ∩ b)) ≤ h(χb).

By 365Ja again, h−Tv ≥ 0, that is, Tv ≤ h. As h is arbitrary, T [L∞] is quasi-order-dense in (L1)∗, therefore
order-dense (353A).
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(b)(i) If (A, µ̄) is not semi-finite, let a ∈ A be such that µ̄a = ∞ and µ̄b = ∞ whenever 0 6= b ⊆ a. If
u ∈ L1, then [[|u| > 1

n ]] has finite measure for every n ≥ 1, so must be disjoint from a; accordingly

a ∩ [[|u| > 0]] = supn≥1 a ∩ [[|u| > 1
n ]] = 0.

This means that
∫
u× χa = 0 for every u ∈ L1. Accordingly T (χa) = 0 and T is not injective.

(ii) If (A, µ̄) is semi-finite, take any v ∈ L∞. Then if 0 ≤ δ < ‖v‖∞, a = [[|v| > δ]] 6= 0. Let b ⊆ a be
such that 0 < µ̄b <∞. Then χb ∈ L1, and

‖Tv‖ = ‖|Tv|‖ = ‖T |v|‖ ≥ (T |v|)(χb)

‖χb‖1

≥ δ

because |v| × χb ≥ δχb, so

(T |v|)(χb) ≥ δµ̄b = δ‖χb‖1.

As δ is arbitrary, ‖Tv‖ ≥ ‖v‖∞. But we already know that ‖Tv‖ ≤ ‖v‖∞, so the two are equal. As v is
arbitrary, T is norm-preserving (and, in particular, is injective).

(iii) Still supposing that (A, µ̄) is semi-finite, S[L1] = (L∞)×. PPP Take any h ∈ (L∞)×. For a ∈ A, set
νa = h(χa). By 363K, ν : A → R is completely additive. By 365Ea, there is a u ∈ L1 such that

(Su)(χa) =
∫
u× χa =

∫
a
u = νa = h(χa)

for every a ∈ A. Because Su and h are both linear functionals on L∞, they must agree on S(A); because
they are continuous and S(A) is dense in L∞ (363C), Su = h. As h is arbitrary, S is surjective. QQQ

(c) Using (b), we know that if either T is bijective or (A, µ̄) is localizable, then (A, µ̄) is semi-finite.
Given this, if T is bijective, then it is a Riesz space isomorphism between L∞ and (L1)∼, which is Dedekind
complete (356B); so 363Mb tells us that A is Dedekind complete and (A, µ̄) is localizable. In the other
direction, if (A, µ̄) is localizable, then L∞ is Dedekind complete. As T is injective, T [L∞] is, in itself,
Dedekind complete; being an order-dense Riesz subspace of (L1)∼ (by (a) here) it must be solid (353L); as
it contains T (χ1), which is the standard order unit of the M -space (L1)∼, it is the whole of (L1)∼, and T
is bijective.

365M Corollary If (A, µ̄) is a localizable measure algebra, L∞(A) is a perfect Riesz space.

proof By 365L(b)-(c), we can identify L∞ with (L1
µ̄)× ∼= (L∞)××.

365N Theorem Let (A, µ̄) and (B, ν̄) be measure algebras. Let π : Af → Bf be a measure-preserving
ring homomorphism.

(a) There is a unique order-continuous norm-preserving Riesz homomorphism Tπ : L1(A, µ̄) → L1(B, ν̄)
such that Tπ(χa) = χ(πa) whenever a ∈ Af . We have Tπ(u × χa) = Tπu × χ(πa) whenever a ∈ Af and
u ∈ L1(A, µ̄).

(b)
∫
Tπu =

∫
u and

∫
πa
Tπu =

∫
a
u for every u ∈ L1(A, µ̄) and a ∈ Af .

(c) [[Tπu > α]] = π[[u > α]] for every u ∈ L1(A, µ̄) and α > 0.
(d) Tπ is surjective iff π is.
(e) If (C, λ̄) is another measure algebra and θ : Bf → Cf another measure-preserving ring homomorphism,

then Tθπ = TθTπ : L1(A, µ̄) → L1(C, λ̄).

proof Throughout the proof I will write T for Tπ and Sf for S(A) ∩ L1
µ̄
∼= S(Af ) (see 365F).

(a)(i) We have a map ψ : Af → L1
ν̄ defined by writing ψa = χ(πa) for a ∈ Af . Because

χπ(a ∪ b) = χ(πa ∪ πb) = χπa+ χπb, ‖χ(πa)‖1 = ν̄(πa) = µ̄a

whenever a, b ∈ Af and a ∩ b = 0, we get a (unique) corresponding bounded linear operator T : L1
µ̄ → L1

ν̄

such that Tχ = χπ on Af (365I). Because π : Af → Bf and χ : Bf → L1
ν̄ are lattice homomorphisms, so is

ψ, and T is a Riesz homomorphism (365Jc).

(ii) If u ∈ Sf , express it as
∑n
i=0 αiχai where a0, . . . , an are disjoint in Af . Then Tu =

∑n
i=0 αiχ(πai)

and πa0, . . . , πan are disjoint in Bf , so
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‖Tu‖1 =
∑n
i=0 |αi|ν̄(πai) =

∑n
i=0 |αi|µ̄ai = ‖u‖1.

Because Sf is norm-dense in L1
µ̄ and u 7→ ‖u‖1 is continuous (in both L1

µ̄ and L1
ν̄), ‖Tu‖1 = ‖u‖1 for every

u ∈ L1
µ̄, that is, T is norm-preserving. As noted in 365Ja, T is order-continuous.

(iii) If a, b ∈ Af then

T (χa× χb) = T (χ(a ∩ b)) = χπ(a ∩ b) = χ(πa ∩ πb) = χπa× χπb = χπa× T (χb).

Because T is linear and × is bilinear, T (χa × u) = χπa × Tu for every u ∈ Sf . Because the maps
u 7→ u×χa : L1

µ̄ → L1
µ̄, T : L1

µ̄ → L1
ν̄ and v 7→ v×χπa : L1

ν̄ → L1
ν̄ are all continuous, Tu×χπa = T (u×χa)

for every u ∈ L1
µ̄.

(iv) T is unique because the formula T (χa) = χπa defines T on the norm-dense and order-dense
subspace Sf .

(b) Because T is positive,∫
Tu = ‖Tu+‖1 − ‖Tu−‖1 = ‖u+‖1 − ‖u−‖1 =

∫
u.

For a ∈ Af , ∫
πa
Tu =

∫
Tu× χπa =

∫
T (u× χa) =

∫
u× χa =

∫
a
u.

(c) If u ∈ Sf , express it as
∑n
i=0 αiχai where a0, . . . , an are disjoint; then

π[[u > α]] = π(supi∈I ai) = supi∈I πai = [[Tu > α]]

where I = {i : i ≤ n, αi > α}. For u ∈ (L1
µ̄)+, take a sequence 〈un〉n∈N in Sf with supremum u; then

supn∈N Tun = Tu, so

π[[u > α]] = π(sup
n∈N

[[un > α]])

(364L(a-ii); [[u > α]] ∈ Af by 365A)

= sup
n∈N

π[[un > α]]

(because π is order-continuous, see 361Ad)

= sup
n∈N

[[Tun > α]] = [[Tu > α]]

because T is order-continuous. For general u ∈ L1
µ̄,

π[[u > α]] = π[[u+ > α]] = [[T (u+) > α]] = [[(Tu)+ > α]] = [[Tu > α]]

because T is a Riesz homomorphism.

(d)(i) Suppose that T is surjective and that b ∈ Bf . Then there is a u ∈ L1
µ̄ such that Tu = χb. Now

b = [[Tu > 1
2 ]] = π[[u > 1

2 ]] ∈ π[Af ];

as b is arbitrary, π is surjective.

(ii) Suppose now that π is surjective. Then T [L1
µ̄] is a linear subspace of L1

ν̄ containing χb for every

b ∈ Bf , so includes S(Bf ). If v ∈ (L1
ν̄)+ there is a sequence 〈vn〉n∈N in S(Bf )+ with supremum v. For each

n, choose un such that Tun = vn. Setting u′n = supi≤n ui, we get a non-decreasing sequence 〈u′n〉n∈N such
that vn ≤ Tu′n ≤ v for every n ∈ N. So

supn∈N ‖u′n‖1 = supn∈N ‖Tu′n‖1 ≤ ‖v‖1 <∞
and u = supn∈N u

′
n is defined in L1

µ̄, with

Tu = supn∈N Tu
′
n = v.

Thus (L1
ν̄)+ ⊆ T [L1

µ̄]; consequently L1
ν̄ ⊆ T [L1

µ̄] and T is surjective.
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(e) This is an immediate consequence of the ‘uniqueness’ assertion in (i), because for any a ∈ Af

TθTπ(χa) = Tθχ(πa) = χ(θπa),

so that TθTπ : L1
µ̄ → L1

λ̄
is a bounded linear operator taking the right values at elements χa, and must

therefore be equal to Tθπ.

365O Theorem Let (A, µ̄) and (B, ν̄) be measure algebras, and π : Af → B an order-continuous ring
homomorphism.

(a) There is a unique positive linear operator Pπ : L1(B, ν̄) → L1(A, µ̄) such that
∫
a
Pπv =

∫
πa
v for

every v ∈ L1(B, ν̄) and a ∈ Af .
(b) Pπ is order-continuous and norm-continuous, and ‖Pπ‖ ≤ 1.
(c) If a ∈ Af and v ∈ L1(B, ν̄) then Pπ(v × χπa) = Pπv × χa.
(d) If π[Af ] is order-dense in B then Pπ is a norm-preserving Riesz homomorphism; in particular, Pπ is

injective.
(e) If (B, ν̄) is semi-finite and π is injective, then Pπ is surjective, and there is for every u ∈ L1(A, µ̄) a

v ∈ L1(B, ν̄) such that Pπv = u and ‖v‖1 = ‖u‖1.
(f) Suppose again that (B, ν̄) is semi-finite. If (C, λ̄) is another measure algebra and θ : B → C an

order-continuous Boolean homomorphism, then Pθπ = PπPθ′ : L1(C, λ̄) → L1(A, µ̄), where I write θ′ for the
restriction of θ to Bf .

proof I write P for Pπ.

(a)-(b) For v ∈ L1
ν̄ and a ∈ Af set νv(a) =

∫
πa
v. Then νv : Af → R is additive, bounded (by ‖v‖1) and

if A ⊆ Af is non-empty, downwards-directed and has infimum 0, then

infa∈A |νv(a)| ≤ infa∈A
∫
|v| × χπa = 0

because a 7→
∫
|v| × χπa is a composition of order-continuous functions, therefore order-continuous. So

365Eb tells us that there is a Pv ∈ L1
µ̄ such that

∫
a
Pv = νv(a) =

∫
πa
v for every a ∈ Af . By 365D(d-ii),

this formula defines Pv uniquely. Consequently P must be linear (since Pv1 + Pv2, αPv will always have
the properties defining P (v1 + v2), P (αv)).

If v ≥ 0 in L1
ν̄ , then

∫
a
Pv =

∫
πa
v ≥ 0 for every a ∈ Af , so Pv ≥ 0 (365D(d-i)); thus P is positive. It

must therefore be norm-continuous and order-continuous (355C, 355Ka).
Again supposing that v ≥ 0, we have

‖Pv‖1 =
∫
Pv = supa∈Af

∫
a
Pv = supa∈Af

∫
πa
v ≤ ‖v‖1

(using 365D(d-iii)). For general v ∈ L1
ν̄ ,

‖Pv‖1 = ‖|Pv|‖1 ≤ ‖P |v|‖1 ≤ ‖v‖1.

(c) For any c ∈ Af ,∫
c
Pv × χa =

∫
c∩a

Pv =
∫
π(c∩a)

v =
∫
πc
v × χπa =

∫
c
P (v × χπa).

(d) Now suppose that π[Af ] is order-dense. Take any v, v′ ∈ L1
ν̄ such that v ∧ v′ = 0. ??? Suppose, if

possible, that u = Pv ∧ Pv′ > 0. Take α > 0 such that a = [[u > α]] is non-zero. Since∫
πa
v =

∫
a
Pv ≥

∫
a
u > 0,

b = πa ∩ [[v > 0]] is non-zero. Let c ∈ Af be such that 0 6= πc ⊆ b; then π(a ∩ c) = πc 6= 0, so a ∩ c 6= 0, and

0 <
∫
a∩c

u ≤
∫
a∩c

Pv′ ≤
∫
πc
v′.

But πc ⊆ [[v > 0]] and v ∧ v′ = 0 so
∫
πc
v′ = 0. XXX

So Pv ∧ Pv′ = 0. As v, v′ are arbitrary, P is a Riesz homomorphism (352G).
Next, if v ≥ 0 in L1

ν̄ , ∫
Pv = supa∈Af

∫
a
Pv = supa∈Af

∫
πa
v =

∫
v

because π[Af ] is upwards-directed and has supremum 1 in B. So, for general v ∈ L1
ν̄ ,
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‖Pv‖1 =
∫
|Pv| =

∫
P |v| =

∫
|v| = ‖v‖1,

and P is norm-preserving.

(e) Next suppose that (B, ν̄) is semi-finite and that π is injective.

(i) If u > 0 in L1
µ̄, there is a v > 0 in L1

ν̄ such that Pv ≤ u and
∫
Pv ≥

∫
v. PPP Let δ > 0 be such that

a = [[u > δ]] 6= 0. Then πa 6= 0. Because (B, ν̄) is semi-finite, there is a non-zero b ∈ Bf such that b ⊆ πa.
Set u1 = P (χb). Then u1 ≥ 0,

∫
a
u1 = ν̄b > 0 and

∫
1\a

u1 = supc∈Af

∫
c\a

u1 = supc∈Af

∫
πc\πa

χb = 0.

So u1 × χ(1 \ a) = 0 and 0 6= [[u1 > 0]] ⊆ a. Let γ > 0 be such that [[u1 > γ]] 6= [[u1 > 0]], and set a1 =

a \ [[u1 > γ]], v =
δ

γ
χ(b ∩ πa1). Then

Pv =
δ

γ
P (χb× χ(πa1)) =

δ

γ
P (χb) × χa1 =

δ

γ
u1 × χa1 ≤ δχa ≤ u,

because

[[u1 × χa1 > γ]] ⊆ [[u1 > γ]] ∩ a1 = 0

so

u1 × χa1 ≤ γχ[[u1 > 0]] ≤ γχa.

Also a1 ∩ [[u1 > 0]] 6= 0, so Pv and v are non-zero; and∫
Pv ≥

∫
a1
Pv =

∫
πa1

v =
∫
v. QQQ

(ii) Now take any u ≥ 0 in L1
µ̄, and set B = {v : v ∈ L1

ν̄ , v ≥ 0, Pv ≤ u,
∫
v ≤

∫
Pv}. B is not empty

because it contains 0. If C ⊆ B is non-empty and upwards-directed, then supv∈C
∫
v ≤

∫
u is finite, so C

has a supremum in L1
ν̄ (365Df). Because P is order-continuous, P (supC) = supP [C] ≤ u; also∫

supC = supv∈C
∫
v ≤ supv∈C

∫
Pv ≤

∫
P (supC).

Thus supC ∈ B. As C is arbitrary, B satisfies the conditions of Zorn’s Lemma, and has a maximal element
v0 say.

??? Suppose, if possible, that Pv0 6= u. By (α), there is a v1 > 0 such that Pv1 ≤ u−Pv0 and
∫
v1 ≤

∫
Pv1.

In this case, v0 < v0 + v1 ∈ B, which is impossible. XXX Thus Pv0 = u; also

‖v0‖1 =
∫
v0 ≤

∫
Pv0 = ‖Pv0‖1.

(iii) Finally, take any u ∈ L1
µ̄. By (ii), there are non-negative v1, v2 ∈ L1

ν̄ such that Pv1 = u+,

Pv2 = u−, ‖v1‖1 ≤ ‖u+‖1 and ‖v2‖1 ≤ ‖u−‖1. Setting v = v1 − v2, we have Pv = u. Also we must have

‖v‖1 ≤ ‖v1‖1 + ‖v2‖1 ≤ ‖u+‖1 + ‖u−‖1 = ‖u‖1 ≤ ‖P‖‖v‖1 = ‖v‖1,

so ‖v‖1 = ‖u‖1, as required.

(f) As usual, this is a consequence of the uniqueness of P . However (because I do not assume that
π[Af ] ⊆ Bf ) there is an extra refinement: we need to know that

∫
b
Pθ′w =

∫
θb
w for every b ∈ B and

w ∈ L1
λ̄
. PPP Because θ is order-continuous and (B, ν̄) is semi-finite, θb = sup{θb′ : b′ ∈ Bf , b′ ⊆ b}, so if

w ≥ 0 then ∫
θb
w = supb′∈Bf ,b′ ⊆b

∫
θb′
w = supb′∈Bf ,b′ ⊆b

∫
b′
Pθ′w =

∫
b
Pθ′w.

Expressing w as w+ − w−, we see that the same is true for every w ∈ L1
ν̄ . QQQ

Now we can say that PPθ′ is a positive linear operator from L1
λ̄

to L1
µ̄ such that

∫
a
PPθ′w =

∫
πa
Pθ′w =

∫
θπa

w =
∫
a
Pθπw

whenever a ∈ Af and w ∈ L1
λ̄
, and must be equal to Pθπ.
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365P Proposition Let (A, µ̄) and (B, µ̄) be measure algebras and π : Af → Bf a measure-preserving
ring homomorphism.

(a) In the language of 365N-365O above, PπTπ is the identity operator on L1(A, µ̄).
(b) If π is surjective (so that it is an isomorphism between Af and Bf ) then Pπ = T−1

π = Tπ−1 and
Tπ = P−1

π = Pπ−1 .

proof (a) If u ∈ L1
µ̄ and a ∈ Af then

∫
a
PπTπu =

∫
πa
Tπu =

∫
a
u.

So u = PπTπu, by 365D(d-ii).

(b) From 365Nd, we know that Tπ is surjective, while PπTπ is the identity, so that Pπ = T−1
π and

Tπ = P−1
π . As for Tπ−1 , 365Ne tells us that Tπ−1 = T−1

π ; so

Pπ−1 = T−1
π−1 = Tπ.

365Q Conditional expectations It is a nearly universal rule that any investigation of L1 spaces must
include a look at conditional expectations. In the present context, they take the following form.

(a) Let (A, µ̄) be a probability algebra and B a closed subalgebra; write ν̄ for the restriction µ̄↾B. The
identity map from B to A induces operators T : L1(B, ν̄) → L1(A, µ̄) and P : L1(A, µ̄) → L1(B, ν̄). If
we take L0(A) to be defined as the set of functions from R to A described in 364Aa, then L0(B) becomes
a subset of L0(A) in the literal sense, and T is actually the identity operator associated with the subset
L1(B, ν̄) ⊆ L1(A, µ̄); L1(B, ν̄) is a norm-closed and order-closed Riesz subspace of L1(A, µ̄). P is a positive
linear operator, while PT is the identity, so P is a projection from L1(A, µ̄) onto L1(B, ν̄). P is defined by
the familiar formula ∫

b
Pu =

∫
b
u for every u ∈ L1(A, µ̄), b ∈ B,

so is the conditional expectation operator in the sense of 242J. Observe that the formula in 365A tells us
that L1(B, ν̄) is just L1(A, µ̄)∩L0(B). Translating 233K into this language, we see that P (u× v) = Pu× v
whenever u ∈ L1(A, µ̄), v ∈ L0(B) and u× v ∈ L1(A, µ̄).

(b) Just as in 233I-233J and 242K, we have a version of Jensen’s inequality. Let h : R → R be a convex
function and h̄ : L0(A) → L0(A) the corresponding map (364H). If u ∈ L1(A, µ̄), then h(

∫
u) ≤

∫
h̄(u); and

if h̄(u) ∈ L1(A, µ̄), then h̄(Pu) ≤ P (h̄(u)). PPP I repeat the proof of 233I-233J. For each q ∈ Q, take βq ∈ R

such that h(t) ≥ hq(t) = h(q) + βq(t − q) for every t ∈ R, so that h(t) = supq∈Q hq(t) for every t ∈ R, and

h̄(u) = supq∈Q h̄q(u) for every u ∈ L0(A). (This is because

[[h̄(u) > α]] = [[u ∈ h−1[ ]α,∞[ ]]] = [[u ∈ ⋃
q∈Q h

−1
q [ ]α,∞[ ]]]

= sup
q∈Q

[[u ∈ h−1
q [ ]α,∞[ ]]] = sup

q∈Q

[[h̄q(u) > α]]

for every α ∈ R.) But setting e = χ1, we see that h̄q(u) = h(q)e+ βq(u− qe) for every u ∈ L0(A), so that∫
h̄q(u) = h(q) + βq(

∫
u− q) = hq(

∫
u),

P (h̄q(u)) = h(q)e+ βq(Pu− qe) = h̄q(Pu)

because
∫
e = 1 and Pe = e. Taking the supremum over q, we get

h(
∫
u) = supq∈Q hq(

∫
u) = supq∈Q

∫
h̄q(u) ≤

∫
h̄(u),

and if h̄(u) ∈ L1
µ̄ then

h̄(Pu) = supq∈Q h̄q(Pu) = supq∈Q P (h̄q(u)) ≤ P (h̄(u)). QQQ

Of course the result in this form can also be deduced from 233I-233J if we represent (A, µ̄) as the measure
algebra of a probability space (X,Σ, µ) and set T = {E : E ∈ Σ, E• ∈ B}.
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(c) I note here a fact which is occasionally useful. If u ∈ L1(A, µ̄) is non-negative, then [[Pu > 0]] =
upr([[u > 0]],B), the upper envelope of [[u > 0]] in B as defined in 313S. PPP We have only to observe that,
for b ∈ B,

b ∩ [[Pu > 0]] = 0 ⇐⇒ χb× Pu = 0 ⇐⇒
∫

b

Pu = 0

⇐⇒
∫

b

u = 0 ⇐⇒ b ∩ [[u > 0]] = 0.

Taking complements, b ⊇ [[Pu > 0]] iff b ⊇ [[u > 0]]. QQQ

(d) Suppose now that (C, λ̄) is another probability algebra and π : A → C is a measure-preserving
Boolean homomorphism. Then D = π[B] is a closed subalgebra of C (314F(a-i)). Let Q : L1(C, λ̄) →
L1(D, λ̄↾D) ⊆ L1(C, λ̄) be the conditional expectation associated with D, and Tπ : L1(A, µ̄) → L1(C, λ̄) the
norm-preserving Riesz homomorphism defined by π. Then TπP = QTπ. PPP Take u ∈ L1(A, µ̄). Then

[[TπPu > α]] = π[[Pu > α]] ∈ π[B] = D

for every α ∈ R, so TπPu ∈ L0(D). If d ∈ D, set b = π−1d ∈ B; then

∫

d

TπPu =

∫
TπPu× χd =

∫
TπPu× Tπχb =

∫
Tπ(Pu× χb)

=

∫
Pu× χb =

∫

b

Pu =

∫

b

u =

∫
u× χb

=

∫
Tπ(u× χb) =

∫
Tπu× Tπχb =

∫
Tπu× χd =

∫

d

Tπu.

As d is arbitrary, TπPu satisfies the defining formula for QTπu and TπPu = QTπu; as u is arbitrary,
TπP = QTπ. QQQ

365R Recovering the algebra: Proposition (a) Let (A, µ̄) be a localizable measure algebra. Then
A is isomorphic to the band algebra of L1(A, µ̄).

(b) Let A be a Dedekind σ-complete Boolean algebra, and µ̄, ν̄ two measures on A such that (A, µ̄) and
(A, ν̄) are both semi-finite measure algebras. Then L1(A, µ̄) is isomorphic, as Banach lattice, to L1(A, ν̄).

proof (a) Because (A, µ̄) is semi-finite, L1
µ̄ is order-dense in L0 = L0(A) (365G). Consequently, L1

µ̄ and L0

have isomorphic band algebras (353D). But the band algebra of L0 is just its algebra of projection bands
(because A and therefore L0 are Dedekind complete, see 364M and 353J), which is isomorphic to A (364O).

(b) Let π : A → A be the identity map. Regarding π as an order-continuous Boolean homomorphism

from A
f
µ̄ = {a : µ̄a < ∞} to (A, ν̄), we have an associated positive linear operator P = Pπ : L1

ν̄ → L1
µ̄;

similarly, we have Q = Pπ−1 : L1
µ̄ → L1

ν̄ , and both P and Q have norm at most 1 (365Ob). Now 365Of

assures us that QP is the identity operator on L1
ν̄ and PQ is the identity operator on L1

µ̄. So P and Q are

the two halves of a Banach lattice isomorphism between L1
µ̄ and L1

ν̄ .

365S Having opened the question of varying measures on a single Boolean algebra, this seems an
appropriate moment for a general description of how they interact.

Proposition Let A be a Dedekind complete Boolean algebra, and µ̄ : A → [0,∞], ν̄ : A → [0,∞] two
functions such that (A, µ̄) and (A, ν̄) are both semi-finite (therefore localizable) measure algebras.

(a) There is a unique u ∈ L0 = L0(A) such that (if we allow ∞ as a value of the integral)
∫
a
u dµ̄ = ν̄a

for every a ∈ A.
(b) For v ∈ L0(A),

∫
v dν̄ =

∫
u× v dµ̄ if either is defined in [−∞,∞].

(c) u is strictly positive (i.e., [[u > 0]] = 1) and, writing 1
u for the multiplicative inverse of u,

∫
a

1
udν̄ = µ̄a

for every a ∈ A.

proof (a) Because (A, ν̄) is semi-finite, there is a partition of unity D ⊆ A such that ν̄d < ∞ for every
d ∈ D. For each d ∈ D, the functional a 7→ ν̄(a ∩ d) : A → R is completely additive, so there is a ud ∈ L1

µ̄
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such that
∫
a
uddµ̄ = ν̄(a ∩ d) for every a ∈ A. Because

∫
a
uddµ̄ ≥ 0 for every a, ud ≥ 0. Because

∫
1\d

ud = 0,

[[ud > 0]] ⊆ d. Now u = supd∈D ud is defined in L0. PPP (This is a special case of 368K below.) For n ∈ N,
set cn = supd∈D [[ud > n]]. If d, d′ ∈ D are distinct, then d ∩ [[ud′ > n]] = 0, so d ∩ cn = [[ud > n]]. Set
c = infn∈N cn. If d ∈ D, then

d ∩ c = infn∈N d ∩ cn = infn∈N [[ud > n]] = 0.

But c ⊆ c0 ⊆ supD, so c = 0. By 364L(a-i), {ud : d ∈ D} is bounded above in L0, so has a supremum,
because L0 is Dedekind complete, by 364M. QQQ

For finite I ⊆ D set ũI =
∑
d∈I ud = supd∈I ud (because ud ∧ uc = 0 for distinct c, d ∈ D). Then

u = sup{ũI : I ⊆ D, I is finite}. So, for any a ∈ A,

∫

a

u dµ̄ = sup
I⊆D is finite

∫

a

ũIdµ̄

(365Dh)

= sup
I⊆D is finite

∑

d∈I

∫

a

uddµ̄ = sup
I⊆D is finite

∑

d∈I

ν̄(a ∩ d) = ν̄a.

Note that if a ∈ A is non-zero, then ν̄a > 0, so a ∩ [[u > 0]] 6= 0; consequently [[u > 0]] = 1.
To see that u is unique, observe that if u′ has the same property then for any d ∈ D∫

a
u× χd dµ̄ = ν̄(a ∩ d) =

∫
a
u′ × χd dµ̄

for every a ∈ A, so that u× χd = u′ × χd; because supD = 1 in A, u must be equal to u′.

(b) Use 365Hb, with π and T the identity maps.

(c) In the same way, there is a w ∈ L0 such that
∫
a
w dν̄ = µ̄a for every a ∈ A. To relate u and w,

observe that applying (b) above we get∫
w × χa× u dµ̄ =

∫
w × χa dν̄

for every a ∈ A, that is,
∫
a
w × u dµ̄ = µ̄a for every a. But from this we see that w × u × χb = χb at least

when µ̄b <∞, so that w × u = χ1 is the multiplicative identity of L0, and w = 1
u .

365T Uniform integrability Continuing the programme in 365C, we can transcribe the ideas of §§246,
247, 354 and 356 into the new context.

Theorem Let (A, µ̄) be a measure algebra. Set L1 = L1(A, µ̄).
(a) For a non-empty subset A of L1, the following are equiveridical:

(i) A is uniformly integrable in the sense of 354P;
(ii) for every ǫ > 0 there are an a ∈ Af and an M ≥ 0 such that

∫
(|u| −Mχa)+ ≤ ǫ for every u ∈ A;

(iii)(α) supu∈A |
∫
a
u| is finite for every atom a ∈ A,

(β) for every ǫ > 0 there are c ∈ Af and δ > 0 such that |
∫
a
u| ≤ ǫ whenever u ∈ A, a ∈ A and

µ̄(a ∩ c) ≤ δ;
(iv)(α) supu∈A |

∫
a
u| is finite for every atom a ∈ A,

(β) limn→∞ supu∈A |
∫
an
u| = 0 for every disjoint sequence 〈an〉n∈N in A;

(v) A is relatively weakly compact in L1.
(b) If (A, µ̄) is a probability algebra and A ⊆ L1 is uniformly integrable, then there is a solid convex

norm-closed uniformly integrable set C ⊇ A such that P [C] ⊆ C whenever P : L1 → L1 is the conditional
expectation operator associated with a closed subalgebra of A.

proof 354Q, 354R, 356Q and 246D, with a little help from 246C and 246G.

365X Basic exercises (a) Let (A, µ̄) be a measure algebra, and u ∈ L1
µ̄. Show that

∫
u =

∫∞

0
µ̄[[u > α]] dα−

∫ 0

−∞
µ̄(1 \ [[u > α]]) dα.

D.H.Fremlin



78 Function spaces 365Xb

>>>(b) Let (A, µ̄) be any measure algebra, and u ∈ L1
µ̄. (i) Show that ‖u‖1 ≤ 2 supa∈Af |

∫
a
u|. (Hint :

246F.) (ii) Show that for any ǫ > 0 there is an a ∈ Af such that |
∫
u−

∫
b
u| ≤ ǫ whenever a ⊆ b ∈ A.

>>>(c) Let U be an L-space. If 〈un〉n∈N is any norm-bounded sequence in U+, show that

lim infn→∞ un = supn∈N infm≥n um

is defined in U , and that
∫

lim infn→∞ un ≤ lim infn→∞

∫
un.

(d) Let U be an L-space. Let F be a filter on U such that {u : u ≥ 0, ‖u‖ ≤ k} belongs to F for some
k ∈ N. Show that u0 = supF∈F,F⊆U+ inf F is defined in U , and that

∫
u0 ≤ supF∈F infu∈F

∫
u.

(e) Let (A, µ̄) be a measure algebra and A ⊆ L1
µ̄ a non-empty set. Show that A is bounded above in L1

µ̄

iff

sup{∑n
i=0

∫
ai
ui : a0, . . . , an is a partition of unity in A, u0, . . . , un ∈ A}

is finite, and that in this case the supremum is
∫

supA. (Hint : given u0, . . . , un ∈ A, set bi = infj [[ui ≥ uj ]],
ai = bi \ supj<i bj , and show that

∫
supi≤n ui =

∑n
i=0

∫
ai
ui.)

(f) Let (A, µ̄) be a measure algebra and u, v ∈ L0(A)+. Show that
∫
u × v dµ̄ =

∫∞

0
(
∫
[[u>α]]

v dµ̄)dα.

(Hint : start with u ∈ S(A)+.)

(g) Let (A, µ̄) be any measure algebra and ν : Af → R a bounded additive functional. Show that the
following are equiveridical: (i) there is a u ∈ L1

µ̄ such that νa =
∫
a
u for every a ∈ Af ; (ii) for every ǫ > 0

there is a δ > 0 such that |νa| ≤ ǫ whenever µ̄a ≤ δ; (iii) for every ǫ > 0, c ∈ Af there is a δ > 0 such that
νa ≤ ǫ whenever a ⊆ c and µ̄a ≤ δ; (iv) for every ǫ > 0 there are c ∈ Af , δ > 0 such that |νa| ≤ ǫ whenever
a ∈ Af and µ̄(a ∩ c) ≤ δ; (v) limn→∞ νan = 0 whenever 〈an〉n∈N is a non-increasing sequence in Af with
infimum 0.

(h) Let (A, µ̄) and (B, ν̄) be measure algebras, and π : A → B a sequentially order-continuous Boolean
homomorphism. Let T : L0(A) → L0(B) be the Riesz homomorphism associated with π (364P). Suppose
that w ≥ 0 in L0(B) is such that

∫
πa
w dν̄ = µ̄a whenever a ∈ A. Show that for any u ∈ L0(A, µ̄),∫

Tu× w dν̄ =
∫
u dµ̄ whenever either is defined in [−∞,∞].

>>>(i) Let (A, µ̄) be a measure algebra and a ∈ A; write Aa for the principal ideal it generates. Show that
if π is the identity embedding of Af ∩Aa into Af , then Tπ, as defined in 365N, identifies L1(Aa, µ̄↾Aa) with
a band in L1

µ̄.

>>>(j) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, with measure algebras (A, µ̄) and (B, ν̄). Let φ :
X → Y be an inverse-measure-preserving function and π : B → A the corresponding measure-preserving
homomorphism (324M). Show that Tπ : L1

ν̄ → L1
µ̄ (365N) corresponds to the map g• 7→ (gφ)• : L1(ν) →

L1(µ) of 242Xd.

(k) Let (A, µ̄) and (B, ν̄) be measure algebras. Let π : Af → Bf be a ring homomorphism such that,
for some γ > 0, ν̄(πa) ≤ γµ̄a for every a ∈ Af . (i) Show that there is a unique order-continuous Riesz
homomorphism T : L1

µ̄ → L1
ν̄ such that T (χa) = χ(πa) whenever a ∈ Af , and that ‖T‖ ≤ γ. (ii) Show that

[[Tu > α]] = π[[u > α]] whenever u ∈ L1
µ̄ and α > 0. (iii) Show that T is surjective iff π is, injective iff π is.

(iv) Show that T is norm-preserving iff ν̄(πa) = µ̄a for every a ∈ Af .

(l) Let (A, µ̄) and (B, ν̄) be measure algebras, and π : A → B a measure-preserving Boolean homo-
morphism. Let T : L1

µ̄ → L1
ν̄ and P : L1

ν̄ → L1
µ̄ be the operators corresponding to π↾Af , as described in

365N-365O, and T̃ : L∞(A) → L∞(B) the operator corresponding to π, as described in 363F. (i) Show

that T (u × v) = Tu × T̃ v for every u ∈ L1
µ̄, v ∈ L∞(A). (ii) Show that if π is order-continuous, then∫

Pv × u =
∫
v × T̃ u for every u ∈ L∞(A), v ∈ L1

ν̄ .
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>>>(m) Let (X,Σ, µ) be a probability space, with measure algebra (A, µ̄), and let T be a σ-subalgebra of
Σ. Set ν = µ↾T, B = {F • : F ∈ T} ⊆ A, ν̄ = µ̄↾B, so that (B, ν̄) is a measure algebra. Let π : B → A be
the identity homomorphism. Show that Tπ : L1

ν̄ → L1
µ̄ (365N) corresponds to the canonical embedding of

L1(ν) in L1(µ) described in 242Jb, while Pπ : L1
µ̄ → L1

ν̄ (365O) corresponds to the conditional expectation
operator described in 242Jd.

(n) Let (A, µ̄) and (B, ν̄) be probability algebras, π : A → B a measure-preserving Boolean homomor-
phism, and T : L0(A) → L0(B) the corresponding Riesz homomorphism. Let C be a closed subalgebra of A
and P : L1(A, µ̄) → L1(C, µ̄↾C) ⊆ L1(A, µ̄), Q : L1(B, ν̄) → L1(B, ν̄) the conditional expectation operators
defined from C ⊂→ A and π[C] ⊂→ B. Show that TP = QT .

(o) Let (A, µ̄) be a semi-finite measure algebra, and (Â, µ̂) its localization (322Q). Show that the natural

embedding of A in Â induces a Banach lattice isomorphism between L1
µ̄ and L1

µ̂, so that the band algebra

of L1
µ̄ can be identified with the Dedekind completion Â of A.

(p) Let A be a Dedekind σ-complete Boolean algebra and µ̄, ν̄ two functions such that (A, µ̄), (A, ν̄) are
measure algebras. Show that L1

µ̄ ⊆ L1
ν̄ (as subsets of L0(A)) iff there is a γ > 0 such that ν̄a ≤ γµ̄a for

every a ∈ A. (Hint : show that the identity operator from L1
µ̄ to L1

ν̄ is bounded.)

(q) Let (A, µ̄) be a measure algebra, I∞ the ideal of ‘purely infinite’ elements of A together with 0 and
µ̄sf the measure on B = A/I∞ as defined in 322Xa. Let π : A → B be the canonical map. Show that Tπ,
as defined in 365N, is a Banach lattice isomorphism between L1

µ̄ and L1(B, µ̄sf).

(r) Let (X,Σ, µ) be a a semi-finite measure space. Show that L1(µ) is separable iff µ is σ-finite and has
countable Maharam type.

365Y Further exercises (a) Let (A, µ̄) be a semi-finite measure algebra, not {0}. Show that the
topological density of L1

µ̄ is max(ω, τ(A), c(A)), where τ(A), c(A) are the Maharam type and cellularity of
A.

365 Notes and comments You should not suppose that L1 spaces appear in the second half of this chapter
because they are of secondary importance. Indeed I regard them as the most important of all function spaces.
I have delayed the discussion of them for so long because it is here that for the first time we need measure
algebras in an essential way.

The actual definition of L1
µ̄ which I give is designed for speed rather than illumination; I seek only a

formula, visibly independent of any particular representation of (A, µ̄) as the measure algebra of a measure
space, from which I can prove 365B. 365C-365D and 365Ea are now elementary. In 365Eb I take a page to
describe a form of the Radon-Nikodým theorem which is applicable to arbitrary measure algebras, at the
cost of dealing with functionals on the ring Af rather than on the whole algebra A. This is less for the sake
of applications than to emphasize one of the central properties of L1: it depends only on Af and µ̄↾Af . For
alternative versions of the condition 365Eb(i) see 365Xg.

The convergence theorems (B.Levi’s theorem, Fatou’s lemma and Lebesgue’s dominated convergence
theorem) are so central to the theory of integrable functions that it is natural to look for versions in the
language here. Corresponding to B.Levi’s theorem is the Levi property of a norm in an L-space; note how
the abstract formulation makes it natural to speak of general upwards-directed families rather than of non-
decreasing sequences, though the sequential form is so often used that I have spelt it out (365C). In the
same way, the integral becomes order-continuous rather than just sequentially order-continuous (365Da).
Corresponding to Fatou’s lemma we have 365Xc-365Xd. For abstract versions of Lebesgue’s theorem I will
wait until §367.

In 365H I have deliberately followed the hypotheses of 235A and 235R. Of course 365H can be deduced
from these if we use the Stone representations of (A, µ̄) and (B, ν̄), so that π can be represented by a
function between the Stone spaces (312Q). But 365H is essentially simpler, because the technical problems
concerning measurability which took up so much of §235 have been swept under the carpet. In the same
way, 365Xh corresponds to 235E. Here we have a fair example of the way in which the abstract expression
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in terms of measure algebras can be tidier than the expression in terms of measure spaces. But in my view
this is because here, at least, some of the mathematics has been left out.

365I-365J correspond closely to 361F-361H and 363E. 365L is a re-run of 243G, but with the additional
refinement that I examine the action of L1 on L∞ (the operator S) as well as the action of L∞ on L1 (the
operator T ). Of course 365Lc is just the abstract version of 243Hb, and can easily be proved from it. Note
that while the proof of 365L does not itself involve any representation of (A, µ̄) as the measure algebra of
a measure space, (a-vii) and (b-iii) of the proof of 365L depend on the Radon-Nikodým theorem through
327D and 365E. For a development of the theory of L1(A, µ̄) which does not (in a formal sense) depend on
measure spaces, see Fremlin 74a, 63J.

Theorems 365N-365P lie at the centre of my picture of L1 spaces, and are supposed to show their dual
nature. Starting from a semi-finite measure algebra (A, µ̄) we have two essentially different routes to the
L1-space: we can either build it up from indicator functions of elements of finite measure, so that it is
naturally embedded in L0(A), or we can think of it as the order-continuous dual of L∞(A). The first is a
‘covariant’ construction (signalled by the formula Tθπ = TθTπ in 365Ne) and the second is ‘contravariant’
(so that Pθπ = PπPθ′ in 365Of). The first construction is the natural one if we are seeking to copy the ideas
of §242, but the second arises inevitably if we follow the ordinary paths of functional analysis and study
dual spaces whenever they appear. The link between them is the Radon-Nikodým theorem.

I have deliberately written out 365N and 365O with different hypotheses on the homomorphism π in the
hope of showing that the two routes to L1 really are different, and can be expected to tell us different things
about it. I use the letter P in 365O in order to echo the language of 242J; in the most important context,
in which A is actually a subalgebra of B and π is the identity map, P is a kind of conditional expectation
operator (365Q). I note that in the proof of 365Oe I have returned to first principles, using some of the
ideas of the Radon-Nikodým theorem (232E), but a different approach to the exhaustion step (converting
‘for every u > 0 there is a v > 0 such that Pv ≤ u’ into ‘P is surjective’). I chose the somewhat cruder
method in 232E (part (c) of the proof) in order to use the weakest possible form of the axiom of choice. In
the present context such scruples seem absurd.

I used the words ‘covariant’ and ‘contravariant’ above; of course this distinction depends on the side of the
mirror on which we are standing; if our measure-preserving homomorphism is derived (contravariantly) from
an inverse-measure-preserving transformation, then the T ’s become contravariant (365Xj). An important
component of this work, for me, is the fact that not all measure-preserving homomorphisms between measure
algebras can be represented by inverse-measure-preserving functions (343Jb, 343M).

I have noted at various points (e.g., 242Yd) that the properties of L1(µ) are not much affected by
peculiarities in a measure space (X,Σ, µ). In this section I offer an explanation: unlike L0 or L∞, L1 really
depends only on Af , the ring of elements of finite measure in the measure algebra. (See 365N-365P, 365Xo
and 365Xq.) Note that while the algebra A is uniquely determined (given that (A, µ̄) is localizable, 365Ra),
the measure µ̄ is not; if A is any algebra carrying two non-isomorphic semi-finite measures, the corresponding
L1 spaces are still isomorphic (365Rb). For instance, the L1-spaces of Lebesgue measure µ on R, and the
subspace measure µ[0,1] on [0, 1], are isomorphic, though their measure algebras are not.

In 365T I have recapitulated the results in §§246, 247, 354 and 356 concerning uniform integrability and
weak compactness, but I make no attempt to add to them. Once we have left measure spaces behind, these
ideas belong to the theory of Banach lattices, and there is little to relate them to the questions dealt with
in this section. But see 373Xj and 373Xn below.

Version of 10.11.08

366 Lp

In this section I apply the methods of this chapter to Lp spaces, where 1 < p < ∞. The constructions
proceed without surprises up to 366E, translating the ideas of §244 by the methods used in §365. Turning
to the action of Boolean homomorphisms on Lp spaces, I introduce a space M0, which can be regarded as
the part of L0 that can be determined from the ring Af of elements of A of finite measure (366F), and which
includes Lp whenever 1 ≤ p <∞. Now a measure-preserving ring homomorphism from Af to Bf acts on the
M0 spaces in a way which includes injective Riesz homomorphisms from Lp(A, µ̄) to Lp(B, ν̄) and surjective

c© 1995 D. H. Fremlin
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positive linear operators from Lp(B, ν̄) to Lp(A, µ̄) (366H). The latter may be regarded as conditional
expectation operators (366J). The case p = 2 (366K-366L) is of course by far the most important. As with
the familiar spaces Lp(µ) of Chapter 24, we have complex versions LpC(A, µ̄) with the expected properties
(366M).

366A Definition Let (A, µ̄) be a measure algebra and suppose that 1 < p < ∞. For u ∈ L0(A), define
|u|p ∈ L0(A) by setting

[[|u|p > α]] = [[|u| > α1/p]] if α ≥ 0,

= 1 if α < 0.

(In the language of 364H, |u|p = h̄(u), where h(t) = |t|p for t ∈ R.) Set

Lpµ̄ = Lp(A, µ̄) = {u : u ∈ L0(A), |u|p ∈ L1(A, µ̄)},

and for u ∈ L0(A) set

‖u‖p = (
∫
|u|p)1/p = ‖|u|p‖1/p1 ,

counting ∞1/p as ∞, so that Lpµ̄ = {u : u ∈ L0(A), ‖u‖p <∞}.

366B Theorem Let (X,Σ, µ) be a measure space, and (A, µ̄) its measure algebra. Then the canonical
isomorphism between L0(µ) and L0(A) (364Ic) makes Lp(µ), as defined in §244, correspond to Lp(A, µ̄).

proof What we really have to check is that if w ∈ L0(µ) corresponds to u ∈ L0(A), then |w|p, as defined
in 244A, corresponds to |u|p as defined in 366A. But this was noted in 364Ib.

Now, because the isomorphism between L0(µ) and L0(A) matches L1(µ) with L1
µ̄ (365B), we can be sure

that |w|p ∈ L1(µ) iff |u|p ∈ L1
µ̄, and that in this case

‖w‖p =
(∫

|w|p
)1/p

=
(∫

|u|p
)1/p

= ‖u‖p,
as required.

366C Corollary For any measure algebra (A, µ̄) and p ∈ ]1,∞[, Lp = Lp(A, µ̄) is a solid linear subspace of
L0(A). It is a Dedekind complete Banach lattice under its uniformly convex norm ‖ ‖p. Setting q = p/(p−1),
(Lp)∗ is identified with Lq(A, µ̄) by the duality (u, v) 7→

∫
u×v. Writing Af for the ring {a : a ∈ A, µ̄a <∞},

S(Af ) is norm-dense in Lp.

proof Because we can find a measure space (X,Σ, µ) such that (A, µ̄) is isomorphic to the measure algebra
of µ (321J), this is just a digest of the results in 244B, 244E-244H, 244K, 244L and 244O1. (Of course S(Af )
corresponds to the space S of equivalence classes of simple functions in 244Ha, just as in 365F.)

366D I can add a little more, corresponding to 365C and 365L.

Theorem Let (A, µ̄) be a measure algebra, and p ∈ ]1,∞[.
(a) The norm ‖ ‖p on Lp = Lp(A, µ̄) is order-continuous.
(b) Lp has the Levi property.
(c) Setting q = p/(p − 1), the canonical identification of Lq = Lq(A, µ̄) with (Lp)∗ is a Riesz space

isomorphism between Lq and (Lp)∼ = (Lp)×.
(d) Lp is a perfect Riesz space.

proof (a) Suppose that A ⊆ Lp is non-empty, downwards-directed and has infimum 0. For u, v ≥ 0 in Lp,
u ≤ v ⇒ up ≤ vp (by the definition in 366A, or otherwise), so B = {up : u ∈ A} is downwards-directed. If

v0 = inf B in L1 = L1(A, µ̄), then v
1/p
0 (defined by the formula in 366A, or otherwise) is less than or equal to

every member of A, so must be 0, and v0 = 0. Accordingly inf B = 0 in L1. Because ‖ ‖1 is order-continuous
(365C),

1Later editions only.
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infu∈A ‖u‖p = infu∈A ‖up‖1/p1 = (infv∈B ‖v‖1)1/p = 0.

As A is arbitrary, ‖ ‖p is order-continuous.

(b) Now suppose that A ⊆ (Lp)+ is non-empty, upwards-directed and norm-bounded. Then B = {up :

u ∈ A} is non-empty, upwards-directed and norm-bounded in L1. So v0 = supB is defined in L1, and v
1/p
0

is an upper bound for A in Lp.

(c) By 356Dd, (Lp)∗ = (Lp)∼ = (Lp)×. The extra information we need is that the identification of
Lq with (Lp)∗ is an order-isomorphism. PPP (α) If w ∈ (Lq)+ and u ∈ (Lp)+ then u × w ≥ 0 in L1, so
(Tw)(u) =

∫
u×w ≥ 0, writing T : Lq → (Lp)∗ for the canonical bijection. As u is arbitrary, Tw ≥ 0. As w

is arbitrary, T is a positive linear operator. (β) If w ∈ Lq and Tw ≥ 0, consider u = (w−)q/p. Then u ≥ 0
in Lp and w+ × u = 0 (because [[w+ > 0]] ∩ [[u > 0]] = [[w+ > 0]] ∩ [[w− > 0]] = 0), so

0 ≤ (Tw)(u) =
∫
w × u = −

∫
w− × u = −

∫
(w−)q ≤ 0,

and
∫

(w−)q = 0. But as (w−)q ≥ 0 in L1, this means that (w−)q and w− must be 0, that is, w ≥ 0. As w
is arbitrary, T−1 is positive and T is an order-isomorphism. QQQ

(d) This is an immediate consequence of (c), since p = q/(q − 1), so that Lp can be identified with
(Lq)∗ = (Lq)×. From 356M we see that it is also a consequence of (a) and (b).

366E Proposition Let (A, µ̄) be a semi-finite measure algebra, and p ∈ [1,∞]. Set q = p/(p − 1) if
1 < p <∞, q = ∞ if p = 1 and q = 1 if p = ∞. Then

Lq(A, µ̄) = {u : u ∈ L0(A), u× v ∈ L1(A, µ̄) for every v ∈ Lp(A, µ̄)}.

proof (a) We already know that if u ∈ Lp = Lp(A, µ̄) and v ∈ Lq = Lq(A, µ̄) then u× v ∈ L1 = L1(A, µ̄);
this is elementary if p ∈ {1,∞} and otherwise is covered by 366C.

(b) So suppose that u ∈ L0 \ Lp. If p = 1 then of course χ1 ∈ L∞ = Lq and u× χ1 /∈ L1. If p > 1 set

A = {w : w ∈ S(Af ), 0 ≤ w ≤ |u|}.

Because µ̄ is semi-finite, S(Af ) is order-dense in L0 (364K), and |u| = supA. Because the norm on Lp has
the Levi property (365C, 366Db, 363Ba) and A is not bounded above in Lp, supw∈A ‖w‖p = ∞.

For each n ∈ N choose wn ∈ A with ‖wn‖p > 4n. Then there is a vn ∈ Lq such that ‖vn‖q = 1 and∫
wn × vn ≥ 4n. PPP (α) If p < ∞ this is covered by 366C, since ‖wn‖p = sup{

∫
wn × v : ‖v‖q ≤ 1}. (β) If

p = ∞ then [[wn > 4n]] 6= 0; because µ̄ is semi-finite, there is a b ⊆ [[wn > 4n]] such that 0 < µ̄b < ∞, and
‖ 1
µ̄bχb‖1 = 1, while

∫
wn × 1

µ̄bχb ≥ 4n. QQQ

Because Lq is complete (363Ba, 366C), v =
∑∞
n=0 2−n|vn| is defined in Lq. But now∫

|u| × v ≥ 2−n
∫
wn × vn ≥ 2n

for every n, so u× v /∈ L1.

Remark This result is characteristic of perfect subspaces of L0; see 369C and 369J.

366F The next step is to look at the action of Boolean homomorphisms, as in 365N. It will be convenient
to be able to deal with all Lp spaces at once by introducing names for a pair of spaces which include all of
them.

Definition Let (A, µ̄) be a measure algebra. Write

M0
µ̄ = M0(A, µ̄) = {u : u ∈ L0(A), µ̄[[|u| > α]] <∞ for every α > 0},

M1,0
µ̄ = M1,0(A, µ̄) = {u : u ∈M0

µ̄, u× χa ∈ L1(A, µ̄) whenever µ̄a <∞}.

366G Lemma Let (A, µ̄) be any measure algebra. Write M0 = M0(A, µ̄), etc.
(a) M0 and M1,0 are Dedekind complete solid linear subspaces of L0 which include Lp for every p ∈ [1,∞[;

moreover, M0 is closed under multiplication.
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(b) If u ∈M0 and u ≥ 0, there is a non-decreasing sequence 〈un〉n∈N in S(Af ) such that u = supn∈N un.
(c) M1,0 = {u : u ∈ L0, (|u| − ǫχ1)+ ∈ L1 for every ǫ > 0} = L1 + (L∞ ∩M0).
(d) If u, v ∈ M1,0 and

∫
a
u ≤

∫
a
v whenever µ̄a < ∞, then u ≤ v; so if

∫
a
u =

∫
a
v whenever µ̄a < ∞,

u = v.

proof (a) If u, v ∈M0 and γ ∈ R, then for any α > 0

[[|u+ v| > α]] ⊆ [[|u| > 1
2α]] ∪ [[|v| > 1

2α]],

[[|γu| > α]] ⊆ [[|u| > α
1+|γ| ]],

[[|u× v| > α]] ⊆ [[|u| > √
α ]] ∪ [[|v| > √

α ]]

(364E) are of finite measure. So u + v, γu and u × v belong to M0. Thus M0 is a linear subspace of L0

closed under multiplication. If u ∈ M0, |v| ≤ |u| and α > 0, then [[|v| > α]] ⊆ [[|u| > α]] has finite measure;
thus v ∈ M0 and M0 is a solid linear subspace of L0. It follows that M1,0 also is. If u ∈ Lp = Lp(A, µ̄),
where p <∞, and α > 0, then [[|u| > α]] = [[|u|p > αp]] has finite measure, so u ∈M0; moreover, if µ̄a <∞,
then χa ∈ Lq, where q = p/(p− 1), so u× χa ∈ L1; thus u ∈M1,0.

To see that M0 is Dedekind complete, observe that if A ⊆ (M0)+ is non-empty and bounded above by
u0 ∈ M0, and α > 0, then {[[u > α]] : u ∈ A} is bounded above by [[u0 > α]] ∈ Af , so has a supremum in
A (321C). Accordingly supA is defined in L0 (364L(a-iii)) and belongs to M0. Finally, M1,0, being a solid
linear subspace of M0, must also be Dedekind complete.

(b) If u ≥ 0 in M0, then there is a non-decreasing sequence 〈un〉n∈N in S = S(A) such that u = supn∈N un
and u0 ≥ 0 (364Jd). But now every un belongs to S ∩M0 = S(Af ), just as in 365F.

(c)(i) If u ∈ M1,0 and ǫ > 0, then a = [[|u| > ǫ]] ∈ Af , so u × χa ∈ L1 = L1(A, µ̄); but (|u| − ǫχ1)+ ≤
|u| × χa, so (|u| − ǫχ1)+ ∈ L1.

(ii) Suppose that u ∈ L0 and (|u|− ǫχ1)+ ∈ L1 for every ǫ > 0. Then, given ǫ > 0, v = (|u|− 1
2ǫχ1)+ ∈

L1, and µ̄[[v > 1
2ǫ]] <∞; but [[|u| > ǫ]] ⊆ [[v > 1

2ǫ]], so also has finite measure. Thus u ∈M0. Next, if a ∈ Af ,

then |u× χa| ≤ χa+ (|u| − χ1)+ ∈ L1, so u ∈M1,0.

(iii) Of course L1 and L∞ ∩M0 are included in M1,0, so their linear sum also is. On the other hand,
if u ∈M1,0, then

u = (u+ − χ1)+ − (u− − χ1)+ + (u+ ∧ χ1) − (u− ∧ χ1) ∈ L1 + (L∞ ∩M0).

(d) Take α > 0 and set a = [[u− v > α]]. Because both u and v belong to M1,0
µ̄ , µ̄a <∞ and

∫
a
u ≤

∫
a
v,

that is,
∫
a
u − v ≤ 0; so a must be 0 (365Dc). As α is arbitrary, u − v ≤ 0 and u ≤ v. If

∫
a
u =

∫
a
v for

every a ∈ Af , then v ≤ u so u = v.

366H Theorem Let (A, µ̄) and (B, ν̄) be measure algebras. Let π : Af → Bf be a measure-preserving
ring homomorphism.

(a)(i) We have a unique order-continuous Riesz homomorphism T = Tπ : M0(A, µ̄) → M0(B, ν̄) such
that T (χa) = χ(πa) for every a ∈ Af .

(ii) [[Tu > α]] = π[[u > α]] for every u ∈M0(A, µ̄) and α > 0.
(iii) T is injective and multiplicative.
(iv) For p ∈ [1,∞] and u ∈ M0(A, µ̄), ‖Tu‖p = ‖u‖p; in particular, Tu ∈ Lp(B, ν̄) iff u ∈ Lp(A, µ̄).

Consequently
∫
Tu =

∫
u whenever u ∈ L1(A, µ̄).

(v) For u ∈M0(A, µ̄), Tu ∈M1,0(B, ν̄) iff u ∈M1,0(A, µ̄).
(b)(i) We have a unique order-continuous positive linear operator P = Pπ : M1,0(B, ν̄) → M1,0(A, µ̄)

such that
∫
a
Pv =

∫
πa
v whenever v ∈M1,0(B, ν̄) and a ∈ Af .

(ii) If u ∈M0(A, µ̄), v ∈M1,0(B, ν̄) and v × Tu ∈M1,0(B, ν̄), then P (v × Tu) = u× Pv.
(iii) If q ∈ [1,∞[ and v ∈ Lq(B, ν̄), then Pv ∈ Lq(A, µ̄) and ‖Pv‖q ≤ ‖v‖q; if v ∈ L∞(B) ∩M0(B, ν̄),

then Pv ∈ L∞(A) and ‖Pv‖∞ ≤ ‖v‖∞.
(iv) PTu = u for every u ∈M1,0(A, µ̄); in particular, P [Lp(B, ν̄)] = Lp(A, µ̄) for every p ∈ [1,∞[.
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(c) If (C, λ) is another measure algebra and θ : Bf → Cf another measure-preserving ring homomorphism,
then Tθπ = TθTπ : M0(A, µ̄) →M0(C, λ̄) and Pθπ = PπPθ : M1,0(C, λ̄) →M1,0(A, µ̄).

(d) Now suppose that π[Af ] = Bf , so that π is a measure-preserving isomorphism between the rings Af

and Bf .
(i) T is a Riesz space isomorphism between M0(A, µ̄) and M0(B, ν̄), and its inverse is Tπ−1 .
(ii) P is a Riesz space isomorphism between M1,0(B, ν̄) and M1,0(A, µ̄), and its inverse is Pπ−1 .
(iii) The restriction of T to M1,0(A, µ̄) is P−1 = Pπ−1 ; the restriction of T−1 = Tπ−1 to M1,0(B, ν̄) is

P .
(iv) For any p ∈ [1,∞[, T ↾Lp(A, µ̄) = Pπ−1↾Lp(A, µ̄) and P ↾Lp(B, ν̄) = Tπ−1↾Lp(B, ν̄) are the two

halves of a Banach lattice isomorphism between Lp(A, µ̄) and Lp(B, ν̄).

proof (a)(i) By 361J, π induces a multiplicative Riesz homomorphism T0 : S(Af ) → S(Bf ) which is order-
continuous because π is (361Ad, 361Je). If u ∈ S(Af ) and α > 0, then [[T0u > α]] = π[[u > α]]. PPP Express
u as

∑n
i=0 αiχai where a0, . . . , an are disjoint in Af ; then T0u =

∑n
i=0 αiχ(πai), so

[[T0u > α]] = sup{πai : i ≤ n, αi > α} = π(sup{ai : i ≤ n, αi > α}) = π[[u > α]]. QQQ

Now if u0 ≥ 0 in M0
µ̄, sup{T0u : u ∈ S(Af ), 0 ≤ u ≤ u0} is defined in M0

ν̄ . PPP Set A = {u : u ∈ S(Af ), 0 ≤
u ≤ u0}. Because u0 = supA (366Gb),

supu∈A [[Tu > α]] = supu∈A π[[u > α]] = π(supu∈A [[u > α]]) = π[[u0 > α]]

is defined and belongs to Bf for any α > 0. Also

infn≥1 supu∈A [[Tu > n]] = π(infn≥1 [[u0 > n]]) = 0.

By 364L(a-ii), v0 = supT0[A] is defined in L0(B), and [[v0 > α]] = π[[u0 > α]] ∈ Bf for every α > 0, so
v0 ∈M0

ν̄ , as required. QQQ
Consequently T0 has a unique extension to an order-continuous Riesz homomorphism T : M0

µ̄ → M0
ν̄

(355F).

(ii) If u0 ∈M0
µ̄ and α > 0, then

[[Tu0 > α]] = [[Tu+0 > α]]

(because T is a Riesz homomorphism)

= sup
u∈S(Af ),0≤u≤u+

0

[[Tu > α]]

(because T is order-continuous and S(Af ) is order-dense in M0
µ̄)

= π[[u0 > α]]

by the argument used in (i).

(iii) I have already remarked, at the beginning of the proof of (i), that T (u × u′) = Tu × Tu′ for u,
u′ ∈ S(Af ). Because both T and × are order-continuous and S(Af ) is order-dense in M0

µ̄,

T (u0 × u1) = sup{T (u× u′) : u, u′ ∈ S(Af ), 0 ≤ u ≤ u0, 0 ≤ u′ ≤ u1}
= sup

u,u′

Tu× Tu′ = Tu0 × Tu1

whenever u0, u1 ≥ 0 in M0
µ̄. Because T is linear and × is bilinear, it follows that T is multiplicative on M0

µ̄.

To see that it is injective, observe that if u 6= 0 in M0
µ̄ then there is some α > 0 such that a = [[|u| > α]] 6= 0,

so that 0 < αχπa ≤ T |u| = |Tu| and Tu 6= 0.

(iv)(ααα) For any α > 0,

[[|Tu|p > α]] = [[T |u| > α1/p]] = π[[|u| > α1/p]] = π[[|u|p > α]].

So

‖|Tu|p‖1 =
∫∞

0
ν̄[[|Tu|p > α]] dα =

∫∞

0
µ̄[[|u|p > α]] dα = ‖|u|p‖1.
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If p <∞ then, taking pth roots, ‖Tu‖p = ‖u‖p.
(βββ) As for the case p = ∞, if u ∈ L∞(A) and γ = ‖u‖∞ > 0 then [[|u| > γ]] = 0, so [[|Tu| > γ]] =

π[[|u| > γ]] = 0. This shows that ‖Tu‖∞ ≤ γ. On the other hand, if 0 < α < γ then a = [[|u| > α]] 6= 0,
and αχa ≤ |u| so αχ(πa) ≤ |Tu|; as πa 6= 0 (because ν̄(πa) = µ̄a > 0), ‖Tu‖∞ > α. This shows that
‖Tu‖∞ = ‖u‖∞, at least when u 6= 0; but the case u = 0 is trivial.

(γγγ) If u ∈ L1
µ̄, then

∫
Tu = ‖(Tu)+‖1 − ‖(Tu)−‖1 = ‖Tu+‖1 − ‖Tu−‖1 = ‖u+‖1 − ‖u−‖1 =

∫
u.

(v) If u ∈ M1,0
µ̄ and ǫ > 0, then T (|u| ∧ ǫχ1A) = |Tu| ∧ ǫχ1B. PPP Set a = [[|u| > ǫ]] ∈ Af . Then

|u| ∧ ǫχ1A = ǫχa+ |u| − |u| × χa and [[|Tu| > ǫ]] = πa. So

T (|u| ∧ ǫχ1A) = T (ǫχa) + T |u| − T (|u| × χa)

= ǫχ(πa) + |Tu| − |Tu| × χ(πa) = |Tu| ∧ ǫχ1B. QQQ

Consequently

T (|u| − ǫχ1A)+ = T (|u| − |u| ∧ ǫχ1A) = (|Tu| − ǫχ1B)+.

But this means that (|u| − ǫχ1A)+ ∈ L1
µ̄ iff (|Tu| − ǫχ1B)+ ∈ L1

ν̄ . Since this is true for every ǫ > 0, 366Gc

tells us that u ∈M1,0
µ̄ iff Tu ∈M1,0

ν̄ .

(b)(i)(ααα) By 365Oa, we have an order-continuous positive linear operator P0 : L1
ν̄ → L1

µ̄ such that∫
a
P0v =

∫
πa
v for every v ∈ L1

ν̄ and a ∈ Af .

(βββ) We now find that if v0 ≥ 0 in M1,0
ν̄ and B = {v : v ∈ L1

ν̄ , 0 ≤ v ≤ v0}, then P0[B] has a

supremum in L0(A) which belongs to M1,0
µ̄ . PPP Because B is upwards-directed and P0 is order-preserving,

P0[B] is upwards-directed. If α > 0 and v ∈ B and a = [[P0v > α]], then

v ≤ (v0 − α
2χ1B)+ +

α

2
χ1B,

so

αµ̄a ≤
∫

a

P0v =

∫

πa

v ≤
∫

(v0 − α

2
χ1B)+ +

α

2
ν̄(πa)

=

∫
(v0 − α

2
χ1B)+ +

α

2
µ̄a

and

µ̄[[P0v > α]] ≤ 2

α

∫
(v0 − α

2χ1B)+.

Thus {[[P0v > α]] : v ∈ B} is an upwards-directed set in Af with measures bounded above in R, and

cα = supv∈B [[P0v > α]]

is defined in Af . Also

infn≥1 µ̄cn ≤ infn≥1
2

n

∫
(v0 − n

2χ1B)+ = 0.

So infn∈N cn = 0 and P0[B] has a supremum u0 ∈ L0(A) (364L(a-ii)). As [[u0 > α]] = cα ∈ Af for every
α > 0, u0 ∈M0

µ̄. If c ∈ Af , then
∫
c
u0 = supv∈B

∫
c
P0v = supv∈B

∫
πc
v ≤

∫
πc
v0 <∞,

so u0 ∈M1,0
µ̄ . QQQ

(γγγ) Now 355F tells us that P0 has a unique extension to an order-continuous positive linear operator

P : M1,0
ν̄ →M1,0

µ̄ . If v0 ≥ 0 in M1,0
ν̄ and a ∈ Af , then, as remarked above,
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∫

a

Pv0 = sup{
∫

a

P0v : v ∈ L1
ν̄ , 0 ≤ v ≤ v0}

= sup{
∫

πa

v : v ∈ L1
ν̄ , 0 ≤ v ≤ v0} =

∫

πa

v0;

because P is linear,
∫
a
Pv =

∫
πa
v for every v ∈M1,0

ν̄ , a ∈ Af .

(δδδ) By 366Gd, P is uniquely defined by the formula∫
a
Pv =

∫
πa
v whenever v ∈M1,0

ν̄ and a ∈ Af .

(ii) Because M0
µ̄ is closed under multiplication, u× Pv certainly belongs to M0

µ̄.

(ααα) Suppose that u, v ≥ 0. Fix c ∈ Af for the moment. Suppose that u′ ∈ S(Af ). Then we can
express u′ as

∑n
i=0 αiχai where ai ∈ Af for every i ≤ n. Accordingly∫
c
u′ × Pv =

∑n
i=0 αi

∫
c∩ai

Pv =
∑n
i=0 αi

∫
v × χ(πai) × χ(πc) =

∫
πc
v × Tu′.

Next, we can find a non-decreasing sequence 〈un〉n∈N in S(Af )+ with supremum u, and

sup
n∈N

∫

c

un × Pv = sup
n∈N

∫

πc

v × Tun =

∫

πc

sup
n∈N

v × Tun

=

∫

πc

v × sup
n∈N

Tun =

∫

πc

v × Tu,

using the order-continuity of T ,
∫

and ×. But this means that u× Pv = supn∈N un × Pv is integrable over

c and that
∫
c
u× Pv =

∫
πc
v × Tu. As c is arbitrary, u× Pv = P (v × Tu) ∈M1,0

µ̄ .

(βββ) For general u, v,

v+ × Tu+ + v+ × Tu− + v− × Tu+ + v− × Tu− = |v| × T |u| = |v × Tu| ∈M1,0
ν̄

(because T is a Riesz homomorphism), so we may apply (α) to each of the four products; combining them,
we get P (v × Tu) = u× Pv, as required.

(iii) Because P is a positive operator, we surely have |Pv| ≤ P |v|, so it will be enough to show that
‖Pv‖q ≤ ‖v‖q for v ≥ 0 in Lqν̄ .

(ααα) I take the case q = 1 first. In this case, for any a ∈ Af , we have
∫
a
Pv =

∫
πa
v ≤ ‖v‖1. In

particular, setting an = [[Pv > 2−n]],
∫
an
Pv ≤ ‖v‖1. But Pv = supn∈N Pv × χan, so

‖Pv‖1 = supn∈N

∫
an
Pv ≤ ‖v‖1.

(βββ) Next, suppose that q = ∞, so that v ∈ L∞(B)+; say ‖v‖∞ = γ. ??? If γ > 0 and a = [[Pv > γ]] 6=
0, then

γµ̄a <
∫
a
Pv =

∫
πa
v ≤ γν̄(πa) = γµ̄a. XXX

So [[Pv > γ]] = 0 and Pv ∈ L∞(A), with ‖Pv‖∞ ≤ ‖v‖∞, at least when ‖v‖∞ > 0; but the case ‖v‖∞ = 0
is trivial.

(γγγ) I come at last to the ‘general’ case q ∈ ]1,∞[, v ∈ Lqν̄ . In this case set p = q/(q − 1). If u ∈ Lpµ̄
then Tu ∈ Lpν̄ so Tu× v ∈ L1

ν̄ and

|
∫
u× Pv| ≤ ‖u× Pv‖1 = ‖P (Tu× v)‖1

(by (ii))

≤ ‖Tu× v‖1
(by (α) just above)
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=

∫
|Tu| × |v| ≤ ‖Tu‖p‖v‖q = ‖u‖p‖v‖q

by (a-iii) of this theorem. But this means that u 7→
∫
u × Pv is a bounded linear functional on Lpµ̄, and

is therefore represented by some w ∈ Lqµ̄ with ‖w‖q ≤ ‖v‖q. If a ∈ Af then χa ∈ Lpµ̄, so
∫
a
w =

∫
a
Pv;

accordingly Pv is actually equal to w (by 366Gd) and ‖Pv‖q = ‖w‖q ≤ ‖v‖q, as claimed.

(iv) If u ∈M1,0
µ̄ and a ∈ Af , we must have
∫
a
PTu =

∫
πa
Tu =

∫
T (χa) × Tu =

∫
T (χa× u) =

∫
χa× u =

∫
a
u,

using (a-iv) to see that
∫
χa × u is defined and equal to

∫
T (χa × u). As a is arbitrary, u ∈ M1,0

µ̄ and
PTu = u.

(c) As usual, in view of the uniqueness of Tθπ and Pθπ, all we have to check is that

TθT (χa) = Tθχ(πa) = χ(θπa) = Tθπ(χa),

∫
a
PPθw =

∫
πa
Pθw =

∫
θπa

w =
∫
a
Pθπw

whenever a ∈ Af and w ∈M1,0

λ̄
.

(d)(i) By (c), Tπ−1T = Tπ−1π must be the identity operator on M0
µ̄; similarly, TTπ−1 is the identity

operator on M0
ν̄ . Because T and Tπ−1 are Riesz homomorphisms, they must be the two halves of a Riesz

space isomorphism.

(ii) In the same way, P and Pπ−1 must be the two halves of an ordered linear space isomorphism

between M1,0
µ̄ and M1,0

ν̄ , and are therefore both Riesz homomorphisms.

(iii) By (b-iv), PTu = u for every u ∈ M1,0
µ̄ , so T ↾M1,0

µ̄ must be P−1. Similarly P = P−1
π−1 is the

restriction of T−1 = Tπ−1 to M1,0
ν̄ .

(iv) Because T−1[Lpν̄ ] = Lpµ̄ (by (a-iv)), and T is a bijection between M0
µ̄ and M0

ν̄ , T ↾Lpµ̄ must be a

Riesz space isomorphism between Lpµ̄ and Lpν̄ ; (a-iv) also tells us that it is norm-preserving. Now its inverse
is P ↾Lpν̄ , by (iii) here.

366I Corollary Let (A, µ̄) be a measure algebra, and B a σ-subalgebra of A. Then, for any p ∈ [1,∞[,
Lp(B, µ̄↾B) can be identified, as Banach lattice, with the closed linear subspace of Lp(A, µ̄) generated by
{χb : b ∈ B, µ̄b <∞}.

proof The identity map b 7→ b : B → A induces an injective Riesz homomorphism T : L0(B) → L0(A)
(364P) such that Tu ∈ LpA = Lp(A, µ̄) and ‖Tu‖p = ‖u‖p whenever p ∈ [1,∞[ and u ∈ LpB = Lp(B, µ̄↾B)
(366H(a-iv)). Because S(Bf ), the linear span of {χb : b ∈ B, µ̄b <∞}, is dense in LpB (366C), the image of
LpB in LpA must be the closure of the image of S(Bf ) in LpA, that is, the closed linear span of {χb : b ∈ Bf}
interpreted as a subset of LpA.

366J Corollary If (A, µ̄) is a probability algebra, B is a closed subalgebra of A, and P : L1(A, µ̄) →
L1(B, µ̄↾B) is the conditional expectation operator (365Q), then ‖Pu‖p ≤ ‖u‖p whenever p ∈ [1,∞] and
u ∈ Lp(A, µ̄).

proof Because (A, µ̄) is totally finite, M1,0(A, µ̄) = L1
µ̄, so that the operator P of 366Hb can be identified

with the conditional expectation operator of 365Q. Now 366H(b-iii) gives the result.

Remark Of course this is also covered by 244M.
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366K Corollary Let (A, µ̄) and (B, ν̄) be measure algebras, and π : Af → Bf a measure-preserving
ring homomorphism. Let T : L2(A, µ̄) → L2(B, ν̄) and P : L2(B, ν̄) → L2(A, µ̄) be the corresponding
operators, as in 366H. Then TP : L2(B, ν̄) → L2(B, ν̄) is an orthogonal projection, its range TP [L2(B, ν̄)]
being isomorphic, as Banach lattice, to L2(A, µ̄). The kernel of TP is just

{v : v ∈ L2(B, ν̄),
∫
πa
v = 0 for every a ∈ Af}.

proof Most of this is simply because T is a norm-preserving Riesz homomorphism (so that T [L2
µ̄] is

isomorphic to L2
µ̄), PT is the identity on L2

µ̄ (so that (TP )2 = TP ) and ‖P‖ ≤ 1 (so that ‖TP‖ ≤ 1). These
are enough to ensure that TP is a projection of norm at most 1, that is, an orthogonal projection. Also

TPv = 0 ⇐⇒ Pv = 0 ⇐⇒
∫

a

Pv = 0 for every a ∈ Af

⇐⇒
∫

πa

v = 0 for every a ∈ Af .

366L Corollary Let (A, µ̄) be a measure algebra, and π : Af → Af a measure-preserving ring automor-
phism. Then there is a corresponding Banach lattice isomorphism T of L2 = L2(A, µ̄) defined by writing
T (χa) = χ(πa) for every a ∈ Af . Its inverse is defined by the formula∫

a
T−1u =

∫
πa
u for every u ∈ L2, a ∈ Af .

proof In the language of 366H, T = Tπ and T−1 = Pπ.

*366M Complex Lp spaces (a) Just as in §§241-244, we have ‘complex’ versions of all the spaces
considered in this chapter. Using the representation theorems for Boolean algebras, we can get effective
descriptions of these matching the ones in Chapter 24. Thus for any Boolean algebra A with Stone space
Z, we can identify L∞

C (A) with the space C(Z;C) of continuous functions from Z to C; inside this, we have
a ‖ ‖∞-dense subspace SC(A) consisting of complex linear combinations of indicator functions of open-and-
closed sets. If A is a Dedekind σ-complete Boolean algebra, identified with a quotient Σ/M where Σ is a
σ-algebra of subsets of a set Z and M is a σ-ideal of Σ, then we can write L

0
C for the set of functions from

Z to C such that their real and imaginary parts are both Σ-measurable, WC for the set of those f ∈ L
0
C

such that {z : f(z) 6= 0} belongs to M, and L0
C = L0

C(A) for the linear space quotient L
0
C/WC. As in 241J,

we find that we have a natural embedding of L0 = L0(A) in L0
C and functions

Re : L0
C → L0, Im : L0

C → L0, | | : L0
C → L0, ¯ : L0

C → L0
C

such that

u = Re(u) + i Im(u), Re(u+ v) = Re(u) + Re(v), Im(u+ v) = Im(u) + Im(v),

Re(αu) = Re(α)Re(u) − Im(α) Im(u), Im(αu) = Re(α) Im(u) + Im(α)Re(u),

|αu| = |α||u|, |u+ v| ≤ |u| + |v|, |u| = sup|γ|=1 Re(γu),

ū = Re(u) − i Im(u), u+ v = ū+ v̄, αu = ᾱū

for all u, v ∈ L0
C and α ∈ C.

I seem to have omitted to mention it in 241J, but of course we also have a multiplication

u× v = (Re(u) ×Re(v) − Im(u) × Im(v)) + i(Re(u) × Im(v) + Im(u) ×Re(v)),

for which we have the expected formulae

u× v = v × u, u× (v × w) = (u× v) × w, u× (v + w) = (u× v) + (u× w),

(αu) × v = u× (αv) = α(u× v),

u× v = ū× v̄, |u× v| = |u| × |v|, u× ū = |u|2 = (Re(u))2 + (Im(u))2

for u, v ∈ L0
C and α ∈ C.
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(b) If (A, µ̄) is a measure algebra and 1 ≤ p < ∞, we can think of LpC(A, µ̄) as the set of those u ∈ L0
C

such that |u| ∈ Lp(A, µ̄), with its norm defined by the formula ‖u‖p = ‖|u|‖p; this will make LpC(A, µ̄) a
Banach space (cf. 242Pb, 244Pb2), with dual Lq(A, µ̄) where 1

p + 1
q = 1 if p > 1 (244Pb again). (Similarly,

if (A, µ̄) is localizable, the dual of L1
C(A, µ̄) can be identified with L∞

C , as in 365Lc.)
Writing SC(Af ) for the space of linear combinations of indicator functions of elements of A of finite

measure, SC(Af ) is dense in LpC(A, µ̄) whenever 1 ≤ p <∞, as in 366C.

(c) Of course L1- and L2-spaces have special additional features, their integrals and inner products. Here
we can set ∫

u =
∫
Re(u) + i

∫
Im(u)

for u ∈ L1
C(A, µ̄), and

∫
: L1

C(A, µ̄) → C becomes a C-linear functional. As for L2, we see at once from the
formulae above that

|u× v| = |u| × |v| ∈ L1(A, µ̄), u× v ∈ L1
C(A, µ̄),

∫
u× ū = ‖u‖22

for u, v ∈ L2
C(A, µ̄). So if we set

(u|v) =
∫
u× v̄

for u, v ∈ L2
C(A, µ̄), L2

C(A, µ̄) becomes a complex Hilbert space.

(d) In the language of the present chapter we have something else to look at. If A, B are Dedekind
σ-complete Boolean algebras and π : A → B is a sequentially order-continuous Boolean homomorphism,
then we have a linear operator Tπ : L0

C(A) → L0
C(B) defined by setting Tπu = T real

π (Re(u)) + iT real
π (Im(u)),

where T real
π : L0(A) → L0(B) is the Riesz homomorphism described in 364P. Of course Tπ, like T real

π , will be
multiplicative; hence, or otherwise, Tπ|u| = |Tπu| for every u ∈ L0

C(A). Observe that Tπū = Tπu for every
u ∈ L0

C(A). Also, as in 364Pe, if C is another Dedekind σ-complete Boolean algebra and π : A → B and
φ : B → C are sequentially order-continuous Boolean homomorphisms, Tφπ = TφTπ. So if π : A → A is a
Boolean automorphism, Tπ will be a bijection with inverse Tπ−1 .

(e) Similarly, if (A, µ̄) is a measure algebra and π : A → A is a measure-preserving Boolean homomor-
phism,

∫
Tπu =

∫
u for every u ∈ L1

C(A, µ̄). If u, v ∈ L2
C(A, µ̄), then

(Tπu|Tπv) =
∫
Tπu× Tπv =

∫
Tπu× Tπ v̄ =

∫
Tπ(u× v̄) =

∫
u× v̄ = (u|v).

If π is actually a measure-preserving Boolean automorphism, we shall have

(Tπu|v) = (Tπ−1Tπu|Tπ−1v) = (u|T−1
π v)

for all u, v ∈ L2
C(A, µ̄).

366X Basic exercises (a) Let (A, µ̄) be a measure algebra and p ∈ ]1,∞[. Show that ‖u‖pp =

p
∫∞

0
αp−1µ̄[[|u| > α]] dα for every u ∈ L0(A). (Cf. 263Xa.)

>>>(b) Let (A, µ̄) be a localizable measure algebra and p ∈ [1,∞]. Show that the band algebra of Lpµ̄ is
isomorphic to A. (Cf. 365R.)

(c) Let (A, µ̄) be a measure algebra and p ∈ ]1,∞[. Show that Lpµ̄ is separable iff L1
µ̄ is.

(d) Let (A, µ̄) be a measure algebra. (i) Show that L∞(A) ∩M0
µ̄ and L∞(A) ∩M1,0

µ̄ , as defined in 366F,

are equal. (ii) Call this intersection M∞,0
µ̄ . Show that it is a norm-closed solid linear subspace of L∞(A),

therefore a Banach lattice in its own right.

(e) Let (A, µ̄) be a semi-finite measure algebra and (Â, µ̂) its localization (322Q). Show that the natural

embedding of A in Â induces a Banach lattice isomorphism between Lpµ̄ and Lpµ̂ for every p ∈ [1,∞[, so that

the band algebra of Lpµ̄ can be identified with Â.

2Formerly 244O.
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(f) Let (A, µ̄) be a semi-finite measure algebra which is not localizable (cf. 211Ye, 216D), and (Â, µ̂) its

localization. Let π : A → Â be the identity embedding, so that π is an order-continuous measure-preserving

Boolean homomorphism. Show that if we set v = χb where b ∈ Â \A, then there is no u ∈ L∞(A) such that∫
a
u =

∫
πa
v whenever µ̄a <∞.

(g) In 366H, show that [[Tu ∈ E]] = π[[u ∈ E]] (notation: 364G) whenever u ∈ M0
µ̄ and E ⊆ R is a Borel

set such that 0 /∈ E.

>>>(h) Let (A, µ̄) be a measure algebra and let G be the group of all measure-preserving ring automorphisms
of Af . Let H be the group of all Banach lattice automorphisms of L2

µ̄. Show that the map π 7→ T of 366L
is an injective group homomorphism from G to H, so that G is represented as a subgroup of H.

(i) Let 〈(Ai, µ̄i)〉i∈I be any family of measure algebras, with simple product (A, µ̄) (322L). Show that for
any p ∈ [1,∞[, Lpµ̄ can be identified, as normed Riesz space, with the solid linear subspace

{u : ‖u‖ =
(∑

i∈I ‖u(i)‖pp
)1/p

<∞}
of

∏
i∈I L

p
µ̄i

.

(j) Let A be a Dedekind σ-complete Boolean algebra and µ̄, ν̄ two functionals rendering A a semi-finite
measure algebra. Show that for any p ∈ [1,∞[, Lpµ̄ and Lpν̄ are isomorphic as normed Riesz spaces. (Hint :

use 366Xe to reduce to the case in which A is Dedekind complete. Take w ∈ L0(A) such that
∫
a
w dµ̄ = ν̄a

for every a ∈ A (365S). Set Tu = w1/p × u for u ∈ Lpµ̄.)

(k) Let (A, µ̄) and (B, ν̄) be semi-finite measure algebras, and p ∈ [1,∞[. Show that the following are
equiveridical: (i) Lpµ̄ and Lpν̄ are isomorphic as Banach lattices; (ii) Lpµ̄ and Lpν̄ are isomorphic as Riesz
spaces; (iii) A and B have isomorphic Dedekind completions.

(l) For a Boolean algebra A, state and prove results corresponding to 363C, 363Ea and 363F-363I for
L∞
C (A) as defined in 366Ma.

366Y Further exercises (a) Let (A, µ̄) be a measure algebra and suppose that 0 < p < 1. Write
Lp = Lpµ̄ = Lp(A, µ̄) for {u : u ∈ L0(A), |u|p ∈ L1

µ̄}, and for u ∈ Lp set τ(u) =
∫
|u|p. (i) Show that τ

is an F-seminorm (2A5B3) and defines a Hausdorff linear space topology on Lp. (ii) Show that if A ⊆ Lp

is non-empty, downwards-directed and has infimum 0 then infu∈A τ(u) = 0. (iii) Show that if A ⊆ Lp is
non-empty, upwards-directed and bounded in the linear topological space sense then A is bounded above.
(iv) Show that (Lp)∼ = (Lp)× is just the set of continuous linear functionals from Lp to R, and is {0} iff A

has no atom of finite measure.

(b) Let (A, µ̄) be a measure algebra. Show that M0(A, µ̄) has the countable sup property.

(c) Let (A, µ̄) be a measure algebra and define M∞,0
µ̄ as in 366Xd. Show that (M∞,0

µ̄ )× can be identified

with L1
µ̄.

(d) In 366H, show that if T̃ : M0(A, µ̄) → M0(B, ν̄) is any positive linear operator such that T̃ (χa) =

χ(πa) for every a ∈ Af , then T̃ is order-continuous, so is equal to Tπ.

(e) Let (A, µ̄) be a measure algebra. (i) Show that there is a natural one-to-one correspondence between
M1,0(A, µ̄) and the set of additive functionals ν : Af → R such that ν << µ in the double sense that for
every ǫ > 0 there are δ, M > 0 such that |νa| ≤ ǫ whenever µa ≤ δ and |νa| ≤ ǫµa whenever µa ≥ M . (ii)
Use this description of M1,0 to prove 366H(b-i).

(f) In 366H, show that the following are equiveridical: (α) π[Af ] = Bf ; (β) T = Tπ is surjective; (γ)
P = Pπ is injective; (δ) P is a Riesz homomorphism; (ǫ) there is some q ∈ [1,∞] such that ‖Pv‖q = ‖v‖q
for every v ∈ Lqν̄ ; (ζ) TPv = v for every v ∈M1,0

ν̄ .

3Later editions only.
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(g) Let (A, µ̄) and (B, ν̄) be measure algebras, and suppose that π : Af → Bf is a measure-preserving
ring homomorphism, as in 366H; let T : M0

µ̄ →M0
ν̄ be the associated linear operator. Show that if 0 < p < 1

(as in 366Ya) then Lpµ̄ ⊆M0
µ̄ and T−1[Lpν̄ ] = Lpµ̄.

(h) Let (A, µ̄) be a totally finite measure algebra. (i) For each Boolean automorphism π : A → A,
let Tπ : L0(A) → L0(A) be the associated Riesz space isomorphism, and let wπ ∈ (L1

µ̄)+ be such that∫
a
wπ = µ(π−1a) for every a ∈ A (365Ea). Set Qπu = Tπu×

√
wπ for u ∈ L0(A). Show that ‖Qπu‖2 = ‖u‖2

for every u ∈ L2
µ̄. (ii) Show that if π, φ : A → A are Boolean automorphisms then Qπφ = QπQφ.

(i) Let (A, µ̄) be a measure algebra, and π : Af → Af a measure-preserving Boolean homomorphism,
with associated linear operator Tπ : M0

µ̄ →M0
µ̄. Show that the following are equiveridical: (i) there is some

p ∈ [1,∞[ such that {Tnπ ↾Lpµ̄ : n ∈ N} is relatively compact in B(Lpµ̄;Lpµ̄) for the strong operator topology; (ii)
for every p ∈ [1,∞[, {Tnπ ↾Lpµ̄ : n ∈ N} is relatively compact in B(Lpµ̄;Lpµ̄) for the strong operator topology;

(iii) {πna : n ∈ N} is relatively compact in Af , for the strong measure-algebra topology, for every a ∈ Af .

(j) Let A be a Dedekind σ-complete Boolean algebra. Show that L0
C(A) can be identified with the

complexification of L0(A) as defined in 354Yl.

(k) Write B(C) for the Borel σ-algebra of C ∼= R2 as defined in 111Gd. Show that if A is a Dedekind
σ-complete Boolean algebra, we have a unique function (u,E) 7→ [[u ∈ E]] : L0

C(A) × B(C) → A such that
(i) for any u ∈ L0

C(A), the function E 7→ [[u ∈ E]] is a sequentially order-continuous Boolean homomorphism
from B(C) to A (ii) if E0, E1 ⊆ R are Borel sets, then [[u ∈ E0 × E1]] = [[Re(u) ∈ E0]] ∩ [[Im(u) ∈ E1]] for
every u ∈ L0

C(A) (iii) if φ : B(C) → A is a sequentially order-continuous Boolean homomorphism, then there
is a unique u ∈ L0

C(A) such that φ(E) = [[u ∈ E]] for every E ∈ B(C).

(l) A function h : C → C is called Borel measurable if its real and imaginary parts are B(C)-measurable,
where B(C) is the Borel σ-algebra of C. Let A be a Dedekind σ-complete Boolean algebra. (i) Show that
for every Borel measurable h : C → C and u ∈ L0

C(A) we have an element h̄(u) ∈ L0
C(A) such that

[[h̄(u) ∈ E]] = [[u ∈ h−1[E]]] for every E ∈ B(C). (ii) Show that if π : A → A is a sequentially order-
continuous Boolean homomorphism and T : L0

C(A) → L0
C(A) the corresponding linear operator (366Mc),

then T h̄ = h̄T for every Borel measurable h : C → C.

(m) Show that a normed space over C has the Hahn-Banach property of 363R for complex spaces iff it
is isomorphic to L∞

C (A) for some Dedekind complete Boolean algebra A.

366 Notes and comments The Lp spaces, for 1 ≤ p ≤ ∞, constitute the most important family of
leading examples for the theory of Banach lattices, and it is not to be wondered at that their properties
reflect a wide variety of general results. Thus 366Dd and 366E can both be regarded as special cases
of theorems about perfect Riesz spaces (356M and 369D). In a different direction, the concept of ‘Orlicz
space’ (369Xd below) generalizes the Lp spaces if they are regarded as normed subspaces of L0 invariant
under measure-preserving automorphisms of the underlying algebra. Yet another generalization looks at the
(non-locally-convex) spaces Lp for 0 < p < 1 (366Ya).

In 366H and its associated results I try to emphasize the way in which measure-preserving homomorphisms
of the underlying algebras induce both ‘direct’ and ‘dual’ operators on Lp spaces. We have already seen
the phenomenon in 365N-365O. I express this in a slightly different form in 366H, noting that we really do
need the homomorphisms to be measure-preserving, for the dual operators as well as the direct operators,
so we no longer have the shift in the hypotheses which appears between 365N and 365O. Of course all
these refinements in the hypotheses are irrelevant to the principal applications of the results, and they
make substantial demands on the reader; but I believe that the demands are actually demands to expand
one’s imagination, to encompass the different ways in which the spaces depend on the underlying measure
algebras.

In the context of 366H, L∞ is set apart from the other Lp spaces, because L∞(A) is not in general
determined by the ideal Af , and the hypotheses of 366H do not look outside Af . 366H(a-iv) and 366H(b-iii)
reach only the space M∞,0 as defined in 366Xd. To deal with L∞ we need slightly stronger hypotheses. If
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we are given a measure-preserving Boolean homomorphism from A to B, rather than from Af to Bf , then
of course the direct operator T has a natural version acting on L∞(A) and indeed on M1,∞

µ̄ , as in 363F and

369Xi. If we know that (A, µ̄) is localizable, then A can be recovered from Af , and the dual operator P acts
on L∞(B), as in 369Xi. But in general we can’t expect this to work (366Xf).

Of course 366H can be applied to many other spaces; for reasons which will appear in §§371 and 374, the
archetypes are not really Lp spaces at all, but the spaces M1,0 (366F) and M1,∞.

I include 366L and 366Yh as pointers to one of the important applications of these ideas: the investigation
of properties of a measure-preserving homomorphism in terms of its action on Lp spaces. The case p = 2
is the most useful because the group of unitary operators (that is, the normed space automorphisms) of L2

has been studied intensively.

Version of 2.5.16/7.9.18

367 Convergence in measure

Continuing through the ideas of Chapter 24, I come to ‘convergence in measure’. The basic results of
§245 all translate easily into the new language (367L-367M, 367P). The associated concept of (sequential)
order-convergence can also be expressed in abstract terms (367A), and I take the trouble to do this in the
context of general lattices (367A-367B), since the concept can be applied in many ways (367C-367E, 367K,
367Xa-367Xp). In the particular case of L0 spaces, which are the first aim of this section, the idea is most
naturally expressed by 367F. It enables us to express some of the basic theorems in Volumes 1 and 2 in the
language of this chapter (367I-367J).

In 367N and 367O I give two of the most characteristic properties of the topology of convergence in
measure on L0; it is one of the fundamental types of topological Riesz space. Another striking fact is the
way it is determined by the Riesz space structure (367T). In 367U I set out a theorem which is the basis
of many remarkable applications of the concept; for the sake of a result in §369 I give one such application
(367V).

367A Order*-convergence As I have remarked before, the function spaces of measure theory have three
interdependent structures: they are linear spaces, they have a variety of interesting topologies, and they are
ordered spaces. Ordinary elementary functional analysis studies interactions between topologies and linear
structures, in the theory of normed spaces and, more generally, of linear topological spaces. Chapter 35 in
this volume looked at interactions between linear and order structures. It is natural to seek to complete the
triangle with a theory of topological ordered spaces. The relative obscurity of any such theory is in part
due to the difficulty of finding convincing definitions; that is, isolating concepts which lead to elegant and
useful general theorems. Among the many rival ideas, however, I believe it is possible to identify one which
is particularly important in the context of measure theory.

In its natural home in the theory of L0 spaces, this notion of ‘order*-convergence’ has a particularly
straightforward expression (367F). But, suitably interpreted, the same idea can be applied in other contexts,
some of which will be very useful to us, and I therefore begin with a definition which is applicable in any
lattice.

Definition Let P be a lattice, p an element of P and 〈pn〉n∈N a sequence in P . I will say that 〈pn〉n∈N

order*-converges to p if

p = inf{q : ∃n ∈ N, q ≥ (p′ ∨ pi) ∧ p′′ ∀ i ≥ n}
= sup{q : ∃n ∈ N, q ≤ p′ ∨ (pi ∧ p′′) ∀ i ≥ n}

whenever p′ ≤ p ≤ p′′ in P .

Remark In the formulae above, we always have p′ ∨ (pi ∧ p′′) ≤ (p′ ∨ pi) ∧ p′′, because p′ ≤ p′′. If P is a
distributive lattice, both are equal to med(p′, pi, p

′′).

c© 1998 D. H. Fremlin
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367B Lemma Let P be a lattice.
(a) A sequence in P can order*-converge to at most one point.
(b) A constant sequence order*-converges to its constant value.
(c) Any subsequence of an order*-convergent sequence is order*-convergent, with the same limit.
(d) If 〈pn〉n∈N and 〈p′n〉n∈N both order*-converge to p, and pn ≤ qn ≤ p′n for every n, then 〈qn〉n∈N

order*-converges to p.
(e) If 〈pn〉n∈N is an order-bounded sequence in P , then it order*-converges to p ∈ P iff

p = inf{q : ∃n ∈ N, q ≥ pi ∀ i ≥ n}
= sup{q : ∃n ∈ N, q ≤ pi ∀ i ≥ n}.

(f) If P is a Dedekind σ-complete lattice (314Ab) and 〈pn〉n∈N is an order-bounded sequence in P , then
it order*-converges to p ∈ P iff

p = supn∈N infi≥n pi = infn∈N supi≥n pi.

proof (a) Suppose that 〈pn〉n∈N is order*-convergent to both p and p̃. Set p′ = p ∧ p̃, p′′ = p ∨ p̃; then

p = inf{q : ∃n ∈ N, q ≥ (p′ ∨ pi) ∧ p′′ ∀ i ≥ n} = p̃.

(b) is trivial.

(c) Suppose that 〈pn〉n∈N is order*-convergent to p, and that 〈p′n〉n∈N is a subsequence of 〈pn〉n∈N. Take
p′, p′′ such that p′ ≤ p ≤ p′′, and set

B = {q : ∃n ∈ N, q ≤ p′ ∨ (pi ∧ p′′) ∀ i ≥ n},

B′ = {q : ∃n ∈ N, q ≤ p′ ∨ (p′i ∧ p′′) ∀ i ≥ n},

C = {q : ∃n ∈ N, q ≥ (p′ ∨ pi) ∧ p′′ ∀ i ≥ n},

C ′ = {q : ∃n ∈ N, q ≥ (p′ ∨ p′i) ∧ p′′ ∀ i ≥ n}.

If q ∈ B′ and q′ ∈ C, then for all sufficiently large i

q ≤ p′ ∨ (p′i ∧ p′′) ≤ (p′ ∨ p′i) ∧ p′′ ≤ q′.

As p = inf C, we must have q ≤ p; thus p is an upper bound for B′. On the other hand, {p′i : i ≥ n} ⊆ {pi :
i ≥ n} for every n, so B ⊆ B′ and p must be the least upper bound of B′, since p = supB.

Similarly, p = inf C ′. As p′ and p′′ are arbitrary, 〈p′n〉n∈N order*-converges to p.

(d) Take p′, p′′ such that p′ ≤ p ≤ p′′, and set

B = {q : ∃n ∈ N, q ≤ p′ ∨ (pi ∧ p′′) ∀ i ≥ n},

B′ = {q : ∃n ∈ N, q ≤ p′ ∨ (qi ∧ p′′) ∀ i ≥ n},

C = {q : ∃n ∈ N, q ≥ (p′ ∨ p′i) ∧ p′′ ∀ i ≥ n},

C ′ = {q : ∃n ∈ N, q ≥ (p′ ∨ qi) ∧ p′′ ∀ i ≥ n}.

If q ∈ B′ and q′ ∈ C, then for all sufficiently large i

q ≤ p′ ∨ (qi ∧ p′′) ≤ (p′ ∨ p′i) ∧ p′′ ≤ q′.

As p = inf C, we must have q ≤ p; thus p is an upper bound for B′. On the other hand, p′ ∨ (pi ∧ p′′) ≤
p′∨ (qi∧p′′) for every i, so B ⊆ B′ and p = supB′. Similarly, p = inf C ′. As p′ and p′′ are arbitrary, 〈qn〉n∈N

order*-converges to p.

(e) Set

B = {q : ∃n ∈ N, q ≤ pi ∀ i ≥ n},

C = {q : ∃n ∈ N, q ≥ pi ∀ i ≥ n}.
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(i) Suppose that 〈pn〉n∈N order*-converges to p. Let p′, p′′ be such that p′ ≤ pn ≤ p′′ for every n ∈ N

and p′ ≤ p ≤ p′′. Then

B = {q : ∃n ∈ N, q ≤ p′ ∨ (pi ∧ p′′) ∀ i ≥ n},

so supB = p. Similarly, inf C = p, so the condition is satisfied.

(ii) Suppose that supB = inf C = p. Take any p′, p′′ such that p′ ≤ p ≤ p′′ and set

B′ = {q : ∃n ∈ N, q ≤ p′ ∨ (pi ∧ p′′) ∀ i ≥ n},

C ′ = {q : ∃n ∈ N, q ≥ (p′ ∨ pi) ∧ p′′ ∀ i ≥ n}.

If q ∈ B′ and q′ ∈ C, then for all large enough i

q ≤ p′ ∨ (pi ∧ p′′) ≤ p′ ∨ q′ = q′

because p ≤ q′. As inf C = p, p is an upper bound for B′. On the other hand, if q ∈ B, then q ≤ p, so
q ≤ p′ ∨ (pi ∧ p′′) whenever q ≤ pi, which is so for all sufficiently large i, and q ∈ B′. Thus B′ ⊇ B and p
must be the supremum of B′. Similarly, p = inf C ′; as p′ and p′′ are arbitrary, 〈pn〉n∈N order*-converges to
p.

(f) This follows at once from (e). Setting

B = {q : ∃n ∈ N, q ≤ pi ∀ i ≥ n}, B′ = {infi≥n pi : i ∈ N},

then B′ ⊆ B and for every q ∈ B there is a q′ ∈ B′ such that q ≤ q′; so supB = supB′ if either is defined.
Similarly,

inf{q : ∃n ∈ N, q ≥ pi ∀ i ≥ n} = infn∈N supi≥n pi

if either is defined.

Remark Part (b) above tells us that we may speak of ‘the’ order*-limit of an order*-convergent sequence.

367C Proposition Let U be a Riesz space.
(a) Suppose that 〈un〉n∈N, 〈vn〉n∈N are two sequences in U order*-converging to u, v respectively.

(i) 〈un + w〉n∈N order*-converges to u+ w for every w ∈ U , and αun order*-converges to αu for every
α ∈ R.

(ii) 〈un ∨ vn〉n∈N order*-converges to u ∨ v and 〈un ∧ vn〉n∈N order*-converges to u ∧ v.
(iii) If 〈wn〉n∈N is any sequence in U , then it order*-converges to w ∈ U iff 〈|wn − w|〉n∈N order*-

converges to 0.
(iv) 〈un + vn〉n∈N order*-converges to u+ v.
(v) If 〈wn〉n∈N and 〈zn〉n∈N are sequences in U , 〈wn〉n∈N order*-converges to 0 and |zn| ≤ |wn| for every

n, then 〈zn〉n∈N order*-converges to 0.
(b) Now suppose that U is Archimedean.

(i) If 〈αn〉n∈N is a sequence in R converging to α ∈ R, and 〈un〉n∈N is a sequence in U order*-converging
to u ∈ U , then 〈αnun〉n∈N order*-converges to αu.

(ii) A sequence 〈wn〉n∈N in U+ is not order*-convergent to 0 iff there is a w̃ > 0 such that w̃ =
supi≥n w̃ ∧ wi for every n ∈ N.

(iii) If 〈un〉n∈N is a sequence in U+ such that {∑n
i=0 ui : n ∈ N} is bounded above, then 〈un〉n∈N

order*-converges to 0.

proof (a)(i)(ααα) 〈un + w〉n∈N order*-converges to u+ w because the ordering of U is translation-invariant;
the map w′ 7→ w′ + w is an order-isomorphism.

(βββ) If α > 0, then the map w′ 7→ αw′ is an order-isomorphism, so 〈αun〉n∈N order*-converges to αu.

(γγγ) If α = 0 then 〈αun〉n∈N order*-converges to αu = 0 by 367Bb.

(δδδ) If w′ ≤ −u ≤ w′′ then −w′′ ≤ u ≤ −w′ so

u = inf{w : ∃n ∈ N, w ≥ ((−w′′) ∨ ui) ∧ (−w′) ∀ i ≥ n}
= sup{w : ∃n ∈ N, w ≤ (−w′′) ∨ (ui ∧ (−w′)) ∀ i ≥ n}.
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Turning these formulae upside down,

−u = sup{w : ∃n ∈ N, w ≤ (w′′ ∧ (−ui)) ∨ w′ ∀ i ≥ n}
= inf{w : ∃n ∈ N, w ≥ w′′ ∧ ((−ui) ∨ w′) ∀ i ≥ n}.

As w′ and w′′ are arbitrary, 〈−un〉n∈N order*-converges to −u.

(ǫǫǫ) Putting (β) and (δ) together, 〈αun〉n∈N order*-converges to αu for every α < 0.

(ii) Suppose that w′ ≤ u ∨ v ≤ w′′. Set

B = {w : ∃n ∈ N, w ≤ w′ ∨ ((ui ∨ vi) ∧ w′′) ∀ i ≥ n},

C = {w : ∃n ∈ N, w ≥ (w′ ∨ (ui ∨ vi)) ∧ w′′ ∀ i ≥ n},

B1 = {w : ∃n ∈ N, w ≤ (w′ ∧ u) ∨ (ui ∧ w′′) ∀ i ≥ n},

B2 = {w : ∃n ∈ N, w ≤ (w′ ∧ v) ∨ (vi ∧ w′′) ∀ i ≥ n},

C1 = {w : ∃n ∈ N, w ≥ ((w′ ∧ u) ∨ ui) ∧ w′′ ∀ i ≥ n},

C2 = {w : ∃n ∈ N, w ≥ ((w′ ∧ v) ∨ vi) ∧ w′′ ∀ i ≥ n},

If w1 ∈ B1 and w2 ∈ B2 then w1 ∨w2 ∈ B. PPP There is an n ∈ N such that w1 ≤ (w′ ∧ u) ∨ (ui ∧w′′) for
every i ≥ n, while w2 ≤ (w′ ∧ v) ∨ (vi ∧ w′′) for every i ≥ n. So

w1 ∨ w2 ≤ (w′ ∧ u) ∨ (w′ ∧ v) ∨ (ui ∧ w′′) ∨ (vi ∧ w′′)

= (w′ ∧ (u ∨ v)) ∨ ((ui ∨ vi) ∧ w′′)

(352Ec)

= w′ ∨ ((ui ∨ vi) ∧ w′′)

for every i ≥ n, and w1 ∨ w2 ∈ B. QQQ
Similarly, if w1 ∈ C1 and w2 ∈ C2 then w1∨w2 ∈ C. PPP There is an n ∈ N such that w1 ≥ ((w′∧u)∨ui)∧w′′

and w2 ≥ ((w′ ∧ v) ∨ vi) ∧ w′′ for every i ≥ n. So

w1 ∨ w2 ≥ (((w′ ∧ u) ∨ ui) ∧ w′′) ∨ (((w′ ∧ v) ∨ vi) ∧ w′′)

= ((w′ ∧ u) ∨ ui ∨ (w′ ∧ v) ∨ vi) ∧ w′′

= ((w′ ∧ (u ∨ v)) ∨ (ui ∨ vi)) ∧ w′′

= (w′ ∨ (ui ∨ vi)) ∧ w′′

for every i ≥ n, so w1 ∨ w2 ∈ C. QQQ
At the same time, of course, w ≤ w̃ whenever w ∈ B and w̃ ∈ C, since there is some i ∈ N such that

w ≤ w′ ∨ ((ui ∨ vi) ∧ w′′) ≤ (w′ ∨ (ui ∨ vi)) ∧ w′′ ≤ w̃.

Since

sup{w1 ∨ w2 : w1 ∈ B1, w2 ∈ B2} = (supB1) ∨ (supB2) = u ∨ v,

inf{w1 ∨ w2 : w1 ∈ C1, w2 ∈ C2} = (inf C1) ∨ (inf C2) = u ∨ v
(using the generalized distributive laws in 352E), we must have supB = inf C = u ∨ v. As w′ and w′′ are
arbitrary, 〈un ∨ vn〉n∈N is order*-convergent to u ∨ v.

Putting this together with (i), we see that 〈un ∧ vn〉n∈N = 〈−((−un) ∨ (−vn))〉n∈N order*-converges to
−((−u) ∨ (−v)) = u ∧ v.

(iii) The hard parts are over. (α) If 〈wn〉n∈N order*-converges to w, then 〈wn − w〉n∈N, 〈w − wn〉n∈N

and 〈|wn − w|〉n∈N = 〈(wn − w) ∨ (w − wn)〉n∈N all order*-converge to 0, putting (i) and (ii) together. (β)
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If 〈|wn − w|〉n∈N order*-converges to 0, then so do 〈−|wn − w|〉n∈N and 〈wn − w〉n∈N, by (i) and 367Bd; so
〈wn〉n∈N order*-converges to 0, by (i) again.

(iv) 〈|un − u|〉n∈N and 〈|vn − v|〉n∈N order*-converge to 0, by (iii), so 〈2(|un − u| ∨ |vn − v|)〉n∈N also
order*-converges to 0, by (ii) and (i). But

0 ≤ |(un + vn) − (u+ v)| ≤ |un − u| + |vn − v| ≤ 2(|un − u| ∨ |vn − v|)
for every n, so 〈|(un + vn) − (u + v)|〉n∈N order*-converges to 0, by 367Bb and 367Bd, and 〈un + vn〉n∈N

order*-converges to u+ v.

(v) By (iii), 〈|wn|〉n∈N order*-converges to 0. So infn∈N supm≥n |wm| is defined and equal to 0; conse-
quently infn∈N supm≥n |zm| = 0, 〈|zn|〉n∈N order*-converges to 0 and 〈zn〉n∈N order*-converges to 0, by (iii)
again.

(b)(i) Set βn = supi≥n |αi − α| for each n. Then 〈βn〉n∈N → 0, so infn∈N βn|u| = 0, because U is
Archimedean. Consequently 〈βn|u|〉n∈N order*-converges to 0, by 367Be. But we also have β0|un − u|
order*-converging to 0, by (a-iii) and (a-i), so 〈β0|un − u| + βn|u|〉n∈N order*-converges to 0, by (a-iv). As
|αnun − αu| ≤ β0|un − u| + βn|u| for every n, 〈αnun〉n∈N order*-converges to αu, as required.

(ii)(ααα) Suppose that 〈wn〉n∈N is not order*-convergent to 0. Then there are w′, w′′ such that w′ ≤ 0 ≤
w′′ and either

B = {w : ∃n ∈ N, w ≤ w′ ∨ (wi ∧ w′′) ∀ i ≥ n}
does not have supremum 0, or

C = {w : ∃n ∈ N, w ≥ (w′ ∨ wi) ∧ w′′ ∀ i ≥ n}
does not have infimum 0. Now 0 ∈ B, because every wi ≥ 0, and every member of B is a lower bound for
C; so 0 cannot be the greatest lower bound of C. Let w̃ > 0 be a lower bound for C.

Let n ∈ N, and set

Cn = {w : w ≥ (w′ ∨ wi) ∧ w′′ ∀ i ≥ n} = {w : w ≥ wi ∧ w′′ ∀ i ≥ n}.

(Recall that U is a distributive lattice.) Because U is Archimedean, we know that inf(Cn −An) = 0, where
An = {wi ∧ w′′ : i ≥ n} (353F). Now w̃ is a lower bound for Cn, so

inf
i≥n

(w̃ − wi)
+ ≤ inf{(w − wi)

+ : w ∈ C, i ≥ n}

≤ inf{(w − (wi ∧ w′′))+ : w ∈ C, i ≥ n}
= inf{w − (wi ∧ w′′) : w ∈ C, i ≥ n} = inf(Cn −An) = 0.

As this is true for every n ∈ N, w̃ has the property declared.

(βββ) If w̃ > 0 is such that w̃ = supi≥n w̃ ∧ wi for every n ∈ N, then

{w : ∃n ∈ N, w ≥ (0 ∨ wi) ∧ w̃ ∀ i ≥ n}
cannot have infimum 0, and 〈wn〉n∈N is not order*-convergent to 0.

(iii) Set vn =
∑n
i=0 ui for n ∈ N. Let C be the set of upper bounds of {vn : n ∈ N}, and write B for

{w− vn : w ∈ C, n ∈ N}. Then inf B = 0 (353F). But if n ∈ N and w ∈ C then ui = vi+1 − vi ≤ w− vn for
every i ≥ n. So

{u : ∃n ∈ N, u ≥ ui ∀ i ≥ n}
includes B and must have infimum 0. On the other side,

{u : ∃n ∈ N, u ≤ ui ∀ i ≥ n}
contains 0 and must have supremum 0. By 367Be, 〈un〉n∈N order*-converges to 0.

367D As an example of the use of this concept in a moderately general setting, I offer the following.

Proposition Let U be a Riesz space with a Riesz norm ‖ ‖.

Measure Theory



367E Convergence in measure 97

(a) If a sequence in U is both order*-convergent and norm-convergent, the two limits are the same.
(b) ‖ ‖ is order-continuous iff every order-bounded order*-convergent sequence in U is norm-convergent.

proof (a) Let 〈un〉n∈N be a sequence in U which is order*-convergent to v and norm-convergent to w. Then
〈med(un, v, w)〉n∈N = 〈((v∧w)∨un)∧ (v∨w)〉n∈N is order*-convergent to med(v, v, w) = v (367C(a-ii)) and
norm-convergent to med(w, v, w) = w (354Xc, or 354B with 352D). So

v = inf{u : ∃n ∈ N, u ≥ med(ui, v, w) ∀ i ≥ n}
= sup{u : ∃n ∈ N, u ≤ med(ui, v, w) ∀ i ≥ n}.

But if n ∈ N and u ≥ med(ui, v, w) for every i ≥ n, then u ≥ limi→∞ med(ui, v, w) = w, because {u′ : u′ ≤ u}
is norm-closed (354Bc). As u is arbitrary, w ≤ v. Similarly, because {u′ : u′ ≥ u} is norm-closed for every
u, w ≥ v. So w = v, as claimed.

(b)(i) Suppose that ‖ ‖ is order-continuous, and that an order-bounded sequence 〈un〉n∈N order*-converges
to u. Then 〈|un − u|〉n∈N is order-bounded and order*-convergent to 0 (367C(a-iii)), so

C = {v : ∃n ∈ N, v ≥ |ui − u| ∀ i ≥ n}
has infimum 0 (367Be). Because U is a lattice, C is downwards-directed, so infv∈C ‖v‖ = 0. But

infv∈C ‖v‖ ≥ infn∈N supi≥n ‖ui − u‖,

so limn→∞ ‖un − u‖ = 0, that is, 〈un〉n∈N is norm-convergent to u.

(ii) Suppose that all order-bounded order*-convergent sequences in U are norm-convergent,

(ααα) Let 〈un〉n∈N be a non-increasing sequence in U+, and set vn = un − un+1 for each n. Then
〈vn〉n∈N is norm-convergent to 0. PPP By 367C(b-iii), applied to 〈−vn〉n∈N, 〈vn〉n∈N is order*-convergent to
0, so must be norm-convergent, and (a) here tells us that the norm limit is 0. QQQ

(βββ) Now suppose that A ⊆ U+ is a non-empty downwards-directed set with infimum 0. Choose
〈un〉n∈N, 〈γn〉n∈N inductively, as follows. Start with any u0 ∈ A. Given un ∈ A, set γn = supu∈A∩[0,un] ‖un−
u‖ and choose un+1 ∈ A ∩ [0, un] such that ‖un − un+1‖ ≥ 1

2γn; continue.
By (α), limn→∞ ‖un − un+1‖ = 0, so limn→∞ γn = 0. Now suppose that v ∈ U is any lower bound of

{un : n ∈ N}. Then v ≤ 0. PPP Take u ∈ A and n ∈ N. Then there is a u′ ∈ A such that u′ ≤ u∧ un, because
A is downwards-directed. So

‖v − u ∧ v‖ ≤ ‖v − u′ ∧ v‖ = ‖u′ ∨ v − u′‖
(because u′ ∨ v + u′ ∧ v = u′ + v, as noted in 352D)

≤ ‖un − u′‖ ≤ γn.

As n is arbitrary, v − u∧ v = 0 and v ≤ u. As u is arbitrary, v is a lower bound of A and must be less than
or equal to inf A = 0. QQQ

Thus 〈un〉n∈N is a non-increasing sequence with infimum 0, and order*-converges to 0, by 367Be. Accord-
ingly it norm-converges to 0, and infu∈A ‖u‖ = infn∈N ‖un‖ = 0. As A is arbitrary, ‖ ‖ is order-continuous,

As A is arbitrary, the norm of U is order-continuous.

367E One of the fundamental obstacles to the development of any satisfying general theory of ordered
topological spaces is the erratic nature of the relations between subspace topologies of order topologies and
order topologies on subspaces. The particular virtue of order*-convergence in the context of function spaces
is that it is relatively robust when transferred to the subspaces we are interested in.

Proposition Let U be an Archimedean Riesz space and V a regularly embedded Riesz subspace. (For
instance, V might be either solid or order-dense.) If 〈vn〉n∈N is a sequence in V and v ∈ V , then 〈vn〉n∈N

order*-converges to v when regarded as a sequence in V , iff it order*-converges to v when regarded as a
sequence in U .
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proof (a) Since, in either V or U , 〈vn〉n∈N order*-converges to v iff 〈|vn − v|〉n∈N order*-converges to 0
(367C(a-iii)), it is enough to consider the case vn ≥ 0, v = 0.

(b) If 〈vn〉n∈N is not order*-convergent to 0 in U , then, by 367C(b-ii), there is a u > 0 in U such that
u = supi≥n u ∧ vi for every n ∈ N (the supremum being taken in U , of course). In particular, there is a
k ∈ N such that u ∧ vk > 0. Now consider the set

C = {w : w ∈ V, ∃n ∈ N, w ≥ vi ∧ vk ∀ i ≥ n}.

Then for any w ∈ C,

u ∧ vk = supi≥n u ∧ vi ∧ vk ≤ w,

using the generalized distributive law in U , so 0 is not the greatest lower bound of C in U . But as the
embedding of V in U is order-continuous, 0 is not the greatest lower bound of C in V , and 〈vn〉n∈N cannot
be order*-convergent to 0 in V .

(c) Now suppose that 〈vn〉n∈N is not order*-convergent to 0 in V . Because V , like U , is Archimedean
(351Rc), there is a w > 0 in V such that w = supi≥n w ∧ vi for every n ∈ N, the suprema being taken in
V . Again because V is regularly embedded in U , we have the same suprema in U , so, by 367C(b-ii) in the
other direction, 〈vn〉n∈N is not order*-convergent to 0 in U .

367F I now spell out the connexion between the definition above and the concepts introduced in 245C.

Proposition Let X be a set, Σ a σ-algebra of subsets of X, A a Boolean algebra and π : Σ → A a
sequentially order-continuous surjective Boolean homomorphism; let I be its kernel. Write L

0 for the space
of Σ-measurable functions from X to R, and let T = Tπ : L

0 → L0 = L0(A) be the canonical Riesz
homomorphism (364C, 364P). Then for any 〈fn〉n∈N and f in L

0, 〈Tfn〉n∈N order*-converges to Tf in L0

iff X \ {x : f(x) = limn→∞ fn(x)} ∈ I.

proof Set H = {x : limn→∞ fn(x) exists = f(x)}; of course H ∈ Σ. Set gn(x) = |fn(x) − f(x)| for n ∈ N

and x ∈ X.

(a) If X \ H ∈ I, set hn(x) = supi≥n gi(x) for x ∈ H and hn(x) = 0 for x ∈ X \ H. Then 〈hn〉n∈N

is a non-increasing sequence with infimum 0 in L
0, so infn∈N Thn = 0 in L0, because T is sequentially

order-continuous (364Pa). But as X \H ∈ I, Thn ≥ Tgi = |Tfi − Tf | whenever i ≥ n, so 〈|Tfn − Tf |〉n∈N

order*-converges to 0, by 367Be or 367Bf, and 〈Tfn〉n∈N order*-converges to Tf , by 367C(a-iii).

(b) Now suppose that 〈Tfn〉n∈N order*-converges to Tf . Set g′n(x) = min(1, gn(x)) for n ∈ N, x ∈ X; then
〈Tg′n〉n∈N = 〈e∧ |Tfn− Tf |〉n∈N order*-converges to 0, where e = T (χX). By 367Bf, infn∈N supi≥n Tg

′
i = 0

in L0. But T is a sequentially order-continuous Riesz homomorphism, so T (infn∈N supi≥n g
′
i) = 0, that is,

X \H = {x : infn∈N supi≥n g
′
i > 0}

belongs to I.

367G Corollary Let A be a Dedekind σ-complete Boolean algebra.
(a) Any order*-convergent sequence in L0 = L0(A) is order-bounded.
(b) If 〈un〉n∈N is a sequence in L0, then it is order*-convergent to u ∈ L0 iff

u = infn∈N supi≥n ui = supn∈N infi≥n ui.

proof (a) We can express A as a quotient Σ/I of a σ-algebra of sets, in which case L0 can be identified
with the canonical image of L0 = L

0(Σ) (364C). If 〈un〉n∈N is an order*-convergent sequence in L0, then
it is expressible as 〈Tfn〉n∈N, where T : L0 → L0 is the canonical map, and 367F tells us that 〈fn(x)〉n∈N

converges for every x ∈ H, where X \H ∈ I. If we set h(x) = supn∈N |fn(x)| for x ∈ H, 0 for x ∈ X \H,
then we see that |un| ≤ Th for every n ∈ N, so that 〈un〉n∈N is order-bounded in L0.

(b) This now follows from 367Bf, because L0 is Dedekind σ-complete.

367H Proposition Suppose that E ⊆ R is a Borel set and h : E → R is a continuous function. Let A

be a Dedekind σ-complete Boolean algebra and set QE = {u : u ∈ L0, [[u ∈ E]] = 1}, where L0 = L0(A).
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Let h̄ : QE → L0 be the function defined by h (364H). Then 〈h̄(un)〉n∈N order*-converges to h̄(u) whenever
〈un〉n∈N is a sequence in QE order*-converging to u ∈ QE .

proof This is an easy consequence of 367F. We can represent A as Σ/I where Σ is a σ-algebra of subsets
of some set X and I is a σ-ideal of Σ (314M); let T : L0 → L0(A) be the corresponding homomorphism
(364C, 367F). Now we can find Σ-measurable functions 〈fn〉n∈N, f such that Tfn = un, Tf = u, as in 367F;
and the hypothesis [[un ∈ E]] = 1, [[u ∈ E]] = 1 means just that, adjusting fn and f on a member of I if
necessary, we can suppose that fn(x), f(x) ∈ E for every x ∈ X. (I am passing over the trivial case E = ∅,
X ∈ I, A = {0}.) Accordingly h̄(un) = T (hfn) and h̄(u) = T (hf), and (because h is continuous)

{x : h(f(x)) 6= limn→∞ h(fn(x))} ⊆ {x : f(x) 6= limn→∞ fn(x)} ∈ I,

so 〈h̄(un)〉n∈N order*-converges to h̄(u).

367I Dominated convergence We now have a suitable language in which to express an abstract version
of Lebesgue’s Dominated Convergence Theorem.

Theorem Let (A, µ̄) be a measure algebra. If 〈un〉n∈N is a sequence in L1 = L1
µ̄ = L1(A, µ̄) which is

order-bounded and order*-convergent in L1, then 〈un〉n∈N is norm-convergent to some u ∈ L1; in particular,∫
u = limn→∞

∫
un.

proof The norm of L1 is order-continuous (365C), so 〈un〉n∈N is norm-convergent to u, by 367Da. As
∫

is
norm-continuous,

∫
u = limn→∞

∫
un.

367J The Martingale Theorem In the same way, we can re-write theorems from §275 in this language.

Theorem Let (A, µ̄) be a probability algebra, and 〈Bn〉n∈N a non-decreasing sequence of closed subalgebras
of A. For each n ∈ N let Pn : L1 = L1

µ̄ → L1 ∩ L0(Bn) be the conditional expectation operator (365Q); let
B be the closed subalgebra of A generated by

⋃
n∈N Bn, and P the conditional expectation operator onto

L1 ∩ L0(B).
(a) If 〈un〉n∈N is a norm-bounded sequence in L1 such that Pn(un+1) = un for every n ∈ N, then 〈un〉n∈N

is order*-convergent in L1.
(b) If u ∈ L1 then 〈Pnu〉n∈N is order*-convergent and ‖ ‖1-convergent to Pu.

proof If we represent (A, µ̄) as the measure algebra of a probability space, these become mere translations
of 275G and 275I. (Note that this argument relies on the description of order*-convergence in L0 in terms
of a.e. convergence of functions, as in 367F; so that we need to know that order*-convergence in L1 matches
order*-convergence in L0, which is what 367E is for.)

Remark See also 367Q below.

367K Some of the most important applications of these ideas concern spaces of continuous functions.
I do not think that this is the time to go very far along this road, but one particular fact will be useful in
§376.

Proposition Let X be a locally compact Hausdorff space, and 〈un〉n∈N a sequence in C(X), the space
of continuous real-valued functions on X. Then 〈un〉n∈N order*-converges to 0 in C(X) iff {x : x ∈
X, lim supn→∞ |un(x)| > 0} is meager. In particular, 〈un〉n∈N order*-converges to 0 if limn→∞ un(x) = 0
for every x.

proof (a) The following elementary fact is worth noting: if A ⊆ C(X)+ is non-empty and inf A = 0 in
C(X), then G =

⋃
u∈A{x : u(x) < ǫ} is dense for every ǫ > 0. PPP??? If not, take x0 ∈ X \ G. Because X is

completely regular (3A3Bb), there is a continuous function w : X → [0, 1] such that w(x0) = 1 and w(x) = 0
for every x ∈ G. But in this case 0 < ǫw ≤ u for every u ∈ A, which is impossible. XXXQQQ

(b) Suppose that 〈un〉n∈N order*-converges to 0. Set vn = |un| ∧ χX, so that 〈vn〉n∈N order*-converges
to 0 (using 367Ca, as usual). Set

B = {v : v ∈ C(X), ∃n ∈ N, vi ≤ v ∀ i ≥ n},
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so that inf B = 0 in C(X) (367Be). For each k ∈ N, set Gk =
⋃
v∈B{x : v(x) < 2−k}; then Gk is dense, by

(a), and of course is open. So H =
⋃
k∈NX \Gk is a countable union of nowhere dense sets and is meager.

But this means that

{x : lim sup
n→∞

|un(x)| > 0} = {x : lim sup
n→∞

vn(x) > 0}

⊆ {x : inf
v∈B

v(x) > 0} ⊆ H

is meager.

(c) Now suppose that 〈un〉n∈N does not order*-converge to 0. By 367C(b-ii), there is a w > 0 in C(X)
such that w = supi≥n w ∧ |ui| for every n ∈ N; that is, infi≥n(w − |ui|)+ = 0 for every n. Set

Gn = {x : infi≥n(w − |ui|)+(x) < 2−n} = {x : supi≥n |ui(x)| > w(x) − 2−n}
for each n. Then

H =
⋂
n∈NGn = {x : lim supn→∞ un(x) ≥ w(x)}

is the intersection of a sequence of dense open sets, and its complement is meager.
Let G be the non-empty open set {x : w(x) > 0}. Then G is not meager, by Baire’s theorem (3A3Ha);

so G ∩H cannot be meager. But {x : lim supn→∞ |un(x)| > 0} includes G ∩H, so is also not meager.

Remark Unless the topology of X is discrete, C(X) is not regularly embedded in RX , and we expect to find
sequences in C(X) which order*-converge to 0 in C(X) but not in RX . But the proposition tells us that if
we have a sequence in C(X) which order*-converges in RX to a member of C(X), then it order*-converges
in C(X).

367L Everything above concerns a particular notion of sequential convergence. There is inevitably a
suggestion that there ought to be a topological interpretation of this convergence (see 367Yb, 367Yk, 3A3P),
but I have taken care to avoid spelling one out at this stage; I will return to the point in §393. (For a general
discussion in the context of Boolean algebras, see Vladimirov 02, chap. 4.) I come now to something which
really is a topology, and is as closely involved with order-convergence as any.

Convergence in measure Let (A, µ̄) be a measure algebra. For a ∈ Af = {a : µ̄a <∞}, u ∈ L0 = L0(A)
and ǫ > 0 set τa(u) =

∫
|u| ∧ χa and τaǫ(u) = µ̄(a ∩ [[|u| > ǫ]]). Then the topology of convergence in

measure on L0 is defined either as the topology generated by the F-seminorms τa or by saying that G ⊆ L0

is open iff for every u ∈ G there are a ∈ Af and ǫ > 0 such that v ∈ G whenever τaǫ(u− v) ≤ ǫ.

Remark The sentences above include a number of assertions which need proving. But at this point, rather
than write out any of the relevant arguments, I refer you to §245. Since we know that L0(A) can be identified
with L0(µ) for a suitable measure space (X,Σ, µ) (321J, 364Ic), everything we know about general spaces
L0(µ) can be applied directly to L0(A) for measure algebras (A, µ̄); and that is what I will do for the next
few paragraphs. So far, all I have done is to write τa in place of the τ̄F of 245Ac, and call on the remarks
in 245Bb and 245F.

367M Theorem (a) For any measure algebra (A, µ̄), the topology T of convergence in measure on
L0 = L0(A) is a linear space topology, and any order*-convergent sequence in L0 is T-convergent to the
same limit.

(b) u 7→ |u| : L0 → L0 and (u, v) 7→ u ∨ v, (u, v) 7→ u× v : L0 × L0 → L0 are continuous.
(c) (A, µ̄) is semi-finite iff T is Hausdorff.
(d) (A, µ̄) is localizable iff T is Hausdorff and L0 is complete under the uniformity corresponding to T.
(e) (A, µ̄) is σ-finite iff T is metrizable.

proof 245D, 245Cb, 245E. Of course we need 322B to assure us that the phrases ‘semi-finite’, ‘localizable’,
‘σ-finite’ here correspond to the same phrases used in §245, and 367F to identify order*-convergence in L0

with the order-convergence studied in §245.

367N Proposition Let (A, µ̄) be a measure algebra and give L0 = L0(A) its topology of convergence in
measure.
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(a) If A ⊆ L0 is a non-empty, downwards-directed set with infimum 0, then for every neighbourhood G
of 0 in L0 there is a u ∈ A such that v ∈ G whenever |v| ≤ u.

(b) If U ⊆ L0 is an order-dense Riesz subspace, it is topologically dense.
(c) In particular, S(A) and L∞(A) are topologically dense.

proof (a) Let a ∈ Af , ǫ > 0 be such that u ∈ G whenever
∫
|u|∧χa ≤ ǫ (see 245Bb). Since {u∧χa : u ∈ A}

is a downwards-directed set in L1 = L1
µ̄ with infimum 0 in L1, there must be a u ∈ A such that

∫
u∧χa ≤ ǫ

(365Da). But now [−u, u] ⊆ G, as required.

(b) Write U for the closure of U . Then (L0)+ ⊆ U . PPP If v ∈ (L0)+, then {u : u ∈ U , u ≤ v} is an
upwards-directed set with supremum u, so A = {v − u : u ∈ U , u ≤ v} is a downwards-directed set with
infimum 0 (351Db). By (a), every neighbourhood of 0 meets A, and (because subtraction is continuous)
every neighbourhood of v meets U , that is, v ∈ U . QQQ

Since U is a linear subspace of L0 (2A5Ec), it includes (L0)+ − (L0)+ = L0 (352D).

(c) By 364Ja, S(A) and L∞(A) are order-dense Riesz subspaces of L0.

367O Theorem Let U be a Banach lattice and (A, µ̄) a measure algebra. Give L0 = L0(A) its topology
of convergence in measure. If T : U → L0 is a positive linear operator, then it is continuous.

proof Take any open set G ⊆ L0. ??? Suppose, if possible, that T−1[G] is not open. Then we can find u,
〈un〉n∈N ∈ U such that Tu ∈ G and ‖un − u‖ ≤ 2−n, Tun /∈ G for every n. Set H = G− Tu; then H is an
open set containing 0 but not T (un − u), for any n ∈ N. Since

∑∞
n=0 n‖un − u‖ < ∞, v =

∑∞
n=0 n|un − u|

is defined in U , and |T (un− u)| ≤ 1
nTv for every n ≥ 1. But by 367Na (or otherwise) we know that there is

some n such that w ∈ H whenever |w| ≤ 1
nTv, so that T (un − u) ∈ H for some n, which is impossible. XXX

367P Proposition Let (A, µ̄) be a σ-finite measure algebra.
(a) A sequence 〈un〉n∈N in L0 = L0(A) converges in measure to u ∈ L0 iff every subsequence of 〈un〉n∈N

has a sub-subsequence which order*-converges to u.
(b) A set F ⊆ L0 is closed for the topology of convergence in measure iff u ∈ F whenever there is a

sequence 〈un〉n∈N in F order*-converging to u ∈ L0.

proof 245K, 245L.

367Q As an example of the power of the language we now have available, I give abstract versions of
some martingale convergence theorems.

Theorem Let (A, µ̄) be a probability algebra; for each closed subalgebra B of A, let PB be the corresponding
conditional expectation operator from L1 = L1

µ̄ to L1 ∩ L0(B) = L1
µ̄↾B.

(a) If B is a non-empty downwards-directed family of closed subalgebras of A with intersection C, and
u ∈ L1 = L1

µ̄, then PCu is the ‖ ‖1-limit limB→F(B↓) PBu, where F(B↓) is the filter on B generated by
{{B : B0 ⊇ B ∈ B} : B0 ∈ B}.

(b) If B is a non-empty upwards-directed family of closed subalgebras of A and C is the closed subalgebra
generated by

⋃
B, then for every u ∈ L1, PCu is the ‖ ‖1-limit limB→F(B↑) PBu, where F(B↑) is the filter on

B generated by {{B : B0 ⊆ B ∈ B} : B0 ∈ B}. as B decreases through B.
(c) Suppose that B is a non-empty upwards-directed family of closed subalgebras of A, and 〈uB〉B∈B is

a ‖ ‖1-bounded family in L1 such that uB = PBuC whenever B, C ∈ B and B ⊆ C. Then limB→F(B↑) uB is

defined for the topology of convergence in measure and belongs to L1.

proof (a)(i) Note first that {PBu : B ∈ B} is uniformly integrable (246D, or directly), therefore relatively
weakly compact in L1 (247C/356Q). Consequently there must be a v ∈ L1 which is a weak cluster point of

PBu as B decreases through B, in the sense that v belongs to the weak closure {PBu : B ∈ B, B ⊆ B0} for
every B0 ∈ B.

It follows that v = PCu. PPP For every B0 ∈ B, L1 ∩ L0(B0) = L1
µ̄↾B0

is a norm-closed linear subspace of

L1 containing PBu whenever B ⊆ B0. It is therefore weakly closed (3A5Ee) and contains v. Consequently
[[v > α]] ∈ B0 for every α ∈ R. As B0 is arbitrary, [[v > α]] ∈ C for every α ∈ R, and v ∈ L1

µ̄↾C. Next, if
c ∈ C, then
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∫
c
v ∈ {

∫
c
PBu : B ∈ B} = {

∫
c
u};

so v = PCu. QQQ

(ii) Now take ǫ > 0. Then there is a B0 ∈ B such that ‖PBu − PB0
u‖1 ≤ 1

2ǫ whenever B ∈ B and
B ⊆ B0. PPP??? Otherwise, we can find a non-increasing sequence 〈Bn〉n∈N in B such that ‖PBn+1

u−PBn
u‖1 >

1
2ǫ for every n ∈ N. By the reverse martingale theorem (275K), 〈PBn

u〉n∈N is order*-convergent to w
say. But as {PBn

u : n ∈ N} is uniformly integrable, 〈PBn
u〉n∈N is ‖ ‖1-convergent to w (246Ja), and

limn→∞ ‖PBn+1
u− PBn

u‖1 = 0. XXXQQQ

At this point, however, observe that C = {w : ‖w − PB0
u‖1 ≤ 1

2ǫ} is convex and ‖ ‖1-closed, therefore

weakly closed, in L1. Since it contains PBu whenever B ∈ B and B ⊆ B0, it contains v = PCu. Consequently

‖PBu− PCu‖1 ≤ ‖PBu− PB0
u‖1 + ‖PB0

u− v‖1 ≤ ǫ

whenever B ∈ B and B ⊆ B0. As ǫ and u are arbitrary, (a) is true.

(b) We can use the same method. Again take any u ∈ L1.

(i) This time, observe that PBu must have a weak cluster point v as B increases through B. Since
PBu belongs to L1 ∩ L0(C) for every B ∈ B, so does v. Next, if b ∈ B0 ∈ B, then

∫
b
PBu =

∫
b
u whenever

B ⊇ B0, so
∫
b
v =

∫
b
u. Thus D = {b : b ∈ A,

∫
b
v =

∫
b
u} includes

⋃
B. But D is closed for the measure

algebra topology of A, so D ⊇ C and
∫
c
v =

∫
c
u for every c ∈ C. Thus once again we have v = PCu.

(ii) Now repeat the argument of (a-ii) almost word for word, but taking ‘B ⊇ B′’ in place of every
‘B ⊆ B′’, and quoting the ordinary martingale theorem instead of the reverse martingale theorem.

(c)(i) If 〈Bn〉n∈N is a non-decreasing sequence in B, then 〈uBn
〉n∈N is order*-convergent, by Doob’s

martingale theorem (367Ja).

(ii) It follows that the image G of F(B↑) under the map B 7→ uB : B → L0 is Cauchy for the linear
space topology T of convergence in measure. PPP??? Otherwise, set τ(v) =

∫
|v| ∧ χ1 for v ∈ L0. There is an

ǫ > 0 such that supv,v′∈C τ(v − v′) > 2ǫ for every C ∈ G; in which case, for any B ∈ B, there must be a
C ∈ B such that C ⊇ B τ(uC − uB) ≥ ǫ. But now there will be a non-decreasing sequence 〈Bn〉n∈N in B

such that τ(uBn+1
− uBn

) ≥ ǫ for every n ∈ N and 〈uBn
〉n∈N cannot be order*-convergent. XXXQQQ

(iii) By 367Mc, u = limG = limB→F(B↑) uB is defined in L0 for T. But as u belongs to the T-closure

of the ‖ ‖1-bounded set {uB : B ∈ B}, u ∈ L1, by 245J(b-i).

367R It will be useful later to be able to quote the following straightforward facts.

Proposition Let (A, µ̄) be a measure algebra. Give A its measure-algebra topology (323A) and L0 = L0(A)
the topology of convergence in measure.

(a) The map χ : A → L0 is a homeomorphism between A and its image in L0.
(b) If A has countable Maharam type, then L0 is separable.
(c) Suppose that B is a subalgebra of A which is closed for the measure-algebra topology. Then L0(B)

is closed in L0(A).
(d) A non-empty setA ⊆ L0 is bounded in the linear topological space sense (3A5N) iff infk∈N supu∈A µ̄(a ∩ [[|u| > k]]) =

0 for every a ∈ Af .

proof (a) Of course χ is injective (364Jc). The measure-algebra topology of A is defined by the pseudomet-
rics ρa(b, c) = µ̄(a ∩ (b△c)), while the topology of L0 is defined by the pseudometrics σa(u, v) =

∫
|u−v|∧χa,

in both cases taking a to run over elements of A of finite measure; as σa(χb, χc) is always equal to ρa(b, c),
we have the result.

(b) By 331O, A is separable in its measure-algebra topology; let B ⊆ A be a countable dense set. Set

B∗ = {∑n
i=0 αiχbi : n ∈ N, α0, . . . , αn ∈ Q, b0, . . . , bn ∈ B}.

B∗ is a countable subset of L0; let V be its closure. Then V includes S(A). PPP For any n ∈ N, the function
(α0, . . . , αn, a0, . . . , an) 7→ ∑n

i=0 αiχai : Rn+1 × An+1 → L0 is continuous, just because χ : A → L0 and
addition and scalar multiplication in L0 are continuous ((a) above, 367M). So
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Dn = {(α0, . . . , αn, a0, . . . , an) :
∑n
i=0 αiχai ∈ V }

is a closed subset of Rn+1 × An+1 including Qn+1 × Bn+1. But Qn+1 × Bn+1 is dense in Rn+1 × An+1

(3A3Ie), so Dn = Rn+1 × An+1, that is,
∑n
i=0 αiχai ∈ V whenever α0, . . . , αn ∈ R and a0, . . . , an ∈ V . As

n is arbitrary, S(A) ⊆ V . QQQ
Since S(A) is dense in L0 (367Nc), V = L0, B∗ is dense in L0 and L0 is separable.

(c) Note first that B is order-closed in A (323D(c-i)), so that L0(B), defined as in 364A, is a subset
of L0(A) (cf. 364Xt). Applying 364P to the identity map B ⊂→ A, we see that the map L0(B) ⊂→ L0(A)

identifies the operations of addition, scalar multiplication and supremum in L0(B) with the restrictions of
the corresponding operations on L0(A).

Suppose that u ∈ L0(A) is in the closure of L0(B), and α ∈ R; let n ∈ N be such that |α| < n, and
fix a ∈ Af for the moment. For each k ∈ N, choose vk ∈ L0(B) such that

∫
|u − vk| ∧ χa ≤ 2−k (367L).

Consider v′k = med(−nχ1, vk, nχ1) for k ∈ N, and v = infk∈N supj≥k v
′
k. We do not need to ask whether the

operations here are being performed in L0(A) or in L0(B), and v will belong to L0(B). Accordingly, now
necessarily working in L0(A), we shall have

v × χa = infk∈N supj≥k v
′
k × χa.

Now observe that, for each k, wk = 2n supj≥k |u − vj | ∧ χa is defined in L1
µ̄ and

∫
wk ≤ 2−k+2n. Set

u′ = med(−nχ1, u, nχ1). For j ≥ k,

|u′ × χa− v′j × χa| = |med(−nχ1, u× χa, nχ1) − med(−nχ1, vj × χa, nχ1)|
≤ |u− vj | ∧ 2nχa ≤ wk.

So, for any m ∈ N,

u′ × χa− v × χa = sup
k∈N

inf
j≥k

u′ × χa− v′k × χa

= sup
k≥m

inf
j≥k

u′ × χa− v′k × χa ≤ sup
k≥m

wk = wm,

v × χa− u′ × χa = inf
k∈N

sup
j≥k

v′k × χa− u′ × χa

≤ sup
j≥m

v′k × χa− u′ × χa ≤ wm.

Putting these together,

|u′ × χa− v × χa| ≤ wm

for every m ∈ N, and u′ × χa = v × χa. But this means that a ∩ [[u′ > α]] = a ∩ [[v > α]]; at the same time,
because −n < α < n, [[u′ > α]] = [[u > α]].

Thus we see that for every a ∈ Af there is a b ∈ B such that a ∩ (b△ [[u > α]]) = 0. It follows at once
that [[u > α]] belongs to the closure of B, which is B itself. As α is arbitrary, u ∈ L0(B); as u is arbitrary,
L0(B) is closed.

(d)(i) Suppose that A is topologically bounded, a ∈ Af and ǫ > 0. Then G = {v : v ∈ L0,
µ̄(a ∩ [[|v| > 1]]) ≤ ǫ is a neighbourhood of 0, so there is a k ∈ N such that A ⊆ kG. If u ∈ A, there is
a v ∈ U such that u = kv, so that

µ̄(a ∩ [[|u| > k]]) = µ̄(a ∩ [[|v| > 1]]) ≤ ǫ.

Thus infk∈N supu∈A µ̄(a ∩ [[|u| > k]]) ≤ ǫ; as a and ǫ are arbitrary, the condition is satisfied.

(ii) Suppose that the condition is satisfied. Let G be a neighbourhood of of 0 in L0. Then there are
an a ∈ Af and an ǫ > 0 such that v ∈ G whenever µ̄(a ∩ [[|v| > ǫ]]) ≤ ǫ. Now there is a k ∈ N such that
µ̄(a ∩ [[|u| > k]]) ≤ ǫ for every u ∈ A. Let n ≥ 1 be such that nǫ ≥ k; then

µ̄(a ∩ [[ 1n |u| > ǫ]]) = µ̄(a ∩ [[|u| > nǫ]]) ≤ µ̄(a ∩ [[|u| > k]]) ≤ ǫ

for every u ∈ A, so
1

n
A ⊆ G and A ⊆ nG. As G is arbitrary, A is topologically bounded.
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367S Proposition Let E ⊆ R be a Borel set, and h : E → R a continuous function. Let (A, µ̄) be a
measure algebra, and h̄ : QE → L0 = L0(A) the associated function, where QE = {u : u ∈ L0, [[u ∈ E]] = 1}
(364H). Then h̄ is continuous for the topology of convergence in measure.

proof (Compare 245Dd.) Express (A, µ̄) as the measure algebra of a measure space (X,Σ, µ). Take any
u ∈ QE , any a ∈ A such that µ̄a < ∞, and any ǫ > 0. Express u as f• where f : X → E is a measurable
function, and a as F • where F ∈ Σ. Set η = ǫ/(2 + µF ). For each n ∈ N, write En for

{t : t ∈ E, |h(s) − h(t)| ≤ η whenever s ∈ E and |s− t| ≤ 2−n}.

Then 〈En〉n∈N is a non-decreasing sequence of Borel sets with union E, so there is an n such that µ{x : x ∈ F ,
f(x) /∈ En} ≤ η.

Now suppose that v ∈ QE is such that
∫
|v − u| ∧ χa ≤ 2−nη. Express v as g• where g : X → E is a

measurable function. Then ∫
F

min(1, |g(x) − f(x)|)µ(dx) ≤ 2−nη,

so µ{x : x ∈ F, |f(x) − g(x)| > 2−n} ≤ η, and

{x : x ∈ F, |h(g(x)) − h(f(x))| > η}
⊆ {x : x ∈ F, f(x) /∈ En} ∪ {x : x ∈ F, |f(x) − g(x)| > 2−n}

has measure at most 2η. But this means that∫
|h̄(v) − h̄(u)| ∧ χa =

∫
F

min(1, |hg(x) − hf(x)|)µ(dx) ≤ 2η + ηµF = ǫ.

As u, a and ǫ are arbitrary, h̄ is continuous.

367T Intrinsic description of convergence in measure It is a remarkable fact that the topology
of convergence in measure, not only on L0 but on its order-dense Riesz subspaces, can be described in
terms of the Riesz space structure alone, without referring at all to the underlying measure algebra or
to integration. (Compare 324H.) There is more than one way of doing this. As far as I know, none is
outstandingly convincing; I present a formulation which seems to me to exhibit some, at least, of the essence
of the phenomenon.

Proposition Let (A, µ̄) be a semi-finite measure algebra, and U an order-dense Riesz subspace of L0 =
L0(A). Suppose that A ⊆ U and u∗ ∈ U . Then u∗ belongs to the closure of A for the topology of convergence
in measure iff

there is an order-dense Riesz subspace V of U such that

for every v ∈ V + there is a non-empty downwards-directed B ⊆ U , with infimum 0, such
that

for every w ∈ B there is a u ∈ A such that

|u− u∗| ∧ v ≤ w.

proof (a) Suppose first that u∗ ∈ A. Take V to be U ∩L1
µ̄; then V is an order-dense Riesz subspace of L0,

by 352Nc and 353A, and is therefore order-dense in U . (This is where I use the hypothesis that (A, µ̄) is
semi-finite, so that L1

µ̄ is order-dense in L0, by 365Ga.)

Take any v ∈ V +. For each n ∈ N, set an = [[v > 2−n]] ∈ Af . Because u∗ ∈ A, there is a un ∈ A such
that µ̄bn ≤ 2−n, where

bn = an ∩ [[|un − u∗| > 2−n]] = [[|un − u∗| ∧ v > 2−n]].

Set cn = supi≥n bi; then µ̄cn ≤ 2−n+1 for each n, so infn∈N cn = 0 and infn∈N wn = 0 in L0, where

wn = v × χcn + 2−nχ1. Also |un − u∗| ∧ v ≤ wn for each n.

The wn need not belong to U , so we cannot set B = {wn : n ∈ N}. But if instead we write

B = {w : w ∈ U, w ≥ v ∧ wn for some n ∈ N},
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then B is non-empty and downwards-directed (because 〈wn〉n∈N is non-increasing); and

inf B = v − sup{v − w : w ∈ B}
= v − sup{w : w ∈ U, w ≤ (v − wn)+ for some n ∈ N}
= v − sup

n∈N

(v − wn)+

(because U is order-dense in L0)

= 0.

Since for every w ∈ B there is an n such that w ≥ v ∧wn ≥ v ∧ |un − u∗|, B witnesses that the condition is
satisfied.

(b) Now suppose that the condition is satisfied. Fix a ∈ Af and ǫ > 0. Because V is order-dense in U
and therefore in L0, there is a v ∈ V such that 0 ≤ v ≤ χa and

∫
v ≥ µ̄a− ǫ. Let B be a downwards-directed

set, with infimum 0, such that for every w ∈ B there is a u ∈ A with v ∧ |u − u∗| ≤ w. Then there is a
w ∈ B such that

∫
w ∧ v ≤ ǫ. Now there is a u ∈ A such that |u− u∗| ∧ v ≤ w, so that∫

|u− u∗| ∧ χa ≤ ǫ+
∫
|u− u∗| ∧ v ≤ ǫ+

∫
w ∧ v ≤ 2ǫ.

As a and ǫ are arbitrary, u∗ ∈ A.

*367U Theorem Let (A, µ̄) be a semi-finite measure algebra; write L1 for L1
µ̄. Let P : (L1)∗∗ → L1

be the linear operator corresponding to the band projection from (L1)∗∗ = (L1)×∼ onto (L1)×× and the
canonical isomorphism between L1 and (L1)××. For A ⊆ L1 write A∗ for the weak* closure of the image of
A in (L1)∗∗. Then for every A ⊆ L1

P [A∗] ⊆ Γ(A),

where Γ(A) is the convex hull of A and Γ(A) is the closure of Γ(A) in L0 = L0(A) for the topology of
convergence in measure.

proof (a) The statement of the theorem includes a number of assertions: that (L1)∗ = (L1)×; that (L1)∗∗ =
((L1)∗)∼; that the natural embedding of L1 into (L1)∗∗ = (L1)×∼ identifies L1 with (L1)××; and that (L1)××

is a projection band in (L1)×∼. For proofs of these see 365C, 356P, 356B and 356D.
Now for the new argument. First, observe that the statement of the theorem involves the measure algebra

(A, µ̄) and the space L0 only in the definition of ‘convergence in measure’; everything else depends only on
the Banach lattice structure of L1. And since we are concerned only with the question of whether members
of P [A∗], which is surely a subset of L1, belong to Γ(A), 367T shows that this also can be answered in terms
of the Riesz space structure of L1. What this means is that we can suppose that (A, µ̄) is localizable. PPP

Let (Â, µ̃) be the localization of (A, µ̄) (322Q). The natural expression of A as an order-dense subalgebra of

Â identifies Af = {a : a ∈ A, µ̄a < ∞} with Âf (322P), so that L1
µ̄ becomes identified with L1

µ̃, by 365Nd.

Thus we can think of L1 as L1
µ̃, and (Â, µ̃) is localizable. QQQ

(b) We need a version of a result in §362. As we are supposing that (A, µ̄) is localizable, we can identify
(L1)∗, as Banach lattice, with L∞ = L∞(A) (365Lc). Take any φ ∈ (L1)∗∗ ∼= (L∞)∗ such that φ ≥ 0 and
Pφ = 0. Then C = {c : c ∈ A, φ(χc) = 0} is an order-dense ideal of A. PPP Just because φ is a positive linear
operator, C is an ideal of A. We have an L-space isomorphism between (L∞)∗ = (L∞)∼ and the space
M of bounded additive functionals on A, and this isomorphism matches (L∞)× with the projection band
Mτ of completely additive functionals (363K, 362B). So if we write Pτ : M → Mτ for the band projection
onto Mτ , Pτ must correspond to the band projection P : (L∞)∼ → (L∞)×. Let ν be the member of M
corresponding to φ, so that νa = φ(χa) for every a ∈ A. Then (Pτν)(1) = (Pφ)(χ1) = 0, that is, Pτν = 0.
Now A is weakly (σ,∞)-distributive (322F), so there is an upwards-directed set D ⊆ A, with supremum 1,
such that supd∈D νd = (Pτν)(1) = 0, that is, 0 = νd = φ(χd) for every d ∈ D, and D ⊆ C. So supC = 1,
that is, C is order-dense, as claimed. QQQ

(c) Now take φ ∈ A∗ and set u0 = Pφ; I have to show that u0 ∈ Γ(A). Write R for the canonical map
from L1 to (L1)∗∗, so that φ belongs to the weak* closure of R[A].
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(i) Consider first the case u0 = 0, that is, Pφ = 0. Since P is a band projection, P |φ| = 0. By (b),
C = {c : (P |φ)|(χc) = 0} is an order-dense ideal in A. Take any a ∈ Af and ǫ > 0. Then {c : c ∈ C, c ⊆ a}
is upwards-directed and has supremum a, so there is a c ∈ C such that µ̄(a \ c) ≤ ǫ.

Consider the map Q : L1 → L1 defined by setting Qw = w × χc for every w ∈ L1. Then its adjoint
Q′ : L∞ → L∞ (3A5Ed) can be defined by the same formula: Q′v = v × χc for every v ∈ L∞. Now

|φ(Q′v)| ≤ ‖v‖∞|φ|(χc) = 0

for every v ∈ L∞, and Q′′φ = 0, where Q′′ : (L∞)∗ → (L∞)∗ is the adjoint of Q′. Since Q′′ is continuous for

the weak* topology on (L∞)∗, 0 ∈ Q′′[R[A]], where Q′′R[A] is the closure for the weak* topology of (L∞)∗.
But of course Q′′R = RQ, while the weak* topology of (L∞)∗ corresponds, on the image R[L1] of L1, to
the weak topology of L1; so that 0 belongs to the closure of Q[A] for the weak topology of L1.

Because Q is linear, Q[Γ(A)] is convex. Since 0 belongs to the closure of Q[Γ(A)] for the weak topology
of L1, it belongs to the closure of Q[Γ(A)] for the norm topology (3A5Ee). So there is a w ∈ Γ(A) such
that ‖w × χc‖1 ≤ ǫ2. But this means that µ̄(c ∩ [[|w| ≥ ǫ]]) ≤ ǫ and µ̄(a ∩ [[|w| ≥ ǫ]]) ≤ 2ǫ. Since a and ǫ are

arbitrary, 0 ∈ Γ(A).

(ii) This deals with the case u0 = 0. Now the general case follows at once if we set B = A − u0 and
observe that φ−Ru0 ∈ B∗, so

0 = P (φ−Ru0) ∈ Γ(B) = Γ(A) − u0 = Γ(A) − u0

because the topology of convergence in measure is a linear space topology.

Remark This is a version of a theorem from Bukhvalov 95.

*367V Corollary Let (A, µ̄) be a localizable measure algebra. Let C be a family of convex subsets of
L0 = L0(A), all closed for the topology of convergence in measure, with the finite intersection property, and
suppose that for every non-zero a ∈ A there are a non-zero b ⊆ a and a C ∈ C such that supu∈C

∫
b
|u| <∞.

Then
⋂ C 6= ∅.

proof Because C has the finite intersection property, there is an ultrafilter F on L0 including C. Set

I = {a : a ∈ A, infF∈F supu∈F
∫
a
|u| <∞};

because F is a filter, I is an ideal in A, and the condition on C tells us that I is order-dense. For each a ∈ I,
define Qa : L0 → L0 by setting Qau = u× χa. Then there is an F ∈ F such that Qa[F ] is a norm-bounded
set in L1 = L1

µ̄, so φa = limu→F RQau is defined in (L∞)∗ = L∞(A)∗ for the weak* topology on (L∞)∗,

writing R for the canonical map from L1 to (L∞)∗ ∼= (L1)∗∗. (Once again, we can identify (L1)∗ with L∞

because (A, µ̄) is localizable.) If P : (L∞)∗ → L1 is the map corresponding to the band projection P̃ from
(L∞)∼ onto (L∞)×, as in 367U, and C ∈ C, then 367U tells us that Pφa must belong to the closure of the
convex set Qa[C] for the topology of convergence in measure. Moreover, if a ⊆ b ∈ I, so that Qa = QaQb,
then Pφa = QaPφb. PPP Observe that

P̃ = RP : (L∞)∗ → (L∞)×, Q′′
aR = RQa↾L

1, Q′′
a↾(L∞)× = RQaR

−1.

Qa↾L
1 is a band projection on L1, so its adjoint Q′

a is a band projection on L∞ ∼= (L1)∼ (356C) and Q′′
a is

a band projection on (L∞)∗ ∼= (L∞)∼. This means that Q′′
a will commute with P̃ (352Sb). But also Q′′

a is
continuous for the weak* topology of (L∞)∗, so

Q′′
aφb = limu→F Q

′′
aRQbu = limu→F RQaQbu = φa

and

Pφa = R−1P̃ φa = R−1P̃Q′′
a(φb) = R−1Q′′

aP̃ φb = QaR
−1P̃ φb = QaPφb. QQQ

Generally, if a, b ∈ I, then

QaPφb = QaQbPφb = Qa∩bPφb = Pφa∩b = QbPφa.

What this means is that if we take a partition D of unity included in I (313K), so that L0 ∼=
∏
d∈D L

0(Ad)

(315F(iii), 364R), and define w ∈ L0 by saying that w × χd = Pφd for every d ∈ D, then we shall have

w × χa× χd = QaPφd = QdPφa = Pφa × χd
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whenever a ∈ I and d ∈ D. Consequently

w × χa = Pφa ∈ Qa[C]

for every a ∈ I and C ∈ C. But now, given a ∈ Af and ǫ > 0 and C ∈ C, there is a b ∈ I such that µ̄(a \ b) ≤ ǫ;

w × χb ∈ Qb[C], so there is a u ∈ C such that µ̄(b ∩ [[|w − u| ≥ ǫ]]) ≤ ǫ; and µ̄(a ∩ [[|w − u| ≥ ǫ]]) ≤ 2ǫ. As a
and ǫ are arbitrary and C is closed, w ∈ C; as C is arbitrary, w ∈ ⋂ C and

⋂ C 6= ∅.

*367W Independence I have given myself very little room in this chapter to discuss stochastic inde-
pendence. There are direct translations of results from §272 in 364Xe-364Xf. However the language here
is adapted to a significant result not presented in §272. I had better begin by repeating a definition from
364Xe. Let (A, µ̄) be a probability algebra. Then a family 〈ui〉i∈I in L0(A) is stochastically independent
if µ̄(infi∈J [[ui > αi]]) =

∏
i∈J µ̄[[ui > αi]] whenever J ⊆ I is a non-empty finite set and αi ∈ R for every i ∈ I.

(The direct translation of the definition in 272Ac would rather be ‘µ̄(infi∈J [[ui ≤ αi]]) =
∏
i∈J µ̄[[ui ≤ αi]]

whenever J ⊆ I is a non-empty finite set and αi ∈ R for every i ∈ I’, intepreting [[ui ≤ αi]] as in 364Xa. Of
course 272F tells us that this comes to the same thing.) Now the new fact is the following.

Proposition Let (A, µ̄) be a probability algebra, and I any set. Give L0 = L0(A) its topology of convergence
in measure. Then the collection of independent families 〈ui〉i∈I is a closed set in (L0)I .

proof Suppose that 〈ui〉i∈I ∈ (L0)I is not independent. Then there are a finite set J ⊆ I and a family
〈αi〉i∈J of real numbers such that µ̄(infi∈J [[ui > αi]]) 6=

∏
i∈J µ̄[[ui > αi]]. Set ai = [[ui > αi]] for each i. Let

δ > 0 be such that γ 6= ∏
i∈J γi whenever |γ − µ̄(infi∈J ai)| ≤ 2δ#(J) and |γi − µ̄ai| ≤ 2δ for every i ∈ J .

Let η ∈ ]0, 1] be such that µ̄[[ui > αi + 2η]] ≥ µ̄ai − δ for every i ∈ J .
Now if 〈vi〉i∈I ∈ (L0)I and µ̄[[|vi − ui| > η]] ≤ δ for each i ∈ J , 〈vi〉i∈I is not independent. PPP For each

i ∈ J , consider bi = [[vi > αi + η]], a′i = [[ui > αi + 2η]]. We have

a′i = [[ui > αi + 2η]] ⊆ [[vi > αi + η]] ∪ [[ui − vi > η]] ⊆ bi ∪ [[|ui − vi| > η]]

(364Ea), and

bi = [[vi > αi + η]] ⊆ [[ui > αi]] ∪ [[vi − ui > η]] ⊆ ai ∪ [[|vi − ui| > η]],

so

bi △ ai = (bi \ ai) ∪ (ai \ bi) ⊆ [[|vi − ui| > η]] ∪ (ai \ a
′
i)

has measure at most 2δ. It follows that (infi∈J bi) △ (infi∈J ai) has measure at most 2δ#(J), and |µ̄(infi∈J bi)
− µ̄(infi∈J ai)| ≤ 2δ#(J). At the same time, for each i ∈ J , |µ̄bi − µ̄ai| ≤ 2δ. By the choice of δ,
µ̄(infi∈J bi) 6=

∏
i∈J µ̄bi, and 〈vi〉i∈I is not independent. QQQ

This shows that the set of non-independent families is open in (L0)I , so that the set of independent
families is closed, as claimed.

367X Basic exercises >>>(a) Let P be a lattice. (i) Show that if p ∈ P and 〈pn〉n∈N is a non-decreasing
sequence in P , then 〈pn〉n∈N is order*-convergent to p iff p = supn∈N pn. (ii) Suppose that 〈pn〉n∈N is a
sequence in P order*-converging to p ∈ P . Show that p = supn∈N p ∧ pn = infn∈N p ∨ pn. (iii) Let 〈pn〉n∈N,
〈qn〉n∈N be two sequences in P which are order*-convergent to p, q respectively. Show that if pn ≤ qn for
every n then p ≤ q. (iv) Let 〈pn〉n∈N be a sequence in P . Show that 〈pn〉n∈N order*-converges to p ∈ P iff
〈pn ∨ p〉n∈N and 〈pn ∧ p〉n∈N both order*-converge to p.

(b) Let P and Q be lattices, and f : P → Q an order-preserving function. Suppose that 〈pn〉n∈N is an
order-bounded sequence which order*-converges to p in P . Show that 〈f(pn)〉n∈N order*-converges to f(p)
in Q if either f is order-continuous or P is Dedekind σ-complete and f is sequentially order-continuous.

(c) Let P be either a Boolean algebra or a Riesz space. Suppose that 〈pn〉n∈N is a sequence in P such
that 〈p2n〉n∈N and 〈p2n+1〉n∈N are both order*-convergent to p ∈ P . Show that 〈pn〉n∈N is order*-convergent
to p. (Hint : 313B, 352E.)

(d) Let 〈Pi〉i∈I be a family of lattices with product P (315Xd). Show that a sequence 〈pn〉n∈N in P
order*-converges to p ∈ P iff 〈pn(i)〉n∈N order*-converges to p(i) in Pi for every i ∈ I.
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>>>(e) Let A be a Boolean algebra and 〈an〉n∈N, 〈bn〉n∈N two sequences in A order*-converging to a,
b respectively. Show that 〈an ∪ bn〉n∈N, 〈an ∩ bn〉n∈N, 〈an \ bn〉n∈N, 〈an △ bn〉n∈N order*-converge to a ∪ b,
a ∩ b, a \ b and a△ b respectively.

(f) Let A be a Boolean algebra and 〈an〉n∈N a sequence in A. Show that 〈an〉n∈N does not order*-converge
to 0 iff there is a non-zero a ∈ A such that a = supi≥n a ∧ ai for every n ∈ N.

>>>(g)(i) Let U be a Riesz space and 〈un〉n∈N an order*-convergent sequence in U+ with limit u. Show that
h(u) ≤ lim infn→∞ h(un) for every h ∈ (U×)+. (ii) Let U be a Riesz space and 〈un〉n∈N an order-bounded
order*-convergent sequence in U with limit u. Show that h(u) = limn→∞ h(un) for every h ∈ U×. (Compare
356Xd.)

(h)(i) Show that if U is a Banach lattice, every norm-convergent sequence has a subsequence which is
order-bounded and order*-convergent. (Hint : consider the case in which

∑∞
n=0 ‖un − u‖ is finite.) (ii)

Find a Riesz norm on C([0,1]) for which there is an order-bounded norm-convergent sequence which has no
order*-convergent subsequence.

>>>(i) Let U be a Riesz space with a Fatou norm ‖ ‖. (i) Show that if 〈un〉n∈N is an order*-convergent
sequence in U with limit u, then ‖u‖ ≤ lim infn→∞ ‖un‖. (Hint : 〈|un| ∧ |u|〉n∈N is order*-convergent to
|u|.) (ii) Show that if 〈un〉n∈N is a norm-convergent sequence in U it has an order*-convergent subsequence.
(Hint : if

∑∞
n=0 ‖un‖ <∞ then 〈un〉n∈N order*-converges to 0.)

(j) Let U and V be Archimedean Riesz spaces and T : U → V an order-continuous Riesz homomorphism.
Show that if 〈un〉n∈N is a sequence in U which order*-converges to u ∈ U , then 〈Tun〉n∈N order*-converges
to Tu in V .

(k) Let A be a Boolean algebra and B a regularly embedded subalgebra. Show that if 〈bn〉n∈N is a
sequence in B and b ∈ B, then 〈bn〉n∈N order*-converges to b in B iff it order*-converges to b in A.

(l) Let A be a Dedekind σ-complete Boolean algebra and 〈un〉n∈N, 〈vn〉n∈N two sequences in L0(A) which
are order*-convergent to u, v respectively. Show that 〈un × vn〉n∈N order*-converges to u× v. Show that if
u, un all have multiplicative inverses u−1, u−1

n then 〈u−1
n 〉n∈N order*-converges to u−1.

(m) Let A be a Dedekind σ-complete Boolean algebra and I a σ-ideal of A. Show that for any 〈an〉n∈N ∈
AN and a ∈ A, 〈a•

n〉n∈N order*-converges to a• in A/I iff infn∈N supm≥n am△a ∈ I.

>>>(n) Let A be a Dedekind σ-complete Boolean algebra, and 〈hn〉n∈N a sequence of Borel measurable
functions from R to itself such that h(t) = limn→∞ hn(t) is defined for every t ∈ R. Show that 〈h̄n(u)〉n∈N

order*-converges to h̄(u) for every u ∈ L0 = L0(A), where h̄n, h̄ : L0 → L0 are defined as in 364H.

(o) Let U be an L-space and 〈un〉n∈N a sequence in U which is order*-convergent to u ∈ U . Show that
〈un〉n∈N is norm-convergent to u iff {un : n ∈ N} is uniformly integrable iff ‖u‖1 = limn→∞ ‖un‖1. (Hint :
245H, 246J.)

(p) Let U be an L-space and 〈un〉n∈N a norm-bounded sequence in U . Show that there are a v ∈ U and
a subsequence 〈vn〉n∈N of 〈un〉n∈N such that 〈 1

n+1

∑n
i=0 wi〉n∈N order*-converges to v for every subsequence

〈wn〉n∈N of 〈vn〉n∈N. (Hint : 276H.)

(q) Let (A, µ̄) be a measure algebra and p ∈ [1,∞[. For v ∈ (Lp)+ = (Lpµ̄)+ define τv : L0 → [0,∞[ by

setting τv(u) = ‖|u| ∧ v‖p for u ∈ U . Show that each τv is an F-seminorm and that the topology on L0(A)
defined by {τv : v ∈ (Lp)+} is the topology of convergence in measure.

(r) Let (A, µ̄) be a σ-finite measure algebra. Suppose we have a double sequence 〈uij〉(i,j)∈N×N in L0 =

L0(A) such that 〈uij〉j∈N order*-converges to ui in L0 for each i, while 〈ui〉i∈N order*-converges to u. Show
that there is a strictly increasing sequence 〈n(i)〉i∈N such that 〈ui,n(i)〉i∈N order*-converges to u.
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(s) Let (X,Σ, µ) be a semi-finite measure space. Show that L0(µ) is separable for the topology of
convergence in measure iff µ is σ-finite and has countable Maharam type. (Cf. 365Xr.)

(t) Let (A, µ̄) be a measure algebra, and give L0 = L0(A) its topology of convergence in measure.
Show that if (A, µ̄) is semi-finite, then a set A ⊆ L0 is bounded in the linear-topological-space sense iff
{αnxn : n ∈ N} is order-bounded for every sequence 〈xn〉n∈N in A and every sequence 〈αn〉n∈N in R

converging to 0.

(u) Let (A, µ̄) be a measure algebra, and write T for its measure-algebra topology. (i) Show that if
〈an〉n∈N is order*-convergent to a ∈ A, then 〈an〉n∈N → a for T. (ii) Show that if (A, µ̄) is σ-finite, then (α)
a sequence converges to a for T iff every subsequence has a sub-subsequence which is order*-convergent to to
a (β) a set F ⊆ A is T-closed iff a ∈ F whenever there is a sequence 〈an〉n∈N in F which is order*-convergent
to a ∈ A. (iii) Show that if (A, µ̄) is semi-finite but not σ-finite, there is an A ⊆ L0 such that the limit of
any order*-convergent sequence in A belongs to A, but A is not T-closed.

(v) Let U be a Banach lattice with an order-continuous norm. (i) Show that a sequence 〈un〉n∈N is
norm-convergent to u ∈ U iff every subsequence has a sub-subsequence which is order-bounded and order*-
convergent to u. (ii) Show that a set F ⊆ U is closed for the norm topology iff u ∈ F whenever there is an
order-bounded sequence 〈un〉n∈N in F order*-converging to u ∈ U .

>>>(w) Let (A, µ̄) be a probability algebra. For u ∈ L0 = L0(A) let νu be the distribution of u (364Gb).
Show that u 7→ νu is continuous when L0 is given the topology of convergence in measure and the space of
probability distributions on R is given the vague topology (274Ld).

(x) Let (A, µ̄) be a probability algebra and 〈un〉n∈N a stochastically independent sequence in L0(A), all
with the Cauchy distribution νC,1 with centre 0 and scale parameter 1 (285Xp). For each n let Cn be the

convex hull of {ui : i ≥ n}, and Cn its closure for the topology of convergence in measure. Show that every
u ∈ C0 has distribution νC,1. (Hint : consider first u ∈ C0.) Show that C0 is bounded for the topology of

convergence in measure. Show that
⋂
n∈N Cn = ∅.

(y) If U is a linear space and C ⊆ U is a convex set, a function f : C → R is convex if f(αx+(1−α)y) ≤
αf(x) + (1 − α)f(y) whenever x, y ∈ C and α ∈ [0, 1]. Let (A, µ̄) be a localizable measure algebra and
C ⊆ L1

µ̄ a non-empty convex norm-bounded set which is closed in L0(A) for the topology of convergence
in measure. Show that any convex function f : C → R which is lower semi-continuous for the topology of
convergence in measure is bounded below and attains its infimum.

(z) Let (A, µ̄) be the measure algebra of Lebesgue measure on [0, 1]. Show that there are a sequence
〈un〉n∈N in L1 = L1

µ̄ and u, v ∈ L1 such that un and v are independent for every n, 〈un〉n∈N converges
weakly to u, but u and v are not independent.

367Y Further exercises (a) Give an example of an Archimedean Riesz space U and an order-bounded
sequence 〈un〉n∈N in U which is order*-convergent to 0, but such that there is no non-increasing sequence
〈vn〉n∈N, with infimum 0, such that un ≤ vn for every n ∈ N.

(b) Let P be any lattice. (i) Show that there is a topology on P for which a set A ⊆ P is closed iff
p ∈ A whenever there is a sequence in A which is order*-convergent to p. Show that any closed set for this
topology is sequentially order-closed. (ii) Now let Q be another lattice, with the topology defined in the
same way, and f : P → Q an order-preserving function. Show that if f is topologically continuous it is
sequentially order-continuous.

(c) Give an example of a distributive lattice P with p, q ∈ P and a sequence 〈pn〉n∈N, order*-convergent
to p, such that 〈pn ∧ q〉n∈N is not order*-convergent to p ∧ q.

(d) Let us say that a lattice P is (2,∞)-distributive if (α) whenever A, B ⊆ P are non-empty sets with
infima p, q respectively, then inf{a ∨ b : a ∈ A, b ∈ B} = p ∨ q (β) whenever A, B ⊆ P are non-empty sets
with suprema p, q respectively, then sup{a ∧ b : a ∈ A, b ∈ B} = p ∧ q. Show that, in this case, if 〈pn〉n∈N

order*-converges to p and 〈qn〉n∈N order*-converges to q, 〈pn ∨ qn〉n∈N order*-converges to p ∨ q.
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(e)(i) Give an example of a Riesz space U with an order-dense Riesz subspace V of U and a sequence
〈vn〉n∈N in V such that 〈vn〉n∈N order*-converges to 0 in V but does not order*-converge in U . (ii) Give
an example of a Riesz space U with an order-dense Riesz subspace V of U and a sequence 〈vn〉n∈N in V ,
order-bounded in V , such that 〈vn〉n∈N order*-converges to 0 in U but does not order*-converge in V .

(f) Let U be an Archimedean f -algebra. Show that if 〈un〉n∈N, 〈vn〉n∈N are sequences in U order*-
converging to u, v respectively, then 〈un × vn〉n∈N order*-converges to u× v.

(g) Let A be a Dedekind σ-complete Boolean algebra and r ≥ 1. Let E ⊆ Rr be a Borel set and write
QE = {(u1, . . . , ur) : [[(u1, . . . , ur) ∈ E]] = 1} ⊆ L0(A)r (364Yb). Let h : E → R be a continuous function
and h̄ : QE → L0 = L0(A) the corresponding map (364Yc). Show that if 〈un〉n∈N is a sequence in QE which
is order*-convergent to u ∈ QE (in the lattice (L0)r), then 〈h̄(un)〉n∈N is order*-convergent to h̄(u).

(h) Let X be a completely regular Baire space (definition: 314Yd), and 〈un〉n∈N a sequence in C(X).
Show that 〈un〉n∈N order*-converges to 0 in C(X) iff {x : lim supn→∞ |un(x)| > 0} is meager in X.

(i)(i) Give an example of a sequence 〈un〉n∈N in C([0, 1]) such that limn→∞ un(x) = 0 for every x ∈ [0, 1],
but {un : n ∈ N} is not order-bounded in C([0, 1]). (ii) Give an example of an order-bounded sequence
〈un〉n∈N in C(Q) such that limn→∞ un(q) = 0 for every q ∈ Q, but supi≥n ui = χQ in C(Q) for every n ∈ N.
(iii) Give an example of a sequence 〈un〉n∈N in C([0, 1]) such that 〈un〉n∈N order*-converges to 0 in C([0, 1]),
but limn→∞ un(q) > 0 for every q ∈ Q ∩ [0, 1].

(j) Write out an alternative proof of 367J/367Yh based on the fact that, for a Baire space X, C(X) can

be identified with an order-dense Riesz subspace of a quotient of the space of B̂-measurable functions, where

B̂ is the Baire-property algebra of X.

(k) Let A be a ccc weakly (σ,∞)-distributive Boolean algebra. Show that there is a topology on A such
that the closure of any A ⊆ A is precisely the set of limits of order*-convergent sequences in A.

(l) Give an example of a set X and a double sequence 〈umn〉m,n∈N in RX such that limn→∞ umn(x) =
um(x) exists for every m ∈ N and x ∈ X, limm→∞ um(x) = 0 for every x ∈ X, but there is no sequence
〈vk〉k∈N in {umn : m, n ∈ N} such that limk→∞ vk(x) = 0 for every x.

(m) Let U be a Riesz space with a Riesz norm ‖ ‖. For v ∈ U+ define τv : U → [0,∞[ by setting
τv(u) = ‖|u| ∧ v‖ for every u ∈ U . Show that every τv is an F-seminorm on U , and that {τv : v ∈ U+}
defines a Hausdorff linear space topology on U .

(n) Let U be any Riesz space. For h ∈ U∼+ (356Ab) and v ∈ U+ define τvh : U → [0,∞[ by setting
τvh(u) = h(|u| ∧ v) for every u ∈ U . Show that τvh is an F-seminorm on U .

(o) Let (A, µ̄) be a σ-finite measure algebra. Show that the function (α, u) 7→ [[u > α]] : R × L0 → A

is Borel measurable when L0 = L0(A) is given the topology of convergence in measure and A is given its
measure-algebra topology.

(p) Let G be the regular open algebra of R. Show that there is no Hausdorff topology T on L0(G) such
that 〈un〉n∈N is T-convergent to u whenever 〈un〉n∈N is order*-convergent to u.

(q) In 367Qc, show that u = limB→F(B↑) uB for the norm topology of L1 iff {uB : B ∈ B} is uniformly
integrable, and that in this case uB = PBu for every B ∈ B.

(r) Let A be a Dedekind σ-complete Boolean algebra and r ≥ 1. Let E ⊆ Rr be a Borel set and write
QE = {(u1, . . . , ur) : [[(u1, . . . , ur) ∈ E]] = 1} ⊆ L0(A)r, as in 367Yg. Let h : E → R be a continuous
function and h̄ : QE → L0 = L0(A) the corresponding map. Show that if h̄ is continuous if L0 is given its
topology of convergence in measure and (L0)r the product topology.

(s) Show that 367U is true for all measure algebras, whether semi-finite or not.
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(t) Let (A, µ̄) be a measure algebra. For a ∈ Af , n ∈ N and u, v ∈ L0(A), set ρan(u, v) =
∫ n
−n

µ̄(a ∩ ([[u > α]] △ [[v > α]]))dα

the integral being with respect to Lebesgue measure. (i) Show that the integral is always defined. (ii) Show
that each ρan : L0(A)×L0(A) → [0,∞[ is a pseudometric. (iii) Show that {ρan : a ∈ Af , n ∈ N} defines the
topology of convergence in measure on L0(A).

367 Notes and comments I have given a very general definition of ‘order*-convergence’. The general
theory of convergence structures on ordered spaces is complex and has many traps for the unwary. I have
tried to lay out a safe path to the results which are important in the context of this book. But the propositions
here are necessarily full of little conditions (e.g., the requirement that U should be Archimedean in 367E)
whose significance may not be immediately obvious. In particular, the definition is very much better adapted
to distributive lattices than to others (367Yc, 367Yd). It is useful in the study of Riesz spaces and Boolean
algebras largely because these satisfy strong distributive laws (313B, 352E). The special feature which
distinguishes the definition here from other definitions of order-convergence is the fact that it can be applied
to sequences which are not order-bounded. For order-bounded sequences there are useful simplifications
(367Be-f), but the Martingale Theorem (367J), for instance, if we want to express it in terms of its natural
home in the Riesz space L1, refers to sequences which are hardly ever order-bounded.

The * in the phrase ‘order*-convergent’ is supposed to be a warning that it may not represent exactly the
concept you expect. I think nearly any author using the phrase ‘order-convergent’ would accept sequences
fulfilling the conditions of 367Bf; but beyond this no standard definitions have taken root.

The fact that order*-convergent sequences in an L0 space are order-bounded (367G) is actually one of
the characteristic properties of L0. Related ideas will be important in the next section (368A, 368M).

It is one of the outstanding characteristics of measure algebras in this context that they provide non-
trivial linear space topologies on their L0 spaces, related in striking ways to the order structure. Not all L0

spaces have such topologies (367Yp). A topology corresponding to ‘convergence in measure’ can be defined
on L0(A) for any Maharam algebra A; see 393K below.

367T shows that the topology of convergence in measure on L0(A) is (at least for semi-finite measure
algebras) determined by the Riesz space structure of L0; and that indeed the same is true of its order-dense
Riesz subspaces. This fact is important for a full understanding of the representation theorems in §369
below. If a Riesz space U can be embedded as an order-dense subspace of any such L0, then there is already
a ‘topology of convergence in measure’ on U , independent of the embedding. It is therefore not surprising
that there should be alternative descriptions of the topology of convergence in measure on the important
subspaces of L0 (367Xq, 367Ym).

For σ-finite measure algebras, the topology of convergence in measure is easily described in terms of
order-convergence (367P). For other measure algebras, the formula fails (367Xu(iii)). 367Yp shows that
trying to apply the same ideas to Riesz spaces in general gives rise to some very curious phenomena.

367V enables us to prove results which would ordinarily be associated with some form of compactness. Of
course compactness is indeed involved, as the proof through 367U makes clear; but it is weak* compactness
in (L1)∗∗, rather than in the space immediately to hand.

I hardly mention ‘uniform integrability’ in this section, not because it is uninteresting, but because I have
nothing to add at this point to 246J and the exercises in §246. But I do include translations of Lebesgue’s
Dominated Convergence Theorem (367I) and the Martingale Theorem (367J) to show how these can be
expressed in the language of this chapter.

Version of 16.9.09

368 Embedding Riesz spaces in L0

In this section I turn to the representation of Archimedean Riesz spaces as function spaces. Any Archi-
medean Riesz space U can be represented as an order-dense subspace of L0(A), where A is its band algebra
(368E). Consequently we get representations of Archimedean Riesz spaces as quotients of subspaces of RX

(368F) and as subspaces of C∞(X) (368G), and a notion of ‘Dedekind completion’ (368I-368J). Closely
associated with these is the fact that we have a very general extension theorem for order-continuous Riesz

c© 1997 D. H. Fremlin
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homomorphisms into L0 spaces (368B). I give a characterization of L0 spaces in terms of lateral completeness
(368M, 368Yd), and I discuss weakly (σ,∞)-distributive Riesz spaces (368N-368S).

368A Lemma Let A be a Dedekind σ-complete Boolean algebra, and A ⊆ (L0)+ a set with no upper
bound in L0, where L0 = L0(A). If either A is countable or A is Dedekind complete, there is a v > 0 in L0

such that nv = supu∈A u ∧ nv for every n ∈ N.

proof The hypothesis ‘A is countable or A is Dedekind complete’ ensures that cα = supu∈A [[u > α]] is
defined for each α. By 364L(a-i), c = infn∈N cn = infα∈R cα is non-zero. Now for any n ≥ 1, α ∈ R

[[supu∈A(u ∧ nχc) > α]] = supu∈A [[u > α]] ∩ [[χc > α
n ]] = [[χc > α

n ]],

because if α ≥ 0 then

supu∈A [[u > α]] = cα ⊇ c ⊇ [[χc > α
n ]],

while if α < 0 then (because A is a non-empty subset of (L0)+)

supu∈A [[u > α]] = 1 = [[χc > α
n ]].

So supu∈A u ∧ nχc = nχc for every n ≥ 1, and we can take v = χc. (The case n = 0 is of course trivial.)

368B Theorem Let A be a Dedekind complete Boolean algebra, U an Archimedean Riesz space, V an
order-dense Riesz subspace of U and T : V → L0 = L0(A) an order-continuous Riesz homomorphism. Then

T has a unique extension to an order-continuous Riesz homomorphism T̃ : U → L0.

proof (a) The key to the proof is the following: if u ≥ 0 in U , then {Tv : v ∈ V, 0 ≤ v ≤ u} is
bounded above in L0. PPP??? Suppose, if possible, otherwise. Then by 368A there is a w > 0 in L0 such that
nw = supv∈A nw ∧ Tv for every n ∈ N, where A = {v : v ∈ V, 0 ≤ v ≤ u}. In particular, there is a v0 ∈ A
such that w0 = w∧Tv0 > 0. Because U is Archimedean, infk≥1

1
ku = 0, so v0 = supk≥1(v0− 1

ku)+. Because
V is order-dense in U , v0 = supB where

B = {v : v ∈ V, 0 ≤ v ≤ (v0 − 1

k
u)+ for some k ≥ 1}.

Because T is order-continuous, Tv0 = supT [B] in L0, and there is a v1 ∈ B such that w1 = w0 ∧ Tv1 > 0.
Let k ≥ 1 be such that v1 ≤ (v0 − 1

ku)+. Then for any m ∈ N,

mv1 ∧ u ≤ (mv1 ∧ kv0) + (mv1 ∧ (u− kv0)+)

(352F(a-i))

≤ kv0 + (m+ k)(v1 ∧ (
1

k
u− v0)+) = kv0.

So for any v ∈ A, m ∈ N,

mw1 ∧ Tv = mw1 ∧mTv1 ∧ Tv ≤ T (mv1 ∧ v) ≤ T (mv1 ∧ u) ≤ T (kv0) = kTv0.

But this means that, for m ∈ N,

mw1 = mw1 ∧mw = supv∈Amw1 ∧ (mw ∧ Tv) = supv∈Amw1 ∧ Tv ≤ kTv0,

which is impossible because L0 is Archimedean and w1 > 0. XXXQQQ

(b) Because L0 is Dedekind complete, sup{Tv : v ∈ V, 0 ≤ v ≤ u} is defined in L0 for every u ∈ U . By
355F, T has a unique extension to an order-continuous Riesz homomorphism from U to L0.

368C Corollary Let A and B be Dedekind complete Boolean algebras and U , V order-dense Riesz
subspaces of L0(A), L0(B) respectively. Then any Riesz space isomorphism between U and V extends
uniquely to a Riesz space isomorphism between L0(A) and L0(B); and in this case A and B must be
isomorphic as Boolean algebras.
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proof If T : U → V is a Riesz space isomorphism, then 368B tells us that we have (unique) order-continuous

Riesz homomorphisms T̃ : L0(A) → L0(B) and T̃ ′ : L0(B) → L0(A) extending T , T−1 respectively. Now

T̃ ′T̃ : L0(A) → L0(A) is an order-continuous Riesz homomorphism agreeing with the identity on U , so must

be the identity on L0(A); similarly T̃ T̃ ′ is the identity on L0(B), and T̃ is a Riesz space isomorphism. To
see that A and B are isomorphic, recall that by 364O they can be identified with the algebras of projection
bands of L0(A) and L0(B), which must be isomorphic.

368D Corollary Suppose that A is a Dedekind σ-complete Boolean algebra, and that U is an order-
dense Riesz subspace of L0(A) which is isomorphic, as Riesz space, to L0(B) for some Dedekind complete
Boolean algebra B. Then U = L0(A) and A is isomorphic to B (so, in particular, is Dedekind complete).

proof The identity mapping U → U is surely an order-continuous Riesz homomorphism, so by 368B extends
to an order-continuous Riesz homomorphism T̃ : L0(A) → U . Now T̃ must be injective, because if u 6= 0 in

L0(A) there is a u′ ∈ U such that 0 < u′ ≤ |u|, so that 0 < u′ ≤ |T̃ u|. So we must have U = L0(A) and T̃
the identity map. By 364O again, A ∼= B.

368E Theorem Let U be any Archimedean Riesz space, and A its band algebra (353B). Then U can be
embedded as an order-dense Riesz subspace of L0(A).

proof (a) If U = {0} then A = {0}, L0 = L0(A) = {0} and the result is trivial; I shall therefore suppose
henceforth that U is non-trivial. Note that by 352Q A is Dedekind complete.

Let C ⊆ U+ \ {0} be a maximal disjoint set (in the sense of 352C); to obtain such a set apply Zorn’s
lemma to the family of all disjoint subsets of U+ \{0}. Now I can write down the formula for the embedding
T : U → L0 immediately, though there will be a good deal of work to do in justification: for u ∈ U and
α ∈ R, [[Tu > α]] will be the band in U generated by

{e ∧ (u− αe)+ : e ∈ C}.

(For once, I allow myself to use the formula [[. . . ]] without checking immediately that it represents a member
of L0; all I claim for the moment is that [[Tu > α]] is a member of A determined by u and α.)

(b) Before getting down to the main argument, I make some remarks which will be useful later.

(i) If u > 0 in U , then there is some e ∈ C such that u∧ e > 0, since otherwise we ought to have added
u to C. Thus C⊥ = {0}.

(ii) If u ∈ U and e ∈ C and α ∈ R, then v = e ∧ (αe − u)+ belongs to [[Tu > α]]⊥. PPP If e′ ∈ C, then
either e′ 6= e so

v ∧ e′ ∧ (u− αe′)+ ≤ e ∧ e′ = 0,

or e′ = e and

v ∧ e′ ∧ (u− αe′)+ ≤ (αe− u)+ ∧ (u− αe)+ = 0.

Accordingly [[Tu > α]] is included in the band {v}⊥ and v ∈ [[Tu > α]]⊥. QQQ

(c) Now I must confirm that the formula given for [[Tu > α]] is consistent with the conditions laid down
in 364Aa. PPP Take u ∈ U .

(i) If α ≤ β then

0 ≤ e ∧ (u− βe)+ ≤ e ∧ (u− αe)+ ∈ [[Tu > α]]

so e ∧ (u− βe)+ ∈ [[Tu > α]], for every e ∈ C, and [[Tu > β]] ⊆ [[Tu > α]].

(ii) Given α ∈ R, set W = supβ>α [[Tu > β]] in A, that is, the band in U generated by {e∧ (u− βe)+ :
e ∈ C, β > α}. Then for each e ∈ C,

supβ>α e ∧ (u− βe)+ = e ∧ (u− infβ>α βe)
+ = e ∧ (u− αe)+

using the general distributive laws in U (352E), the translation-invariance of the order (351D) and the fact
that U is Archimedean (to see that αe = infβ>α βe). So e∧ (u−αe)+ ∈W ; as e is arbitrary, [[Tu > α]] ⊆W
and [[Tu > α]] = W .
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(iii) Now set W = infn∈N [[Tu > n]]. For any e ∈ C, n ∈ N we have

e ∧ (ne− u)+ ∈ [[Tu > n]]⊥ ⊆W⊥,

so that

e ∧ (e− 1
nu

+)+ ≤ e ∧ (e− 1
nu)+ ∈W⊥

for every n ≥ 1 and

e = supn≥1 e ∧ (e− 1
nu

+)+ ∈W⊥.

Thus C ⊆W⊥ and W ⊆ C⊥ = {0}. So we have infn∈N [[Tu > n]] = 0.

(iv) Finally, set W = supn∈N [[Tu > −n]]. Then

e ∧ (e− 1
nu

−)+ ≤ e ∧ (e+ 1
nu)+ ≤ e ∧ (u+ ne)+ ∈W

for every n ≥ 1 and e ∈ C, so

e = supn≥1 e ∧ (e− 1
nu

−)+ ∈W

for every e ∈ C and W⊥ = {0}, W = U . Thus all three conditions of 364Aa are satisfied. QQQ

(d) Thus we have a well-defined map T : U → L0. I show next that T (u+ v) = Tu+Tv for all u, v ∈ U .
PPP I rely on the formulae in 364D and 364Ea, and on partitions of unity in A, constructed as follows. Fix
n ≥ 1 for the moment. Then we know that

supi∈Z [[Tu > i
n ]] = 1, infi∈Z [[Tu > i

n ]] = 0.

So setting

Vi = [[Tu > i
n ]] \ [[Tu > i+1

n ]] = [[Tu > i
n ]] ∩ [[Tu > i+1

n ]]⊥,

〈Vi〉i∈Z is a partition of unity in A. Similarly, 〈Wi〉i∈Z is a partition of unity, where

Wi = [[Tv > i
n ]] ∩ [[Tv > i+1

n ]]⊥.

Now, for any i, j, k ∈ Z such that i+ j ≥ k,

Vi ∩Wj ⊆ [[Tu > i
n ]] ∩ [[Tv > j

n ]] ⊆ [[Tu+ Tv > i+j
n ]] ⊆ [[Tu+ Tv > k

n ]];

thus

[[Tu+ Tv > k
n ]] ⊇ supi+j≥k Vi ∩Wj .

On the other hand, if q ∈ Q and k ∈ Z, there is an i ∈ Z such that i
n ≤ q < i+1

n , so that

[[Tu > q]] ∩ [[Tv > k+1
n − q]] ⊆ [[Tu > i

n ]] ∩ [[Tv > k−i
n ]] ⊆ supi+j≥k Vi ∩Wj ;

thus for any k ∈ Z

[[Tu+ Tv > k+1
n ]] ⊆ supi+j≥k Vi ∩Wj ⊆ [[Tu+ Tv > k

n ]].

Also, if 0 < w ∈ Vi ∩Wj and e ∈ C then

w ∧ e ∧ (u− i+1

n
e)+ = w ∧ e ∧ (v − j+1

n
e)+ = 0,

so that

w ∧ e ∧ (u+ v − i+j+2

n
e)+ = 0

because

(u+ v − i+j+2

n
e)+ ≤ (u− i+1

n
e)+ + (v − j+1

n
e)+

by 352Fc. But this means that Vi ∩Wj ∩ [[T (u+ v) > i+j+2
n ]] = {0}. Turning this round,

[[T (u+ v) > k+1
n ]] ∩ supi+j≤k−1 Vi ∩Wj = 0,

and because supi,j∈Z Vi ∩Wj = U in A,
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[[T (u+ v) > k+1
n ]] ⊆ supi+j≥k Vi ∩Wj .

Finally, if i+ j ≥ k and 0 < w ∈ Vi ∩Vj , then there is an e ∈ C such that w1 = w∧ e∧ (u− i
ne)

+ > 0; there

is an e′ ∈ C such that w2 = w1 ∧ e′ ∧ (v − j
ne

′)+ > 0; of course e = e′, and

0 < w2 ≤ e ∧ (u− i

n
e)+ ∧ (v − j

n
)+ ≤ e ∧ (u+ v − i+j

n
e)+

∈ [[T (u+ v) >
i+j

n
]] ⊆ [[T (u+ v) >

k

n
]]

using 352Fc again. This shows that w 6∈ [[T (u+ v) > k
n ]]⊥; as w is arbitrary, Vi ∩Wj ⊆ [[T (u+ v) > k

n ]]; so
we get

supi+j≥k Vi ∩Wj ⊆ [[T (u+ v) > k
n ]].

Putting these four facts together, we see that

[[T (u+ v) > k+1
n ]] ⊆ supi+j≥k Vi ∩Wj ⊆ [[Tu+ Tv > k

n ]],

[[Tu+ Tv > k+1
n ]] ⊆ supi+j≥k Vi ∩Wj ⊆ [[T (u+ v) > k

n ]]

for all n ≥ 1 and k ∈ Z. But this means that we must have

[[T (u+ v) > β]] ⊆ [[Tu+ Tv > α]], [[Tu+ Tv > β]] ⊆ [[T (u+ v) > α]]

whenever α < β. Consequently

[[Tu+ Tv > α]] = sup
β>α

[[Tu+ Tv > β]] ⊆ [[T (u+ v) > α]]

= sup
β>α

[[T (u+ v) > β]] ⊆ [[Tu+ Tv > α]]

and [[Tu+ Tv > α]] = [[T (u+ v) > α]] for every α, that is, T (u+ v) = Tu+ Tv. QQQ

(e) The hardest part is over. If u ∈ U , γ > 0 and α ∈ R, then for any e ∈ C

min(1,
1

γ
)(e ∧ (γu− αe)+) ≤ e ∧ (u− α

γ
e)+ ≤ max(1,

1

γ
)(e ∧ (γu− αe)+),

so

[[T (γu) > α]] = [[Tu > α
γ ]] = [[γTu > α]];

as α is arbitrary, γTu = T (γu); as γ and u are arbitrary, T is linear. (We need only check linearity for γ > 0
because we know from the additivity of T that T (−u) = −Tu for every u.)

(f) To see that T is a Riesz homomorphism, take any u ∈ U and α ∈ R and consider the band
[[Tu > α]] ∪ [[−Tu > α]] = [[|Tu| > α]] (by 364L(a-ii)). This is the band generated by {e ∧ (u − αe)+ : e ∈
C} ∪ {e ∧ (−u− αe)+ : e ∈ C}. But this must also be the band generated by

{(e ∧ (u− αe)+) ∨ (e ∧ (−u− αe)+) : e ∈ C} = {e ∧ (|u| − αe)+ : e ∈ C},

which is [[T |u| > α]]. Thus [[|Tu| > α]] = [[T |u| > α]] for every α and |Tu| = T |u|. As u is arbitrary, T is a
Riesz homomorphism.

(g) To see that T is injective, take any non-zero u ∈ U . Then there must be some e ∈ C such that
|u| ∧ e 6= 0, and some α > 0 such that |u| ∧ e 6≤ αe, so that e ∧ (|u| − αe)+ 6= 0 and [[T |u| > α]] 6= {0} and
T |u| 6= 0 and Tu 6= 0.

Thus T embeds U as a Riesz subspace of L0.

(h) Finally, I must check that T [U ] is order-dense in L0. PPP Let p > 0 in L0. Then there is some α > 0
such that V = [[p > α]] 6= 0. Take u > 0 in V . Let e ∈ C be such that u∧ e > 0. Then v = u∧ αe > 0. Now
e∧ (v−αe)+ = 0; but also e′ ∧ v = 0 for every e′ ∈ C distinct from e, so that [[Tv > α]] = {0}. Next, v ∈ V ,
so e′ ∧ (v− βe′)+ ∈ V whenever e′ ∈ C and β ≥ 0, and [[Tv > β]] ⊆ V for every β ≥ 0. Accordingly we have
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[[Tv > β]] = {0} ⊆ [[p > β]] if β ≥ α,

⊆ V ⊆ [[p > β]] if 0 ≤ β < α,

= U = [[p > β]] if β < 0,

and Tv ≤ p. Also Tv > 0, by (g). As p is arbitrary, T [U ] is order-dense in L0. QQQ

368F Corollary A Riesz space U is Archimedean iff it is isomorphic to a Riesz subspace of some reduced
power RX |F , where X is a set and F is a filter on X such that

⋂
n∈N Fn ∈ F whenever 〈Fn〉n∈N is a sequence

in F .

proof (a) If U is an Archimedean Riesz space, then by 368E there is a space of the form L0 = L0(A) such
that U can be embedded into L0. As in the proof of 364D, L0 is isomorphic to some space of the form
L

0(Σ)/W, where Σ is a σ-algebra of subsets of some set X and W = {f : f ∈ L
0, {x : f(x) 6= 0} ∈ I}, I

being a σ-ideal of Σ. But now F = {A : A∪E = X for some E ∈ I} is a filter on X such that
⋂
n∈N Fn ∈ F

for every sequence 〈Fn〉n∈N in F . (I am passing over the trivial case X ∈ I, since then U must be {0}.)
And L

0/W is (isomorphic to) the image of L0 in RX |F , since W = {f : f ∈ L
0, {x : f(x) = 0} ∈ F}. Thus

U is isomorphic to a Riesz subspace of RX |F .

(b) On the other hand, if F is a filter on X closed under countable intersections, then W = {f : f ∈
RX , {x : f(x) = 0} ∈ F} is a sequentially order-closed solid linear subspace of the Dedekind σ-complete
Riesz space RX , so that RX |F = RX/W is Dedekind σ-complete (353K(a-iii)) and all its Riesz subspaces
must be Archimedean (353Ia, 351Rc).

368G Corollary Every Archimedean Riesz space U is isomorphic to an order-dense Riesz subspace of
some space C∞(X) (definition: 364V), where X is an extremally disconnected compact Hausdorff space.

proof Let Z be the Stone space of the band algebra A of U . Because A is Dedekind complete (352Q again),
Z is extremally disconnected and A can be identified with the regular open algebra RO(Z) of Z (314S). By
364V, L0(RO(Z)) can be identified with C∞(Z). So an embedding of U as an order-dense Riesz subspace
of L0(A) (368E) can be regarded as an embedding of U as an order-dense Riesz subspace of C∞(Z).

368H Corollary Any Dedekind complete Riesz space U is isomorphic to an order-dense solid linear
subspace of L0(A) for some Dedekind complete Boolean algebra A.

proof Embed U in L0 = L0(A) as in 368E; because U is order-dense in L0 and (in itself) Dedekind complete,
it is solid (353L).

368I Corollary Let U be an Archimedean Riesz space. Then U can be embedded as an order-dense
Riesz subspace of a Dedekind complete Riesz space V in such a way that the solid linear subspace of V
generated by U is V itself, and this can be done in essentially only one way. If W is any other Dedekind
complete Riesz space and T : U → W is an order-continuous positive linear operator, there is a unique
positive linear operator T̃ : V →W extending T .

proof By 368E, we may suppose that U is actually an order-dense Riesz subspace of L0(A), where A is a
Dedekind complete Boolean algebra. In this case, we can take V to be the solid linear subspace generated
by U , that is, {v : |v| ≤ u for some u ∈ U}; being a solid linear subspace of the Dedekind complete Riesz
space L0(A), V is Dedekind complete, and of course U is order-dense in V .

If W is any other Dedekind complete Riesz space and T : U → W is an order-continuous positive linear
operator, then for any v ∈ V + there is a u0 ∈ U such that v ≤ u0, so that Tu0 is an upper bound for
{Tu : u ∈ U, 0 ≤ u ≤ v}; as W is Dedekind complete, supu∈U,0≤u≤v Tu is defined in W . By 355Fa, T has a
unique extension to an order-continuous positive linear operator from V to W .

In particular, if V1 is another Dedekind complete Riesz space in which U can be embedded as an order-
dense Riesz subspace, this embedding of U extends to an embedding of V ; since V is Dedekind complete,
its copy in V1 must be a solid linear subspace, so if V1 is the solid linear subspace of itself generated by U ,
we get an identification between V and V1, uniquely determined by the embeddings of U in V and V1.
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368J Definition If U is an Archimedean Riesz space, a Dedekind completion of U is a Dedekind
complete Riesz space V together with an embedding of U in V as an order-dense Riesz subspace of V such
that the solid linear subspace of V generated by U is V itself. 368I tells us that every Archimedean Riesz
space U has an essentially unique Dedekind completion, so that we may speak of ‘the’ Dedekind completion
of U .

368K This is a convenient point at which to give a characterization of the Riesz spaces L0(A).

Lemma Let A be a Dedekind σ-complete Boolean algebra. Suppose that A ⊆ L0(A)+ is disjoint. If either
A is countable or A is Dedekind complete, A is bounded above in L0(A).

proof If A = ∅, this is trivial; suppose that A is not empty. For n ∈ N, set an = supu∈A [[u > n]]; this
is always defined; set a = infn∈N an. Now a = 0. PPP??? Otherwise, there must be a u ∈ A such that
a′ = a ∩ [[u > 0]] 6= 0, since a ⊆ a0. But now, for any n, and any v ∈ A \ {u},

a′ ∩ [[v > n]] ⊆ [[u > 0]] ∩ [[v > 0]] = 0,

so that a′ ⊆ [[u > n]]. As n is arbitrary, infn∈N [[u > n]] 6= 0, which is impossible. XXXQQQ
By 364L(a-i), A is bounded above.

368L Definition A Riesz space U is called laterally complete or universally complete if A is
bounded above whenever A ⊆ U+ is disjoint.

368M Theorem Let U be an Archimedean Riesz space. Then the following are equiveridical:
(i) there is a Dedekind complete Boolean algebra A such that U is isomorphic to L0(A);
(ii) U is Dedekind σ-complete and laterally complete;
(iii) whenever V is an Archimedean Riesz space, V0 is an order-dense Riesz subspace of V and T : V0 → U

is an order-continuous Riesz homomorphism, there is a positive linear operator T̃ : V → U extending T .

proof (a)(i)⇒(ii) and (i)⇒(iii) are covered by 368K and 368B.

(b)(ii)⇒(i) Assume (ii). By 368E, we may suppose that U is actually an order-dense Riesz subspace of
L0 = L0(A) for a Dedekind complete Boolean algebra A.

(ααα) If u ∈ U+ and a ∈ A then u × χa ∈ U . PPP Set A = {v : v ∈ U, 0 ≤ v ≤ χa}, and let C ⊆ A be
a maximal disjoint set; then w = supC is defined in U , and is also the supremum in L0. Set b = [[w > 0]].
As w ≤ χa, b ⊆ a. ??? If b 6= a, then χ(a \ b) > 0, and there is a v′ ∈ U such that 0 < v′ ≤ χ(a \ b); but
now v′ ∈ A and v′ ∧ w = 0, so v′ ∧ v = 0 for every v ∈ C, and we ought to have added v′ to C. XXX Thus
[[w > 0]] = a.

Now consider u′ = supn∈N u∧nw; as U is Dedekind σ-complete, u′ ∈ U . Since [[u′ > 0]] ⊆ a, u′ ≤ u×χa.
On the other hand,

u× χ[[w > 1
n ]] × χ[[u ≤ n]] ≤ u ∧ n2w ≤ u′

for every n ≥ 1, so, taking the supremum over n, u× χa ≤ u′. Accordingly

u× χa = u′ ∈ U ,

as required. QQQ

(βββ) If w ≥ 0 in L0, there is a u ∈ U such that 1
2w ≤ u ≤ w. PPP Set

A = {u : u ∈ U, 0 ≤ u ≤ w},

C = {a : a ∈ A, a ⊆ [[u− 1
2w ≥ 0]] for some u ∈ A}.

Then supA = w, so C is order-dense in A. (If a ∈ A \ {0}, either a ∩ [[w > 0]] = 0 and a ⊆ [[0 − 1
2w ≥ 0]], so

a ∈ C, or there is a u ∈ U such that 0 < u ≤ w × χa. In the latter case there is some n such that 2nu ≤ w
and 2n+1u 6≤ w, and now c = a ∩ [[2nu− 1

2w ≥ 0]] is a non-zero member of C included in a.) Let D ⊆ C be

a partition of unity and for each d ∈ D choose ud ∈ A such that d ⊆ [[ud − 1
2w ≥ 0]]. By (α), ud × χd ∈ U

for every d ∈ D, so u = supd∈D ud × χd ∈ U . Now u ≤ w, but also [[u− 1
2w ≥ 0]] ⊇ d for every d ∈ D, so is

equal to 1, and u ≥ 1
2w, as required. QQQ
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(γγγ) Given w ≥ 0 in L0, we can therefore choose 〈un〉n∈N, 〈vn〉n∈N inductively such that v0 = 0 and

un ∈ U ,
1

2
(w − vn) ≤ un ≤ w − vn, vn+1 = vn + un

for every n ∈ N. Now 〈vn〉n∈N is a non-decreasing sequence in U and w − vn ≤ 2−nw for every n, so
w = supn∈N vn ∈ U .

As w is arbitrary, (L0)+ ⊆ U and U = L0 is of the right form.

(c)(iii)⇒(i) As in (b), we may suppose that U is an order-dense Riesz subspace of L0. But now apply

condition (iii) with V = L0, V0 = U and T the identity operator. There is an extension T̃ : L0 → U . If

v ≥ 0 in L0, T̃ v ≥ Tu = u whenever u ∈ U and u ≤ v, so T̃ v ≥ v, since v = sup{u : u ∈ U, 0 ≤ u ≤ v} in L0.

Similarly, T̃ (T̃ v − v) ≥ T̃ v − v. But as T̃ v ∈ U , T̃ (T̃ v) = T (T̃ v) = T̃ v and T̃ (T̃ v − v) = 0, so v = T̃ v ∈ U .
As v is arbitrary, U = L0.

368N Weakly (σ,∞)-distributive Riesz spaces We are now ready to look at the class of Riesz spaces
corresponding to the weakly (σ,∞)-distributive Boolean algebras of §316.

Definition Let U be a Riesz space. Then U is weakly (σ,∞)-distributive if whenever 〈An〉n∈N is a
sequence of non-empty downwards-directed subsets of U+, each with infimum 0, and

⋃
n∈NAn has an upper

bound in U , then

{u : u ∈ U , for every n ∈ N there is a v ∈ An such that v ≤ u}
has infimum 0 in U .

Remark Because the definition looks only at sequences 〈An〉n∈N such that
⋃
n∈NAn is order-bounded, we

can invert it, as follows: a Riesz space U is weakly (σ,∞)-distributive iff whenever 〈An〉n∈N is a sequence of
non-empty upwards-directed subsets of U+, all with supremum u0, then

{u : u ∈ U+, for every n ∈ N there is a v ∈ An such that u ≤ v}
also has supremum u0.

368O Lemma Let U be an Archimedean Riesz space. Then the following are equiveridical:
(i) U is not weakly (σ,∞)-distributive;
(ii) there are a u > 0 in U and a sequence 〈An〉n∈N of non-empty downwards-directed sets, all with

infimum 0, such that supn∈N un = u whenever un ∈ An for every n ∈ N.

proof (ii)⇒(i) is immediate from the definition of ‘weakly (σ,∞)-distributive’. For (i)⇒(ii), suppose that
U is not weakly (σ,∞)-distributive. Then there is a sequence 〈An〉n∈N of non-empty downwards-directed
sets, all with infimum 0, such that

⋃
n∈NAn is bounded above, but

A = {w : w ∈ U , for every n ∈ N there is a v ∈ An such that v ≤ w}
does not have infimum 0. Let u > 0 be a lower bound for A, and set A′

n = {u ∧ v : v ∈ An} for each n ∈ N.
Then each A′

n is a non-empty downwards-directed set with infimum 0. Let 〈un〉n∈N be a sequence such that
un ∈ A′

n for every n. Express each un as u ∧ vn where vn ∈ An. Let B be the set of upper bounds of
{vn : n ∈ N}. Then infw∈B,n∈N w − vn = 0, because U is Archimedean (353F), while B ⊆ A, so u ≤ w for
every w ∈ B. If u′ is any upper bound for {un : n ∈ N}, then

u− u′ ≤ u− u ∧ vn = (u− vn)+ ≤ (w − vn)+ = w − vn

whenever n ∈ N and w ∈ B. So u′ ≥ u. Thus u = supn∈N un. As 〈un〉n∈N is arbitrary, u and 〈A′
n〉n∈N

witness that (ii) is true.

368P Proposition (a) A regularly embedded Riesz subspace of an Archimedean weakly (σ,∞)-distribu-
tive Riesz space is weakly (σ,∞)-distributive.

(b) An Archimedean Riesz space with a weakly (σ,∞)-distributive order-dense Riesz subspace is weakly
(σ,∞)-distributive.

(c) If U is a Riesz space such that U× separates the points of U , then U is weakly (σ,∞)-distributive; in
particular, U∼ and U× are weakly (σ,∞)-distributive for every Riesz space U .
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proof (a) Suppose that U is an Archimedean Riesz space and that V ⊆ U is a regularly embedded Riesz
subspace which is not weakly (σ,∞)-distributive. Then 368O tells us that there are a v > 0 in V and
a sequence 〈An〉n∈N of non-empty downwards-directed subsets of V , all with infimum 0 in V , such that
supn∈N vn = v in V whenever vn ∈ An for every n ∈ N. Because V is regularly embedded in U , inf An = 0
in U for every n and supn∈N vn = v in U for every sequence 〈vn〉n∈N ∈ ∏

n∈NAn, so U is not weakly (σ,∞)-
distributive. Turning this round, we have (a).

(b) Let U be an Archimedean Riesz space which is not weakly (σ,∞)-distributive, and V an order-dense
Riesz subspace of U . By 368O again, there are a u∗ > 0 in U and a sequence 〈An〉n∈N of non-empty
downwards-directed sets in U , all with infimum 0, such that supn∈N un = u∗ whenever un ∈ An for every n.
Let v ∈ V be such that 0 < v ≤ u∗. Set

Bn = {w : w ∈ V , there is some u ∈ An such that v ∧ u ≤ w ≤ v}
for each n ∈ N. Because An is downwards-directed, w ∧w′ ∈ Bn for all w, w′ ∈ Bn; v ∈ Bn, so Bn 6= ∅; and
inf Bn = 0 in V . PPP Setting

C = {w : w ∈ V +, there is some u ∈ An such that w ≤ (v − u)+},

then (because V is order-dense) any upper bound for C in U is also an upper bound of {(v−u)+ : u ∈ An}.
But

supu∈An
(v − u)+ = (v − inf An)+ = v,

so v = supC in U and inf Bn = inf{v − w : w ∈ C} = 0 in U and in V . QQQ
Now if vn ∈ Bn for every n ∈ N, we can choose un ∈ An such that v ∧ un ≤ vn ≤ v for every n, so that

v = v ∧ u∗ = v ∧ supn∈N un = supn∈N v ∧ un ≤ supn∈N vn ≤ v,

and v = supn∈N vn. Thus 〈Bn〉n∈N witnesses that V is not weakly (σ,∞)-distributive.

(c) Now suppose that U× separates the points of U . In this case U is surely Archimedean (356G). ??? If U
is not weakly (σ,∞)-distributive, there are a u > 0 in U and a sequence 〈An〉n∈N of non-empty downwards-
directed sets, all with infimum 0, such that supn∈N un = u whenever un ∈ An for each n. Take f ∈ U×

such that f(u) 6= 0; replacing f by |f | if necessary, we may suppose that f > 0. Set δ = f(u) > 0. For each
n ∈ N, there is a un ∈ An such that f(un) ≤ 2−n−2δ. But in this case 〈supi<n ui〉n∈N is a non-decreasing
sequence with supremum u, so

f(u) = limn→∞ f(supi≤n ui) ≤
∑∞
i=0 f(ui) ≤ 1

2δ < f(u),

which is absurd. XXX Thus U is weakly (σ,∞)-distributive.
For any Riesz space U , U acts on U∼ as a subspace of U∼× (356F); as U surely separates the points of

U∼, so does U∼×. So U∼ is weakly (σ,∞)-distributive. Now U× is a band in U∼ (356B), so is regularly
embedded, and must also be weakly (σ,∞)-distributive, by (a) above.

368Q Theorem (a) For any Boolean algebra A, A is weakly (σ,∞)-distributive iff S(A) is weakly (σ,∞)-
distributive iff L∞(A) is weakly (σ,∞)-distributive.

(b) For a Dedekind σ-complete Boolean algebra A, L0(A) is weakly (σ,∞)-distributive iff A is weakly
(σ,∞)-distributive.

proof (a)(i) ??? Suppose, if possible, that A is weakly (σ,∞)-distributive but S = S(A) is not. By 368O, as
usual, we have a u > 0 in S and a sequence 〈An〉n∈N of non-empty downwards-directed sets in S, all with
infimum 0, such that u = supn∈N un whenever un ∈ An for every n. Let α > 0 be such that c = [[u > α]] 6= 0
(361Eg), and consider

Bn = {[[v > α]] : v ∈ An} ⊆ A

for each n ∈ N. Then each Bn is downwards-directed (because An is), and inf Bn = 0 in A (because if b is
a lower bound of Bn, αχb ≤ v for every v ∈ An). Because A is weakly (σ,∞)-distributive, there must be
some a ∈ A such that a 6⊇ c but there is, for every n ∈ N, a bn ∈ Bn such that a ⊇ bn. Take vn ∈ An such
that bn = [[vn > α]], so that

vn ≤ αχ1 ∨ ‖vn‖∞χbn ≤ αχ1 ∨ ‖u‖∞χa.
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Since u = supn∈N vn, u ≤ αχ1 ∨ ‖u‖∞χa. But in this case

c = [[u > α]] ⊆ a,

contradicting the choice of a. XXX
Thus S must be weakly (σ,∞)-distributive if A is.

(ii) Now suppose that S is weakly (σ,∞)-distributive, and let 〈Bn〉n∈N be a sequence of non-empty
downwards-directed subsets of A, all with infimum 0. Set An = {χb : b ∈ Bn} for each n; then An ⊆ S is
non-empty, downwards-directed and has infimum 0 in S, because χ : A → S is order-continuous (361Ef).
Set

A = {v : v ∈ S, for every n ∈ N there is a u ∈ An such that u ≤ v},

B = {b : b ∈ A, for every n ∈ N there is an a ∈ Bn such that a ⊆ b}.

??? If 0 is not the greatest lower bound of B, take a non-zero lower bound c. Because S is weakly (σ,∞)-
distributive, inf A = 0, and there is a v ∈ A such that χc 6≤ v. Express v as

∑n
i=0 αiχai, where 〈ai〉i≤n is

disjoint, and set a = sup{ai : i ≤ n, αi ≥ 1}; then χa ≤ v, so c 6⊆ a. For each n there is a bn ∈ Bn such that
χbn ≤ v. But in this case bn ⊆ a for each n ∈ N, so that a ∈ B; which means that c is not a lower bound
for B. XXX

Thus inf B = 0 in A. As 〈Bn〉n∈N is arbitrary, A is weakly (σ,∞)-distributive.

(iii) Thus S is weakly (σ,∞)-distributive iff A is. But S is order-dense in L∞ = L∞(A) (363C),
therefore regularly embedded (352Ne), so 368Pa-b tell us that S is weakly (σ,∞)-distributive iff L∞ is.

(b) In the same way, because S can be regarded as an order-dense Riesz subspace of L0 = L0(A) (364Ja),
L0 is weakly (σ,∞)-distributive iff S is, that is, iff A is.

368R Corollary An Archimedean Riesz space is weakly (σ,∞)-distributive iff its band algebra is weakly
(σ,∞)-distributive.

proof Let U be an Archimedean Riesz space and A its band algebra. By 368E, U is isomorphic to an
order-dense Riesz subspace of L0 = L0(A). By 368P, U is weakly (σ,∞)-distributive iff L0 is; and by 368Qb
L0 is weakly (σ,∞)-distributive iff A is.

368S Corollary If (A, µ̄) is a semi-finite measure algebra, any regularly embedded Riesz subspace (in
particular, any solid linear subspace and any order-dense Riesz subspace) of L0(A) is weakly (σ,∞)-dis-
tributive.

proof By 322F, A is weakly (σ,∞)-distributive; by 368Qb, L0(A) is weakly (σ,∞)-distributive; by 368Pa,
any regularly embedded Riesz subspace is weakly (σ,∞)-distributive.

368X Basic exercises (a) Let X be an uncountable set and Σ the countable-cocountable σ-algebra of
subsets of X. Show that there is a family A ⊆ L0 = L0(Σ) such that u ∧ v = 0 for all distinct u, v ∈ A
but A has no upper bound in L0. Show moreover that if w > 0 in L0 then there is an n ∈ N such that
nw 6= supu∈A u ∧ nw.

(b) Let U be a linear space, A a Dedekind complete Boolean algebra, and p : U → L0 = L0(A) a function
such that p(u + v) ≤ p(u) + p(v) and p(αu) = αp(u) whenever u, v ∈ U and α ≥ 0. Suppose that V ⊆ U
is a linear subspace and T : V → L0 is a linear operator such that Tv ≤ p(v) for every v ∈ V . Show that

there is a linear operator T̃ : U → L0, extending T , such that T̃ u ≤ p(u) for every u ∈ U . (Hint : part A of
the proof of 363R.)

(c) Let A be any Boolean algebra, and Â its Dedekind completion (314U). Show that L∞(Â) can be
identified with the Dedekind completions of S(A) and L∞(A).

(d) Explain how to prove 368K from 368A.
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(e) Show that any product of weakly (σ,∞)-distributive Riesz spaces is weakly (σ,∞)-distributive.

(f) Let A be a Dedekind complete weakly (σ,∞)-distributive Boolean algebra. Show that a set A ⊆ L0 =
L0(A) is order-bounded iff 〈2−nun〉n∈N order*-converges to 0 in L0 whenever 〈un〉n∈N is a sequence in A.
(Hint : use 368A. If v > 0 and v = supu∈A v∧2−nu for every n, we can find a w > 0 and a sequence 〈un〉n∈N

in A such that w ≤ 2−nun for every n.)

(g) Give a direct proof of 368S, using the ideas of 322F, but not relying on it or on 368Q.

368Y Further exercises (a) (i) Use 364T-364U to show that if X is any compact Hausdorff space then
C(X) can be regarded as an order-dense Riesz subspace of L0(RO(X)), where RO(X) is the regular open
algebra of X. (ii) Use 353N to show that any Archimedean Riesz space with order unit can be embedded as
an order-dense Riesz subspace of some L0(RO(X)). (iii) Let U be an Archimedean Riesz space and C ⊆ U+

a maximal disjoint set, as in part (a) of the proof of 368E. For e ∈ C let Ue be the solid linear subspace of U
generated by e, and let V be the solid linear subspace of U generated by C. Show that V can be embedded
as an order-dense Riesz subspace of

∏
e∈C Ue and therefore in

∏
e∈C L

0(RO(Xe)) ∼= L0(
∏
e∈C RO(Xe)) for

a suitable family of regular open algebras RO(Xe). (iv) Now use 368B to complete a proof of 368E.

(b) Let U be any Archimedean Riesz space. Let V be the family of pairs (A,B) of non-empty subsets of
U such that B is the set of upper bounds of A and A is the set of lower bounds of B. Show that V can be
given the structure of a Dedekind complete Riesz space defined by the formulae

(A1, B1) + (A2, B2) = (A,B) iff A1 +A2 ⊆ A, B1 +B2 ⊆ B,

α(A,B) = (αA,αB) if α > 0,

(A1, B1) ≤ (A2, B2) iff A1 ⊆ A2.

Show that u 7→ (]−∞, u] , [u,∞[) defines an embedding of U as an order-dense Riesz subspace of V, so that
V may be identified with the Dedekind completion of U .

(c) Work through the proof of 364T when X is compact, Hausdorff and extremally disconnected, and
show that it is easier than the general case. Hence show that 368Yb can be used to shorten the proof of
368E sketched in 368Ya.

(d) Let U be a Riesz space. Show that the following are equiveridical: (i) U is isomorphic, as Riesz space,
to L0(A) for some Dedekind σ-complete Boolean algebra A (ii) U is Dedekind σ-complete and has a weak
order unit and whenever A ⊆ U+ is countable and disjoint then A is bounded above in U .

(e) Let U be a weakly (σ,∞)-distributive Riesz space and V a Riesz subspace of U which is either solid
or order-dense. Show that V is weakly (σ,∞)-distributive.

(f) Show that C([0, 1]) is not weakly (σ,∞)-distributive. (Compare 316J.)

(g) Let A be a ccc weakly (σ,∞)-distributive Boolean algebra. Suppose we have a double sequence
〈aij〉(i,j)∈N×N in A such that 〈aij〉j∈N order*-converges to ai in A for each i, while 〈ai〉i∈N order*-converges
to a. Show that there is a strictly increasing sequence 〈n(i)〉i∈N such that 〈ai,n(i)〉i∈N order*-converges to a.

(h) Let U be a weakly (σ,∞)-distributive Riesz space with the countable sup property. Suppose we have
an order-bounded double sequence 〈uij〉(i,j)∈N×N in U such that 〈uij〉j∈N order*-converges to ui in U for
each i, while 〈ui〉i∈N order*-converges to u. Show that there is a strictly increasing sequence 〈n(i)〉i∈N such
that 〈ui,n(i)〉i∈N order*-converges to u.

(i) Let A be a ccc weakly (σ,∞)-distributive Dedekind complete Boolean algebra. Show that there is a
topology on L0 = L0(A) such that the closure of any A ⊆ L0 is precisely the set of order*-limits of sequences
in A. (Cf. 367Yk.)
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(j) Let U be a weakly (σ,∞)-distributive Riesz space and f : U → R a positive linear functional; write fτ
for the component of f in U×. (i) Show that for any u ∈ U+ there is an upwards-directed A ⊆ [0, u], with
supremum u, such that fτ (u) = supv∈A f(v). (See 356Xe, 362D.) (ii) Show that if f is strictly positive, so
is fτ . (Compare 391D.)

368 Notes and comments 368A-368B are manifestations of a principle which will reappear in §375:
Dedekind complete L0 spaces are in some sense ‘maximal’. If we have an order-dense subspace U of such an
L0, then any Archimedean Riesz space including U as an order-dense subspace can itself be embedded in L0

(368B). In fact this property characterizes Dedekind complete L0 spaces (368M). Moreover, any Archimedean
Riesz space U can be embedded in this way (368E); by 368C, the L0 space (though not the embedding) is
unique up to isomorphism. If U and V are Archimedean Riesz spaces, each embedded as an order-dense
Riesz subspace of a Dedekind complete L0 space, then any order-continuous Riesz homomorphism from
U to V extends uniquely to the L0 spaces (368B). If one Dedekind complete L0 space is embedded as an
order-dense Riesz subspace of another, they must in fact be the same (368D). Thus we can say that every
Archimedean Riesz space U can be extended to a Dedekind complete L0 space, in a way which respects
order-continuous Riesz homomorphisms, and that this extension is maximal, in that U cannot be order-dense
in any larger space.

The proof of 368E which I give is long because I am using a bare-hands approach. Alternative methods
shift the burdens. For instance, if we take the trouble to develop a direct construction of the ‘Dedekind
completion’ of a Riesz space (368Yb), then we need prove the theorem only for Dedekind complete Riesz
spaces. A more substantial aid is the representation theorem for Archimedean Riesz spaces with order unit
(353N); I sketch an argument in 368Ya. The drawback to this approach is the proof of Theorem 364T, which
seems to be quite as long as the direct proof of 368E which I give here. Of course we need 364T only for
compact Hausdorff spaces, which are usefully easier than the general case (364U, 368Yc).

368G is a version of Ogasawara’s representation theorem for Archimedean Riesz spaces. Both this and
368F can be regarded as expressions of the principle that an Archimedean Riesz space is ‘nearly’ a space of
functions.

I have remarked before on the parallels between the theories of Boolean algebras and Archimedean Riesz
spaces. The notion of ‘weak (σ,∞)-distributivity’ is one of the more striking correspondences. (Compare, for
instance, 316Xi(i) with 368Pa.) What is really important to us, of course, is the fact that the function spaces
of measure theory are mostly weakly (σ,∞)-distributive, by 368S. Of course this is easy to prove directly
(368Xg), but I think that the argument through 368Q gives a better idea of what is really happening here.
Some of the features of ‘order*-convergence’, as defined in §367, are related to weak (σ,∞)-distributivity
(compare 367Yi, 367Yp); in 368Yi I describe a topology which can be thought of as an abstract version of
the topology of convergence in measure on the L0 space of a σ-finite measure algebra (367M).

Version of 23.11.16

369 Banach function spaces

In this section I continue the work of §368 with results which involve measure algebras. The first step is
a modification of the basic representation theorem for Archimedean Riesz spaces. If U is any Archimedean
Riesz space, it can be represented as a subspace of L0 = L0(A), where A is its band algebra (368E); now if
U× separates the points of U , there is a measure rendering A a localizable measure algebra (369A, 369Xa).
Moreover, we get a simultaneous representation of U× as a subspace of L0 (369C-369D), the duality between
U and U× corresponding exactly to the familiar duality between Lp and Lq. In particular, every L-space
can be represented as an L1-space (369E).

Still drawing inspiration from the classical Lp spaces, we have a general theory of ‘associated Fatou
norms’ (369F-369M, 369R). I include notes on the spaces M1,∞, M∞,1 and M1,0 (369N-369Q), which will
be particularly useful in the next chapter.

369A Theorem Let U be a Riesz space such that U× separates the points of U . Then U can be
embedded as an order-dense Riesz subspace of L0 =L0(A) for some localizable measure algebra (A, µ̄).

c© 1996 D. H. Fremlin
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proof (a) Consider the canonical map S : U → U××. We know that this is a Riesz homomorphism onto an
order-dense Riesz subspace of U×× (356I). Because U× separates the points of U , S is injective. Let A be
the band algebra of U×× and T : U×× → L0 an injective Riesz homomorphism onto an order-dense Riesz
subspace V of L0, as in 368E. The composition TS : U → L0 is now an injective Riesz homomorphism,
so embeds U as a Riesz subspace of L0, which is order-dense because V is order-dense in L0 and TS[U ] is
order-dense in V (352N(c-iii)). Thus all that we need to find is a measure µ̄ on A rendering it a localizable
measure algebra.

(b) Note that V is isomorphic, as Riesz space, to U××, which is Dedekind complete (356B), so V must
be solid in L0 (353L). Also V × must separate the points of V (356Lb).

Let D be the set of those d ∈ A such that the principal ideal Ad is measurable in the sense that there
is some ν̄ for which (Ad, ν̄) is a totally finite measure algebra. Then D is order-dense in A. PPP Take any
non-zero a ∈ A. Because V is order-dense, there is a non-zero v ∈ V such that v ≤ χa. Take h ≥ 0 in V ×

such that h(v) > 0. Then there is a v′ such that 0 < v′ ≤ v and h(w) > 0 whenever 0 < w ≤ v′ in V (356H).
Let α > 0 be such that d = [[v′ > α]] 6= 0. Then χb ≤ 1

αv
′ ∈ V whenever b ∈ Ad. Set ν̄b = h(χb) ∈ [0,∞[ for

b ∈ Ad. Because the map b 7→ χb : A → L0 is additive and order-continuous, the map b 7→ χb : Ad → V also
is, and ν̄ = hχ must be additive and order-continuous; in particular, ν̄(supn∈N bn) =

∑∞
n=0 ν̄bn whenever

〈bn〉n∈N is a disjoint sequence in Ad. Moreover, if b ∈ Ad is non-zero, then 0 < αχb ≤ v′, so ν̄b = h(χb) > 0.
Thus (Ad, ν̄) is a totally finite measure algebra, and d ∈ D, while 0 6= d ⊆ a. As a is arbitrary, D is
order-dense. QQQ

(c) By 313K, there is a partition of unity C ⊆ D. For each c ∈ C, let ν̄c : Ac → [0,∞[ be a functional
such that (Ac, ν̄c) is a totally finite measure algebra. Define µ̄ : A → [0,∞] by setting µ̄a =

∑
c∈C ν̄c(a ∩ c)

for every a ∈ A. Then (A, µ̄) is a localizable measure algebra. PPP (i) µ̄0 =
∑
c∈C ν̄0 = 0. (ii) If 〈an〉n∈N is a

disjoint sequence in A with supremum a, then

µ̄a =
∑
c∈C ν̄c(a ∩ c) =

∑
c∈C,n∈N ν̄c(an ∩ c) =

∑∞
n=0 µ̄an.

(iii) If a ∈ A \ {0}, then there is a c ∈ C such that a ∩ c 6= 0, so that µ̄a ≥ ν̄c(a ∩ c) > 0. Thus (A, µ̄) is
a measure algebra. (iv) Moreover, in (iii), µ̄(a ∩ c) = ν̄c(a ∩ c) is finite. So (A, µ̄) is semi-finite. (v) A is
Dedekind complete, being a band algebra (352Q), so (A, µ̄) is localizable. QQQ

369B Corollary Let U be a Banach lattice with order-continuous norm. Then U can be embedded as
an order-dense solid linear subspace of L0(A) for some localizable measure algebra (A, µ̄).

proof By 356Dd, U× = U∗, which separates the points of U , by the Hahn-Banach theorem (3A5Ae). So
369A tells us that U can be embedded as an order-dense Riesz subspace of an appropriate L0(A). But also
U is Dedekind complete (354Ee), so its copy in L0(A) must be solid, as in 368H.

369C The representation in 369A is complemented by the following result, which is a kind of general-
ization of 365L and 366Dc.

Theorem Let (A, µ̄) be a semi-finite measure algebra, and U ⊆ L0 = L0(A) an order-dense Riesz subspace.
Set

V = {v : v ∈ L0, v × u ∈ L1 for every u ∈ U},

writing L1 for L1(A, µ̄) ⊆ L0. Then V is a solid linear subspace of L0, and we have an order-continuous
injective Riesz homomorphism T : V → U× defined by setting

(Tv)(u) =
∫
u× v for all u ∈ U , v ∈ V .

The image of V is order-dense in U×. If (A, µ̄) is localizable, then T is surjective, so is a Riesz space
isomorphism between V and U×.

proof (a)(i) Because × : L0 ×L0 → L0 is bilinear and L1 is a linear subspace of L0, V is a linear subspace
of L0. If u ∈ U , v ∈ V , w ∈ L0 and |w| ≤ |v|, then

|w × u| = |w| × |u| ≤ |v| × |u| = |v × u| ∈ L1;

as L1 is solid, w × u ∈ L1; as u is arbitrary, w ∈ V ; this shows that V is solid.
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(ii) By the definition of V , (Tv)(u) is defined in R whenever u ∈ U and v ∈ V . Because × is bilinear
and

∫
is linear, Tv : U → R is linear for every v ∈ V , and T is a linear functional from V to the space of

linear operators from U to R.

(iii) If u ≥ 0 in U and v ≥ 0 in V , then u× v ≥ 0 in L1 and (Tv)(u) =
∫
u× v ≥ 0. This shows that

T is a positive linear operator from V to U∼.

(iv) If v ≥ 0 in V and A ⊆ U is a non-empty downwards-directed set with infimum 0 in U , then
inf A = 0 in L0, because U is order-dense (352Nb). Consequently infu∈A u × v = 0 in L0 and in L1

(364B(b-ii), 353Pa), and

infu∈A(Tv)(u) = infu∈A
∫
u× v = 0

(because
∫

is order-continuous). As A is arbitrary, Tv is order-continuous. As v is arbitrary, T [V ] ⊆ U×.

(v) If v ∈ V and u0 ≥ 0 in U , set a = [[v > 0]]. Then v+ = v×χa. Set A = {u : u ∈ U, 0 ≤ u ≤ u0×χa}.
Because U is order-dense in L0, u0 × χa = supA in L0. Because × and

∫
are order-continuous,

(Tv)+(u0) ≥ sup
u∈A

(Tv)(u) = sup
u∈A

∫
v × u

=

∫
v × u0 × χa =

∫
v+ × u0 = T (v+)(u0).

As u0 is arbitrary, (Tv)+ ≥ Tv+. But because T is a positive linear operator, we must have Tv+ ≥ (Tv)+,
so that Tv+ = (Tv)+. As v is arbitrary, T is a Riesz homomorphism.

(vi) Now T is injective. PPP If v 6= 0 in V , there is a u > 0 in U such that u ≤ |v|, because U is
order-dense. In this case u× |v| > 0 so

∫
u× |v| > 0. Accordingly |Tv| = T |v| 6= 0 and Tv 6= 0. QQQ

(b) Putting (a-i) to (a-vi) together, we see that T is an injective Riesz homomorphism from V to U×.
All this is easy. The point of the theorem is the fact that T [V ] is order-dense in U×.

PPP Take h > 0 in U×. Let U1 be the solid linear subspace of L0 generated by U . Then U is an order-dense
Riesz subspace of U1, h : U → R is an order-continuous positive linear functional, and sup{h(u) : u ∈ U, 0 ≤
u ≤ v} is defined in R for every v ≥ 0 in U1; so we have an extension h̃ of h to U1 such that h̃ ∈ U×

1 (355F).
Set S1 = S(A) ∩ U1; then S1 is an order-dense Riesz subspace of U1, because S(A) is order-dense in L0

and U1 is solid in L0. Note that S1 is the linear span of {χc : c ∈ I}, where I = {c : c ∈ A, χc ∈ U1}, and
that I is an ideal in A.

Because h 6= 0, h̃ 6= 0; there must therefore be a u0 ∈ S1 such that h̃(u0) > 0, and a d ∈ I such that

h̃(χd) > 0. For a ∈ A, set νa = h̃χ(d ∩ a). Because ∩ , χ and h̃ are all order-continuous, so is ν, and
ν : A → R is a non-negative completely additive functional.

By 365Ea, there is a v ∈ L1 such that ∫
a
v = νa = h̃χ(d ∩ a)

for every a ∈ A; of course v ≥ 0. We have
∫
u× v ≤ h̃(u) whenever u = χa for a ∈ I, and therefore for every

u ∈ S+
1 . If u ∈ U+, then A = {u′ : u′ ∈ S1, 0 ≤ u′ ≤ u} is upwards-directed, supA = u and

supu′∈A

∫
v × u′ ≤ supu′∈A h̃(u′) = h̃(u) = h(u)

is finite, so v × u = supu∈A′ v × u′ belongs to L1 (365Df) and
∫
v × u ≤ h(u). As u is arbitrary, v ∈ V and

Tv ≤ h. At the same time, because χd ∈ U1, there is a w ∈ U such that χd ≤ w and

(Tv)(w) =
∫
v × w ≥

∫
d
v = h̃(χd) > 0

and Tv > 0. As h is arbitrary, T [V ] is order-dense. QQQ
It follows that T is order-continuous (352Nb again), as can also be easily proved by the argument of (a-iv)

above.

(c) Now suppose that (A, µ̄) is localizable, that is, that A is Dedekind complete. T−1 : T [V ] → V is
a Riesz space isomorphism, so certainly an order-continuous Riesz homomorphism; because V is a solid
linear subspace of L0, T−1 is still an injective order-continuous Riesz homomorphism when regarded as a
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map from T [V ] to L0. Since T [V ] is order-dense in U×, T−1 has an extension to an order-continuous Riesz
homomorphism Q : U× → L0 (368B). But Q[U×] ⊆ V . PPP Take h ≥ 0 in U× and u ≥ 0 in U . Then
B = {g : g ∈ T [V ], 0 ≤ g ≤ h} is upwards-directed and has supremum h. For g ∈ B, we know that
u× T−1g ∈ L1 and

∫
u× T−1g = g(u), by the definition of T . But this means that

supg∈B
∫
u× T−1g = supg∈B g(u) = h(u) <∞.

Since {u× T−1g : g ∈ B} is upwards-directed, it follows that

u×Qh = supg∈B u×Qg = supg∈B u× T−1g ∈ L1

by 365Df again. As u is arbitrary, Qh ∈ V . As h is arbitrary (and Q is linear), Q[U×] ⊆ V . QQQ
Also Q is injective. PPP If h ∈ U× is non-zero, there is a v ∈ V such that 0 < Tv ≤ |h|, so that

|Qh| = Q|h| ≥ QTv = v > 0

and Qh 6= 0. QQQ Since QT is the identity on V , Q and T must be the two halves of a Riesz space isomorphism
between V and U×.

369D Corollary Let U be any Riesz space such that U× separates the points of U . Then there is a
localizable measure algebra (A, µ̄) such that the pair (U,U×) can be represented by a pair (V,W ) of order-
dense Riesz subspaces of L0 = L0(A) such that W = {w : w ∈ L0, v × w ∈ L1 for every v ∈ V }, writing L1

for L1(A, µ̄). In this case, U×× becomes represented by Ṽ = {v : v ∈ L0, v×w ∈ L1 for every w ∈W} ⊇ V .

proof Put 369A and 369C together. The construction of 369A finds (A, µ̄) and an order-dense V which is

isomorphic to U , and 369C identifies W with V × and W× with Ṽ . To check that W is order-dense, take
any u > 0 in L0. There is a v ∈ V such that 0 < v ≤ u. There is an h ∈ (V ×)+ such that h(v) > 0, so
there is a w ∈ W+ such that w × v 6= 0, that is, w ∧ v 6= 0. But now w ∧ v ∈ W , because W is solid, and
0 < w ∧ v ≤ u.

Remark Thus the canonical embedding of U in U×× (356I) is represented by the embedding V ⊂→ Ṽ ; U ,

or V , is ‘perfect’ iff V = Ṽ .

369E Kakutani’s theorem (Kakutani 1941) If U is any L-space, there is a localizable measure algebra
(A, µ̄) such that U is isomorphic, as Banach lattice, to L1 =L1(A, µ̄).

proof U is a perfect Riesz space, and U× = U∗ has an order unit
∫

defined by saying that
∫
u = ‖u‖ for

u ≥ 0 (356P). By 369D, we can find a localizable measure algebra (A, µ̄) and an identification of the pair
(U,U×), as dual Riesz spaces, with a pair (V,W ) of subspaces of L0 = L0(A); and V will be {v : v×w ∈ L1 for
every w ∈W}. But W , like U×, must have an order unit; call it e. Because W is order-dense, [[e > 0]] must
be 1 and e must have a multiplicative inverse 1

e in L0 (364N). This means that V must be {v : v × e ∈ L1},

so that v 7→ v × e is a Riesz space isomorphism between V and L1, which gives a Riesz space isomorphism
between U and L1. Moreover, if we write ‖ ‖′ for the norm on V corresponding to the norm of U , we have

‖v‖′ =
∫
|v| × e =

∫
|v × e| = ‖v × e‖1 for v ∈ V .

Thus the Riesz space isomorphism between U and L1 is norm-preserving, and U and L1 are isomorphic as
Banach lattices.

369F The Lp spaces are leading examples for a general theory of normed subspaces of L0, which I
proceed to sketch in the rest of the section.

Definition Let A be a Dedekind σ-complete Boolean algebra. An extended Fatou norm on L0 = L0(A)
is a function τ : L0 → [0,∞] such that

(i) τ(u+ v) ≤ τ(u) + τ(v) for all u, v ∈ L0;
(ii) τ(αu) = |α|τ(u) whenever u ∈ L0 and α ∈ R (counting 0 · ∞ as 0, as usual);
(iii) τ(u) ≤ τ(v) whenever |u| ≤ |v| in L0;
(iv) supu∈A τ(u) = τ(v) whenever A ⊆ (L0)+ is a non-empty upwards-directed set with supremum v in

L0;
(v) τ(u) > 0 for every non-zero u ∈ L0;
(vi) whenever u > 0 in L0 there is a v ∈ L0 such that 0 < v ≤ u and τ(v) <∞.
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369G Proposition Let A be a Dedekind σ-complete Boolean algebra and τ an extended Fatou norm
on L0 = L0(A). Then Lτ = {u : u ∈ L0, τ(u) < ∞} is an order-dense solid linear subspace of L0, and
τ , restricted to Lτ , is a Fatou norm under which Lτ is a Banach lattice. If 〈un〉n∈N is a non-decreasing
norm-bounded sequence in (Lτ )+, then it has a supremum in Lτ ; if A is Dedekind complete, then Lτ has
the Levi property.

proof (a) By (i), (ii) and (iii) of 369F, Lτ is a solid linear subspace of L0; by (vi), it is order-dense.
Hypotheses (i), (ii), (iii) and (v) show that τ is a Riesz norm on Lτ , while (iv) shows that it is a Fatou
norm.

(b)(i) Suppose that 〈un〉n∈N is a non-decreasing norm-bounded sequence in (Lτ )+. Then u = supn∈N un
is defined in L0. PPP??? Otherwise, there is a v > 0 in L0 such that kv = supn∈N kv∧un for every k ∈ N (368A).
By (v)-(vi) of 369F, there is a v′ such that 0 < v′ ≤ v and 0 < τ(v′) < ∞. Now kv′ = supn∈N kv

′ ∧ un for
every k, so

kτ(v′) = τ(kv′) = supn∈N τ(kv′ ∧ un) ≤ supn∈N τ(un)

for every k, using 369F(iv), and supn∈N τ(un) = ∞, contrary to hypothesis. XXXQQQ By 369F(iv) again,
τ(u) = supn∈N τ(un) <∞, so that u ∈ Lτ and u = supn∈N un in Lτ .

(ii) It follows that Lτ is complete under τ . PPP Let 〈un〉n∈N be a sequence in Lτ such that τ(un+1−un) ≤
2−n for every n ∈ N. Set vmn =

∑n
i=m |ui+1 − ui| for m ≤ n; then τ(vmn) ≤ 2−m+1 for every n, so by (i)

just above vm = supn∈N vmn is defined in Lτ , and τ(vm) ≤ 2−m+1. Now vm = |um+1 − um|+ vm+1 for each
m, so 〈um−vm〉m∈N is non-decreasing and 〈um+vm〉m∈N is non-increasing, while um−vm ≤ um ≤ um+vm
for every m. Accordingly u = supm∈N um − vm is defined in Lτ and |u − um| ≤ vm for every m. But this
means that limm→∞ τ(u− um) ≤ limm→∞ τ(vm) = 0 and u = limm→∞ um in Lτ . As 〈un〉n∈N is arbitrary,
Lτ is complete. QQQ

(c) Now suppose that A is Dedekind complete and A ⊆ (Lτ )+ is a non-empty upwards-directed norm-
bounded set in Lτ . By the argument of (b-i) above, using the other half of 368A, supA is defined in L0 and
belongs to Lτ . As A is arbitrary, Lτ has the Levi property.

369H Associate norms: Definition Let (A, µ̄) be a semi-finite measure algebra, and τ an extended
Fatou norm on L0 = L0(A). Define τ ′ : L0 → [0,∞] by setting

τ ′(u) = sup{‖u× v‖1 : v ∈ L0, τ(v) ≤ 1}
for every u ∈ L0; then τ ′ is the associate of τ . (The word suggests a symmetric relationship; it is justified
by the next theorem.)

369I Theorem Let (A, µ̄) be a semi-finite measure algebra, and τ an extended Fatou norm on L0 =
L0(A). Then

(i) its associate τ ′ is also an extended Fatou norm on L0;
(ii) τ is the associate of τ ′;
(iii) ‖u× v‖1 ≤ τ(u)τ ′(v) for all u, v ∈ L0.

proof (a) Before embarking on the proof that τ ′ is an extended Fatou seminorm on L0, I give the greater
part of the argument needed to show that τ = τ ′′, where

τ ′′(u) = sup{‖u× w‖1 : w ∈ L0, τ ′(w) ≤ 1}
for every u ∈ L0.

(ααα) Set

B = {u : u ∈ L1, τ(u) ≤ 1},

writing L1 for L1(A, µ̄). Then B is a convex set in L1 and is closed for the norm topology of L1. PPP
Suppose that u belongs to the closure of B in L1. Then for each n ∈ N we can choose un ∈ B such that
‖u− un‖1 ≤ 2−n. Set vmn = infm≤i≤n |ui| for m ≤ n, and

vm = infn≥m vmn = infn≥m |un| ≤ |u|
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for m ∈ N. The sequence 〈vm〉m∈N is non-decreasing, τ(vm) ≤ τ(um) ≤ 1 for every m, and

‖|u| − vm‖1 ≤ supn≥m ‖|u| − vmn‖1 ≤ ∑∞
i=m ‖|u| − |ui|‖1 ≤ ∑∞

i=m ‖u− ui‖1 → 0

as m→ ∞. So |u| = supm∈N vm in L0,

τ(u) = τ(|u|) = supm∈N τ(vm) ≤ 1

and u ∈ B. QQQ

(βββ) Now take any u0 ∈ L0 such that τ(u0) > 1. Then, writing Af for {a : µ̄a <∞},

A = {u : u ∈ S(Af ), 0 ≤ u ≤ u0}
is an upwards-directed set with supremum u0 (this is where I use the hypothesis that (A, µ̄) is semi-finite,
so that S(Af ) is order-dense in L0), and supu∈A τ(u) = τ(u0) > 1. Take u1 ∈ A such that τ(u1) > 1, that
is, u1 /∈ B. By the Hahn-Banach theorem (3A5Cc), there is a continuous linear functional f : L1 → R such
that f(u1) > 1 but f(u) ≤ 1 for every u ∈ B. Because (L1)∗ = (L1)∼ (356Dc), |f | is defined in (L1)∗, and
of course

|f |(u1) ≥ f(u1) > 1, |f |(u) = sup{f(v) : |v| ≤ u} ≤ 1

whenever u ∈ B and u ≥ 0. Set c = [[u1 > 0]], so that µ̄c <∞, and define

νa = |f |(χ(a ∩ c))

for every a ∈ A. Then ν is a completely additive real-valued functional on A, so there is a w ∈ L1 such that
νa =

∫
a
w for every a ∈ A (365Ea). Because νa ≥ 0 for every a, w ≥ 0. Now

∫
a
w = |f |(χa× χc)

for every a ∈ A, so ∫
w × u = |f |(u× χc) ≤ |f |(u) ≤ 1

for every u ∈ S(A)+ ∩B. But if τ(v) ≤ 1, then

Av = {u : u ∈ S(A)+ ∩B, u ≤ |v|}
is an upwards-directed set with supremum |v|, so that

‖w × v‖1 = supu∈Av

∫
w × u ≤ 1.

Thus τ ′(w) ≤ 1. On the other hand,

‖w × u0‖1 ≥
∫
w × u0 ≥

∫
w × u1 = |f |(u1) > 1,

so τ ′′(u0) > 1.

(γγγ) This shows that, for u ∈ L0,

τ ′′(u) ≤ 1 =⇒ τ(u) ≤ 1.

(c) Now I return to the proof that τ ′ is an extended Fatou norm. It is easy to check that it satisfies
conditions (i)-(iv) of 369F; in effect, these depend only on the fact that ‖ ‖1 is an extended Fatou norm. For
(v)-(vi), take v > 0 in L0. Then there is a u such that 0 ≤ u ≤ v and 0 < τ(u) <∞; set α = 1/τ(u). Then
τ(2αu) > 1, so that τ ′′(2αu) > 1 and there is a w ∈ L0 such that τ ′(w) ≤ 1 and ‖2αu× w‖1 > 1. But now
set v1 = v ∧ |w|; then

v ≥ v1 ≥ u ∧ |w| > 0,

while τ ′(v1) <∞. Also v ∧ αu 6= 0 so

τ ′(v) ≥ ‖v × αu‖1 > 0.

As v is arbitrary, τ ′ satisfies 369F(v)-(vi).

(d) Accordingly τ ′′ also is an extended Fatou norm. Now in (a) I showed that

τ ′′(u) ≤ 1 =⇒ τ(u) ≤ 1.
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It follows easily that τ(u) ≤ τ ′′(u) for every u (since otherwise there would be some α such that

τ ′′(αu) = ατ ′′(u) < 1 < ατ(u) = τ(αu)).

On the other hand, we surely have

τ(u) ≤ 1 =⇒ ‖u× v‖1 ≤ 1 whenever τ ′(v) ≤ 1 =⇒ τ ′′(u) ≤ 1,

so we must also have τ ′′(u) ≤ τ(u) for every u. Thus τ ′′ = τ , as claimed.

(e) Of course we have ‖u × v‖1 ≤ 1 whenever τ(u) ≤ 1 and τ ′(v) ≤ 1. It follows easily that ‖u × v‖1 ≤
τ(u)τ ′(v) whenever u, v ∈ L0 and both τ(u), τ ′(v) are non-zero. But if one of them is zero, then u× v = 0,
because both τ and τ ′ satisfy (v) of 369F, so the result is trivial.

369J Theorem Let (A, µ̄) be a semi-finite measure algebra, and τ an extended Fatou norm on L0 =
L0(A), with associate θ. Then

Lθ = {v : v ∈ L0, u× v ∈ L1(A, µ̄) for every u ∈ Lτ}.

proof (a) If v ∈ Lθ and u ∈ Lτ , then ‖u× v‖1 is finite, by 369I(iii), so u× v ∈ L1 = L1(A, µ̄).

(b) If v /∈ Lθ then for every n ∈ N there is a un such that τ(un) ≤ 1 and ‖un × v‖1 ≥ 2n. Set
wn =

∑n
i=0 2−i|ui| for each n. Then 〈wn〉n∈N is a non-decreasing sequence and τ(wn) ≤ 2 for each n, so

w = supn∈N wn is defined in Lτ , by 369G; now
∫
w × |v| ≥ n+ 1 for every n, so w × v /∈ L1.

369K Corollary Let (A, µ̄) be a localizable measure algebra, and τ an extended Fatou norm on
L0 =L0(A), with associate θ. Then Lθ may be identified, as normed Riesz space, with (Lτ )× ⊆ (Lτ )∗,
and Lτ is a perfect Riesz space.

proof Putting 369J and 369C together, we have an identification between Lθ and (Lτ )×. Now 369I tells
us that τ is the associate of θ, so that we can identify Lτ with (Lθ)×, and Lτ is perfect, as in 369D.

By the definition of θ, we have, for any v ∈ Lθ,

θ(v) = sup
τ(u)≤1

‖u× v‖1

= sup
τ(u)≤1,‖w‖∞≤1

∫
u× v × w = sup

τ(u)≤1

∫
u× v,

which is the norm of the linear functional on Lτ corresponding to v.

369L LpLpLp I remarked above that the Lp spaces are leading examples for this theory; perhaps I should spell
out the details. Let (A, µ̄) be a semi-finite measure algebra and p ∈ [1,∞]. Then ‖ ‖p is an extended Fatou
norm. PPP Conditions (i)-(iii) and (v) of 369F are satisfied just because Lp = Lpµ̄ is a solid linear subspace

of L0(A) on which ‖ ‖p is a Riesz norm, (iv) because ‖ ‖p is a Fatou norm with the Levi property (363Ba,
365C, 366D), and (vi) because S(Af ) is included in Lp and order-dense in L0 = L0(A) (364K). QQQ

As usual, set q = p/(p− 1) if 1 < p <∞, ∞ if p = 1, and 1 if p = ∞. Then ‖ ‖q is the associate extended
Fatou norm of ‖ ‖p. PPP By 365Lb and 366C, ‖v‖q = sup{‖u × v‖1 : ‖u‖p ≤ 1} for every v ∈ Lq = Lqµ̄. But

as Lq is order-dense in L0,

‖v‖q = sup
w∈Lq,|w|≤v

‖w‖q = sup{
∫

|u| × |w| : w ∈ Lq, w ≤ |v|, ‖u‖p ≤ 1}

= sup{
∫

|u| × |v| : ‖u‖p ≤ 1}

for every v ∈ L0. QQQ
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369M Proposition Let (A, µ̄) be a semi-finite measure algebra and τ an extended Fatou norm on
L0 = L0(A). Then

(a) the embedding Lτ ⊂→ L0 is continuous for the norm topology of Lτ and the topology of convergence

in measure on L0;

(b) τ : L0 → [0,∞] is lower semi-continuous, that is, all the balls {u : τ(u) ≤ γ} are closed for the
topology of convergence in measure;

(c) if 〈un〉n∈N is a sequence in L0 which is order*-convergent to u ∈ L0 (definition: 367A), then τ(u) is
at most lim infn→∞ τ(un).

proof (a) This is a special case of 367O.

(b) Set Bγ = {u : τ(u) ≤ γ}. If u ∈ L0 \Bγ , then

A = {|u| × χa : a ∈ Af}
is an upwards-directed set with supremum |u|, so there is an a ∈ Af such that τ(u× χa) > γ. ??? If u is in
the closure of Bγ for the topology of convergence in measure, then for every k ∈ N there is a vk ∈ Bγ such
that µ̄(a ∩ [[|u− vk| > 2−k]]) ≤ 2−k (see the formulae in 367L). Set

v′k = |u| ∧ infi≥k |vi|
for each k, and v∗ = supk∈N v

′
k. Then τ(v′k) ≤ τ(vk) ≤ γ for each k, and 〈vk〉k∈N is non-decreasing, so

τ(v∗) ≤ γ. But

a ∩ [[|u| − v∗ > 2−k]] ⊆ a ∩ supi≥k [[|u− vi| > 2−k]]

has measure at most
∑∞
i=k 2−i for each k, so a ∩ [[|u| − v∗ > 0]] must be 0, that is, |u| × χa ≤ v∗ and

τ(|u|×χa) ≤ γ; contrary to the choice of a. XXX Thus u cannot belong to the closure of Bγ . As u is arbitrary,
Bγ is closed.

(c) If 〈un〉n∈N order*-converges to u, it converges in measure (367Ma). If γ > lim infn→∞ τ(un), there is
a subsequence of 〈un〉n∈N in Bγ , and τ(u) ≤ γ, by (b). As γ is arbitary, τ(u) ≤ lim infn→∞ τ(un).

369N I now turn to another special case which we have already had occasion to consider in other
contexts.

Definition Let (A, µ̄) be a measure algebra. Set

M∞,1
µ̄ = M∞,1(A, µ̄) = L1(A, µ̄) ∩ L∞(A),

M1,∞
µ̄ = M1,∞(A, µ̄) = L1(A, µ̄) + L∞(A),

and

‖u‖∞,1 = max(‖u‖1, ‖u‖∞)

for u ∈ L0(A).

Remark I hope that the notation I have chosen here will not completely overload your short-term memory.
The idea is that in Mp,q the symbol p is supposed to indicate the ‘local’ nature of the space, that is, the
nature of u× χa where u ∈ Mp,q and µ̄a < ∞, while q indicates the nature of |u| ∧ χ1 for u ∈ Mp,q. Thus
M1,∞ is the space of u such that u × χa ∈ L1 for every a ∈ Af and |u| ∧ χ1 ∈ L∞; in M1,0 we demand
further that |u| ∧χ1 ∈M0 (366F); while in M∞,1 we ask that |u| ∧χ1 ∈ L1 and that u×χa ∈ L∞ for every
a ∈ Af .

369O Proposition Let (A, µ̄) be a semi-finite measure algebra.

(a) ‖ ‖∞,1 is an extended Fatou norm on L0 = L0(A), and the corresponding Banach lattice is M∞,1(A, µ̄).

(b) The associate of ‖ ‖∞,1 is ‖ ‖1,∞, which may be defined by any of the formulae
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‖u‖1,∞ = sup{‖u× v‖1 : v ∈ L0, ‖v‖∞,1 ≤ 1}
= min{‖v‖1 + ‖w‖∞ : v ∈ L1, w ∈ L∞, v + w = u}

= min{α+

∫
(|u| − αχ1)+ : α ≥ 0}

=

∫ ∞

0

min(1, µ̄[[|u| > α]])dα

for every u ∈ L0, writing L1 = L1(A, µ̄), L∞ = L∞(A).
(c)

{u : u ∈ L0, ‖u‖1,∞ <∞} = M1,∞ = M1,∞(A, µ̄),

{u : u ∈ L0, ‖u‖∞,1 <∞} = M∞,1 = M∞,1(A, µ̄).

(d) Writing Af = {a : µ̄a <∞}, S(Af ) is norm-dense in M∞,1 and S(A) is norm-dense in M1,∞.
(e) For any p ∈ [1,∞],

‖u‖1,∞ ≤ ‖u‖p ≤ ‖u‖∞,1

for every u ∈ L0.

Remark By writing ‘min’ rather than ‘inf’ in the formulae of part (b) I mean to assert that the infima are
attained.

proof (a) This is easy; to see that ‖ ‖∞,1 is an extended Fatou norm all we need to know is that ‖ ‖1 and
‖ ‖∞ are extended Fatou norms, and work through the clauses of 369F. And obviously

M∞,1 = {u : ‖u‖1 <∞, ‖u‖∞ <∞} = {u : ‖u‖∞,1 <∞}.

(b) We have four functionals on L0 to look at; let me give them names:

τ1(u) = sup{‖u× v‖1 : ‖v‖∞,1 ≤ 1},

τ2(u) = inf{‖u′‖1 + ‖u′′‖∞ : u = u′ + u′′},

τ3(u) = infα≥0(α+
∫

(|u| − αχ1)+),

τ4(u) =
∫∞

0
min(1, µ̄[[|u| > α]])dα.

(I write ‘inf’ here to avoid the question of attainment for the moment.) Now we have the following.

(i) τ1(u) ≤ τ2(u). PPP If ‖v‖∞,1 ≤ 1 and u = u′ + u′′, then

‖u× v‖1 ≤ ‖u′ × v‖1 + ‖u′′ × v‖1 ≤ ‖u′‖1‖v‖∞ + ‖u′′‖∞‖v‖1 ≤ ‖u′‖1 + ‖u′′‖∞.

Taking the supremum over v and the infinum over u′ and u′′, τ1(u) ≤ τ2(u). QQQ

(ii) τ2(u) ≤ τ4(u). PPP If τ4(u) = ∞ this is trivial. Otherwise, take w such that ‖w‖∞ ≤ 1 and
u = |u| × w. Set α0 = inf{α : µ̄[[|u| > α]] ≤ 1}, and try

u′ = w × (|u| − α0χ1)+, u′′ = w × (|u| ∧ α0χ1).

Then u = u′ + u′′, |u′| ≤ (|u| − α0χ1)+,

‖u′‖1 =

∫ ∞

0

µ̄[[|u′| > α]]dα =

∫ ∞

0

µ̄[[|u| > α+ α0]]dα

=

∫ ∞

α0

µ̄[[|u| > α]]dα =

∫ ∞

α0

min(1, µ̄[[|u| > α]])dα

and

‖u′′‖∞ ≤ α0 =
∫ α0

0
min(1, [[|u| > α]])dα,
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so

τ2(u) ≤ ‖u′‖1 + ‖u′′‖∞ ≤ τ4(u). QQQ

(iii) τ4(u) ≤ τ3(u). PPP For any α ≥ 0,

τ4(u) =

∫ α

0

min(1, µ̄[[|u| > β]])dβ +

∫ ∞

α

min(1, µ̄[[|u| > β]])dβ

≤ α+

∫ ∞

0

µ̄[[|u| > α+ β]]dβ

= α+

∫ ∞

0

µ̄[[(|u| − αχ1)+ > β]]dβ = α+

∫
(|u| − αχ1)+.

Taking the infimum over α, τ4(u) ≤ τ3(u). QQQ

(iv) τ3(u) ≤ τ1(u).

PPP(ααα) It is enough to consider the case 0 < τ1(u) < ∞, because if τ1(u) = 0 then u = 0 and evidently
τ3(0) = 0, while if τ1(u) = ∞ the required inequality is trivial. Furthermore, since τ3(u) = τ3(|u|) and
τ1(u) = τ1(|u|), it is enough to consider the case u ≥ 0.

(βββ) Note next that if µ̄a <∞, then ‖ 1
max(1,µ̄a)χa‖∞,1 ≤ 1, so that

∫
a
u ≤ max(1, µ̄a)τ1(u).

(γγγ) Set c = [[u > 2τ1(u)]]. If a ⊆ c and µ̄a <∞, then

2τ1(u)µ̄a ≤
∫
a
u ≤ max(1, µ̄a)τ1(u),

so µ̄a ≤ 1
2 . As (A, µ̄) is semi-finite, it follows that µ̄c ≤ 1

2 (322Eb).

(δδδ) I may therefore write

α0 = inf{α : α ≥ 0, µ̄[[u > α]] ≤ 1}.

Now [[u > α0]] = supα>α0
[[u > α]], so

µ̄[[u > α0]] = supα>α0
µ̄[[u > α]] ≤ 1.

(ǫǫǫ) If α ≥ α0 then

(u− α0χ1)+ ≤ (α− α0)χ[[u > α0]] + (u− αχ1)+,

so

α0 +

∫
(u− α0χ1)+ ≤ α0 + (α− α0)µ̄[[u > α0]] +

∫
(u− αχ1)+

≤ α+

∫
(u− αχ1)+.

If 0 ≤ α < α0 then, for every β ∈ [0, α0 − α[,

(u− α0χ1)+ + β[[u > α+ β]] ≤ (u− αχ1)+,

while µ̄[[u > α+ β]] > 1, so ∫
(u− α0χ1)+ + β + α ≤ α+

∫
(u− αχ1)+;

taking the supremum over β,

α0 +
∫

(u− α0χ1)+ ≤ α+
∫

(u− αχ1)+.

Thus α0 +
∫

(u− α0χ1)+ = τ3(u).

(ζζζ) If α0 = 0, take v = χ[[u > 0]]; then ‖v‖∞,1 = µ̄[[u > 0]] ≤ 1 and

τ3(u) =
∫
u = ‖u× v‖1 ≤ τ1(u).
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(ηηη) If α0 > 0, set γ = µ̄[[u > α0]]. Take any β ∈ [0, α0[. Then µ̄([[u > β]] \ [[u > α0]]) > 1− γ, so there
is a b ⊆ [[u > β]] \ [[u > α0]] such that 1 − γ < µ̄b <∞. Set v = χ[[u > α0]] + 1−γ

µ̄b χb. Then ‖v‖∞,1 = 1 so

τ1(u) ≥
∫
u× v ≥

∫
(u− α0χ1)+ + α0γ + β

1−γ

µ̄b
µ̄b = τ3(u) − (1 − γ)(α0 − β).

As β is arbitrary, τ1(u) ≥ τ3(u) in this case also. QQQ

(v) Thus τ1(u) = τ2(u) = τ3(u) = τ4(u) for every u ∈ L0, and I may write ‖u‖1,∞ for their common
value; being the associate of ‖ ‖∞,1, ‖ ‖1,∞ is an extended Fatou norm. As for the attainment of the
infima, the argument of (iv-ǫ) above shows that, at least when 0 < ‖u‖1,∞ < ∞, there is an α0 such that
α0 +

∫
(|u| − α0)+ = ‖u‖1,∞. This omits the cases ‖u‖1,∞ ∈ {0,∞}; but in either of these cases we can

set α0 = 0 to see that the infimum is attained for trivial reasons. For the other infimum, observe that the
argument of (ii) produces u′, u′′ such that u = u′ + u′′ and ‖u′‖1 + ‖u′′‖∞ ≤ τ4(u).

(c) This is now obvious from the definition of ‖ ‖∞,1 and the characterization of ‖ ‖1,∞ in terms of ‖ ‖1
and ‖ ‖∞.

(d) To see that S = S(A) is norm-dense in M1,∞, we need only note that S is dense in L∞ and S ∩ L1

is dense in L1; so that given v ∈ L1, w ∈ L∞ and ǫ > 0 there are v′, w′ ∈ S such that

‖(v + w) − (v′ + w′)‖1,∞ ≤ ‖v − v′‖1 + ‖w − w′‖∞ ≤ ǫ.

As for M∞,1, if u ≥ 0 in M∞,1 and r ∈ N, set vr = supk∈N 2−rkχ[[u > 2−rk]]; then each vr belongs to
Sf = S(Af ) and ‖u − vr‖∞ ≤ 2−r, while 〈vr〉r∈N is a non-decreasing sequence with supremum u, so that
limr→∞

∫
vr =

∫
u and limr→∞ ‖u− vr‖∞,1 = 0. Thus (Sf )+ is dense in (M∞,1)+. As usual, it follows that

Sf = (Sf )+ − (Sf )+ is dense in M∞,1 = (M∞,1)+ − (M∞,1)+.

(e)(i) If p = 1 or p = ∞ this is immediate from the definition of ‖ ‖∞,1 and the characterization of ‖ ‖1,∞
in (b). So suppose henceforth that 1 < p <∞.

(ii) If ‖u‖∞,1 ≤ 1 then ‖u‖p ≤ 1. PPP Because ‖u‖∞ ≤ 1, |u|p ≤ |u|, so that
∫
|u|p ≤ ‖u‖1 ≤ 1 and

‖u‖p ≤ 1. QQQ
On considering scalar multiples of u, we see at once that ‖u‖p ≤ ‖u‖∞,1 for every u ∈ L0.

(ii) Now set q = p/(p− 1). Then

‖u‖p = sup{‖u× v‖1 : ‖v‖q ≤ 1}
(369L)

≥ sup{‖u× v‖1 : ‖v‖∞,1 ≤ 1} = ‖u‖1,∞

because ‖ ‖1,∞ is the associate of ‖ ‖∞,1. This completes the proof.

369P In preparation for some ideas in §372, I go a little farther with M1,0, as defined in 366F.

Proposition Let (A, µ̄) be a measure algebra.
(a) M1,0 = M1,0(A, µ̄) is a norm-closed solid linear subspace of M1,∞ =M1,∞(A, µ̄).
(b) The norm ‖ ‖1,∞ is order-continuous on M1,0.
(c) S(Af ) and L1(A, µ̄) are norm-dense and order-dense in M1,0.

proof (a) Of course M1,0, being a solid linear subspace of L0 = L0(A) included in M1,∞, is a solid linear
subspace of M1,∞. To see that it is norm-closed, take any point u of its closure. Then for any ǫ > 0 there is
a v ∈M1,0 such that ‖u− v‖1,∞ ≤ ǫ; now (|u− v| − ǫχ1)+ ∈ L1 = L1

µ̄, so [[|u− v| > 2ǫ]] has finite measure;
also [[|v| > ǫ]] has finite measure, so

[[|u| > 3ǫ]] ⊆ [[|u− v| > 2ǫ]] ∪ [[|v| > ǫ]]

(364Ea) has finite measure. As ǫ is arbitrary, u ∈M1,0; as u is arbitrary, M1,0 is closed.

(b) Suppose that A ⊆ M1,0 is non-empty and downwards-directed and has infimum 0. Let ǫ > 0. Set
B = {(u − ǫχ1)+ : u ∈ A}. Then B ⊆ L1 (by 366Gc); B is non-empty and downwards-directed and
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has infimum 0. Because ‖ ‖1 is order-continuous (365C), infv∈B ‖v‖1 = 0 and there is a u ∈ A such that
‖(u − ǫχ1)+‖1 ≤ ǫ, so that ‖u‖1,∞ ≤ 2ǫ. As ǫ is arbitrary, infu∈A ‖u‖1,∞ = 0; as A is arbitrary, ‖ ‖1,∞ is
order-continuous on M1,0.

(c) By 366Gb, S(Af ) is order-dense in M1,0. Because the norm of M1,0 is order-continuous, S(Af ) is
also norm-dense (354Ef). Now S(Af ) ⊆ L1 ⊆M1,0, so L1 must also be norm-dense and order-dense.

369Q Corollary Let (A, µ̄) be a localizable measure algebra. Set M1,∞ = M1,∞(A, µ̄), etc.
(a) (M1,∞)× and (M1,0)× can both be identified with M∞,1.
(b) (M∞,1)× can be identified with M1,∞; M1,∞ and M∞,1 are perfect Riesz spaces.

proof Everything is covered by 369O and 369K except the identification of (M1,0)× with M∞,1. For this
I return to 369C. Of course M1,0 is order-dense in L0, because it includes L1, or otherwise. Setting

V = {v : v ∈ L0, u× v ∈ L1 for every u ∈M1,0},

369C identifies V with (M1,0)×. Of course M∞,1 ⊆ V just because M1,0 ⊆M1,∞.
Also V ⊆ M∞,1. PPP Because L1 ⊆ M1,0 and ‖ ‖∞ is the associate of ‖ ‖1, V ⊆ L∞. ??? If there is a

v ∈ V \ L1, then (because (A, µ̄) is semi-finite, so that |v| = supa∈Af |v| × χa) supa∈Af

∫
a
|v| = ∞. For each

n ∈ N choose an ∈ Af such that
∫
an

|v| ≥ 4n, and set u = supn∈N 2−nχan ∈ M1,0; then
∫
u × |v| ≥ 2n for

each n, so v /∈ V . XXX Thus V ⊆ L1 and V ⊆M∞,1. QQQ
So M∞,1 = V can be identified with (M1,0)×.

369R The detailed formulae of 369O are of course special to the norms ‖ ‖1, ‖ ‖∞, but the general
phenomenon is not.

Theorem Let (A, µ̄) be a localizable measure algebra, and τ1, τ2 two extended Fatou norms on L0 = L0(A)
with associates τ ′1, τ ′2. Then we have an extended Fatou norm τ defined by the formula

τ(u) = min{τ1(v) + τ2(w) : v, w ∈ L0, v + w = u}
for every u ∈ L0, and its associate τ ′ is given by the formula

τ ′(u) = max(τ ′1(u), τ ′2(u))

for every u ∈ L0. Moreover, the corresponding function spaces are

Lτ = Lτ1 + Lτ2 , Lτ
′

= Lτ
′
1 ∩ Lτ ′

2 .

proof (a) For the moment, define τ by setting

τ(u) = inf{τ1(v) + τ2(w) : v + w = u}
for u ∈ L0. It is easy to check that, for u, u′ ∈ L0 and α ∈ R,

τ(u+ u′) ≤ τ(u) + τ(u′), τ(αu) = |α|τ(u), τ(u) ≤ τ(u′) if |u| ≤ |u′|.
(For the last, remember that in this case u = u′ × z where ‖z‖∞ ≤ 1.) Note also that if u ≥ 0 then
τ(u) = inf{τ1(v) + τ2(u− v) : 0 ≤ v ≤ u}.

(b) Take any non-empty, upwards-directed set A ⊆ (L0)+, with supremum u0. Suppose that γ =
supu∈A τ(u) <∞. For u ∈ A and n ∈ N set

Cun = {v : v ∈ L0, 0 ≤ v ≤ u0, τ1(v) + τ2(u− v)+ ≤ γ + 2−n}.

(i) Every Cun is non-empty (because τ(u) ≤ γ).

(ii) Every Cun is convex (because if v1, v2 ∈ Cun and α ∈ [0, 1] and v = αv1 + (1 − α)v2, then

(u− v)+ = (α(u− v1) + (1 − α)(u− v2))+ ≤ α(u− v1)+ + (1 − α)(u− v2)+,

so

τ1(v) + τ2(u− v)+ ≤ ατ1(v1) + (1 − α)τ1(v2) + ατ2(u− v1)+ + (1 − α)τ2(u− v2)+

≤ γ + 2−n).
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(iii) if u, u′ ∈ A, m, n ∈ N, u ≤ u′ and m ≤ n then Cu′n ⊆ Cum.

(iv) Every Cun is closed for the topology of convergence in measure. PPP??? Suppose otherwise. Then we
can find a v in the closure of Cun for the topology of convergence in measure, but such that τ1(v)+τ2(u−v)+ >
γ + 2−n. In this case

τ1(v) = sup{τ1(v × χa) : a ∈ Af}, τ2(u− v)+ = sup{τ2((u− v)+ × χa) : a ∈ Af},

so there is an a ∈ Af such that

τ1(v × χa) + τ2((u− v)+ × χa) > γ + 2−n.

Now there is a sequence 〈vk〉k∈N in Cun such that µ̄(a ∩ [[|v − vk| ≥ 2−k]]) ≤ 2−k for every k. Setting

v′k = infi≥k vi, wk = infi≥k(u− vi)
+

we have

τ1(v′k) + τ2(wk) ≤ τ1(vk) + τ2(u− vk)+ ≤ γ + 2−n

for each k, and 〈v′k〉k∈N, 〈wk〉k∈N are non-decreasing. So setting v∗ = supk∈N v∧v′k, w∗ = supk∈N(u−v)+∧wk,
we get

τ1(v∗) + τ2(w∗) ≤ γ + 2−n.

But v∗ ≥ v × χa and w∗ ≥ (u− v)+ × χa, so

τ1(v × χa) + τ2((u− v)+ × χa) ≤ γ + 2−n,

contrary to the choice of a. XXXQQQ

(v) If a ∈ A \ {0}, there is a non-zero b ⊆ a such that µ̄b <∞ and b ⊆ [[u0 ≤ α]] for some α > 0. Take
any u ∈ A; then supv∈Cu0

∫
b
|v| is finite.

(c) Thus {Cun : u ∈ A, n ∈ N} satisfies all the conditions of 367V, and
⋂
u∈A,n∈N Cun is non-empty. If v

belongs to the intersection, then

τ1(v) + τ2(u− v)+ ≤ γ

for every u ∈ A; since {(u− v)+ : u ∈ A} is an upwards-directed set with supremum (u0 − v)+, and τ2 is an
extended Fatou norm,

τ1(v) + τ2(u0 − v)+ ≤ γ.

(d) This shows both that the infimum in the definition of τ(u) is always attained (since this is trivial if
τ(u) = ∞, and otherwise we consider A = {|u|}), and also that τ(supA) = supu∈A τ(u) whenever A ⊆ (L0)+

is a non-empty upwards-directed set with a supremum. Thus τ satisfies conditions (i)-(iv) of 369F. Condition
(vi) there is trivial, since (for instance) τ(v) ≤ τ1(v) for every v. As for 369F(v), suppose that u > 0 in L0.
Take u1 such that 0 < u1 ≤ u and τ ′1(u1) ≤ 1, and u2 such that 0 < u2 ≤ u1 and τ ′2(u2) ≤ 1. In this case, if
u2 = v + w, we must have

τ1(v) + τ2(w) ≥ ‖v × u1‖1 + ‖w × u2‖1 ≥ ‖u2 × u2‖1;

so that

τ(u) ≥ ‖u2 × u2‖1 > 0.

Thus all the conditions of 369F are satisfied, and τ is an extended Fatou norm on L0.

(e) The calculation of τ ′ is now very easy. Since surely we have τ ≤ τi for both i, we must have τ ′ ≥ τ ′i
for both i. On the other hand, if u, z ∈ L0, then there are v, w such that u = v+w and τ(u) = τ1(v)+τ2(w),
so that

‖u× z‖1 ≤ ‖v × z‖1 + ‖w × z‖1 ≤ τ1(v)τ ′1(z) + τ2(w)τ ′2(z) ≤ τ(u) max(τ ′1(z), τ ′2(z));

as u is arbitrary, τ ′(z) ≤ max(τ ′1(z), τ ′2(z)). So τ ′ = max(τ ′1, τ
′
2), as claimed.

(f) Finally, it is obvious that

Lτ
′

= {z : τ ′(z) <∞} = {z : τ ′1(z) <∞, τ ′2(z) <∞} = Lτ
′
1 ∩ Lτ ′

2 ,
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while the fact that the infimum in the definition of τ is always attained means that Lτ ⊆ Lτ1 +Lτ2 , so that
we have equality here also.

369X Basic exercises >>>(a) Let A be a Dedekind σ-complete Boolean algebra. Show that the following
are equiveridical: (i) there is a function µ̄ such that (A, µ̄) is a semi-finite measure algebra; (ii) (L∞)×

separates the points of L∞ = L∞(A); (iii) for every non-zero a ∈ A there is a completely additive functional
ν : A → R such that νa 6= 0; (iv) there is some order-dense Riesz subspace U of L0 = L0(A) such that U×

separates the points of U ; (v) for every order-dense Riesz subspace U of L0 there is an order-dense Riesz
subspace V of U such that V × separates the points of V .

(b) Let us say that a function φ : R → ]−∞,∞] is convex if φ(αs + (1 − α)t) ≤ αφ(s) + (1 − α)φ(t)
for all s, t ∈ R and α ∈ [0, 1], interpreting 0 · ∞ as 0, as usual. For any convex function φ : R → ]−∞,∞]
which is not always infinite, set φ∗(t) = sups∈R st − φ(s) for every t ∈ R. (i) Show that φ∗ : R → ]−∞,∞]
is convex and lower semi-continuous and not always infinite. (Hint : 233Xh.) (ii) Show that if φ is lower
semi-continuous then φ = φ∗∗. (Hint : It is easy to check that φ∗∗ ≤ φ. For the reverse inequality, consider
first the case φ(t) = αt+ β, and use 233Ha).)

>>>(c) For the purposes of this exercise and the next, say that a Young’s function is a non-negative
non-constant lower semi-continuous convex function φ : [0,∞[ → [0,∞] such that φ(0) = 0 and φ(t) is finite
for some t > 0. (Warning! the phrase ‘Young’s function’ has other meanings.) (i) Show that in this case φ
is non-decreasing and continuous on the left and φ∗, defined by saying that φ∗(t) = sups≥0 st−φ(s) for every
t ≥ 0, is again a Young’s function. (ii) Show that φ∗∗ = φ. Say that φ and φ∗ are complementary. (iii)
Compute φ∗ in the cases (α) φ(t) = t (β) φ(t) = max(0, t− 1) (γ) φ(t) = t2 (δ) φ(t) = tp where 1 < p <∞.

>>>(d) Let φ, ψ = φ∗ be complementary Young’s functions in the sense of 369Xc, and (A, µ̄) a semi-finite
measure algebra. Set

B = {u : u ∈ L0,
∫
φ̄(|u|) ≤ 1}, C = {v : v ∈ L0,

∫
ψ̄(|v|) ≤ 1}.

(For finite-valued φ, φ̄ : (L0)+ → L0 is given by 364H. Devise an appropriate convention for the case in
which φ takes the value ∞.) (i) Show that B and C are order-closed solid convex sets, and that

∫
|u×v| ≤ 2

for all u ∈ B, v ∈ C. (Hint : for ‘order-closed’, use 364Xg(iv).) (ii) Show that there is a unique extended
Fatou norm τφ on L0 for which B is the unit ball. (iii) Show that if u ∈ L0 \ B there is a v ∈ C such
that

∫
|u × v| > 1. (Hint : start with the case in which u ∈ S(A)+.) (iv) Show that τψ ≤ τ ′φ ≤ 2τψ, where

τψ is the extended Fatou norm corresponding to ψ and τ ′φ is the associate of τφ, so that τψ and τ ′φ can be
interpreted as equivalent norms on the same Banach space.

(U and V are complementary Orlicz spaces; I will call τφ, τψ Orlicz norms.)

(e) Let U be a Riesz space such that U× separates the points of U , and suppose that ‖ ‖ is a Fatou
norm on U . (i) Show that there is a localizable measure algebra (A, µ̄) with an extended Fatou norm τ on
L0(A) such that U can be identified, as normed Riesz space, with an order-dense Riesz subspace of Lτ . (ii)
Hence, or otherwise, show that ‖u‖ = supf∈U×, ‖f‖≤1 |f(u)| for every u ∈ U . (iii) Show that if U is Dedekind
complete and has the Levi property, then U becomes identified with Lτ itself, and in particular is a Banach
lattice (cf. 354Xn).

(f) Let (A, µ̄) be a semi-finite measure algebra, and τ an extended Fatou norm on L0(A). Show that
the norm of Lτ is order-continuous iff the norm topology of Lτ agrees with the topology of convergence in
measure on any order-bounded subset of Lτ .

(g) Let (A, µ̄) be a σ-finite measure algebra of countable Maharam type, and τ an extended Fatou norm
on L0(A) such that the norm of Lτ is order-continuous. Show that Lτ is separable in its norm topology.

(h) Let (A, µ̄) and (B, ν̄) be semi-finite measure algebras, and π : Af → Bf a measure-preserving ring

homomorphism, as in 366H, with associated maps T : M0
µ̄ → M0

ν̄ and P : M1,0
ν̄ → M1,0

µ̄ . Show that

‖Tu‖∞,1 = ‖u‖∞,1 for every u ∈M∞,1
µ̄ and ‖Pv‖∞,1 ≤ ‖v‖∞,1 for every v ∈M∞,1

ν̄ .
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(i) Let (A, µ̄) and (B, ν̄) be measure algebras, and π : A → B a measure-preserving Boolean homomor-

phism. (i) Show that there is a unique Riesz homomorphism T : M1,∞
µ̄ → M1,∞

ν̄ such that T (χa) = χ(πa)

for every a ∈ A and ‖Tu‖1,∞ = ‖u‖1,∞ for every u ∈ M1,∞
µ̄ . (ii) Now suppose that (A, µ̄) is localizable

and π is order-continuous. Show that there is a unique positive linear operator P : M1,∞
ν̄ → M1,∞

µ̄ such

that
∫
a
Pv =

∫
πa
v for every a ∈ Af and v ∈ M1,∞

ν̄ , and that ‖Pv‖∞ ≤ ‖v‖∞ for every v ∈ L∞(B),

‖Pv‖∞,1 ≤ ‖v‖∞,1 for every v ∈M∞,1
ν̄ , ‖Pv‖1,∞ ≤ ‖v‖1,∞ for every v ∈M1,∞

ν̄ . (Compare 365O.)

(j) Let (A, µ̄) be an atomless semi-finite measure algebra. Show that ‖u‖1,∞ = max{
∫
a
|u| : a ∈ A, µ̄a ≤

1} for every u ∈ L0(A). (Hint : take a ⊇ [[|u| > α0]] in part (b-iv) of the proof of 369O.)

(k) Let (A, µ̄) be any semi-finite measure algebra. Show that if τφ is any Orlicz norm on L0 = L0(A),

then there is a γ > 0 such that ‖u‖1,∞ ≤ γτφ(u) ≤ γ2‖u‖∞,1 for every u ∈ L0, so that M∞,1
µ̄ ⊆ Lτφ ⊆M1,∞

µ̄ .

(l) Let (A, µ̄) be a semi-finite measure algebra. Show that the subspaces M1,∞
µ̄ , M∞,1

µ̄ of L0(A) can be
expressed as a complementary pair of Orlicz spaces, and that the norm ‖ ‖∞,1 can be represented as an
Orlicz norm, but that if A is atomless and µ̄ is not totally finite. ‖ ‖1,∞ cannot be represented as an Orlicz
norm.

>>>(m) Let (A, µ̄) be a measure algebra and U a Banach space. (i) Suppose that ν : A → U is an additive
function such that ‖νa‖ ≤ min(1, µ̄a) for every a ∈ A. Show that there is a unique bounded linear operator

T : M1,∞
µ̄ → U such that T (χa) = νa for every a ∈ A. (ii) Suppose that ν : Af → U is an additive function

such that ‖νa‖ ≤ max(1, µ̄a) for every a ∈ Af . Show that there is a unique bounded linear operator

T : M∞,1
µ̄ → U such that T (χa) = νa for every a ∈ Af .

(n) Let (A, µ̄) and (B, ν̄) be semi-finite measure algebras, and φ : [0,∞[ → [0,∞] a Young’s function;
write τφ for the corresponding Orlicz norm on either L0(A) or L0(B). Let π : A → B be a measure-

preserving Boolean homomorphism, with associated map T : M1,∞
µ̄ → M1,∞

ν̄ , as in 369Xi. (i) Show that

τφ(Tu) = τφ(u) for every u ∈ M1,∞
µ̄ . (ii) Show that if (A, µ̄) is localizable, π is order-continuous and

P : M1,∞
ν̄ →M1,∞

µ̄ is the map of 369Xi(ii), then τφ(Pv) ≤ τφ(v) for every v ∈M1,∞
ν̄ . (Hint : 365Q.)

>>>(o) Let (A, µ̄) be any semi-finite measure algebra and τ1, τ2 two extended Fatou norms on L0(A). Show
that u 7→ max(τ1(u), τ2(u)) is an extended Fatou norm.

(p) Let (A, µ̄) be a semi-finite measure algebra, and (Â, µ̃) its localization (322Q). Show that the Dedekind

completion of M1,∞(A, µ̄) can be identified with M1,∞(Â, µ̃).

(q) Let (A, µ̄) be a localizable measure algebra. (i) Show that if B is any closed subalgebra of A such that

sup{b : b ∈ B, µ̄b <∞} = 1 in A, we have an order-continuous positive linear operator PB : M1,∞
µ̄ →M1,∞

µ̄↾B

such that
∫
b
PBu =

∫
b
u whenever u ∈ M1,∞

µ̄ , b ∈ B and µ̄b < ∞. (ii) Show that if 〈Bn〉n∈N is a non-
decreasing sequence of closed subalgebras of A such that sup{b : b ∈ B0, µ̄b < ∞} = 1 in A, and B is the

closure of
⋃
n∈N Bn, then 〈PBn

u〉n∈N is order*-convergent to PBu for every u ∈M1,∞
µ̄ . (Cf. 367J.)

(r) Let φ1 and φ2 be Young’s functions and (A, µ̄) a semi-finite measure algebra. Set φ(t) = max(φ1(t),
φ2(t)) for t ∈ [0,∞[. (i) Show that φ is a Young’s function. (ii) Writing τφ1

τφ2
, τφ for the corresponding

extended Fatou norms on L0(A) (369Xd), show that τφ ≥ max(τφ1
, τφ2

) ≥ 1
2τφ, so that Lτφ = Lτφ1 ∩Lτφ2 and

Lτφ∗ = L
τφ∗

1 +L
τφ∗

2 , writing φ∗ for the Young’s function complementary to φ. (iii) Repeat with ψ = φ1 +φ2
in place of φ.

369Y Further exercises (a) Let (A, µ̄) be a localizable measure algebra and A ⊆ L0 = L0(A) a
countable set. Show that the solid linear subspace U of L0 generated by A is a perfect Riesz space. (Hint :
reduce to the case in which U is order-dense. If A = {un : n ∈ N}, w ∈ (L0)+ \U find vn ∈ (L0)+ such that∫
vn × w ≥ 2n ≥ 4n

∫
vn × |ui| for every i ≤ n. Show that v = supn∈N vn is defined in L0 and corresponds

to a member of U×.)
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(b) Let U be a Banach lattice and suppose that p ∈ [1,∞[ is such that ‖u+ v‖p = ‖u‖p + ‖v‖p whenever
u, v ∈ U and |u| ∧ |v| = 0. Show that U is isomorphic, as Banach lattice, to Lpµ̄ for some localizable measure
algebra (A, µ̄). (Hint : start by using 354Yb to show that the norm of U is order-continuous, as in 354Yk.)

(c) Let (A, µ̄) be a semi-finite measure algebra, and τ an Orlicz norm on L0(A). Show that Lτ has the
Levi property, whether or not A is Dedekind complete.

(d) Let φ : [0,∞[ → [0,∞[ be a strictly increasing Young’s function such that supt>0 φ(2t)/φ(t) is finite.
Show that the associated Orlicz norms τφ are always order-continuous on their function spaces.

(e) Let φ : [0,∞[ → [0,∞] be a Young’s function, and suppose that the corresponding Orlicz norm on
L0(A), where (A, µ̄) is an atomless measure algebra which is not totally finite, is order-continuous on its
function space Lτφ . Show that there is an M ≥ 0 such that φ(2t) ≤Mφ(t) for every t ≥ 0.

(f) Let (A, µ̄) be a semi-finite measure algebra and φ : [0,∞[ → [0,∞[ be a strictly increasing Young’s
function such that supt>0 φ(2t)/φ(t) is finite. Show that if F is a filter on Lτφ , then F → u ∈ Lτφ for the
norm τφ iff (i) F → u for the topology of convergence in measure (ii) lim supv→F τφ(v) ≤ τφ(u). (Compare
245Xl.)

(g) Give examples of extended Fatou norms τ on measure spaces L0(A), where (A, µ̄) is a semi-finite
measure algebra, such that (α) τ↾Lτ is order-continuous (β) there is a sequence 〈un〉n∈N in Lτ , converging
in measure to u ∈ Lτ , such that limn→∞ τ(un) = τ(u) but 〈un〉n∈N does not converge to u for the norm on
Lτ . Do this (i) with τ an Orlicz norm (ii) with (A, µ̄) the measure algebra of Lebesgue measure on [0, 1].

(h) Let (A, µ̄) be any measure algebra. Show that (M1,0
µ̄ )× can be identified with M∞,1

µ̄ . (Hint : show

that neither M1,0 nor M∞,1 is changed by moving first to the semi-finite version of (A, µ̄), as described in
322Xa, and then to its localization.)

(i) Give an example to show that the result of 369R may fail if (A, µ̄) is only semi-finite, not localizable.

369 Notes and comments The representation theorems 369A-369D give a concrete form to the notion
of ‘perfect’ Riesz space: it is just one which can be expressed as a subspace of L0(A), for some localizable
measure algebra (A, µ̄), in such a way that it is its own second dual, where the duality here is between
subspaces of L0, taking V = {v : u×v ∈ L1 for every u ∈ U}. (I see that in this expression I ought somewhere
to mention that both U and V are assumed to be order-dense in L0.) Indeed I believe that the original
perfect spaces were the ‘vollkommene Räume’ of G.Köthe, which were subspaces of RN, corresponding to
the measure algebra PN with counting measure, so that V or U× was {v : u× v ∈ ℓ1 for every u ∈ U}.

I have presented Kakutani’s theorem on the representation of L-spaces as a corollary of 369A and 369C.
As usual in such things, this is a reversal of the historical relationship; Kakutani’s theorem was one of
the results which led to the general theory. The complete list of localizable measure algebras provided by
Maharam’s theorem (332B, 332J) now gives us a complete list of L-spaces.

Just as perfect Riesz spaces come in dual pairs, so do some of the most important Banach lattices: those
with Fatou norms and the Levi property for which the order-continuous dual separates the points. (Note that
the dual of any space with a Riesz norm has these properties; see 356Da.) I leave the details of representing
such spaces to you (369Xe). The machinery of 369F-369K gives a solid basis for studying such pairs.

Among the extended Fatou norms of 369F the Orlicz norms (369Xd, 369Yd-369Yf) form a significant
subfamily. Because they are defined in a way which is to some extent independent of the measure algebra
involved, these spaces have some of the same properties as Lp spaces in relation to measure-preserving
homomorphisms (369Xi-369Xn). In §§373-374 I will elaborate on these ideas. Among the Orlicz spaces, we
have a largest and a smallest; these are just M1,∞ = L1 + L∞ and M∞,1 = L1 ∩ L∞ (369N-369O, 369Xk,
369Xl). Of course these two are particularly important.

There is an interesting phenomenon here. It is easy to see that ‖ ‖∞,1 = max(‖ ‖1, ‖ ‖∞) is an extended
Fatou norm and that the corresponding Banach lattice is L1∩L∞; and that the same ideas work for any pair
of extended Fatou norms (369Xo). To check that the dual of L1 ∩ L∞ is precisely the linear sum L∞ + L1

a little more is needed, and the generalization of this fact to other extended Fatou norms (369R) seems to
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go quite deep. In view of our ordinary expectation that properties of these normed function spaces should
be reflected in perfect Riesz spaces in general, I mention that I believe I have found an example, dependent
on the continuum hypothesis, of two perfect Riesz subspaces U , V of RN such that their linear sum U + V
is not perfect.
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Version of 20.7.11

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

364Be L0(A) This re-phrasing of the definition of L0(A), referred to in the 2008 edition of Volume 5, is
now 364Af.

364D L0 as f-algebra This paragraph, referred to in the 2008 edition of Volume 5, is now 364C.

364E Algebraic operations on L0 This paragraph, referred to in the 2008 edition of Volume 5, is now
364D.

364G The identification of L0(A) with the set of sequentially order-continuous Boolean homomorphisms
from B(R) to A, referred to in the 2008 edition of Volume 5, is now 364F.

364I Action of Borel functions on L0 This paragraph, referred to in the 2003 and 2006 editions of
Volume 4, is now 364H.

364J L0(Σ/I) The identification of L0(Σ/I) as a space of equivalence classes of functions, referred to in
the 2003 and 2206 editions of Volume 4 and the 2008 edition of Volume 5, is now 364I.

364K Embedding S and L∞ in L0 This paragraph, referred to in the 2003 and 2006 editions of Volume
4, is now 364J.

364M-364N Suprema and infima in L0(A) These paragraphs, referred to in the 2003 and 2006
editions of Volume 4 and the 2008 edition of Volume 5, have now been amalgamated as 364L.

364O Dedekind completeness of L0 This paragraph, referred to in the 2008 edition of Volume 5, is
now 364M.

364P Multiplicative inverses in L0 This paragraph, referred to in the 2003 and 2006 editions of
Volume 4, is now 364J.

364R Action of Boolean homomorphisms on L0 This paragraph, referred to the 2003 and 2006
editions of Volume 4 and in the 2008 edition of Volume 5, is now 364P.

364Xw Extension of
∫

This exercise, referred to in the 2008 edition of Volume 5, is now 364Xj.

364Yn L0
C(A) This exercise on complex L0 spaces, referred to in the 2003 and 2006 editions of Volume

4, has been moved to 366M.

365K Additive functions on Af and linear operators on L1 This theorem, referred to in the 2003,
2006 and 2013 printings of Volume 4, is now 365J.

365M L1 and L∞ This theorem, referred to in the 2008 printing of Volume 5, is now 365L.

365O Ring homomorphisms on Af and Riesz homomorphisms on L1 This theorem, referred to
in the 2013 printing of Volume 4 and the 2008 printing of Volume 5, is now 365N.

c© 2011 D. H. Fremlin
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365P Order-continuous ring homomorphisms on Af and conditional expectations This theo-
rem, referred to in the 2008 printing of Volume 5, is now 365O.

365R Conditional expectations These notes, referred to in the 2006 and 2013 printings of Volume 4
and the 2008 printing of Volume 5, is now 365Q.

365T Change of measure This proposition, referred to in the 2008 printing of Volume 5, is now 365S.
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