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Chapter 36
Function Spaces

Chapter 24 of Volume 2 was devoted to the elementary theory of the ‘function spaces’ L°, L', L? and
L*° associated with a given measure space. In this chapter I return to these spaces to show how they can
be related to the more abstract themes of the present volume. In particular, I develop constructions to
demonstrate, as clearly as I can, the way in which the function spaces associated with a measure space in
fact depend only on its measure algebra; and how many of their features can (in my view) best be understood
in terms of constructions involving measure algebras.

The chapter is very long, not because there are many essentially new ideas, but because the intuitions
I seek to develop depend, for their logical foundations, on technically complex arguments. This is perhaps
best exemplified by §364. If two measure spaces (X, %, u) and (Y, T, v) have isomorphic measure algebras
(2, i), (B, v) then the spaces L°(u), L°(v) are isomorphic as topological f-algebras; and more: for any
isomorphism between (2, fi) and (%8, 7) there is a unique corresponding isomorphism between the L° spaces.
The intuition involved is in a way very simple. If f, g are measurable real-valued functions on X and Y
respectively, then f* € L%(u) will correspond to g* € L°(v) if and only if [f* > o] = {z : f(z) > a}* €A
corresponds to [g* > o] = {y : g(y) > a}* € B for every a. But the check that this formula is consistent,
and defines an isomorphism of the required kind, involves a good deal of detailed work. It turns out, in
fact, that the measures p and v do not enter this part of the argument at all, except through their ideals
of negligible sets (used in the construction of 2 and %B). This is already evident, if you look for it, in
the theory of L%(u); in §241, as written out, you will find that the measure of an individual set is not
once mentioned, except in the exercises. Consequently there is an invitation to develop the theory with
algebras 20 which are not necessarily measure algebras. Here is another reason for the length of the chapter;
substantial parts of the work are being done in greater generality than the corresponding sections of Chapter
24, necessitating a degree of repetition. Of course this is not ‘measure theory’ in the strict sense; but for
thirty years now measure theory has been coloured by the existence of these generalizations, and I think it is
useful to understand which parts of the theory apply only to measure algebras, and which can be extended
to other o-complete Boolean algebras, like the algebraic theory of L%, or even to all Boolean algebras, like
the theory of L*°.

Here, then, are two of the objectives of this chapter: first, to express the ideas of Chapter 24 in ways
making explicit their independence of particular measure spaces, by setting up constructions based exclu-
sively on the measure algebras involved; second, to set out some natural generalizations to other algebras.
But to justify the effort needed I ought to point to some mathematically significant idea which demands
these constructions for its expression, and here I mention the categorical nature of the constructions. Be-
tween Boolean algebras we have a variety of natural and important classes of ‘morphism’; for instance,
the Boolean homomorphisms and the order-continuous Boolean homomorphisms; while between measure
algebras we have in addition the measure-preserving Boolean homomorphisms. Now it turns out that if
we construct the LP spaces in the natural ways then morphisms between the underlying algebras give rise
to morphisms between their LP spaces. For instance, any Boolean homomorphism from 2 to B produces
a multiplicative norm-contractive Riesz homomorphism from L>(2() to L*°(2B); if 2 and B are Dedekind
o-complete, then any sequentially order-continuous Boolean homomorphism from 2 to B produces a se-
quentially order-continuous multiplicative Riesz homomorphism from L°(2) to L°(®8); and if (2, 1) and
(B, ) are measure algebras, then any measure-preserving Boolean homomorphism from 2( to B produces
norm-preserving Riesz homomorphisms from LP(2, i) to LP(B,v) for every p € [1,00]. All of these are
‘functors’, that is, a composition of homomorphisms between algebras gives rise to a composition of the
corresponding operators between their function spaces, and are ‘covariant’, that is, a homomorphism from
2A to B leads to an operator from LP(A) to LP(*B). But the same constructions lead us to a functor which
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2 Function spaces Chap. 36 intro.

is ‘contravariant’: starting from an order-continuous Boolean homomorphism from a semi-finite measure
algebra (2, /i) to a measure algebra (B, 7), we have an operator from L'(%B,7) to L*(2, ii). This last is in
fact a kind of conditional expectation operator. In my view it is not possible to make sense of the theory of
measure-preserving transformations without at least an intuitive grasp of these ideas.

Another theme is the characterization of each construction in terms of universal mapping theorems: for
instance, each LP space, for 1 < p < 0o, can be characterized as Banach lattice in terms of factorizations of
functions of an appropriate class from the underlying algebra to Banach lattices.

Now let me try to sketch a route-map for the journey ahead. I begin with two sections on the space
S(20); this construction applies to any Boolean algebra (indeed, any Boolean ring), and corresponds to the
space of ‘simple functions’ on a measure space. Just because it is especially close to the algebra (or ring) 2,
there is a particularly large number of universal mapping theorems corresponding to different aspects of its
structure (§361). In §362 I seek to relate ideas on additive functionals on Boolean algebras from Chapter
23 and §§326-327 to the theory of Riesz space duals in §356. I then turn to a systematic discussion of the
function spaces of Chapter 24: L> (§363), L° (§364), L' (§365) and other LP (§366), followed by an account
of convergence in measure (§367). While all these sections are dominated by the objectives sketched in the
paragraphs above, I do include a few major theorems not covered by the ideas of Volume 2, such as the
Kelley-Nachbin characterization of the Banach spaces L () for Dedekind complete 2 (363R). In the last
two sections of the chapter I turn to the use of LY spaces in the representation of Archimedean Riesz spaces
(§368) and of Banach lattices which are separated by their order-continuous duals (§369).

Version of 6.2.08

361 S

This is the fundamental Riesz space associated with a Boolean ring 2. When 2l is a ring of sets, S(2l)
can be regarded as the linear space of ‘simple functions’ generated by the indicator functions of members of
2 (361L). Its most important property is the universal mapping theorem 361F, which establishes a one-to-
one correspondence between (finitely) additive functions on 2 (361B-361C) and linear operators on S(2).
Simple universal mapping theorems of this type can be interesting, but do not by themselves lead to new
insights; what makes this one important is the fact that S(2() has a canonical Riesz space structure, norm
and multiplication (361E). From this we can deduce universal mapping theorems for many other classes of
function (361G, 361H, 3611, 361Xb). (Particularly important are countably additive and completely additive
real-valued functionals, which will be dealt with in the next section.) While the exact construction of S(2()
(and the associated map from 2 to S(21)) can be varied (361D, 361L, 361M, 361Ya), its structure is uniquely
defined, so homomorphisms between Boolean rings correspond to maps between their S()-spaces (361J),
and (when 2 is a Boolean algebra) 2 can be recovered from the Riesz space S() as the algebra of its
projection bands (361K).

361 A Boolean rings In this section I speak of Boolean rings rather than algebras; there are ideas in §365
below which are more naturally expressed in terms of the ring of elements of finite measure in a measure
algebra than in terms of the whole algebra. I should perhaps therefore recall some of the ideas of §311,
which is the last time when Boolean rings without identity were mentioned, and set out some simple facts.

(a) Any Boolean ring 2( can be represented as the ring of compact open subsets of its Stone space Z,
which is a zero-dimensional locally compact Hausdorff space (311I); Z is just the set of surjective ring
homomorphisms from 2 onto Zg (311E).

(b) If 20 and B are Boolean rings and 7 : 2 — B is a function, then the following are equiveridical: (i)
7 is a ring homomorphism; (ii) w(a\b) = wa\ b for all a, b € A; (iii) 7 is a lattice homomorphism and
70 = 0. P See 312H. To prove (ii)=-(iii), observe that if a, b € 2 then

m(anb) =ma\7(a\b) =ma\ (ra\wb) = wanwh,
ma =7((aub)Na) =nm(aub) Nma C T(aub),
(©) 1995 D. H. Fremlin
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361Cf S 3
m(b\a) =7n((aub)\a) =mr(aub)\ ma,

m(aub) =mwaun(b\a) =mwau(rb\7a) =maunh. Q

(c) If A and B are Boolean rings and 7 : 2 — 9B is a ring homomorphism, then 7 is order-continuous
iff inf 7[A] = 0 whenever A C 2 is non-empty and downwards-directed and inf A = 0 in 2; while 7 is
sequentially order-continuous iff inf, ey wa, = 0 whenever (a,)nen iS a non-increasing sequence in 20 with
infimum 0. (See 313L.)

(d) The following will be a particularly important type of Boolean ring for us. If (2, i) is a measure
algebra, then the ideal 27 = {a : a € U, fia < oo} is a Boolean ring in its own right. Now suppose that
(B, p) is another measure algebra and B/ C 9B the corresponding ring of elements of finite measure. We
can say that a ring homomorphism 7 : A — B/ is measure-preserving if 7ra = fia for every a € 2f. In
this case 7 is order-continuous. P If A C 7 is non-empty, downwards-directed and has infimum 0, then
inf,e 4 ia = 0, by 321F; but this means that inf,c 4 #7a = 0, and inf 7[A] = 0 in B/. Q

361B Definition Let 2 be a Boolean ring and U a linear space. A function v : 2l — U is finitely
additive, or just additive, if v(a Ub) = va 4+ vb whenever a, b € A and anb = 0.

361C Elementary facts We have the following immediate consequences of this definition, corresponding
to 326B and 313L. Let 2 be a Boolean ring, U a linear space and v : A — U an additive function.

(a) v0 =0 (because v0 = v0 + 10).
(b) If ao, . .. ,am are disjoint in A, then v(sup,,, a;) = Z;nzo va;. (Induce on m.)

(c) If B is another Boolean ring and 7 : 8 — 2 is a ring homomorphism, then vr : B — U is additive.
In particular, if ®B is a subring of 2, then v[B : 8 — U is additive.

(d) If V is another linear space and T : U — V is a linear operator, then Tv : 2 — V is additive.

(e) If U is a partially ordered linear space, then v is order-preserving iff it is non-negative, that is, va > 0
for every a € 2. P («) If v is order-preserving, then of course 0 = v0 < va for every a € 2. (8) If v is
non-negative, and a C b in 2, then

va<va-+vb\a)=vb Q

(f) If U is a partially ordered linear space and v is non-negative, then (i) v is order-continuous iff
inf v[A] = 0 whenever A C 2 is a non-empty downwards-directed set with infimum 0 (ii) v is sequentially
order-continuous iff inf, ey va, = 0 whenever (a,)nen is a non-increasing sequence in 2 with infimum 0.

P (i) If v is order-continuous, then of course inf ¥[A] = v0 = 0 whenever A C 2 is a non-empty downwards-
directed set with infimum 0. If v satisfies the condition, and A C 2l is a non-empty upwards-directed set
with supremum c¢, then {c\ a : a € 2} is downwards-directed with infimum 0 (313Aa), so that

sup va = sup ve — v(c\ a) = ve — inf v(c\ a)
a€A a€A acA

(by 351Db)

= VcC.

Similarly, if A C 2 is a non-empty downwards-directed set with infimum ¢, then
infoeava =infacqave+v(a\c) =ve+inf,cav(a\c) = ve.

Putting these together, v is order-continuous.
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4 Function spaces 361Cf

(ii) If v is sequentially order-continuous, then of course inf,ecyva, = v0 = 0 whenever {(a,)nen is a
non-increasing sequence in 2 with infimum 0. If v satisfies the condition, and (a,)nen is a non-decreasing
sequence in 2 with supremum ¢, then (¢ \ a)nen is non-increasing and has infimum 0, so that

SUp, ey Van = SUP, ey V€ — v(c\ a,) = ve —inf,env(c\ ay) = ve.

Similarly, if (a,)nen I8 a non-increasing sequence in 2l with infimum ¢, then {(a, \ ¢)nen is non-increasing
and has infimum 0, so that

inf,enva, = inf,eyve+v(e\ a,) = ve+ infenv(c\ ay) = ve.

Thus v is sequentially order-continuous. Q

361D Construction Let 2 be a Boolean ring, and Z its Stone space. For a € 2 write ya for the
indicator function of the open-and-compact subset @ of Z corresponding to a. Note that ya = 0 iff a = 0.
Let S(2A) be the linear subspace of R? generated by {ya : a € }. Because ya is a bounded function for
every a, S(2) is a subspace of the M-space ¢*°(Z) of all bounded real-valued functions on Z (354Ha), and
| lloc is @ norm on S(2A). Because xa X xb = x(anb) for all a, b € A (writing x for pointwise multiplication
of functions, as in 281B), S(2) is closed under x.

361E I give a portmanteau proposition running through the elementary, mostly algebraic, properties of

SL).
Proposition Let 2 be a Boolean ring, with Stone space Z. Write S for S(21).

(a) If ag, ... ,a, € 2, there are disjoint by, ... , b, such that each a; is expressible as the supremum of
some of the b;.

b) If uw € S, it is expressible in the form > Bixb; where by, ... ,b,, are disjoint members of 2 and

p §=0 L5 X0j )

Bj € R for each j. If all the b; are non-zero then |[ulloc = sup;,, |55l

¢) If u € S is non-negative, it is expressible in the form >"7" | 3,xb; where by, . .. , b,, are disjoint members

=0 FJIA"]

of A and §; > 0 for each j, and simultaneously in the form Z;.nzo vjxcj where co2¢1 2 ... D¢y and ;5 > 0
for every j.

(d) If uw = Z;-n:o Bjxb; where by, ... b, are disjoint members of 2 and 8; € R for each j, then |u| =
>isolBilxb; € S.

(e) S is a Riesz subspace of RZ; in its own right, it is an Archimedean Riesz space. If 2 is a Boolean
algebra, then S has an order unit x1 and ||uljcc = min{a: @ > 0, |u| < ax1} for every u € S.

(f) The map x : A — S is injective, additive, non-negative, a lattice homomorphism and order-continuous.

(g) Suppose that v > 0in S and § > 0 in R. Then

[u> 0] = max{a:a €A, (6 +n)xa < u for some n > 0}
is defined in 2, and
Oxfu > 0] <u<dxfu>0]V|ule]u > d].

In particular, v < ||uflcox[u > 0] and there is an 7 > 0 such that pxJu > 0] < w. If u, v > 0 in S then
uAv=0iff [u>0]nfv>0]=0.

(h) Under x, S is an f-algebra (352W) and a commutative normed algebra (2A4J).

(i) For any w € S, u > 0 iff u = v x v for some v € S.

proof Write a for the open-and-compact subset of Z corresponding to a € 2.

(a) Induce on n. If n = 0 take m = 0, by = ag. For the inductive step to n > 1, take disjoint
bo, ... ,bm such that a; is the supremum of some of the b; for each ¢ < n; now replace by,... , b, with
boNan, ... by Nan,bo\an,... bm\ an,an\ sup;<,, b; to obtain a suitable string for ao, ... ,an.

(b) If w =0set m =0, by = 0, By = 0. Otherwise, express u as > .. ,a;xa; where ag,...,a, € A
and ag,...,a, are real numbers. Let bg,... ,b, be disjoint and such that every a; is expressible as the
supremum of some of the b;. Set v;; = 1 if b; C a;, 0 otherwise, so that, because the b; are disjoint,
Xai = 371, Yijxb; for each i. Then

U= Y0 XA = Do Do @iYiixbs = 2050 Bixby,

MEASURE THEORY



361E S 5

setting B; = Y7, a;i; for each j < m.
The expression for ||ul|« is now obvious.

(c)() If w > 0 in (b), we must have 5; = u(z) > 0 whenever z € E)\j, so that 8; > 0 whenever b; # 0;
consequently u = Z?:o |Bj1xb; is in the required form.

(ii) If we suppose that every §; is non-negative, and rearrange the terms of the sum so that 8y < ... <
Bm, then we may set vo = Bo, v; = B — Bj—1 for 1 < j <m, ¢; = sup;; b; to get

Z;'n:o ViXCi = Z;'n:o Z:ij Yixbi = it Z;’:O Yixbi = 370, Bixbi = u.

(d) is trivial, because 30, .. ,Bn are disjoint.

(e) By (d), |u| € S for every u € S, so S is a Riesz subspace of R?, and in itself is an Archimedean Riesz
space. If 2 is a Boolean algebra, then 1, the constant function with value 1, belongs to S, and is an order
unit of S; while

|ulloo = minf{a : a >0, |u(z)| <aVze Z} =min{a:a >0, [u <axl}
for every u € S.

(f) x is injective because a # b whenever a % b. x is additive because a Nb = () whenever anb = 0. Of
course X is non-negative. It is a lattice homomorphism because a — @ : A — PZ and E — yE : PZ — R?
are. To see that v is order-continuous, take a non-empty downwards-directed A C 2 with infimum 0. ?
Suppose, if possible, that {xa : a € A} does not have infimum 0 in S. Then there is a © > 0 in S such that
u < xa for every a € A. Now u can be expressed as Z;’;O Bjxb; where by, ... , by, are disjoint. There must

be some zg € Z such that u(zy) > 0; take j such that zy € b;, so that b; # 0 and §; = u(zp) > 0. But now,
for any z € b;, a € A,

(xa)(z) > u(z) =B; >0

and z € a. As z is arbitrary, Ej C @ and b; C a; as a is arbitrary, b; is a non-zero lower bound for A in 2.
X So inf x[4] =0 in S. As A is arbitrary, x is order-continuous, by the criterion of 361C(f-1).

(g) Express u as Z;.":O Bjxb; where by, ..., by, are disjoint and every 5; > 0. Then given § > 0, n > 0
and a € 2 we have (0 +n)xa < wiff a C sup{b; : j <m, B; > 0+n}. So [u > §] =sup{b; : j <m, B; > d}.
Writing ¢ = [u > d], d = Ju > 0] = sup{b; : B; > 0}, we have

u(2) < Julloo if 2 €2
<difzed\¢
=0ifze Z\d
So
oxe < u < Jluflooxe V oxd,
as claimed. Taking § =0 we get u < |Jul|coxd. Set
n=min({1} U{B; : j <m, §; > 0});

then n > 0 and nxd < .
If u, v € ST take , ’ > 0 such that

nxfu>0] <u, n'xfv>0]<wv.
Then
min(n, 7 )x([u > 0] A [v > O]) < u A < max(ullo, [¥lloc)x(e > 0] 0 [o > 0]).
So
uANv=0=[u>0]nov>0=0=uAv=0.

D.H.FREMLIN



6 Function spaces 361E

(h) S is a commutative f-algebra and normed algebra just because it is a Riesz subspace of the f-algebra
and commutative normed algebra ¢*°(Z) and is closed under multiplication.
(i) Ifu = Z;"ZO Bijxb; where by, ..., by, are disjoint and 8; > 0 for every j, then v = v x v where

v= Z;‘nzo Jﬁijj-

361F I now turn to the universal mapping theorems which really define the construction.

Theorem Let 2 be a Boolean ring, and U any linear space. Then there is a one-to-one correspondence
between additive functions v : 2 — U and linear operators T : S(2) — U, given by the formula v = T'x.

proof (a) The core of the proof is the following observation. Let v : 2 — U be additive. If ag,... ,a, € A
and ag, ... ,a, € R are such that Y. ja;xa; = 0in S = S(), then Y ja;va; = 0 in U. P By 361Ea,
we can find disjoint by, ... , by, such that each a; is the supremum of some of the b;; set v;; = 1 if b; C a;, 0
otherwise, so that xa; = 27" vi;xb; and va; = 377 vijvb; for each i. Set 8; = 71 ;i for each j, so
that

0=3 " 0 qixai = 227" Bixb;.

Now Bjvb; = 0 in U for each j, because either b; = 0 and vb; = 0, or there is some z € Ej so that 8; must
be 0. Accordingly

0=2"700 Bivby = 300 3oisg uvigvby = Yo qivai. Q
(b) It follows that if u € S is expressible simultaneously as Z?:o aixa; = Z;“: o Bixbj, then
g aixai + 3 o(—B)xb; =0 in S,
so that
S g aiva; + T o (=B vb; =0in U,

and

Dio qiva; = 37" Bjvb;.
We can therefore define T': S — U by setting
T(Y g ixai) = Yo g iva;
whenever ag, ... ,a, €2 and ag,... ,a, € R.

(c) It is now elementary to check that T is linear, and that Txa = va for every a € 2. Of course this
last condition uniquely defines T, because {xa : a € 2} spans the linear space S.

361G Theorem Let 2 be a Boolean ring, and U a partially ordered linear space. Let v : 2l — U be an
additive function, and T : S() — U the corresponding linear operator.
(a) v is non-negative iff T is positive.
(b) In this case,
(i) if T is order-continuous or sequentially order-continuous, so is v;
(ii) if U is Archimedean and v is order-continuous or sequentially order-continuous, so is T
(c) If U is a Riesz space, then the following are equiveridical:
(i) T is a Riesz homomorphism;
(ii) va Avb=0in U whenever anb =0 in 2;
(iii) v is a lattice homomorphism.

proof Write S for S(2).

(a) If T is positive, then surely va = Txa > 0 for every a € 2, so v = Tx is non-negative. If v is
non-negative, and v > 0 in S, then wu is expressible as Z;-n:o Bjxb; where by, ... by, € A and §; > 0 for
every j (361Ec), so that

Tu = ZT:O ﬂjl/bj 2 0.
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361H S 7

Thus T is positive.

(b)(i) If T is order-continuous (resp. sequentially order-continuous) then v = T'x is the composition of
two order-continuous (resp. sequentially order-continuous) functions (361Ef), so must be order-continuous
(resp. sequentially order-continuous).

(i) Assume now that U is Archimedean.

(@) Suppose that v is order-continuous and that A C S is non-empty, downwards-directed and has
infimum 0. Fix ug € A, set o = ||u]|oo and ag = Ju > 0] (in the language of 361Eg). If o = 0 then of course
infyea Tu = Tug = 0. Otherwise, take any w € U such that w € 0. Then there is some § > 0 such that
w £ dvag, because U is Archimedean. Set A’ = {u : u € A, u < up}; because A is downwards-directed,
A’ has the same lower bounds as A, and inf A’ = 0, while A’ is still downwards-directed. For u € A’ set
¢y = [u > 4], so that

dxew < u < axe, + 0xu > 0] < axen + dxao
(361Eg). If u, v € A" and u < v, then ¢, C ¢, so C = {¢, : u € A’} is downwards-directed; but if ¢ is any
lower bound for C' in 2, dxc is a lower bound for A’ in S, so is zero, and ¢ = 0 in 2. Thus inf C = 0 in 2,
and infy,c 4/ ve, = 0 in U. But this means, in particular, that é(w — dvag) is not a lower bound for v[C],
and there is some u € A’ such that é(w —dvag) £ vey, that is, w — dvag £ ave,, that is, w £ dvag + ave,.
As u < axey, + dxao,
Tu < T(axe, + dxag) = ave, + dvag,

and w € Tu. Since w is arbitrary, this means that 0 = inf T[A]; as A is arbitrary, T is order-continuous.

(B) The argument for sequential order-continuity is essentially the same. Suppose that v is se-
quentially order-continuous and that (u,)ncy is a non-increasing sequence in S with infimum 0. Again set
a = |lugll, ap = Juo > 0]; again we may suppose that a > 0; again take any w € U such that w £ 0. As
before, there is some ¢ > 0 such that w £ dvag. For n € N set ¢, = [u,, > 0], so that

dxcn < up < axe, + dxao.

The sequence {Cp)nen 1S non-increasing because (un)nen is, and if ¢ C ¢, for every n, then dxc < w, for
every n, so is zero, and ¢ = 0 in . Thus inf,enc, = 0 in 2, and inf,cyve, = 0 in U, because v is
sequentially order-continuous. Replacing A’, C' in the argument above by {u, : n € N}, {¢, : n € N} we
find an n such that w € Tu,,. Since w is arbitrary, this means that 0 = inf,,cy T'uy; as (un)nen is arbitrary,
T is sequentially order-continuous.

(c)(i)=-(iii) f T : S(A) — U is a Riesz homomorphism, and v = Ty, then surely v is a lattice homo-
morphism because T and y are.

(iii)=(ii) is trivial.
(ii)=(i) If va A vb = 0 whenever anb = 0, then for any u € S(2) we have an expression of u as
> i Bixbj, where by, ... by, € 2 are disjoint. Now

[ Tul = 32700 Bivbi| = 32750 B5lvb; = T(32TL 181 1xbs) = T(|ul)
by 352Fb and 361Ed. As w is arbitrary, T is a Riesz homomorphism (352G).

361H Theorem Let 2 be a Boolean ring and U a Dedekind complete Riesz space. Suppose that
v :2A — U is an additive function and T : S = S(2) — U is the corresponding linear operator. Then
T e L~ =L~ (S;U) iff {vb : bCa} is order-bounded in U for every ¢ € 2, and in this case |T| € L™
corresponds to |v| : 2 — U, defined by setting

n
lv|(a) = sup{z lva;| : ag, ... ,a, C a are disjoint}
7=0

=sup{vb—v(a\b):bCa}

for every a € 2.

D.H.FREMLIN



8 Function spaces 361H

proof (a) Suppose that '€ L™ and a € 2. Then for any b C a, we have xb < xa so
bl = |Txb| < [T|(xa).
Accordingly {vb: b C a} is order-bounded in U.

(b) Now suppose that {vb : b C a} is order-bounded in U for every a € 2. Then for any a € A we can
define w, = sup{|vb| : b C a}; in this case, vb — v(a\ b) < 2w, whenever b C a, so fa = sup, ., vb— v(a\b)
is defined in U. Considering b = a, b = 0 we see that a > |va|. Next, §: 20 — U is additive. P Take aq,
as € 2 such that a1 nas = 0; set ag = a1 Uas. For each j < 2 set

A; ={v(ajnb) —v(aj\b):bec A} CU.
Then Ay C Ay + As, because
v(agnbd) —v(ag\b) =v(arnbd) —v(a1 \b) + v(aznb) — v(az \'b)
for every b € 2. But also A; + Ay C Ag, because if by, by € 2 then
v(agnby) —v(ai \b1) + v(aanbs) — v(az \ ba) = v(agnb) — v(ag\ b)
where b = (a; nby) U (aanbsg). So Ag = A; + As, and
fag = sup Ag = sup Ay + sup As = faq + fas

(351Dc¢). Q

We therefore have a corresponding positive operator 77 : S — U such that § = T7x. But we also see that
fa = sup{d>_"" , |va;| : ag, ... ,a, C a are disjoint} for every a € A. P If ay, ... ,a, are disjoint and included
in a, then

E:’L:O |Vai| < Z:‘L:O Oa; = e(supign ai) < fa.
On the other hand,
Oa < supy,c, [vb] + |v(a\b)| < sup{d_;"  |vai| : ap,... ,a, C a are disjoint}. Q

It follows that T € L™. I Take any u > 0 in S. Set a = [u > 0] (361Eg) and a = ||ulleo- If 0 < |v| <,
then v is expressible as Z?:o a;xa; where ag, ... ,a, are disjoint and no a; nor a; is zero. Since |v| < axa,
we must have |o;| < a, a; C a for each i. So

T = |30 asvas] < 30 |as|lvas] < adol g va;| < aba.
Thus {|Tv| : [v| < u} is bounded above by afa. As u is arbitrary, T € L™. Q

(c) Thus T € L™ iff v is order-bounded on the sets {b: b C a}, and in this case the two formulae offered
for |v| are consistent and make |v| = 6. Finally, 6 = |T|x. P Take a € . If ag,... ,a, C a are disjoint,
then

Dimo lvail =300 ITxas| < 3270 T (xa:) < |T(xa);
so fa < |T|(xa). On the other hand, the argument at the end of (b) above shows that |T|(xa) < fa for
every a. Thus |T'|(xa) = fa for every a € 2, as required. Q

3611 Theorem Let A be a Boolean ring, U a normed space and v : %l — U an additive function. Give
S = S(A) its norm || ||eo, and let T': S — U be the linear operator corresponding to v. Then T is a bounded
linear operator iff {va : a € A} is bounded, and in this case ||T|| = sup, jcq [[va — v0|.

proof (a) If T is bounded, then
[va —vbl| = [T (xa = xd)|| < ITlllIxa = xblleo < (Il
for every a € 2, so v is bounded and sup, jeq |lva — vb|| < || T7].

(b) (i) For the converse, we need a refinement of an idea in 361Ec. If u € S and v > 0 and |Ju||e < 1,
then u is expressible as E;io vix¢; where v; > 0 and ZZO =1 PIfu=0,taken=0,cp =0, v =1.
Otherwise, start from an expression u = Z?:o vjxcj where cp D ... D¢y, and every vy; is non-negative, as in
361Ec. We may suppose that ¢, # 0, in which case
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Yo =u(z) <1
for every z € ¢, C Z, the Stone space of 2. Set m =n+1, ¢, =0and v, = 1— Z?:o 7v; to get the required
form. Q

(ii) The next fact we need is an elementary property of real numbers: if vo,... ,Ym, V)s--- sV = 0
m

and 377"y = D57, then there are d;; > 0 such that ; = >°7_ d; for every i <m and v = 371" 6y,
for every j < n. PP This is just the case U = R of 352Fd. Q

(iii) Now suppose that v is bounded; set g = sup,cq ||val| < co. Then
0 = supy pex V0 — V] < 200
is also finite. If u € S and |lul|oc < 1, then we can express u as u™ —u~ where u™, u~ are non-negative and
also of norm at most 1. By (i), we can express these as
ut =3 vixe,  uT =000 vixC;
where all the 7;, 7} are non-negative and Y " v; = Z?:o vj = 1. Take (8;j)i<m.j<n from (ii). Set c;j = ¢,
c;; = cj for all i, j, so that
ut =3 Y digXcii,  uT =200, 20 digXclys
w=3"0 30 0ij (xcis — xciy),
Tu=37", Z?:o dij(vey; — vey),

1Tull < 30500 Xi—o dijllves; —vei;ll < 3000 25— dija = e

As wu is arbitrary, T is a bounded linear operator and ||T'|| < «, as required.

361J The last few paragraphs describe the properties of S(2() in terms of universal mapping theorems.
The next theorem looks at the construction as a functor which converts Boolean algebras into Riesz spaces
and ring homomorphisms into Riesz homomorphisms.

Theorem Let 2 and B be Boolean rings and 7 : 2 — B a ring homomorphism.
(a) We have a Riesz homomorphism T : S() — S(98) given by the formula

Tr(xa) = x(ma) for every a € .

For any u € S(A), || Trullcc = min{||t/]eo : v’ € S, Trv' = Tru}; in particular, ||Trullco < ||tflco-
Moreover, T (u X u') = Tru x Tru' for all u, u’ € S(2L).

(b) T is surjective iff 7 is surjective, and in this case ||v||co = min{||ul|eo : u € S(A), Tru = v} for every
v € S(B).

(c) The kernel of T} is just the set of those u € S() such that 7 [|lu| > 0] = 0, defining [... > ...] as in
361Eg.

(d) Ty is injective iff 7 is injective, and in this case ||Tru|lso = ||u]|so for every u € S(A).

(e) T is order-continuous iff 7 is order-continuous.
(f) T, is sequentially order-continuous iff 7 is sequentially order-continuous.
(g) If € is another Boolean ring and ¢ : B — € is another ring homomorphism, then Ty, = TyT, :
S — S(2).

proof (a) The map x7 : A — S(B) is additive (361Cc), so corresponds to a linear operator T' = T, : S(A) —
S(®B), by 361F. x and 7 are both lattice homomorphisms, so x7 also is, and 7" is a Riesz homomorphism
(361Gc). If u =Y ) a;xa;, where ag, ... ,a, are disjoint, then look at I = {i: i < n, ma; # 0}. We have

Tu =3 aix(mai) = 3 cvix(ma;)
and mag, ... ,ma, are disjoint, so that
[Tulloo = supiey || = [[u'[[oc < sUPg, 0 || < [|ufloo,

where u' = ., a;xa;, so that Tu' = Tu. If a, a’ € 2, then

D.H.FREMLIN
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T(xa x xa') =Tx(and) = xm(and) = xma x xwa' = T'xa x Txd,
so T' is multiplicative.
(b) If 7 is surjective, then T[S(2)] must be the linear span of
{T(xa):a €U} ={x(ma) :a € A} = {xb: b € B},
so is the whole of S(8). If T is surjective, and b € 9B, then there must be a u € 2 such that Tu = yb. We

can express u as » ., a;Xa; where ag, ... ,a, are disjoint; now
n
xb=Tu=3;_yix(mai),
and mag, ... ,ma, are disjoint in B, so we must have

b = sup;c; ma; = w(sup;c; a;) € w[2A,

where I = {i : @; = 1}. As b is arbitrary, « is surjective. Of course the formula for ||v]« is a consequence
of the formula for ||Tul|~ in (a).

(c)(@) If 7[Ju| > 0] = 0 then |u| < axa, where a = ||u||oo, and a = [Ju| > 0], so
(Tl = Tlu| < aT(xa) = ax(ra) =0,
and Tu = 0.

(ii) If w € S(A) and Tw = 0, express u as ., a;Xxa; where ag,... ,a, are disjoint and every o is
non-zero (361Eb). In this case

0= |Tul = Tlu| = 37 |eilx(mas),
so ma; = 0 for every 4, and
m[|ul > 0] = 7(sup;<,, a;) = sup;<,, 7a; = 0.
(d) If T is injective and a € A\ {0}, then x(ma) = T'(xa) # 0, so wa # 0; as a is arbitrary, 7 is injective.

If 7 is injective then w[|u| > 0] # 0 for every non-zero u € S(2), so T is injective, by (c). In this case the
formula in (a) shows that T is norm-preserving.

(e)(i) If T is order-continuous and A C 2 is a non-empty downwards-directed set with infimum 0 in 2,
let b be any lower bound for 7[A] in B. Then

xb < x(ma) = T(xa)
for any a € A. But T is order-continuous, by 361Ef, so inf,c4 T'(xa) = 0, and b must be 0. As b is
arbitrary, inf,c 4 ma = 0; as A is arbitrary, 7 is order-continuous.

(ii) If 7 is order-continuous, so is x7 : A — S(B), using 361Ef again; but now by 361G(b-ii) T" must
be order-continuous.

(£)(i) If T is sequentially order-continuous, and (a,)nen is @ non-increasing sequence in 2 with infimum
0, let b be any lower bound for {mwa, : n € N} in B. Then

xb < x(way,) = T(xan)

for any a € A. But Ty is sequentially order-continuous so inf,enyT'(xa,) = 0, and b must be 0. As b is
arbitrary, inf,cn ma, = 0; as A is arbitrary, w is sequentially order-continuous.

(ii) If 7 is sequentially order-continuous, so is x7 : 2 — S(B); but now T must be sequentially
order-continuous.

(g) We need only check that
Tyr(xa) = x(¢(ma)) = Ty(x(ma)) = TeTr(xa)
for every a € 2.

361K Proposition Let 2 be a Boolean algebra. For a € 2 write V,, for the solid linear subspace of S(2()

generated by ya. Then a — V, is a Boolean isomorphism between 2l and the algebra of projection bands in
S(A).
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proof Write S for S(2).

(a) The point is that, for any a € 2,
(i) |u| A |v| = 0 whenever u € V,, v € V4,
(ii) Vo + Viia = S.
P (i) is just because xa A x(1\a) = 0. As for (ii), if w € S then

w=(wxyxa)+ (wxx(1\a) € Vo+Via. Q

(b) Accordingly V, + V.X D V, + V3., = S and V, is a projection band (352R). Next, any projection
band U C S is of the form V,. P We know that x1 = u+ v where u € U, v € U*. Since |u| A |v| = 0, u and
v must be the indicator functions of complementary subsets of Z, the Stone space of 2. But {z : u(z) #
0} = {2z : u(z) > 1} must be of the form @, where a = [u > 0], in which case u = xa and v = x(1\a).
Accordingly U D V,, and U+ D Viie. But this means that U must be V, precisely. Q

(c) Thus a — V, is a surjective function from 2 onto the algebra of projection bands in S. Now
aCb < xaeV, < V, CV,

so a — V, is order-preserving and bijective. By 312M it is a Boolean isomorphism.

361L Proposition Let X be a set, and X a ring of subsets of X, that is, a subring of the Boolean ring
PX. Then S(X) can be identified, as ordered linear space, with the linear subspace of £*°(X) generated by
the indicator functions of members of ¥, which is a Riesz subspace of £°°(X). The norm of S(X) corresponds
to the uniform norm on ¢*°(X), and its multiplication to pointwise multiplication of functions.

proof Let Z be the Stone space of X, and for E € 3 write xE for the indicator function of E as a subset
of X, xF for the indicator function of the open-and-compact subset of Z corresponding to E. Of course
X : X — £°(X) is additive, so by 361F there is a linear operator T': S — ¢*°(X), writing S for S(X), such
that T(YE) = xE for every E € X.

IfuesS Tu>0iff u>0 P Express uas y ; ,B3;xE; where Ep,...,E,, are disjoint. Then

Tu = 77" BixFEj, s
u>0 <= (; >0 whenever E; #0 < Tu>0. Q
But this means («) that
Tu=0 <<= Tu>0&T(-u)>0 <= u>0& —u>0 < u=0,

so that T is injective and is a linear space isomorphism between S and its image §, which must be the linear
space spanned by {xF : E € X} () that T is an order-isomorphism between S and 8.

Because YE A xF =0 whenever E, F € X and ENF = (), T is a Riesz homomorphism and 8 is a Riesz
subspace of £>°(X) (361Gc). Now

lulloo = inf{a: Ju] < axX} =inf{a: |Tu| < axX} = ||[Tul|
for every u € S. Finally,
T(RE x {F) = TR(EN F)) = \(E N F) = T(E) x T(:F)

for all £, F' € 3, so 8 is closed under pointwise multiplication and the multiplications of S, § are identified
by T.

361M Proposition Let X be a set, ¥ a ring of subsets of X, and Z an ideal of X; write 2 for the
quotient ring X/Z. Let 8§ be the linear span of {yE : E € ¥} in R¥, and write
V=A_{f:fes {z: f(z) #0} €I}

Then V is a solid linear subspace of 8. Now S(2) becomes identified with the quotient Riesz space 8/V, if
for every E € ¥ we identify x(E*) € S(2) with (xE)* € 8§/V. If we give 8 its uniform norm inherited from
¢>*(X), V is a closed linear subspace of 8, and the quotient norm on §/V corresponds to the norm of S(2):

[/l = min{a : {z: |f(z)] > a} € T}.
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If we write x for pointwise multiplication on 8, then V' is an ideal of the ring (8, +, x), and the multiplication
induced on §/V corresponds to the multiplication of S(2).

proof Use 361J and 361L. We can identify 8§ with S(X). Now the canonical ring homomorphism E +— E*
corresponds to a surjective Riesz homomorphism T from S(X) to S(2() which takes xE to x(E*). For f € 8,
[If] > 0] is just {z : f(z) # 0}, so the kernel of T is just the set of those f € § such that {z : f(z) # 0} € Z,
which is V. So
SR =T[8]=8/V.
As noted in 361Ja, T(f x g) =T f x Tg for all f, g € 8, so the multiplications of §/V and S(2() match.
As for the norms, the norm of S(21) corresponds to the norm of §/V' by the formulae in 361Ja or 361Jb. To
see that V' is closed in 8, we need note only that if f € V' then

ITflloo = infgev If + glloc = infgev [[f = glloc =0,

so that Tf = 0 and f € V. To check the formula for || f*||, take any f € 8. Express it as Y., c;xE; where
Ey,...,E, € ¥ are disjoint. Set I = {i : E; ¢ Z}; then

ITflloo = max;er |a;| = min{a : {z: |f(x)| > a} € T}.

361X Basic exercises (a) Let 2 be a Boolean ring and U a linear space. Show that a function v : 2 — U
is additive iff 10 =0 and v(aub) + v(anb) = va+ vb for all a, b € 2.

>(b) Let U be an algebra over R, that is, a real linear space endowed with a multiplication x such
that (U, +, X) is a ring and a(w X z) = (aw) X z = w X (az) for all w, z € U and all & € R. Let A be a
Boolean ring, v : 24 — U an additive function and T : S(2) — U the corresponding linear operator. Show
that T is multiplicative iff v(anb) = va x vb for all a, b € 2.

>(c) Let 2 be a Boolean ring, and U a Dedekind complete Riesz space. Suppose that v : 2 — U is an
additive function such that the corresponding linear operator T : S(2) — U belongs to L™~ = L~ (S(2(); U).
Show that TF € L™ corresponds to v : % — U, where va = sup,, , vb for every a € 2.

(d) Let 2 and B be Boolean algebras. Show that there is a natural one-to-one correspondence between
Boolean homomorphisms 7 : 20 — B and Riesz homomorphisms T : S(2) — S(*B) such that T'(x12) = x1s,
given by setting T'(xa) = x(wa) for every a € 2L

(e) Let 2, B be Boolean rings and T': S(2) — S(B) a linear operator such that T(u x v) = Tu x Tv for
all u, v € S(2). Show that there is a ring homomorphism 7 : 2l — 9 such that T'(xa) = x(7a) for every
ac

(f) Let 2 and B be Boolean rings. Show that any isomorphism of the algebras S(2) and S(8) (using
the word ‘algebra’ in the sense of 361Xb) must be a Riesz space isomorphism, and therefore corresponds to
an isomorphism between 2 and ‘8.

(g) Let A, B be Boolean algebras and T : S(2) — S(B) a Riesz homomorphism. Show that there are a
ring homomorphism 7 : 2 — 9B and a non-negative v € S(B) such that T'(xa) = v x x(wa) for every a € 2.

(h) Let 2 be a Boolean algebra, 7 : 2 — 2 a Boolean homomorphism and T, : S() — S(A) the
associated Riesz homomorphism. Let € be the fixed-point subalgebra of 7= (312K). Show that S(€) may
be identified with the linear subspace of S(2() generated by {xc : ¢ € €}, and that this is {u : u € S(),
Tru = u}.

(i) Let 2 be a Boolean ring. Show that for any u € S(2) the solid linear subspace of S(2l) generated by
u is a projection band in S(2(). Show that the set of such bands is an ideal in the algebra of all projection
bands, and is isomorphic to 2.

>(j) Let X be aset and ¥ a o-algebra of subsets of X. Show that the linear span 8 in R¥ of {yF : E € X}
is just the set of ¥-measurable functions f : X — R which take only finitely many values.
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(k) For any Boolean ring %A, we may define its ‘complex S-space’ Sc(2) as the linear span in C? of
the indicator functions of open-and-compact subsets of the Stone space Z of 2. State and prove results
corresponding to 361Eb, 361Ed, 361Eh, 361F, 361L and 361M.

(1) Let 2 be a Boolean algebra, U a partially ordered linear space and v : 2t — U a non-negative additive
function. (i) Show that v is order-continuous iff ¥1 = sup ;¢ is finite 2_ics Y@ Whenever (a;);cs is a partition
of unity in U. (i) Show that v is order-continuous iff v1 = sup,,cy > ., ¥a; whenever (a;);cy is a partition
of unity in U.

361Y Further exercises (a) Let 2 be a Boolean ring. For a € 2 let e, € R* be the function such
that e,(a) = 1, e,(b) = 0 for b € A\ {a}; let V be the linear subspace of R* generated by {e, : a € 2}.
Let W C V be the linear subspace spanned by members of V' of the form e, , — e, — e, where a, b € 2 are
disjoint. Define x’ : 2l — V/W by taking x'a = €2, to be the image in V/W of e, € V. Show, without using
the axiom of choice, that the pair (V/W, x’) has the universal mapping property of (S(2l),x) as described
in 361F and that V/W has a Riesz space structure, a norm and a multiplicative structure as described in
361D-361E. Prove results corresponding to 361E-361M.

(b) Let (A;);csr be a non-empty family of Boolean algebras, with free product 2; write ; : 2, — 2 for
the canonical maps, and

C = {infjc; ¢e;(a;) : J C I is finite, a; € 2; for every j € J}.
Suppose that U is a linear space and 6 : C' — U is such that
Oc=0(cnei(a)) +0(cnei(l\a))

whenever ¢ € C, i € I and a € 2;. Show that there is a unique additive function v : A — U extending 6.
(Hint: 326E.)

(c) Let A be a Boolean ring and U a Dedekind complete Riesz space. Let A C L~ = L~ (S(2);U) be a
non-empty set. Suppose that 7' = sup A is defined in L™, and that o = T"x. Show that for any a € 2,

va = sup{d_;_ o Ti(xai) : To, ... , Ty € A, ag,... ,a, C a are disjoint, sup,,, a; = a}.

(d) Let A be a Boolean algebra. Show that the algebra of all bands of S(2() can be identified with the
Dedekind completion of 21 (314U).

(e) Let 2 be a Boolean ring, and U a complex normed space. Let v : 2 — U be an additive function
and T : Sc(2A) — U the corresponding linear operator (cf. 361Xk). Show that (giving Sc(2l) its usual norm

[ lloc)
17| = sup{[|>=}—o Gvasll = ao, - - , an € A are disjoint, |(;| =1 for every j}

if either is finite.

(f) Let U be a Riesz space. Show that it is isomorphic to S(2(), for some Boolean algebra 2, iff it has an
order unit and every solid linear subspace of U is a projection band.

361 Notes and comments The space S(2l) corresponds of course to the idea of ‘simple function’ which
belongs to the very beginnings of the theory of integration (122A). All that 361D is trying to do is to set up
a logically sound description of this obvious concept which can be derived from the Boolean ring 2 itself. To
my eye, there is a defect in the construction there. It relies on the axiom of choice, since it uses the Stone
space; but none of the elementary properties of S(2() have anything to do with the axiom of choice. In 361Ya
I offer an alternative construction which is in a formal sense more ‘elementary’. If you work through the
suggestion there you will find, however, that the technical details become significantly more complicated, and
would be intolerable were it not for the intuition provided by the Stone space construction. Of course this
intuition is chiefly valuable in the finitistic arguments used in 361E, 361F and 361I; and for these arguments
we really need the Stone representation only for finite Boolean rings, which does not depend on the axiom
of choice.
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It is quite true that in most of this volume (and in most of this chapter) I use the axiom of choice without
scruple and without comment. I mention it here only because I find myself using arguments dependent on
choice to prove theorems of a type to which the axiom cannot be relevant.

The linear space structure of S(2), together with the map x, are uniquely determined by the first universal
mapping theorem here, 361F. This result says nothing about the order structure, which needs the further
refinement in 361Ga. What is striking is that the partial order defined by 361Ga is actually a lattice ordering,
so that we can have a universal mapping theorem for functions to Riesz spaces, as in 361Gc and 361Ja.
Moreover, the same ordering provides a happy abundance of results concerning order-continuous functions
(361Gb, 361Je-361Jf). When the codomain is a Dedekind complete Riesz space, so that we have a Riesz
space L~(S;U), and a corresponding modulus function T — |T'| for linear operators, there are reasonably
natural formulae for |T'|x in terms of T'x (361H); see also 361Xc and 361Yc. The multiplicative structure
of S(2) is defined by 361Xb, and its norm by 3611.

The Boolean ring 2 cannot be recovered from the linear space structure of S(2() alone (since this tells us
only the cardinality of ), but if we add either the ordering or the multiplication of S(2() then 2 is easy to
identify (361K, 361Xf).

The most important Boolean algebras of measure theory arise either as algebras of sets or as their
quotients, so it is a welcome fact that in such cases the spaces S(2() have straightforward representations in
terms of the construction of A (361L-361M).

In Chapter 24 I offered a paragraph in each section to sketch a version of the theory based on the field of
complex numbers rather than the field of real numbers. This was because so many of the most important
applications of these ideas involve complex numbers, even though (in my view) the ideas themselves are
most clearly and characteristically expressed in terms of real numbers. In the present chapter we are one
step farther away from these applications, and I therefore relegate complex numbers to the exercises, as in
361Xk and 361Ye.

Version of 31.12.10
362 S~

The next stage in our journey is the systematic investigation of linear functionals on spaces S = S(20).
We already know that these correspond to additive real-valued functionals on the algebra 2 (361F). My
purpose here is to show how the structure of the Riesz space dual S™ and its bands is related to the classes
of additive functionals introduced in §§326-327. The first step is just to check the identification of the linear
and order structures of S~ and the space M of bounded finitely additive functionals (362A); all the ideas
needed for this have already been set out, and the basic properties of S™ are covered by the general results in
§356. Next, we need to be able to describe the operations on M corresponding to the Riesz space operations
|, V, A on S, and the band projections from S~ onto S, and S*; these are dealt with in 362B, with
a supplementary remark in 362D. In the case of measure algebras, we have some further important bands
which present themselves in M, rather than in S~, and which are treated in 362C. Since all these spaces
are L-spaces, it is worth taking a moment to identify their uniformly integrable subsets; I do this in 362E.

While some of the ideas here have interesting extensions to the case in which 2l is a Boolean ring without
identity, these can I think be left to one side; the work of this section will be done on the assumption that
every 2 is a Boolean algebra.

362A Theorem Let 2 be a Boolean algebra. Write S for S(21).

(a) The partially ordered linear space of all finitely additive real-valued functionals on 2l may be identified
with the partially ordered linear space of all real-valued linear functionals on S.

(b) The linear space of bounded finitely additive real-valued functionals on 2l may be identified with the
L-space S~ of order-bounded linear functionals on S. If f € S™ corresponds to v : 2l — R, then f+ € S~
corresponds to v+, where

vta = sup,c, vb
for every a € A, and

(© 1996 D. H. Fremlin
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1F]l = suppeq va —v(1\ a).

(¢) The linear space of bounded countably additive real-valued functionals on 2 may be identified with
the L-space S_".

(d) The linear space of completely additive real-valued functionals on 20 may be identified with the L-space
Sx.
proof By 361F, we have a canonical one-to-one correspondence between linear functionals f : S — R and

additive functionals v¢ : Jl — R, given by setting vy = fx.

(a) Now it is clear that vyyy = vy 4+ Vg, Vay = avy for all f, g and «, so this one-to-one correspondence
is a linear space isomorphism. To see that it is also an order-isomorphism, we need note only that vy is
non-negative iff f is, by 361Ga.

(b) Recall from 356N that, because S is a Riesz space with order unit (361Ee), S™ has a corresponding
norm under which it is an L-space.

(i) If f € S™, then
suppeq [Vrbl = supyeq [f(x0)| < sup{|f(u)| : u € 5, |u| < X1}
is finite, and vy is bounded.

(ii) Now suppose that vy is bounded and that v € S*. Then there is an o > 0 such that v < ax1
(361Ee). If u € S and |u| < v, then we can express u as » ., a;xa; where ao, ... ,a, are disjoint (361Eb);
now |o;| < @ whenever a; # 0, so

[f(w)] = [0 aivrai| < X7l [vrail = a(vyer —vper) < 2asupyey [vsb],
setting ¢1 = sup{a; : i < n, vya; > 0}, ca = sup{a; : i < n, vra; < 0}. This shows that {f(u) : |u] < v} is
bounded. As v is arbitrary, f € S~ (356Aa).

(iii) To check the correspondence between f and ij, refine the arguments of (i) and (ii) as follows.

Take any f € S~. Ifa €,
V?a = supy,c, Vrb = sup, c, f(xb) <sup{f(u):ue S, 0<u<xa} = f*(xa)
On the other hand, if u € S and 0 < u < xa, then we can express u as Z?:o a;xa; where ag, ... ,a, are
disjoint; now 0 < «; < 1 whenever a; # 0, so
flu) =31 gaivpa; <vpe < V]'ﬁ'a,

where ¢ = sup{a; : i <n, vra; > 0}. As u is arbitrary, f*(ya) < V}'a. This shows that y;f = fT is finitely
additive, and that V;I = v+, as claimed.

(iv) Now, for any f € S™,

I£II = 1£1(x1)
(356N)

— 2~ D) =20} 1 vy
(by (iii) just above)

=sup2va —vgl =supvra —ve(l\ a).
acU acU

(c)If f > 0in S™, then f is sequentially order-continuous iff vy is sequentially order-continuous (361Gb),
that is, iff vy is countably additive (326Kc). Generally, an order-bounded linear functional belongs to S.-
iff it is expressible as the difference of two sequentially order-continuous positive linear functionals (356Ab),
while a bounded finitely additive functional is countably additive iff it is expressible as the difference of two
non-negative countably additive functionals (326L); so in the present context f € S_” iff v¢ is bounded and
countably additive.
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(d) If f > 01in S~, then f is order-continuous iff v is order-continuous (361Gb), that is, iff v; is com-
pletely additive (3260c¢). Generally, an order-bounded linear functional belongs to S* iff it is expressible
as the difference of two order-continuous positive linear functionals (356Ac), while a finitely additive func-
tional is completely additive iff it is expressible as the difference of two non-negative completely additive
functionals (326Q); so in the present context f € S* iff v; is completely additive.

362B Spaces of finitely additive functionals The identifications in the last theorem mean that we
can relate the Riesz space structure of S(2()™ to constructions involving finitely additive functionals. I have
already set out the most useful facts as exercises (326Yd, 326Ym, 326Yn, 326Yp, 326Yq); it is now time to
repeat them more formally.

Theorem Let 2 be a Boolean algebra. Let M be the Riesz space of bounded finitely additive real-valued
functionals on A, M, C M the space of bounded countably additive functionals, and M, C M, the space
of completely additive functionals.

(a) For any pu, v € M, u Vv, p Av and |v| are defined by the formulae
(nVv)(a) = sup,c, pb+v(a\b),
(uAv)(a) =infycq pb+ v(a\b),
|v|(a) = sup,c, vb — v(a\b) = sup, ., vb—ve
for every a € . Setting
vl = [v|(1) = sup,eq va — v(1\ a),

M becomes an L-space.

(b) M, and M, are projection bands in M, therefore L-spaces in their own right. In particular, |v| € M,
for every v € M,, and |v| € M, for every v € M,.

(¢) The band projection P, : M — M, is defined by the formula
(P,v)(c) = inf{sup, ey ¥an : (@n)nen is a non-decreasing sequence with supremum c}

whenever ¢ € %l and v > 0 in M.
(d) The band projection P, : M — M, is defined by the formula

(P-v)(c) = inf{sup,c 4 va : A is a non-empty upwards-directed set with supremum c}

whenever ¢ € %l and v > 0 in M.

(e) If A C M is upwards-directed, then A is bounded above in M iff {v1: v € A} is bounded above in R,
and in this case (if A # 0) sup A is defined by the formula

(sup A)(a) = sup, ¢4 va for every a € .

(f) Suppose that u, v € M.
(i) The following are equiveridical:
(a) v belongs to the band in M generated by p;
(B) for every € > 0 there is a § > 0 such that |va| < e whenever |ula < J;
(7) limy, 00 va, = 0 whenever (a,)nen is a non-increasing sequence in 2 such that lim, oo |p|(an) =

(ii) Now suppose that p, v > 0, and let v, v be the components of v in the band generated by p and
its complement. Then
vic = Supssinfua<s v(c\a),  voc =infss08up,ce a<s VO
for every c € 2.

proof (a) Of course uVv=v+ (u—v)", uAv=v—(v—p)*, v| =vV (-v) (352D), so the formula of
362ADb gives
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(nVv)(a )—l/a—i—supub—ub—sup,ub-l-l/(a\b)
bCa

(mAv)(a) =va—supvb— pb= 1nf ,ub—i—u(a\b)
bCa

lv|(a )—supub—u(a\b) < sup vb—vec= sup v(b\c)—v(c\b)
bC b,cCa b,cCa

< sup [v|(b\¢) + [v|(c\b) = sup |v[(bac) <|v|(a).

b,cCa b,cCa

The formula offered for ||v|| corresponds exactly to the formula in 362Ab for the norm of the associated
member of S(2A)~; because S(2)™~ is an L-space under its norm, so is M.

(b) By 362Ac-362Ad, M, and M, may be identified with S(2()7" and S(2()*, which are bands in S()~
(356B), therefore projection bands (353J); so that M, and M, are projection bands in M, and are L-spaces
in their own right (3540).

(c) Take any v > 0 in M. Set
vec = inf{sup, ey Van : {(an)nen is a non-decreasing sequence with supremum c}

for every ¢ € 2. Then of course 0 < v,c < ve for every c. The point is that v, is countably additive. I* Let
{¢;)ien be a disjoint sequence in 2, with supremum c. Then for any € > 0 we have non-decreasing sequences
(anYnen, (@in)nen, for i € N, such that

SUP,eN Gn = C, SUD, ey Gin = C; for 4 € N,
SUP,en Van < Vol + €,

SupneN VQin S VsCy + 2_i6 fOI‘ every 7 (S N
Set b, = sup,,, ain for each n; then (b, )necn is non-decreasing, and
Sup,,en bn = SUD; peN Gin = SUP;ep Ci = C,

SO

vyc < sup vb, = sup Z Van

neN nEN
= Sup Va;, < VgCi + 27 e = VyCi + 2€.
-3 spr <3 >

On the other hand, (a, N¢;)nen is a non-decreasing sequence with supremum cne; = ¢; for each i, so
VeCi < SUp,en V(an N ¢;), and

Zugcl <Zsup1/ an N¢;) —Supz (anncp)

neN;
(because (ap)nen is non—decreasmg)

< supva,
neN

(because (¢;);en is disjoint)
<vsc+e.

As € is arbitrary, v,c =Y .0 VeCi; as (¢i)ien is arbitrary, v, is countably additive. Q
Thus v, € M,. On the other hand, if v’ € M, and 0 < v/ < v, then whenever ¢ € 2 and (a,)nen is a
non-decreasing sequence with supremum c,

v'e = sup,en V' an < SUp, ey Van.

D.H.FREMLIN



18 Function spaces 362B

So we must have v'c < v,c. This means that
ve =sup{v’ :v' € My, v' <v}=P,u,
as claimed.

(d) The same ideas, with essentially elementary modifications, deal with the completely additive part.
Take any v > 0 in M. Set

vrc = inf{sup,c 4 va : A is a non-empty upwards-directed set with supremum c}

for every ¢ € 2. Then of course 0 < v,;c¢ < vc for every c¢. The point is that v, is completely additive.
P Note first that if ¢ € 2, € > 0 there is a non-empty upwards-directed A, with supremum ¢, such that
SuUp,c 4 va < vrc+eve; for if ve = 0 we can take A = {c}. Now let (¢;);cr be a partition of unity in . Then
for any € > 0 we have non-empty upwards-directed sets A, A;, for i € I, such that

supA=1, supA;=c;foriel, sup,cyva<v,1l4erl,

SUP,ea, Ya < vrc; + eve; for every i € 1.
Set
B = {sup;cya; : J C I is finite, a; € A; for every i € J};
then B is non-empty and upwards-directed, and
sup B = sup(U,;c; 4i) = 1,

SO

v, 1 <supvb= sup{z va; : J C 1 is finite, a; € A; Vie J}
beB ieJ
< ZVTCZ' + eve; < evl 4+ Z VrCi.
el iel

On the other hand, A} = {an¢; : a € A} is a non-empty upwards-directed set with supremum ¢; for each 4,
S0 Vr¢; < SUup,e»¢ va, and

ZV—,—Ci < Zsup viang) = supzy(amci)

icl il €A a€A T

<supva <v,;1+ evl.
a€A

As € is arbitrary, v.c =), vrCi; as (¢i)ier is arbitrary, v, is completely additive, by 326R. Q
Thus v, € M,. On the other hand, if v’ € M, and 0 < v/ < v, then whenever ¢ € 2 and A is a non-empty
upwards-directed set with supremum c,

Ve =sup,cv'a < sup,ecqva
(using 3260c). So we must have v’c¢ < vyc. This means that
v, =sup{v':v' € M, v <v} =P,
as claimed.

(e) If A is empty, of course it is bounded above in M, and {v1: v € A} = () is bounded above in R; so
let us suppose that A is not empty. In this case, if Ag € M is an upper bound for A, then A\gl is an upper
bound for {v1: v € A}. On the other hand, if sup,c 4 ¥1 = 7 is finite, v* = sup{ra : v € A, a € A} is finite.
P Fix vy € A. Set 71 = sup,cq |voa] < co. Then for any v € A and a € U there is a v’ € A such that
vo Vv <1, sothat

va<via=v1-v'(1\a) <v—vo(1\a) <vy+7.

So
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TS+ <o Q
Set Aa = sup,c 4 va for every a € 2. Then X : 2A — R is additive. B* If a, b €  are disjoint, then

Aaubd) = supv(aub) = supva + vb = sup va + sup vb
veA veA veA veA

(because A is upwards-directed)

=Xa+ M. Q

Also Aa < ~* for every a, so
[Aa| = max(Aa, —Aa) = max(Aa, A(1\ a) — A1) < v* + |A]|

for every a € 2, and A is bounded.
This shows that A € M, so that A is bounded above in M. Of course A must be actually the least upper
bound of A in M.

(f) (1) (a)=-(B) Suppose that v belongs to the band in M generated by f, that is, |v| = sup,,en [V| A 0y
(352Vb). Let € > 0. Then there is an n € N such that [v|(1) < e+ ([v| A nlu|)(1) ((e) above). Set

§ = ziqe > 0. If |u|(a) < 6, then

va| < v|(a) = (W[ Anlul)(a) + (Iv] = |v] An|ul)(a)

1
< nlpal(@) + (] — | Anlu)(1) < nd + Le <.

So (p) is satisfied.

not-(a)=-not-(B) Suppose that v does not belong to the band in M generated by |u|. Then there
is a v; > 0 such that v; < |v| and v; A |p] = 0 (353C). For any § > 0, there is an a € 2 such that
vi(1\a) + |p|(a) < min(8, 111) ((a) above); now |u|(a) < & but

lv|(a) > ria=111—-11(1\a) > 11l — %Vll = %1/11.
Thus , v do not satisfy (8) (with e = 2111).
(B)=(vy) is trivial.

(7)= () Observe first that if (cx)ren is a non-increasing sequence in 2 such that limg_o0 |pulcr = 0,
then limg_ oo v, = 0. P Let € > 0. Because v A v~ =0, there is a b € 2 such that v+ v~ (1\b) <,
by part (a). Now (ck \ b)ren is non-increasing and limg_, oo |pt|(ck \ b) = 0, so limg_ o v(cx \ b) = 0 and

limsupvteg = limsup vt (e nb) +v(cp \ b) + v (e \ b)
k—o0 k— o0

<vtb+v (1\b) <e

As ¢ is arbitrary, limy_oo vTcp = 0. Q

? Now suppose, if possible, that v does not belong to the band generated by u. Then there is a v; > 0
such that v1 < vt and 1y A |u| = 0. Set € = iull > 0. For each n € N, we can choose a,, € 2 such that
|ulan +v1(1\ an) < 27™¢, by part (a) again. For n > k, set bg, = supj<;<,, a;; then

|lbrn < D00y |plas < 27K e,

and (byn)n> is non-decreasing. Set v, = sup,,>, V1bkn and choose m(k) > k such that vy k) > Ye—2 Fe.
Setting by = by, m(k), We see that by Ubgy1 = bg, where n = max(m(k), m(k + 1)), so that

vi (b Ubgt1) <y < viby + 27 Fe
and vy (byi1\ br) < 27Fe. Set ci = inf;<y b; for each k; then

v (bgg1 \ Crp1) = 1 (bg1 \ ek) < v (g \ br) + v (br \ cr) < 27Fe + 11 (bi \ )

for each k; inducing on k, we see that
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(b \ex) < S 27 < 2¢
for every k. This means that
vhep > vier > by —2e > viag —2e =111 —vi(1\ag) —2¢ > 4e — e —2e =€
for every k € N. On the other hand, (cx)kren is a non-increasing sequence and
luler < ulbr < 27FFe

for every k, which contradicts the paragraph just above. X
This means that v must belong to the band generated by u. Similarly v~ = (—v)" belongs to the band
generated by p and v = v+ 4+ v~ also does.

(ii) Take ¢ € A. Set
B1 = sups~ginfacsv(c\a), B2 =infssosup,c. a<sva-
Then
B1 = sups~ginface pa<s v(c\ a) = ve — fa.

Take any € > 0. Because 14 belongs to the band generated by p, part (i) tells us that there is a § > 0 such
that v1a < € whenever pa < §. In this case, if pa <9,

v(ic\a) =vec—v(cna) > ve—e>vic—e¢
thus
f1 > infa<s v(c\a) > vic—e.

As e is arbitrary, 81 > vic. On the other hand, given €, 6 > 0, there is an a C ¢ such that pa + va(c\ a) <
min(d, €), because u A v = 0 (using (a) again). In this case, of course, pa < ¢, while

va > vea = voc — va(c\ a) > vac — €.
Thus sup, . q<s V@ > v2c — €. As ¢ is arbitrary, B2 > vec — €. As € is arbitrary, 82 > vac; but as
p1+ B2 = ve = vic+ e,
B; = v;c for both 4, as claimed.

Remark The L-space norm || || on M, described in (a) above, is the total variation norm.

362C The formula in 362B(f-i) has, I hope, already reminded you of the concept of ‘absolutely continuous’
additive functional from the Radon-Nikodym theorem (Chapter 23, §327). The expressions in 362Bf are
limited by the assumption that u, like v, is finite-valued. If we relax this we get an alternative version of
some of the same ideas.

Theorem Let (2, i) be a measure algebra and M be the Riesz space of bounded finitely additive real-valued
functionals on 2. Write

My ={v: v € M is absolutely continuous with respect to i}
(see 327A),

M. = {v:v € M is continuous with respect to the measure-algebra topology on 2},
My ={v:veM, vl =sup,,.o |v]a}.
Then M., M;. and M, are bands in M.
proof (a)(i) It is easy to check that M, is a linear subspace of M.

(i) If v € Mg, v € M and |V'| < |v| then v/ € M,.. P Given ¢ > 0 there is a 6 > 0 such that
|va| < %e whenever jia < §. Now

[v'al < ['[(a) < |v[(a) < 2sup.c,[vef <€

(using the formula for |v| in 362Ba) whenever fia < §. As € is arbitrary, v’ is absolutely continuous. Q
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(iii) If A C M, is non-empty and upwards-directed and v = sup A in M, then v € M,.. P Let € > 0.
Then there is a v’ € A such that v1 < v/1+ Le (362Be). Now there is a § > 0 such that |[va| < 1€ whenever
pa < 0. If now pia < 4,

lva| < [v'a|+ (v —v')(a) < 3e+ (v —v)(1) <e.
As € is arbitrary, v is absolutely continuous with respect to i. Q
Putting these together, we see that M,. is a band.

(b) (i) We know that M;. consists just of those v € M which are continuous at 0 (327Bc). Of course this
is a linear subspace of M.

(ii) If v € My, v/ € M and |v'| < |v| then |v| € My.. P Write 2/ = {d : d € A, id < oo}. Given € > 0
there are d € 2/, § > 0 such that [va| < 1e whenever fi(and) < 6. Now
[v'al < |v'[(a) < |v[(a) < 2sup.c, |vef <€
whenever fi(and) < 4. As e is arbitrary, v’ is continuous at 0 and belongs to M;.. Q

(iii) If A C My, is non-empty and upwards-directed and v = sup A in M, then v € M;.. P Let € > 0.
Then there is a v’/ € A such that v1 < v'1 + %e. There are d € 2/, § > 0 such that |va| < %e whenever
iland) < 6. If now fi(and) <9,

lva| < [v'a| + (v —v')(a) < 3e+ (v —v)(1) <e.
As € is arbitrary, v is continuous at 0, therefore belongs to M;.. Q
Putting these together, we see that M. is a band.
(c)(i) M, is a linear subspace of M. I Suppose that v1, vo € M; and o € R. Given € > 0, there are ag,
as € AF such that |v](1\ay) < a7 and [2](1\ az) < e. Set a =ay Uasg; then fia < co and
lv1 +a](1\a) <2, |an|(1\a)<e.

As € is arbitrary, v + o and avy belong to My; as v, vo and « are arbitrary, M; is a linear subspace of M.

Q
(ii) f v e My, v/ € M and |v'| < |v| then
inf[m<oo |V,|(1 \ a) < infﬁa<oo |V|(1 \ CL) = 0;
so v’ € M;. Thus M; is a solid linear subspace of M.
(iii) If A C M;' is non-empty and upwards-directed and v = sup A is defined in M, then v € M;. P
V|l =vl =sup, c,V'1= SUD, e A ia< oo v'a = SUP/q <00 V-

As A is arbitrary, v € M;. Q Thus M; is a band in M.

362D For semi-finite measure algebras, among others, the formula of 362Bd takes a special form.

Proposition Let 2 be a weakly (o, co)-distributive Boolean algebra. Let M be the space of bounded finitely
additive functionals on 2, M, C M the space of completely additive functionals, and P, : M — M, the
band projection, as in 362B. Then for any v € M* and ¢ € 2 there is a non-empty upwards-directed set
A C A with supremum c such that (P-v)(c) = sup,c 4 va; that is, the ‘inf’ in 362Bd can be read as ‘min’.

proof By 362Bd, we can find for each n a non-empty upwards-directed A,,, with supremum ¢, such that
SUp,ea, va < (Prv)(c) +27™. Set B, = {c\a:a € A,} for each n, so that B, is downwards-directed and
has infimum 0. Because 2 is weakly (o, co)-distributive,

B = {b: for every n € N there is a ¥’ € B,, such that b2 b’}

is also a downwards-directed set with infimum 0. Consequently A = {¢\b: b € B} is upwards-directed and
has supremum c. Moreover, for any n € N and a € A, there is an a’ € A,, such that a C a’; so, using 362Bd
again and referring to the choice of A,

(Prv)(c) <sup,eqva < supycy, va' < (Prv)(c) +277.

As n is arbitrary, A has the required property.
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362E Uniformly integrable sets The spaces S™, S and S* of 362A, or, if you prefer, the spaces
M, My, M, My., My, My of 362B-362C, are all L-spaces, and any serious study of them must involve a
discussion of their uniformly integrable ( = relatively weakly compact) subsets. The basic work has been
done in 3560; I spell out its application in this context.

Theorem Let 2 be a Boolean algebra and M the L-space of bounded finitely additive functionals on 2.
Then a norm-bounded set C' C M is uniformly integrable iff lim,,_,o sup,c¢ |va,| = 0 for every disjoint
sequence (G, )nen in 2A.

proof Write S for S(2) and C for the set {f : f € S~, fx € C}. Because the map f — fx is a normed
Riesz space isomorphism between S~ and M, C' is uniformly integrable in M iff C' is uniformly integrable
in S™.

(a) Suppose that C' is uniformly integrable and that (an)nen is a disjoint sequence in 2. Then (xan)nen
is a disjoint order-bounded sequence in S, while C'is uniformly integrable, so lim;,_,oc Sup ;. |f(xan)| =0,
by 3560; but this means that lim, . sup,cc [vas| = 0. Thus the condition is satisfied.

(b) Now suppose that C' is not uniformly integrable. By 3560, in the other direction, there is a disjoint
sequence (Un)nen in S such that 0 < u, < x1 for each n and limsup,,_, . supca [f(un)| > 0. For each n,
take ¢, = [un, > 0] (361Eg); then 0 < u,, < xc, and (¢, )nen is disjoint. Now

limsup sup |v|(c,) = limsup sup | f[(xcn)

n—oo vel n—o0 fec

> limsup sup | f(un)| > 0.
n—o00 fEC'

So if we choose v, € C such that |v,|(c,) > 1 sup,cq |V|(cn), we shall have limsup,, . [Vn|(c,) > 0. Next,

for each n, we can find a, C ¢, such that |v,a,| > 3|va|(cy), so that
lim sup,,cy SUP, ¢ [Van| > limsup,,_, o [Vnan| > 0.

Since (an)nen, like (¢, )nen, is disjoint, the condition is not satisfied. This completes the proof.

362X Basic exercises >(a) Let 2 be a Dedekind o-complete Boolean algebra and vy, vo two countably
additive functionals on 2. Show that |v1|A|ve| = 0 in the Riesz space of bounded finitely additive functionals
on 2 iff there is a ¢ € 2 such that v1a = v1(anc) and vea = ve(a )\ ¢) for every a € 2.

(b) Let (A, i) be a measure algebra, and take M, M, as in 362C. Show that for any non-negative v € M,
the component v,. of v in M, is given by the formula

VacC = SUP;~( infhe<s v(c\ a).

(c) Let (A, 1) be a measure algebra, and take M, M; as in 362C. (i) Show that M, is just the set of
those v € M such that va = limy_, zv(anb) for every a € A, where F is the filter on 2 generated by the
sets {b: b€ A bDbg} as by runs over the set AL of elements of A of finite measure. (ii) Show that the
complementary band M;- of M; in M is just the set of those v € M such that va = 0 for every a € 27, (iii)
Show that for any v € M, its component vy in M, is given by the formula v,a = lim,_,  v(anb) for every
ac

(d) Let (2, 1) be a measure algebra. Write M, M,, M., My., M. and M; as in 362B-362C. Show that
(i) My C My, (ii) Mae N M, = My, C M, (iii) if (2, ) is o-finite, then M, = M.

(e) Let 2 be a Boolean algebra, and M the space of bounded additive functionals on 2. Let us say that
a non-zero finitely additive functional v : A — R is atomic if whenever a, b € 2 and anb = 0 then at
least one of va, vb is zero. (i) Show that for a non-zero finitely additive functional v on 2 the following
are equiveridical: («) v is atomic; (8) v € M and |v] is atomic; (y) v € M and the corresponding linear
functional fi,; = |f,| € S(A)™ is a Riesz homomorphism; (§) there are a multiplicative linear functional
f:S@) — R and an o € R such that va = af(xa) for every a € 2; (¢) v € M and the band in M generated
by v is the set of multiples of v. (ii) Show that a completely additive functional v : 2 — R is atomic iff
there are a € 2 and « € R\ {0} such that @ is an atom in 2 and vb = « when a C b, 0 when anb = 0.
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(f) Let 2 be a Boolean algebra. (i) Show that the properly atomless functionals (definition: 326F)
form a band M, in the Riesz space M of all bounded finitely additive functionals on . (ii) Show that
the complementary band M consists of just those v € M expressible as a sum > ic1 Vi of countably many
atomic functionals v; € M. (iii) Show that if 2 is purely atomic then a properly atomless completely additive
functional on 2 must be 0.

(g) Let X be a set and ¥ an algebra of subsets of X. Let M be the Riesz space of bounded finitely
additive functionals on ¥, M, the space of completely additive functionals and M,, the space of functionals
expressible in the form vE = Y~ _ . a, for some absolutely summable family (c)zex of real numbers. (i)
Show that M, is a band in M. (ii) Show that if all singleton subsets of X belong to ¥ then M, = M,.
(iii) Show that if ¥ is a o-algebra then every member of M, is countably additive. (iv) Show that if X is
a compact zero-dimensional Hausdorff space and 3 is the algebra of open-and-closed subsets of X then the
complementary band M;- of M, in M is the band M, of properly atomless functionals described in 362Xf.

(h) Let (X, X, 1) be a measure space. Let M be the Riesz space of bounded finitely additive functionals
on X and M, the space of bounded countably additive functionals. Let M;., M,. be the spaces of truly
continuous and bounded absolutely continuous additive functionals as defined in 232A. Show that M;. and
M, are bands in M and that M;. C M, N M,.. Show that if u is o-finite then M;. = M, N M.

(i) Let A be a Boolean algebra and M the Riesz space of bounded finitely additive functionals on 2.
(i) For any non-empty downwards-directed set A C 2A set Nga = {v : v € M, infseca |vla = 0}. Show
that N4 is a band in M. (ii) For any non-empty set A of non-empty downwards-directed sets in 2 set
My={v:veM, infoea|vla =0V A € A}. Show that M4 is a band in M. (iii) Explain how to represent
as such M 4 the bands M,, M,, My, M,., M;. described in 362B-362C, and also any band generated by a
single element of M. (iv) Suppose, in (ii), that A has the property that for any A, A’ € A thereisa B € A
such that for every b € B there are a € A, ' € A’ such that aua’ C b. Show that for any non-negative
v € M, the component v; of v in My is given by the formula v1¢c = infacasup,c 4 v(c\ a), so that the
component vy of v in M7 is given by the formula voc = sup g 4 infaea v(cna). (Cf. 356YD.)

362Y Further exercises (a) Let 2 be a Boolean algebra. Let € be the band algebra of the Riesz space
M of bounded finitely additive functionals on 2 (353B). Show that the bands M,, M,, M. (362B, 362Xf)
generate a subalgebra €y of € with at most six atoms. Give an example in which €y has six atoms. How
many atoms can it have if (i) 2 is atomless (ii)  is purely atomic (iii) 2 is Dedekind o-complete?

(b) Let (2, 1) be a measure algebra. Let € be the band algebra of the Riesz space M of bounded finitely
additive functionals on 2. Show that the bands M,, M,, M., Myc, M., M; (362B, 362C, 362Xf) generate
a subalgebra €y of € with at most twelve atoms. Give an example in which & has twelve atoms. How many
atoms can it have if (i) 2 is atomless (ii) 2 is purely atomic (iii) (2, ) is semi-finite (iv) (2, ) is localizable
(v) (AU, 1) is o-finite (vi) (A, i) is totally finite?

(c) Give an example of a set X, a o-algebra ¥ of subsets of X, and a functional in M, (as defined in
362Xg) which is not completely additive.

(d) Let U be a Riesz space and f, g € U~. Show that the following are equiveridical: («) g is in the
band in U™ generated by f; (8) for every u € UT, € > 0 there is a § > 0 such that |g(v)| < € whenever
0 <wv<wand |f|(v) <§ (v) limy_ 00 g(u,) = 0 whenever (u,)nen is a non-increasing sequence in U+ and
limy, o0 | f|(un) = 0.

(e) Let 2 be a weakly o-distributive Boolean algebra (316Ye). Show that the ‘inf’ in the formula for P,v
in 362Bc can be replaced by ‘min’.

(f) Let 21 be any Boolean algebra and M the space of bounded finitely additive functionals on . Let
C C M be such that sup, ¢ [va|] < oo for every a € 2. (i) Suppose that sup,,cy SUp, ¢ |Var| is finite for every
disjoint sequence (an)nen in A. Show that C' is norm-bounded. (ii) Suppose that lim, o sup,c¢ |[Van,| =0
for every disjoint sequence (a)nen in . Show that C' is uniformly integrable.
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(g) Let 2 be a Boolean algebra and M, the space of completely additive functionals on 2[. Let C' C M.
be such that sup, ¢ [va| < oo for every atom a € 2. (i) Suppose that sup,,cysup,cc |Va,| is finite for every
disjoint sequence (an)nen in A. Show that C' is norm-bounded. (ii) Suppose that lim, o sup,cc |[va,| =0
for every disjoint sequence {(a,)nen in A. Show that C' is uniformly integrable.

(h) Let A be a Dedekind o-complete Boolean algebra and (v,)nen a sequence of countably additive
real-valued functionals on 2. Suppose that va = lim, ., vna is defined in R for every a € 2. Show that v
is countably additive and that {v, : n € N} is uniformly integrable. (Hint: 246Yg.) Show that if every v,
is completely additive, so is v.

(i) Let 2 be a Boolean algebra, M the Riesz space of bounded finitely additive functionals on 2, and
M. C M the band of properly atomless functionals (362Xf). Show that for a non-negative v € M the
component v, of v in M, is given by the formula

vea = infssosup{d__,va; : ag, ... ,a, C a are disjoint, va; < § for every i}

for each a € 2.

(j) Let A be a Boolean algebra and M the L-space of bounded additive real-valued functionals on 2[. Show
that the complexification of M, as defined in 354Y1, can be identified with the Banach space of bounded
additive functionals v : % — C, writing

|| = sup{>_1 [vas| : ao, ... ,a, are disjoint elements of A}

for such v.

(k) Let 2 be a Boolean algebra and M the L-space of bounded additive real-valued functionals on 2.
Suppose that M is a norm-closed linear subspace of M and that a — v(anc) : A — R belongs to My
whenever v € My and ¢ € 2. Show that M is a band in M. (Hint: 436L.)

362 Notes and comments The Boolean algebras most immediately important in measure theory are of
course o-algebras of measurable sets and their quotient measure algebras. It is therefore natural to begin any
investigation by concentrating on Dedekind o-complete algebras. Nevertheless, in this section and the last
(and in §326), I have gone to some trouble not to specialize to o-complete algebras except when necessary.
Partly this is just force of habit, but partly it is because I wish to lay a foundation for a further step forward:
the investigation of the ways in which additive functionals on general Boolean algebras reflect the concepts
of measure theory, and indeed can generate them. Some of the results in this direction can be surprising. I
do not think it obvious that the condition () in 362B(f-i), for instance, is sufficient in the absence of any
hypothesis of Dedekind o-completeness or countable additivity.

Given a Boolean algebra 2 with the associated Riesz space M = S()™ of bounded additive functionals
on 2, we now have a substantial list of bands in M: M,, M,, M. (362Xf), and for a measure algebra the
further bands M., My, and M;; for an algebra of sets we also have M, (362Xg). These bands can be used
to generate finite subalgebras of the band algebra of M (362Ya-362YD), and for any such finite subalgebra
we have a corresponding decomposition of M as a direct sum of the bands which are the atoms of the
subalgebra (352Tb). This decomposition of M can be regarded as a recipe for decomposing its members
into finite sums of functionals with special properties. What I called the ‘Lebesgue decomposition’ in 2321
is just such a recipe. In that context I had a measure space (X,¥, ) and was looking at the countably
additive functionals from ¥ to R, that is, at M, in the language of this section, and the bands involved
in the decomposition were M, M,. and M;.. But I hope that it will be plain that these ideas can be
refined indefinitely, as we refine the classification of additive functionals. At each stage, of course, the exact
enumeration of the subalgebra of bands generated by the classification (as in 362Ya-362YDb) is a necessary
check that we have understood the relationships between the classes we have described.

These decompositions are of such importance that it is worth examining the corresponding band pro-
jections. I give formulae for the action of band projections on (non-negative) functionals in 362Bc, 362Bd,
362B(f-ii), 362XDb, 362Xc(iii), 362Xi(iv) and 362Yi. Of course these are readily adapted to give formulae for
the projections onto the complementary bands, as in 362Bf and 362Xi.
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If we have an algebra of sets, the completely additive functionals are (usually) of relatively minor impor-
tance; in the standard examples, they correspond to functionals defined as weighted sums of point masses
(362Xg(ii)). The point is that measure algebras 2 appear as quotients of o-algebras % of sets by o-ideals Z;
consequently the countably additive functionals on 2 correspond exactly to the countably additive function-
als on X which are zero on Z; but the canonical homomorphism from ¥ to 2 is hardly ever order-continuous,
so completely additive functionals on 2 rarely correspond to completely additive functionals on 3. On the
other hand, when we are looking at countably additive functionals on ¥, we have to consider the possibility
that they are singular in the sense that they are carried on some member of Z; in the measure algebra
context this possibility disappears, and we can often be sure that every countably additive functional is
absolutely continuous, as in 327Bb.

For any Boolean algebra %A, we can regard it as the algebra of open-and-closed subsets of its Stone space
Z; the points of Z correspond to Boolean homomorphisms from 2A to {0, 1}, which are the normalised ‘atomic
elements’ in the space of additive functionals on 2 (362Xe, 362Xg(iv)). It is the case that all non-negative
additive functionals on a Boolean algebra 2l can be represented by appropriate measures on its Stone space
(see 416Q in Volume 4), but T prefer to hold this result back until it can take its place among other theorems
on representing functionals by measures and integrals.

It is one of the leitmotivs of this chapter, that Boolean algebras and Riesz spaces are Siamese twins; again
and again, matching results are proved by the application of identical ideas. A typical example is the pair
362B(f-i) and 362Yd. Many of us have been tempted to try to describe something which would provide a
common generalization of Boolean algebras and Riesz spaces (and lattice-ordered groups). I have not yet
seen any such structure which was worth the trouble. Most of the time, in this chapter, I shall be using
ideas from the general theory of Riesz spaces to suggest and illuminate questions in measure theory; but if
you pursue this subject you will surely find that intuitions often come to you first in the context of Boolean
algebras, and the applications to Riesz spaces are secondary.

In 362E I give a condition for uniform integrability in terms of disjoint sequences, following the pattern
established in 246G and repeated in 354R and 3560. The condition of 362E assumes that the set is norm-
bounded; but if you have 246G to hand, you will see that it can be done with weaker assumptions involving
atoms, as in 362Y{-362Yg.

I mention once again the Banach-Ulam problem: if 2 is Dedekind complete, can S(21)7 be different from
S(21)*? This is obviously equivalent to the form given in the notes to §326 above. See 363S below.

Version of 4.3.08
363 L

In this section I set out to describe an abstract construction for L spaces on arbitrary Boolean algebras,
corresponding to the L>(u) spaces of §243. I begin with the definition of L>°(2() (363A) and elementary
facts concerning its own structure and the embedding S() & L>° () (363B-363D). I give the basic universal
mapping theorems which define the Banach lattice structure of L> (363E) and a description of the action
of Boolean homomorphisms on L> spaces (363F-363G) before discussing the representation of L>°(X) and
L>°(X/T) for o-algebras ¥ and ideals Z of sets (363H). This leads at once to the identification of L>(u), as
defined in Volume 2, with L> (1), where 2 is the measure algebra of p (363I). Like S(2), L>°(2) determines
the algebra 2 (363J). I briefly discuss the dual spaces of L>°; they correspond exactly to the duals of S
described in §362 (363K). Linear functionals on L> can for some purposes be treated as ‘integrals’ (363L).

In the second half of the section I present some of the theory of Dedekind complete and o-complete
algebras. First, L>°(2) is Dedekind (o-)complete iff 2 is (363M). The spaces L>°(2), for Dedekind o-
complete 2, are precisely the Dedekind o-complete Riesz spaces with order unit (363N-363P). The spaces
L (2A), for Dedekind complete 2, are precisely the normed spaces which may be put in place of R in
the Hahn-Banach theorem (363R). Finally, I mention some equivalent forms of the Banach-Ulam problem
(3639).

363A Definition Let 2 be a Boolean algebra, with Stone space Z. I will write L (2() for the space
C(Z) = Cpy(Z) of continuous real-valued functions from Z to R, endowed with the linear structure, order

(©) 2000 D. H. Fremlin
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structure, norm and multiplication of C'(Z) = Cp(Z). (Recall that because Z is compact (3111), {u(z) : z €
Z} is bounded for every u € L () = C(Z) (2A3N(b-iii)), that is, C(Z) = Cy(Z). Of course if A = {0}, so
that Z = ), then C(Z) has just one member, the empty function.)

363B Theorem Let 2 be any Boolean algebra; write L for L™ ().

(a) L™ is an M-space; its standard order unit is the constant function taking the value 1 at each point;
in particular, L*° is a Banach lattice with a Fatou norm and the Levi property.

(b) L is a commutative Banach algebra and an f-algebra.

(¢) If w € L* then u > 0 iff there is a v € L* such that u = v X v.

proof (a) See 354Hb and 354.J.

(b)-(c) are obvious from the definitions of Banach algebra (2A4J) and f-algebra (352W) and the ordering
of L** =C(2).

363C Proposition Let 2 be any Boolean algebra. Then S(2l) is a norm-dense, order-dense Riesz
subspace of L (2l), closed under multiplication.

proof Let Z be the Stone space of 2. Using the definition of S = S(2) set out in 361D, it is obvious that
S is a linear subspace of L = L () = C(Z) closed under multiplication. Because S, like L>°, is a Riesz
subspace of R (361Ee), S is a Riesz subspace of L>. By the Stone-Weierstrass theorem (in either of the
forms given in 281A and 281E), S is norm-dense in L>°. Consequently it is order-dense (354I).

363D Proposition Let 2 be a Boolean algebra. If we regard xa € S(2) (361D) as a member of
L>°(2A) for each a € 2, then x : A — L>°(A) is additive, order-preserving, order-continuous and a lattice
homomorphism.

proof Because the embedding S = S(2) & L>°() = L™ is a Riesz homomorphism, x : % — L is additive
and a lattice homomorphism (361F-361G). Because S is order-dense in L>° (363C), the embedding S & L*>
is order-continuous (352Nb), so x : A — L is order-continuous (361Gb).

363E Theorem Let 2l be a Boolean algebra, and U a Banach space. Let v : 2 — U be a bounded
additive function.

(a) There is a unique bounded linear operator T' : L (2) — U such that Tx = v; in this case ||T|| =
sup, peg [lva — vbl|.

(b) If U is a Banach lattice then T is positive iff v is non-negative; and in this case T is order-continuous
iff v is order-continuous, and sequentially order-continuous iff v is sequentially order-continuous.

(c) If U is a Banach lattice then T is a Riesz homomorphism iff v is a lattice homomorphism iff vaAvb = 0
whenever anb = 0.

proof Write S = S(), L>® = L>(2A).

(a) By 3611 there is a unique bounded linear operator Ty : S — U such that Tox = v, and ||Tp]| =
sup{|lva — vb|| : a, b € A}. But because U is a Banach space and S is dense in L°°, Ty has a unique
extension to a bounded linear operator T': L> — U with the same norm (2A4I).

(b) (i) If T is positive then Tp is positive so v is non-negative, by 361Ga.

(ii) If v is non-negative then Ty is positive, by 361Ga in the other direction. But if u € L>T and € > 0,
then by 3541 there is a v € ST such that ||u — vl < € now ||Tu — Tv|| < €||T||. But Tv = Tyv belongs to
the positive cone Ut of U. As € is arbitrary, Tu belongs to the closure of U™, which is UT (354Bc). As u
is arbitrary, T is positive.

(iii) Now suppose that v is order-continuous as well as non-negative, and that A C L is a non-empty
downwards-directed set with infimum 0. Set

B ={v:v €S, there is some u € A such that v > u}.
Then B is downwards-directed (indeed, v1 A v € B for every v, va € B), and u = inf{v : v € B, u < v}
for every u € A (3541 again), so B has the same lower bounds as A and inf B =0 in L* and in S. But we
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know from 361Gb that T is order-continuous, while any lower bound for {Tw : u € A} in U must also be a
lower bound for {Tv:v € B} = {Tyv: v € B}, so infyca Tu = inf,c g Tov =0 in U. As A is arbitrary, T is
order-continuous (351Ga).

(iv) Suppose next that v is only sequentially order-continuous, and that (u,)nen is a non-increasing
sequence in L with infimum 0. For each n, k choose w,x € S such that u, < w, and ||was — Uy ||ee < 27F
(3541 once more), and set w), = inf; y<, w;; for each n. Then (w}),en is a non-increasing sequence in S,
and any lower bound of {w/, : n € N} is also a lower bound of {u,, : n € N}, so 0 = inf,,eyw), in S and L.
Since Ty : S — U is sequentially order-continuous (361Gb),

infpeny Tuy, < infpeny Tw), = infpeny Tow,, =0
in U. As (un)nen is arbitrary, T is sequentially order-continuous.

(v) On the other hand, if T is order-continuous or sequentially order-continuous, so is v = T'x, because
X is order-continuous (363D).

(c) We know that Ty : S — U is a Riesz homomorphism iff v is a lattice homomorphism iff va A vb =0
whenever anb = 0, by 361Gc. But Tj is a Riesz homomorphism iff 7" is. B If T is a Riesz homomorphism
so is Tp, because the embedding S & L* is a Riesz homomorphism. On the other hand, if Ty is a Riesz
homomorphism, then the functions u — u* + T(u"), u + Tu + (Tu)" are continuous (by 354Bb) and
agree on S, so agree on L*°, and T is a Riesz homomorphism, by 352G. Q

363F Theorem Let 2 and B be Boolean algebras, and 7 : 2l — 28 a Boolean homomorphism.

(a) There is an associated multiplicative Riesz homomorphism 7 : L>°(A) — L*°(B), of norm at most
1, defined by saying that T (xa) = x(wa) for every a € 2.

(b) For any u € L™ (2), there is a v’ € L= () such that Tru = Tru' and ||t/]|ec = [|[Trtilloo < ||t co-

(c)(i) The kernel of T, is the norm-closed linear subspace of L () generated by {xa : a € A, ma = 0}.

(ii) The set of values of T is the norm-closed linear subspace of L (8B) generated by {x(7a) : a € 2}.

(d) T is surjective iff 7 is surjective, and in this case ||v]|oo = min{||u||eo : Trte = v} for every v € L (B).
(e) T is injective iff 7 is injective, and in this case | Trullco = ||u]|co for every u € L ().
(f) Ty is order-continuous, or sequentially order-continuous, iff 7 is.

(g) If € is another Boolean algebra and 6 : 8 — € is another Boolean homomorphism, then Ty, = TpT; :
L>(2A) — L>(C).

proof Let Z and W be the Stone spaces of 2 and 9. By 312Q there is a continuous function ¢ : W — Z
such that 7a = ¢~ [a] for every a € 2, where @ is the open-and-closed subset of Z corresponding to a € .
Write T for T.

(a) For u € L>*(A) = C(Z), set Tu = u¢ : W — R. Then Tu € C(W) = L*>°(B). It is obvious, or at
any rate very easy to check, that T : L (2() — L (8) is linear, multiplicative, a Riesz homomorphism and
of norm 1 unless B = {0}, W = 0. If a € 2, then

T(xa) = (xa)¢ = (xa)¢ = x(¢~'[a]) = x(ra),
identifying xa € L°°(2) with the indicator function xa : Z — {0,1} of the set a. Of course T, = T is the
only continuous linear operator with these properties, by 363Ea.
(b) Set o = || Tu)|o0, v/ (2) = med(—a, u(z), ) for z € Z; that is, v’ = med(—ae,u, ae) in L>(2A), where
e is the standard order unit of L>(21). Then Te is the standard order unit of L>°(8), so
Tu' = med(—aTe, Tu,aTe) = Tu
(because T is a lattice homomorphism, see 3A1Ic), while

[t']loc < = [[Tulloc = 1 T% loo < |t/ lloc < [|ufloc-

(c)(i) Let U be the closed linear subspace of L () generated by {xa : ma = 0}, and Uy the kernel of T'.
Because T is continuous and linear, Uy is a closed linear subspace, and T'(xa) = x0 = 0 whenever wa = 0;
so U C Up. Now take any u € Uy and € > 0. Then T'(u") = (Tu)t = 0, so u™ € Uy. By 354l there is a
u’ € S(2A) such that 0 < v/ < ut and |Ju™ — ¥/|lec < e Now 0 < T/ < Tut =0, so Tu' = 0. Express
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u' as Z?:o a;xa; where a; > 0 for each i. For each i, a;x(ma;) = T'(a;xa;) = 0, so ma; = 0 or a;; = 0;
in either case a;xa; € U. Consequently v’ € U. As ¢ is arbitrary and U is closed, u™ € U. Similarly,
u~ = (—u)t €U and u=u" —u~ € U. As u is arbitrary, Uy C U and Uy = U.

(ii) Let V be the closed linear subspace of L>°(B) generated by {x(7a) : a € A}, and Vo = T[L>(A)].
Then T[S(21)] C V, so

Vo=T[SQ)] CTSR) CV =V.
On the other hand, Vj is a closed linear subspace in . L>(B). P It is a linear subspace because T is a linear
operator. To see that it is closed, take any v € V(. Then there is a sequence (v,)nen in Vp such that
[[v = vnlloo < 27™ for every n € N. Choose u, € L (2() such that Tuy = vg, while Tu,, = v, — v,_1 and
[[tnlloo = |vn — vn—1]leo for n > 1 (using (b) above). Then
220:1 unlloo < 220:1 [v = vnlles + [[v — vn-1lleo
is finite, so u = lim,,_, oo Z?:o u; is defined in the Banach space L>°(2(), and
Tu=lm, oo D i o Tu; = limy, o0 vy, = v.
As v is arbitrary, Vp is closed. Q Since x(ma) = T(xa) € Vp for every a € A, V C Vp and V = Vj, as

required.

(d) If 7 is surjective, then T is surjective, by (c-ii). If T' is surjective and b € B, then there is a u € L> ()
such that Tu = xb. Now there is a v’ € S(A) such that ||u — v/[| < 3, so that ||Tu — xb||ec < 3. Taking
a € A such that {z:v/(2) > 1} =@, we must have ma = b, since

b={w: (TW)(w) > 1} = ¢~'[a] = 7a.
As b is arbitrary, 7 is surjective.

Now (b) tells us that in this case ||v||cc = min{||u||o : Tu = v} for every v € L*°(B).

(e) By (c-i), T is injective iff 7 is injective. In this case, for any u € L (2l),

1Tulloo = (1T ful]o
(because T is a Riesz homomorphism)
> sup{ | Tl - o € S, w' < Jul}
= sup{||u/||oo : u' € S(A), v’ < |ul}

(by 361Jd)

= llullo
(by 354I)

> || Tulloo,
and [|T'ullcc = [[ul]oc-

(f) If T is (sequentially) order-continuous then m = Tx is (sequentially) order-continuous, by 363D.
If w is (sequentially) order-continuous then xm : A — L°(B) is (sequentially) order-continuous, so 7" is
(sequentially) order-continuous, by 363Eb.

(g) This is elementary, in view of the uniqueness of Ty.

363G Corollary Let 2 be a Boolean algebra.

(a) If € is a subalgebra of 2, then L°°(€) can be identified, as Banach lattice and as Banach algebra,
with the closed linear subspace of L>(2) generated by {xc: ¢ € €}.

(b) If 7 is an ideal of 2, then L>°(/Z) can be identified, as Banach lattice and as Banach algebra, with
the quotient space L (21)/V, where V is the closed linear subspace of L*°(2() generated by {xa : a € T}.

proof Apply 363Fc-363Fd to the identity map from € to 2 and the canonical map from 2 onto A/Z.
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363H Representations of L> () Much of the importance of the concept of L>°(2() arises from the
way it is naturally represented in the contexts in which the most familiar Boolean algebras appear.

Proposition Let X be a set and ¥ an algebra of subsets of X.
(a) Write S(X) for the linear subspace of £*°(X) generated by the indicator functions of members of X,
and £ for its || [|eo-closure in £°(X).

(i) L>(X) can be identified, as Banach lattice and Banach algebra, with £°°; if E € X, then yE,
defined in L*°(X) as in 361D, can be identified with the indicator function of E regarded as a subset of X.

(ii) A bounded function f : X — R belongs to £ iff whenever o < 8 in R there is an E € ¥ such that
{o: f)> B} CEC{a: f(x) > a}.

(iii) In particular, L°°(PX) can be identified with ¢*°(X).

(b) Now suppose that ¥ is a o-algebra of subsets of X.

(i) £ is just the set of bounded Y-measurable real-valued functions on X.

(ii) If A is a Dedekind o-complete Boolean algebra and 7 : ¥ — 2l is a surjective sequentially order-
continuous Boolean homomorphism with kernel Z, then L*(2() can be identified, as Banach lattice and
Banach algebra, with £°/W, where W = {f : f € £, {z : f(z) # 0} € T} is a solid linear subspace and
closed ideal of £L>°. For f € £,

If*llco = min{a:a >0, {z:|f(x)| >a} € L}

(iii) In particular, if Z is any o-ideal of ¥ and E — E* is the canonical homomorphism from ¥ onto
A = 3 /7, then we have an identification of L (2() with a quotient of £°°, and for any E' € ¥ we can identify
X(E*) € L*° () with the equivalence class (xE)® € £L>°/W of the indicator function xE.

proof (a)(i) By 361L, S(X), as described here, can be identified with S(3) as defined in 361D. Because
the normed space ¢>°(X) is complete, £L>° can be identified with the normed space completion of S(X) for
| loo; but 363C shows that the same is true of L>°(X). Thus we have a canonical Banach space isomorphism
between £°° and L*°(X). Because multiplication and the lattice operations are || ||o-continuous, both in £
and in L*°(X), this isomorphism is multiplicative and order-preserving, that is, identifies £°° with L>°(X)
as Banach algebra and Banach lattice. In the language of 363E, £ is the image of L>°(X) in £*°(X) under
the operator associated with the additive function E — yF : ¥ — £°(X).

(ii)(@) If f € £L>* and @ < B in R, let g € S(X) be such that ||f — gllec < (8 —a). Set E = {x :

g(z) > £(a+ B)}; by 361G or otherwise, E € ¥, and {z : f(z) > 8} CE C {x }(32:) > al.

(B) If f satisfies the condition, take any € > 0. Let n € N be such that || f]|ec < ne. For —n < i < n,
let E; € ¥ be such that {z : f(z) > (i +1)e} C E; C {z: f(z) > ie}. Set g(z) =€ed>. _, xE; —en for
x € X; then g € S(X) and ||f — gl|co < €. As € is arbitrary, f € L.

(iii) Now (ii) shows that if ¥ = PX we shall have £>° = £>°(X) and L>°(PX) becomes identified with
>°(X).

(b)(i) If ¥ is a o-algebra and f : X — R is bounded then

f is Y-measurable <= {x: f(z) > a} € X for every a € R
<= whenever a« € R, n € N thereisan £ € X
such that {z: f(z) >a+2""} CEC{z: f(zx) > o}
<= whenever § > « there is an F € X
such that {x: f(z) > B} CEC{z: f(z) > a}
— fel™

by (a-ii) above.

(ii) (o) By 363F, we have a multiplicative Riesz homomorphism 7' = T from L>®(X) to L>(2l) which
is surjective (363Fd) and has kernel the closed linear subspace W of L*°(X) generated by {xF : E € T}.
Now under the identification described in (a), W corresponds to W. I W is a linear subspace of £ because

{o:(f +9)(@) #0} C {o: fx) 0} Ufa: gla) #£0} € T,
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{z:(af)(@) #0} C{z: f(z) #0} €T

whenever f, g € W and a € R. If (f,,)nen is a sequence in W converging to f € £°°, then

so f € W. Thus W is a closed linear subspace of £L>*. If F € Z, then xFE, taken in S(X) or L>®(%),
corresponds to the function yF : X — {0, 1}, which belongs to W; so that W must correspond to the closed
linear span in £°° of such indicator functions, which is a subspace of W. On the other hand, if f € W and
€ >0, set

E,={x:ne< f(x) < (n+ e}, E, ={z:—(n+1)e< f(z) < —ne}

for n € N; all these belong to Z, so g = €. ,(xE, — xE/,) € W corresponds to a member of W, while
If = glloo < €. As W is closed, f also must correspond to some member of W. As f is arbitrary, W and W
match exactly. Q

(B) Because T is a multiplicative Riesz homomorphism, L () = L>°(X)/W is matched canonically,
in its linear, order and multiplicative structures, with £>°/W. We know also that

lv]|oo = min{||u||oo : uw € L®(X), Tu = v}
for every v € L*°(2() (363Fd), that is, that the norm of L% () corresponds to the quotient norm on
L>(%)/W.
As for the given formula for the norm, take any f € £>°. There is a g € £*° such that Tf = T¢g and
ITflloo = llgllco- (Here I am treating T as an operator from £°° onto L% (2l).) In this case

{z: [f@) > I Tfllec} S{z: fz) #g(2)} € T.
On the other hand, if & > 0 and {z : |f(z)| > a} € Z, and we set h = med(—axX, f,axX), then Th =Tf,
50 [T flloo < l[Alloo < a.

(iii) Put (a-i) and (ii) just above together.

3631 Corollary Let (X, X, 1) be a measure space, with measure algebra 2. Then L () can be identified,
as Banach lattice and Banach algebra, with L>°(2(); the identification matches (xE)* € L*(u) with x(E*) €
L>(2A), for every E € ¥.

Remark The space I called £°°(u) in Chapter 24 is not strictly speaking the space £°° = L*°(X) of 363H;
I took £>°(u) € £%(u) to be the set of essentially bounded, virtually measurable functions defined almost
everywhere in X, and in general this is larger. But, as remarked in the notes to §243, L*°(u) can equally
well be regarded as a quotient of what I there called £§¢, which is the £°° above, because every function in
L£°(p) is equal almost everywhere to some member of £§F.

363J Recovering the algebra 2: Proposition Let 2 be a Boolean algebra. For a € 2 write V, for
the solid linear subspace of L>°(2A) generated by ya. Then a — V, is a Boolean isomorphism between 2
and the algebra of projection bands in L ().

proof The proof is nearly identical to that of 361K. If ¢ € A, u € V, and v € Vi, then |u| A |v] =0
because xa A x(1\ a) = 0; and if w € L°°(2) then

w = (wx xa)+ (wxx(1\a) € Va+ Vi
because |wx xa| < ||w]|soxa and [wx x(1\ a)] < [|w|lecox(1\ a@). So V, and Vi,, are complementary projection
bands in L = L (). Next, if U C L* is a projection band, then x1 is expressible as u + v where u € U,
v € U™; thinking of L> as the space of continuous real-valued functions on the Stone space Z of 2, v and
v must be the indicator functions of complementary subsets F, F' of Z, which must be open-and-closed, so

that £ =a, F = 1/\\a. In this case V, € U and Vi, C UL, so U must be V, precisely. Thus a — V, is
surjective. Finally, just as in 361K, a C b <— V, C V}, so we have a Boolean isomorphism.

363K Dual spaces of L>° The questions treated in §362 yield nothing new in the present context. I
spell out the details.
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Proposition Let 2 be a Boolean algebra. Let M, M, and M, be the L-spaces of bounded finitely additive
functionals, bounded countably additive functionals and completely additive functionals on 2I. Then the
embedding S(2A) S L> () induces Riesz space isomorphisms between S(2()~ = M and L*(2()~ = L>(A)*,
SRy 2 M, and L ()Y, and S(A)* = M, and L>®(A)*.

proof Write S = S(), L>® = L>(2).
(a) For the identifications S~ =2 M, 57 = M, and S* = M, see 362A.

(b) Lo°* = L*>" either because L™ is a Banach lattice (356Dc) or because L> has an order-unit norm,
so that a linear functional on L* is order-bounded iff it is bounded on the unit ball.

(c) If f is a positive linear functional on L, then f]S is a positive linear functional. Because S is order-
dense in L* (363C), the embedding is order-continuous (352Nb); so if f is (sequentially) order-continuous,
so is f[S. Accordingly the restriction operator f — f[S gives maps from L™ to S, (L*°) to S, and
L>®*% to §X. If f € L*~ and f]S >0, then f(u™) > 0 for every u € S and therefore for every v € L*, and
f > 0; so all these restriction maps are injective positive linear operators.

(d) I need to show that they are surjective.

(i) If g € S™, then g is bounded on the unit ball {u : u € S, |Julloc < 1}, so has an extension to a
continuous linear f : L™ — R (2A4I); thus S~ = {f[S : f € L*~}. This means that f — f[S is actually
a Riesz space isomorphism between L>~ and S™. In particular, |f|[.S = |f[S] for any f € L.

(ii) If f : L>° — R is a positive linear operator and f[S € S, let (u,)nen be a non-increasing sequence
in L with infimum 0. For each n, k € N there is a v, € S such that u,, < v, < u, + 2= ke, where e is the
standard order unit of L (3541, as usual); set w,, = inf; <, vir; then (wy,)nen is a non-increasing sequence
in S with infimum 0, so

0< infnGN f(un) < infneN f(wn) =0.
As (up)nen is arbitrary, f € (L)Y, Consequently, for general f € L™,
fe(®) = [fle L™)T < [fI5|€ S «— [fI1SesT,

c

and the map f— f1S: (L>)Y — S is a Riesz space isomorphism.

(iii) Similarly, if f € L°°™~ is non-negative and f[S € S*, then whenever A C L is non-empty,
downwards-directed and has infimum 0, B = {w : w € S, Ju € A, w > u} has infimum 0, so inf,ec4 f(u) <
infyep f(w) <0and f € L%, Asin (ii), it follows that f — f[S is a surjection from L°>°* onto S*.

*363L Integration with respect to a finitely additive functional (a) If 2 is a Boolean algebra and
v: A — R is a bounded additive functional, then by 363K we have a corresponding functional f, € L ()*
defined by saying that f,(xa) = va for every a € 2. There are contexts in which it is convenient, and
even helpful, to use the formula fudv in place of f,(u) for u € L> = L>(2). When doing so, we must of
course remember that we may have lost some of the standard properties of ‘integration’. But enough of our
intuitions (including, for instance, the idea of stochastic independence) remain valid to make the formula a
guide to interesting ideas.

(b) Let M be the L-space of bounded finitely additive functionals on 2 (362B). Then we have a function
u, V) — fudy : x M — R. Now this map is bilinear. or u, v € M, u, v € and a € R,
dv:L*®xM —R. N hi is bili P For M L and R
fu—i—vdu = fudu—i—fvdy, faudu = afudu
just because f, is linear. On the other side, we have
(fu+ fr)(xa) = fu(xa) + fu(xa) = pa+va = (u+v)(a) = fuiv(xa)
for every a € 2, so that f, + f, and f,4, must agree on S(2) and therefore on L. But this means that
fud(p+ v) = fudp + fudv. Similarly, fud(ap) = afudy. Q

(c) If v is non-negative, we have fudr > 0 whenever u > 0, as in part (c) of the proof of 363K.
Consequently, for any v € M and v € L,
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|][udu| = \][qu dv™ —][u_du+ —][qudV_ —|—][u_du_|
S][UJF dvt +][u_du+ —i-][qudV_ +][u_d1/_
=][ |uld]v| S][ [ullooxdlv| = [Jufloo|v[(1) = [lullool¥[|-

So (u,v) — fudv has norm (as defined in 253Ab) at most 1. If 2 # 0, the norm is exactly 1. (For this we
need to know that there is a v € M* such that v1 = 1. Take any z in the Stone space of 2 and set va = 1
if z € @, 0 otherwise.)

(d) We do not have any result corresponding to B.Levi’s theorem in this language, because (even if
v is non-negative and countably additive) there is no reason to suppose that sup,cy un, is defined in L
just because sup,,cy fundv is finite. But if v is countably additive and 2 is Dedekind o-complete, we have
something corresponding to Lebesgue’s Dominated Convergence Theorem (363Yg).

(e) One formula which we can imitate in the present context is that of 2520, where the ordinary integral
is represented in the form

frap= [ pfx: f(x) > tydt

for non-negative f. In the context of general Boolean algebras, we cannot directly represent the set [f > t] =
{z : f(x) >t} (though in the next section I will show that in Dedekind o-complete Boolean algebras there
is an effective expression of this idea). But what we can say is the following. If 2 is any Boolean algebra,
and v : 2 — [0, 00[ is a non-negative additive functional, and u € L ()", then

fu dv = fooo sup{va : txya < u}ldt,

where the right-hand integral is taken with respect to Lebesgue measure. P (i) For ¢ > 0 set h(t) =
sup{va : tya < u}. Then h is non-increasing and zero for t > [[ullo, so [;° h(t)dt is defined in R. If
we set hy,(t) = h(27™(k + 1)) whenever k, n € N and 27"k <t < 27"(k + 1), then (h,(t))nen iS a non-
decreasing sequence which converges to h(t) whenever h is continuous at ¢, which is almost everywhere
(222A, or otherwise); so fooo h(t)dt = limy, 00 fooo hyn(t)dt. Next, given n € N and € > 0, we can choose for
each k < k* = |2"||u||so] an aj such that 27" (k + 1)xar < u and vay > h(27"(k + 1)) — e. In this case

lez:o 27" yag < u, SO

o k* k*
/ Ba(W)dt =27 SR+ 1)) < Jullce + 2773 vy
0 k=0 k=0
L
= ||ul|oc€ +][ Z 27" xardr < ||u||oc€ +][udl/.

k=0

As n and e are arbitrary, [ h(t)dt < fudv. (ii) In the other direction, there is for any € > 0 a v € S()
such that v < u < v 4 exl. If we express v as Z;”:O vjxc; where cg2 ... D¢y and y; > 0 for every j
(361Ec), then we shall have h(t) > vei, whenever ¢ < Z?:o Yj, SO

fooo h(t)dt > S0 wver = fody > fudy — evl.
As € is arbitrary, fooo h(t)dt > fudv and the two ‘integrals’ are equal. Q

(f) The formula f dv is especially natural when 2 is an algebra of sets, so that L> can be directly
interpreted as a space of functions (363Ha); better still, when 2l is actually a o-algebra of subsets of a set
X, L* can be identified with the space of bounded 2l-measurable functions on X, as in 363Hb. So in
such contexts I may write fgdv or even fg(x)v(dz) when g : X — R is bounded and 2-measurable, and
v : A — R is a bounded additive functional. But I will try to take care to signal any such deviation from
the normal principle that the symbol [ refers to the sequentially order-continuous integral defined in §122
with the minor modifications introduced in §§133 and 135.
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363M Now I come to a fundamental fact underlying a number of theorems in both this volume and the
last.

Theorem Let 2 be a Boolean algebra.
(a) A is Dedekind o-complete iff L>°(2) is Dedekind o-complete.
(b) 20 is Dedekind complete iff L>°(2A) is Dedekind complete.

proof (a)(i) Suppose that 2 is Dedekind o-complete. By 314M, we may identify 2 with a quotient X/ M,
where M is the ideal of meager subsets of the Stone space Z of 2, and ¥ = {EFAA: E € £, A € M},
writing €& = {a : a € A} for the algebra of open-and-closed subsets of Z. By 363Hb, L = L>°(2) can be
identified with £°°/V, where £ is the space of bounded Y-measurable functions from Z to R, and V is the
space of functions zero except on a member of M.

Now suppose that (un)nen is a sequence in L with an upper bound u € L. Express u,, u as f3, f°
where f,,, f € L. Set g(z) = sup, ey min(f,(2), f(2)) for every z € Z; then g € £ (121F), so we have a
corresponding member v = g* of L>®. For each n € N, u > u, so (f, — f)T €V,

{z:/n(2) > 9(2)} S{z: fu(2) > f(2)} e M

and v > uy,. If w € L™ and w > u, for every n, then express w as h* where h € £>°; we have (f, —h)T €V
for every n, so

{z:9(2) > 1(2)} S Upeniz : fa(2) > h(2)} e M

because M is a o-ideal, and (g — h)T € V, so w > v. Thus v = sup,cy Uy, in L. As (u,)nen is arbitrary,
L* is Dedekind o-complete (using 353H).

(ii) Now suppose that L is Dedekind o-complete, and that A is a countable non-empty set in 2.
In this case {xa : a € A} has a least upper bound v in L*°. Take v € S(2) such that 0 < v < u and
[u—vlloo < 3; set b= [v> 3], as defined in 361Eg. If a € A, then ||(xa — v) || < [lu — v]o < %, sO
%Xa <wand a Cb. If c € A is any upper bound for A, then v <u < xycso b Cc. Thus b =sup A in 2A. As
A is arbitrary, 2 is Dedekind o-complete.

(b)(i) For the second half of this theorem I use an argument which depends on joining the representation
described in (a-i) above with the original definition of L in 363A. The point is that C(Z) C £°°, and for
any f € C(Z) = L*™(2) its equivalence class f* in £°°/V corresponds to f itself. I Perhaps it will help
to give a name T to the canonical isomorphism from £>/V to L*°. Then V = {f : Tf* = f} is a closed
linear subspace of C(Z), because f +— f* and T are continuous linear operators. But if a € 2, then (a)*, the
equivalence class of @ € ¥ in ¥/ M, corresponds to a (see the proof of 314M), so (xa)* € £°°/V corresponds
to xa; that is, T (xa)® = xa, if we identify ya € L* with xa : Z — {0,1}. So V contains xa for every a € 2;
because V is a linear subspace, S(2) C V; because V is closed, L C V. Q

For a general f € £, g = T f* must be the unique member of C(Z) such that g* = f*, that is, such

that {z: g(z) # f(2)} is meager.

(ii) Suppose now that 2 is actually Dedekind complete. In this s case Z is extremally disconnected
(314S). Consequently every open set belongs to . P If G is open, then G is open-and-closed; but A = G\G
is a closed set with empty interior, so is meager, and G = GAA € . Q

Let A C L™ = (C(Z) be any non-empty set with an upper bound in C(Z). For each z € Z set
g(z) = sup,e4 u(2). Then
Go={2:9(2) > a} = Uycalz r u(z) > a}

is open for every o € R (that is, g is lower semi-continuous). Thus G, € ¥ for every a, so g € £°°, and
v ="Tg* is defined in C(Z). For any v € A, g > u in £, so

v=Tg*>Tu* =u
in L°°; thus v is an upper bound for A in L°°. On the other hand, if w is any upper bound for A in
L = (C(Z), then surely w(z) > u(z) for every z € Z and u € A, so w > g and

w=Tw*>Tg* =v.

This means that v is the least upper bound of A. As A is arbitrary, L*° is Dedekind complete.
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(iii) Finally, if L*° is Dedekind complete, then the argument of (a-ii), applied to arbitrary non-empty
subsets A of 2, shows that 2 also is Dedekind complete.

363N Much of the importance of L>° spaces in the theory of Riesz spaces arises from the next result.

Proposition Let U be a Dedekind o-complete Riesz space with an order unit. Then U is isomorphic, as
Riesz space, to L (2l), where 2l is the algebra of projection bands in U.

proof (a) By 353N, U is isomorphic to a norm-dense Riesz subspace of C'(X) for some compact Hausdorff
space X; for the rest of this argument, therefore, we may suppose that U actually is such a subspace.

(b) U = C(X). P If g € C(X) then by 3541 there are sequences (fn)nen, (f))nen in U such that
fn <9< gnand ||gn — fnlloc < 27" for every n. Now {f, : n € N} has a least upper bound f in U; since
we must have f,, < f < g, foreveryn, f=gand g U. Q

(¢) Next, X is zero-dimensional. P Suppose that G C X is open and 2 € G. Then there is an open set
G, such that # € G; € G; C G (3A3Bb). There is an f € C(X) such that 0 < f < xG; and f(x) > 0 (also
by 3A3Bb); write H for {y : f(y) > 0}. Set g = sup,,en(nf A xX), the supremum being taken in U = C(X).
For each y € H, we must have g(y) > min(1,nf(y)) for every n, so that g(y) = 1. On the other hand, if
y € X \ H, there is an h € C(X) such that h(y) >0and 0 < h < x(X \ H); now hA f =0so hAg =0 and
g(y) =0. Thus YH < g < xH. The set {y : g(y) € {0,1}} is closed and includes H U (X \ H) so must be
the whole of X; thus G2 = {y : g(y) > 3} = {y : g(y) > 3} is open-and-closed, and we have

reHCG, CHCG, CQG.

As z, G are arbitrary, the set of open-and-closed subsets of X is a base for the topology of X, and X is
zero-dimensional. Q

(d) We can therefore identify X with the Stone space of its algebra & of open-and-closed sets (311J).
But in this case 363A immediately identifies U = C(X) with L*°(€). By 363J, £ is isomorphic to 2, so
U= L>().

Remark Note that in part (¢) of the argument above, we have to take care over the interpretation of ‘sup’.
In the space of all real-valued functions on X, the supremum of {nf A xX : n € N} is just xH. But g is
supposed to be the least continuous function greater than or equal to nf A xX for every n, and is therefore
likely to be strictly greater than yH, even though sandwiched between yH and yH.

3630 Corollary Let U be a Dedekind o-complete M-space. Then U is isomorphic, as Banach lattice,
to L (2A), where 2 is the algebra of projection bands of U.

proof This is merely the special case of 363N in which U is known from the start to be complete under an
order-unit norm.

363P Corollary Let U be any Dedekind o-complete Riesz space and e € UT. Then the solid linear
subspace U, of U generated by e is isomorphic, as Riesz space, to L>(2l) for some Dedekind o-complete
Boolean algebra 2A; and if U is Dedekind complete, so is 2.

proof Because U is Dedekind o-complete, so is U, (353K(a-i)). Apply 363N to U, to see that U, = L ()
for some 2. Because U, is Dedekind o-complete, so is 2, by 363Ma; while if U is Dedekind complete, so are
U, and 2, by 353K (b-i) and 363Mb.

363Q The next theorem will be a striking characterization of the Dedekind complete L°° spaces as
normed spaces. As a warming-up exercise I give a much simpler result concerning their nature as Banach
lattices.

Proposition Let 2 be a Dedekind complete Boolean algebra. Then for any Banach lattice U, a linear
operator T : U — L® = L>°(2l) is continuous iff it is order-bounded, and in this case ||T'|| = |||T|||, where
the modulus |T| is taken in L~ (U; L*°).
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proof It is generally true that order-bounded operators between Banach lattices are continuous (355C). If
T : U — L* is continuous, then for any w € U™

ul <w = [lu]| < |lw|| = [[Tullec < I T|[[[w]] = [Tul < |[T][[lw]ee,

where e is the standard order unit of L*°. So T is order-bounded. As L is Dedekind complete (363Mb),
|T| is defined in L™~ (U; L*°) (355Ea). For any w € U,

TlJw| = sup{|Tu| : [u] < |w[} < [[T|[[w]e,
so [||T|(w)|| < [|T||||w]l; accordingly |||T]]| < ||T||- On the other hand, of course,
[ Tw| < [T||lw] < T[[{[wlle
for every w € U, so ||T|| < |||T]|| and the two norms are equal.
Remark Of course what is happening here is that the spaces L™ (2l), for Dedekind complete 2, are just
the Dedekind complete M-spaces; this is an elementary consequence of 363N and 363M.
363R Now for something much deeper.

Theorem Let U be a normed space over R. Then the following are equiveridical:
(i) there is a Dedekind complete Boolean algebra 2 such that U is isomorphic, as normed space, to

L ();
(ii) whenever V is a normed space, Vy a linear subspace of V, and Ty : Vo — U is a bounded linear
operator, there is an extension of Ty to a bounded linear operator T': V' — U with ||T'|| = || To]|.

proof For the purposes of the argument below, let us say that a normed space U satisfying the condition
(ii) has the ‘Hahn-Banach property’.

Part A: (i)=(ii) I have to show that L>°(2) has the Hahn-Banach property for every Dedekind complete
Boolean algebra 2. Let V' be a normed space, V a linear subspace of V', and Ty : Vy — L>® = L>®°(2) a
bounded linear operator. Set v = || Tp||.

Let P be the set of all functions T such that domT is a linear subspace of V including V, and T :
domT — U is a bounded linear operator extending 7Ty and with norm at most . Order 8 by saying that
T, < Ty if Ty extends T;. Then any non-empty totally ordered subset Q of 3 has an upper bound in 3. P
Set domT = |J{dom T} : T} € Q}, Tv = Thv whenever 71 €  and v € domTy; it is elementary to check
that T € B, so that T is an upper bound for Q in . Q

By Zorn’s Lemma, ¥ has a maximal element T. Now domT =V. P? Suppose, if possible, otherwise.
Write V = dom T and take any o € V\V; let V; be the linear span of VU{#}, that is, {v+a@ : v € V, a € R}.

If v1, vy € V then, writing e for the standard order unit of L,

Tvy +Tvg = T(v1 +v2) < || T(v1 + v2)||sce

< v+ valle < Allvr = vlle + yllvz + Olle,
SO
Tvy — 7ljvr — Blle < |lva + 9]je — Twa.
Because L™ is Dedekind complete (363Mb),
i = sup,, oy Tvy — y[vr — 0fe
is defined in L™ and @ < 7||vg 4 0]|e — Ty for every vy € V. Putting these together, we have
Tv+a<y|v+dle, Tv—u<A|v—1oe
forallv e V. Consequently, if v € V, then for a > 0
Tv+ ai = o(T(Lv) + @) < ayl|2o + )l = 7ljv + aille,
while for o < 0
To+ i = ol (F(~Lo) - @) < Jaly]| - Lo = 3lle = Allo + adlle,

and of course
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To < |[Tvlece < A0]le.
So we have
Tv + aii < vllv + adlle

for every v € V, a € R.

Define T} : Vi — L™ by setting T1(v 4+ at) = Tv + i for every v € V, a € R. (This is well-defined
because ¥ ¢ V, so any member of V7 is uniquely expressible as v + a® where v € V and o € R.) Then T}
is a linear operator, extending T}, from a linear subspace of V to L*°. But from the calculations above we
know that Tyv < v||v|le for every v € Vi; since we also have

o = =T(-v) 2 —|| = v[le = =rl[v]e,

| T10]|00 < 7|lv]| for every v € Vi, and T} € 8. But now 7T} is a member of 9 properly extending 7', which
is supposed to be impossible. X Q

Accordingly T : V — L™ is an extension of T} to the whole of V, with the same norm as Ty. As V and
Ty are arbitrary, L* has the Hahn-Banach property.

Part B: (ii)=(i) Now let U be a normed space with the Hahn-Banach property. If U = {0} then of
course it is isomorphic to L (), where 2 = {0}, so henceforth I will take it for granted that U # {0}.

(a) Let Z be the unit ball of the dual U* of U, with the weak™® topology. Then Z is a compact Hausdorff
space (3ASF). For w € U set Z,, = {z : z € Z, |2(u)| = |lul]|}; then Z, is a closed subset of Z (because
f— f(u) is continuous), and is non-empty, by the Hahn-Banach theorem (3A5Ab, or Part A above!) Now
let 3 be the set of those closed sets X C Z such that X N Z, # () for every u € U. If Q C ‘B is non-empty
and totally ordered, then (9 € B, because for any u € U

{XnZ,: X e}

is a downwards-directed family of non-empty compact sets, so must have non-empty intersection. By Zorn’s
Lemma, upside down, ¢ has a minimal element X; with its relative topology, X is a compact Hausdorff
space.

(b) We have a linear operator R : U — C(X) given by setting (Ru)(z) = x(u) for every u € U, = € X
because X C Z, |Ru|loo < |||, and because X € B, ||Rul|co = ||ul|, for every u € U. Moreover, if G C X is
a non-empty open set (in the relative topology of X) then X \ G cannot belong to 3, because X is minimal,
so there is a (non-zero) u € U such that |z(u)| < ||u|| for every z € X \ G. Replacing u by ||u||~tu if need
be, we may suppose that ||ul| = 1.

What this means is that W = R[U] is a linear subspace of C'(X) which is isomorphic, as normed space,
to U, and has the property that whenever G C X is a non-empty relatively open set there is an f € W such
that || fllec =1 and |f(z)| < 1 for every € X \ G. Observe that, because X \ G is compact, there is now
some a < 1 such that |f(u)| < « for every f € X\ G.

Because W is isomorphic to U, it has the Hahn-Banach property.

(¢) Now consider V = £>°(X), Vo = W, Ty : Vo — W the identity map. Because W has the Hahn-Banach
property, there is a linear operator T': £°(X) — W, extending Tp, and of norm ||Tg|| = 1.

(d) If h € £°(X) and zg € X \ {x: h(z) # 0}, then (Th)(xo) = 0. P? Otherwise, set G = {y : y €
X\ {z: h(x) # 0}, (Th)(y) # 0}. This is a non-empty open set in X, so there are f € W, a < 1 such that
[[fllc =1 and |f(x)| < « for every x € X \ G.

Because || f|lc = 1, there must be some z; € X such that |f(z1)] = 1, and of course 1 € G, so
that (Th)(z1) # 0. But let 6 > 0 be such that §||h||cc < 1 — a. Then, because h(z) = 0 for z € G,
|f(z)|+|6h(z)] <1 for every x € X, and || f + 0h|co, ||f — dh|loo are both less than or equal to 1. As T'f = f
and ||T'|| = 1, this means that

If +0Thlloe <1, |If = 6Th|lee <1
consequently
|f(@1)] + 0|(Th)(z1)| = max(|(f + 6Th)(z1)], |(f — 0Th)(x1)]) < 1.
But |f(z1)] = 1 and 6(Th)(z1) # 0, so this is impossible. XQ
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(e) It follows that Th = h for every h € C(X). PP? Suppose, if possible, otherwise. Then thereisa ¢ > 0
such that G = {z : [(Th)(z) — h(z)| > ¢} is not empty. Let f € W be such that ||f|| = 1 but |f(z)| < 1
for every € X \ G. Then there is an 29 € X such that |f(zg)| = 1; of course xy must belong to G. Set

fi= };Ez();f, so that f; € W and fi(xg) = h(zo). Set

hi(z) = med(h(z) — 6, fi(z), h(z) +9)
for x € X. Then hy € C(X). Setting
H ={xz: |h(x) = h(zo)| + [f1(2) — fr(wo)| < 6},
H is an open set containing zo and
[f1(x) = h(@)] < [fi(zo) — hlzo)| +0 =6, hi(x) = fi(x)

for every x € H. Consequently z¢ ¢ {x : (f1 — h1)(z) # 0}, and T(f1 — h1)(zo) = 0, by (d). But this means
that

(Tha)(wo) = (T f1)(wo) = f1(zo) = h(xo),
so that
[h(z0) — (Th)(2o)| = |T'(h1 — h)(xo)| < | T(h1 — h)|lec < [[R1 — oo <0,
which is impossible, because zy € G. XQ

(f) This tells us at once that W = C(X). But (d) also tells us that X is extremally disconnected. I Let
G C X be any open set. Then xX = xG + x(X \ G), so

xX = T(XX) = hy + ha,

where h; = T(xG), ha = T(x(X \ G)). Now from (d) we see that h; must be zero on X \ G while hy must
be zero on G. Thus we have hi(z) = 1 for z € G; as hy is continuous, hy(z) =1 for z € G, and hy = XG.
Of course it follows that G is open. As G is arbitrary, X is extremally disconnected. @

(g) Being also compact and Hausdorft, therefore regular (3A3Bb), X is zero-dimensional (3A3Bd). We
may therefore identify X with the Stone space of its regular open algebra RO(X) (314S), and W = C(X) with
L>*(RO(X)). Thus R : U — C(X) is a Banach space isomorphism between U and C(X) = L*°(RO(X));
so U is of the type declared.

363S The Banach-Ulam problem At a couple of points already (232Hc, the notes to §326) I have
remarked on a problem which was early recognised as a fundamental question in abstract measure theory.
I now set out some formulations of the problem which arise naturally from the work done so far. I will do
this by writing down a list of equiveridical statements; the ‘Banach-Ulam problem’ asks whether they are
true.

I should remark that this is not generally counted as an ‘open’ problem. It is in fact believed by most of
us that these statements are independent of the usual axioms of Zermelo-Fraenkel set theory, including the
axiom of choice and even the continuum hypothesis. As such, this problem belongs to Volume 5 rather than
anywhere earlier, but its manifestations will become steadily more obtrusive as we continue through this
volume and the next, and I think it will be helpful to begin collecting them now. The ideas needed to show
that the statements here imply each other are already accessible; in particular, they involve no set theory
beyond Zorn’s Lemma. These implications constitute the following theorem, derived from LUXEMBURG 67A.

Theorem The following statements are equiveridical.

(i) There are a set X and a probability measure v, with domain PX, such that v{z} = 0 for every x € X.

(ii) There are a localizable measure space (X, %, ) and an absolutely continuous countably additive
functional v : ¥ — R which is not truly continuous, so has no Radon-Nikodym derivative (definitions:
232ADb, 232HF).

(iii) There are a Dedekind complete Boolean algebra 2 and a countably additive functional v : 2 — R
which is not completely additive.

(iv) There is a Dedekind complete Riesz space U such that U, # U*.

D.H.FREMLIN



38 Function spaces 363S

proof (a)(i)=-(ii) Let X be a set with a probability measure v, defined on PX, such that v{z} = 0 for
every © € X. Let u be counting measure on X. Then (X, PX, u) is strictly localizable, and v : PX — R
is countably additive; also vE = 0 whenever pF is finite, so v is absolutely continuous with respect to pu.
But if uF < oo then FE is finite and v(X \ F) = 1, so v is not truly continuous, and has no Radon-Nikodym
derivative (232D).

(b)(ii)=(iii) Let (X,X, u) be a localizable measure space and v : ¥ — R an absolutely continuous
countably additive functional which is not truly continuous. Let (2, i) be the measure algebra of u; then
we have an absolutely continuous countably additive functional 7 : 2l — R defined by setting vE* = vE
for every E € ¥ (327C). Since v is not truly continuous, # is not completely additive (327Ce). Also 2 is
Dedekind complete, because pu is localizable, so 2l and 7 witness (iii).

(c)(iii)=(i) Let A be a Dedekind complete Boolean algebra and v : A — R a countably additive
functional which is not completely additive. Because v is bounded (326M), therefore expressible as the
difference of non-negative countably additive functionals (326L), there must be a non-negative countably
additive functional v’ on 2 which is not completely additive.

By 326R, there is a partition of unity (a;);cs in 2 such that ), v'a; <v'l. Set K = {i:i € I, v'a; > 0};
then K must be countable, so

V'(sup;ep i ai) = V'L =V (supjeg ai) = v'1 =30 g v'a; > 0.
For J C I set puJ = v/'(sup;e K a;); the supremum is always defined because 2l is Dedekind complete.

Because v’ is countably additive and non-negative, so is u; because v’'a; = 0 for i € J\ K, p{i} = 0 for
every i € I. Multiplying u by a suitable scalar, if need be, (I, PI, u) witnesses that (i) is true.

(d)(iii)=(iv) If 2 is a Dedekind complete Boolean algebra with a countably additive functional which
is not completely additive, then U = L*°(2() is a Dedekind complete Riesz space (363Mb) and U # U™,
by 363K (recalling, as in (c) above, that the functional must be bounded).

(e)(iv)=(iii) Let U be a Dedekind complete Riesz space such that U* # U2. Take f € UX \ U™,
replacing f by |f| if need be, we may suppose that f > 0 is sequentially order-continuous but not order-
continuous (355H, 3551). Let A be a non-empty downwards-directed set in U, with infimum 0, such that
infyea f(u) >0 (351Ga). Take e € A, and consider the solid linear subspace U, of U generated by e; write
g for the restriction of f to U.. Because the embedding of U, in U is order-continuous, g € (U.)’; because
ANU, is downwards-directed and has infimum 0, and

inf,canv, g(u) = infuea f(u) >0,
g ¢ UX. But U, is a Riesz space with order unit e, and is Dedekind complete because U is; so it can be
identified with L>°(2() for some Boolean algebra 2l (363N), and 2( is Dedekind complete, by 363M.

Accordingly we have a Dedekind complete Boolean algebra 2 such that L>(20) # L ()*. By 363K,
there is a (bounded) countably additive functional on 20 which is not completely additive, and (iii) is true.

363X Basic exercises (a) Let 2 be a Boolean algebra and U a Banach algebra. Let v : 2 — U be a
bounded additive function and T : L*°(2() — U the corresponding bounded linear operator. Show that T is
multiplicative iff v(anb) = va x vb for all a, b € 2.

>(b) Let 2, B be Boolean algebras and T : L*° () — L>°(2A) a linear operator. Show that the following
are equiveridical: (i) there is a Boolean homomorphism 7 : 2 — 2 such that T'= T} (ii) T(u x v) = TuxTv

for all u, v € L>°(2A) (iii) T is a Riesz homomorphism and Teq = e, where ey is the standard order unit of
L ().

(c) Let A, B be Boolean algebras and T': L>°(2() — L>°(*B) a Riesz homomorphism. Show that there are
a Boolean homomorphism 7 : 2 — B and a v > 0 in L>°(B) such that Tu = v x Tru for every u € L= (),
where T is the operator associated with 7 (363F).

(d) Let A be a Boolean algebra and € a subalgebra of 2. Show that L>°(€), regarded as a subspace of
L>(2) (363Ga), is order-dense in L () iff € is order-dense in 2.
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>(e) Let (X,X,u) be a measure space with measure algebra 2, and £ the space of bounded -
measurable real-valued functions on X. A linear lifting of u is a positive linear operator 7' : L>=(2() — £
such that T(x1y) = xX and (Tu)* = u for every u € L (), writing f — f* for the canonical map from
£ to L () (363H-3631). (i) Show that if 6 : A — ¥ is a lifting in the sense of 341A then Ty, as defined in
363F, is a linear lifting. (ii) Show that if T': L*° () — £°° is a linear lifting, then there is a corresponding
lower density 0 : 2l — ¥ defined by setting fa = {x : T'(xa)(z) = 1} for each a € . (iii) Show that 0, as
defined in (ii), is a lifting iff 7' is a Riesz homomorphism iff 7" is multiplicative.

(f) Let U be any commutative ring with multiplicative identity 1. Show that the set A of idempotents
in U (that is, elements a € U such that a?> = a) is a Boolean algebra with identity 1, writing anb = ab,
1N\a=1-—a fora, b e A

(g) Let 2 be a Boolean algebra. Show that 2l is isomorphic to the Boolean algebras of multiplicative
idempotents of S() and L ().

(h) Let 2 be a Dedekind o-complete Boolean algebra. (i) Show that for any u € L (), « € R there
are elements [u > af, [u > a] € A, where [u> «] is the largest a € A such that u x ya > aya, and
[u> a] =supg~, [u > B]. (ii) Show that in the context of 363Hb, if u corresponds to f* for f € £, then
[u>a]={z: f(z) >a}, [u>a] ={z: f(z) > a}*. (iil) Show that if A C L™ is non-empty and v € L,
then v = sup A iff [v > o] = sup,c4 [u > o] for every a € R; in particular, v = w iff [v > o] = [u > «] for
every a. (iv) Show that a function ¢ : R — 1 is of the form ¢(a) = [u > o] iff (@) ¢(a) = supg.., #(B) for
every a € R () there is an M such that ¢(M) =0, ¢(—M) = 1. (v) Put (iii) and (iv) together to give a
proof that L°° is Dedekind o-complete if 2 is.

(i) Let A be a Dedekind o-complete Boolean algebra and U C L™ (2() a (sequentially) order-closed Riesz
subspace containing y1. Show that U can be identified with L°>°(*8) for some (sequentially) order-closed
subalgebra B C . (Hint: set B = {b: xb € U} and use 363N.)

363Y Further exercises (a) Let 2 be a Boolean algebra. Given the linear structure, ordering, multi-
plication and norm of S(2) as described in §361, show that a norm completion of S(2() will serve for L (2()
in the sense that all the results of 363B-363Q can be proved with no use of the axiom of choice except an
occasional appeal to countably many choices in sequential forms of the theorems.

(b) Let 2 be a Boolean algebra. Show that 2 is ccc iff L>°(2() has the countable sup property (241Ye,
353Yd).

(c) Let X be an extremally disconnected topological space, and RO(X) its regular open algebra. Show
that there is a natural isomorphism between L>°(RO(X)) and Cy(X).

(d) Let A be a Boolean algebra. (i) If u € L™ = L (), show that |u| = e, the standard order unit of
Lo, iff max(||u+ v]/co, || — v]|oo) > 1 whenever v € L\ {0}. (ii) Show that if u, v € L* then |u| A [v]| =0
iff Jou + v + W]l < max(]lau + W, [V + w||eo) Whenever @ = £1 and w € L. (iii) Show that if
T :L>* — L™ is a normed space automorphism then there are a Boolean automorphism 7 : 2l — 2 and a
w € L such that |w| = e and Tu = w X Tru for every u € L.

(e) Let X be a set, ¥ an algebra of subsets of X, and Z an ideal in ¥, and £ the set of bounded functions
f+ X — Rsuch that whenever o < §in R there is an E € ¥ such that {z : f(z) < a} C E C{z: f(x) < B8},
as in 363H. (i) Show that £ = {g¢ : g € C(Z)}, where Z is the Stone space of ¥ and ¢ : X — Z is a
function (to be described). (ii) Show that L°°(X/Z) can be identified, as Banach lattice and Banach algebra,
with £°°/V, where V is the set of those functions f € £ such that for every e > 0 there is a member of 7
including {z : |f(z)| > €}.

(f) Let (X,%, ) be a complete probability space with measure algebra 2. Let (B, )nen be a non-
decreasing sequence of closed subalgebras of 2 such that 2 is the closed subalgebra of itself generated by
Unen Bn, and set X, = {F : F* € B,} for each n. Let P, : L'(u) — L*(u|%,) be the conditional
expectation operator for each n, so that P,[L°(u) is a positive linear operator from L (u) =2 L>®(2) to
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L>(ulX,) = L*°(B,,). Suppose that we are given for each n a lifting 6,, : B,, — X,, and that 6,,11b = 6,,b
whenever n € N and b € B,,. Let T, : L*°(*B,,) — £ be the corresponding linear liftings (363Xe), and
F any non-principal ultrafilter on N. (i) Show that for any u € L% (), (T, Pyu)nen converges almost
everywhere. (ii) For u € L*(2) set (Tw)(z) = limy,— 7 (T, Pyu)(z) for z € X, u € L>(A). Show that T
is a linear lifting for p. (iii) Use 363Xe(ii) and 341J to show that there is a lifting 6 of u extending every
0,,. (iv) Use this as the countable-cofinality inductive step in a proof of the Lifting Theorem (using partial
liftings rather than partial lower densities, as suggested in 341Li).

(g) Let 2 be a Boolean algebra and v : 2l — R a bounded countably additive functional. Suppose that
Up)neN 18 an order-bounded sequence in such that inf,cysup Uy, and sup,, oy inf, >y, Uy, are
(tn)nen i der-bounded in L°°(2) such that infcy Supys,, tpn and sup,,cy inf >
defined in L>(2) and equal to u say. Show that [wdv = lim, e [u,dv.

(h) Let X be the family of those sets E C [0, 1] such that u(int E) = uE, where u is Lebesgue measure.
(i) Show that ¥ is an algebra of subsets of [0,1] and that every member of ¥ is Lebesgue measurable. (ii)
Show that if we identify L>°(X) with a set of real-valued functions on [0, 1], as in 363H, then we get just the
space of Riemann integrable functions. (iii) Show that if we write v for ;%, then fdv, as defined in 363L,
is just the Riemann integral.

(i) Let X be a compact Hausdorff space. Let us say that a linear subspace U of C(X) is £*°-comple-
mented in C(X) if there is a linear subspace V such that C(X) = U@V and ||u+v|cc = max(||ul|co, [|V] o)
for all w € U, v € V. Show that there is a one-to-one correspondence between such subspaces U and open-
and-closed subsets E of X, given by setting U = {u : u € C(X), u(z) =0V 2z € X \ E}. Hence show that
if 2 is any Boolean algebra, there is a canonical isomorphism between 2 and the partially ordered set of
¢>-complemented subspaces of L ().

363 Notes and comments As with S(2(), I have chosen a definition of L>(2() in terms of the Stone space
of ; but as with S(2(), this is optional (363Ya). By and large the basic properties of L> are derived very
naturally from those of S. The spaces L (2l), for general Boolean algebras 2, are not in fact particularly
important; they have too few properties not shared by all the spaces C'(X) for compact Hausdorff X. The
point at which it becomes helpful to interpret C(X) as L () is when C(X) is Dedekind o-complete. The
spaces X for which this is true are difficult to picture, and alternative representations of L>° along the lines
of 363H-363I can be easier on the imagination.

For Dedekind o-complete 2, there is an alternative description of members of L (2l) in terms of objects
‘[u> o] (363Xh); I will return to this idea in the next section. For the moment I remark only that it gives
an alternative approach to 363M not necessarily depending on the representation of L™ as a quotient £°°/V
nor on an analysis of a Stone space. I used a version of such an argument in the proof of 363M which I gave
in FREMLIN 74A, 43D.

I spend so much time on 363M not only because Dedekind completeness is one of the basic properties of
any lattice, but because it offers an abstract expression of one of the central results of Chapter 24. In 243H
I showed that L°°(u) is always Dedekind o-complete, and that it is Dedekind complete if p is localizable.
We can now relate this to the results of 321H and 322Be: the measure algebra of any measure is Dedekind
o-complete, and the measure algebra of a localizable measure is Dedekind complete.

The ideas of the proof of 363M can of course be rearranged in various ways. One uses 353Yb: for
completely regular spaces X, C'(X) is Dedekind complete iff X is extremally disconnected; while for compact
Hausdorff spaces, X is extremally disconnected iff it is the Stone space of a Dedekind complete algebra.
With the right modification of the concept ‘extremally disconnected’ (314Yf), the same approach works for
Dedekind o-completeness.

363R is the ‘Nachbin-Kelley theorem’; it is commonly phrased ‘a normed space U has the Hahn-Banach
extension property iff it is isomorphic, as normed space, to C(X) for some compact extremally disconnected
Hausdorff space X', but the expression in terms of L°° spaces seems natural in the present context. The
implication in one direction (Part A of the proof) calls for nothing but a check through one of the standard
proofs of the Hahn-Banach theorem to make sure that the argument applies in the generalized form. Part
B of the proof has ideas in it; I have tried to set it out in a way suggesting that if you can remember the
construction of the set X the rest is just a matter of a little ingenuity.
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One way of trying to understand the multiple structures of L> spaces is by looking at the corresponding
automorphisms. We observe, for instance, that an operator T' from L% (2l) to itself is a Banach algebra
automorphism iff it is a Banach lattice automorphism preserving the standard order unit iff it corresponds
to an automorphism of the algebra 2 (363Xb). Of course there are Banach space automorphisms of L
which do not respect the order or multiplicative structure; but they have to be closely related to algebra
isomorphisms (363Yd).

I devote a couple of exercises (363Xe, 363Yf) to indications of how the ideas here are relevant to the
Lifting Theorem. If you found the formulae of the proof of 341G obscure it may help to work through the
parallel argument.

A lecture by W.A.J.Luxemburg on the equivalence between (i) and (iv) in 363S was one of the turning
points in my mathematical apprenticeship. I introduce it here, even though the real importance of the
Banach-Ulam problem lies in the metamathematical ideas it has nourished, because these formulations pro-
vide a focus for questions which arise naturally in this volume and which otherwise might prove distracting.
The next group of significant ideas in this context will appear in §438.

Version of 16.7.11
364 LY

My next objective is to develop an abstract construction corresponding to the L°(u) spaces of §241. These
generalized L% spaces will form the basis of the work of the rest of this chapter and also the next; partly
because their own properties are remarkable, but even more because they form a framework for the study of
Archimedean Riesz spaces in general (see §368). There seem to be significant new difficulties, and I take the
space to describe an approach which can be made essentially independent of the route through Stone spaces
used in the last three sections (364Ya). I embark directly on a definition in the new language (364A), and
relate it to the constructions of §241 (364B-364D, 3641I) and §§361-363 (364J). The ideas of Chapter 27 can
also be expressed in this language; I make a start on developing the machinery for this in 364F-364G, with
the formula ‘Ju € E]’, ‘the region in which u belongs to E’, and some exercises (364Xe-364Xf). Following
through the questions addressed in §363, I discuss Dedekind completeness in L° (364L-364M), properties of
its multiplication (364N), the expression of the original algebra in terms of L° (3640), the action of Boolean
homomorphisms on L° (364P) and product spaces (364R). In 364S-364V 1 describe representations of the
L? space of a regular open algebra.

364A The set L°(2) (a) Definition Let 2 be a Dedekind o-complete Boolean algebra. I will write
LO(21) for the set of all functions o — [u > a] : R — A such that
(@) [u > a] =supgs,, [u > B] in A for every o € R,
(8) infoer [u > a] =0,
() suppen [u > a] = 1.

(b) My reasons for using the notation ‘Ju > a]’ rather than ‘u(«)’ will I hope become clear in the next
few paragraphs. For the moment, if you think of 2 as a o-algebra of sets and of L°(2) as the family of
2-measurable real-valued functions, then [u > «] corresponds to the set {z : u(z) > a} (364Ia).

(c¢) Some readers will recognise the formula ‘[. .. ] as belonging to the language of forcing, so that [u > «]
could be read as ‘the Boolean value of the proposition “u > a”’. But a vocalisation closer to my intention
might be ‘the region where u > a’.

(d) Note that condition («) of (a) automatically ensures that Ju > a] C [u > o] whenever o < « in R.

(e) In fact it will sometimes be convenient to note that the conditions of (a) can be replaced by
(@) [u > a] =sup,eq g>a [u > q] for every a € R,
(8) infex [u > n] = 0.
(v') suppen [u> —n] = 1;
the point being that we need look only at suprema and infima of countable subsets of 2.

(© 1996 D. H. Fremlin
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*(f) Indeed, because the function o — Ju > o] is determined by its values on Q, we have the option of
declaring L°(2() to be the set of functions a +— [u > o] : Q — A such that
(@) [u > q] =supy e g4 [u > ¢'] for every g € Q,
(8) infpen [u > n] =0,
(7) suppen [u > —n] = 1.
However I shall hold this in reserve until I come to forcing constructions in Chapter 55 of Volume 5.

(g) In order to integrate this construction into the framework of the rest of this book, I match it with an
alternative route to the same object, based on o-algebras and o-ideals of sets, as follows.

364B Proposition Let X be a set, ¥ a o-algebra of subsets of X, and Z a o-ideal of X.

(a) Write £% = L} for the space of all Y-measurable functions from X to R. Then £°, with its lin-
ear structure, ordering and multiplication inherited from R¥X, is a Dedekind o-complete f-algebra with
multiplicative identity.

(b) Set

W=Wz={f:fel’ {z: f(x)#0} €I}
Then
(i) W is a sequentially order-closed solid linear subspace and ideal of £°;
(i) the quotient space £°/W, with its inherited linear, order and multiplicative structures, is a Dedekind
o-complete Riesz space and an f-algebra with a multiplicative identity;
(iii) for f, g € £L°, f* < g* in LOY/Wiff {z : f(x) > g(z)} € Z, and f* = g* in LO/W iff {2 : f(x) #
g(@)} € T.

proof (Compare 241A-241H.)

(a) The point is just that £° is a sequentially order-closed Riesz subspace and subalgebra of RX. The
facts we need to know — that constant functions belong to £°, that f +g, af, f X g, sup,,cy fn belong to £°
whenever f, g, f, do and {f, : n € N} is bounded above — are all covered by 121E-121F. Tts multiplicative
identity is of course the constant function x.X.

(b)(i) The necessary verifications are all elementary.

(ii) Because W is a solid linear subspace of the Riesz space £V, the quotient inherits a Riesz space
structure (351J, 352Jb); because W is an ideal of the ring (£°, +, x), £9/W inherits a multiplication; it is
a commutative algebra because £ is; and has a multiplicative identity e = xX* because xX is the identity
of £9.

To check that £°/W is an f-algebra it is enough to observe that, for any non-negative f, g , h € £°,
frxg = (fxg) =0,

and if f* Ag®* =0 then {z: f(z) >0} N{z: g(x) >0} € Z, so that {z : f(z)h(z) >0}N{x:g(x) >0} L
and

(J* < h*) A g* = (b x [*) A g = 0.
Finally, £°/W is Dedekind o-complete, by 353K (a-iii).
(iii) For f, g € LY,
frg = (F-9TeW = {2:f(@)>g@)} ={z: (f-9)T(z) #0} €T

(using the fact that the canonical map from £° to £°/W is a Riesz homomorphism, so that ((f — g)*)* =
(f*—g¢°)"). Similarly

Jr=g = f-geW < {a:[(x) #9@)} = {a: (f - g)(a) £ 0} € T.
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364C Theorem Let X be a set and ¥ a o-algebra of subsets of X. Let 2 be a Dedekind o-complete
Boolean algebra and 7 : ¥ — 2 a surjective Boolean homomorphism, with kernel a o-ideal Z; define £° = £,
and W = Wz as in 364B, so that U = £°/W is a Dedekind o-complete f-algebra with multiplicative identity.
(a) We have a canonical bijection 7' : U — L% = L°(2l) defined by the formula

[Tf*>a]=n{z: f(z)>a}

for every f € L% and o € R.
(b)(i) For any u, v € U,

IT(u+v) >a]]:supqu[[Tu>q]]m[[Tv>a—q]]

for every a € R.
(ii) For any w € U and v > 0,

[T(w) > o] = [Tu > 2]

for every a € R.
(iii) For any u, v € U,

u<v <= [Tu>qa] C[Tv>q] for every a € R.
(iv) For any u, v € U™,
[T(uxv) > a] =supgeq gs0 [Tu> gl n [Tv > £]

for every a > 0.
(v) Writing e = (xX)* for the multiplicative identity of U, we have

[Te>a]=1ifa<1,0ifa>1.
proof (a)(i) Given f € £, set (f(a) = n{x: f(x) > a} for « € R. Then it is easy to see that (s satisfies

the conditions («)’-(7)’ of 364Ae, because 7 is sequentially order-continuous (313Qb). Moreover, if f* = g°
in U, then

Crla) agla) =m({x: f(z) > a}Nfz:g(x) >a}) =0
for every o € R, because

{z:f(2)>a}AMz:g(z) > a} C{z: f(zx) #g(x)} €T,
and (s = ;. So we have a well-defined member T'u of L? defined by the given formula, for any u € U.

(ii) Next, given w € L°, there is a u € £°/W such that Tu = w. P For each q € Q, choose F, € %
such that 7F, = [w > ¢] in 2. Note that if ¢’ > ¢ then

T(Fy \ Fy) = [u> ¢\ [u>q] =0,
so Fy \ Fy € I. Set
H= UCIG@ Iy \ ﬂnGN UqGQ,an F, e %,
and for z € X set
f(x)=sup{q:qeQ,xc F,}ifre H,
= 0 otherwise.

(H is chosen just to make the formula here give a finite value for every x.) We have

7H =supw > ¢]\ inf sup [w>q]
q€Q n€N geQ,g>n

:].Q[\rllrelg[[w>n]] = 19\ Oy = 1g,

so X \ H € Z. Now, for any a € R,
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{z: f(z) > a} U FRuX\H)ifa<o,
7€Q,q>a
U F\&X\H)ifa>0,

q€Q,q>a

and in either case belongs to X; so that f € £° and f* is defined in LY. Next, for any a € R,

[Tf>a] =n{z: f(zx)>a} =mn( U F,)
q€Q,q>

= sup [w>q]=[w>q],
9€Q,q>a

and Tf* =w. Q

(iii) Thus T is surjective. To see that it is injective, observe that if f, g € £°, then

Tf*=Tg¢* = [Tf*>a]=[Tg* > a] for every o € R
= m{x: f(z) > a} =n{z: g(x) > a} for every a € R
= {z: f(z) > a}A{z: g(x) > a} €T for every a € R
—{z: f@) 9@} = |z f@) > gD {z:g(x) > g} €T
q€Q
= f*=g".

So we have the claimed bijection.

(b)(i) Let f, g € £ be such that u = f* and v = g*, so that u +v = (f + g)°*. For any « € R,

[T(u+v)>a] =n{z: ($)+9()>0‘}
=r((J{z: f@) > q}n{z:g(x) > a—q})
q€Q

zzgpﬂ{x flx)>qtnn{z:g(x) >a—q}

(because 7 is a sequentially order-continuous Boolean homomorphism)

=sup [Tu>¢]n[Tv > a—q].
q€Q

(ii) Let f € £° be such that f* = u, so that (yf)* = yu. For any o € R,

[T(vu) > a] =m{x:vf(z) > a} =a{z: f(x) > %} =[Tu> %]

(iii) Let f, g € £° be such that f* = u and g* = v. Then

u<v <= {z:f(z)>gx)} el
(see 364B(b-iii))
= Jlz:f@)>qz9@)} ez
q€Q
— {z: f(z)>a}\{z:9(x) >a} €T for every « € R
— wf{z: f(z) > a}\7{x: g(z) > a} =0 for every «
<~ [Tu> «a] C [Tv > o] for every a.
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(iv) Now suppose that u, v > 0, so that they can be expressed as f*, g* where f, g > 0 in £° (351J),
and u x v = (f x g)*. If « >0, then

[T(uxv)>a]==( |J {xif($)>q}ﬁ{fﬂig($)>%})
q€Q,q>0
= sup w{z: f(z)>q}nn{z:g(x) >}
9€Q,4>0 g

sup [Tu > q]n[Tv > 2].
q€Q,q>0 !

(v) This is trivial, because

[T(xX)* > a] =n{z: (xX)(z) > a}
=X =1ifa<l,
=70 =0if a > 1.

364D Theorem Let 2 be a Dedekind o-complete Boolean algebra. Then LY = L°(2) has the structure
of a Dedekind o-complete f-algebra with multiplicative identity e, defined by saying

[u+v>a] =sup,qlu>qlnfv>a—q],
whenever u, v € L? and a € R,
P> ] = [u > 2]
whenever u € L°, v €]0,00[ and a € R,
u<v < [u>a] Cv>a] for every o € R,

[uxv>a] =supgeqqgsolu>glnv> 7]
whenever u, v > 0 in L° and o > 0,

[e>a]l=1ifa<1,0ifa>1.

proof (a) By the Loomis-Sikorski theorem (314M), we can find a set Z (the Stone space of ), a o-algebra
Y of subsets of Z (the algebra generated by the open-and-closed sets and the ideal M of meager sets)
and a surjective sequentially order-continuous Boolean homomorphism 7 : ¥ — 2 (corresponding to the
identification between 2 and the quotient ¥/M). Consequently, defining £° = £ and W = Wy as in
364B, we have a bijection between the Dedekind o-complete f-algebra £°/W and L° (364Ca). Of course
this endows LO itself with the structure of a Dedekind o-complete f-algebra; and 364Cb tells us that the
description of the algebraic operations above is consistent with this structure.

(b) In fact the f-algebra structure is completely defined by the description offered. For while scalar
multiplication is not described for v < 0, the assertion that L is a Riesz space implies that Ou = 0 and that
yu = (—v)(—u) for v < 0; so if we have formulae to describe u 4+ v and ~yu for v > 0, this suffices to define
the linear structure of L°. Note that we have an element 0 in L° defined by setting

[0>a]=0ifa>0,1if a <0,
and the formula for v + v shows us that
[0+u>a] =supeq[0>glnu>a—g] =supeqqolu>a—q]=[u>q]
for every «, so that 0 is the zero of L°. As for multiplication, if L° is to be an f-algebra we must have
[uxv>a]2[0>a]=1
whenever u, v € (L°)* and a < 0, because u x v > 0. So the formula offered is sufficient to determine u x v

for non-negative v and v; and for others we know that
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uxv=(u"xov")— (vt xv7)— (" xoT)+(u” xv7),

so the whole of the multiplication of L° is defined.

364E The rest of this section will be devoted to understanding the structure just established. I start
with a pair of elementary facts.

Lemma Let 2 be a Dedekind o-complete Boolean algebra.
(a) Ifu, v e L0 = LOQA) and o, B € R,

[u+v>a+p]clu>a]ulv> 4]
(b) If u, v > 0in LY and o, 8 > 0 in R,
[uxv>ap] Clu>a]ulv>g].

proof (a) For any g € Q, either ¢ > aand [u > ¢] C [u > a],or g < aand [v > a+ 8 —¢] C [v > B]; thus
in all cases

[u>q¢nv>a+B—q] Clu>a]ulv>p];
taking the supremum over ¢, we have the result.

(b) The same idea works, replacing « + 8 — ¢ by «a8/q for ¢ > 0.

364F Yet another description of L° is sometimes appropriate, and leads naturally to an important
construction (364H).

Proposition Let 2 be a Dedekind o-complete Boolean algebra. Then there is a bijection between L0 =
L°(2A) and the set ® of sequentially order-continuous Boolean homomorphisms from the algebra B of Borel
subsets of R to 2, defined by saying that u € L° corresponds to ¢ € @ iff [u > o] = ¢(]a, oo|) for every
a e R

proof (a) If ¢ € @, then the map a — ¢(Ja, o0[) satisfies the conditions of 364Ae, so corresponds to an
element g of LP.

(b) If ¢, v € ® and uy = uy, then ¢ = . P Set A = {E : E € B, ¢(E) = ¢(E)}. Then Ais a
o-subalgebra of B, because ¢ and v are both sequentially order-continuous Boolean homomorphisms, and
contains |a, oo[ for every a € R. Now A contains |—oo, o] for every «, and therefore includes B (121J). But
this means that ¢ = 9. Q

(c) Thus ¢ — u, is injective. But it is also surjective. I As in 364D, take a set Z, a o-algebra X
of subsets of Z and a surjective sequentially order-continuous Boolean homomorphism 7 : ¥ — 2; let
T : LY /Wr-i(g0y — L° be the bijection described in 364C. If u € L°, there is an f € L9, such that T'f* = w.
Now consider ¢F = 7 f~1[E] for E € B. f~1[E] always belongs to ¥ (121Ef), so ¢F is always well-defined;
E + f~l[E] and 7 are sequentially order-continuous, so ¢ also is; and

o(Ja,0)) =m{z: f(2) > a} = [u > d]
for every a, so u = ug. Q
Thus we have the declared bijection.

364G Definitions (a) In the context of 364F, I will write Ju € E], ‘the region where u takes values in
E’, for ¢(E), where ¢ : B — 20 is the homomorphism corresponding to u € L°. Thus [u > o] = [u € ]Ja, o[ ].
In the same spirit I write Ju > o] for Ju € [o, 00[] = infgcq [u > B], [u # 0] = [Jul > 0] = [u > 0] u Ju < 0]
and so on, so that (for instance) [u = o] = [u € {a}] = [u > a] \ [u > o] for u € LY and a € R.

(b) If (A, i) is a probability algebra, fi¢ : B — [0, 1] is a probability measure, so that its completion v is
a Radon probability measure on R (256C); I will call v the distribution of u (cf. 271C).

364H Proposition Let 2 be a Dedekind o-complete Boolean algebra, £ C R a Borel set, and h: E — R
a Borel measurable function. Then whenever u € LY = LO°(A) is such that [u € E] = 1, there is an element
h(u) of LY defined by saying that [h(u) € F] = [u € h=![F]] for every Borel set F C R.
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proof All we have to observe is that F' + [u € h™1[F]] is a sequentially order-continuous Boolean homo-
morphism. (The condition ‘Ju € E] = 17 ensures that [u € h~[R]] = 1.)

3641 Examples Perhaps I should spell out the most important contexts in which we apply these ideas,
even though they have in effect already been mentioned.

(a) Let X be a set and ¥ a o-algebra of subsets of X. Then we may identify L°(X) with the space
L0 = LY of S-measurable real-valued functions on X. (This is the case 2 = X of 364C.) For f € LY,
[f € E] (364G) is just f~'[F], for any Borel set E C R; and if h is a Borel measurable function, h(f)
(364H) is just the composition hf, for any f € £O.

(b) Now suppose that Z is a o-ideal of ¥ and that % = ¥/Z. Then, as in 364C, we identify L°(2A) with
a quotient £L°/Wz. For f € L0, [f* € E] = f~1[E]*, and h(f*) = (hf)*, for any Borel set E and any Borel
measurable function A : R — R.

(c) In particular, if (X, ¥, u) is a measure space with measure algebra 21, then L°(2) becomes identified
with LY(u) as defined in §241, and the distribution of f € £%(u), as defined in 271C, is the same as the
distribution of f* € LO(u) = L°(2l), as defined in 364Gb.

The same remarks as in 3631 apply here; the space £%(u) of 241A is larger than the space £° = L%,
considered here. But for every f € £°%(u) there is a g € £ such that g =, f (241Bk), so that LO(u) =
LO(1)/ =ae. can be identified with £ /N, where N is the set of functions in £° which are zero almost
everywhere (241Yc).

364J Embedding S and L> in L°: Proposition Let 2 be a Dedekind o-complete Boolean algebra.

(a) We have a canonical embedding of L> = L® (%) as an order-dense solid linear subspace of L° = L°(2();
it is the solid linear subspace generated by the multiplicative identity e of L°. Consequently S = S(2) also
is embedded as an order-dense Riesz subspace and subalgebra of L°.

(b) This embedding respects the linear, lattice and multiplicative structures of L> and S, and the
definition of Ju > 4], for u € ST and ¢ > 0, given in 361Eg.

(c) For a € A, xa, when regarded as a member of L°, can be described by the formula

[xa>a]=1if a<0,
=aif0<a<l,
=0if 1 < a.

The function x : A — L? is additive, injective, order-continuous and a lattice homomorphism.
(d) For every u € (L°)* there is a non-decreasing sequence (u,)nen in S such that ug > 0 and sup,, ¢y un =
U.

proof Let Z, 3, M, £% = L% W = Wy, and 7 be as in the proof of 364D. I defined L> to be the space
C(Z) of continuous real-valued functions on Z (363A); but because 2 is Dedekind o-complete, there is an
alternative representation as £°°/WN L, where £ is the space of bounded X-measurable functions from
Z to R (363Hb). Put like this, we clearly have an embedding of L> = £ /W N £ in L° = £°%/W; and
this embedding represents L™ as a Riesz subspace and subalgebra of L% because £ is a Riesz subspace
and subalgebra of £°. L® becomes the solid linear subspace of LY generated by (xZ)* = e, because £ is
the solid linear subspace of £° generated by xZ. To see that L™ is order-dense in L%, we have only to note
that f = sup,cn f A nxZ in £° for every f € L, and therefore (because the map f — f* is sequentially
order-continuous) u = sup,,cy u A ne in LY for every u € L°.
To identify xa, we have the formula x(7F) = (xF)*, as in 363H(b-iii); but this means that, if a = 7F,

[xa>a] =7{z:xE(z) >a}=nZ=1if a <0,
=nrE=aif0<a<1,
= =0ifa>1,

using the formula in 364Ca. Evidently x is injective.

D.H.FREMLIN



48 Function spaces 364J

Because S is an order-dense Riesz subspace and subalgebra of L (363C), the same embedding represents
it as an order-dense Riesz subspace and subalgebra of L°. (For ‘order-dense’, use 352N(c-iii).) Concerning
the formula [u > 4], suppose that v € ST and § > 0; express u as Z;-":O Bjxbj, where bg,... by € A are
disjoint and 3; > 0 for every j. Then we have disjoint sets Fy, ..., F,, € ¥ such that 7F; = b; for every j,
and v is identified with (3°7 B;xF;)*. Using 364Ca, we have

[u> 8] = m{z: 371, BixFj(z) > 6} = m(U{F; : B; > 0}) = sup{b; : B; > 0},

matching the expression in the proof of 361Eg. So the new interpretation of [...] matches the former
definition in the special case envisaged in 361E.

Because x : 2l — L™ is additive, order-continuous and a lattice homomorphism (363D), and the embed-
ding map L> & L° also is, x : 2 — L° has the same properties.

Finally, if u > 0 in L°, we can represent it as f* where f > 0 in £°. For n € N set

fu(z)=2""kif 277k < f(2) < 27"(k + 1) where 0 < k < 4",
=0if f(z) > 2™

then (f2)nen is a non-decreasing sequence in St with supremum u.

364K Corollary Let (2, i) be a measure algebra. Then S(2lf) can be embedded as a Riesz subspace of
LO(21), which is order-dense iff (2, ji) is semi-finite.

proof (Recall that 2f is the ring {a : fia < 0o}.) The embedding A G 2 is an injective ring homomor-
phism, so induces an embedding of S(2/) as a Riesz subspace of S(2), by 361J. Now S(21f) is order-dense
in S(A) iff (A, i) is semi-finite. P (i) If (A, &) is semi-finite and v > 0 in S(A), then v is expressible as
Y7o Bixb; where 8; > 0 for each j and some f3;xb; is non-zero; now there is a non-zero a € 2/ such that
a Cbj, so that 0 < B;xa € S(A') and Bjxa < v. As v is arbitrary, S(27) is quasi-order-dense, therefor
order-dense (353A). (ii) If S(2/) is order-dense in S(2A) and b € A\ {0}, there is a u > 0 in S(AS) such that
u < xb; now there are a > 0, a € 2/ \ {0} such that aya < u, in which case a C b. Q
Now because S(217) C S(2) and S(21) is order-dense in L°(2), we must have

S(2A7) is order-dense in L°(2) <= S(A’) is order-dense in S(2)
< (2, i) is semi-finite.

364L Suprema and infima in L° We know that any L°(2) is a Dedekind o-complete partially ordered
set. There is a useful description of suprema for this ordering in (a) of the next result. We do not have such
a simple formula for general infima (though see 364Xm), but facts in (b) are useful.

Proposition Let 2l be a Dedekind o-complete Boolean algebra, and L° = L°(2().
(a) Let A be a subset of L°.
(i) A is bounded above in LY iff there is a sequence (¢, )nen in 21, with infimum 0, such that [u > n] C ¢,
for every u € A.
(ii) If A is non-empty, then A has a supremum in LY iff ¢, = sup,c4 [u > o] is defined in 2 for every
a € R and inf,en ¢, = 0; and in this case ¢, = [sup A > o] for every a.
(iii) If A is non-empty and bounded above, then A has a supremum in L° iff sup,c 4 [u > «] is defined
in 2 for every a € R.
(b)(i) If u, v € LY, then [u Av > a] = [u > a] n v > a] for every a € R.
(ii) If A is a non-empty subset of (L°)T, then inf A = 0 in L° iff inf,ca [u > a] = 0 in A for every
a>0.

proof (a)(i)(a) If A has an upper bound wug, set ¢, = [ug > n] for each n; then (c,)nen satisfies the
conditions.

(B) If (cn)nen satisfies the conditions, set
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$pla)=1ifa <0,

_iI<1fCZ‘ ifneN, acnn+1].

Then it is easy to check that ¢ satisfies the conditions of 364Aa, since inf,cync, = 0. So there is a ug € L°
such that ¢(a) = [up > ] for each a. Now, given u € A and « € R,

[u> o]

N

1=Jup>a]ifa<0,
inf Ju >1i] C inf¢; =
i<n i<n

Thus ug is an upper bound for A in L°.

N

[up >a] ifneN, aenn+1].

(ii) (o) Suppose that cq = sup,c4 [u > o] is defined in 2 for every «, and that inf, ey ¢, = 0. Then,
for any «,

SUPgeQ,g>a ¢4 = SUPucA ¢eQ,q>a [u>q]= SuPyea [u > a] = ca.
Also, we are supposing that A contains some ug, so that

SUP,,en C—n 2 SUP, e [uo > —n] = 1.
Accordingly there is a u* € L° such that [u* > a] = ¢, for every a € R. But now, for v € LY,

v is an upper bound for A <= [u>a] C v > a] forevery u € A, a € R

<~ [u* > a] C [v > o] for every o

— u* <,
so that u* = sup A in L°.

(B)Now suppose that u* = sup A is defined in L°. Of course [u* > a] must be an upper bound for
{[u > a] : u € A} for every a.  Suppose we have an « for which it is not the least upper bound, that is,
there is a ¢  [u* > ] which is an upper bound for {Ju > a] : u € A}. Define ¢ : R — 2 by setting

o(B)=cnfu* > p]if B> «,
=[u* > f]if 5 < a.

It is easy to see that ¢ satisfies the conditions of 364Aa (we need the distributive law 313Ba to check that
o(B) = SUP.,~ 3 #(7) if B > a), so corresponds to a member v of L. But we now find that v is an upper
bound for A (because if u € A and § > « then

[u>p]clu>a]nfu*>p] Cenfu* >8] =[v>4],)

that v < uw* and that v # u* (because [v > o]

= ¢ # [u* > «a]); but this is impossible, because u* is
supposed to be the supremum of A. X Thus if u* = sup A is defined in L°, then sup,c 4 [u > o] = [u* > o]
is defined in 2 for every a € R. Also, of course,

inf,en sup, e 4 [u > n] = inf,ey [u* > n] = 0.

(iii) This is now easy. If A has a supremum, then surely it satisfies the condition, by (b). If A satisfies
the condition, then we have a family (c,)aer as required in (b); but also, by (a) or otherwise, there is a
sequence (¢, )nen such that ¢, C ¢, for every n and inf ey ), = 0, so inf,en ¢, also is 0, and both conditions
in (b) are satisfied, so A has a supremum.

(b)(i) Take Z, £Y and 7 as in the proof of 364D. Express u as f*, v as g* where f, g € £°, so that
uAv=(fAg)*, because the canonical map from £° to LY is a Riesz homomorphism (351J). Then

[unv>a] =7{z:min(f(2),9(2)) > a} =7({z: f(2) >a}N{z:9(z) > a})

=7m{z: f(z) >afnn{z:g9(z) >a}=[u>a]nv> ]
for every a.
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(ii) (@) If infyea [u > o] = 0 for every a > 0, and v is any lower bound for A, then [v > «] must be 0
for every a > 0, so that v > 0] = 0; now since [0 > a] =0 for & >0, 1 for a < 0, v < 0. As v is arbitrary,
inf A=0.

(B)If a > 0 is such that inf,c4 Ju > o] is undefined, or not equal to 0, let ¢ € 2 be such that
0 # c¢Cfu>a] for every u € A, and consider v = axc. Then [v > ] = [xc > g}] is 1if § <0, c¢if
0<B<aand0if 3> . Ifu € Athen Ju> ] is 1if 8 < 0 (since u > 0), at least [u > a]2cif 0 < 8 < a,
and always includes 0; so that v < u. As u is arbitrary, inf A is either undefined in L° or not 0.

364M Now we have a reward for our labour, in that the following basic theorem is easy.
Theorem For a Dedekind o-complete Boolean algebra 2, L° = L°(2() is Dedekind complete iff 2 is.

proof The description of suprema in 364L(a-iii) makes it obvious that if 2( is Dedekind complete, so that
Sup,c4 [u > ] is always defined, then LY must be Dedekind complete. On the other hand, if LY is Dedekind
complete, then so is L>°(2) (by 364J and 353K(b-i)), so that 2 also is Dedekind complete, by 363Mb.

364N The multiplication of L° I have already observed that L° is always an f-algebra with identity;
in particular (because L° is surely Archimedean) the map u + u x v is order-continuous for every v > 0
(353Pa), and multiplication is commutative (353Pb, or otherwise). The multiplicative identity is x1 (364D,
364Jc). By 353Qb, or otherwise, u x v = 0 iff |u| A |[v| = 0. There is one special feature of multiplication in
L° which I can mention here.

Proposition Let 2 be a Dedekind o-complete Boolean algebra. Then an element u of L% = L°(2() has a
multiplicative inverse in L iff |u| is a weak order unit in L° iff [|u| > 0] = 1.
proof If w is invertible, then |u| is a weak order unit, by 353Qc or otherwise. In this case, setting
¢ =1\ [lu| > 0], we see that

[lul A xe> 0] =[lu| >0]nec=0

(364L(b-1)), so that |u| A xc <0 and xc = 0, that is, ¢ = 0; so [|u| > 0] must be 1. To complete the circuit,
suppose that [lu| > 0] = 1. Let Z, £, £% = £, 7, M be as in the proof of 364D, and S : L% — L the
canonical map, so that [Sh > a] = n{z : h(z) > a} for every h € £L°, o € R. Express u as Sf where f € £°.
Then n{z: |f(z)| > 0} = [S|f| > 0] =1, so {z: f(z) =0} € M. Set

9(z) = 75 ) #0, g(z) =0if f(z) =0.
Then {z: f(2)g(z) # 1} € M so
uxSg=S5(fxg)=5xZ)=x1
and wu is invertible.

Remark The repeated phrase ‘by 353x or otherwise’ reflects the fact that the abstract methods there can
all be replaced in this case by simple direct arguments based on the construction in 364B-364D.

3640 Recovering the algebra: Proposition Let 2 be a Dedekind o-complete Boolean algebra. For
a € A write V, for the band in L° = L°(2A) generated by ya. Then a +— V, is a Boolean isomorphism
between 2 and the algebra of projection bands in L°.

proof I copy from the argument for 363J, itself based on 361K. If a € A and w € L° then w x ya € V,. P
If v € V' then |xa| Alv| =0, 50 xYax v =0, s0 (wx xa) xv =0, so |wx xa| A|v| =0; thus w x ya € V;*+,
which is equal to V, because L° is Archimedean (353Ba). Q Now, if a € A, u € V, and v € Vj,,, then
|u| A Jv| = 0 because xa A x(1\ a) = 0; and if w € L°(A) then
w=(wxxa)+ (wxx(l\a)) € Vy+ Vi\a-

So V, and Vj,, are complementary projection bands in LY. Next, if U C L° is a projection band, then x1 is
expressible as u+v = uVv where u € U, v € U™. Setting a = [u > 3], ’ = [v > 3] we must have aua’ =1
and ana’ = 0 (using 364L), so that o’ = 1\ a; also 1ya < u, so that xa € U, and similarly x(1\a) € U*.
In this case V, C U and V3,, C U L so U must be V, precisely. Thus a — V, is surjective. Finally, just as
in 361K, a C b <— V, C V}, so we have a Boolean isomorphism.
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364P I come at last to the result corresponding to 361J and 363F.

Theorem Let 2 and B be Dedekind o-complete Boolean algebras, and 7 : A — B a sequentially order-
continuous Boolean homomorphism.

(a) We have a multiplicative sequentially order-continuous Riesz homomorphism T} : LO(2l) — L°(8)
defined by the formula

[Tru > a] =7fu > o]

whenever o € R and u € L°(2).

(b) Defining ya € L°(A) as in 364J, Ty (xa) = x(7a) in LY(B) for every a € 2. If we regard L>(A) and
L% (%B8) as embedded in L°(2) and L°(*B) respectively, then T}, as defined here, agrees on L>(2l) with T}
as defined in 363F.

(¢) Ty is order-continuous iff 7 is order-continuous, injective iff 7 is injective, surjective iff 7 is surjective.

(d) [Tru € E] = 7[u € E] for every u € L°(2) and every Borel set E C R; consequently AT, = Tyh for
every Borel measurable h : R — R, writing & indifferently for the associated maps from L°(2l) to itself and
from L°(B) to itself (364H).

(e) If € is another Dedekind o-complete Boolean algebra and 6 : % — € another sequentially order-
continuous Boolean homomorphism then Ty, = TpT} : L°(2) — L°(¢).

proof I write T for T5.

(a)(i) To see that T is well-defined in L°(B) for every u € L°(2), all we need to do is to check that
the map a — 7fu > o] : R — B satisfies the conditions of 364Ae, and this is easy, because 7 preserves all
countable suprema and infima.

(ii) To see that T is linear and order-preserving and multiplicative, we can use the formulae of 364D.
For instance, if u, v € L°(), then

[Tu+Tv>a])=sup[Tu>¢g]n[Tv>a—q] =supnfu>g]nnv>a—d]

q€Q q€Q
:W(zggﬂu>q]]m[[v>a—q]]):wﬂu+v>a]]:[[T(u+v)>a]]

for every a € R, so that Tu + Tv = T'(u + v). In the same way,
T(yu) = yT'w whenever v > 0,

Tu < Tv whenever u < v,

Tu x Tv =T(u X v) whenever u, v > 0,

so that, using the distributive laws, T is linear and multiplicative.

To see that T is a sequentially order-continuous Riesz homomorphism, suppose that A C L°(2l) is a
countable non-empty set with a supremum u* € L%(2l); then T[A] is a non-empty subset of L°(B) with an
upper bound Tu*, and

sup [Tu > o] = sup 7fu > o] = w(sup [u > a]) = 7fu* > ]
u€A u€A u€A

(using 364La)
= [Tu* > a]

for every a € R. So using 364La again, Tu* = sup,c4 T'u. Now this is true, in particular, for doubleton
sets A, so that T is a Riesz homomorphism; and also for non-decreasing sequences, so that T is sequentially
order-continuous.

(b) The identification of T'(xa) with y(7a) is another almost trivial verification. It follows that T agrees
with the map of 363F on S(2), if we think of S(2A) as a subspace of L(). Next, if u € L>(2) C L),
and v = ||u]|co, then |u| < yx1ly, so that |[Tu| < yxls, and Tu € L>®(B), with | Tul/cc < y. Thus TTL>(2A)
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has norm at most 1. As it agrees with the map of 363F on S(2), which is || ||co-dense in L (2) (363C), and
both are continuous, they must agree on the whole of L*°(2).

(c)(i)(a) Suppose that 7 is order-continuous, and that A C L°(2) is a non-empty set with a supremum
u* € L°(A). Then for any o € R,

[Tu* > o] = wu* > o] = w(sup [u > af)

u€A
(by 364La)
= sup 7u >
ucA
(because 7 is order-continuous)
= sup [Tu > a].
u€A

As « is arbitrary, Tu* = sup T[4], by 364La again. As A is arbitrary, T is order-continuous (351Ga).
(B) Now suppose that T is order-continuous and that A C 2 is a non-empty set with supremum ¢
in A. Then xc¢ = sup,c 4 xa (364Jc) so
x(me) = T(xe) = supge 4 T(xa) = sup,ea x(7a).
But now
e = [x(re) > 0] = sup,e 4 [x(a) > 0] = sup,c 4 7a.

As A is arbitrary, 7 is order-continuous.

(ii) (@) If 7 is injective and wu, v are distinct elements of L°(2(), then there must be some « such that
[u> a] # [v > a], in which case [Tu > ] # [Tv > ] and Tu # Tv.

(B) Now suppose that T is injective. It is easy to see that y : 2 — L°(2A) is injective, so that
Ty : 2 — L°(B) is injective; but this is the same as y7 (by (b)), so 7 must also be injective.

(iii) (@) Suppose that 7 is surjective. Let ¥ be a o-algebra of sets such that there is a sequentially
order-continuous Boolean surjection ¢ : ¥ — 2. Then 7¢ : ¥ — B is surjective. So given w € L°(B), there
is an f € LY such that Jw > o] = m¢{x : f(z) > a} for every a € R (364C). But, also by 364C, there is a
w € LO(2A) such that [u > o] = ¢{x : f(z) > a} for every a. And now of course Tu = w. As w is arbitrary,
T is surjective.

(B) If T is surjective, and b € B, there must be some u € L°(2) such that Tu = yb. Now set
a = [u > 0] and see that wa = [xb > 0] = b. As b is arbitrary, 7 is surjective.

(d) The map E — wu € E] is a sequentially order-continuous Boolean homomorphism, equal to [Tu € E]
when E is of the form Jo, 0o[; so by 364F the two are equal for all Borel sets E.
If h : R — R is a Borel measurable function, u € L°(2) and E C R is a Borel set, then

[A(Tu) € E] = [Tu € h~Y[E]] = 7[u € h~[E]]
= 7[h(u) € E] = [T(h(u)) € E]J.
As E and u are arbitrary, Th = hT.
(e) This is immediate from (a).
364Q Proposition Let X and Y be sets, 3, T o-algebras of subsets of X, Y respectively, and Z, J o-
ideals of ¥, T. Set 2l = ¥/Z and B = T/J. Suppose that ¢ : X — Y is a function such that ¢~[F] € &
for every FF € T and ¢~ ![F] € T for every F € J.

(a) There is a sequentially order-continuous Boolean homomorphism 7 : B — 2 defined by saying that
7F* = ¢~ 1[F]* for every F € T.
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(b) Let T : L°(B) — L°(2A) be the Riesz homomorphism corresponding to 7, as defined in 364P. If we
identify L°(B) with £%/W 7 and L°(2A) with £%/Wz in the manner of 364B-364C, then Ty (g*) = (g¢)* for
every g € LY.

(c) Let Z be a third set, T a o-algebra of subsets of Z, K a o-ideal of T, and ¢ : Y — Z a function such
that ¢~ 1[G] € T for every G € Y and ¢~ 1[G] € J for every G € K. Let 6 : € — B and Ty : LO(€) — L°(B)
be the homomorphisms corresponding to v as in (a)-(b). Then 76 : € — A and T, Ty : L°(¢) — LO(2A)
correspond to ¥¢ : X — Y in the same way.

(d) Now suppose that p and v are measures with domains 3, T and null ideals M (), N (v) respectively,
and that Z =YX NN (u) and J = TNN(v). In this case, identifying L(), L°(B) with L°(u) and L°(v) as
in 3641c, we have g¢ € L%(u) and Ty (g*) = (g¢)* for every g € LO(v).

proof (a) The argument is essentially that of 324A-324B, somewhat simplified. Explicitly: if Fy, F, € T
and Fy = Fy, then F1AF, € J so ¢ L [Fi]A¢™ [F] = ¢~ [F1AFy] belongs to T and ¢~ [F1]* = ¢~ H[Fy)*.
So the formula offered defines a map 7 : 8 — 2. It is a Boolean homomorphism, because if F;, F5 € T then
TF amFs = ¢ ] A 9T Bt = (o7 [F]Ae T [E))
= ¢ [FAR] = n(FAR)* =7(F} A Fy),
so w(by & bg) = wby A by for all by, by € B. Similarly 7(by Nnba) = wby Nby for all by, by € B, and of course
wly =7Y* = gf)*l[Y}' =X*=1y.

To see that 7 is sequentially order-continuous, let (b, ),en be a sequence in 8. For each n we may choose
an F,, € T such that F;; = b,, and set F' = {J, .y Fn. As the map H — H* : T — B is sequentially
order-continuous (313Qb), F* = sup,,cy by, in B. Now

m(supby) = 7F* = ¢~ [F]* = (| o7 [Fu))*
neN neN

=sup ¢~ [F,]* = supwE?* = sup wh,.
neN neN neN

So 7 is sequentially order-continuous, by 313Lc.
(b) Now suppose that g : Y — R is T-measurable; write v for g* in £L3/W 7 = LO(9B). Set f = g¢; then
{z:f(z)>a}=0""{y:9(y) > a}]

belongs to ¥ for every a € R, so f is Y-measurable and we can speak of u = f* in £%/Wz = LO(2(). Now,
by 364Ca,

[u>a] ={z: f(z) >a} =o' [{y: g(y) > a}]"
=m{y:g(y) > a}* =nv>a] = [Trv > q]
for every a € R, and
(99)* = f* = u="Trv=Trg",
as claimed.

(c) Starting from the facts that (v¢) 1 [G] = ¢~ ~1[G]] for every G € T and h(¢¢) = (hi))¢ for every
h € LY., we just have to run through the formulae.

(d) If g € L2(v), there are a g € £% and an F € J such that g(y) is defined and equal to go(y) for every
y € Y\ F. In this case, ¢~ [F] € T and g¢(x) is defined and equal to gog(z) for every xz € X \ ¢~1[F], so
9¢ € £L°(p) and

(qu)‘ = (go(i))' = Tﬂ'(g(.)) = T‘n’(g.)
by (b).

364R Products: Proposition Let (2;);cr be a family of Dedekind o-complete Boolean algebras,
with simple product 2. If 7; : & — 2l; is the coordinate map for each i, and T; : LO(A) — L°(2;) the
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corresponding homomorphism, then u — Tu = (Tju)ier : L°(A) — [;c; L°(As) is a multiplicative Riesz
space isomorphism, so L°(2) may be identified with the f-algebra product [],., L°(2;) (352Wc).

proof Because each m; is a surjective order-continuous Boolean homomorphism, 364P assures us that there
are corresponding surjective multiplicative Riesz homomorphisms 7;. So all we need to check is that the
multiplicative Riesz homomorphism 7" : L°(A) — [],o; L°(2;) is a bijection.

If u, v € L°(A) are distinct, there must be some a € R such that [u > a] # [v > o]. In this case there
must be an ¢ € I such that m;Ju > o] # mv > af, that is, [Tju > o] # [Tiv > a]. So Tu # T;v and
Tu # Tv. As u, v are arbitrary, T' is injective.

If w = (w;)ier is any member of [],.; L°(2;), then for a € R set

P(a) = ([w; > a)ier € A
It is easy to check that ¢ satisfies the conditions of 364Aa, because, for instance,
SUPgs o TiP(B) = Supgs, [wi > ] = [wi > o] = md ()
for every i, so that supg.,, ¢(3) = ¢(a), for every a € R; and the other two conditions are also satisfied
because they are satisfied coordinate-by-coordinate. So there is a u € L°(2A) such that ¢(a) = [u > «] for

every a, that is, m;[u > o] = [w; > o] for all «, 7, that is, Tju = w; for every i, that is, Tu = w. As w is
arbitrary, T' is surjective and we are done.

*364S Regular open algebras I noted in 314P that for every topological space X there is a corre-
sponding Dedekind complete Boolean algebra RO(X) of regular open sets. We have an identification of
L°(RO(X)) as a space of equivalence classes of functions, different in kind from the representations above,
as follows. This is hard work (especially if we do it in full generality), but instructive. I start with a
temporary definition.

Definition Let (X, %) be a topological space and f : X — R a function. For z € X write
w(fa Jj) = infGeT,xeG Supy,zeG |f(y) - f(Z)|

(allowing 00).

*364T Theorem Let X be any topological space, and RO(X) its regular open algebra. Let U be the
set of functions f : X — R such that {z : w(f,z) < €} is dense in X for every € > 0. Then U is a Riesz

subspace of R¥, closed under multiplication, and we have a surjective multiplicative Riesz homomorphism
T:U — L°(RO(X)) defined by writing

[Tf>a] =supg., int{z: f(z) > B},
the supremum being taken in RO(X), for every « € R and f € U. The kernel of T is the set W of functions

f: X — R such that int{z : |f(z)| < €} is dense for every ¢ > 0, so L°(RO(X)) can be identified, as
f-algebra, with the quotient space U/W.

proof (a)(i)(a) The first thing to observe is that for any f € R¥ and e > 0 the set

{z:w(f,z) <e} = U{G : G C X is open and non-empty
and sup [f(y) — f(2)] <€}

y,z€G
is open.
(B) Next, it is easy to see that
w(f +g,2) Sw(f,z) +wlg, ),
w(vf,z) = Ylw(f,z),
w(|fl,z) < w(f, ),
for all f, g € RX and v € R.
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() Thirdly, it is useful to know that if f € U and G C X is a non-empty open set, then there is a
non-empty open set G’ C G on which f is bounded. I Take any zy € G such that w(f,zg) < 1; then there
is a non-empty open set G’ containing x such that |f(y) — f(2)| < 1 for all y, z € G’, and we may suppose
that G’ C G. But now |f(z)| < 1+ |f(x0)| for every z € G'. Q

(ii) Soif f, g € U and v € R then

{z:w(f+g,2)<e} 2{z:w(f,z)< %e} N{z:w(g,z) < %e}
is the intersection of two dense open sets and is therefore dense, while

{z:w(rf,z) <et 2{z:w(f,z) < 2

T
(o wllfla) < 2 (o wlhe) <

are also dense. As e is arbitrary, f + ¢, vf and |f] all belong to U; as f, g and ~ are arbitrary, U is a Riesz
subspace of RX.

(iii) If f, g € U then f x g € U. P Take € > 0 and let G be a non-empty open subset of X. By the
last remark in (i) above, there is a non-empty open set G; C Gq such that |f| V |g| is bounded on Gy; say
max(|f(z)], |g(x)|) < for every z € G;.

Set § = 2711 > 0. Then there is an x € Gy such that w(f,x) < § and w(g,x) < §. Let H, H' be open
sets containing « such that |f(y) — f(z)| < d forally, z € H and |g(y) —g(2)| < ¢ for all y, z € H'. Consider
G =G1NHNH'. This is an open set containing x, and if y, 2 € G then

[fW)gly) — f(2)g(2)| < 1f(y) — fF)llg(2)] + [f(2)llg(y) — g(2)]
< 67+ 0.

Accordingly
w(f x g,x) <26y <,

while x € Go. As Gy is arbitrary, {z : w(f X g,2) < €} is dense; as € is arbitrary, f x g € U. Q
Thus U is a subalgebra of RX.

(b) Now, for f € U, consider the map ¢ : R = RO(X) defined by setting
¢f(a) = supg.,, int {z: f(z) > B}

for every av € R. Then ¢y satisfies the conditions of 364Aa. I (See 314P for the calculation of suprema and
infima in RO(X).) (i) If @ € R then

¢f(a) =supint{x: f(x) > f} = sup int{z: f(z) >~}

B>« Y>p>o
= sup supint {z : f(z) > v} = sup ¢5(B).
B>avy>p B>«

(ii) If Gy C X is a non-empty open set, then there is a non-empty open set G; C Gy such that f is
bounded on Gy; say |f(z)| < « for every z € Gy. If 8 > v then G; does not meet {z : f(x) > B}, so
GiNint{z: f(x) >~} = 0; as B is arbitrary, G1 N ¢s(v) = 0 and Gy € inf,er df(a). On the other hand,
G C {a: f(2) > 4} 50
Gy Cint{z: f(x) > =7} € ¢r(—)
and Go Nsup,ep ¢f(a) # 0. As Gy is arbitrary, infacr ¢5(a) = 0 and sup,cp ¢or(0) = X. Q
(c) Thus we have amap T : U — LY = L%(RO(X)) defined by setting [T'f > a] = ¢f(«) whenever a € R

and feU.
It is worth noting that

{z: f(@)>a+w(f,2)} C[Tf>a] C{z: f(z)+w(fz) 2o}
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w(f,z), set § = 2(f(z) — a — w(f,z)) > 0. Then there is

for every f € U and a € R. P (i) If f(z) > a+
) — f(2)| < w(f,z) + ¢ for every y, z € G, so that f(y) > a+9

an open set G containing = such that |f(y
for every y € G, and

zeint{y: f(y) >a+d} C[Tf > a.

(ii) If f(z) + w(f,2) < a, set § = 2(a — f(z) — w(f,2)) > 0; then there is an open neighbourhood G of =
such that |f(y) — f(2)] < w(f,z) + § for every y, z € G, so that f(y) < « for every y € G. Accordingly G
does not meet {y: f(y) > B} nor {y: f(y) > B} forany 8 >a, GN[Tf>a]=0and z ¢ [Tf >a]. Q

(d) T is additive. P Let f,gc Uand a <BE€R. Set 6 = (B —a) >0, H = {z : w(f,z) < 6, w(g,x) <
0}; then H is the intersection of two dense open sets, so is itself dense and open.

(i) fz e HN[T(f +g) > B], then (f + g)(z) + w(f +g,2) > B; but w(f + g,x) < 26 (see (a-i-B)
above), so f(z) + g(z) > — 25 > o+ 26 and there is a ¢ € Q such that

f@)>q+6>q+w(fx), 9(x)>a—g+d>a—q+uw(g ).
Accordingly
z€[Tf>qNn[Tg>a—q] C[Tf+Tg> ]
Thus HN[T(f+g) > B] C[Tf+Tg > «]. Because H is dense, [T(f +g) > B] C[Tf+Tg > a].
(ii) If z € H, then

ve | JUTf>dn[Tg>B—q])
qeQ
:§’3q€5@>f@ﬂ‘*wﬁﬂm)Ei%sﬂ$)+ﬂv@,x)213*q
= f(z) +g(z) +20 >
= (f+9)@)2a+30>a+tw(f+g )
=z e[T(f+g) > a].

Thus
HNUyeoTf >4qlN[Tg>B—q]) C[T(f+9g) > al
Because H is dense and | co([T'f > ¢] N [T'g > B — q]) is open,

[Tf+Tg>p]=int | J[Tf>qn[Tg>B—d
q€Q

Cint[T'(f +g) >a] =[T(f +9g) > a].
(iii) Now let 8 | «; we have
[T(f+g)>a] = sup [T(f+9)>Bl CITf+Tg>a]

= sup [Tf+Tg>p] C[T(f+9)>a],

so[T(f+g)>a]=[Tf+Tg>«a]. As ais arbitrary, T(f +g) =Tf + Tg; as f and g are arbitrary, T is
additive. Q

(e) It is now easy to see that T is linear. P If v > 0, f € U and « € R then

[T(vf) >a] =supint{z: vf(z) > 8} = supint {z : f(z) > é}
B>a B>a v

= sup int{z: f(z) > B} =[Tf >3] =TS > a].
B>a/y v
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As «v is arbitrary, T(vf) = vT f; because we already know that 7' is additive, this is enough to show that T’
is linear. Q

(f) In fact T is a Riesz homomorphism. I If f € U and o > 0 then

[T(f*)>a] = sup int {x: f*(z) > B} = sup int {x : f(x) > B}

=[Tf>a] =0T >l
If @ < 0 then
[T(f7) > a] =supgsqint{z: fH(z) >} =X =[(Tf)" > o] Q

(g) Of course the constant function xX belongs to U, and is its multiplicative identity; and T'(xX) is
the multiplicative identity of L°, because

[T(xX)>a] = sup int {z : (xX)(=) > B}

=Xifa<l 0ifa>1.
By 353Qd, or otherwise, T" is multiplicative.
(h) The kernel of T is W. P (i) For f € U,

Tf=0=[TIf[>0] =[ITf|>0] =0
= {z: [f(@)] > w(fl,2)} =0
= int{z : |f(z)| < e} D {z: w(|f|,x) < €} is dense for every € > 0
= feW

(ii) If f € W, then, first,
{z:w(f,z) < et Dint{z: |f(z)] < %e}
is dense for every € > 0, so f € U; and next, for any 8 > 0, {z : |f(x)| > 8} does not meet the dense open
set int{x : | f(z)| < B}, so
[ITf] > 0] = [T|f| > O] = supgqint {a : [f(z)| > B} =0
and Tf=0. Q

(i) Finally, T is surjective. I Take any u € L°. Define f : X — [—00, oc] by setting f(z) = sup{a : z €
[u > a]} for each x, counting inf ) as —co. Then

{z: f(z)>a} = Upsa [u> 6]

is open, for every v € R. The set

{z: f(z) = 00} = Nyex[u > a]

is nowhere dense, because inf,er [u > o] = 0 in RO(X); while
{z: f@@) = =00} = X \Uyer [u > ]

also is nowhere dense, because sup,cp [u > o] = X in RO(X). Accordingly F = int{z : f(z) € R} is dense.
Set f(z) = f(x) forz € E, 0 forz € X \ E.

Let € > 0. If G C X is a non-empty open set, there is an a € R such that G € [u > o], so G; =
G\ [u>a] #0, and f(z) < a for every x € Gy. Set

o =sup,cq, f(2) <a<oo.
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Because E meets G1, o/ > —oo. Then Gy = Gy N [u> o/ — i¢] is a non-empty open subset of G and
o — %e < f(z) < o for every x € Go. Accordingly |f(y) — f(2)| < %e for all y, z € Gy, and w(f,z) < € for
all x € Gy. As G is arbitrary, {z : w(f,x) < €} is dense; as € is arbitrary, f € U.
Take o < B in R, and set 6 = (8 — ). Then H = EN{xz : w(f,z) < 0} is a dense open set, and
Hn[Tf>plcH{z: f(z) +w(f,z) =2 S En{z: f(z) > a}
C{x: flz)>a} CJu>al.

As H is dense, [T'f > 5] C [u > a]. In the other direction

HN[u> Bl CHN{e: fz) 28} =Hn{z: f(z) > B}
Clz: fl@) >a+w(f,z)} C[Tf>a],
so [u> B8] C[Tf > «]. Just as in (d) above, this is enough to show that Tf = u. As u is arbitrary, T is

surjective. Q
This completes the proof.

*364U Compact spaces Suppose now that X is a compact Hausdorff topological space. In this case
the space U of 364T is just the space of functions f : X — R such that {« : f is continuous at x} is dense
in X. P It is easy to see that

{x : f is continuous at z} = {x : w(f,z) =0} = ,cn Hn
where H,, = {z : w(f,x) < 27"} for each n. Each H,, is an open set (see part (a-i-a) of the proof of 364T),
so by Baire’s theorem (3A3G) (), cy H, is dense iff every H,, is dense, that is, iff f € U. Q
Now W, as defined in 364T, becomes {f : f € U, {z : f(z) = 0} is dense}. P (i) If f € W, then T'|f| =0,
so (by the formula in (c¢) of the proof of 364T) |f(z)| < w(|f|, z) for every z. But {z : w(f,x) = 0} is dense,
because f € U, so {z : f(x) =0} also is dense. (ii) If f € U and {z : f(z) = 0} is dense, then
w(f,2) 2 infrec is open SUPyec | (y) — f(2)] 2 [ f(2)]

for every z € X. So for any € > 0, int{x : |f(z)| <€} D{z: w(f,z) <€} is dense, and f € W. Q
In the case of extremally disconnected spaces, we can go farther.

*364V Theorem Let X be a compact Hausdorff extremally disconnected space, and RO(X) its regular
open algebra. Write C>° = C°°(X) for the space of continuous functions g : X — [—o00,00] such that
{z : g(x) = +00} is nowhere dense. Then we have a bijection S : C*° — L° = L°(RO(X)) defined by saying
that

[Sg > a] ={z:g(z) > a}

for every a € R. Addition and multiplication in LY correspond to the operations +, x on C* defined by
saying that g + h, g X h are the unique elements of C>° agreeing with g + h, g x h on {z : g(z), h(z) are
both finite}. Scalar multiplication in L corresponds to the operation

(19)(x) =g(z) for € X, g€ C*, 7R
on C* (counting 0 - 0o as 0), while the ordering of L° corresponds to the relation
g <h < g(z) < h(x) for every z € X.
proof (a) For g € C°, set H, = {z : g(x) € R}, so that H, is a dense open set, and define Rg : X — R by

setting (Rg)(x) = g(z) if x € Hy, 0 if € X \ Hy. Then Ry is continuous at every point of H,, so belongs
to the space U of 364T-364U. Set Sg = T'(Rg), where T : U — LY is the map of 364T. Then

[Sg>a] ={z:g(z) > a}
for every a € R. P (i) w(g,z) = 0 for every x € H, so, if 8 > a,
Hy([Sg> A1 C {22 € Hy, (Ro)(x) = 8} C {o: g() = B}
by the formula in part (c) of the proof of 364T. As [Sg > ] is open and H, is dense,
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[Sg>pB] € HyN[Sg > p] C{z:g(x) > B} C{z:g(x) > a}.

Now

[Sg > a] = supg,, [Sg > B] = int Uy, [Sg > B] € {z: g(x) > a}.

(ii) In the other direction, H, N {z : g(z) > a} C [Sg > a], by the other half of the formula in the proof of
364T. Again because {x : g(x) > a} is open and Hy is dense,

{z:g(x) >a} C[Sg>a] =[Sg>d]
because X is extremally disconnected (see 314S). Q

(b) Thus S = TR defined by the formula offered. Now if g, h € C* and g < h, we surely have
{z : g(x) > a} C {z: h(z) > a} for every a, so [Sg > «a] C [Sh > a] for every o and Sg < Sh. On
the other hand, if ¢ £ h then Sg £ Sh. P Take xg such that g(xg) > h(xzg), and a € R such that
g(xo) > a > h(xzg); set H = {z : g(x) > a > h(z)}; this is a non-empty open set and H C [Sg > a]. On
the other hand, H N{z : h(z) > a} =0 so HN[Sh > a] = 0. Thus [Sg > a] € [Sh > o] and Sg £ Sh. Q
In particular, .S is injective.

c) S is surjective. P If u € LY, set
( ) -] )
g(xz) =sup{a:z € [u > a]} € [0, 0]

for every z € X, taking sup) = —oco. Then, for any a € R, {z : g(z) > a} = s-,, [u > af is open. On the
other hand,

{z:9(r) <o} =Usco{v: o ¢ [u>p]}

also is open, because all the sets [u > (] are open-and-closed. So g : X — [—00, 0] is continuous. Also
{z:g(x) > —oo} = Uyer [u > a],

{z:g(x) <oo} =Uper X \ [u> 0]
are dense, so g € C*°. Now, for any a € R,

[Sg>a] ={z:g9(z) >a}= U[[u>ﬁ]]

B>a

:intU [u> B8] =sup [u> B8] = [u>a].

B>a B>a
So Sg = u. As u is arbitrary, S is surjective. Q

(d) Accordingly S is a bijection. I have already checked (in part (b)) that it is an isomorphism of the
order structures. For the algebraic operations, observe that if g, h € C'°° then there are f1, fo € C'* such
that Sg+ Sh = Sf, and Sg x Sh = Sf,, that is,

T(Rg+ Rh) =TRg+TRh=TRf1, T(Rgx Rh)=TRgxTRh=TRf>.
But this means that
T(Rg+ Rh— Rfy) = T((Rg x Rh) — Rfs) =0,

so that Rg+ Rh — Rf1, (Rg x Rh) — Rf> belong to W, as defined in 364T-364U, and are zero on dense sets
(364U). Since we know also that the set G = {z : g(z), h(x) are both finite} is a dense open set, while g, h,
f1 and fy are all continuous, we must have fi(x) = g(x) + h(z), f2(z) = g(x)h(x) for every z € G. And of
course this uniquely specifies f1 and fo as members of C*°.

Thus we do have operations 4, x as described, rendering S additive and multiplicative. As for scalar
multiplication, it is easy to check that R(yg) = yRg (at least, unless v = 0, which is trivial), so that
S(vg) = ~Sg for every g € C*°.

364X Basic exercises >(a) Let 2 be a Dedekind o-complete Boolean algebra. For u, v € L% = L(2()
set [u<v]=v>u)l=v—u>0],Jusv]=[v>u]=1\[v<u], Ju=v] =[u<v]n]v<u]. (i) Show
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that ([u < v], Ju = v],[u > v]) is always a partition of unity in 2. (ii) Show that for any u, u’, v, v’ € LY,
[u<u]no<v]cut+v <+ and [u=u]no=2"]CJuxv=u x].

(b) Let 2 be a Dedekind o-complete Boolean algebra. (i) Show that if u, v € L° = L°() and a,
B € R then [u+v>a+p]Cu>a]ulv>p]. (ii) Show that if u, v € (L°)* and «, 8 > 0 then
J[uxv>ap] Clu>a]ulv>pa].

(c) Let & be a Dedekind o-complete Boolean algebra and u € L°(). Show that {[u € E] : E C R is
Borel} is the o-subalgebra of 2 generated by {Ju > a] : @ € R}.

>(e) Let (2, /i) be a probability algebra, and (u;);c; any family in L(21); for each i € I let B; be the
closed subalgebra of 2 generated by {[u; > a] : @ € R}. Show that the following are equiveridical: (i)
p(infie s [u; > oi]) = [1;cs Alwi > ;] whenever J C I is finite and o; € R for each i € J (i) (By)ier is
stochastically independent in the sense of 325L. (In this case we may call (u;);c; independent.)

>(f) Let (2, /i) be a probability algebra and u, v two ji-independent members of L°(2(). Show that the
distribution of their sum is the convolution of their distributions. (Hint: 272T).

>(g) Let A be a Dedekind o-complete Boolean algebra and g, h : R — R Borel measurable functions. (i)
Show that gh = gh, where g, h : L® — L° are defined as in 364H. (ii) Show that g + h(u) = g(u) + h(u),
g x h(u) = g(u) x h(u) for every u € L° = LO(A). (iii) Show that if (h,)nen is a sequence of Borel
measurable functions on R and sup,,cy hn = h, then sup,,cy hn(u) = h(u) for every u € L°. (iv) Show that
if h is non-decreasing and continuous on the left, then h(sup A) = sup h[A] whenever A C L° is a non-empty
set with a supremum in L.

(h) Let A be a Dedekind o-complete Boolean algebra. (i) Show that S(2() can be identified («) with the
set of those u € L° = LO(2A) such that {[u > o] : a € R} is finite (3) with the set of those u € LY such that
[u € I] =1 for some finite I C R. (ii) Show that L>°(2() can be identified with the set of those u € L° such
that [u € [—a,a]] =1 for some « > 0, and that ||u|s is the smallest such «.

(i) Show that if 2 is a Dedekind o-complete Boolean algebra, and u € L(2), then for any a € R
[u>a] =infgsqsup{a:a e A, ux xa > Bxa}
(compare 363Xh).

>(j) Let A be a Dedekind o-complete Boolean algebra and v : 2l — R a non-negative finitely additive
functional. Let § : L>°(A) — R be the corresponding linear functional, as in 363L. Write U for the set
of those u € L°(2A) such that sup{fv : v € L>®(A), v < |ul} is finite. Show that f has an extension to a
non-negative linear functional on U.

(k) Let A be a Dedekind o-complete Boolean algebra and u > 0 in LY = L°(2l). Show that u =
sup,eq gx[u > ¢] in L.

(1) (i) Let 2 be a Dedekind o-complete Boolean algebra and A C L°(2() a non-empty countable set with
supremum w. Show that [w € G] C sup,c4 [u € G] for every open set G C R. (ii) Let (A, f) be a localizable
measure algebra and A C L°(2) a non-empty set with supremum w. Show that [w € G] C sup,c4 [u € G]
for every open set G C R.

(m) Let 2 be a Dedekind o-complete Boolean algebra and A C LY = L°(2A) a non-empty set which is
bounded below in L°. Suppose that ¢o(a) = inf,ca [u > o] is defined in A for every a € R. Show that
v = inf A is defined in L?, and that [v > o = sups.., ¢o(B) for every a € R.

>(n) Let (X, X, 1) be a measure space and f : X — [0, 0o a function; set A = {g* : g € LO(1), 9 <ae. [}
(i) Show that if (X, 3, ) either is localizable or has the measurable envelope property (213X1), then sup A
is defined in L°(y). (ii) Show that if (X, 3, i) is complete and locally determined and w = sup A is defined
in L9(p), then w € A.
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(o) Let A be a Dedekind o-complete Boolean algebra. Show that if u, v € L® = L°(2() then the following
are equiveridical: () [|v| > 0] C [Ju| > 0] (B) v belongs to the band in L° generated by u (7) there is a
w € LY such that u x w = v.

>(p) Let 2 be a Dedekind o-complete Boolean algebra and a € ; let 2, be the principal ideal of 2
generated by a. Show that L°(2l,) can be identified, as f-algebra, with the band in L%(2l) generated by ya.

(q) Let 2 and B be Dedekind o-complete Boolean algebras, and « : 20 — B a sequentially order-
continuous Boolean homomorphism. Let T : LY(2l) — L%(B) be the corresponding Riesz homomorphism
(364P). Show that (i) the kernel of T is the sequentially order-closed solid linear subspace of L°(2() generated
by {xa :a € A, ma = 0} (ii) the set of values of T is the sequentially order-closed linear subspace of L°(B)
generated by {x(ma) : a € A}.

(r) Let A and B be Dedekind o-complete Boolean algebras, and 7 : 2 — 9B a sequentially order-
continuous Boolean homomorphism, with 7' : L9(2) — L°(8) the associated operator. Suppose that h is a
Borel measurable real-valued function defined on a Borel subset of R. Show that h(Tw) = Th(u) whenever
u € LO(A) and h(u) is defined in the sense of 364H.

(s) Let (2, 2) and (B, 7) be probability algebras, and 7 : 2 — 9B a measure-preserving Boolean homo-
morphism; let T : LO(21) — L°(®B) be the corresponding Riesz homomorphism. Show that if (u;);es is a
family in L°(21), it is ji-independent iff (Tu;);cr is U-independent.

>(t) Let 2 be a Dedekind o-complete Boolean algebra and B a o-subalgebra of 2. Show that L°(B)
can be identified with the sequentially order-closed Riesz subspace of L°(2() generated by {xb: b € B}.

(u) Let A be a Dedekind o-complete Boolean algebra and 7 : 2 — 2 a sequentially order-continuous
Boolean homomorphism; let T} : L°(A) — L°(2l) be the corresponding Riesz homomorphism. Let € be the
fixed-point subalgebra of . Show that {u:u € LY(2), Tru = u} can be identified with L°(¢).

(v) Use the ideas of part (d) of the proof of 364T to show that the operator T' there is multiplicative,
without appealing to 353Q.

(w) Let 2 be a Dedekind o-complete Boolean algebra and 9B an order-closed subalgebra of 2. Show that
LO(B), regarded as a subset of L(2), is order-closed in L°(2l).

(x) (W.Ricker) Let X be a set, ¥ a o-algebra of subsets of X, and Z a o-ideal of ¥ such that X/Z is
Dedekind complete. Suppose that ® is a family of 3-measurable real-valued functions, all with domains
belonging to X, such that {z : z € dom f Ndomyg, f(z) # g(x)} € T whenever f, g € ®. Show that there is
a Y-measurable function h : X — R such that {z : € dom f, f(x) # h(z)} € T for every f € ®. (Hint:
213N.)

364Y Further exercises >(a)(i) Show directly, without using the Loomis-Sikorski theorem or the Stone
representation, that if 2 is any Dedekind o-complete Boolean algebra then the formulae of 364D define a
group operation + on L°(2), and generally an f-algebra structure. (ii) Defining x : 2 — L°(2A) by the
formula in 364Jc, show that S() and L (2) can be identified with the linear span of {xa : a € A} and the
solid linear subspace of L°(2) generated by e = y1. (iii) Still without using the Loomis-Sikorski theorem,
explain how to define h : L°(2) — L°(2) for continuous functions i : R — R. (iv) Check that these ideas
are sufficient to yield 364L-364R, except that in 364Pd we may have difficulty with arbitrary Borel functions
h.

(b) Let A be a Dedekind o-complete Boolean algebra and u = (uy,... ,u,) a member of L°(2()". Write
B,, for the algebra of Borel sets in R™. (i) Show that there is a unique sequentially order-continuous Boolean
homomorphism E + [u € E] : B,, — 2 such that [u € E] = inf;<,, [u; > o;] when E = [[, ., |a;,00[. (ii)
Show that for every sequentially order-continuous Boolean homomorphism ¢ : B,, — 2 there is a unique
u € LO(A)" such that ¢F = [u € E] for every E € B,,.
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(c) Let 2 be a Dedekind o-complete Boolean algebra, n > 1 and h : R™ — R a Borel measurable function.
Show that we have a corresponding function h : L°(21)" — L9(2) defined by saying that [h(u) € E] =
[u € h=1[E]] for every Borel set E C R and u € L°(2()".

(d) Suppose that hi(z,y) = v +y, ha(z,y) = vy, h3(r,y) = max(x,y) for all x, y € R. Show that, in the
language of 364Yc, hy(u,v) = u + v, ha(u,v) = u X v, h3(u,v) = u Vv for all u, v € L°.

(e) Let 21 be a Dedekind o-complete Boolean algebra. Show that 2 is ccc iff LO(2() has the countable
sup property.

(f) Let 2 and B be Dedekind o-complete Boolean algebras, and T': L°() — L°(B) a Riesz homomor-
phism such that Te = ¢/, where e, €’ are the multiplicative identities of L°(2(), L°(B) respectively. Show
that there is a unique sequentially order-continuous Boolean homomorphism 7 : 2 — B such that T' =T
in the sense of 364P. (Compare 375A below.)

(g) Let A and B be Dedekind o-complete Boolean algebras and 7 : 2l — 9B a sequentially order-
continuous ring homomorphism. (i) Show that we have a multiplicative sequentially order-continuous Riesz
homomorphism T, : LO(2A) — L°(B) defined by the formula

[Tru > o] = 7fu > o]

whenever v € LO(A) and o > 0. (ii) Show that T} is order-continuous iff 7 is order-continuous, injective
iff m is injective, and surjective iff 7 is surjective. (iii) Show that if € is another Dedekind o-complete
Boolean algebra and 6 : 8 — € another sequentially order-continuous ring homomorphism then Ty, =
ToT, : L°(A) — LO(@).

(h) Suppose, in 364T, that X = Q. (i) Show that there is an f € W such that f(g) > 0 for every ¢ € Q.
(i) Show that there is a u € L° such that no f € U representing u can be continuous at any point of Q.

(i) Let X and Y be topological spaces and ¢ : X — Y a continuous function such that ¢~1[M] is nowhere
dense in X for every nowhere dense subset M of Y. (Cf. 313R.) (i) Show that we have an order-continuous
Boolean homomorphism 7 from the regular open algebra RO(Y') of Y to the regular open algebra RO(X)
of X defined by the formula 7G = int $—1[G] for every G € RO(Y). (ii) Show that if Uy, Uy are the
function spaces of 3647T then g¢ € Ux for every g € Uy. (iii) Show that if T : Ux — L°(RO(X)), Ty :
Uy — LO(RO(Y)) are the canonical surjections, and 7' : L°(RO(Y)) — L°(RO(X)) is the homomorphism
corresponding to m, then T(Tyg) = Tx(g¢) for every g € Uy. (iv) Rewrite these ideas for the special
case in which X is a dense subset of Y and ¢ is the identity map, showing that in this case m and T are
isomorphisms.

(j) Let X be a Baire space, RO(X) its algebra of regular open sets, M its ideal of meager sets, and B
the Baire-property o-algebra {GAA : G C X is open, A € M}, so that RO(X) can be identified with B/M
(314Yd). (i) Repeat the arguments of 364U in this context. (ii) Show that the space U of 364T-364U is a
subspace of £° = L%, and that W = UNW where W = {f : f € RY, {z: f(x) # 0} € M}, so that the
representations of LO(RO(X)) as U/W, £L%/W are consistent.

(k) Work through the arguments of 364T and 364Y]j for the case of compact Hausdorfl X, seeking
simplifications based on 364U.

(1) Let X be an extremally disconnected compact Hausdorff space with regular open algebra RO(X). Let
Up be the space of real-valued functions f : X — R such that int{x : f is continuous at z} is dense. Show
that Uy is a Riesz subspace of the space U of 364T, and that every member of L°(RO(X)) is represented
by a member of Uj.

(m) Let X be a Baire space. Let @ be the set of all continuous real-valued functions defined on subsets
of X, and Q* the set of all members of () which are maximal in the sense that there is no member of @
properly extending them. (i) Show that the domain of any member of Q* is a dense Gy set. (ii) Show that
we can define addition and multiplication and scalar multiplication on Q* by saying that f + g, f X g, 7.f
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are to be the unique members of @Q* extending the partially-defined functions f + g, f X g, 7f, and that
these definitions render Q* an f-algebra if we say that f < g iff f(z) < g(z) for every z € dom f Ndomg.
(iii) Show that every member of @Q* has an extension to a member of U, as defined in 364T, and that these
extensions define an isomorphism between Q* and L°(RO(X)), where RO(X) is the regular open algebra of
X. (iv) Show that if X is compact, Hausdorff and extremally disconnected, then every member of Q* has
a unique extension to a member of C*°(X), as defined in 364V.

(n) Let X be an extremally disconnected Hausdorfl space, and Z any compact Hausdorff space. Show
that if D C X is dense and f : D — Z is continuous, there is a continuous g : X — Z extending f.

(o) Let (A, i) be a probability algebra. (i) Show that for any u = (ug,...,u,) € L°(2)" there is
a unique Radon probability measure v on R™ such that v([[,.,, o, 00[) = a(infi<i<, [u; > a;]) for all
ai,...,a, € R and that now vE = fiJu € E] for every Borel set E C R™. T will call v the distribution
of w. (ii) Show that (ui,...,uy) is independent iff v is expressible as [[,.,.,, i where v; is a Radon
probability measure on R for each i. (iii) Write 2l for the closed subalgebra {[u € E] : E C R" is a
Borel set}; check that u; € L%(2l,) for every i. Suppose that (88, 7) is another probability algebra and that
v = (vi,...,v,) € (L°(B))". Show that the following are equiveridical: («) there is a measure-preserving
isomorphism 7 : 2, — By, such that Tru; = v; for every i (8) u and v have the same distribution.

(p) X be a set, ¥ a o-algebra of subsets of X and Z a o-ideal of ¥; let 2 be the quotient algebra X/7.
Set £ = LY as as in 364B-364C; for f € L° write T f* for the corresponding member of L = LO(2l) (364C).
Suppose that 2 is ccc. Let g : X — [0,00[ be any function. Show that {T'f* : f € L%, f < g} is bounded
above in L°.

364 Notes and comments This has been a long section, and so far all we have is a supposedly thorough
grasp of the construction of LY spaces; discussion of their properties still lies ahead. The difficulties seem
to stem from a variety of causes. First, L spaces have a rich structure, being linear ordered spaces with
multiplications; consequently all the main theorems have to check rather a lot of different aspects. Second,
unlike L™ spaces, they are not accessible by means of the theory of normed spaces, so I must expect to do
more of the work here rather than in an appendix. But this is in fact a crucial difference, because it affects
the proof of the central theorem 364D. The point is that a given algebra 21 will be expressible in the form
¥/Z for a variety of algebras ¥ of sets. Consequently any definition of LY(2) as a quotient £%/Wz must
include a check that the structure produced is independent of the particular pair ¥, Z chosen.

The same question arises with S(2() and L (). But in the case of S, I was able to use a general theory
of additive functions on 2 (see the proof of 361L), while in the case of L>° T could quote the result for S
and a little theory of normed spaces (see the proof of 363H). The theorems of §368 will show, among other
things, that a similar approach (describing LY as a special kind of extension of S or L>°) can be made to
work in the present situation. I have chosen, however, an alternative route using a novel technique. The
price is the time required to develop skill in the technique, and to relate it to the earlier approach (364C,
364D, 364J). The reward is a construction which is based directly on the algebra 2, independent of any
representation (364A), and methods of dealing with it which are complementary to those of the previous
three sections. In particular, they can be used in the absence of the full axiom of choice (364Ya).

I have deliberately chosen the notation [u > «a] from the theory of forcing. I do not propose to try to
explain myself here, but I remark that much of the labour of this section is a necessary basis for understanding
real analysis in Boolean-valued models of set theory. The idea is that just as a function f : X — R can
be described in terms of the sets {z : f(x) > a}, so can an element u of L°(2A) be described in terms
of the regions [u > «] of 2 where in some sense u is greater than «. This description is well adapted to
discussion of the order struction of LO(2A) (see 364L-364M), but rather ill-adapted to discussion of its linear
and multiplicative structures, which leads to a large part of the length of the work above. Once we have
succeeded in describing the algebraic operations on LY in terms of the values of [u > «], however, as in
364D, the fundamental result on the action of Boolean homomorphisms (364P) is elegant and reasonably
straightforward.

The concept ‘[u > ]’ can be dramatically generalized to the concept ‘[(u1,... ,u,) € E]’, where E is
a Borel subset of R™ and uy,...,u, € L) (364G, 364Yb). This is supposed to recall the notation
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Pr(X € FE), already used in Chapter 27. If, as sometimes seems reasonable, we wish to regard a random
variable as a member of L°(u1) rather than of £°(u1), then ‘[u € E]’ is the appropriate translation of ‘X ~}[E]’.
The reasons why we can reach all Borel sets E here, but then have to stop, seem to lie fairly deep; I will
return to this question in 5660 in Volume 5. We see that we have here another potential definition of
L°(A), as the set of sequentially order-continuous Boolean homomorphisms from the Borel o-algebra of R
to 2. This is suitably independent of realizations of 2, but makes the f-algebra structure of L° difficult to
elucidate, unless we move to a further level of abstraction in the definitions, as in 364Yd.

I take the space to describe the LY spaces of general regular open algebras in detail (364T) partly to offer
a demonstration of an appropriate technique, and partly to show that we are not limited to o-algebras of sets
and their quotients. This really is a new representation; for instance, it does not meld in any straightforward
way with the constructions of 364F-364H. Of course the most important examples are compact Hausdorff
spaces, for which alternative methods are available (364U-364V, 364Yj, 364Y], 364Ym); from the point of
view of applications, indeed, it is worth working through the details of the theory for compact Hausdorff
spaces (364Yk). The version in 364V is derived from VULIKH 67. But I have starred everything from 364S
on, because I shall not rely on this work later for anything essential.

Version of 20.1.15
365 L!

Continuing my programme of developing the ideas of Chapter 24 at a deeper level of abstraction, I arrive
at last at L'. As usual, the first step is to establish a definition which can be matched both with the
constructions of the previous sections and with the definition of L'(u) in §242 (365A-365C, 365F). Next,
I give what I regard as the most characteristic internal properties of L! spaces, including versions of the
Radon-Nikodym theorem (365E), before turning to abstract versions of theorems in §235 (365H, 365S) and
the duality between L' and L> (365K-365M). As in §§361 and 363, the construction is associated with
universal mapping theorems (3651-365J) which define the Banach lattice structure of L. As in §§361, 363
and 364, homomorphisms between measure algebras correspond to operators between their L' spaces; but
now the duality theory gives us two types of operators (365N-365P), of which one class can be thought of as
abstract conditional expectations (365Q). For localizable measure algebras, the underlying algebra can be
recovered from its L! space (365R), but the measure cannot.

365A Definition Let (2, i) be a measure algebra. For u € L(2), write
lull = f;~ allul > of da,

the integral being with respect to Lebesgue measure on R, and allowing oo as a value of the integral. (Because
the integrand is monotonic, it is certainly measurable.) Set L}, = L'(A, i) = {u : u € L°(), [Jull; < oo}.

It is convenient to note at once that if u € L}, then pu[|u| > o] must be finite for almost every o > 0,
and therefore for every o > 0, since it is a non-increasing function of «; so that Ju > a] also belongs to the
Boolean ring %/ = {a : fia < oo} for every a > 0.

365B Theorem Let (X,Y, 1) be a measure space with measure algebra (2, ). Then the canonical
isomorphism between L°(u) and LO(A) (364Ic) matches L'(u) € LO(u), defined in §242, with L'(2, i) C
LO(2A), and the standard norm of L!(u) with || [|; : LY(A, 1) — [0, 00[, as defined in 365A.

proof Take any Y-measurable function f: X — R (364B); write f* for its equivalence class in L°(p), and
u for the corresponding element of L°(2A). Then [ju| > o] = {z : |f(z)| > a}* in A for every a € R, and

lully = 7 p{a : |f(2)| > a}da = [ |fldu
by 2520. In particular, u € LY (2, i) iff f € £1(p) iff f* € L1(pn), and in this case |[ull; = || f*]1-

365C Accordingly we can apply everything we know about L!(u) spaces to L}i spaces. For instance:
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Theorem For any measure algebra (2, i), L'(2, fi) is a solid linear subspace of L°(2(), and || ||; is a norm on
LY (2, i) under which L*(2, z) is an L-space. Consequently L'(%, j1) is a perfect Riesz space with an order-
continuous norm which has the Levi property, and if (u,)necy is a non-decreasing norm-bounded sequence
in L'(2, ) then it converges for || |1 to sup,,cy tn-

proof (2, /i) is isomorphic to the measure algebra of some measure space (X, X, i) (321J). L*(p) is a solid
linear subspace of L(u) (242Cb), so L}, is a solid linear subspace of L°(2). L'(u) is an L-space (354M), so
L}-L also is. The rest of the properties claimed are general features of L-spaces (354N, 354E, 356P).

365D Integration Let (21, i) be any measure algebra.

(a) If u € L' = LY (A, 1), then vt and u~, calculated in L° = L°(2A), belong to L!, and we may set
Ju=lut s =l = [ Al > ol da - [ gl-u > ol da.

Now [ : L' — R is an order-continuous positive linear functional (356Pc), and under the translation of
365B matches the integral on L!(u) as defined in 242Ab. Note that if a € 2 then

oo _ 1_ _
fxa = fo alxa > a)da = fo pa do = fia,
so that if i is totally finite then the integral here agrees with that of 363L on L (2(). T will sometimes write
J wdp if it seems helpful to indicate the measure.

(b) Of course |jully = [|u] > | [u| for every u € L.

(c) Ifue L' and a € A we may set [ u= [u x xa. (Compare 242Ac.) If v > 0 and 0 # a C [u > 7]
then there is a § > 7 such that «’ = an[u > §] # 0, so that

oo 8
fau = fo glanfu > a])da > fov pa do+ fv pa’ > yha.
In particular, setting a = Ju > ], @Ju > 7] must be finite.
(d)(i) If w € L' then u > 0 iff [ u > 0 for every a € A/, writing 2/ = {a : fia < oo}, as usual. P If

u > 0 then u X ya > 0 and fauEOforeveryaEQL If w 2 0, then Ju~ > 0] # 0 and there is an « > 0 such
that @ = [u™ > ] # 0. But now fia is finite ((c) above) and

fuxxaz—fufxxaz—fﬁ(am[[u’ZB]])d,BS—ozﬂa<O,
so [[u<0.Q
(ii) If u, v e L' and [, u= [ v for every a € A/ then u = v (cf. 242Ce).

(iii) If u > 0 in L' then [u =sup{ [ u:a € A'}. P Of course ux ya < uso [ u < uforevery a € A
On the other hand, setting a, = [u > 27"], (u X xan)nen is a non-decreasing sequence with supremum wu,
so [u=1lim, o [, u, while fia, is finite for every n. Q

() f u e L', w > 0 and [u = 0 then u = 0 (put 365B and 122Rc together). If u € L', v > 0 and
J, u =0 then u x xa = 0, that is, an [u > 0] = 0.

(f) If C C L' is non-empty and upwards-directed and Sup,cco [ v is finite, then sup C is defined in Lt
and [ supC = sup,cc [ v (356Pc).

(g) It will occasionally be convenient to adapt the conventions of §133 to the new context; so that I may
write [u=ocifu€ L, u~ € L' and u" ¢ L', while [u = —oco if ut € L' and u™ ¢ L'.

(h) On this convention, we can restate (f) as follows: if C' C (L") is non-empty and upwards-directed
and has a supremum u in L°, then [u = sup,cc [ v in [0,00]. P For if sup, o [ v is infinite, then surely

J u = oo; while otherwise we can apply (f). Q
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365E The Radon-Nikodym theorem again (a) Let (2(, i) be a semi-finite measure algebra and
v : A — R an additive functional. Then the following are equiveridical:

(i) there is a w € L' = L*(2, 1) such that va = [, u for every a € 2;
(ii) v is additive and continuous for the measure-algebra topology on 2;
(iii) v is completely additive.

(b) Let (2, 1) be any measure algebra, and v : 2/ — R a function. Then the following are equiveridical:
(i) v is additive and bounded and inf,e 4 |[va] = 0 whenever A C 2/ is downwards-directed

and has infimum O;

(ii) there is a u € L' such that va = [, u for every a € /.

proof (a) The equivalence of (ii) and (iii) is 327Bd. The equivalence of (i) and (iii) is just a translation of
327D into the new context, since (2, ji) is isomorphic to the measure algebra of a measure space which by
322Bd will be semi-finite.

(b)(i)=(ii) (a) Set M = sup,eqys |val < oco.

Let D C 2f be a maximal disjoint set. For each d € D, write 2, for the principal ideal of 2 generated by
d, and [ig for the restriction of & to 2, so that (%4, fiq) is a totally finite measure algebra. Set vy = v[2y;
then vy : 2A; — R is completely additive. By (a), there is a ug € Ll(Qld, fiq) such that fa ug = vqa = va for
every a C d.

Now u} € L°(24) corresponds to a member 4, of L°(A)T defined by saying

lat > o] = [uf > a] =[uqg > a] if a >0,
=1lifa<O.
If a € A, then
fa atdp = fo flan i) > a])da = fo fa(an [uf > a])da = famd utdfig;

taking a = 1, we see that ||} |1 = ||u} [l1 = v[uq > 0] is finite, so that @} € L.

(B) For any finite I C D, set vy = >_,; . Then

fvl = v(supyes [ua > 0]) < M;

consequently the upwards-directed set A = {v; : I C D is finite} is bounded above in L', and we can set
v=supAin L'. If a € A, then [ vy = ,c; [, . uy for each finite I C D, so [[v=">4cp [, us-
Applying the same arguments to —v, there is a w € L' such that

faw = ZdED famd ud_
for every a € A. Try u = v — w; then
— + - _ _
fa U=>4ep famd ug — famd Uy =D 4ep famd ug =) qepv(and)
for every a € 2.

(7) Now take any a € /. For J C D set ay = supye;and. Let € > 0. Then there is a finite I C D
such that

|fa“_ vag| = 2 4eprland) =3 e v(and)| <€
whenever I C J C D and J is finite. But now consider
A={a\ay:ICJCD,Jis finite}.
Then inf A = 0, so there is a finite J such that I C J C D and
lva —vay| = |v(a\ay)| <e.
Consequently
\I/a—fau| < |1/a—l/aJ|—|—|fau—z/aJ| < 2e.

As € is arbitrary, va = [ u. As a is arbitrary, (ii) is proved.

MEASURE THEORY



365H Lt 67

(ii)=(i) From where we now are, this is nearly trivial. Thinking of va as [u X xa, v is surely additive
and bounded. Also |va| < [|u| x xa. If A C 2/ is non-empty, downwards-directed and has infimum 0, the
same is true of {|u| x xa : a € A}, because a — |u| X xa is order-continuous, so

infaea |val <inf,eca f |u| x xa = infaea |[|u] x xa|l1 = 0.

365F It will be useful later to have spelt out the following elementary facts.

Lemma Let (2, /i) be a measure algebra. Write S/ for the intersection S(2) N L'(2A, ). Then S7 is a
norm-dense and order-dense Riesz subspace of L'(2, /i), and can be identified with S(27). The function
x : W — 8 C LY(A, ;1) is an injective order-continuous additive lattice homomorphism. If v > 0 in
LY(2, 1), there is a non-decreasing sequence (u,,)nen in (S7)* such that u = SUP e Un = LMy 00 Unp.

proof As in 364K, we can think of S(217) as a Riesz subspace of S = S(2), embedded in L°(2). If u € S,
it is expressible as Y ;" a;xa; where ag, ... ,a, € 2 are disjoint and no «; is zero. Now |u| = 37" |as|xas,
sou € L' iff fia; < oo for every i, that is, iff u € S(AF); thus ST = S(2AT).

Now suppose that v > 0 in L'. By 364Jd, there is a non-decreasing sequence {uy,)nen in S(2)* such that
ug > 0 and v = sup, ¢y Un in L°. Because L' is a solid linear subspace of L°, every u,, belongs to L' and
therefore to S/. By 365C, (u,)nen is norm-convergent to u. This shows also that S7 is order-dense in L.

The map x : A/ — S7 is an injective order-continuous additive lattice homomorphism; because S7 is
regularly embedded in L' (352Ne), x has the same properties when regarded as a map into L'.

For general v € L', there are sequences in S/ converging to v+ and to u™, so that their difference is a
sequence in S/ converging to u, and u belongs to the closure of S7; thus S/ is norm-dense in L'.

Remark Of course S/ here corresponds to the space of (equivalence classes of) simple functions, as in
242Mb.

365G Semi-finite algebras: Lemma Let (2(, i) be a measure algebra.

(a) (A, 1) is semi-finite iff L' = LY(2A, 1) is order-dense in LY = LO(2A).

(b) In this case, writing S¥ = S(A) N L' (as in 365F), [u =sup{[v:v € S, 0<v <wu}in [0,00] for
every u € (LO)*.

proof (a) If (2, fz) is semi-finite then S is order-dense in L° (364K), so L' also must be. If L' is order-dense
in L°, then so is S/, by 365F and 352Nc, so (%, 1) is semi-finite, by 364K in the other direction.

(b) Set C = {v:v € S, 0<wv<u}. Then C is an upwards-directed set with supremum u, because S7
is order-dense in L°. So [ = sup,cc [v by 365Dh.

365H Measurable transformations We have a generalization of the ideas of §235 in this abstract
context.

Theorem Let (A, i) and (B,7) be measure algebras, and 7 : 2 — B a sequentially order-continuous
Boolean homomorphism. Let T : L°(2A) — L°(B) be the sequentially order-continuous Riesz homomorphism
associated with 7 (364P).

(a) Suppose that w > 0 in L°(B) is such that [  wdi = jia whenever a € %A and fia < co. Then for any
we L' (A, ) and a € A, [ Tux wdv is defined and equal to [, udj.

(b) Suppose that w’ > 0in L°(A) is such that [ w'dji = v(wa) for every a € A. Then [Tudy = [uxw'dj
whenever u € L°(2() and either integral is defined in [—o0, 00].

Remark I am using the convention of 365Dg concerning ‘oo’ as the value of an integral.

proof (a) If u € S/ = L}, N S(A) then u is expressible as Y i ; oixa; where ag, ... ,a, have finite measure,
so that Tu =7, a;x(ma;) and

fTu Xwdy =Y aifw X xma; dv = Y1 o fia; = fudﬂ.

Ifu>0in L}-L there is a non-decreasing sequence (u, )ney in S with supremum w, so that Tu = SUp,en 1'Un
and w x Tu = sup,,cy w X Tu,, in L°(B), and
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fTuxw:supneNfTunxw:supneNfun:fu.
(365Df tells us that in this context Tw x w € L}.) Finally, for general u € L},

fTuxw:fTu+xw—fTu_xw:fu+—fu_:fu.

(b) The argument follows the same lines: start with u = ya for a € 2, then with v € S(2), then with
u € L°(2)* and conclude with general w € L%(21). The point is that T is a Riesz homomorphism, so that

at the last step
/Tu:/(Tu)+_/(Tu)—:/T(u+)—/T(u—)
:/ +><w’—/u‘xw’:/(uxw’)+—/(uxw’)_:/uxw’

whenever either side is defined in [—o0, o0].

3651 Theorem Let (2, i) be a measure algebra and U a Banach space. Let v : 2/ — U be a function.
Then the following are equiveridical:

(i) there is a continuous linear operator 7' from L' = LY(2, i) to U such that va = T(xa) for
every a € AS;
(ii) (o) v is additive
(B) there is an M > 0 such that ||va|| < Mjia for every a € /.
Moreover, in this case, T is unique and || 7| is the smallest number M satisfying the condition in (ii-f).

proof (a)(i)=(ii) If T : L' — U is a continuous linear operator, then ya € L' for every a € 2/, so v = Ty
is a function from 2/ to U. If a, b € Af and anb = 0, then y(aub) = ya+ xb in L° = L°(A) and therefore
in L', so
v(aub) =Tx(aub) =T (xa+ xb) = T(xa) + T(xb) = va + vb.
If a € 2/ then ||xalj; = jia (using the formula in 365A, or otherwise), so
lvall = [T (xa) [l < |1 T[ll[xallx = [T aa-

(b)(ii)=(i) Now suppose that v : 2Af — U is additive and that |va|| < Mjia for every a € /. Write
St for L' N S(A), as in 365F. Then there is a linear operator Ty : S/ — U such that Ty(xa) = va for every
a € A (361F). Next, || Tou| < M||u||y for every u € Sf. P If u € S¥ = S(AS), then u is expressible as
> i Bixbj where by, ... by, € 2f are disjoint (361Eb). So

| Toull = 132520 Bivbsll < MYZTq 1B;|ab; = Mljul,. Q

There is therefore a continuous linear operator T : L' — U, extending Tp, and with ||T|| < [|Tp]| < M
(2A4I). Of course we still have v = T'x.

(c) The argument in (b) shows that Ty = T[S/ and T are uniquely defined from v. We have also seen
that if T', v correspond to each other then

lval| < ||T|ma for every a € AS,

|IT|| € M whenever ||va|| < Mfia for every a € AS,
so that
|IT|| = min{M : M >0, ||va|| < Mfa for every a € A7}.

365J Theorem Let (2, i) be a measure algebra, U a Banach lattice, and T" a bounded linear operator
from L' = LY(A, i) to U. Let v : A/ — U be the corresponding additive function, as in 365L.

(a) T is a positive linear operator iff va > 0 in U for every a € 2/; in this case, T is order-continuous.

(b) If U is Dedekind complete and 7' € L~(L*; U), then |T| : L* — U corresponds to |v| : 27 — U, where
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[v|(a) = sup{>_"" [va;| : ag, ... ,a, C a are disjoint}

for every a € A7,
(¢) T is a Riesz homomorphism iff v is a lattice homomorphism.

proof As in 365F, let Sf be L' N S(2), identified with S(A/).
(a)(i) If T is a positive linear operator and a € A, then ya > 01in L', so va = T(xa) > 0in U.

(ii) Now suppose that va > 0 in U for every a € A/, and take u > 0 in L', ¢ > 0 in R. Then there is
av € S such that 0 < v <wand ||u—v|; <e (365F). Express v as > ;- a;xa; where a; € A/, a; > 0 for
each i. Now

[T = Toll < [ T[|[lu —vlly < €T
On the other hand,
Tv=> " ova; € UT.
As U™ is norm-closed in U (354Bc), and ¢ is arbitrary, Tu € UT. As u is arbitrary, T is a positive linear
operator.
(iii) By 355Ka, T is order-continuous.
(b) If @ € 27, then
[vb| = IT(xb)| < |T|(xb) < [T[(xa)

for every b C a, so {vb : b C a} is order-bounded in U. As a is arbitrary, we have an additive function

lv| : 2f — U given by the proposed formula, by 361H. Next, |T'| : L' — U is a bounded linear operator

(355C), so we can speak of |||T|||; and we also have an additive function v, : Af — U corresponding to |T|.
IfbCaeAl, then

vb— w(a\b) = T(xb) — T(x(a\ b)) < ITI(xb) + I T|(x(a\ b)) = [T|(xa) = 16;
taking the supremum over b, the other formula in 361H tells us that |v|a < 114, so
Ilvlall < flwrall = NT1(xa) | < MITTHIxell = 11T 2a-
By 3651, there is a bounded linear operator S : L' — U such that S(ya) = |v|a for every a € AS.
We now have (S —T)(xa) = |v|a—va > 0 for every a € A/, 50 S —T > 0in L~(L;U), by (a) above, and

T < S; similarly, =T < S and |T| < S. On the other hand, |v|a < via for every a, so the same argument
shows that S < |T'|. Thus S = |T| and |v| corresponds to [T, as claimed.

(c)(i) If T is a lattice homomorphism, then so is v = T'x, because x : %4/ — S7 is a lattice homomorphism.

(ii) Now suppose that x is a lattice homomorphism. In this case T[S/ is a Riesz homomorphism
(361Gc), that is, |Tw| = T|v| for every v € S/. Because S/ is norm-dense in L' and the map u + |u] is
continuous both in L! and in U (354Bb), |Tu| = T|u| for every u € L', and T is a Riesz homomorphism.

365K The duality between L' and L™ Let (2, i) be a measure algebra, and set L' = L'(, 1),
L = L>°(2). If we identify L with the solid linear subspace of L% = LY(2l) generated by e = x1gy (364J),
then we have a bilinear operator (u,v) — ux v : L' x L® — L1, because |u x v| < ||v]|so|u| and L! is a solid
linear subspace of LY. Note that ||u x v||; < ||ull1]|v] s, so that the bilinear operator (u,v) — u X v has
norm at most 1 (253Ab, 253E). Consequently we have a bilinear functional (u,v) — [uxv: L' x L= — R,
which also has norm at most 1, corresponding to linear operators S : L' — (L®°)* and T : L= — (L')*,
both of norm at most 1, defined by the formula

(Su)(v) = (Tv)(u) = fu x v foru € L', v € L.
Because L! and L* are both Banach lattices, we have (L')* = (L)~ and (L>)* = (L*)~ (356Dc).
Because the norm of L is order-continuous, (L1)* = (L1)* (356Dd).

365L Theorem Let (2, i) be a measure algebra, and set L' = LY(2A, i), L = L=°(A). Let S : L' —
(L%°)* = (L*°)~, T : L™ — (LY)* = (L')~ = (L')* be the canonical maps defined by the duality between
L' and L™, as in 365K. Then
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(a) S and T are order-continuous Riesz homomorphisms, S[L'] C (L*)*, S is norm-preserving and
T[L*>] is order-dense in (L')~.

(b) (2, ) is semi-finite iff T' is injective, and in this case T is norm-preserving, while S is a normed Riesz
space isomorphism between L' and (L°°)*.

(c) (A, ) is localizable iff T' is bijective, and in this case T is a normed Riesz space isomorphism between

L and (L1)* = (LY)~ = (LY)*.
proof (a)(i) If u > 0 in L' and v > 0 in L then u x v > 0 and
(Tv)(u):fuvaO.

As u is arbitrary, Tv > 0 in (L')*; as v is arbitrary, T is a positive linear operator.
If v € L™, set a = [v>0] € A. (Remember that we are identifying L%(u), as defined in §241, with
L°(2A), as defined in §364.) Then v+ = v x xa, so for any u > 0 in L!

(Tv*)(u) = fu x v x xa = (Tv)(u x xa) < (Tv)T(u).

As u is arbitrary, Tv™ < (Tv)*. On the other hand, because T is a positive linear operator, Tv* > Twv and
Tvt >0, s0 Tvt > (Tw)". Thus Tvt = (Tw)". As v is arbitrary, T is a Riesz homomorphism (352G).

(ii) Exactly the same arguments show that S is a Riesz homomorphism.
(iii) Given u € L', set a = [u > 0]; then
ISull = (Sw)xa—x(\a) = [,u— [, w= [ ful = ull > |Su].
So S is norm-preserving.
(iv) By 355Ka, S is order-continuous.

(v) If A C L™ is a non-empty downwards-directed set with infimum 0, and u € (L!)™, then inf,c 4 u x
v =0 for every u € (L')*, because v — u x v : L® — L° is order-continuous. So

inf,ea(Tv)(u) = infyea fu x v =inf,ea Ju x v||; = 0.

As a is arbitrary, the only possible non-negative lower bound for T[A] in (L')* is 0. As A is arbitrary, T is
order-continuous.

(vi) The ideas of (v) show also that S[L'] C (L>)*. P If u € (L')* and A C L is non-empty,

downwards-directed and has infimum 0, then
infyea(Su)(v) = inf,eca fu x v =0.

As A is arbitrary, Su is order-continuous. For general u € L', Su = Su™ — Su™ belongs to (L>)*. Q

(vii) Now suppose that h > 0 in (L})~ = (L')* = (L')*. By 365Ja, applied to —h, there must be
an a € A such that h(xa) > 0. Set vb = h(x(anb)) for b € A/. Then v is additive and non-negative and
bounded by ||h||ia. If A C 2/ is a non-empty downwards-directed set with infimum 0, then C' = {xb: b € A}
is downwards-directed and has infimum 0 in L°(21) (364Jc), so infye 4 vb = inf,ec h(u) = 0. By 365Eb, there

is a v € L' such that vb = [, v for every b € 2/. As [, v > 0 for every b € A, v > 0 (365C(d-i)). Setting
b= [v > |h]|]], we have

Jyv < h(xb) < [IBllIxdlx = |1 fb;

so b =0 (365Cc). Accordingly 0 < v < ||h]|x1 and v € L>. Consider Tv € (L*)*. We have Tv > 0 because
T is positive; also

(Tw)(xa) = fa v =va = h(xa) >0,
so Tv > 0. Next, for every b € AS,
(Tw)(xb) = [, v = h(x(anb)) < h(xb).

By 365Ja again, h—Twv > 0, that is, Tv < h. As h is arbitrary, T[L>°] is quasi-order-dense in (L!)*, therefore
order-dense (353A).
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(b)(i) If (A, z) is not semi-finite, let a € 2A be such that ila = co and fib = oo whenever 0 # b C a. If
u € L', then [|u| > %]] has finite measure for every n > 1, so must be disjoint from a; accordingly

an [lul > 0] = sup, >, an[lul > %]] =0.
This means that [u X ya =0 for every u € L*. Accordingly T'(xa) = 0 and T is not injective.

(ii) If (A, @) is semi-finite, take any v € L. Then if 0 < § < ||v||o, @ = [|v] > 8] # 0. Let b C a be
such that 0 < jib < co. Then xb € L', and
7ol = 7ol = 1Tl = R > 5
lIxollx
because |[v| x xb > dxb, so
(T[v])(xb) = dpb = o]|xb||1.

As ¢ is arbitrary, | Tv|| > ||v||co- But we already know that ||Tv|| < ||v]|co, SO the two are equal. As v is
arbitrary, T is norm-preserving (and, in particular, is injective).

(iii) Still supposing that (2, i) is semi-finite, S[L'] = (L>°)*. P Take any h € (L>°)*. For a € 2, set
va = h(xa). By 363K, v : 2l — R is completely additive. By 365Ea, there is a u € L' such that

(Su)(xa) = fu X xa = fau = va = h(xa)

for every a € 2. Because Su and h are both linear functionals on L, they must agree on S(2(); because
they are continuous and S(2l) is dense in L™ (363C), Su = h. As h is arbitrary, S is surjective. Q

(c) Using (b), we know that if either T is bijective or (2, ) is localizable, then (2, i) is semi-finite.
Given this, if T' is bijective, then it is a Riesz space isomorphism between L> and (L!)~, which is Dedekind
complete (356B); so 363Mb tells us that 2 is Dedekind complete and (2, i) is localizable. In the other
direction, if (2, i) is localizable, then L*° is Dedekind complete. As T is injective, T[L°] is, in itself,
Dedekind complete; being an order-dense Riesz subspace of (L!)™ (by (a) here) it must be solid (353L); as
it contains T'(x1), which is the standard order unit of the M-space (L')™, it is the whole of (L!)~, and T
is bijective.

365M Corollary If (2, 1) is a localizable measure algebra, L>°(2() is a perfect Riesz space.
proof By 365L(b)-(c), we can identify L> with (L},)* = (L>)**.

365N Theorem Let (2, i) and (%8,7) be measure algebras. Let 7 : A/ — 9B/ be a measure-preserving
ring homomorphism.

(a) There is a unique order-continuous norm-preserving Riesz homomorphism T} : L* (2, z) — L'(B, )
such that Ty (ya) = x(7a) whenever a € Af. We have Ty (u x xa) = Tru x x(ma) whenever a € 2/ and
u € LY (A, ).

(b) [Tru= [uand [ Tru= [ uforevery u € L*(A, 1) and a € A"

(¢) [Tru > o] = n[u > «] for every u € L'(2A, ii) and a > 0.

(d) T is surjective iff 7 is.

(e) If (€, \) is another measure algebra and 6 : 8/ — &/ another measure-preserving ring homomorphism,
then Ty, = TpT, : L*(A, 1) — L1(€, N).

proof Throughout the proof I will write 7 for T, and S for S(2) N L} = S(A) (see 365F).
(a)(i) We have a map ¢ : Af — L1 defined by writing 1a = x(ra) for a € /. Because
xm(aub) = x(raumb) = xma+ x7b, |[x(wa)llh = v(wa) = fia

whenever a, b € 2/ and anb = 0, we get a (unique) corresponding bounded linear operator T': Lj, — L},

such that Ty = xm on A/ (3651). Because 7 : A — B/ and y : B — LI are lattice homomorphisms, so is
1, and T is a Riesz homomorphism (365Jc).

(if) If u € S/, express it as ;- , o xa; where ag, ... ,a, are disjoint in . Then Tu = Y1 a;x(ma;)
and mag, ... ,ma, are disjoint in B, so
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1Tully = 3210 lel7(mas) = 325 el fiai = Jlulls.
Because S/ is norm-dense in L], and u — [|ul|; is continuous (in both L}, and L}), || Tul|y = |Jul|; for every
U € L}L, that is, T' is norm-preserving. As noted in 365Ja, T is order-continuous.

(iii) If a, b € AS then
T(xa x xb) = T(x(and)) = xm(anb) = x(ranwb) = xma x x7b = xwa x T(xb).

Because T is linear and x is bilinear, T'(xya x u) = xma x Tu for every u € Sf. Because the maps
uHuxxa:L}L—)L}],T:L}E%L}; and v — v X ywa : LY — LL are all continuous, Tu x xma = T'(u X xa)
for every u € Lllj.

(iv) T is unique because the formula T(xa) = xma defines T' on the norm-dense and order-dense
subspace S7.

(b) Because T is positive,
S Tu=Tut [l = 1T |l = Jut [y = flu"]h = [
For a € Af,
fmTu:fTuxxwa:fT(uxxa):fuxxa:fau.

(c) If u € S7, express it as i o aixa; where ag, ... ,a, are disjoint; then
mlu > a] = w(sup;e; ai) = sup;e; ma; = [Tu >

where I = {i : i < n,a; > a}. For u € (L}-L)“‘7 take a sequence (u,)nen in S7 with supremum u; then
sup, ey L'tun = Tu, so

wlu > o] = w(sup [u, > af)
neN

(364L(a-ii); Ju > a] € A by 365A)

= sup mfu, > ]
neN

(because = is order-continuous, see 361Ad)

= sup [Tu, > o] = [Tu > o]
neN

because T is order-continuous. For general u € L}-“
mlu>a] =wut >a] = [T(ut) > a] = [(Tu)t > o] = [Tu > d]
because T is a Riesz homomorphism.
(d)(i) Suppose that T is surjective and that b € B7. Then there is a u € L}, such that Tu = xb. Now
b=[Tu> 1] =7[u> 1] € n[Af];
as b is arbitrary, 7 is surjective.

(ii) Suppose now that 7 is surjective. Then T[L}J is a linear subspace of L. containing yb for every
b € B7, so includes S(B7). If v € (LL)* there is a sequence (vy,)nen in S(BF)T with supremum v. For each
n, choose u, such that Tw,, = v,. Setting u), = sup,, u;, we get a non-decreasing sequence (u,,)nen such
that v, < Twul), <w for every n € N. So B

suppen [|up 1 = suppen [Tup[ly < flvfly < o0
and u = sup,,¢ uj, is defined in L, with
Tu = sup, ey Tul, = v.

Thus (Lj)* C T[L}]; consequently L}, € T[L}] and T is surjective.
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(e) This is an immediate consequence of the ‘uniqueness’ assertion in (i), because for any a € 2Af
TyTx(xa) = Tyx(wa) = x(67a),

so that TyT : Lllz — L%\ is a bounded linear operator taking the right values at elements ya, and must
therefore be equal to Ty, .

3650 Theorem Let (2, i) and (B, 7) be measure algebras, and 7 : A/ — 9B an order-continuous ring
homomorphism.

(a) There is a unique positive linear operator Py : L'(B,7) — L'(2, i) such that [ Prv = [ v for
every v € L'(B,7) and a € /.

(b) Py is order-continuous and norm-continuous, and || P, || < 1.

(c) If a € Af and v € L*(B,7) then P, (v x xma) = Prv X xa.

(d) If 7[A/] is order-dense in B then P, is a norm-preserving Riesz homomorphism; in particular, P, is
injective.

(e) If (B, ) is semi-finite and 7 is injective, then Py is surjective, and there is for every v € L'(2A, i) a
v € L' (B, 7) such that Prv =u and |jv]j; = |Jul];.

(f) Suppose again that (B,7) is semi-finite. If (€, \) is another measure algebra and 6 : B — € an
order-continuous Boolean homomorphism, then Py, = P, Py : L(€,\) — L' (2, i), where I write ¢’ for the
restriction of 6 to B .

proof I write P for Py.
(a)-(b) For v € L} and a € AS set v,(a) = fm v. Then v, : Af — R is additive, bounded (by ||v||;) and

if A C A is non-empty, downwards-directed and has infimum 0, then
infaea |V11(a)| <infseca f |U| x xma =0

because a — [ |v] X xma is a composition of order-continuous functions, therefore order-continuous. So
365ED tells us that there is a Pv € L such that [, Pv = v,(a) = [ v for every a € 2/. By 365D(d-ii),
this formula defines Pv uniquely. Consequently P must be linear (since Pv; + Pvy, aPv will always have
the properties defining P(v1 + v2), P(aw)).

If v >0in L}, then [ Pv= [ v >0 for every a € 2/, so Pv > 0 (365D(d-i)); thus P is positive. It
must therefore be norm-continuous and order-continuous (355C, 355Ka).

Again supposing that v > 0, we have

|Pv|ly = va = SUPgeqs fa Pv = sup, ¢y fmv < |lvllx
(using 365D(d-iii)). For general v € LL,
[Polly = [[[Pollly < [[Plof[[x < vl

(c) For any ¢ € 2/,
fc Pv x xa = fma Py = fw(ma) v= fmv X xma = fCP(U X XTa).

(d) Now suppose that w[/] is order-dense. Take any v, v/ € LL such that v Av' = 0. T Suppose, if
possible, that © = Pv A Pv’ > 0. Take e > 0 such that a = [u > «] is non-zero. Since

mvzfapvzfau>0,
b= man [v > 0] is non-zero. Let ¢ € A/ be such that 0 # 7c C b; then 7(anc) = 7c # 0, so anc # 0, and

0< famcu < fancPv/ < fﬂ'cvl'
But ¢ C [v > 0] and v Av' =0s0 [ v =0 X
So Pv A Pv' =0. As v, v/ are arbitrary, P is a Riesz homomorphism (352G).
Next, if v > 0 in L1,

va = SUPgeaif fa Pv = sup,cqs fm v = fv

because 7[2Af] is upwards-directed and has supremum 1 in 8. So, for general v € L.,
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1Pvlls = [ [Pl = [ Plo|= [|o] = vl

and P is norm-preserving.
(e) Next suppose that (%8, 7) is semi-finite and that 7 is injective.

(i) If u > 0 in L, there is a v > 0 in L} such that Pv <w and [ Pv> [v. P Let § > 0 be such that
a = [u> 8] # 0. Then 7a # 0. Because (B,7) is semi-finite, there is a non-zero b € B/ such that b C 7a.
Set uy = P(xb). Then u; >0, [ u; = vb> 0 and
fl\a U1 = SUPceas fc\a U1 = SUPceas Te\Ta xb = 0.
So u; x x(I\a) = 0 and 0 # [u; > 0] Ca. Let v > 0 be such that Ju; >~] # [ur > 0], and set a3 =
a\Jur >~], v= %X(bﬁﬂ'al). Then

Pu=2P(xb x x(rar)) = SP(xb) x xa1 = 2w x yai < éxa < u,

because
[ur x xa1 >~] € Jur >~v]na; =0
S0
uy X xa; < yx[ur > 0] < yxa.

Also a1 nug > 0] # 0, so Pv and v are non-zero; and
vaZfGIPv:fmlv:fv. Q

(ii) Now take any u > 0in L}, and set B={v:v € L}, v >0, Pv <u, [v < [ Pv}. B is not empty
because it contains 0. If C' C B is non-empty and upwards-directed, then sup,co [v < [w is finite, so C
has a supremum in L. (365Df). Because P is order-continuous, P(sup C') = sup P[C] < u; also

fsupC’ = supvecfv < SquecfPU < fP(sup ).

Thus supC' € B. As C'is arbitrary, B satisfies the conditions of Zorn’s Lemma, and has a maximal element
Vg say.

? Suppose, if possible, that Pvg # u. By (), there is a v1 > 0 such that Pvy < u—Puvg and [ vy < [ Puy.
In this case, vg < vg 4+ v1 € B, which is impossible. X Thus Pvg = u; also

ool = [wo < [ Puo = ||Puols.

(iii) Finally, take any u € L}L. By (ii), there are non-negative vy, va € L. such that Pv; = ut,
Puy =u~, |Jo1]1 < Jut|1 and |Jva]j1 < [Ju”|l1. Setting v = vy — va, we have Pv = u. Also we must have

[vlly < Hlvally + lloally < ol + lu” [l = llulls < [Plllv] = [lv]s,

so ||v]|1 = |Ju||1, as required.

(f) As usual, this is a consequence of the uniqueness of P. However (because I do not assume that
m[A/] C BF) there is an extra refinement: we need to know that [, Ppw = [,, w for every b € B and
w € L%\. P Because 6 is order-continuous and (%8, 7) is semi-finite, b = sup{b’ : v/ € Bf b C b}, so if
w > 0 then

febw = SUPpemsf b cb feb, w = SuPb’e‘Bf,b/gbfb/ Pyw = fb Pyw.

Expressing w as wt — w™, we see that the same is true for every w € L. Q
Now we can say that PPy is a positive linear operator from L}\ to Lll1 such that

fa PPQ'U) = fﬂ'a P@/w = feﬂ_aw = fa Peﬂ—w

whenever a € Af and w € L%, and must be equal to Py,.
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365P Proposition Let (2, i) and (%8, i) be measure algebras and 7 : 2/ — B a measure-preserving
ring homomorphism.

(a) In the language of 365N-3650 above, P, T is the identity operator on L*(2, 1).

(b) If 7 is surjective (so that it is an isomorphism between 21/ and B/) then P, = T;! = T,-1 and
T, =P\ =P, ..

proof (a) If u € L}, and a € 2/ then

fa P, T u= fm T.u—= fa Uu.
So u = P.Tru, by 365D(d-ii).

(b) From 365Nd, we know that T} is surjective, while P,T} is the identity, so that P, = T-! and
T, = P71, As for T,,—1, 365Ne tells us that 7,,-1 = T.-1; so

P =T7Y =T,.

365Q Conditional expectations It is a nearly universal rule that any investigation of L! spaces must
include a look at conditional expectations. In the present context, they take the following form.

(a) Let (2, 1) be a probability algebra and 9B a closed subalgebra; write o for the restriction ii[8. The
identity map from B to 2 induces operators T : L'(8,7) — L'(2, ) and P : LY (A, 1) — L'(B,v). If
we take L°(2) to be defined as the set of functions from R to 2 described in 364Aa, then L°(%8) becomes
a subset of L9(2) in the literal sense, and T is actually the identity operator associated with the subset
LY(B,v) C LY(A, i); L(B,7) is a norm-closed and order-closed Riesz subspace of L*(2l, ). P is a positive
linear operator, while PT is the identity, so P is a projection from L!(2l, i) onto L'(B, 7). P is defined by
the familiar formula

beu = fbu for every u € L*(2, ji), b € B,

so is the conditional expectation operator in the sense of 242J. Observe that the formula in 365A tells us
that L1(B8,7) is just LY(A, 1) N L°($B). Translating 233K into this language, we see that P(u x v) = Pu x v
whenever u € L'(2, i), v € L°(B) and u x v € L' (2, fi).

(b) Just as in 2331-233J and 242K, we have a version of Jensen’s inequality. Let h: R — R be a convex
function and h : LO(2A) — LO(2A) the corresponding map (364H). If u € L' (A, i), then h([u) < [ h(u); and
if h(u) € LY(2, i), then h(Pu) < P(h(u)). P I repeat the proof of 2331-233J. For each ¢ € Q, take 3, € R
such that h(t) > he(t) = h(q) + B4(t — q) for every t € R, so that h(t) = sup,cq hq(t) for every t € R, and

h(u) = sup,eq hq(u) for every u € L°(2). (This is because

[n(u) > of = [u € b [Ja, o0o[]] = [u € Ugeq hg *[Jev, oo[]]

= sup [u € hy[Ja, 0o[]] = sup [ (u) > o]
q€Q q€Q

for every a € R.) But setting e = x1, we see that h,(u) = h(g)e + B,(u — ge) for every u € L°(21), so that

[ hq(u) = h(q) + By ([ w— ) = hy( [ w),

P(hq(u)) = h(g)e + By (Pu — ge) = hy(Pu)
because f e =1 and Pe = e. Taking the supremum over ¢, we get
h(f u) = SUPge hq(f“) = SUPge fﬁqm) < fﬁ(u),
and if h(u) € Lj, then
B(Pu) = SUPgeqQ Bq(Pu) = SUPgeQ P(Bq(u)) < P(ﬁ(u)) Q
Of course the result in this form can also be deduced from 2331-233J if we represent (2, i) as the measure

algebra of a probability space (X, %, u) and set T={FE : F € ¥, E* € B}.
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(c) I note here a fact which is occasionally useful. If u € L*(2, /i) is non-negative, then [Pu > 0] =
upr([u > 0], B), the upper envelope of [u > 0] in 9B as defined in 313S. P We have only to observe that,
for b € B,

bn[Pu>0]=0 < xbx Pu=0 < /Pu:o
b
= /u:() < bnfu> 0] =0.
b

Taking complements, b2 [Pu > 0] iff b2 [u > 0]. Q

(d) Suppose now that (€, \) is another probability algebra and 7 : 21 — € is a measure-preserving
Boolean homomorphism. Then ® = 7[B] is a closed subalgebra of ¢ (314F(a-i)). Let Q : L'(€,\) —
LY (D,\[D) C LY(€, ) be the conditional expectation associated with ®, and T} : L* (2, 1) — L'(&, \) the
norm-preserving Riesz homomorphism defined by 7. Then T, P = QT,,. P Take u € L*(2, i). Then

[TnPu> o] = w[Pu>a] € n[B] =D
for every aw € R, so Ty Pu € L°(®D). If d € ®, set b = 7~ 1d € B; then

/TﬂPu = /TﬂPu x xd = /T,TPu X Trxb = /Tﬂ(Pu x xb)
d

:/Puxxb:/Pu:/u:/uxxb

b b

:/Tw(uxxb):/Tﬂuxwab:/Tﬂuxxd:/Twu.
d

As d is arbitrary, T, Pu satisfies the defining formula for QT,u and T,Pu = QT,u; as u is arbitrary,
T.P=QT,. Q

365R Recovering the algebra: Proposition (a) Let (2, i) be a localizable measure algebra. Then
2l is isomorphic to the band algebra of L(2L, fi).

(b) Let 2 be a Dedekind o-complete Boolean algebra, and fi, 7 two measures on 2 such that (2, i) and
(2A,7) are both semi-finite measure algebras. Then L' (2, i) is isomorphic, as Banach lattice, to L (2, 7).

proof (a) Because (2, 1) is semi-finite, L} is order-dense in L° = LO(2A) (365G). Consequently, L, and L°
have isomorphic band algebras (353D). But the band algebra of LY is just its algebra of projection bands
(because 2 and therefore LY are Dedekind complete, see 364M and 353J), which is isomorphic to 2 (3640).

(b) Let m : A — 2 be the identity map. Regarding 7 as an order-continuous Boolean homomorphism
from Qli—z = {a : fia < oo} to (A7), we have an associated positive linear operator P = Py : LY — Lf;
similarly, we have Q = P,-1 : Lll1 — L, and both P and @ have norm at most 1 (3650b). Now 3650f
assures us that QP is the identity operator on L. and PQ is the identity operator on L}]. So P and @ are
the two halves of a Banach lattice isomorphism between L} and Lj.

365S Having opened the question of varying measures on a single Boolean algebra, this seems an
appropriate moment for a general description of how they interact.

Proposition Let 2 be a Dedekind complete Boolean algebra, and i : 20 — [0,00], 7 : 2 — [0, 00] two
functions such that (2, &) and (2, 7) are both semi-finite (therefore localizable) measure algebras.

(a) There is a unique v € L = L(2) such that (if we allow oo as a value of the integral) [ wdp = va
for every a € 2.

(b) For v € L°%(A), [vdp = [ x vdj if either is defined in [—o0, 00].

(¢) u is strictly positive (i.e., [u > 0] = 1) and, writing % for the multiplicative inverse of u, fa %dz? = ja
for every a € 2.

proof (a) Because (2,7) is semi-finite, there is a partition of unity D C 2 such that #d < oo for every
d € D. For each d € D, the functional a — 7(and) : A — R is completely additive, so there is a ug € L}i
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such that [ uqdfi = v(and) for every a € 2. Because [, uqdfi > 0 for every a, ug > 0. Because fl\d ug = 0,
[ug > 0] € d. Now u = supgep uq is defined in L°. P (This is a special case of 368K below.) For n € N,
set ¢, = supgep [ua >n]. If d, d € D are distinct, then dn[ug >n] = 0, so dne¢, = [ug > n]. Set
c=infpenc,. If d € D, then

dne=inf,endne, = inf ey Jug > n] = 0.

But ¢ Ccop € supD, so ¢ = 0. By 364L(a-i), {ug : d € D} is bounded above in L°, so has a supremum,
because LY is Dedekind complete, by 364M. Q

For finite I C D set Uy = ) 4c;ua = supgerua (because ug A u. = 0 for distinct ¢, d € D). Then
u=sup{as : I C D, I is finite}. So, for any a € 2,

/udﬂz sup /djdﬂ
a ICD is finite Ja

(365Dh)

= sup g /uddﬂ = sup g v(and) = va.
ICD is finite der’a ICD is finite del

Note that if a € 2 is non-zero, then va > 0, so an [u > 0] # 0; consequently [u > 0] = 1.
To see that u is unique, observe that if u’ has the same property then for any d € D

fau x xddi =v(and) = fau’ x xd dji
for every a € 2, so that u x yd = v’ x xd; because sup D = 1 in 2, u must be equal to u'.
(b) Use 365Hb, with 7 and T the identity maps.

(c) In the same way, there is a w € LY such that fawdﬁ = fia for every a € 2. To relate u and w,
observe that applying (b) above we get

fwxxaxudﬂ:fwxxadﬁ

for every a € 2, that is, fa w X udp = fa for every a. But from this we see that w x u x xb = xb at least

when fib < 0o, so that w x u = 1 is the multiplicative identity of LY, and w = %

365T Uniform integrability Continuing the programme in 365C, we can transcribe the ideas of §§246,
247, 354 and 356 into the new context.

Theorem Let (2, /i) be a measure algebra. Set L' = L*(2, ji).
(a) For a non-empty subset A of L1, the following are equiveridical:
(i) A is uniformly integrable in the sense of 354P;
(ii) for every € > 0 there are an @ € A/ and an M > 0 such that [(Ju| — Mxa)T < ¢ for every u € 2;
(iii) () sup,e 4| f, u is finite for every atom a € 2,
(B) for every € > 0 there are ¢ € 2/ and § > 0 such that | [ u| < e whenever u € A, a € 2 and
planc) < 6;
(iv)(c) sup,c 4 | [, ul is finite for every atom a € 2,
(B) limy 00 SUP,c 4 | fan u| = 0 for every disjoint sequence (a,)nen in 2U;
(v) A is relatively weakly compact in L!.
(b) If (A, z) is a probability algebra and A C L! is uniformly integrable, then there is a solid convex
norm-closed uniformly integrable set C' O A such that P[C] C C whenever P : L' — L' is the conditional
expectation operator associated with a closed subalgebra of 2.

proof 354Q), 354R, 356Q and 246D, with a little help from 246C and 246G.

365X Basic exercises (a) Let (2, i) be a measure algebra, and u € L}. Show that

fu: foooﬁ[u > o da — ff)ooﬂ(l\[[u > af) da.

D.H.FREMLIN



78 Function spaces 365XDb

>(b) Let (2,7) be any measure algebra, and u € L. (i) Show that |lully < 2sup,eqs | [, ul. (Hint:
246F.) (ii) Show that for any € > 0 there is an a € 2/ such that | [u — [, u| < € whenever a C b € A

>(c) Let U be an L-space. If (u,)nen is any norm-bounded sequence in U™, show that
liminf, o Uy = sup,,cy infr>n Um

is defined in U, and that [liminf,, , u, <liminf, o [ w,.

(d) Let U be an L-space. Let F be a filter on U such that {u : v > 0, ||u|]| < k} belongs to F for some
k € N. Show that ug = suppcz pcy+ inf F is defined in U, and that [ug < suppczinfuecr [ u.

(e) Let (2, 1) be a measure algebra and A C L}, a non-empty set. Show that A is bounded above in L},
iff
sup{>_"", fa'_ U; : ag, ... ,an is a partition of unity in 2, ug,... ,u, € A}

is finite, and that in this case the supremum is [sup A. (Hint: given ug, ... ,u, € A, set b; = inf; [u; > u;],
a; = b; \ sup;, b;, and show that [sup,.,u; =Y 1" o, Wi-)

(f) Let (A, i) be a measure algebra and u, v € LO(2A)*. Show that [u x vdj = fooo(f[[u>a]] vdii)da.
(Hint: start with u € S(A)™.)

(g) Let (A, 1) be any measure algebra and v : 2/ — R a bounded additive functional. Show that the
following are equiveridical: (i) there is a u € L}, such that va = [ u for every a € 27; (i) for every € > 0
there is a § > 0 such that |va| < e whenever fia < §; (iii) for every € > 0, ¢ € %/ there is a § > 0 such that
va < € whenever a C ¢ and fia < §; (iv) for every € > 0 there are ¢ € AS 5§ > 0 such that |va| < € whenever
a € A and filanc) < 6; (v) lim, o0 va, = 0 whenever (a,),en is a non-increasing sequence in 2/ with
infimum 0.

(h) Let (2, ) and (B, 7) be measure algebras, and 7 : 2 — B a sequentially order-continuous Boolean
homomorphism. Let 7" : L°(A) — L°(B) be the Riesz homomorphism associated with m (364P). Suppose
that w > 0 in L(B) is such that [ wdv = ia whenever a € . Show that for any u € L°(2, i),
JTux wdv = [wdp whenever either is defined in [—oc0, oc].

>(i) Let (2, i) be a measure algebra and a € 2; write 2, for the principal ideal it generates. Show that
if 7 is the identity embedding of 21f N2, into AS, then T}, as defined in 365N, identifies L'(™Ay, ] A,) with
a band in L}L.

>(j) Let (X, %, 1) and (Y, T,v) be measure spaces, with measure algebras (2, i) and (B,7). Let ¢ :
X — Y be an inverse-measure-preserving function and 7 : 8 — 2 the corresponding measure-preserving
homomorphism (324M). Show that T : Lj, — L} (365N) corresponds to the map g* — (9¢)* : L'(v) —
LY (u) of 242Xd.

(k) Let (A, i) and (B, 7) be measure algebras. Let 7 : 2/ — B/ be a ring homomorphism such that,
for some v > 0, v(ma) < vjia for every a € A/, (i) Show that there is a unique order-continuous Riesz
homomorphism T : L}, — L} such that T'(xa) = x(wa) whenever a € 27, and that | 7| <. (ii) Show that
[Tu > a] = n[u > a] whenever v € L}, and o > 0. (iii) Show that 7" is surjective iff 7 is, injective iff 7 is.
(iv) Show that T is norm-preserving iff 7(ra) = fia for every a € 7.

(1) Let (A, 1) and (B,7) be measure algebras, and 7 : % — B a measure-preserving Boolean homo-
morphism. Let T : L, — L} and P : L} — Lj, be the operators corresponding to m[21/, as described in
365N-3650, and 7 : L>(A) — L>*(B) the operator corresponding to 7, as described in 363F. (i) Show
that T(u x v) = Tu x Twv for every u € L}, v e L>(A). (i) Show that if 7 is order-continuous, then

[Pvxu= [vxTufor every u € L®(2), v € L.
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>(m) Let (X, X, u) be a probability space, with measure algebra (2, ), and let T be a o-subalgebra of
X.Setv=plT,B={F*:FeT}CA v=pnlB,so that (B, V) is a measure algebra. Let 7 : B — 2A be
the identity homomorphism. Show that T} : L1 — L}] (365N) corresponds to the canonical embedding of
L'(v) in L*(p) described in 242Jb, while Py : L, — L}, (3650) corresponds to the conditional expectation
operator described in 242Jd.

(n) Let (A, @) and (B, ) be probability algebras, 7 : 2 — B a measure-preserving Boolean homomor-
phism, and T : L°(A) — L°(B) the corresponding Riesz homomorphism. Let € be a closed subalgebra of 2
and P: LY (2, u) — L'(€, [ ¢) C LY, i), Q : LY(B,v) — L'(B, v) the conditional expectation operators
defined from € G A and 7[¢] & B. Show that TP = QT.

(0) Let (2, /i) be a semi-finite measure algebra, and (2, i) its localization (322Q). Show that the natural
embedding of 2 in 2 induces a Banach lattice isomorphism between L1 and Ll, so that the band algebra

of L,l1 can be identified with the Dedekind completion 2 of A

(p) Let A be a Dedekind o-complete Boolean algebra and fi, 7 two functions such that (2, ), (2, 7) are
measure algebras. Show that L}-L C LL (as subsets of LY(2)) iff there is a v > 0 such that va < vjia for
every a € 2. (Hint: show that the identity operator from L, to L} is bounded.)

(q) Let (A, ) be a measure algebra, I, the ideal of ‘purely infinite’ elements of 2 together with 0 and
fist the measure on B = /I, as defined in 322Xa. Let 7 : 2 — B be the canonical map. Show that T,
as defined in 365N, is a Banach lattice isomorphism between Lll-t and L (B, fist).

(r) Let (X, %, 1) be a a semi-finite measure space. Show that L!(u) is separable iff u is o-finite and has
countable Maharam type.

365Y Further exercises (a) Let (2, /) be a semi-finite measure algebra, not {0}. Show that the
topological density of L, is max(w, 7(2), ¢(2)), where 7(2), ¢(A) are the Maharam type and cellularity of
2.

365 Notes and comments You should not suppose that L' spaces appear in the second half of this chapter
because they are of secondary importance. Indeed I regard them as the most important of all function spaces.
I have delayed the discussion of them for so long because it is here that for the first time we need measure
algebras in an essential way.

The actual definition of Lll-t which I give is designed for speed rather than illumination; I seek only a
formula, visibly independent of any particular representation of (2, i) as the measure algebra of a measure
space, from which I can prove 365B. 365C-365D and 365Ea are now elementary. In 365Eb I take a page to
describe a form of the Radon-Nikodym theorem which is applicable to arbitrary measure algebras, at the
cost of dealing with functionals on the ring 2/ rather than on the whole algebra 2(. This is less for the sake
of applications than to emphasize one of the central properties of L': it depends only on 2/ and [ 2/. For
alternative versions of the condition 365Eb(i) see 365Xg.

The convergence theorems (B.Levi’s theorem, Fatou’s lemma and Lebesgue’s dominated convergence
theorem) are so central to the theory of integrable functions that it is natural to look for versions in the
language here. Corresponding to B.Levi’s theorem is the Levi property of a norm in an L-space; note how
the abstract formulation makes it natural to speak of general upwards-directed families rather than of non-
decreasing sequences, though the sequential form is so often used that I have spelt it out (365C). In the
same way, the integral becomes order-continuous rather than just sequentially order-continuous (365Da).
Corresponding to Fatou’s lemma we have 365Xc-365Xd. For abstract versions of Lebesgue’s theorem I will
wait until §367.

In 365H I have deliberately followed the hypotheses of 235A and 235R. Of course 365H can be deduced
from these if we use the Stone representations of (2(, ) and (B,7), so that m can be represented by a
function between the Stone spaces (312Q)). But 365H is essentially simpler, because the technical problems
concerning measurability which took up so much of §235 have been swept under the carpet. In the same
way, 365Xh corresponds to 235E. Here we have a fair example of the way in which the abstract expression
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in terms of measure algebras can be tidier than the expression in terms of measure spaces. But in my view
this is because here, at least, some of the mathematics has been left out.

3651-365J correspond closely to 361F-361H and 363E. 365L is a re-run of 243G, but with the additional
refinement that I examine the action of L' on L> (the operator S) as well as the action of L> on L' (the
operator T'). Of course 365Lc is just the abstract version of 243Hb, and can easily be proved from it. Note
that while the proof of 365L does not itself involve any representation of (2, i) as the measure algebra of
a measure space, (a-vii) and (b-iii) of the proof of 365L depend on the Radon-Nikodym theorem through
327D and 365E. For a development of the theory of L' (2, i) which does not (in a formal sense) depend on
measure spaces, see FREMLIN 74A, 63J.

Theorems 365N-365P lie at the centre of my picture of L' spaces, and are supposed to show their dual
nature. Starting from a semi-finite measure algebra (2, i) we have two essentially different routes to the
L'-space: we can either build it up from indicator functions of elements of finite measure, so that it is
naturally embedded in L°(2A), or we can think of it as the order-continuous dual of L>°(2(). The first is a
‘covariant’ construction (signalled by the formula Ty, = TpT, in 365Ne) and the second is ‘contravariant’
(so that Py, = P; Py in 3650f). The first construction is the natural one if we are seeking to copy the ideas
of §242, but the second arises inevitably if we follow the ordinary paths of functional analysis and study
dual spaces whenever they appear. The link between them is the Radon-Nikodym theorem.

I have deliberately written out 365N and 3650 with different hypotheses on the homomorphism 7 in the
hope of showing that the two routes to L' really are different, and can be expected to tell us different things
about it. I use the letter P in 3650 in order to echo the language of 242J; in the most important context,
in which 2 is actually a subalgebra of B and 7 is the identity map, P is a kind of conditional expectation
operator (365Q). I note that in the proof of 3650e I have returned to first principles, using some of the
ideas of the Radon-Nikodym theorem (232E), but a different approach to the exhaustion step (converting
‘for every u > 0 there is a v > 0 such that Pv < u’ into ‘P is surjective’). I chose the somewhat cruder
method in 232E (part (c) of the proof) in order to use the weakest possible form of the axiom of choice. In
the present context such scruples seem absurd.

I used the words ‘covariant’ and ‘contravariant’ above; of course this distinction depends on the side of the
mirror on which we are standing; if our measure-preserving homomorphism is derived (contravariantly) from
an inverse-measure-preserving transformation, then the 7’s become contravariant (365Xj). An important
component of this work, for me, is the fact that not all measure-preserving homomorphisms between measure
algebras can be represented by inverse-measure-preserving functions (343Jb, 343M).

I have noted at various points (e.g., 242Yd) that the properties of L'(u) are not much affected by
peculiarities in a measure space (X, Y, u). In this section I offer an explanation: unlike L° or L>°, L! really
depends only on 2/, the ring of elements of finite measure in the measure algebra. (See 365N-365P, 365Xo0
and 365Xq.) Note that while the algebra 2 is uniquely determined (given that (2, i) is localizable, 365Ra),
the measure f is not; if 2 is any algebra carrying two non-isomorphic semi-finite measures, the corresponding
L' spaces are still isomorphic (365Rb). For instance, the L'-spaces of Lebesgue measure x4 on R, and the
subspace measure fio 1] on [0, 1], are isomorphic, though their measure algebras are not.

In 365T I have recapitulated the results in §§246, 247, 354 and 356 concerning uniform integrability and
weak compactness, but I make no attempt to add to them. Once we have left measure spaces behind, these
ideas belong to the theory of Banach lattices, and there is little to relate them to the questions dealt with
in this section. But see 373Xj and 373Xn below.

Version of 10.11.08

366 LP

In this section I apply the methods of this chapter to LP spaces, where 1 < p < oo. The constructions
proceed without surprises up to 366E, translating the ideas of §244 by the methods used in §365. Turning
to the action of Boolean homomorphisms on LP spaces, I introduce a space MY, which can be regarded as
the part of L° that can be determined from the ring 2/ of elements of 2 of finite measure (366F), and which
includes LP whenever 1 < p < co. Now a measure-preserving ring homomorphism from 2f to 8/ acts on the
MY spaces in a way which includes injective Riesz homomorphisms from LP (A, i) to LP (B, ) and surjective

(© 1995 D. H. Fremlin
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positive linear operators from LP(B,7) to LP(U, i) (366H). The latter may be regarded as conditional
expectation operators (366J). The case p = 2 (366K-366L) is of course by far the most important. As with
the familiar spaces LP(u) of Chapter 24, we have complex versions L% (2, i) with the expected properties
(366M).

366A Definition Let (2, i) be a measure algebra and suppose that 1 < p < co. For u € LY(2), define
|u|P € L°(2A) by setting

[[uP > a] = [|lu| > a!/?] if a > 0,
=1lifa<0.

(In the language of 364H, |u[P = h(u), where h(t) = |t|P for t € R.) Set
12 = [P@ ) = {usw e L), |ul? € L' (24, )},
and for u € LO(A) set
1
lully = (f lal?)/® = |l |,

counting co!/? as oo, so that LY ={u:ue L), |lull, < oo}

366B Theorem Let (X, i) be a measure space, and (2, ji) its measure algebra. Then the canonical
isomorphism between L°(u) and L°(2() (364Ic) makes LP(u), as defined in §244, correspond to LP (2, ji).

proof What we really have to check is that if w € L°%(u) corresponds to u € LO(21), then |w|?, as defined
in 244A, corresponds to |ul? as defined in 366A. But this was noted in 364Ib.

Now, because the isomorphism between L°(u) and L°(2() matches L' (p) with L% (365B), we can be sure
that |w|? € L'(p) iff |u[’ € L}, and that in this case

leoll, = ([ )" = (f Jul?) " = llull,,

as required.

366C Corollary For any measure algebra (2, i) and p € |1, 00[, LP = LP(, i) is a solid linear subspace of
LO(2A). Tt is a Dedekind complete Banach lattice under its uniformly convex norm || [|,. Setting ¢ = p/(p—1),
(LP)* is identified with L9(2, i) by the duality (u,v) — [uxv. Writing 2/ for the ring {a : a € A, ia < oo},
S(2A7) is norm-dense in LP.
proof Because we can find a measure space (X, 2, u) such that (2, ) is isomorphic to the measure algebra

of p (321J), this is just a digest of the results in 244B, 244E-244H, 244K, 244L and 2440'. (Of course S(2A7)
corresponds to the space S of equivalence classes of simple functions in 244Ha, just as in 365F.)

366D 1 can add a little more, corresponding to 365C and 365L.

Theorem Let (2, i) be a measure algebra, and p € 1, 00].

(a) The norm || ||, on LP? = LP(, i) is order-continuous.

(b) LP has the Levi property.

(c) Setting ¢ = p/(p — 1), the canonical identification of LY = L(2, ) with (LP)* is a Riesz space
isomorphism between L? and (LP)~ = (LP)*.

(d) L? is a perfect Riesz space.

proof (a) Suppose that A C L? is non-empty, downwards-directed and has infimum 0. For w, v > 0 in L?,
u < v =uP <vP (by the definition in 366A, or otherwise), so B = {u? : u € A} is downwards-directed. If

vo = inf B in L' = L' (A, 1), then vé/p (defined by the formula in 366A, or otherwise) is less than or equal to
every member of A, so must be 0, and vg = 0. Accordingly inf B = 0 in L. Because || || is order-continuous

(365C),

ILater editions only.
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infuea [[ull, = infuca [u?[}/” = (infoep oll) /7 = 0.
As A is arbitrary, || ||, is order-continuous.

(b) Now suppose that A C (L?)" is non-empty, upwards-directed and norm-bounded. Then B = {u? :

u € A} is non-empty, upwards-directed and norm-bounded in L!. So vy = sup B is defined in L!, and vé/ P

is an upper bound for A in LP.

(c) By 356Dd, (LP)* = (L?)~ = (LP)*. The extra information we need is that the identification of
L% with (LP)* is an order-isomorphism. P (a) If w € (L9)" and v € (LP)* then u x w > 0 in L', so
(Tw)(u) = [uxw >0, writing T : L? — (LP)* for the canonical bijection. As u is arbitrary, Tw > 0. As w
is arbitrary, 7' is a positive linear operator. (8) If w € L9 and Tw > 0, consider u = (w™)4/?. Then u > 0
in L? and w* x u =0 (because [wt > 0] n[u > 0] = [wt > 0] n[w™ > 0] =0), so

OS(Tw)(u):fwxu:ffw’ xu:ff(uf)ng,
and [(w™)? =0. But as (w™)? > 0 in L', this means that (w™)? and w™ must be 0, that is, w > 0. As w

is arbitrary, 7! is positive and T is an order-isomorphism. Q

(d) This is an immediate consequence of (c), since p = ¢/(¢ — 1), so that LP can be identified with
(L7)* = (L7)*. From 356M we see that it is also a consequence of (a) and (b).

366E Proposition Let (2, i) be a semi-finite measure algebra, and p € [1,00]. Set ¢ = p/(p — 1) if
l<p<oo,g=xifp=1and ¢g=1if p=oo. Then

LA, 1) = {u:u e LOA), ux v e LY, ) for every v € LP(A, i)}

proof (a) We already know that if u € LP = LP(2, i) and v € LY = LI(, ji) then u x v € L' = L' (2, i);
this is elementary if p € {1, 00} and otherwise is covered by 366C.

(b) So suppose that u € LY\ LP. If p = 1 then of course x1 € L = L? and u x x1 ¢ L'. If p > 1 set
A={w:we SR, 0<w < |ul}.
Because i is semi-finite, S(/) is order-dense in L° (364K), and |u| = sup A. Because the norm on L? has
the Levi property (365C, 366Db, 363Ba) and A is not bounded above in LP, sup,,c 4 |Jw]|, = ooc.

For each n € N choose w,, € A with |w,|, > 4". Then there is a v, € L9 such that ||v,||; = 1 and
Jwy, x v, > 4" P (a) If p < co this is covered by 366C, since |wy ||, = sup{ [ w, x v : |jv|, < 1}. (B) If

p = oo then [w, > 4™] # 0; because [i is semi-finite, there is a b C Jw, > 4™] such that 0 < b < oo, and
||%Xb||1 =1, while [w, x ﬁxb >4". Q
Because L7 is complete (363Ba, 366C), v =Y~ ;2 "|v,| is defined in L4. But now

f|u|><v22_”fwn><vn22"
for every n, so u x v ¢ L.
Remark This result is characteristic of perfect subspaces of L?; see 369C and 369J.
366F The next step is to look at the action of Boolean homomorphisms, as in 365N. It will be convenient

to be able to deal with all LP spaces at once by introducing names for a pair of spaces which include all of
them.

Definition Let (2, i) be a measure algebra. Write
MY = MO, i) = {u:ue L), aflul > a] < oo for every o > 0},

M% = MY @) = {u:ue MY, ux xae LA i) whenever fia < oo}

m

366G Lemma Let (2, /i) be any measure algebra. Write M° = M°(2, i), etc.
(a) M° and M are Dedekind complete solid linear subspaces of L? which include L? for every p € [1, c0[;
moreover, M? is closed under multiplication.

MEASURE THEORY



366H Lp 83

(b) If u € M? and u > 0, there is a non-decreasing sequence (u,)nen in S(A) such that u = sup,,cy Un.
() MM ={u:ue L (jul —ex1)T € L! for every € > 0} = L' + (L>= N MP).
(d) If w, v € M0 and [ u < [ v whenever fia < oo, then u < v; so if [ u = [ v whenever fia < oo,

proof (a) If u, v € M% and v € R, then for any o > 0
[lu+v| >a] € [lul > %a]] U flv] > %a]],

lival > ] € [lul > 18],

[lux vl >a] clul > VaJullv] > va]
(364E) are of finite measure. So u + v, yu and u x v belong to M°. Thus M? is a linear subspace of L°
closed under multiplication. If u € MY, |v| < |u| and @ > 0, then [|v] > o] C [|u| > ] has finite measure;
thus v € MY and M? is a solid linear subspace of L°. It follows that M0 also is. If u € LP = LP(2, i),
where p < 0o, and a > 0, then [|u| > o] = [|u|? > aP] has finite measure, so u € M°; moreover, if fia < oo,
then ya € L9, where ¢ = p/(p — 1), so u x xa € L*; thus u € M0,

To see that M is Dedekind complete, observe that if A C (M°)T is non-empty and bounded above by
up € M° and o > 0, then {[u > a] : u € A} is bounded above by [ug > a] € A/, so has a supremum in
21 (321C). Accordingly sup A is defined in L° (364L(a-iii)) and belongs to M°. Finally, MY being a solid
linear subspace of M°, must also be Dedekind complete.

(b) If u > 0 in M?, then there is a non-decreasing sequence (u,)nen in S = S(2) such that u = sup,,cy un
and ug > 0 (364Jd). But now every u, belongs to SN M°% = S(27), just as in 365F.

(¢)(i) If u € M*? and € > 0, then a = [Ju| > €] € A/, so u x ya € L* = LY (2, 1); but (Ju| —ex1)T <
lu| x xa, so (Ju| —ex1)™ € L.

ii) Suppose that v € L and (Ju| —ex1)* € L! for every ¢ > 0. Then, given € > 0, v = (Ju| — 2ex1)t €
2
L', and fifv > 3€] < oo; but [|u| > €] C [v > %€], so also has finite measure. Thus u € M. Next, if a € A/,
then |u x xa| < xa + (Ju| — x1)* € L, sou € M10.

(iii) Of course L' and L® N MY are included in M, so their linear sum also is. On the other hand,
if u € M0, then

w=(ut —x)* — (= —xD)T + (ut Ax1) — (u= Axl) € L' + (L N MP).

(d) Take @ > 0 and set a = [u — v > a]. Because both u and v belong to M3, fia < co and [, u < [, v,
that is, fau — v < 0; so @ must be 0 (365Dc). As « is arbitrary, u —v < 0 and u < v. If fau = fav for
everyaEQlf, then v < u sou=w.

366H Theorem Let (2, /i) and (B, 7) be measure algebras. Let 7 : 4/ — B/ be a measure-preserving
ring homomorphism.
(a)(i) We have a unique order-continuous Riesz homomorphism T = T, : M°(2, ji) — M°(B, ) such
that T'(xa) = x(mwa) for every a € A/.
(i) [Tu > o] = 7[u > ] for every u € M°(2, 1) and o > 0.
(iii) T is injective and multiplicative.
(iv) For p € [1,00] and uw € M°(2, i), ||Tull, = ||ullp; in particular, Tu € LP(B,0) iff u € LP(, ).
Consequently [Tw = [wu whenever u € L* (2, ).
(v) For u € MO, 1), Tu € MYO(B,0) iff u € MO, ).
(b)(i) We have a unique order-continuous positive linear operator P = P, : M1O0(B,0) — MY, f)
such that [ Pv = [ v whenever v € M*(B,7) and a € A/.
(i) If u € MO(A, i), v € MMO(B,v) and v x Tu € M*°(B, ), then P(v x Tu) = u x Pv.
(iii) If ¢ € [1,00[ and v € L9(B, 1), then Pv € LI(A, i) and ||Pv||, < |lv]|4; if v € L>®(B) N MO(B,v),
then Pv € L*™(2() and ||Pv]|co < ||V co-
(iv) PTu = u for every u € M»%(2, ii); in particular, P[LP(B, )] = LP(, i) for every p € 1, 00].
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(c) If (€, \) is another measure algebra and 6 : B8/ — &/ another measure-preserving ring homomorphism,
then Ty, = TpTy : MO(A, i) — MO(€, \) and Py, = PPy : MYO(€, \) — MU0, fi).
(d) Now suppose that 7[/] = B, so that 7 is a measure-preserving isomorphism between the rings A/
and B7.
(i) T is a Riesz space isomorphism between M°(2(, i) and M°(B, ), and its inverse is T 1.
(ii) P is a Riesz space isomorphism between M10(B, ) and M1O(2, i), and its inverse is Py-1.
(iii) The restriction of T to M*O(A, 1) is P~ = P,-1; the restriction of T-! = T, -1 to M*°(B, D) is
P.
(iv) For any p € [1,00[, TILP(A, i) = Pr—1 [LP(A, i) and P[LP(B,v) = T,—1[LP(B, V) are the two
halves of a Banach lattice isomorphism between LP(2, i) and L? (B, 7).

proof (a)(i) By 361J, 7 induces a multiplicative Riesz homomorphism Tj : S(A) — S(87) which is order-
continuous because 7 is (361Ad, 361Je). If u € S(A/) and a > 0, then [Tou > o] = 7[u > a]. P Express
was y ., a;xa; where ag, ... ,a, are disjoint in A7 then Tou = Yo aix(ma;), so
[Tou > o] = sup{ma; : i <n, a; > a} =n(sup{a; : i <n, a; > a}) =nu>a]. Q

Now if ug > 0 in MY, sup{Tpu : u € S(A), 0 < u < ug} is defined in MP. P Set A = {u:ue SA), 0<

u < ug}. Because ug =sup A (366Gb),
sup,ea [Tu > o] = sup,cq m[u > a] = 7(sup,ec [u > o) = wug > o
is defined and belongs to B for any a > 0. Also
inf,>1 sup,ec 4 [Tu > n] = w(inf,>1 Jug > n]) = 0.

By 364L(a-ii), vo = supTp[A4] is defined in L°(B), and [vg > a] = 7[ug > o] € B for every a > 0, so
vy € M2, as required. Q

Consequently T has a unique extension to an order-continuous Riesz homomorphism T : M 2 — M2
(355F).

(ii) If up € M) and a > 0, then

[Tuo > o] = [Tug > o]
(because T is a Riesz homomorphism)

= sup [Tu > o]
uGS(Qlf),Oﬁuguar

(because T is order-continuous and S(2/) is order-dense in M)

= 7lug > af

by the argument used in (i).
(iii) I have already remarked, at the beginning of the proof of (i), that T(u x v') = Tu x T’ for u,
u' € S(AF). Because both T and x are order-continuous and S(2/) is order-dense in M,
T(up x up) = sup{T(ux ) :u, v € SA), 0 <u<wug, 0<u <uy}

=supTu x Tu' = Tug x Tuy

w,u’

whenever ug, v > 0in M g. Because T is linear and X is bilinear, it follows that 7" is multiplicative on M 3.
To see that it is injective, observe that if u # 0 in M then there is some o > 0 such that a = [|u] > o] # 0,
so that 0 < axma < T|u| = |Tu| and Tu # 0.

(iv)(e) For any a > 0,
[[TulP > a] = [T)u| > a'/?] = #|u| > a*/?] = x[|ul? > a].
So

TuPll = [ 7l Tul” > ol da = [ allul” > o] da = |[Juf?||;.
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If p < oo then, taking pth roots, | Tul|, = ||ul|p-

(B) As for the case p = oo, if u € L®(A) and v = |Jul|ec > 0 then [Ju| >~] = 0, so [|Tu| >~] =
m[lu] > ~] = 0. This shows that ||Tu|lcc < 7. On the other hand, if 0 < a < «y then a = [Ju| > o] # 0,
and axa < |u] so ax(ma) < |Tu|; as wa # 0 (because v(ma) = fa > 0), ||Tullcc > «. This shows that
ITu]|co = ||t]loo, at least when u # 0; but the case u = 0 is trivial.

(v) If u € L, then
JTu= (T = 1(Tw)~ | = | Tut s = 1Tu | = ut s~ ol = [

(v) fu € Mé’o and € > 0, then T(|u| A exly) = |Tu| A exls. P Set a = [Ju| > €] € AS. Then
lu| A exleg = exa + |u| — |u| x xa and [|Tu| > €] = wa. So

T(|u| A exly) = T(exa) + T|u| — T(Ju| x xa)
ex(ma) + |Tu| — |Tu| X x(wa) = |Tu| Nexlys. Q

Consequently
T(lul = exla)® = T(lul — Ju| A exla) = (|Tu] — exls) ™.
But this means that (Ju| — ex1a)t € L} iff (|Tu| — exle)" € L. Since this is true for every € > 0, 366Gc
tells us that u € Mé’o iff Tu € Ml—}’o.

(b)(i)(a) By 3650a, we have an order-continuous positive linear operator Py : L) — L}, such that
[, Pov=[_ vforevery ve L. and a € A/

(B) We now find that if v > 0 in My® and B = {v : v € L1, 0 < v < vy}, then Py[B] has a
supremum in L°(2() which belongs to M, ;’O. P Because B is upwards-directed and Py is order-preserving,
Py[B] is upwards-directed. If & > 0 and v € B and a = [Pyv > «], then

v < (vo — §x1n)t + Sxls,

SO

ajia < /Pov = / v < /(1}0 - %Xl%ﬁ + gﬁ(ﬂa)
_ S TR
—/(Uo Qxl%) + S Ha
and
_ 2 N
a[Pov > a] < Ef(v — $xla)t.
Thus {[Pyv > o] : v € B} is an upwards-directed set in 21/ with measures bounded above in R, and
Ca = SUp,ecp [Pov > a
is defined in 2/. Also

. _ . 2
inf,,>1 fic, <infp>q ;f(v — %Xlg)"‘ =0.

So inf,en e, = 0 and Py[B] has a supremum ug € L°(21) (364L(a-ii)). As [up > a] = co € A for every
a>0,uye M) If c €A, then

fcuo = SUD,cB fc Pyv =sup,cp fmv < fm v < 00,
S0 ug € MFIL’O. Q

() Now 355F tells us that Py has a unique extension to an order-continuous positive linear operator
P: Mﬁl’0 — M;’O. If v9 > 0in M;’O and a € A/, then, as remarked above,
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/on:sup{/Pov:veL};,Ogvgvo}
a a

:sup{/ v:UEL},,Ogvgvo}:/ Vo3
Ta

ma
because P is linear, [ Pv = [ v for every v e MM ael.
(6) By 366Gd, P is uniquely defined by the formula
fa Pv = fm v whenever v € Mﬁl’0 and a € A7,

(ii) Because M 2 is closed under multiplication, u x Pv certainly belongs to M 3 .

() Suppose that u, v > 0. Fix ¢ € A for the moment. Suppose that v’ € S(27). Then we can
express u’ as Z?:o a;xa; where a; € Af for every i < n. Accordingly

fc u' x Pv=3Y", aifc Po=3%", aifv x x(mwa;) x x(mwe) = fmv x Tu'.

Next, we can find a non-decreasing sequence (u,)nen in S(F)T with supremum u, and

sup/un vazsup/ vxTun:/ supv X Tu,
neNJe neN Jre e neN

:/ vxsupTun:/ v X Tu,
e neN mc

using the order-continuity of 7, [ and x. But this means that u x Pv = sup,, ¢y u, X Puv is integrable over
cand that [ ux Pv= [ v xTu. As cis arbitrary, u x Pv = P(v x Tu) € M.

na;

(B) For general u, v,
v X Tut + vt x Tu™ + v~ x Tut + v~ x Tu™ = |[v| x T|u| = |v x Tu| € Mp"°

(because T is a Riesz homomorphism), so we may apply («) to each of the four products; combining them,
we get P(v x Tu) = u x Pv, as required.

(iii) Because P is a positive operator, we surely have |Pv| < Plv|, so it will be enough to show that
|Pv|lq < |lv]lq for v >0in LE.

(@) I take the case ¢ = 1 first. In this case, for any a € A/, we have [ Pv = [ v < [jv[l;. In
particular, setting a,, = [Pv > 27"], fan Puv < |lv]jy. But Pv = sup,cy Pv X Xan, s0

1Pv]ls = suppey [, Pv < vl
(B) Next, suppose that ¢ = oo, so that v € L>®(B)*; say |[v]|ec =7. T If v > 0 and a = [Pv > 7] #
0, then
yia < fa Py = fm v < yp(ra) = yiha. X

So [Pv > ~] =0 and Pv € L (), with ||Pv]|cc < [|V|loo, at least when ||[v||oo > 0; but the case ||vlcc =0
is trivial.

(7) T come at last to the ‘general’ case ¢ € |1,00[, v € Li. In this case set p = ¢/(¢ —1). If u € L},
then Tu € LY so Tu x v € L and

|/u X Pv| < |lu x Pv||; = [|P(Tu x v)|1
(by (ii))

< ||ITw x v|1
(by (@) just above)
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:/ITUI x o] < | Tullpllvllg = llullpllvllg

by (a-iii) of this theorem. But this means that u — [u x Pv is a bounded linear functional on L}, and
is therefore represented by some w € L% with [|w|q < [[v]lg. If @ € A then xa € LV, so [ w = [, Puv;
accordingly Puv is actually equal to w (by 366Gd) and ||Pvl||q = |lw|q < ||v]lg, as claimed.

(iv) IquMé’o and a € A, we must have
faPTu:fmTu:fT(Xa)xTu:fT(Xaxu)zfxaxu:fau,

using (a-iv) to see that [ xa x u is defined and equal to [T(xa x u). As a is arbitrary, u € My and
PTu = u.

(c) As usual, in view of the uniqueness of Ty, and Py, all we have to check is that

TyT(xa) = Tyx(ma) = x(0ma) = Ty (xa),

fa PPyw = fﬂ'a Pow = f@‘n’aw = fa Porw

whenever a € A/ and w € M;’O.

(d)(i) By (¢), Tx—1T = Tr-1, must be the identity operator on Mg; similarly, TT,.—1 is the identity
operator on MY. Because T and T, -1 are Riesz homomorphisms, they must be the two halves of a Riesz
space isomorphism.

(ii) In the same way, P and P,—1 must be the two halves of an ordered linear space isomorphism
between M, ;’0 and M;’O, and are therefore both Riesz homomorphisms.

(iii) By (b-iv), PTu = u for every u € Mé’o, SO T[Mé’o must be P~1. Similarly P = Pﬁ‘_l1 is the
restriction of T=! = T, -1 to M.

(iv) Because T~'[LY] = L% (by (a-iv)), and T is a bijection between M7 and MY, T L} must be a
Riesz space isomorphism between LZ and LP: (a-iv) also tells us that it is norm-preserving. Now its inverse
is P| L%, by (iii) here.

3661 Corollary Let (2, i) be a measure algebra, and 9B a o-subalgebra of 2. Then, for any p € [1, o],
LP(B, i[B) can be identified, as Banach lattice, with the closed linear subspace of LP(, 1) generated by
{xb:be B, ub< oo}

proof The identity map b +— b : B — 2l induces an injective Riesz homomorphism 7T : L°(B) — L°(A)
(364P) such that Tu € Ly = LP(2, i) and ||Tu||, = ||ul|, whenever p € [1,00[ and u € L, = LP(B, u|B)
(366H(a-iv)). Because S(B/), the linear span of {xb: b € B, ib < oo}, is dense in L%, (366C), the image of
LY in L} must be the closure of the image of S(B7) in L}, that is, the closed linear span of {xb: b € B/}
interpreted as a subset of L.

366J Corollary If (2, 1) is a probability algebra, B is a closed subalgebra of 2, and P : L'(2, i) —
LY(B, i B) is the conditional expectation operator (365Q), then ||Pul|, < |lu, whenever p € [1,00] and
u € LP(A, ).

proof Because (2, ji) is totally finite, M"0(2, i) = L}, so that the operator P of 366Hb can be identified
with the conditional expectation operator of 365Q. Now 366H(b-iii) gives the result.

Remark Of course this is also covered by 244M.
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366K Corollary Let (2, /i) and (8,7) be measure algebras, and 7 : 2/ — B/ a measure-preserving
ring homomorphism. Let T : L?(2, 1) — L*(B,7) and P : L*(B,7) — L?(2, i) be the corresponding
operators, as in 366H. Then TP : L?(B,7) — L?(*B, 7) is an orthogonal projection, its range T P[L? (8, 7))
being isomorphic, as Banach lattice, to L?(2, j1). The kernel of TP is just

{v:ve L*(B,v), fmv = 0 for every a € AS}.

proof Most of this is simply because T is a norm-preserving Riesz homomorphism (so that T[LIQI] is
isomorphic to L2), PT is the identity on L2 (so that (T'P)*> = TP) and || P|| <1 (so that |TP| < 1). These
are enough to ensure that TP is a projection of norm at most 1, that is, an orthogonal projection. Also

TPv=0 << Pv=0 < /Pv:Oforeveryatef

= / v =0 for every a € A7.
T™a

366L Corollary Let (2, /i) be a measure algebra, and 7 : 2/ — A/ a measure-preserving ring automor-
phism. Then there is a corresponding Banach lattice isomorphism T of L? = L?(, 1) defined by writing
T(xa) = x(ma) for every a € /. Tts inverse is defined by the formula

fa T 1y = fm u for every u € L%, a € AS.
proof In the language of 366H, T = T, and T~! = P;.

*366M Complex LP spaces (a) Just as in §§241-244, we have ‘complex’ versions of all the spaces
considered in this chapter. Using the representation theorems for Boolean algebras, we can get effective
descriptions of these matching the ones in Chapter 24. Thus for any Boolean algebra %I with Stone space
Z, we can identify L (2() with the space C(Z;C) of continuous functions from Z to C; inside this, we have
a || ||co-dense subspace S¢(21) consisting of complex linear combinations of indicator functions of open-and-
closed sets. If 2 is a Dedekind o-complete Boolean algebra, identified with a quotient ¥/ M where ¥ is a
o-algebra of subsets of a set Z and M is a o-ideal of ¥, then we can write £ for the set of functions from
Z to C such that their real and imaginary parts are both ¥-measurable, W for the set of those f € L2
such that {z : f(z) # 0} belongs to M, and L = L2(2A) for the linear space quotient £/Wec. As in 2417,
we find that we have a natural embedding of L° = L%(2) in L and functions

Re: L2 —L° ZIm:L%—L° | |:L¢—L° ~:LQ— LY
such that
u=TRe(u)+iZm(u), Re(u+wv)=TRe(u)+ Re(v), Im(u+wv)=Zm(u)+Zm(v),

Re(au) = Re(a) Re(u) — Zm(a) Zm(u), Zm(ou) = Re(a)ZIm(u)+ Im(a)Re(u),

lauf = allul,  fu+o] <|ul+]ol,  |u] = sup), —, Re(yu),

i =TRe(u)—iZm(u), u+v=ua+7, au=au

for all u, v € L?C and a € C.
I seem to have omitted to mention it in 241J, but of course we also have a multiplication

uxv=(Re(u) x Re(v) — Im(u) x Im(v)) + i(Re(u) x Im(v) + Zm(u) x Re(v)),
for which we have the expected formulae

uxv=vXxu, uX@xw)=@wxv)xw, uxV+w)=(uxv)+(uxw)),

(au) x v =u X (av) = a(u X v),

uxXv=uxv, |uxvl=ulxv, wuxu=]u?=(Re(u))?+ (Im(u))?

for u, v € L2 and o € C.
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(b) If (A, i) is a measure algebra and 1 < p < co, we can think of L%(2, ii) as the set of those u € L
such that |u| € LP(2, ), with its norm defined by the formula |lu, = |||u|||,; this will make LE (2, i) a
Banach space (cf. 242Pb, 244Pb?), with dual L9(2, ji) where % + % =1if p > 1 (244Pb again). (Similarly,
if (2, ) is localizable, the dual of L& (2, i) can be identified with L, as in 365Lc.)

Writing Sc (/) for the space of linear combinations of indicator functions of elements of 2 of finite
measure, Sc(2/) is dense in LE (2, 1) whenever 1 < p < 0o, as in 366C.

(c) Of course L'- and L2-spaces have special additional features, their integrals and inner products. Here
we can set

fu: fRe(u) +ifl'm(u)

for u € LE(A, i), and [ : LE(A, 1) — C becomes a C-linear functional. As for L?, we see at once from the
formulae above that

jux o] = ul x Jo] € LN A), wxve LA, [uxa=|ul3
for u, v € LZ(2A, ). So if we set

(u|v):fu><77

for u, v € LZ(A, 1), LZ(2, [i) becomes a complex Hilbert space.

(d) In the language of the present chapter we have something else to look at. If 2, B are Dedekind
o-complete Boolean algebras and 7 : 2l — ‘B is a sequentially order-continuous Boolean homomorphism,
then we have a linear operator T : L%() — L2(B) defined by setting Tru = T (Re(u)) 4+ iTE (Zm(u)),
where T : LO(20) — L°(B) is the Riesz homomorphism described in 364P. Of course Ty, like T:! will be
multiplicative; hence, or otherwise, Ty|u| = |Tru| for every u € L&(). Observe that T,u = Tru for every
u € L2(A). Also, as in 364Pe, if € is another Dedekind o-complete Boolean algebra and 7 : 2 — B and
¢ : B — € are sequentially order-continuous Boolean homomorphisms, Ty, = TgT,. Soif 7 : A — A is a
Boolean automorphism, 7T will be a bijection with inverse T -1.

(e) Similarly, if (2(, i) is a measure algebra and 7 : 2 — 2[ is a measure-preserving Boolean homomor-
phism, [Tru= [u for every u € L{.(A, i). If u, v € LZ(A, i), then

(Tru|Trv) = fT,ru X T = fT,ru X Trt = fTw(u X V) = fu x 0 = (ulv).
If 7 is actually a measure-preserving Boolean automorphism, we shall have
(Tru|v) = (Tr-1Tru|Tr-1v) = (u|T v)
for all u, v € LA(, fi).

366X Basic exercises (a) Let (%, /i) be a measure algebra and p € ]1,00[. Show that [[ullp =
p s o aflul > o] da for every u € LO(21). (Cf. 263Xa.)

>(b) Let (2, 1) be a localizable measure algebra and p € [1,00]. Show that the band algebra of L}, is
isomorphic to 2. (Cf. 365R.)

(c) Let (A, 1) be a measure algebra and p € |1, 00[. Show that L}, is separable iff L, is.

(d) Let (2, 1) be a measure algebra. (i) Show that L>(2) N M2 and L>(2) N Mé’o, as defined in 366F,

are equal. (ii) Call this intersection Mj* 0. Show that it is a norm-closed solid linear subspace of L™ (2),
therefore a Banach lattice in its own right.

(e) Let (A, @) be a semi-finite measure algebra and (é\l, fv) its localization (322Q)). Show that the natural
embedding of 2 in A induces a Banach lattice isomorphism between Lﬁ and Lg for every p € [1, 00[, so that

the band algebra of L can be identified with 2.

2Formerly 2440.

D.H.FREMLIN



90 Function spaces 366Xf

(f) Let (A, 1) be a semi-finite measure algebra which is not localizable (cf. 211Ye, 216D), and (5[, 1) its
localization. Let 7 : 2 — 24 be the identity embedding, so that 7 is an order-continuous measure-preserving
Boolean homomorphism. Show that if we set v = xb where b € 2\ 2, then there is no u € L>(2) such that
J,w=[_, v whenever fia < co.

(g) In 366H, show that [Tu € E] = 7[u € E] (notation: 364G) whenever u € M_ and E C R is a Borel
set such that 0 ¢ E.

>(h) Let (2, i) be a measure algebra and let G be the group of all measure-preserving ring automorphisms
of A/, Let H be the group of all Banach lattice automorphisms of L%. Show that the map 7 — T of 366L
is an injective group homomorphism from G to H, so that G is represented as a subgroup of H.

(1) Let ((2;, fi;))icr be any family of measure algebras, with simple product (2, i) (322L). Show that for
any p € [1,00], Lg can be identified, as normed Riesz space, with the solid linear subspace

{u ful = (Dier (@) ? < oo}
of [Tie; L.

(j) Let A be a Dedekind o-complete Boolean algebra and fi, 7 two functionals rendering 2 a semi-finite
measure algebra. Show that for any p € [1, 00|, Lg and LY are isomorphic as normed Riesz spaces. (Hint:
use 366Xe to reduce to the case in which 2 is Dedekind complete. Take w € L°(2l) such that fa wdpi = va
for every a € A (365S). Set Tu = w'/? x u for u € L%.)

(k) Let (A, 1) and (2B, 7) be semi-finite measure algebras, and p € [1,00[. Show that the following are
equiveridical: (i) L}, and L} are isomorphic as Banach lattices; (ii) L}, and L} are isomorphic as Riesz
spaces; (iii) 20 and 9B have isomorphic Dedekind completions.

(1) For a Boolean algebra %A, state and prove results corresponding to 363C, 363Ea and 363F-363I for
L () as defined in 366Ma.

366Y Further exercises (a) Let (2, i) be a measure algebra and suppose that 0 < p < 1. Write
LP = L = LP(A, 1) for {u : uw € LOA), [ul? € LL}, and for u € LP set 7(u) = [|ul’. (i) Show that 7
is an F-seminorm (2A5B%) and defines a Hausdorff linear space topology on LP. (ii) Show that if A C L?
is non-empty, downwards-directed and has infimum 0 then inf,c4 7(u) = 0. (iii) Show that if A C LP is
non-empty, upwards-directed and bounded in the linear topological space sense then A is bounded above.
(iv) Show that (LP)~ = (LP)* is just the set of continuous linear functionals from L? to R, and is {0} iff A
has no atom of finite measure.

(b) Let (2, ji) be a measure algebra. Show that M%(2, 1) has the countable sup property.

(c) Let (2, i) be a measure algebra and define M7* as in 366Xd. Show that (M;>)* can be identified
with LL.
m

(d) In 366H, show that if 7 : M°(2l, 7) — M°(B,7) is any positive linear operator such that T'(ya) =
x(7a) for every a € A7, then T is order-continuous, so is equal to T.

(e) Let (2, 1) be a measure algebra. (i) Show that there is a natural one-to-one correspondence between
M*Y°(2A, i) and the set of additive functionals v : 21/ — R such that v < p in the double sense that for
every € > 0 there are , M > 0 such that |va| < e whenever pa < § and |va| < epa whenever pa > M. (ii)
Use this description of M1 to prove 366H(b-i).

(f) In 366H, show that the following are equiveridical: («) n[27] = BF; (8) T = T, is surjective; ()
P = P, is injective; (§) P is a Riesz homomorphism; (€) there is some ¢ € [1, 0] such that ||Pv|l, = ||v]4
for every v € L; (¢) TPv = v for every v € M>°.

3Later editions only.
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(g) Let (A, i) and (B, 7) be measure algebras, and suppose that 7 : 2f — B is a measure-preserving
ring homomorphism, as in 366H; let 7" : MS — MY be the associated linear operator. Show that if 0 < p < 1
(as in 366Ya) then Lf, € M) and T~'[L}] = L.

(h) Let (A, 1) be a totally finite measure algebra. (i) For each Boolean automorphism 7 : A — 2,
let T : L°(A) — L°(A) be the associated Riesz space isomorphism, and let w, € (L))" be such that
[, wr = p(m~ta) for every a € A (365Ea). Set Qru = Tru X \/wy for u € LO(A). Show that [|Qrullz = [lull
for every u € L%. (ii) Show that if 7, ¢ : A — A are Boolean automorphisms then Q¢ = Q-Q4.

(i) Let (A, f1) be a measure algebra, and 7 : A/ — 2/ a measure-preserving Boolean homomorphism,
with associated linear operator T : M, g — M 8. Show that the following are equiveridical: (i) there is some
p € [1,00[ such that {77} L : n € N} is relatively compact in B(L}; L%) for the strong operator topology; (ii)
for every p € 1,00, {T? L}, : n € N} is relatively compact in B(L}; L}) for the strong operator topology;
(iii) {7"a : n € N} is relatively compact in 2/, for the strong measure-algebra topology, for every a € Uf.

(j) Let A be a Dedekind o-complete Boolean algebra. Show that L2(2l) can be identified with the
complexification of L(2) as defined in 354YL.

(k) Write B(C) for the Borel o-algebra of C = R? as defined in 111Gd. Show that if 2 is a Dedekind
o-complete Boolean algebra, we have a unique function (u, E) — [u € E] : L%(2) x B(C) — 2 such that
(i) for any u € L2(2A), the function E +— [u € E] is a sequentially order-continuous Boolean homomorphism
from B(C) to A (ii) if Ey, E1 C R are Borel sets, then [u € Ey x E1] = [Re(u) € Eo] n [Zm(u) € Eq] for
every u € L&(2) (iii) if ¢ : B(C) — 2 is a sequentially order-continuous Boolean homomorphism, then there
is a unique u € L2(2) such that ¢(E) = [u € E] for every E € B(C).

(1) A function b : C — C is called Borel measurable if its real and imaginary parts are 5(C)-measurable,
where B(C) is the Borel o-algebra of C. Let 2 be a Dedekind o-complete Boolean algebra. (i) Show that
for every Borel measurable h : C — C and u € L2(2) we have an element h(u) € L2(2A) such that
[h(v) € E] = [u € h~'[E]] for every E € B(C). (ii) Show that if 7 : 2 — 2 is a sequentially order-
continuous Boolean homomorphism and 7" : L2 (A) — L(A) the corresponding linear operator (366Mc),
then Th = hT for every Borel measurable h : C — C.

(m) Show that a normed space over C has the Hahn-Banach property of 363R for complex spaces iff it
is isomorphic to L (2() for some Dedekind complete Boolean algebra 2.

366 Notes and comments The LP spaces, for 1 < p < oo, constitute the most important family of
leading examples for the theory of Banach lattices, and it is not to be wondered at that their properties
reflect a wide variety of general results. Thus 366Dd and 366E can both be regarded as special cases
of theorems about perfect Riesz spaces (356M and 369D). In a different direction, the concept of ‘Orlicz
space’ (369Xd below) generalizes the LP spaces if they are regarded as normed subspaces of L invariant
under measure-preserving automorphisms of the underlying algebra. Yet another generalization looks at the
(non-locally-convex) spaces L? for 0 < p < 1 (366Ya).

In 366H and its associated results I try to emphasize the way in which measure-preserving homomorphisms
of the underlying algebras induce both ‘direct’ and ‘dual’ operators on LP spaces. We have already seen
the phenomenon in 365N-3650. I express this in a slightly different form in 366H, noting that we really do
need the homomorphisms to be measure-preserving, for the dual operators as well as the direct operators,
so we no longer have the shift in the hypotheses which appears between 365N and 3650. Of course all
these refinements in the hypotheses are irrelevant to the principal applications of the results, and they
make substantial demands on the reader; but I believe that the demands are actually demands to expand
one’s imagination, to encompass the different ways in which the spaces depend on the underlying measure
algebras.

In the context of 366H, L is set apart from the other LP spaces, because L>(2l) is not in general
determined by the ideal 2/, and the hypotheses of 366H do not look outside 2/. 366H(a-iv) and 366H (b-iii)
reach only the space M>>? as defined in 366Xd. To deal with L> we need slightly stronger hypotheses. If
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we are given a measure-preserving Boolean homomorphism from 2 to 8, rather than from 2/ to B/, then
of course the direct operator T has a natural version acting on L*°(2() and indeed on M ;’oo, as in 363F and
369Xi. If we know that (2L, i) is localizable, then 2 can be recovered from 21/, and the dual operator P acts
on L*™(%B), as in 369Xi. But in general we can’t expect this to work (366Xf).

Of course 366H can be applied to many other spaces; for reasons which will appear in §§371 and 374, the
archetypes are not really LP spaces at all, but the spaces M9 (366F) and M1:°°.

Iinclude 366L and 366Yh as pointers to one of the important applications of these ideas: the investigation
of properties of a measure-preserving homomorphism in terms of its action on LP spaces. The case p = 2
is the most useful because the group of unitary operators (that is, the normed space automorphisms) of L2
has been studied intensively.

Version of 2.5.16/7.9.18

367 Convergence in measure

Continuing through the ideas of Chapter 24, I come to ‘convergence in measure’. The basic results of
§245 all translate easily into the new language (367L-367M, 367P). The associated concept of (sequential)
order-convergence can also be expressed in abstract terms (367A), and I take the trouble to do this in the
context of general lattices (367A-367B), since the concept can be applied in many ways (367C-367E, 367K,
367Xa-367Xp). In the particular case of L° spaces, which are the first aim of this section, the idea is most
naturally expressed by 367F. It enables us to express some of the basic theorems in Volumes 1 and 2 in the
language of this chapter (3671-367J).

In 367N and 3670 I give two of the most characteristic properties of the topology of convergence in
measure on L; it is one of the fundamental types of topological Riesz space. Another striking fact is the
way it is determined by the Riesz space structure (367T). In 367U I set out a theorem which is the basis
of many remarkable applications of the concept; for the sake of a result in §369 I give one such application
(367V).

367A Order*-convergence As I have remarked before, the function spaces of measure theory have three
interdependent structures: they are linear spaces, they have a variety of interesting topologies, and they are
ordered spaces. Ordinary elementary functional analysis studies interactions between topologies and linear
structures, in the theory of normed spaces and, more generally, of linear topological spaces. Chapter 35 in
this volume looked at interactions between linear and order structures. It is natural to seek to complete the
triangle with a theory of topological ordered spaces. The relative obscurity of any such theory is in part
due to the difficulty of finding convincing definitions; that is, isolating concepts which lead to elegant and
useful general theorems. Among the many rival ideas, however, I believe it is possible to identify one which
is particularly important in the context of measure theory.

In its natural home in the theory of L® spaces, this notion of ‘order*-convergence’ has a particularly
straightforward expression (367F). But, suitably interpreted, the same idea can be applied in other contexts,
some of which will be very useful to us, and I therefore begin with a definition which is applicable in any
lattice.

Definition Let P be a lattice, p an element of P and (p,)nen a sequence in P. I will say that (p,)nen
order*-converges to p if

p=inf{g: AneN, ¢q> (' Vp)Ap'Vi>n}
=sup{q: IneN, ¢<p' V(p; Ap")Vi>n}

whenever p’ < p <p” in P.

Remark In the formulae above, we always have p’ V (p; Ap”) < (p' V p;) A D", because p’ < p”’. If P is a
distributive lattice, both are equal to med(p’, p;, p”).

(© 1998 D. H. Fremlin
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367B Lemma Let P be a lattice.

(a) A sequence in P can order*-converge to at most one point.

(b) A constant sequence order*-converges to its constant value.

(¢) Any subsequence of an order*-convergent sequence is order*-convergent, with the same limit.

(d) If (pn)nen and (p),)nen both order*-converge to p, and p, < ¢, < p), for every n, then (gn)nen
order*-converges to p.

(e) If (pn)nen is an order-bounded sequence in P, then it order*-converges to p € P iff
p=inf{g: IneN, ¢g>p;Vi>n}
=sup{g: IneN, ¢<p;Vi>n}.

(f) If P is a Dedekind o-complete lattice (314Ab) and (p,)nen is an order-bounded sequence in P, then
it order*-converges to p € P iff

p = sup,,ey infi>, pi = infren sup; >, pi-
proof (a) Suppose that (p,)nen is order*-convergent to both p and p. Set p" = p A p, p”’ = pV p; then
p=inf{g: IneN, ¢> (p'Vp;) Ap'Vi>n}=p.
(b) is trivial.

(c) Suppose that (p,)nen is order*-convergent to p, and that (p] )nen is a subsequence of (py,)nen. Take
p’, p” such that p’ < p < p”, and set

B={q:3neN,¢<p' V(piAp")Vi>n},
B'={¢:3IneN, ¢g<p V@, AD")Vi>n},
C={q:3neN,q= @ Vp)Ap"Vi=n},
C'={q:3IneN,qg> @' V) Ap"Vi>n}.
If ¢ € B’ and ¢’ € C, then for all sufficiently large 4
a<p'VEiAP) < V) AP <.

As p = inf C, we must have ¢ < p; thus p is an upper bound for B’. On the other hand, {p} :i >n} C {p;:
1 > n} for every n, so B C B’ and p must be the least upper bound of B’, since p = sup B.
Similarly, p = inf C’. As p’ and p” are arbitrary, (p],),en order*-converges to p.

(d) Take p', p” such that p’ < p < p”, and set
B={q:3neN,¢<p'V(pAp")Vi>n},
B'={q: 3neN,¢<p V(g Ap")Vi>n},
C={¢:3IneN,q>@ V) Ap'Vi>n},
C'={q:3IneN,¢g> @' Vag)Ap'Vi>n}.
If ¢ € B’ and ¢’ € C, then for all sufficiently large 4
g<p' V(gAp) <@ VP AP <q.

As p = inf C, we must have ¢ < p; thus p is an upper bound for B’. On the other hand, p' V (p; A p”) <

P’V (g; Ap") for every i, so B C B’ and p = sup B’. Similarly, p = inf C’. As p’ and p” are arbitrary, (g, )nen
order*-converges to p.

(e) Set
B={q:3neN,¢<p;Vi>n},

C={q: IneN,¢g>p;Vi>n}

D.H.FREMLIN



94 Function spaces 367B

(i) Suppose that (p,)nen order*-converges to p. Let p’, p” be such that p’ < p,, < p” for every n € N
and p’ < p < p”. Then
B={q:3neN,q¢<p'V(p;\p")Vi>n},
so sup B = p. Similarly, inf C' = p, so the condition is satisfied.
(ii) Suppose that sup B = inf C' = p. Take any p’, p” such that p’ < p < p” and set
B'={q:3IneN,g<p'V{piAp")Vi>n},

C'={q:3IneN,q¢> @ Vp)Ap"Vi>n}
If ¢ € B’ and ¢’ € C, then for all large enough ¢
g<p'vVinp")<p Ve =4
because p < ¢’. As inf C = p, p is an upper bound for B’. On the other hand, if ¢ € B, then ¢ < p, so
q < p'V(p; Ap") whenever ¢ < p;, which is so for all sufficiently large i, and ¢ € B’. Thus B’ D B and p
must be the supremum of B’. Similarly, p = inf C’; as p’ and p” are arbitrary, (p,)nen order*-converges to
.
(f) This follows at once from (e). Setting
B={q:3neN,¢g<p;Vi>n}, B ={inf;>,p;:iecN},

then B’ C B and for every ¢ € B there is a ¢’ € B’ such that g < ¢’; so sup B = sup B’ if either is defined.
Similarly,

inf{g: dn €N, ¢ > p; Vi > n} = inf,ensup;>,, pi
if either is defined.

Remark Part (b) above tells us that we may speak of ‘the’ order*-limit of an order*-convergent sequence.

367C Proposition Let U be a Riesz space.
(a) Suppose that (u,)nen, (Un)nen are two sequences in U order*-converging to u, v respectively.
1) {(uy, + w)nen order*-converges to u + w for every w € U, and au,, order*-converges to au for ever
€ g y ) g y
a € R.
ii) {up V vn)nen order*-converges to u V v and {u, A v,)nen order*-converges to u A v.
€ g € g
(iii) If (wp)nen is any sequence in U, then it order*-converges to w € U iff (Jw, — w|)pen order*-
converges to 0.
(iv) (un + Vn)nen order*-converges to u + v.
(v) If (wp)nen and (z,)nen are sequences in U, (wy,)nen order*-converges to 0 and |z,| < |w,| for every
n, then (z,)nen order*-converges to 0.
(b) Now suppose that U is Archimedean.
(1) If {(@pn)nen is a sequence in R converging to « € R, and (u,, )nen is a sequence in U order*-converging
to u € U, then (o, un)nen order*-converges to au.
ii) A sequence (wp)nen in UT is not order*-convergent to 0 iff there is a @ > 0 such that & =
q € g
Sup; >, W A w; for every n € N.
iii) If (un)nen is a sequence in U™ such that " Ju; : n € N} is bounded above, then (u,)nen
=0
order*-converges to 0.

proof (a)(i)(a) (u, + w)pen order*-converges to u 4+ w because the ordering of U is translation-invariant;
the map w’ — w’ + w is an order-isomorphism.

(B) If & > 0, then the map w’ — aw’ is an order-isomorphism, so (@, ),en order*-converges to cu.
(7) If @ =0 then {(ouy,)nen order*-converges to au = 0 by 367Bb.
() If v < —u < w” then —w” <u < —w' so
u=inf{w: In e N, w > ((—w") Vu;) A (—w') Vi>n}
=sup{w: IneN, w < (—w") V (u; A (—w')) Vi>n}.
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Turning these formulae upside down,

—u=sup{w: Ine N, w < (W’ A (—w;))Vw Vi>n}
=inf{w: IneN, w > w" A ((—u;) V') Vi>n}.

As w' and w” are arbitrary, (—uy,)nen order*-converges to —u.

95

(€) Putting (38) and (9) together, (auy,)nen order*-converges to au for every o < 0.

ii) Suppose that w’ < u Vv < w”. Set
(ii) Supp
B={w:3dneN, w<w V ((u; Vv)) Nw")Vi>n},
C={w:3dneN,w> (w'V (u V) Aw'Vi>n},
Bi={w:3IneN, w< (wAuw)V (u; Aw")Vi>n},
={w:IneN,w< (W AV)V (v Aw')Vi>n},
Ci={w:3IneN,w>((w Au)Vu) Aw"Vi>n},

={w:3dneN, w>((w Av) V) Aw'" Vi>n},

If wy € By and wy € By then wy Vwse € B. P There is an n € N such that w; < (w' Au) V (u; Aw”) for

every i > n, while wy < (w' Av) V (v; Aw”) for every i > n. So

wy Vaws < (W Au) V(W Av)V (u; Aw”)V (v; Aw')
=W A (uVo)V ((u; Vo) Aw")
(352Ec)
=w' V ((u; V) Aw”)

for every i > n, and wy Vws € B. Q

Similarly, if w; € C; and wy € Cs then wyVws € C. PP There is an n € N such that wy; >

and we > ((w' Av) V) Aw” for every i > n. So

(W Au)Vu) Aw”) vV (((w Av) Vo) Aw')
(W' Au)Vu; V(w Av) Vo) Aw”
(w' A (V) V (u; Vo)) Aw”

"V o(ui Vo)) Aw”

wy V wa

> (
= (
(
= (w

for every i > n, so w1 Vws € C. Q

((w' Au)Vuy) Aw”

At the same time, of course, w < w whenever w € B and w € C, since there is some ¢ € N such that

w<wV ((u; Vo) Aw'”) < (w'V (u; Vo)) Aw” < .
Since

sup{w; V wy : wy € By, wy € Ba} = (sup By) V (sup Bz) = u Vv,

inf{w1 Vawsy:wy € C, wy € CQ} = (1nfC’1) \Y (lnfCQ) =uVv

(using the generalized distributive laws in 352E), we must have sup B = inf C = «w V v. As w’ and w” are

arbitrary, (u, V vp)nen is order*-convergent to u V v.

Putting this together with (i), we see that (un, A vp)neny = (—((—un) V (—vy)))nen order*-converges to

—((—u) V (=v)) =uAwv.

(iii) The hard parts are over. («) If (w,)nen order*-converges to w, then (w,, —

w>n€N7 <w - wn>n€N

and (|w, — w)neny = ((Wn — w) V (W — wy))nen all order*-converge to 0, putting (i) and (ii) together. (B)
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If (|wy, — w|)nen order*-converges to 0, then so do (—|w, — w|)nen and (w, — w)pen, by (i) and 367Bd; so
(wp)nen order*-converges to 0, by (i) again.

(iv) (Jun — ul)nen and (v, — v|)nen order*-converge to 0, by (iii), so (2(|un, — u| V vy, — v|))nen also
order*-converges to 0, by (ii) and (i). But

0< [(un +va) = (+0)| < Jun = ul + [0 — 0] < 2(Jun — ] V [0, = v])

for every n, so (|(un + vn) — (u + v)|)nen order*-converges to 0, by 367Bb and 367Bd, and (u, + vpn)nen
order*-converges to u + v.

(v) By (iii), (|wn|)nen order*-converges to 0. So inf,ensup,,>, |wn| is defined and equal to 0; conse-
quently inf,ensup,,>, [2m| = 0, (|2n])nen order*-converges to 0 and (2, )nen order*-converges to 0, by (iii)
again.

(b)(i) Set B, = sup;>, |a; — af for each n. Then (B,)nen — 0, so infenBy|ul = 0, because U is
Archimedean. Consequently (Bnlu|)nen order*-converges to 0, by 367Be. But we also have Sy|u, — ul
order*-converging to 0, by (a-iii) and (a-i), so (Bo|un — u| + Sn|u|)nen order*-converges to 0, by (a-iv). As
lan ey, — aul < Boluy, — ul + Br|ul for every n, (@, un)nen order*-converges to au, as required.

(ii) (@) Suppose that (wy,)nen is not order*-convergent to 0. Then there are w’, w” such that w’ <0 <
w’ and either

B={w:3IneN,w<wV(wAw")Vi>n}
does not have supremum 0, or
C={w:3IneN, w> (wVw)Aw'Vi>n}

does not have infimum 0. Now 0 € B, because every w; > 0, and every member of B is a lower bound for
C; so 0 cannot be the greatest lower bound of C. Let @ > 0 be a lower bound for C.
Let n € N, and set

Ch={w:w>WVw) Aw'Vi>n}={w:w>w, Aw'Vi>n}.
(Recall that U is a distributive lattice.) Because U is Archimedean, we know that inf(C,, — A,,) = 0, where
A, = {w; Aw” 11 >n} (353F). Now @ is a lower bound for C,,, so

inf (0 — w;) T <inf{(w —w;)" :w € C, i >n}

i>n
<inf{(w — (w; Aw") T rweC,i>n}
= inf{w — (w; Aw") :w € C,i>n} =inf(C,, — A,) = 0.
As this is true for every n € N, @ has the property declared.
(B) If @ > 0 is such that @ = sup;,, W A w; for every n € N, then
{w: IneN,w>0Vw)ANwVi>n}
cannot have infimum 0, and (wy,),en is not order*-convergent to 0.

(iii) Set v,, = > ju; for n € N. Let C be the set of upper bounds of {v,, : n € N}, and write B for
{w—wv, :w € C,n €N}. Then inf B =0 (353F). But if n € N and w € C then u; = v;y1 —v; < w — v, for
every ¢ > n. So

{u:3IneN, u>wu; Vi>n}
includes B and must have infimum 0. On the other side,
{u:IneNu<u;Vi>n}

contains 0 and must have supremum 0. By 367Be, (u,)nen order*-converges to 0.

367D As an example of the use of this concept in a moderately general setting, I offer the following.

Proposition Let U be a Riesz space with a Riesz norm || ||.
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(a) If a sequence in U is both order*-convergent and norm-convergent, the two limits are the same.
(b) ||| is order-continuous iff every order-bounded order*-convergent sequence in U is norm-convergent.

proof (a) Let (u,)nen be a sequence in U which is order*-convergent to v and norm-convergent to w. Then
(med(tp, v, w))neny = ((VAW) Vup) A(vVw))pen is order*-convergent to med(v,v,w) = v (367C(a-ii)) and
norm-convergent to med(w, v, w) = w (354Xc, or 354B with 352D). So
v=inf{u: In €N, u > med(u;,v,w) Vi>n}
=sup{u: In € N, u < med(u;,v,w) Vi>n}.
But if n € Nand u > med(u;, v, w) for every i > n, then v > lim;_, med(u;, v, w) = w, because {u’ : v < u}

is norm-closed (354Bc). As wu is arbitrary, w < v. Similarly, because {v’ : v/ > u} is norm-closed for every
u, w > v. So w = v, as claimed.

(b) (i) Suppose that || || is order-continuous, and that an order-bounded sequence (u, )nen order*-converges
to u. Then (|u, — u|)nen is order-bounded and order*-convergent to 0 (367C(a-iii)), so

C={v:3IneNv>|u;—u|Vi>n}
has infimum 0 (367Be). Because U is a lattice, C is downwards-directed, so inf,cc ||v]| = 0. But
infyec [[v]| > infrensup;s,, [lui — ul,
0 limy, o0 ||, — ul|| = 0, that is, (uy)nen is norm-convergent to w.
(ii) Suppose that all order-bounded order*-convergent sequences in U are norm-convergent,

() Let (up)nen be a non-increasing sequence in U™, and set v, = u, — u,y1 for each n. Then
(Un)nen is norm-convergent to 0. P By 367C(b-iii), applied to (—vn)nen, (Un)nen is order*-convergent to
0, so must be norm-convergent, and (a) here tells us that the norm limit is 0. Q

(B8) Now suppose that A C Ut is a non-empty downwards-directed set with infimum 0. Choose
(Un)nen, (Yn)nen inductively, as follows. Start with any ug € A. Given u,, € A, set ¥, = SUp,e anjo,u,.] [[tn—

ul| and choose w1 € AN[0,u,] such that |u, — wni1| > 27,; continue.

By (), limy, o0 [|ttn, — tp+1]] = 0, so lim, oo 7, = 0. Now suppose that v € U is any lower bound of
{ty, : n € N}. Then v < 0. P Take u € A and n € N. Then there is a v’ € A such that v’ < u A u,, because
A is downwards-directed. So

o —uAoll < o - Aol = ' Vo -]
(because v/ Vv +u Av =1+ v, as noted in 352D)
< lun — u’|| < Yn-

As n is arbitrary, v —uAv =0 and v < u. As u is arbitrary, v is a lower bound of A and must be less than
or equal to inf A =0. Q
Thus (up)nen is a non-increasing sequence with infimum 0, and order*-converges to 0, by 367Be. Accord-
ingly it norm-converges to 0, and inf,ec 4 ||u|| = infpen ||un|| = 0. As A is arbitrary, || || is order-continuous,
As A is arbitrary, the norm of U is order-continuous.

367E One of the fundamental obstacles to the development of any satisfying general theory of ordered
topological spaces is the erratic nature of the relations between subspace topologies of order topologies and
order topologies on subspaces. The particular virtue of order*-convergence in the context of function spaces
is that it is relatively robust when transferred to the subspaces we are interested in.

Proposition Let U be an Archimedean Riesz space and V' a regularly embedded Riesz subspace. (For
instance, V' might be either solid or order-dense.) If (v,)nen is a sequence in V and v € V, then (vy,)nen
order*-converges to v when regarded as a sequence in V, iff it order*-converges to v when regarded as a
sequence in U.
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proof (a) Since, in either V or U, (v,)nen order®-converges to v iff (|v, — v|)pen order*-converges to 0
(367C(a-iii)), it is enough to consider the case v, > 0, v = 0.

(b) If (vp)nen is not order*-convergent to 0 in U, then, by 367C(b-ii), there is a w > 0 in U such that
u = sup;>, u A v; for every n € N (the supremum being taken in U, of course). In particular, there is a
k € N such that u A v > 0. Now consider the set

C={w:weV,IneN, w>v, Av; Vi>n}.
Then for any w € C,
u/\vk:supiznu/\vi/\vkgw,

using the generalized distributive law in U, so 0 is not the greatest lower bound of C' in U. But as the
embedding of V' in U is order-continuous, 0 is not the greatest lower bound of C' in V', and (v, ),en cannot
be order*-convergent to 0 in V.

(c) Now suppose that (v, )nen is not order*-convergent to 0 in V. Because V, like U, is Archimedean
(351Rc), there is a w > 0 in V such that w = sup;~,, w A v; for every n € N, the suprema being taken in
V. Again because V is regularly embedded in U, we have the same suprema in U, so, by 367C(b-ii) in the
other direction, (vy,)nen is not order*-convergent to 0 in U.

367F 1 now spell out the connexion between the definition above and the concepts introduced in 245C.

Proposition Let X be a set, ¥ a o-algebra of subsets of X, 2l a Boolean algebra and 7 : ¥ — 2 a
sequentially order-continuous surjective Boolean homomorphism; let Z be its kernel. Write £° for the space
of Y-measurable functions from X to R, and let T = T, : L% — L% = L°(2A) be the canonical Riesz
homomorphism (364C, 364P). Then for any (f,,)nen and f in £°, (T'f,)nen order*-converges to T'f in L°
it X\ {z: f(z) =lim, fu(z)} € L.

proof Set H = {z : lim, o fn(x) exists = f(x)}; of course H € X. Set g,(x) = |fn(x) — f(x)| for n € N
and z € X.

(a) f X\ H € Z, set hp(x) = sup;s,, gi(x) for x € H and h,(x) = 0 for z € X \ H. Then (h,)nen
is a non-increasing sequence with infimum 0 in £°, so inf,exTh, = 0 in L% because T is sequentially
order-continuous (364Pa). But as X \ H € Z, Th,, > T'g; = |T'f; — T f| whenever i > n, so {(|{Tf, — T f|)nen
order*-converges to 0, by 367Be or 367Bf, and (T f,)nen order*-converges to T f, by 367C(a-iii).

(b) Now suppose that (T'f,,)nen order*-converges to T'f. Set g}, () = min(1, g, (z)) forn € N, x € X; then
(Tgy)nen = (e AT fr, = T f|)nen order*-converges to 0, where e = T'(xX). By 367Bf, inf, ey sup;>,, Tg; = 0
in L°. But T is a sequentially order-continuous Riesz homomorphism, so T'(inf,,cn sup;,, g;) = 0, that is,

X\ H = {z:inf,ensup;>, g; > 0}
belongs to 7.

367G Corollary Let 2 be a Dedekind o-complete Boolean algebra.
(a) Any order*-convergent sequence in L° = L°(2A) is order-bounded.
(b) If (un)nen is a sequence in L°, then it is order*-convergent to u € LO iff

u = infpensup; s, u; = sup, ey infi>, u;.

proof (a) We can express 2 as a quotient ¥/Z of a o-algebra of sets, in which case LY can be identified
with the canonical image of £ = L£9(X) (364C). If (u,)nen is an order*-convergent sequence in LY, then
it is expressible as (T'f,,)nen, where T : L0 — LY is the canonical map, and 367F tells us that (f,,(z))nen
converges for every x € H, where X \ H € Z. If we set h(z) = sup,cy|fn(z)| for x € H, 0 for x € X \ H,
then we see that |u,| < Th for every n € N, so that (uy,)nen is order-bounded in L°.

(b) This now follows from 367Bf, because L° is Dedekind o-complete.

367H Proposition Suppose that £ C R is a Borel set and h : E — R is a continuous function. Let 2
be a Dedekind o-complete Boolean algebra and set Qr = {u : u € LY, [u € E] = 1}, where L° = L°(2l).
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Let h: Qg — L° be the function defined by h (364H). Then (h(u,))nen order*-converges to h(u) whenever
(Un)nen is a sequence in Qg order*-converging to u € Qp.

proof This is an easy consequence of 367F. We can represent 2 as ¥./Z where ¥ is a o-algebra of subsets
of some set X and Z is a o-ideal of ¥ (314M); let T': £% — L°(2A) be the corresponding homomorphism
(364C, 367F). Now we can find 3-measurable functions (f,,)nen, f such that T'f,, = up, Tf = u, as in 367F;
and the hypothesis [u, € E] = 1, [u € E] = 1 means just that, adjusting f,, and f on a member of Z if
necessary, we can suppose that f,(z), f(z) € E for every x € X. (I am passing over the trivial case F = {),
X €I, A= {0}.) Accordingly h(u,) = T(hf,) and h(u) = T(hf), and (because h is continuous)

{z:h(f(z)) # limy oo A(fu(z))} CH{z: f2) # limp 00 fu(2)} € T,

0 {(h(uy))nen order*-converges to h(u).

3671 Dominated convergence We now have a suitable language in which to express an abstract version
of Lebesgue’s Dominated Convergence Theorem.

Theorem Let (2, i) be a measure algebra. If (un)nen is a sequence in L' = L = L'(2, i) which is
order-bounded and order*-convergent in L', then (u,),en is norm-convergent to some u € L'; in particular,
Ju=1lim, e [ Uy,.

proof The norm of L! is order-continuous (365C), so (uy,)nen is norm-convergent to u, by 367Da. As [ is
norm-continuous, [« = lim,_,s0 [ up.

367J The Martingale Theorem In the same way, we can re-write theorems from §275 in this language.

Theorem Let (2, i) be a probability algebra, and (2B, ),cn a non-decreasing sequence of closed subalgebras
of A. For eachn € Nlet P, : L' = L}L — L' N L°(%B,,) be the conditional expectation operator (365Q); let
B be the closed subalgebra of 2 generated by |J,,cjy Bn, and P the conditional expectation operator onto
L' N LO(B).

(a) If {(un)nen is a norm-bounded sequence in L' such that P, (u,41) = u, for every n € N, then (u,)nen
is order*-convergent in L'.

(b) If u € L then (P,u),en is order*-convergent and || ||;-convergent to Pu.

proof If we represent (2, i) as the measure algebra of a probability space, these become mere translations
of 275G and 2751. (Note that this argument relies on the description of order*-convergence in LY in terms
of a.e. convergence of functions, as in 367F; so that we need to know that order*-convergence in L! matches
order*-convergence in L%, which is what 367E is for.)

Remark See also 367Q below.

367K Some of the most important applications of these ideas concern spaces of continuous functions.
I do not think that this is the time to go very far along this road, but one particular fact will be useful in
§376.

Proposition Let X be a locally compact Hausdorff space, and (u,)nen & sequence in C(X), the space
of continuous real-valued functions on X. Then (u,)nen order*-converges to 0 in C(X) iff {z : = €
X, limsup,,_, ., |un(x)| > 0} is meager. In particular, (u,)nen order*-converges to 0 if lim,, o0 uy(2) = 0
for every z.

proof (a) The following elementary fact is worth noting: if A C C(X)" is non-empty and inf A = 0 in
C(X), then G = J,ca{z : u(z) < €} is dense for every ¢ > 0. P? If not, take 29 € X \ G. Because X is
completely regular (3A3Bb), there is a continuous function w : X — [0, 1] such that w(z¢) = 1 and w(z) =0
for every x € G. But in this case 0 < ew < u for every u € A, which is impossible. XQ

(b) Suppose that (u,)nen order*-converges to 0. Set v,, = |u,| A xX, so that (v,),en order*-converges
to 0 (using 367Ca, as usual). Set

B={v:velC(X),IneN, v; <vViZ>n},
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so that inf B =0 in C(X) (367Be). For each k € N, set Gj, = U, ecp{z : v(x) < 27%}; then G} is dense, by
(a), and of course is open. So H = |J, .y X \ Gk is a countable union of nowhere dense sets and is meager.
But this means that

{z : limsup |u, (z)| > 0} = {z : limsup v, (z) > 0}

n— oo n—oo

- i -
C{x Jg}fgv(x)>0}_H

is meager.

(c) Now suppose that (u,)nen does not order*-converge to 0. By 367C(b-ii), there is a w > 0 in C'(X)
such that w = sup;>,, w A |u;| for every n € N; that is, infi>, (w — |u|)T = 0 for every n. Set

G ={z:inf;>n(w—|u]) " (z) <277} = {x: Sup; >, [ui(z)| > w(r) —27"}
for each n. Then
H =N,en Gn = {z : limsup,,_,  un(z) > w(z)}

is the intersection of a sequence of dense open sets, and its complement is meager.
Let G be the non-empty open set {z : w(x) > 0}. Then G is not meager, by Baire’s theorem (3A3Ha);
so G N H cannot be meager. But {z : limsup,,_,, |un(2)| > 0} includes G N H, so is also not meager.

Remark Unless the topology of X is discrete, C(X) is not regularly embedded in R, and we expect to find
sequences in C(X) which order*-converge to 0 in C'(X) but not in R*. But the proposition tells us that if
we have a sequence in C'(X) which order*-converges in RX to a member of C(X), then it order*-converges
in C(X).

367L Everything above concerns a particular notion of sequential convergence. There is inevitably a
suggestion that there ought to be a topological interpretation of this convergence (see 367Yb, 367Yk, 3A3P),
but I have taken care to avoid spelling one out at this stage; I will return to the point in §393. (For a general
discussion in the context of Boolean algebras, see VLADIMIROV 02, chap. 4.) I come now to something which
really is a topology, and is as closely involved with order-convergence as any.

Convergence in measure Let (2, 1) be a measure algebra. For a € 2/ = {a : jia < oo}, u € L® = LO(A)
and € > 0 set 7(u) = [|u| A xa and 74e(u) = f(an[|lu| > €]). Then the topology of convergence in
measure on LY is defined either as the topology generated by the F-seminorms 7, or by saying that G C L°
is open iff for every u € G there are a € A/ and € > 0 such that v € G whenever Tae(u —v) < e.

Remark The sentences above include a number of assertions which need proving. But at this point, rather
than write out any of the relevant arguments, I refer you to §245. Since we know that L°(2() can be identified
with L°(y) for a suitable measure space (X, %, i) (321J, 3641c), everything we know about general spaces
L°(u1) can be applied directly to L(2() for measure algebras (2, ji); and that is what I will do for the next
few paragraphs. So far, all I have done is to write 7, in place of the Tr of 245Ac, and call on the remarks
in 245Bb and 245F.

367M Theorem (a) For any measure algebra (2, i), the topology ¥ of convergence in measure on
L% = L°(2A) is a linear space topology, and any order*-convergent sequence in LY is T-convergent to the
same limit.
() u > |u|: L® — L% and (u,v) = u Vv, (u,v) = u x v: L% x LY — L% are continuous.
(¢) (AU, iz) is semi-finite iff T is Hausdorff.
(d) (A, z) is localizable iff T is Hausdorff and L° is complete under the uniformity corresponding to ¥.
(e) (A, z) is o-finite iff T is metrizable.

proof 245D, 245Ch, 245E. Of course we need 322B to assure us that the phrases ‘semi-finite’, ‘localizable’,
‘o-finite’ here correspond to the same phrases used in §245, and 367F to identify order*-convergence in L°
with the order-convergence studied in §245.

367N Proposition Let (2, ji) be a measure algebra and give L° = L°(2A) its topology of convergence in
measure.
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(a) If A C L is a non-empty, downwards-directed set with infimum 0, then for every neighbourhood G
of 0 in L there is a u € A such that v € G whenever |v] < u.

(b) If U C LY is an order-dense Riesz subspace, it is topologically dense.

(c) In particular, S() and L>°(2l) are topologically dense.

proof (a) Let a € A/, € > 0 be such that u € G whenever [ |u|Axa < € (see 245Bb). Since {uAxa:u € A}
is a downwards-directed set in L' = L} with infimum 0 in L', there must be a u € A such that [uAya <€
(365Da). But now [—u,u] C G, as required.

(b) Write U for the closure of U. Then (L%)* C U. P If v € (L°)T, then {u : u € U, u < v} is an
upwards-directed set with supremum u, so A = {v —wu : u € U, u < v} is a downwards-directed set with
infimum 0 (351Db). By (a), every neighbourhood of 0 meets A, and (because subtraction is continuous)
every neighbourhood of v meets U, that is, v € U. Q

Since U is a linear subspace of LY (2A5Ec), it includes (L°)* — (L%)* = L° (352D).

(c) By 364Ja, S() and L>° () are order-dense Riesz subspaces of L°.

3670 Theorem Let U be a Banach lattice and (2, /i) a measure algebra. Give L° = L9(2) its topology
of convergence in measure. If T : U — LY is a positive linear operator, then it is continuous.

proof Take any open set G C L°. ? Suppose, if possible, that T~![G] is not open. Then we can find u,
(Un)nen € U such that Tu € G and |Ju, — u| < 27", Tu, ¢ G for every n. Set H = G — T'u; then H is an
open set containing 0 but not T'(u,, — u), for any n € N. Since Y 7 jnlu, — u| < o0, v = Y07 nlu, — ul
is defined in U, and |T'(u, —u)| < 1Tw for every n > 1. But by 367Na (or otherwise) we know that there is
some n such that w € H whenever |w| < LT, so that T(u,, — u) € H for some n, which is impossible. X

367P Proposition Let (2, i) be a o-finite measure algebra.

(a) A sequence (uy,)nen in L? = LO(2A) converges in measure to u € L° iff every subsequence of (uy)nen
has a sub-subsequence which order*-converges to u.

(b) A set FF C LY is closed for the topology of convergence in measure iff u € F' whenever there is a
sequence (U, )nen in F order*-converging to u € LP.

proof 245K, 245L.

367Q As an example of the power of the language we now have available, I give abstract versions of
some martingale convergence theorems.

Theorem Let (2, i) be a probability algebra; for each closed subalgebra % of 2, let Py be the corresponding
conditional expectation operator from L' = L} to L' N L(B) = L.

(a) If B is a non-empty downwards-directed family of closed subalgebras of 2 with intersection €, and
u e Ll = L}N then Peu is the || [|i-limit limg_, 7)) Psu, where F(B{) is the filter on B generated by
{{%:%02’361@}:%063}.

(b) If B is a non-empty upwards-directed family of closed subalgebras of 2 and € is the closed subalgebra
generated by |JB, then for every u € L', Peu is the || [|;-limit limg_, z4) Ppu, where F(B?) is the filter on
B generated by {{®B : By C B € B} : B, € B}. as B decreases through B.

(¢) Suppose that B is a non-empty upwards-directed family of closed subalgebras of 2, and (us)msep is
a || ||1-bounded family in L' such that ug = Pgue whenever B, € € B and B8 C ¢. Then limg_, 7(B) us is
defined for the topology of convergence in measure and belongs to L'.

proof (a)(i) Note first that {Pyu : B € B} is uniformly integrable (246D, or directly), therefore relatively
weakly compact in L' (247C/356Q). Consequently there must be a v € L! which is a weak cluster point of
Pyu as B decreases through B, in the sense that v belongs to the weak closure {Pgu: B € B, B C By} for
every By € B.

It follows that v = Peu. P For every B € B, L' N LO(By) = L}, 5, is a norm-closed linear subspace of
L! containing Pyu whenever B C B. It is therefore weakly closed (3A5Ee) and contains v. Consequently
[v>a] € By for every a € R. As By is arbitrary, [v > a] € € for every o € R, and v € L}EIG' Next, if
c € €, then
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fcve {ch;Bu:% €B} = {fcu};
sov = Peu. Q

(ii) Now take € > 0. Then there is a By € B such that |[Pgu — Py,ull1 < 2¢ whenever B € B and

B C By. P? Otherwise, we can find a non-increasing sequence (B,,),cn in B such that || Py, u— Py, u|1 >

e for every n € N. By the reverse martingale theorem (275K), (Py,u)nen is order*-convergent to w

say. But as {Pg,u : n € N} is uniformly integrable, (Py, u)nen is || [|1-convergent to w (246Ja), and
limnﬁoo ||Ps3n+1u — P%"’U,Hl =0. XQ

At this point, however, observe that C = {w : |[w — Py, ul1 < %€} is convex and || ||;-closed, therefore

weakly closed, in L'. Since it contains Pyu whenever B € B and B C B, it contains v = Peu. Consequently

[Psu — Peully < [[Psu — Pg,ulls + || Peou —vf[y < e
whenever B € B and B C By. As e and u are arbitrary, (a) is true.
(b) We can use the same method. Again take any u € L!.

(i) This time, observe that Pyu must have a weak cluster point v as B increases through B. Since
Pxyu belongs to L' N L(€) for every B € B, so does v. Next, if b € By € B, then [, Pyu = [, u whenever
B D Bo, 50 [v=fu Thus ® ={b:be, [,v= [ u}includes |JB. But D is closed for the measure
algebra topology of 2, so © D € and fc v = fcu for every c € €. Thus once again we have v = Pgu.

(ii) Now repeat the argument of (a-ii) almost word for word, but taking ‘B D 9B’ in place of every
“B C B, and quoting the ordinary martingale theorem instead of the reverse martingale theorem.

(c)(d) If (B,)nen is a non-decreasing sequence in B, then (usp, )nen is order*-convergent, by Doob’s
martingale theorem (367Ja).

(ii) It follows that the image G of F(B?) under the map B + ug : B — L is Cauchy for the linear
space topology T of convergence in measure. P? Otherwise, set 7(v) = [|v| A x1 for v € L%, There is an
€ > 0 such that sup,, ,cc 7(v —v') > 2¢ for every C' € G; in which case, for any B € B, there must be a
¢ € B such that € D B 7(u¢ — up) > €. But now there will be a non-decreasing sequence (B, ),cy in B
such that 7(us,,, —us,) > € for every n € N and (usg, )nen cannot be order*-convergent. XQ

(iii) By 367Mc, u = lim G = limy_, F(mt) us is defined in L° for T. But as u belongs to the T-closure
of the || ||1-bounded set {us : B € B}, u € L, by 245J(b-i).

367R It will be useful later to be able to quote the following straightforward facts.

Proposition Let (2, i) be a measure algebra. Give 2l its measure-algebra topology (323A) and L° = L(2A)
the topology of convergence in measure.
(a) The map y : A — LY is a homeomorphism between 2 and its image in L.
(b) If A has countable Maharam type, then L° is separable.
(c) Suppose that 9B is a subalgebra of 2 which is closed for the measure-algebra topology. Then L°(8)
is closed in LO(2A).
(d) A non-empty set A C L° is bounded in the linear topological space sense (3A5N) iff infyen sup, e 4 i(a N [Ju| > k]) =
0 for every a € A7.

proof (a) Of course y is injective (364Jc). The measure-algebra topology of 2 is defined by the pseudomet-
rics pq (b, ¢) = fi(an (bAc)), while the topology of LY is defined by the pseudometrics o, (u,v) = [ |[u—v|Axa,
in both cases taking a to run over elements of 2 of finite measure; as o,(xb, xc) is always equal to p, (b, c),
we have the result.

(b) By 3310, 2l is separable in its measure-algebra topology; let B C 2 be a countable dense set. Set
B*={3" jaixbi:neN, ag,... ,a, €Q, bg,... b, € B}.

B* is a countable subset of L%; let V be its closure. Then V includes S(2(). P For any n € N, the function
(s sy g, an) — Y gagxa; : R™ T x An+ — L0 is continuous, just because x : A — LY and
addition and scalar multiplication in L° are continuous ((a) above, 367M). So
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Dy = {(ag,- -+ ,an,a0,. -« an) 1 31 aixa; € V}
is a closed subset of R™*! x A"*! including Q"' x B"*!. But Q™! x B"*! is dense in R™t! x !
(3A3le), so D, = R™1 x Am*1 that is, Y1 a;xa; € V whenever ag, ... ,a, € R and ag,... ,a, € V. As
n is arbitrary, S(2) C V. Q

Since S(2A) is dense in LY (367Nc), V = L% B* is dense in LY and LY is separable.

(c) Note first that 9B is order-closed in 2 (323D(c-i)), so that L°(B), defined as in 364A, is a subset
of L°(A) (cf. 364Xt). Applying 364P to the identity map B G 2, we see that the map L°(B) S L°(2)
identifies the operations of addition, scalar multiplication and supremum in L°(8) with the restrictions of
the corresponding operations on L°(21).

Suppose that u € LO(2A) is in the closure of L°(B), and a € R; let n € N be such that |a| < n, and
fix a € 2/ for the moment. For each k € N, choose vy € L°(B) such that [|u — vg| A xa < 27F (367L).
Consider v, = med(—nx1, vy, nx1) for k € N, and v = infyeysup;>;, v;,. We do not need to ask whether the
operations here are being performed in L°(2() or in L°(%8), and v will belong to L°(B). Accordingly, now
necessarily working in L%(2(), we shall have

v X xa = infrensup;>y, v X xa.
Now observe that, for each k, wy = 2nsup,s|u — v;| A xa is defined in Li—t and [wy < 27 2p. Set
v’ = med(—nx1, u,nx1). For j >k,
lu" x xa — v; x xa| = |med(—nx1l,u x xa,nxl) — med(—nx1,v; x xa,nxl)|
<|u—vj| A 2nxa < wy.
So, for any m € N,
v X xa —v X xa = sup inf u’ X ya — v}, X xa
keNJT>k

= sup inf v’ x ya — v}, x xa < sup wg = Wy,
k>m ik E>m

v x xya—u' X ya = inf supvj, X xa —u' x ya
keN j>[

< sup v), X xa —u' X xa < wy,.
jzm

Putting these together,
|u' X xa —v x xa| < wpy,

for every m € N, and v’ X xya = v x ya. But this means that anfu’ > a] = an[v > «f; at the same time,
because —n < a < n, [u' > o] = [u > a].

Thus we see that for every a € 2/ there is a b € B such that an (bA [u > o]) = 0. It follows at once
that [u > a] belongs to the closure of B, which is 9B itself. As « is arbitrary, u € L°(B); as u is arbitrary,
L°(B) is closed.

(d)(i) Suppose that A is topologically bounded, a € A/ and ¢ > 0. Then G = {v : v € L°,
flan(lv| > 1]) < e is a neighbourhood of 0, so there is a k € N such that A C kG. If u € A, there is
a v € U such that u = kv, so that

aan el > K) = plan o] > 1]) <.
Thus infrensup, e f(an[Ju] > k]) < € as a and € are arbitrary, the condition is satisfied.

(ii) Suppose that the condition is satisfied. Let G be a neighbourhood of of 0 in L°. Then there are
an a € 2/ and an € > 0 such that v € G whenever ji(an [|v| > ¢]) < e. Now there is a k € N such that
plan[lul > k]) < e for every u € A. Let n > 1 be such that ne > k; then

fan 2l > ) = alan [lul > nel) < alan [lul > k) < e

for every u € A, so %A C G and A C nG. As @ is arbitrary, A is topologically bounded.
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367S Proposition Let £ C R be a Borel set, and h : £ — R a continuous function. Let (A, z) be a
measure algebra, and h: Qg — L° = L°(2) the associated function, where Qp = {u: u € L, [u € E] =1}
(364H). Then h is continuous for the topology of convergence in measure.

proof (Compare 245Dd.) Express (2, i) as the measure algebra of a measure space (X, X, u). Take any
u € Qp, any a € A such that ia < oo, and any € > 0. Express v as f* where f : X — E is a measurable
function, and a as F'* where F € 3. Set n = €¢/(2 4+ pF). For each n € N, write E,, for

{t:te€ E, |h(s) — h(t)] <n whenever s € FE and |s —t| < 27"}

Then (E,)nen is a non-decreasing sequence of Borel sets with union F, so there is an n such that u{z : € F,
f(z) & En} <.
Now suppose that v € Qg is such that [ |v —u| A xa < 27™n. Express v as g* where g : X — E is a
measurable function. Then
S min(1,|g(x) — f(z))p(dz) < 27",

sou{z:xz e F, |f(z)—g(x)] >27"} <n, and

{z: 2 € F [h(g(x)) — h(f(x))] > n}
Cle:xeF f(x)¢ En}U{z: e |f(z) —g(z) >27"}

has measure at most 277. But this means that
J 1h(v) = h(w)| Axa = [, min(1, |hg(z) = hf(z))u(de) < 29+ npF = e

As u, a and € are arbitrary, h is continuous.

367T Intrinsic description of convergence in measure It is a remarkable fact that the topology
of convergence in measure, not only on L° but on its order-dense Riesz subspaces, can be described in
terms of the Riesz space structure alone, without referring at all to the underlying measure algebra or
to integration. (Compare 324H.) There is more than one way of doing this. As far as I know, none is
outstandingly convincing; I present a formulation which seems to me to exhibit some, at least, of the essence
of the phenomenon.

Proposition Let (2, i) be a semi-finite measure algebra, and U an order-dense Riesz subspace of L? =
L°(2A). Suppose that A C U and u* € U. Then u* belongs to the closure of A for the topology of convergence
in measure iff
there is an order-dense Riesz subspace V of U such that
for every v € V¥ there is a non-empty downwards-directed B C U, with infimum 0, such
that

for every w € B there is a u € A such that

|lu —u*| Av < w.

proof (a) Suppose first that u* € A. Take V to be U N L}L; then V is an order-dense Riesz subspace of LY,
by 352Nc and 353A, and is therefore order-dense in U. (This is where I use the hypothesis that (2, ) is
semi-finite, so that Lll1 is order-dense in LY, by 365Ga.)

Take any v € V. For each n € N, set a,, = [v > 27"] € Af. Because u* € A, there is a u,, € A such
that b, < 27", where

bp = an N [lup —u*| > 27"] = [Jup — u*| Av >27"].

Set ¢n, = sup;s, b; then fic, < 27"F! for each n, so infyene¢, = 0 and infyenw, = 0 in L°, where
Wy =0 X XCp + 27"x1. Also |u, — u*| Av < w, for each n.
The w,, need not belong to U, so we cannot set B = {w,, : n € N}. But if instead we write

B={w:weU w>vAw, for some n € N},
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then B is non-empty and downwards-directed (because (w,)nen is non-increasing); and

inf B=v —sup{v—w:w e B}
=v—sup{w:w €U, w< (v—wy,)" for some n € N}
= v —sup(v — w,)"
neN

(because U is order-dense in LY)
=0.

Since for every w € B there is an n such that w > v Aw,, > v A |u, — u*|, B witnesses that the condition is
satisfied.

(b) Now suppose that the condition is satisfied. Fix a € 2/ and ¢ > 0. Because V is order-dense in U
and therefore in L°, there is a v € V such that 0 < v < ya and f v > pia—e. Let B be a downwards-directed
set, with infimum 0, such that for every w € B there is a u € A with v A |[u — u*| < w. Then there is a
w € B such that fw/\v < e. Now there is a u € A such that |u — u*| A v < w, so that

f|u—u*|/\xa§e+f|u—u*|/\v§e+fw/\v§26.

As a and e are arbitrary, u* € A.

*367U Theorem Let (2, /i) be a semi-finite measure algebra; write L' for L. Let P : (L')** — L'
be the linear operator corresponding to the band projection from (L')** = (L')*~ onto (L')** and the

canonical isomorphism between L! and (L')**. For A C L! write A* for the weak* closure of the image of
Ain (LY)**. Then for every A C L!

P[A*] CT(A),

where T'(A) is the convex hull of A and I'(A) is the closure of I'(A) in L% = L°(A) for the topology of
convergence in measure.

proof (a) The statement of the theorem includes a number of assertions: that (L')* = (L')*; that (L')** =
((LY)*)~; that the natural embedding of L' into (L')** = (L')*~ identifies L' with (L')**; and that (L')**
is a projection band in (L!)*~. For proofs of these see 365C, 356P, 356B and 356D.

Now for the new argument. First, observe that the statement of the theorem involves the measure algebra
(2, i) and the space L° only in the definition of ‘convergence in measure’; everything else depends only on
the Banach lattice structure of L'. And since we are concerned only with the question of whether members
of P[A*], which is surely a subset of L', belong to I'(A), 367T shows that this also can be answered in terms
of the Riesz space structure of L'. What this means is that we can suppose that (2, 1) is localizable. P

Let (ﬁ, i) be the localization of (2, i) (322Q). The natural expression of 2 as an order-dense subalgebra of
2 identifies A" = {a : a € A, fia < oo} with A/ (322P), so that L}, becomes identified with L}, by 365Nd.

i
Thus we can think of L' as L}“ and (2, 1) is localizable. Q

(b) We need a version of a result in §362. As we are supposing that (2, i) is localizable, we can identify
(LY)*, as Banach lattice, with L> = L° () (365Lc). Take any ¢ € (L')** = (L°°)* such that ¢ > 0 and
P¢p=0. Then C = {c:ce, ¢(xc) =0} is an order-dense ideal of 2. I Just because ¢ is a positive linear
operator, C' is an ideal of 2. We have an L-space isomorphism between (L*)* = (L*°)~ and the space
M of bounded additive functionals on 2, and this isomorphism matches (L°°)* with the projection band
M, of completely additive functionals (363K, 362B). So if we write P, : M — M, for the band projection
onto M, P. must correspond to the band projection P : (L)~ — (L*)*. Let v be the member of M
corresponding to ¢, so that va = ¢(xa) for every a € 2. Then (P,v)(1) = (P¢)(x1) = 0, that is, P,v = 0.
Now 2 is weakly (o, co)-distributive (322F), so there is an upwards-directed set D C 2, with supremum 1,
such that supycp vd = (Prv)(1) = 0, that is, 0 = vd = ¢(xd) for every d € D, and D C C. So supC =1,
that is, C' is order-dense, as claimed. Q

(c) Now take ¢ € A* and set ug = P¢; I have to show that ug € I'(A). Write R for the canonical map
from L! to (L')**, so that ¢ belongs to the weak* closure of R[A].
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(i) Consider first the case ug = 0, that is, P¢ = 0. Since P is a band projection, P|¢| = 0. By (b),
C = {c: (P|¢)|(xc) = 0} is an order-dense ideal in . Take any a € 2/ and € > 0. Then {c:c € C, ¢ C a}
is upwards-directed and has supremum a, so there is a ¢ € C such that fi(a\ c¢) <e.
Consider the map Q : L' — L! defined by setting Qu = w x xc for every w € L'. Then its adjoint
Q' : L*>® — L (3A5Ed) can be defined by the same formula: Q'v = v x ¢ for every v € L*°. Now

6(Q"0)| < [|v[loc|¢l(xc) = 0

for every v € L, and Q"¢ = 0, where Q" : (L*°)* — (L°°)* is the adjoint of @’. Since Q" is continuous for
the weak* topology on (L*°)*, 0 € Q”[R[A]], where Q" R[A] is the closure for the weak* topology of (L>°)*.
But of course Q"R = RQ, while the weak* topology of (L°)* corresponds, on the image R[L!] of L', to
the weak topology of L!; so that 0 belongs to the closure of Q[A] for the weak topology of L!.

Because @ is linear, Q[I'(A)] is convex. Since 0 belongs to the closure of Q[I'(A)] for the weak topology
of L', it belongs to the closure of Q[I'(A4)] for the norm topology (3A5Ee). So there is a w € I'(A) such
that [|w x xc||1 < €2. But this means that ji(cn [Jw| > €]) < € and ji(an[Jw| > €]) < 2¢. Since a and € are

arbitrary, 0 € T'(4).

(ii) This deals with the case ug = 0. Now the general case follows at once if we set B = A — uy and
observe that ¢ — Rug € B*, so

0= P(¢— Rug) € T(B) = T(A) — up = T'(A) — uo

because the topology of convergence in measure is a linear space topology.

Remark This is a version of a theorem from BUKHVALOV 95.

*367V Corollary Let (2, 1) be a localizable measure algebra. Let C be a family of convex subsets of
L = L(2A), all closed for the topology of convergence in measure, with the finite intersection property, and
suppose that for every non-zero a € 2 there are a non-zero b C a and a C' € C such that sup,cc fb lu] < oc.

Then (C # 0.
proof Because C has the finite intersection property, there is an ultrafilter 7 on L° including C. Set
I'={a:ae infpcrsup,cp fa lu] < o0}

because F is a filter, I is an ideal in 2, and the condition on C tells us that I is order-dense. For each a € I,
define @, : L° — L° by setting Q,u = u x xa. Then there is an F' € F such that Q,[F] is a norm-bounded
set in L' = L}, 50 ¢ = lim, 7 RQqu is defined in (L>)* = L>°(2)* for the weak* topology on (L>)*,
writing R for the canonical map from L' to (L°°)* = (L')**. (Once again, we can identify (L!)* with L
because (2, fi) is localizable.) If P : (L°)* — L' is the map corresponding to the band projection P from
(L)~ onto (L*°)*, as in 367U, and C € C, then 367U tells us that P¢, must belong to the closure of the
convex set Q,[C] for the topology of convergence in measure. Moreover, if a C b € I, so that Q, = Q.Qs,
then P¢, = Q,P¢y. PP Observe that
P=RP:(L®)" = (L*)*, QIR=RQ.IL', QII(L*)"=RQ.R".

Q.| L is a band projection on L!, so its adjoint @/, is a band projection on L> = (L1)~ (356C) and Q" is
a band projection on (L>°)* 2 (L°°)~. This means that Q" will commute with P (352Sb). But also Q” is
continuous for the weak* topology of (L*°)*, so

Qup = lim, 7 Q) RQpu = lim,,, 7 RQuQpu = g
and
Py = R™'Pp, = R™'PQl(¢) = R™'QUPdy, = QuR ™' Pdy = QuPdy. Q
Generally, if a, b € I, then
QuPop = QuQuvPoy, = Qurv PPy = Pdart = Qv Pa-

What this means is that if we take a partition D of unity included in I (313K), so that L° =[], L°(24)
(315F(iii), 364R), and define w € L° by saying that w x xyd = P¢g for every d € D, then we shall have

wXXaXXd:QaP¢d:QdP¢a:P¢aXXd
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whenever a € [ and d € D. Consequently

wxxa:P¢a€Qa[C]

for every a € I and C € C. But now, given a € 2 and ¢ > 0 and C € C, thereis a b € I such that fi(a\ b) < ¢;
w X xb € Qp[C], so there is a u € C such that p(bn[|lw —u|l > €]) < ¢ and fG(an[lw —u| > €]) <26 Asa
and € are arbitrary and C' is closed, w € C; as C' is arbitrary, w € (\C and (\C # 0.

*367W Independence I have given myself very little room in this chapter to discuss stochastic inde-
pendence. There are direct translations of results from §272 in 364Xe-364Xf. However the language here
is adapted to a significant result not presented in §272. I had better begin by repeating a definition from
364Xe. Let (2, 1) be a probability algebra. Then a family (u;);cr in L°(2) is stochastically independent
if i(infie s [us > oi]) = [1,c; Alwi > a;] whenever J C I is a non-empty finite set and a; € R for every i € 1.
(The direct translation of the definition in 272Ac would rather be ‘f(infic s [u; < oi]) = [, Blus < 4]
whenever J C I is a non-empty finite set and «; € R for every i € I, intepreting [u; < ;] as in 364Xa. Of
course 272F tells us that this comes to the same thing.) Now the new fact is the following.

Proposition Let (2, ji) be a probability algebra, and I any set. Give L% = L°() its topology of convergence
in measure. Then the collection of independent families (u;);cr is a closed set in (L°)7.

proof Suppose that (u;)ie;r € (LY)! is not independent. Then there are a finite set J C I and a family
(@i)ics of real numbers such that fi(infic s [u; > as]) # [1;c; Blus > i]. Set a; = [u; > ;] for each 4. Let
d > 0 be such that v # [],c ;v whenever |y — fi(inf;c s a;)| < 20#(J) and |y; — fia;| < 20 for every i € J.
Let n € ]0, 1] be such that fiJu; > a; + 2n] > fia; — § for every i € J.

Now if (v;)ier € (L°)! and ff|v; — ;| > n] < § for each i € J, (v;)ier is not independent. B For each
i € J, consider b; = [v; > a; + 1], a} = [u; > a; + 2n]. We have

a; = [u; > a; +2n] € vy > a; +nJufu; —v; >n] C b u|lug —vi| > 0]
(364Ea), and
by = [vi > a; + 1] € [u; > ;] Ui —u; >n] € a;uflv; —ui| > 1],
SO
bisa; = (b \a;)u(a;i\b;) C [lvi —us| >n]u(a;i\a;)
has measure at most 24. It follows that (inf;c s b;) A (inf;c 7 a;) has measure at most 26#(.J), and |a(inf;c s b;)
— A(infieya;)] < 20#(J). At the same time, for each i € J, |ab; — fia;] < 2. By the choice of 4,
p(infie s b;) # [ ;s tbs, and (vi)ies is not independent. Q

This shows that the set of non-independent families is open in (L°)!, so that the set of independent
families is closed, as claimed.

367X Basic exercises >(a) Let P be a lattice. (i) Show that if p € P and (p,)nen is a non-decreasing
sequence in P, then (p,)nen is order*-convergent to p iff p = sup,cypn. (ii) Suppose that (p,)nen is a
sequence in P order*-converging to p € P. Show that p = sup,,cxp A pn = infenp V py,. (iil) Let (pn)nen,
(gn)nen be two sequences in P which are order*-convergent to p, ¢ respectively. Show that if p,, < g, for
every n then p < q. (iv) Let (p,)nen be a sequence in P. Show that (p,)nen order*-converges to p € P iff
(Pn V P)nen and (p, A p)nen both order*-converge to p.

(b) Let P and @ be lattices, and f : P — @ an order-preserving function. Suppose that (p,)nen is an
order-bounded sequence which order*-converges to p in P. Show that (f(pn))nen order*-converges to f(p)
in Q if either f is order-continuous or P is Dedekind o-complete and f is sequentially order-continuous.

(c) Let P be either a Boolean algebra or a Riesz space. Suppose that (p,)nen is a sequence in P such
that (pan)nen and (pan11)nen are both order*-convergent to p € P. Show that (pp)nen is order*-convergent
to p. (Hint: 313B, 352E.)

(d) Let (P;);cr be a family of lattices with product P (315Xd). Show that a sequence (p,)pen in P
order*-converges to p € P iff (p,,(i))nen order*-converges to p(i) in P; for every i € I.
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>(e) Let 2 be a Boolean algebra and (a,)nen, (bn)nen two sequences in 2 order*-converging to a,
b respectively. Show that (a, Ubp)nen, (@n Nbp)nen, (@n \ bn)nen, (@n A bp)nen order*-converge to au b,
anb, a\band a A b respectively.

(f) Let 2 be a Boolean algebra and (a,)nen a sequence in 2. Show that (a,,)nen does not order*-converge
to 0 iff there is a non-zero a € 2 such that a = sup;,, a A a; for every n € N.

>(g)(i) Let U be a Riesz space and (u,)nen an order*-convergent sequence in U™ with limit u. Show that
h(u) < liminf, o h(uy,) for every h € (U*)*. (ii) Let U be a Riesz space and (u,)nen an order-bounded
order*-convergent sequence in U with limit u. Show that h(u) = lim,,_~ h(uy,) for every h € U*. (Compare
356Xd.)

(h)(i) Show that if U is a Banach lattice, every norm-convergent sequence has a subsequence which is
order-bounded and order*-convergent. (Hint: consider the case in which Y7 |ju, — u| is finite.) (ii)
Find a Riesz norm on C([0,1]) for which there is an order-bounded norm-convergent sequence which has no
order*-convergent subsequence.

>(i) Let U be a Riesz space with a Fatou norm || ||. (i) Show that if (u,)nen is an order*-convergent
sequence in U with limit w, then ||u|| < liminf, o [|unll. (Hint: (Jun| A |u|)nen is order*-convergent to
|u|.) (ii) Show that if (u,)nen is a norm-convergent sequence in U it has an order*-convergent subsequence.
(Hint: if 3°0° o [Jun|| < co then (uy)nen order*-converges to 0.)

(j) Let U and V be Archimedean Riesz spaces and T : U — V an order-continuous Riesz homomorphism.
Show that if (u,)nen is a sequence in U which order*-converges to u € U, then (T'u,)nen order*-converges
to Tu in V.

(k) Let 2 be a Boolean algebra and B a regularly embedded subalgebra. Show that if (b,)nen is a
sequence in B and b € B, then (b, )nen order*-converges to b in B iff it order*-converges to b in 2.

(1) Let 2 be a Dedekind o-complete Boolean algebra and (u,)nen, (vn)nen two sequences in L°(2() which
are order*-convergent to u, v respectively. Show that (u, X v,)nen order*-converges to u X v. Show that if

u, uy, all have multiplicative inverses u =1, u,; ! then (u; '), cn order*-converges to u 1.

(m) Let 2 be a Dedekind o-complete Boolean algebra and Z a o-ideal of 2. Show that for any (a,)nen €
AN and a € A, (a},)nen order*-converges to a* in A/Z iff infpensup,,s, amAa € I.

>(n) Let & be a Dedekind o-complete Boolean algebra, and (h,),en a sequence of Borel measurable

functions from R to itself such that h(t) = lim,, o h,(t) is defined for every ¢t € R. Show that (A, (u))nen
order*-converges to h(u) for every u € L = LO(21), where hy,, h: LY — L° are defined as in 364H.

(o) Let U be an L-space and (u,)nen a sequence in U which is order*-convergent to u € U. Show that
(Un)nen is norm-convergent to u iff {u, : n € N} is uniformly integrable iff |Ju|l; = lim, o0 [|un|l1. (Hint:
245H, 246J.)

(p) Let U be an L-space and (u,)nen @ norm-bounded sequence in U. Show that there are a v € U and
a subsequence (v )nen Of (U )nen such that <ﬁ > o wi)nen order*-converges to v for every subsequence
(Wn)nen of (Un)nen. (Hint: 276H.)

(q) Let (A, 1) be a measure algebra and p € [1,00[. For v € (LP)* = (L})* define 7, : LY — [0, 00[ by
setting 7, (u) = |||u| A v]|, for u € U. Show that each 7, is an F-seminorm and that the topology on L°(2)
defined by {7, : v € (L?)™} is the topology of convergence in measure.

(r) Let (A, i) be a o-finite measure algebra. Suppose we have a double sequence (ug;)(; j)enxn in L0 =
LO(2A) such that (u;;)jen order*-converges to u; in LY for each 4, while (u;);en order*-converges to u. Show

that there is a strictly increasing sequence (n(i))ien such that (u; ,(;))ien order*-converges to w.
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(s) Let (X,X%,u) be a semi-finite measure space. Show that L°(u) is separable for the topology of
convergence in measure iff u is o-finite and has countable Maharam type. (Cf. 365Xr.)

(t) Let (2, /i) be a measure algebra, and give L° = L°(2() its topology of convergence in measure.
Show that if (A, ji) is semi-finite, then a set A C LY is bounded in the linear-topological-space sense iff
{anz, : n € N} is order-bounded for every sequence (z,)nen in A and every sequence (a,)peny in R
converging to 0.

(u) Let (2, z) be a measure algebra, and write ¥ for its measure-algebra topology. (i) Show that if
(an)nen is order*-convergent to a € A, then (a,)neny — a for T. (ii) Show that if (A, ) is o-finite, then («)
a sequence converges to a for ¥ iff every subsequence has a sub-subsequence which is order*-convergent to to
a (B) aset FF C 2Ais T-closed iff a € F whenever there is a sequence (a,)nen in F which is order*-convergent
to a € 2. (iii) Show that if (2, i) is semi-finite but not o-finite, there is an A C LY such that the limit of
any order*-convergent sequence in A belongs to A, but A is not T-closed.

(v) Let U be a Banach lattice with an order-continuous norm. (i) Show that a sequence (up)nen is
norm-convergent to u € U iff every subsequence has a sub-subsequence which is order-bounded and order*-
convergent to u. (ii) Show that a set F' C U is closed for the norm topology iff u € F' whenever there is an
order-bounded sequence (uy,)nen in F order*-converging to u € U.

>(w) Let (2, 1) be a probability algebra. For v € L° = LY(2l) let v, be the distribution of u (364Gb).
Show that u + 1, is continuous when LP is given the topology of convergence in measure and the space of
probability distributions on R is given the vague topology (274Ld).

(x) Let (2, ji) be a probability algebra and (u,)nen a stochastically independent sequence in L°(21), all
with the Cauchy distribution v with centre 0 and scale parameter 1 (285Xp). For each n let C), be the
convex hull of {u; : i > n}, and C,, its closure for the topology of convergence in measure. Show that every
u € Cp has distribution ve. (Hint: consider first w € Cp.) Show that Cy is bounded for the topology of
convergence in measure. Show that ﬂneNC’in = 0.

(y) If U is a linear space and C' C U is a convex set, a function f : C — R is convex if f(az+(1—a)y) <
af(z) + (1 — a)f(y) whenever z, y € C and « € [0,1]. Let (2, i) be a localizable measure algebra and
C C L}-L a non-empty convex norm-bounded set which is closed in L°(2() for the topology of convergence
in measure. Show that any convex function f : C' — R which is lower semi-continuous for the topology of
convergence in measure is bounded below and attains its infimum.

(z) Let (A, i) be the measure algebra of Lebesgue measure on [0,1]. Show that there are a sequence
Undneny in L' = LL and u, v € L' such that u, and v are independent for every n, (u,)nen converges
I
weakly to u, but v and v are not independent.

367Y Further exercises (a) Give an example of an Archimedean Riesz space U and an order-bounded
sequence (U )nen in U which is order*-convergent to 0, but such that there is no non-increasing sequence
(Un)nen, with infimum 0, such that u,, < v, for every n € N.

(b) Let P be any lattice. (i) Show that there is a topology on P for which a set A C P is closed iff
p € A whenever there is a sequence in A which is order*-convergent to p. Show that any closed set for this
topology is sequentially order-closed. (ii) Now let @ be another lattice, with the topology defined in the
same way, and f : P — @ an order-preserving function. Show that if f is topologically continuous it is
sequentially order-continuous.

(c) Give an example of a distributive lattice P with p, ¢ € P and a sequence (p,)nen, order*-convergent
to p, such that (p, A ¢)nen is not order*-convergent to p A q.

(d) Let us say that a lattice P is (2, co)-distributive if (a) whenever A, B C P are non-empty sets with
infima p, g respectively, then inf{aVb:a € A, b€ B} =pV q (8) whenever A, B C P are non-empty sets
with suprema p, ¢ respectively, then sup{a Ab:a € A, b € B} = p A gq. Show that, in this case, if (pp)nen
order*-converges to p and (¢, )nen order*-converges to g, (pn V ¢n)nen order*-converges to p V q.
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(e)(i) Give an example of a Riesz space U with an order-dense Riesz subspace V of U and a sequence
(Un)nen in V such that (vp)pen order*-converges to 0 in V' but does not order*-converge in U. (ii) Give
an example of a Riesz space U with an order-dense Riesz subspace V of U and a sequence (vp,)nen in V,
order-bounded in V, such that (v, )nen order*-converges to 0 in U but does not order*-converge in V.

(f) Let U be an Archimedean f-algebra. Show that if (un)nen, (Vn)nen are sequences in U order*-
converging to u, v respectively, then (u, X v,)nen order*-converges to u X v.

(g) Let 2 be a Dedekind o-complete Boolean algebra and r > 1. Let E C R” be a Borel set and write
Qe = {(u1,...,up) : [(ur,... ,u,) € E] =1} C LO(A)" (364YDb). Let h: E — R be a continuous function
and h: Qg — L° = L°(2) the corresponding map (364Yc). Show that if (u,)nen is a sequence in Qg which

is order*-convergent to u € Qg (in the lattice (L°)"), then (h(u,))nen is order*-convergent to h(u).

(h) Let X be a completely regular Baire space (definition: 314Yd), and (u,)nen a sequence in C(X).
Show that (uy)nen order*-converges to 0 in C(X) iff {z : limsup,,_,  |un(z)| > 0} is meager in X.

(i) (i) Give an example of a sequence (u,)nen in C([0,1]) such that lim,, o u,(z) = 0 for every x € [0, 1],
but {u, : n € N} is not order-bounded in C([0,1]). (ii) Give an example of an order-bounded sequence
(Un)nen in C(Q) such that lim,_,. un(g) = 0 for every ¢ € Q, but sup;~,, u; = xQ in C(Q) for every n € N.
(iii) Give an example of a sequence (i, )nen in C([0,1]) such that (u,),en order*-converges to 0 in C([0,1]),
but lim, o u,(g) > 0 for every ¢ € QN [0, 1].

(j) Write out an alternative proof of 367J/367Yh based on the fact that, for a Baire space X, C'(X) can
be identified with an order-dense Riesz subspace of a quotient of the space of B-measurable functions, where
B is the Baire-property algebra of X.

(k) Let A be a ccc weakly (o, 00)-distributive Boolean algebra. Show that there is a topology on 2 such
that the closure of any A C 2 is precisely the set of limits of order*-convergent sequences in A.

(1) Give an example of a set X and a double sequence (Umn)mnen in R such that lim,, oo Umn(z) =
um () exists for every m € N and z € X, lim,;, o0 () = 0 for every x € X, but there is no sequence
(Vg ken I {tmn @ m, n € N} such that limg_, o vi(x) = 0 for every z.

(m) Let U be a Riesz space with a Riesz norm | ||. For v € U* define 7, : U — [0,00[ by setting
To(u) = ||Ju] A v| for every u € U. Show that every 7, is an F-seminorm on U, and that {r, : v € U}
defines a Hausdorff linear space topology on U.

(n) Let U be any Riesz space. For h € U~1 (356Ab) and v € U* define 7,5, : U — [0, 00[ by setting
Ton(u) = h(|u| A v) for every u € U. Show that 7,5 is an F-seminorm on U.

(o) Let (A, i) be a o-finite measure algebra. Show that the function (o, u) — Ju>a] : R x L% — A
is Borel measurable when L° = L°(2l) is given the topology of convergence in measure and 2 is given its
measure-algebra topology.

(p) Let & be the regular open algebra of R. Show that there is no Hausdorff topology T on L%(&) such
that (up)nen is T-convergent to u whenever (un)nen is order*-convergent to w.

(a) In 367Qc, show that u = limg_, 7t uss for the norm topology of L' iff {ug : B € B} is uniformly
integrable, and that in this case uyg = Pyu for every B € B.

(r) Let 2 be a Dedekind o-complete Boolean algebra and r > 1. Let E C R” be a Borel set and write
Qe = {(u1,...,u.) : [(u1,...,u.) € E] = 1} C LYR)", as in 367Yg. Let h : E — R be a continuous

function and h : Qg — L = L°(2A) the corresponding map. Show that if A is continuous if L is given its
topology of convergence in measure and (L°)" the product topology.

(s) Show that 367U is true for all measure algebras, whether semi-finite or not.
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(t) Let (A, /) be a measure algebra. Fora € 2/, n € Nand u, v € LO(2), set pan(u,v) = [* f(an ([u> o] A v > a]))
the integral being with respect to Lebesgue measure. (i) Show that the integral is always defined. (ii) Show
that each pg, @ LO(A) x LO(A) — [0, oo| is a pseudometric. (iii) Show that {pa, : @ € 2/, n € N} defines the
topology of convergence in measure on L°(21).

367 Notes and comments I have given a very general definition of ‘order*-convergence’. The general
theory of convergence structures on ordered spaces is complex and has many traps for the unwary. I have
tried to lay out a safe path to the results which are important in the context of this book. But the propositions
here are necessarily full of little conditions (e.g., the requirement that U should be Archimedean in 367E)
whose significance may not be immediately obvious. In particular, the definition is very much better adapted
to distributive lattices than to others (367Yc, 367Yd). It is useful in the study of Riesz spaces and Boolean
algebras largely because these satisfy strong distributive laws (313B, 352E). The special feature which
distinguishes the definition here from other definitions of order-convergence is the fact that it can be applied
to sequences which are not order-bounded. For order-bounded sequences there are useful simplifications
(367Be-f), but the Martingale Theorem (367J), for instance, if we want to express it in terms of its natural
home in the Riesz space L, refers to sequences which are hardly ever order-bounded.

The * in the phrase ‘order*-convergent’ is supposed to be a warning that it may not represent exactly the
concept you expect. I think nearly any author using the phrase ‘order-convergent’ would accept sequences
fulfilling the conditions of 367Bf; but beyond this no standard definitions have taken root.

The fact that order*-convergent sequences in an L° space are order-bounded (367G) is actually one of
the characteristic properties of L. Related ideas will be important in the next section (368A, 368M).

It is one of the outstanding characteristics of measure algebras in this context that they provide non-
trivial linear space topologies on their L° spaces, related in striking ways to the order structure. Not all L°
spaces have such topologies (367Yp). A topology corresponding to ‘convergence in measure’ can be defined
on L2(2A) for any Maharam algebra 2; see 393K below.

367T shows that the topology of convergence in measure on L°(2l) is (at least for semi-finite measure
algebras) determined by the Riesz space structure of L°; and that indeed the same is true of its order-dense
Riesz subspaces. This fact is important for a full understanding of the representation theorems in §369
below. If a Riesz space U can be embedded as an order-dense subspace of any such L°, then there is already
a ‘topology of convergence in measure’ on U, independent of the embedding. It is therefore not surprising
that there should be alternative descriptions of the topology of convergence in measure on the important
subspaces of L° (367Xq, 367Ym).

For o-finite measure algebras, the topology of convergence in measure is easily described in terms of
order-convergence (367P). For other measure algebras, the formula fails (367Xu(iii)). 367Yp shows that
trying to apply the same ideas to Riesz spaces in general gives rise to some very curious phenomena.

367V enables us to prove results which would ordinarily be associated with some form of compactness. Of
course compactness is indeed involved, as the proof through 367U makes clear; but it is weak* compactness
in (L')**, rather than in the space immediately to hand.

I hardly mention ‘uniform integrability’ in this section, not because it is uninteresting, but because I have
nothing to add at this point to 246J and the exercises in §246. But I do include translations of Lebesgue’s
Dominated Convergence Theorem (367I) and the Martingale Theorem (367J) to show how these can be
expressed in the language of this chapter.

Version of 16.9.09
368 Embedding Riesz spaces in L°

In this section I turn to the representation of Archimedean Riesz spaces as function spaces. Any Archi-
medean Riesz space U can be represented as an order-dense subspace of L°(2(), where 2l is its band algebra
(368E). Consequently we get representations of Archimedean Riesz spaces as quotients of subspaces of R

(368F) and as subspaces of C*°(X) (368G), and a notion of ‘Dedekind completion’ (3681-368J). Closely
associated with these is the fact that we have a very general extension theorem for order-continuous Riesz
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homomorphisms into L° spaces (368B). I give a characterization of L° spaces in terms of lateral completeness
(368M, 368Yd), and I discuss weakly (o, 0co)-distributive Riesz spaces (368N-368S).

368A Lemma Let 2 be a Dedekind o-complete Boolean algebra, and A C (L°)* a set with no upper
bound in L°, where LY = L°(2l). If either A is countable or 2 is Dedekind complete, there is a v > 0 in L°
such that nv = sup,c 4, u A nv for every n € N.

proof The hypothesis ‘A is countable or 2 is Dedekind complete’ ensures that ¢, = sup,c4 [u > o] is
defined for each «. By 364L(a-i), ¢ = inf,cn ¢, = infyer ¢o is non-zero. Now for any n > 1, « € R

[sup,ea(u Anxc) > a] = sup,ea [u > a]nxe > ] = [xc > 2],
because if a@ > 0 then
sup,eqa [u > o] =co 22 [xe > 2],
while if & < 0 then (because A is a non-empty subset of (L°)™)
SUPyea [u > a] =1 = [xc > £].

So sup, e 4 u A nxc = nyc for every n > 1, and we can take v = yc. (The case n = 0 is of course trivial.)

368B Theorem Let 2 be a Dedekind complete Boolean algebra, U an Archimedean Riesz space, V' an
order-dense Riesz subspace of U and T': V' — L° = L°(2) an order-continuous Riesz homomorphism. Then
T has a unique extension to an order-continuous Riesz homomorphism 7 : U — L°.

proof (a) The key to the proof is the following: if w > 0 in U, then {Tv : v € V,0 < v < u} is
bounded above in L°. P2 Suppose, if possible, otherwise. Then by 368A there is a w > 0 in L° such that
nw = sup,c 4 nw A Tv for every n € N, where A = {v:v € V, 0 < v < u}. In particular, there is a vy € A
such that wy = wATvy > 0. Because U is Archimedean, infz>; %u =0,s0v9 = sukaI(vo — %u)+ Because
V is order-dense in U, vy = sup B where

B:{v:vGV,OSUS(vgf%uﬁforsomekZl}.

Because T is order-continuous, Twy = sup T'[B] in LY, and there is a v; € B such that w; = wg A Tvy > 0.
Let k > 1 be such that v < (vg — %u)"r Then for any m € N,

muy Au < (muy A kvg) + (mor A (u — kvg) ™)
(352F (a-i))

< kvg+ (m+k)(v1 A (%u —vg) ") = kuvp.

So for any v € A, m € N,
mwy ATv =mwy AmTvy ATv <T(mvy Av) < T(mop Au) < T(kvy) = kTvo.
But this means that, for m € N,
mw; = mwi A mw = sup,ec 4 mwi A (mw A Tv) = sup,c 4 mwi ATv < kT,
which is impossible because L° is Archimedean and w; > 0. XQ

(b) Because L° is Dedekind complete, sup{Tv : v € V, 0 < v < u} is defined in L for every u € U. By
355F, T has a unique extension to an order-continuous Riesz homomorphism from U to L°.

368C Corollary Let 2 and B be Dedekind complete Boolean algebras and U, V order-dense Riesz
subspaces of L°(2A), L°(B) respectively. Then any Riesz space isomorphism between U and V extends
uniquely to a Riesz space isomorphism between L°(2A) and L°(8); and in this case 2 and B must be
isomorphic as Boolean algebras.
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proof If T : U — V is a Riesz space isomorphism, then 368B tells us that we have (unique) order-continuous
Riesz homomorphisms T : LO(A) — LO(B) and T' : LO(B) — LO(A) extending T, T~ respectively. Now
T'T : L° (2) — L°(A) is an order-continuous Riesz homomorphism agreeing with the identity on U, so must
be the identity on LO(2); similarly 77" is the identity on L°(B), and T is a Riesz space isomorphism. To
see that 2 and B are isomorphic, recall that by 3640 they can be identified with the algebras of projection
bands of L°(2A) and L°(%B), which must be isomorphic.

368D Corollary Suppose that 2 is a Dedekind o-complete Boolean algebra, and that U is an order-
dense Riesz subspace of L°(2() which is isomorphic, as Riesz space, to L°(8) for some Dedekind complete
Boolean algebra 8. Then U = L°(2l) and 2 is isomorphic to B8 (so, in particular, is Dedekind complete).

proof The identity mapping U — U is surely an order-continuous Riesz homomorphism, so by 368B extends
to an order-continuous Riesz homomorphism T:L° (&) — U. Now T must be injective, because if u # 0 in
LO(21) there is a u’ € U such that 0 < ' < |u|, so that 0 < «/ < |Tu|. So we must have U = L°() and T
the identity map. By 3640 again, 2 = B.

368E Theorem Let U be any Archimedean Riesz space, and 2 its band algebra (353B). Then U can be

embedded as an order-dense Riesz subspace of LO(21).

proof (a) If U = {0} then A = {0}, L° = L°(2A) = {0} and the result is trivial; I shall therefore suppose
henceforth that U is non-trivial. Note that by 352Q 2l is Dedekind complete.

Let C C UT \ {0} be a maximal disjoint set (in the sense of 352C); to obtain such a set apply Zorn’s
lemma to the family of all disjoint subsets of U™\ {0}. Now I can write down the formula for the embedding
T : U — L° immediately, though there will be a good deal of work to do in justification: for w € U and
a € R, [Tu > o] will be the band in U generated by

{eN(u—ae)t:eeC}.

(For once, I allow myself to use the formula [...] without checking immediately that it represents a member
of L% all T claim for the moment is that [Tu > o] is a member of 2 determined by u and «.)

(b) Before getting down to the main argument, I make some remarks which will be useful later.

(i) If w > 0 in U, then there is some e € C such that u A e > 0, since otherwise we ought to have added
u to C. Thus C*+ = {0}.

(ii) f u € U and e € C and o € R, then v = e A (ae — u)* belongs to [Tu > o]*. P If ¢’ € C, then
either ¢’ # e so

vAe A(u—ae)t <ene =0,
or ¢ =e and
vAe A (u—ae)t < (ae—u)TA(u—ae)t =0.
Accordingly [Tw > o] is included in the band {v}+ and v € [Tu > o]*. Q

(c) Now I must confirm that the formula given for [Tu > «] is consistent with the conditions laid down
in 364Aa. P Take u € U.

(i) If o < B then
0<eA(u—pe)t <eA(u—ae)t €[Tu>d]
so e (u—pe)t € [Tu > a], for every e € C, and [Tu > 8] C [Tu > a].

(ii) Given a € R, set W = supg., [Tu > f] in 2, that is, the band in U generated by {e A (u — fe)™ :
e € C, B > a}. Then for each e € C,

SUPgsq €N (u—fe)t =eA(u—infgsy fe)t =eA(u—ae)t

using the general distributive laws in U (352E), the translation-invariance of the order (351D) and the fact
that U is Archimedean (to see that ae = infg~, 8e). So e A (u—ae)™ € W as e is arbitrary, [Tu > o] CW
and [Tu > o] = W.
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(iii) Now set W = inf,en [Tu > n]. For any e € C, n € N we have
e (ne—u)t € [Tu>n]t C Wt
so that
eNle—Ltum)F <en(e—Ltu)yt ewt
for every n > 1 and
e=sup,s;eA(e—tut)T e W
Thus C C W+ and W C C+ = {0}. So we have inf,en [Tu > n] = 0.
(iv) Finally, set W = sup,,c [T'v > —n]. Then
eANle—tun )T <eAe+iu)t <eA(u+ne)t eW
for every n > 1 and e € C, so
e=sup,s;eA(e—tum)TeW
for every e € C and W+ = {0}, W = U. Thus all three conditions of 364Aa are satisfied. Q

(d) Thus we have a well-defined map 7' : U — LY. T show next that T'(u+v) = Tu+ Tv for all u, v € U.
P I rely on the formulae in 364D and 364Ea, and on partitions of unity in 2, constructed as follows. Fix
n > 1 for the moment. Then we know that

supjez [Tu > L] =1, infiez [Tu > L] = 0.
So setting
Vi [7u> S [Tu > S = [T > 410 [Tu> S
(Vi)iez is a partition of unity in . Similarly, (W;);cz is a partition of unity, where
W; =[Tv> LN [Tv> £
Now, for any 4, j, k € Z such that i + 5 > k,
VinW; C [Tu> 2N [Tv > 1] C [Tu+ Tv > L] C [Tu+ Tv > £];
thus
[Tu+Tv> %] D sup; >y, Vi N Wj.
On the other hand, if ¢ € Q and k € Z, there is an ¢ € Z such that % <g< %, so that
[Tu>q)N[To>5EL —g] C[Tu>L]N[Tv > 4] C sup; >y, Vi N W3
thus for any k € Z
[Tu+Tv > EL] C sup; 4>k Vi VW5 C [Tu+Tv > E].
Also, if 0 <w € V;NW; and e € C' then
_
n

wAeA (u e)*zw/\e/\(vf%e)*:(),

so that
w/\e/\(u—i—v—%e)‘* =0
because
(u+v— %e)“‘ < (u-— %e)"r +(v— %e)"‘

by 352Fc. But this means that V; N W; N [T(u +v) > “242] = {0}. Turning this round,
and because sup; ;cz ViNW; =U in 2,
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[T(u+v) > EEL] C Sup; 4> Vi N Wj.

Finally, if i +j > k and 0 < w € V; NV}, then there is an e € C such that w; = wAeA (u— %e)Jr > 0; there
is an e’ € C such that wy = wy A’ A (v —Le')T > 0; of course e = ¢/, and

0<w2§€/\(u—%e)+/\(v—%)+Se/\(u+v—%e)+
itj k
€[T(utv)>=—"=]C[T(u+v)>"]

using 352Fc again. This shows that w & [T'(u + v) > £]1; as w is arbitrary, V; N W; C [T'(u +v) > £]; so
we get

sup; > ViNW; C [T(u+v) > £].
Putting these four facts together, we see that

[[T(u+v)>%]]gsupiﬂ-ZkViQWjQ[[TU+TU>%}],

[Tu+Tv > EL] Csup;jsp, ViN W, C [T(u+v) > £]
for all n > 1 and k € Z. But this means that we must have
[T(u+v)>B]C[Tu+Tv>qa], [Tu+Tv>p]C[T(u+v)>dq]
whenever a < . Consequently

[Tu+Tv > a] =sup [Tu+Tv>f] C[T(u+v) > af
B>a

= 21>1p [T(u+v)> 0] C[Tu+Tv>dq]
and [Tu+ Tv > o] = [T'(u+v) > ] for every «, that is, T(u +v) = Tu+Tv. Q
(e) The hardest part is over. If u € U, v > 0 and « € R, then for any e € C
min(1, %)(e Alyu—cae)T) <eA (u-— %e)*‘ < max(1, %)(e A (yu — ae)™),
0
[T(yu) > o] = [Tu> £] = [yTu > af;

as « is arbitrary, vT'u = T'(yu); as v and u are arbitrary, T' is linear. (We need only check linearity for v > 0
because we know from the additivity of T that T'(—u) = —Tu for every w.)

(f) To see that T is a Riesz homomorphism, take any u € U and « € R and consider the band
[Tu>a]u[-Tu > a] = [|Tu| > o] (by 364L(a-ii)). This is the band generated by {e A (u — ae)t : e €
CluU{eA (—u—ae)t :e € C}. But this must also be the band generated by

{eA(u—ae)t)V(ien(—u—ae)T):ee Ct={eA(Ju —ae)t :ee€ C},

which is [T|u| > o]. Thus [|Tu| > o] = [T|u| > o] for every o and |Tu| = T|u|. As u is arbitrary, T is a
Riesz homomorphism.

(g) To see that T is injective, take any non-zero u € U. Then there must be some e € C such that
|u| A e # 0, and some « > 0 such that |u| A e £ ae, so that e A (Jju] — ae)t # 0 and [T|u] > a] # {0} and
T|u| # 0 and Tu # 0.

Thus T embeds U as a Riesz subspace of L°.

(h) Finally, I must check that T'[U] is order-dense in L°. P Let p > 0 in L°. Then there is some o > 0
such that V =[p > a] #0. Take u > 0in V. Let e € C be such that u Ae > 0. Then v = u A ae > 0. Now
e (v—ae)t = 0; but also e’ Av =0 for every ¢’ € C distinct from e, so that [Tv > o] = {0}. Next, v € V,
so e’ A(v—Be)T € V whenever ¢ € C and 3 > 0, and [Tv > 3] C V for every 3 > 0. Accordingly we have
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[Tv> B8] = {0} C[p > B if B > a,
CVCp>plif0<B<a,
=U=[p>p]if B <0,

and Tv < p. Also Tv > 0, by (g). As p is arbitrary, T[U] is order-dense in L°. Q

368F Corollary A Riesz space U is Archimedean iff it is isomorphic to a Riesz subspace of some reduced
power R¥X|F, where X is a set and F is a filter on X such that (), .y F, € F whenever (F},)nen is a sequence
in F.

proof (a) If U is an Archimedean Riesz space, then by 368E there is a space of the form L° = L°(2() such
that U can be embedded into LY. As in the proof of 364D, L° is isomorphic to some space of the form
LO9(X)/W, where X is a o-algebra of subsets of some set X and W = {f : f € LY {x: f(x) #0} € I}, T
being a o-ideal of ¥. But now F = {A: AUE = X for some E € T} is a filter on X such that (), .y F € F
for every sequence (Fj,)nen in F. (I am passing over the trivial case X € Z, since then U must be {0}.)
And £°/W is (isomorphic to) the image of £% in RX|F, since W= {f: f € L, {z: f(z) =0} € F}. Thus
U is isomorphic to a Riesz subspace of RX | F.

neN

(b) On the other hand, if F is a filter on X closed under countable intersections, then W = {f : f €
RX, {z : f(x) = 0} € F} is a sequentially order-closed solid linear subspace of the Dedekind o-complete
Riesz space R, so that RX|F = RX /W is Dedekind o-complete (353K(a-iii)) and all its Riesz subspaces
must be Archimedean (353Ia, 351Rc).

368G Corollary Every Archimedean Riesz space U is isomorphic to an order-dense Riesz subspace of
some space C*°(X) (definition: 364V), where X is an extremally disconnected compact Hausdorff space.

proof Let Z be the Stone space of the band algebra 2 of U. Because 2 is Dedekind complete (352Q again),
Z is extremally disconnected and 24 can be identified with the regular open algebra RO(Z) of Z (314S). By
364V, L°(RO(Z)) can be identified with C*°(Z). So an embedding of U as an order-dense Riesz subspace
of L(2A) (368E) can be regarded as an embedding of U as an order-dense Riesz subspace of C*(Z).

368H Corollary Any Dedekind complete Riesz space U is isomorphic to an order-dense solid linear
subspace of L°(2A) for some Dedekind complete Boolean algebra 2.

proof Embed U in LY = L°(2) as in 368E; because U is order-dense in L° and (in itself) Dedekind complete,
it is solid (353L).

3681 Corollary Let U be an Archimedean Riesz space. Then U can be embedded as an order-dense
Riesz subspace of a Dedekind complete Riesz space V in such a way that the solid linear subspace of V'
generated by U is V itself, and this can be done in essentially only one way. If W is any other Dedekind
complete Riesz space and 7' : U — W is an order-continuous positive linear operator, there is a unique
positive linear operator T:V W extending 7.

proof By 368E, we may suppose that U is actually an order-dense Riesz subspace of L°(2A), where 2 is a
Dedekind complete Boolean algebra. In this case, we can take V' to be the solid linear subspace generated
by U, that is, {v : |v] < u for some u € U}; being a solid linear subspace of the Dedekind complete Riesz
space L°(2(), V is Dedekind complete, and of course U is order-dense in V.

If W is any other Dedekind complete Riesz space and T : U — W is an order-continuous positive linear
operator, then for any v € VT there is a ug € U such that v < ug, so that Tug is an upper bound for
{Tu:uelU,0<u< v} as W is Dedekind complete, sup,, e o<y <, Tw is defined in W. By 355Fa, T' has a
unique extension to an order-continuous positive linear operator from V to W.

In particular, if V7 is another Dedekind complete Riesz space in which U can be embedded as an order-
dense Riesz subspace, this embedding of U extends to an embedding of V; since V' is Dedekind complete,
its copy in V; must be a solid linear subspace, so if V; is the solid linear subspace of itself generated by U,
we get an identification between V and V7, uniquely determined by the embeddings of U in V' and V;.
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368J Definition If U is an Archimedean Riesz space, a Dedekind completion of U is a Dedekind
complete Riesz space V' together with an embedding of U in V as an order-dense Riesz subspace of V' such
that the solid linear subspace of V' generated by U is V itself. 368I tells us that every Archimedean Riesz
space U has an essentially unique Dedekind completion, so that we may speak of ‘the’ Dedekind completion
of U.

368K This is a convenient point at which to give a characterization of the Riesz spaces L°(2().

Lemma Let 2 be a Dedekind o-complete Boolean algebra. Suppose that A C LO(20)* is disjoint. If either
A is countable or 2 is Dedekind complete, A is bounded above in L%(2().

proof If A = (), this is trivial; suppose that A is not empty. For n € N, set a,, = sup, ¢4 [u > n]; this
is always defined; set a = inf,eya,. Now a = 0. P? Otherwise, there must be a u € A such that
a' =an[u>0]#0, since a C ag. But now, for any n, and any v € A\ {u},

anfv>n]Cu>0]nv>0]=0,

so that a’ C Ju > n]. As n is arbitrary, inf,,cn [u > n] # 0, which is impossible. XQ
By 364L(a-i), A is bounded above.

368L Definition A Riesz space U is called laterally complete or universally complete if A is
bounded above whenever A C U™ is disjoint.

368M Theorem Let U be an Archimedean Riesz space. Then the following are equiveridical:

(i) there is a Dedekind complete Boolean algebra 2( such that U is isomorphic to L°(2A);

(ii) U is Dedekind o-complete and laterally complete;

(iii) whenever V' is an Archimedean Riesz space, V; is an order-dense Riesz subspace of V and T : Vj — U
is an order-continuous Riesz homomorphism, there is a positive linear operator T:V U extending 7.

proof (a)(i)=-(ii) and (i)=-(iii) are covered by 368K and 368B.

(b)(ii)=(i) Assume (ii). By 368E, we may suppose that U is actually an order-dense Riesz subspace of
LY = L°(2A) for a Dedekind complete Boolean algebra L.

(@) fueUtanda e Athenux xyaceU. PSet A={v:velU 0<v<ya},and let C C A be
a maximal disjoint set; then w = sup C' is defined in U, and is also the supremum in L°. Set b = [w > 0].
Asw < xa, bCa. T If b # a, then x(a\b) > 0, and there is a v/ € U such that 0 < v' < x(a\b); but
now v’ € Aand v Aw =0, so v Av =0 for every v € C, and we ought to have added v’ to C. X Thus
[w > 0] = a.
Now consider v’ = sup,,cy u A nw; as U is Dedekind o-complete, v’ € U. Since [u' > 0] C a, v’ < u x xa.
On the other hand,
ux x[w> 1] x x[u<n] <uAniw <o
for every n > 1, so, taking the supremum over n, u X ya < u'. Accordingly
uxya=u €U,
as required. Q
(B) If w >0 in L°, there is a u € U such that %w <u<w. P Set

A={u:uelU 0<u<w}

C={a:ae acu—Liw>0] for some u e A}.

Then sup A = w, so C' is order-dense in 2. (If a € A\ {0}, either anw > 0] =0 and a C [0 — 2w > 0], so
a € C, or there is a u € U such that 0 < u < w X ya. In the latter case there is some n such that 2"u < w
and 2"y £ w, and now ¢ = an [2"u — Jw > 0] is a non-zero member of C included in a.) Let D C C be
a partition of unity and for each d € D choose ug € A such that d C Jug — %w >0]. By (a), uqg x xd € U
for every d € D, so u = supgep uqg X xd € U. Now u < w, but also [u — %w > 0] 2d for every d € D, so is
equal to 1, and u > %w, as required. Q
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(7) Given w > 0 in L°, we can therefore choose (uy)nen, (Un)nen inductively such that vy = 0 and
1
un €U, S(w—vp) Stn SW—=0n,  Vny1=Vn+Un

for every n € N. Now (v,)nen I8 a non-decreasing sequence in U and w — v, < 27"w for every n, so
W = SUP, ey Un € U.
As w is arbitrary, (L°)T C U and U = L is of the right form.

(c)(iii)=(i) As in (b), we may suppose that U is an order-dense Riesz subspace of L°. But now apply
condition (111) with V = L% Vi = U and T the identity operator. There is an extension T:1L° - U. If
v>0in L Tv > Tu = u whenever u € U and u < v, so Tv > v, since v = sup{u : u € U, 0 < u < v} in L.
Similarly, T(Tv — v) > Tv —v. But as Tv € U, T(Tv) = T(Tv) = Tv and T(Tv —v) =0, s0o v = Tv € U.
As v is arbitrary, U = L0,

368N Weakly (o, c0)-distributive Riesz spaces We are now ready to look at the class of Riesz spaces
corresponding to the weakly (o, co)-distributive Boolean algebras of §316.

Definition Let U be a Riesz space. Then U is weakly (o, oc0)-distributive if whenever (A, )nen is a
sequence of non-empty downwards-directed subsets of U™, each with infimum 0, and (J,,cy An has an upper
bound in U, then

{v:u e U, for every n € N there is a v € A,, such that v < u}
has infimum 0 in U.

Remark Because the definition looks only at sequences (A, )nen such that (J, .y Ay is order-bounded, we
can invert it, as follows: a Riesz space U is weakly (o, 0o)-distributive iff whenever (A, ) en is a sequence of
non-empty upwards-directed subsets of U™, all with supremum ug, then

{u:ueUT, for every n € N there is a v € A,, such that u < v}

also has supremum ug.

3680 Lemma Let U be an Archimedean Riesz space. Then the following are equiveridical:

(i) U is not weakly (o, co)-distributive;

(ii) there are a uw > 0 in U and a sequence (A, ),en of non-empty downwards-directed sets, all with
infimum 0, such that sup, ¢y un, = u whenever u,, € A,, for every n € N,

proof (ii)=-(i) is immediate from the definition of ‘weakly (o, co)-distributive’. For (i)=-(ii), suppose that
U is not weakly (o, 00)-distributive. Then there is a sequence (A, ),en of non-empty downwards-directed

sets, all with infimum 0, such that |J,,cy An is bounded above, but

A={w:weU, for every n € N there is a v € A, such that v < w}

does not have infimum 0. Let u > 0 be a lower bound for A, and set A, = {uAv:v € A,} for each n € N.
Then each A/, is a non-empty downwards-directed set with infimum 0. Let (u,)nen be a sequence such that
u, € Al for every n. Express each u, as u A v, where v, € A,. Let B be the set of upper bounds of
{vp, : m € N}. Then inf,ep nenw — vn, = 0, because U is Archimedean (353F), while B C A, so u < w for
every w € B. If v’ is any upper bound for {u, : n € N}, then

u—tu <u—uAv,=(u—v,)T <(w—-v,)T =w—1,

whenever n € N and w € B. So v/ > u. Thus u = sup, cyUn. As (Un)nen is arbitrary, u and (A))nen
witness that (ii) is true.

368P Proposition (a) A regularly embedded Riesz subspace of an Archimedean weakly (o, 0o)-distribu-
tive Riesz space is weakly (o, 0o)-distributive.

(b) An Archimedean Riesz space with a weakly (o, co)-distributive order-dense Riesz subspace is weakly
(0, 00)-distributive.

(¢c) If U is a Riesz space such that U* separates the points of U, then U is weakly (o, c0)-distributive; in
particular, U~ and U are weakly (o, c0)-distributive for every Riesz space U.
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proof (a) Suppose that U is an Archimedean Riesz space and that V' C U is a regularly embedded Riesz
subspace which is not weakly (o, co)-distributive. Then 3680 tells us that there are a v > 0 in V' and
a sequence (A,)nen of non-empty downwards-directed subsets of V, all with infimum 0 in V, such that
SUp,,cn Vn = v in V' whenever v, € A, for every n € N. Because V is regularly embedded in U, inf A, =0
in U for every n and sup,,cy v, = v in U for every sequence (vn)nen € [[,,cn An, 50 U is not weakly (o, 00)-
distributive. Turning this round, we have (a).

(b) Let U be an Archimedean Riesz space which is not weakly (o, co)-distributive, and V' an order-dense
Riesz subspace of U. By 3680 again, there are a v* > 0 in U and a sequence (A,),en of non-empty
downwards-directed sets in U, all with infimum 0, such that sup,,cyun, = ©* whenever u,, € A, for every n.
Let v € V be such that 0 < v < u*. Set

B, = {w:w €V, there is some u € A,, such that v Au < w < v}

for each n € N. Because A,, is downwards-directed, w Aw’ € B,, for all w, w' € B,; v € B, so B, # 0; and
inf B, =0 in V. P Setting

C ={w:w € VT, there is some u € A,, such that w < (v —u)*},

then (because V is order-dense) any upper bound for C' in U is also an upper bound of {(v—u)" : u € A,}.
But

Sup,ea, (v —u)t = (v —inf A,)* = o,

sov=supCinU and inf B, =inf{v —w:weC}=0inU andin V. Q
Now if v, € B,, for every n € N, we can choose u,, € A,, such that v A u,, < v, < v for every n, so that

V=0AU" =0 ASUP,ey Un = SUP,eN U A Uy < SUD,en Un S U,
and v = sup,,cy Un. Thus (By)nen witnesses that V' is not weakly (o, 0o)-distributive.

(c) Now suppose that U* separates the points of U. In this case U is surely Archimedean (356G). ? If U
is not weakly (o, co)-distributive, there are a v > 0 in U and a sequence (A4,,)pen of non-empty downwards-
directed sets, all with infimum 0, such that sup, cyun = uw whenever u,, € A, for each n. Take f € U*
such that f(u) # 0; replacing f by |f| if necessary, we may suppose that f > 0. Set 6 = f(u) > 0. For each
n € N, there is a u,, € A, such that f(u,) < 27"72§. But in this case (sup,.,, u;)nen is a non-decreasing
sequence with supremum u, so

Fu) = limp o0 f(supicy i) < 35750 f(ui) < 56 < f(u),

which is absurd. X Thus U is weakly (o, co)-distributive.

For any Riesz space U, U acts on U™ as a subspace of U™ (356F); as U surely separates the points of
U™, so does U~*. So U™ is weakly (o, 00)-distributive. Now U* is a band in U™ (356B), so is regularly
embedded, and must also be weakly (o, co)-distributive, by (a) above.

368Q Theorem (a) For any Boolean algebra 21, 2 is weakly (o, 0o)-distributive iff S(2l) is weakly (o, 00)-
distributive iff L>° () is weakly (o, 0o)-distributive.

(b) For a Dedekind o-complete Boolean algebra 21, LY(2l) is weakly (o, co)-distributive iff 2l is weakly
(0, 00)-distributive.

proof (a)(i) ? Suppose, if possible, that 2 is weakly (o, co)-distributive but .S = S(2l) is not. By 3680, as
usual, we have a v > 0 in S and a sequence (A,,),en of non-empty downwards-directed sets in S, all with
infimum 0, such that u = sup,,cy u, whenever u,, € A,, for every n. Let a > 0 be such that ¢ = [u > a] # 0
(361Eg), and consider

B,={[v>a]:ved,} CA

for each n € N. Then each B,, is downwards-directed (because A4, is), and inf B,, = 0 in A (because if b is
a lower bound of B,,, axb < v for every v € A,). Because 2 is weakly (o, 00)-distributive, there must be
some a € 2l such that a Z ¢ but there is, for every n € N, a b,, € B,, such that a >b,. Take v, € A,, such
that b, = [v, > @], so that

vp < ax1V ||[vplleoxbn < axlV |ullwxa.
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Since u = sup,,cy Vn, ¥ < axl V ||ullecxa. But in this case
c=[u>a] Ca,

contradicting the choice of a. X
Thus S must be weakly (o, 00)-distributive if 2 is.

(ii) Now suppose that S is weakly (o, 0o)-distributive, and let (B,)nen be a sequence of non-empty
downwards-directed subsets of 2, all with infimum 0. Set A, = {xb: b € B,} for each n; then A, C S is
non-empty, downwards-directed and has infimum 0 in S, because x : 2 — S is order-continuous (361Ef).
Set

A={v:vesb, forevery n € N there is a u € A,, such that u < v},

B ={b:bec, for every n € N there is an a € B,, such that a C b}.

? If 0 is not the greatest lower bound of B, take a non-zero lower bound c. Because S is weakly (o, 00)-
distributive, inf A = 0, and there is a v € A such that xyc £ v. Express v as Z?:o a;xa;, where (a;)i<n is
disjoint, and set a = sup{a; : i < n, a; > 1}; then xa < v, so ¢ ¢ a. For each n there is a b,, € B,, such that
xbn, < v. But in this case b,, C a for each n € N, so that a € B; which means that ¢ is not a lower bound
for B. X

Thus inf B =0 in A. As (B,)nen is arbitrary, 2 is weakly (o, 0co)-distributive.

(iii) Thus S is weakly (o, o00)-distributive iff 2 is. But S is order-dense in L>® = L*>(2) (363C),
therefore regularly embedded (352Ne), so 368Pa-b tell us that S is weakly (o, co)-distributive iff L>° is.

(b) In the same way, because S can be regarded as an order-dense Riesz subspace of L° = LO(2() (364Ja),
LY is weakly (o, 00)-distributive iff S is, that is, iff 2 is.

368R Corollary An Archimedean Riesz space is weakly (o, 0o)-distributive iff its band algebra is weakly
(0, 00)-distributive.

proof Let U be an Archimedean Riesz space and 2 its band algebra. By 368E, U is isomorphic to an
order-dense Riesz subspace of LY = L°(2l). By 368P, U is weakly (o, co)-distributive iff L is; and by 368Qb
LY is weakly (o, 00)-distributive iff 2 is.

368S Corollary If (2, 1) is a semi-finite measure algebra, any regularly embedded Riesz subspace (in
particular, any solid linear subspace and any order-dense Riesz subspace) of L°(2l) is weakly (o, o00)-dis-
tributive.

proof By 322F, 2 is weakly (o, 0o)-distributive; by 368Qb, L°(2() is weakly (o, co)-distributive; by 368Pa,
any regularly embedded Riesz subspace is weakly (o, co)-distributive.

368X Basic exercises (a) Let X be an uncountable set and X the countable-cocountable o-algebra of
subsets of X. Show that there is a family A C LY = L°(X) such that u A v = 0 for all distinct u, v € A
but A has no upper bound in L°. Show moreover that if w > 0 in L° then there is an n € N such that
nW # SUPyec 4 U A NW.

(b) Let U be a linear space, 2l a Dedekind complete Boolean algebra, and p : U — L° = L°(2A) a function
such that p(u + v) < p(u) + p(v) and p(au) = ap(u) whenever u, v € U and o > 0. Suppose that V C U
is a linear subspace and T': V — LU is a linear operator such that Tv < p(v) for every v € V. Show that
there is a linear operator T : U — L°, extending T', such that Tu < p(u) for every u € U. (Hint: part A of
the proof of 363R.)

(c) Let 2 be any Boolean algebra, and 2 its Dedekind completion (314U). Show that Lm(ﬁ) can be
identified with the Dedekind completions of S(2) and L ().

(d) Explain how to prove 368K from 368A.
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(e) Show that any product of weakly (o, co)-distributive Riesz spaces is weakly (o, co)-distributive.

(f) Let A be a Dedekind complete weakly (o, 0o)-distributive Boolean algebra. Show that a set A C L% =
LO(21) is order-bounded iff (27"uy,),en order*-converges to 0 in LY whenever (u,)nen is a sequence in A.
(Hint: use 368A. If v > 0 and v = sup,,c 4 v A2~ "u for every n, we can find a w > 0 and a sequence (up)nen
in A such that w < 27", for every n.)

(g) Give a direct proof of 368S, using the ideas of 322F, but not relying on it or on 368Q.

368Y Further exercises (a) (i) Use 364T-364U to show that if X is any compact Hausdorff space then
C(X) can be regarded as an order-dense Riesz subspace of L°(RO(X)), where RO(X) is the regular open
algebra of X. (ii) Use 353N to show that any Archimedean Riesz space with order unit can be embedded as
an order-dense Riesz subspace of some L°(RO(X)). (iii) Let U be an Archimedean Riesz space and C C U+
a maximal disjoint set, as in part (a) of the proof of 368E. For e € C' let U, be the solid linear subspace of U
generated by e, and let V' be the solid linear subspace of U generated by C'. Show that V can be embedded
as an order-dense Riesz subspace of [],.. Ue and therefore in [], .- L°(RO(X.)) = L(J],c RO(X,)) for
a suitable family of regular open algebras RO(X,). (iv) Now use 368B to complete a proof of 368E.

(b) Let U be any Archimedean Riesz space. Let V be the family of pairs (A, B) of non-empty subsets of
U such that B is the set of upper bounds of A and A is the set of lower bounds of B. Show that V can be
given the structure of a Dedekind complete Riesz space defined by the formulae

(A1, B1) + (A2, B2) = (A, B) iff Ay + Ay C A, B1 + B2 C B,
a(A,B) = (0, aB) it a > 0,

(Al,Bl) < (AQ,BQ) iff A1 - Ag.

Show that u — (]—o0,u], [u, o0]) defines an embedding of U as an order-dense Riesz subspace of V, so that
VY may be identified with the Dedekind completion of U.

(c) Work through the proof of 364T when X is compact, Hausdorff and extremally disconnected, and
show that it is easier than the general case. Hence show that 368Yb can be used to shorten the proof of
368E sketched in 368Ya.

(d) Let U be a Riesz space. Show that the following are equiveridical: (i) U is isomorphic, as Riesz space,
to LY(2A) for some Dedekind o-complete Boolean algebra 24 (ii) U is Dedekind o-complete and has a weak
order unit and whenever A C U™ is countable and disjoint then A is bounded above in U.

(e) Let U be a weakly (o, 00)-distributive Riesz space and V' a Riesz subspace of U which is either solid
or order-dense. Show that V' is weakly (o, co)-distributive.

(f) Show that C([0,1]) is not weakly (o, 0o)-distributive. (Compare 316J.)

(g) Let 2 be a ccc weakly (o, 00)-distributive Boolean algebra. Suppose we have a double sequence
(aij)(i,j)enxn in 2 such that (a;)jen order*-converges to a; in 2 for each 4, while (a;);en order*-converges
to a. Show that there is a strictly increasing sequence (n(i))ien such that (a; »(;))ien order*-converges to a.

(h) Let U be a weakly (o, co)-distributive Riesz space with the countable sup property. Suppose we have
an order-bounded double sequence (u;j)(; jyenxy in U such that (u;;);en order*-converges to u; in U for
each i, while (u;);en order*-converges to u. Show that there is a strictly increasing sequence (n());en such
that (u; (;))ien order*-converges to u.

(i) Let 2 be a ccc weakly (o, 00)-distributive Dedekind complete Boolean algebra. Show that there is a

topology on LY = L°(2A) such that the closure of any A C L is precisely the set of order*-limits of sequences
in A. (Cf. 367Yk.)
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(J) Let U be a weakly (o, co)-distributive Riesz space and f : U — R a positive linear functional; write f.
for the component of f in U*. (i) Show that for any u € U™ there is an upwards-directed A C [0,u], with
supremum u, such that f(u) = sup,c4 f(v). (See 356Xe, 362D.) (ii) Show that if f is strictly positive, so
is fr. (Compare 391D.)

368 Notes and comments 368A-368B are manifestations of a principle which will reappear in §375:
Dedekind complete LY spaces are in some sense ‘maximal’. If we have an order-dense subspace U of such an
L°, then any Archimedean Riesz space including U as an order-dense subspace can itself be embedded in L°
(368B). In fact this property characterizes Dedekind complete L° spaces (368M). Moreover, any Archimedean
Riesz space U can be embedded in this way (368E); by 368C, the L° space (though not the embedding) is
unique up to isomorphism. If U and V are Archimedean Riesz spaces, each embedded as an order-dense
Riesz subspace of a Dedekind complete L° space, then any order-continuous Riesz homomorphism from
U to V extends uniquely to the L° spaces (368B). If one Dedekind complete L° space is embedded as an
order-dense Riesz subspace of another, they must in fact be the same (368D). Thus we can say that every
Archimedean Riesz space U can be extended to a Dedekind complete L? space, in a way which respects
order-continuous Riesz homomorphisms, and that this extension is maximal, in that U cannot be order-dense
in any larger space.

The proof of 368E which I give is long because I am using a bare-hands approach. Alternative methods
shift the burdens. For instance, if we take the trouble to develop a direct construction of the ‘Dedekind
completion’ of a Riesz space (368Yb), then we need prove the theorem only for Dedekind complete Riesz
spaces. A more substantial aid is the representation theorem for Archimedean Riesz spaces with order unit
(353N); I sketch an argument in 368Ya. The drawback to this approach is the proof of Theorem 364T, which
seems to be quite as long as the direct proof of 368E which I give here. Of course we need 364T only for
compact Hausdorff spaces, which are usefully easier than the general case (364U, 368Yc).

368G is a version of Ogasawara’s representation theorem for Archimedean Riesz spaces. Both this and
368F can be regarded as expressions of the principle that an Archimedean Riesz space is ‘nearly’ a space of
functions.

I have remarked before on the parallels between the theories of Boolean algebras and Archimedean Riesz
spaces. The notion of ‘weak (o, 00)-distributivity’ is one of the more striking correspondences. (Compare, for
instance, 316Xi(i) with 368Pa.) What is really important to us, of course, is the fact that the function spaces
of measure theory are mostly weakly (o, co)-distributive, by 368S. Of course this is easy to prove directly
(368Xg), but I think that the argument through 368Q gives a better idea of what is really happening here.
Some of the features of ‘order*-convergence’, as defined in §367, are related to weak (o, 00)-distributivity
(compare 367Y1, 367Yp); in 368Yi I describe a topology which can be thought of as an abstract version of
the topology of convergence in measure on the L? space of a o-finite measure algebra (367M).

Version of 23.11.16

369 Banach function spaces

In this section I continue the work of §368 with results which involve measure algebras. The first step is
a modification of the basic representation theorem for Archimedean Riesz spaces. If U is any Archimedean
Riesz space, it can be represented as a subspace of L% = L%(2l), where 2 is its band algebra (368E); now if
U™ separates the points of U, there is a measure rendering 2 a localizable measure algebra (369A, 369Xa).
Moreover, we get a simultaneous representation of U* as a subspace of LY (369C-369D), the duality between
U and U* corresponding exactly to the familiar duality between LP and L?. In particular, every L-space
can be represented as an L'-space (369E).

Still drawing inspiration from the classical LP spaces, we have a general theory of ‘associated Fatou
norms’ (369F-369M, 369R). I include notes on the spaces M1>° Mt and M0 (369N-369Q), which will
be particularly useful in the next chapter.

369A Theorem Let U be a Riesz space such that U* separates the points of U. Then U can be
embedded as an order-dense Riesz subspace of L? =L%(2l) for some localizable measure algebra (2, fi).

(© 1996 D. H. Fremlin
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proof (a) Counsider the canonical map S : U — U**. We know that this is a Riesz homomorphism onto an
order-dense Riesz subspace of U** (3561). Because U* separates the points of U, S is injective. Let 2 be
the band algebra of U** and T : U** — L° an injective Riesz homomorphism onto an order-dense Riesz
subspace V of LY, as in 368E. The composition T'S : U — L° is now an injective Riesz homomorphism,
so embeds U as a Riesz subspace of L°, which is order-dense because V is order-dense in L° and T'S[U] is
order-dense in V' (352N(c-iii)). Thus all that we need to find is a measure i on 2 rendering it a localizable
measure algebra.

(b) Note that V is isomorphic, as Riesz space, to U**, which is Dedekind complete (356B), so V' must
be solid in LY (353L). Also V* must separate the points of V' (356Lb).

Let D be the set of those d € 2 such that the principal ideal 2(; is measurable in the sense that there
is some 7 for which (214, 7) is a totally finite measure algebra. Then D is order-dense in 2. P Take any
non-zero a € 2. Because V is order-dense, there is a non-zero v € V such that v < ya. Take h > 0 in V*
such that h(v) > 0. Then there is a v’ such that 0 < v' < v and h(w) > 0 whenever 0 < w < v’ in V' (356H).
Let a > 0 be such that d = [v/ > a] # 0. Then xb < Lo’ € V whenever b € 4. Set vb = h(xb) € [0, 00| for
b € Ay. Because the map b — xb: A — L° is additive and order-continuous, the map b — xb: Aq — V also
is, and 7 = hx must be additive and order-continuous; in particular, 7(sup,cybn) = EZOZO vb,, whenever
(bnYnen is a disjoint sequence in 4. Moreover, if b € 2, is non-zero, then 0 < axb < v’ so vb = h(xb) > 0.
Thus (24,7) is a totally finite measure algebra, and d € D, while 0 # d C a. As a is arbitrary, D is
order-dense. Q

(c) By 313K, there is a partition of unity C' C D. For each ¢ € C, let 7. : A. — [0, 00[ be a functional
such that (%, 7.) is a totally finite measure algebra. Define fi : 2 — [0, 00] by setting fia = ) .~ Ve(anc)
for every a € . Then (%, i) is a localizable measure algebra. P (i) g0 = > .70 = 0. (ii) If (an)nen is a
disjoint sequence in 2 with supremum a, then

ﬂa‘ = ZCGC Dc(a’ n C) = ZcGC,nGN ﬁc(a’n n C) = EZO:O ﬂa”‘

(iii) If @ € A\ {0}, then there is a ¢ € C such that anc # 0, so that fia > v.(anc) > 0. Thus (2, f) is
a measure algebra. (iv) Moreover, in (iii), i(anc) = D.(anc) is finite. So (2, ) is semi-finite. (v) A is
Dedekind complete, being a band algebra (352Q), so (2, it) is localizable. Q

369B Corollary Let U be a Banach lattice with order-continuous norm. Then U can be embedded as
an order-dense solid linear subspace of L°(2() for some localizable measure algebra (2, fi).

proof By 356Dd, U* = U*, which separates the points of U, by the Hahn-Banach theorem (3A5Ae). So
369A tells us that U can be embedded as an order-dense Riesz subspace of an appropriate L°(2(). But also
U is Dedekind complete (354Ee), so its copy in L°(2l) must be solid, as in 368H.

369C The representation in 369A is complemented by the following result, which is a kind of general-
ization of 365L and 366Dc.

Theorem Let (2, i) be a semi-finite measure algebra, and U C L° = L°(2l) an order-dense Riesz subspace.
Set

V={v:vel® vxue L for every u € U},

writing L' for L'(A, 1) € L°. Then V is a solid linear subspace of L°, and we have an order-continuous
injective Riesz homomorphism 7" : V' — U* defined by setting

(Tv)(u)zfuxvforallueU,UGV.

The image of V is order-dense in U*. If (2, ) is localizable, then T is surjective, so is a Riesz space
isomorphism between V and U*.

proof (a)(i) Because x : LY x LY — L° is bilinear and L' is a linear subspace of L°, V is a linear subspace
of L. fueU,veV,we L and |w| < |v|, then

|w x u| = |w| x |u] < v| % |u| = |vxu| €L

as L' is solid, w x u € L'; as u is arbitrary, w € V; this shows that V is solid.
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(ii) By the definition of V', (Tv)(u) is defined in R whenever u € U and v € V. Because X is bilinear
and [ is linear, Tv : U — R is linear for every v € V, and T is a linear functional from V to the space of
linear operators from U to R.

(iii) f > 0in U and v > 0in V, then u x v > 0 in L' and (T)(u) = [u x v > 0. This shows that
T is a positive linear operator from V to U™.

(iv) If v > 0in V and A C U is a non-empty downwards-directed set with infimum 0 in U, then
inf A = 0 in L°, because U is order-dense (352Nb). Consequently infyequ x v = 0 in L° and in L!
(364B(b-ii), 353Pa), and

infu,ca(Tv)(u) = inf,eca fu xv=0
(because [ is order-continuous). As A is arbitrary, T'v is order-continuous. As v is arbitrary, T[V] C U*.

(v)IfveVandug > 0inU,set a = [v > 0]. Thenv™ =vxya. Set A={u:ueU, 0<u<uyxxa}.
Because U is order-dense in L?, ug x ya = sup A in L°. Because x and | are order-continuous,

(Tv) " (ug) > Zgg(TU)(u) = Zlelg/v X U

:/vxuo xxaz/v+ xug = T(v")(uo).

As uyg is arbitrary, (Tw)™ > Tvt. But because T is a positive linear operator, we must have Tvt > (Tv)™,
so that Tvt = (Tw) ™. As v is arbitrary, T is a Riesz homomorphism.

(vi) Now T is injective. B If v # 0 in V, there is a u > 0 in U such that v < |v|, because U is
order-dense. In this case u x [v| > 0so [u X |v| > 0. Accordingly |Tv| = T'|v| # 0 and Tv # 0. Q

(b) Putting (a-i) to (a-vi) together, we see that T is an injective Riesz homomorphism from V to U*.
All this is easy. The point of the theorem is the fact that T'[V] is order-dense in U*.

P Take h > 0 in U*. Let U; be the solid linear subspace of LY generated by U. Then U is an order-dense
Riesz subspace of Uy, h : U — R is an order-continuous positive linear functional, and sup{h(u) : u € U, 0 <
u < v} is defined in R for every v > 0 in Uy; so we have an extension h of h to U; such that h € U (355F).

Set S; = S(A) N Uy; then S; is an order-dense Riesz subspace of Uy, because S(2) is order-dense in L°
and U is solid in L°. Note that S is the linear span of {xc: c € I}, where I = {c:c € 2, xc € U}, and
that I is an ideal in 2.

Because h # 0, h # 0; there must therefore be a uy € S; such that iL(uo) > 0, and a d € I such that
ﬁ(xd) > 0. For a € A, set va = Bx(dﬂa). Because N, y and h are all order-continuous, so is v, and
v : A — R is a non-negative completely additive functional.

By 365Ea, there is a v € L' such that

fav =va = hx(dna)
for every a € ; of course v > 0. We have [uxv < B(u) whenever u = ya for a € I, and therefore for every
ue S fueUt, then A= {u 4 €85;,0 < <u} is upwards-directed, sup A = u and
SUP, e fv X u' < supyeq h(u') = h(u) = hu)

is finite, S0 v X u = sup, c 4+ v X u’ belongs to L' (365Df) and [v x u < h(u). As u is arbitrary, v € V and
Tv < h. At the same time, because xd € Uy, there is a w € U such that yd < w and

(TU)(w):fvwafdvzﬁ(xd)>O
and Tv > 0. As h is arbitrary, T[V] is order-dense. Q

It follows that T is order-continuous (352Nb again), as can also be easily proved by the argument of (a-iv)
above.

(c) Now suppose that (2, i) is localizable, that is, that 2 is Dedekind complete. T-! : T[V] — V is
a Riesz space isomorphism, so certainly an order-continuous Riesz homomorphism; because V is a solid
linear subspace of L?, T~! is still an injective order-continuous Riesz homomorphism when regarded as a
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map from T[V] to L°. Since T[V] is order-dense in U*, T~! has an extension to an order-continuous Riesz
homomorphism Q : U* — LY (368B). But Q[U*] C V. P Take h > 0 in U* and u > 0 in U. Then
B={g:9€T[V],0 < g < h} is upwards-directed and has supremum h. For ¢ € B, we know that
ux T 'ge L' and [ux T 'g = g(u), by the definition of 7. But this means that

sup,ep [ux T™lg =sup,cpg(u) = h(u) < oc.
Since {u x T~ g : g € B} is upwards-directed, it follows that
u X Qh =supgcpu X Qg =supyepu X T lgeL!

by 365Df again. As w is arbitrary, Qh € V. As h is arbitrary (and @ is linear), QU*] C V. Q
Also @ is injective. B If h € U* is non-zero, there is a v € V such that 0 < Tv < |h|, so that

|Qhl =Qlh| > QTv=v>0

and Qh # 0. Q Since QT is the identity on V', @ and T must be the two halves of a Riesz space isomorphism
between V and U*.

369D Corollary Let U be any Riesz space such that U* separates the points of U. Then there is a
localizable measure algebra (2, i) such that the pair (U,U*) can be represented by a pair (V, W) of order-
dense Riesz subspaces of L° = L(2() such that W = {w : w € L, v x w € L! for every v € V'}, writing L'
for L*(2, 7i). In this case, U** becomes represented by V = {v:v € L°, v xw € L' for every w € W} D V.

proof Put 369A and 369C together. The construction of 369A finds (2, i) and an order-dense V' which is
isomorphic to U, and 369C identifies W with V> and W* with V. To check that W is order-dense, take
any v > 0 in L% There is a v € V such that 0 < v < u. There is an h € (V*)T such that h(v) > 0, so
there is a w € W™ such that w x v # 0, that is, w Av # 0. But now w Av € W, because W is solid, and
O<wAv<u.

Remark Thus the canonical embedding of U in U** (356I) is represented by the embedding V' & vV, U,
or V, is ‘perfect’ iff V ="V.

369E Kakutani’s theorem (KAKUTANI 1941) If U is any L-space, there is a localizable measure algebra
(2, i) such that U is isomorphic, as Banach lattice, to L' =L(2L, fz).

proof U is a perfect Riesz space, and U* = U* has an order unit [ defined by saying that [u = [jul| for
u > 0 (356P). By 369D, we can find a localizable measure algebra (2(, i) and an identification of the pair
(U,U*), as dual Riesz spaces, with a pair (V, W) of subspaces of L? = L°(2); and V will be {v : vxw € L! for
every w € W}. But W, like U, must have an order unit; call it e. Because W is order-dense, [e > 0] must
be 1 and e must have a multiplicative inverse  in LY (364N). This means that V must be {v: v x e € L'},
so that v ++ v X e is a Riesz space isomorphism between V and L', which gives a Riesz space isomorphism
between U and L!. Moreover, if we write || ||' for the norm on V corresponding to the norm of U, we have

||UHI:f|U|X€=f|v><e|=||v><e||1forv€V.

Thus the Riesz space isomorphism between U and L' is norm-preserving, and U and L' are isomorphic as
Banach lattices.

369F The LP spaces are leading examples for a general theory of normed subspaces of LY, which I
proceed to sketch in the rest of the section.

Definition Let 2 be a Dedekind o-complete Boolean algebra. An extended Fatou norm on L° = L(2A)
is a function 7 : L® — [0, 00| such that

(i) 7(u+v) < 7(u) + 7(v) for all u, v € LY

(ii) 7(au) = |a|7(u) whenever u € L? and o € R (counting 0 - oo as 0, as usual);

(iii) 7(u) < 7(v) whenever |u| < |v| in LY

(iv) sup,eca 7(u) = 7(v) whenever A C (L%)" is a non-empty upwards-directed set with supremum v in
LY
(v) 7(u) > 0 for every non-zero u € LY

(vi) whenever u > 0 in L there is a v € LY such that 0 < v < and 7(v) < cc.
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369G Proposition Let 2 be a Dedekind o-complete Boolean algebra and 7 an extended Fatou norm
on L% = L9(2A). Then L™ = {u : u € L° 7(u) < oo} is an order-dense solid linear subspace of L%, and
7, restricted to L7, is a Fatou norm under which L7 is a Banach lattice. If (u,)nen is a non-decreasing
norm-bounded sequence in (L7)*, then it has a supremum in L7; if % is Dedekind complete, then L™ has
the Levi property.

proof (a) By (i), (ii) and (iii) of 369F, L7 is a solid linear subspace of L’; by (vi), it is order-dense.
Hypotheses (i), (ii), (iii) and (v) show that 7 is a Riesz norm on L7, while (iv) shows that it is a Fatou
norm.

(b) (i) Suppose that (u,)nen is a non-decreasing norm-bounded sequence in (L7)*. Then u = sup,,cy un,
is defined in LY. P2 Otherwise, there is a v > 0 in L° such that kv = sup,,cy kvAu, for every k € N (368A).
By (v)-(vi) of 369F, there is a v’ such that 0 < v' <wv and 0 < 7(v") < co. Now kv’ = sup,,cy kv' A uy, for
every k, so

kr(v') = 7(kv") = sup,,en T(kV" A uy) < sup,,cn 7(un)

for every k, using 369F(iv), and sup,cy7(un) = oo, contrary to hypothesis. XQ By 369F(iv) again,
T(u) = sup, ey 7(un) < 00, so that u € L™ and u = sup,, ey Uy, in L7.

(ii) It follows that L7 is complete under 7. B Let (u,,)nen be a sequence in L™ such that 7 (w11 —uy,) <
27" for every n € N. Set vy, = Yo i |uit1 — ;| for m < n; then 7(vp,) < 27™F for every n, so by (i)
just above v, = Sup,,cyy Vmn is defined in L7, and 7(vy,,) < 27 Now vy, = |41 — U | 4 Um1 for each
M, SO (U — U )men 18 non-decreasing and (u, + vy, )men is non-increasing, while w, — vy < Uy < Uy, + Uiy
for every m. Accordingly u = sup,,cy Um — Um is defined in L7 and |u — wy,| < vy, for every m. But this
means that lim, oo 7(4 — U) < 1My oo T(v) = 0 and © = limy, o0 Uy, in L7. As {u,)nen is arbitrary,
L7 is complete. Q

(c) Now suppose that 2 is Dedekind complete and A C (L) is a non-empty upwards-directed norm-
bounded set in L7. By the argument of (b-i) above, using the other half of 368A, sup A4 is defined in L° and
belongs to L™. As A is arbitrary, L™ has the Levi property.

369H Associate norms: Definition Let (2, i) be a semi-finite measure algebra, and 7 an extended
Fatou norm on LY = LY(2). Define 7/ : L° — [0, oc] by setting

7 (u) = sup{|ju x v||; : v € L, 7(v) < 1}

for every u € L?; then 7/ is the associate of 7. (The word suggests a symmetric relationship; it is justified
by the next theorem.)

3691 Theorem Let (2, i) be a semi-finite measure algebra, and 7 an extended Fatou norm on L° =
LO(21). Then

(i) its associate 7’ is also an extended Fatou norm on LY;

(ii) 7 is the associate of 7/;

(iii) |lu x v|1 < 7(u)7'(v) for all u, v € LO.

proof (a) Before embarking on the proof that 7/ is an extended Fatou seminorm on L°, I give the greater
part of the argument needed to show that 7 = 7/, where

7" (u) = sup{|lu x w||; : w € L, 7'(w) < 1}
for every u € LP.
(a) Set
B={u:ue L' r(u) <1},

writing L' for L*(2,ji). Then B is a convex set in L' and is closed for the norm topology of L!. 1
Suppose that u belongs to the closure of B in L'. Then for each n € N we can choose u,, € B such that
[l —unlls <27 Set vy = inf<i<n |ui] for m < n, and

Upy = I0f > U, = I0f >0 |Un | < |y
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for m € N. The sequence (U, )men is non-decreasing, 7(v,,) < 7(u,,) < 1 for every m, and
el = vmlls < suppsp, lu] = vmalls < 3252, Mol = fusllly < 3232, lu = willh — 0
as m — 00. So |u| = sup,,cy U in LY,
7(u) = 7(|u]) = supen T(vm) < 1
and u € B. Q
(B) Now take any ug € L° such that 7(up) > 1. Then, writing 2/ for {a : ia < o0},
A={u:ue S, 0<u<up}

is an upwards-directed set with supremum uq (this is where I use the hypothesis that (2, i) is semi-finite,
so that S(2/) is order-dense in L°), and sup, ¢ 4 7(u) = 7(ug) > 1. Take u; € A such that 7(u1) > 1, that
is, u; ¢ B. By the Hahn-Banach theorem (3A5Cc), there is a continuous linear functional f : L' — R such
that f(u1) > 1 but f(u) <1 for every u € B. Because (L')* = (L')~ (356Dc), |f| is defined in (L')*, and
of course

[fl(u) = flu) > 1, [fl(w) = sup{f(v) : [v] <u} <1
whenever v € B and u > 0. Set ¢ = [u; > 0], so that fic < oo, and define
va=|fl(x(anc))

for every a € 2. Then v is a completely additive real-valued functional on 2, so there is a w € L' such that
va = fa w for every a € 2 (365Ea). Because va > 0 for every a, w > 0. Now

Jw=1fl(xa x xc)

for every a € 2, so

Jwxu=|fl(uxxe) <[fl(u) <1
for every v € S()* N B. But if 7(v) < 1, then

Ay ={u:ueS)*NB,u<|v|}
is an upwards-directed set with supremum |v|, so that

lwx v|1 = sup,eca, fw xu<1.
Thus 7'(w) < 1. On the other hand,

Hw><u0||1waxuo2fw><u1:|f\(u1)>17
so 7" (ug) > 1.
(7) This shows that, for u € L°,
™ (u) <1 = 7(u) <1
(c) Now I return to the proof that 7’ is an extended Fatou norm. It is easy to check that it satisfies

conditions (i)-(iv) of 369F; in effect, these depend only on the fact that || ||; is an extended Fatou norm. For
(v)-(vi), take v > 0 in L°. Then there is a u such that 0 < u < wv and 0 < 7(u) < oo; set a = 1/7(u). Then

7(2au) > 1, so that 7”/(2au) > 1 and there is a w € L° such that 7/(w) < 1 and [2au x w|j; > 1. But now
set v1 = v A |w|; then

v>v > uAwl >0,
while 7/(v1) < 0o. Also v A au # 0 so
7'(v) > ||v x aull; > 0.
As v is arbitrary, 7’ satisfies 369F (v)-(vi).
(d) Accordingly 7" also is an extended Fatou norm. Now in (a) I showed that

(u) <1 = 7(u) <1
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It follows easily that 7(u) < 7//(u) for every u (since otherwise there would be some « such that
' (au) = at”’(u) < 1 < ar(u) = 7(au)).
On the other hand, we surely have
T(u) <1 = |lu x v|]1 <1 whenever 7'(v) <1 = 7"(u) <1,

so we must also have 7"/ (u) < 7(u) for every u. Thus 7/ = 7, as claimed.

(e) Of course we have ||u x v||; < 1 whenever 7(u) < 1 and 7/(v) < 1. It follows easily that ||u x v|j; <
7(u)7' (v) whenever u, v € L° and both 7(u), 7/(v) are non-zero. But if one of them is zero, then u x v = 0,
because both 7 and 7’ satisfy (v) of 369F, so the result is trivial.

369J Theorem Let (2, i) be a semi-finite measure algebra, and 7 an extended Fatou norm on L° =
LO(2A), with associate 6. Then

LV ={v:ve L’ uxve LA ) for every u € L7}.

proof (a) If v € LY and u € L™, then ||u x v||; is finite, by 3691(iii), so u x v € L' = L*(A, 1).

(b) If v ¢ LY then for every n € N there is a u, such that 7(u,) < 1 and ||u, x v|; > 2". Set
Wy, = > 527 u,| for each n. Then (wy)nen is a non-decreasing sequence and 7(w,,) < 2 for each n, so
W = SUp, ey Wy, is defined in L7, by 369G; now [w X [v| > n +1 for every n, sow x v & L.

369K Corollary Let (2, ) be a localizable measure algebra, and 7 an extended Fatou norm on
L% =L°(2l), with associate §. Then LY may be identified, as normed Riesz space, with (L7)* C (L7)*,
and L7 is a perfect Riesz space.

proof Putting 369J and 369C together, we have an identification between L? and (L7)*. Now 3691 tells
us that 7 is the associate of #, so that we can identify L™ with (L%)*, and L7 is perfect, as in 369D.
By the definition of #, we have, for any v € L?,

0(v)

sup |ju x vl
7(u)<1

= sup /uxvxw: sup /uxv,
() <1, [Jw|le <1 T(u)<1

which is the norm of the linear functional on L™ corresponding to v.

369L L? I remarked above that the LP spaces are leading examples for this theory; perhaps I should spell
out the details. Let (A, i) be a semi-finite measure algebra and p € [1,00]. Then || ||, is an extended Fatou
norm. I Conditions (i)-(iii) and (v) of 369F are satisfied just because LP? = L% is a solid linear subspace
of LO(2A) on which || ||, is a Riesz norm, (iv) because || ||, is a Fatou norm with the Levi property (363Ba,
365C, 366D), and (vi) because S(/) is included in LP and order-dense in L° = L°(21) (364K). Q

Asusual, set g =p/(p—1)if 1 <p < oo, 0 if p=1,and 1if p=oco. Then || ||, is the associate extended
Fatou norm of || ||,. B By 365Lb and 366C, [|v|, = sup{|ju x v||; : [Jul|, < 1} for every v € L9 = L. But
as L9 is order-dense in LY,

[vllg=""sup Jlwllq= Sup{/ ul x [w] :w e L, w < |v|, [Jull, <1}
weLY,|w|<v

— sup{ / ful x Jo : Jull, < 1}
for every v € L°. Q
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369M Proposition Let (2, ) be a semi-finite measure algebra and 7 an extended Fatou norm on
L% = L°(2A). Then

(a) the embedding L™ & L is continuous for the norm topology of L™ and the topology of convergence
in measure on L;

(b) 7 : L% — [0,00] is lower semi-continuous, that is, all the balls {u : 7(u) < ~} are closed for the
topology of convergence in measure;

(c) if (un)nen is a sequence in L° which is order*-convergent to u € L (definition: 367A), then 7(u) is
at most lim inf,, oo 7(uy).

proof (a) This is a special case of 3670.

(b) Set B, = {u:7(u) <~}. If u e LO\ B,, then
A= {|u| x xa:acA}

is an upwards-directed set with supremum |u|, so there is an a € A such that 7(u x xa) >~. ? If u is in
the closure of B, for the topology of convergence in measure, then for every k£ € N there is a v, € B, such
that fi(an [Ju —vg| > 27%]) < 27F (see the formulae in 367L). Set

vy, = |u| Anfi>g v
for each k, and v* = sup,envy,. Then 7(vy,) < 7(vy) < v for each k, and (vi)ren is non-decreasing, so
7(v*) < . But
anflul —v* >27%] Cansup;sy [lu—vi] >27"]
has measure at most Y o, 277 for each k, so an[|ul —v* > 0] must be 0, that is, |u| x xa < v* and

T(|ul x xa) < ~; contrary to the choice of a. X Thus u cannot belong to the closure of B,. As u is arbitrary,
B, is closed.

(¢) If (un)nen order*-converges to u, it converges in measure (367Ma). If v > liminf,,_, o, 7(u,,), there is
a subsequence of (U, )nen in By, and 7(u) <7, by (b). As v is arbitary, 7(u) < liminf, o 7(u,).

369N I now turn to another special case which we have already had occasion to consider in other
contexts.

Definition Let (2, i) be a measure algebra. Set
Mot = MU, i) = LY, ) N L(A),

My = MY (2, 1) = L' (2, i) + Lo(2),
and
] oe,1 = max([luf1, [[ufoo)

for u € LO(2A).

Remark I hope that the notation I have chosen here will not completely overload your short-term memory.
The idea is that in MP ¢ the symbol p is supposed to indicate the ‘local’ nature of the space, that is, the
nature of u x xa where u € MP? and fia < oo, while ¢ indicates the nature of |u| A x1 for u € MP?9. Thus
M1 is the space of u such that u x xa € L' for every a € 2/ and |u| A x1 € L™; in M*° we demand
further that |u| A x1 € M? (366F); while in M°°! we ask that |u| A x1 € L and that u x ya € L™ for every
acA.

3690 Proposition Let (2, i) be a semi-finite measure algebra.
(a) || |oo.1 is an extended Fatou norm on LY = L%(2A), and the corresponding Banach lattice is M (L, [i).
(b) The associate of || |s0,1 18 || [[1,00, Which may be defined by any of the formulae
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[ulls.0 = sup{llu x v]l1 : v € L, vlloo,x < 1}

min{|[v]|; 4 [|w]|so : v € L', w € L™, v + w = u}

= min{a + /(|u| —ax)t:a >0}

:/ min(1, af|lul > of )da
0
for every u € L°, writing L' = L'(, 1), L™= = L>=(A).
()
{u:ue LY |Jull1,00 < 00} = M1 = Moo, ),
{u:u€ LY |Julloo,1 < 00} = Mt = ML, 7).

(d) Writing 2/ = {a : ia < 0o}, S(2A/) is norm-dense in M°>! and S(2) is norm-dense in M.
(e) For any p € [1, 0],

l[ull,00 < flullp < lufloc
for every u € LY.

Remark By writing ‘min’ rather than ‘inf’ in the formulae of part (b) I mean to assert that the infima are
attained.

proof (a) This is easy; to see that || ||o,1 is an extended Fatou norm all we need to know is that || |; and
[l lco are extended Fatou norms, and work through the clauses of 369F. And obviously

M = {u ully < o, [Julloc < 00} = {u: [[ufloe.s < o0}

(b) We have four functionals on L° to look at; let me give them names:

71(u) = sup{ju x vl : [v]lec < 1},
T2(u) = inf{{|lw'[[1 + [u”[loc : u ="+ u"},
73(u) = info>o(a + f(|u| —ax)™),

T4(u) = fooo min(1, @f|u| > af)da.
(I write ‘inf’ here to avoid the question of attainment for the moment.) Now we have the following.
(i) 11(u) < 72(u). P If [|v]|oo1r <1 and u=1u"+u", then
[lu > vfly < flu" x vlly + [lu” x vl < el f[ollee + l[w" ool[ollr < flu'lly + ([0 ]loo-
Taking the supremum over v and the infinum over v’ and u”, 71 (u) < 7o(u). Q

(i) m2(u) < T4(u). P If 74(u) = oo this is trivial. Otherwise, take w such that |w|. < 1 and
u=|u| x w. Set ap = inf{a: pf|u] > o] <1}, and try

w =wx (Jul —aox)T, u’" =w x (Ju| A agxl).

Then u = v +u”, |u/| < (Ju| — aox1)™,
(o) (o)
llu |1 :/ allv'| > a]da :/ iaflul > o+ aglda
0 0
:/ allu| > a]da :/ min(1, af|lul > o )da
a @0

0

and

[ |loo < g = foao min(1, [lu] > a])da,
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SO

T2(u) < U/l + [[u" oo < Ta(u). Q
(iii) 74(u) < 73(u). B For any a > 0,
mu) = [ win(Lpal > 5)d3 + [ min(1,llul > 5])as
0 «@
Sa+Z;nWA>a+ﬂMﬁ
= T —ax)t dg = —axl)*t.
ot [ alllul—oxt)* > A8 = o+ [ (ul = ax)
Taking the infimum over «, 74(u) < 73(u). Q

(iv) m3(u) < 71 (u).

P (a) It is enough to consider the case 0 < 71(u) < oo, because if 71 (u) = 0 then u = 0 and evidently
73(0) = 0, while if 71(u) = oo the required inequality is trivial. Furthermore, since 73(u) = 73(|u|) and
71(u) = 71 (|u]), it is enough to consider the case u > 0.

(B) Note next that if fia < co, then ||mxa||oo,1 <1, so that [ u < max(1, ga)7 (u).
(y) Set ¢ = [u > 271 (u)]. If a C ¢ and fia < oo, then
271 (u)pa < fau < max(1, pa)m (u),
so fia < 1. As (2, i) is semi-finite, it follows that fic < 3 (322Eb).
(6) I may therefore write
ap =inf{a:a >0, gfu>a] <1}.
Now [u > ag] = sup,s,, [u > o], so
Alu > ] = sup,sq, Alu > a] < 1.
(€) If a > g then

(u—aox1)™ < (o — ag)x[u > ao] + (u — ax1)*,

SO

ag + /(u —apx1)T < ap+ (o — ap)ppfu > ao] + /(u —axl)*t
< oz+/(u —axl)*t.
If 0 < a < g then, for every 8 € [0, a0 — af,
(u—apx)T + BJu>a+ B8] < (u—axl)™,
while gfu > a+ p] > 1, so
Jw—apx )t +B8+a<a+t [(u—axl)*;
taking the supremum over [,
ap + f(u —apxl)T <a+ f(u —ax)*t.
Thus ag + [(u— aox1)t = 73(u).
(¢) If ap = 0, take v = x[u > 0]; then ||v||co.1 = AJu > 0] <1 and

ma(w) = [u=|lux vl <7i(u),
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(n) If ap > 0, set v = ffu > ap]. Take any 8 € [0, ap[. Then f(Ju > ]\ [u > ag]) > 1 —1, so there
isabc Ju> pB]\[u> a] such that 1 — v < ib < 00. Set v = xJu > ap] + %Xb. Then ||v]|co1 =1 so

1—y _
71(u) > fu X v > f(u —apx1)T + agy + Bﬁ—;ub =73(u) — (1 —v)(ag — B).
As f is arbitrary, 71 (u) > 73(u) in this case also. Q

(v) Thus 71 (u) = 72(u) = 73(u) = 74(u) for every v € LY, and I may write ||ul|1,00 for their common
value; being the associate of || ||oc,1, || [l1,00 I8 an extended Fatou norm. As for the attainment of the
infima, the argument of (iv-€) above shows that, at least when 0 < |lu||1,00 < 00, there is an agp such that
ao + [(Ju] — ag)™ = ||lull1,c- This omits the cases |lul1,00 € {0,00}; but in either of these cases we can
set ap = 0 to see that the infimum is attained for trivial reasons. For the other infimum, observe that the
argument of (ii) produces ', v such that v = v’ 4+ u” and ||v'||1 + |t ]|co < T4(u).

(c) This is now obvious from the definition of || ||co,1 and the characterization of || |10 in terms of || ||z
and | [/oo-

(d) To see that S = S(2l) is norm-dense in M°°, we need only note that S is dense in L> and SN L!
is dense in L'; so that given v € L', w € L and € > 0 there are v/, w’ € S such that

(v +w) = (V" + w100 < flo =Vl + [lw — 0]l <€
As for M1 if w > 0 in M and r € N, set v, = sup,ey2 "kx[u > 27"k]; then each v, belongs to
Sf = S(Af) and [ju — vy|leo < 277, while (v,),en is a non-decreasing sequence with supremum u, so that
lim, o0 [0, = [wand lim, o |[u— vy |leo,1 = 0. Thus (SF)* is dense in (M), As usual, it follows that
Sf = (SH)* — (Sh)* is dense in M1 = (M) F — (M>1)+,

(e)(i) If p =1 or p = oo this is immediate from the definition of || ||ec,1 and the characterization of || [|1,00
in (b). So suppose henceforth that 1 < p < oo.

(ii) If |Julloo,1 < 1 then |jull, < 1. P Because ||ulloc < 1, |ul? < |u|, so that [|ulP < [jull; <1 and

[ull, <1. Q

On considering scalar multiples of u, we see at once that ||ul|, < ||u||ec,1 for every u € L°.

(ii) Now set ¢ = p/(p — 1). Then

[ull, = sup{[[u x v[|1 : [[v]lq < 1}
(369L)

> sup{lu X vf|1 : [[v]lco,r <1} = [|ufl1,00

because || ||1,00 is the associate of || ||c,1. This completes the proof.

369P In preparation for some ideas in §372, I go a little farther with M9 as defined in 366F.

Proposition Let (2, i) be a measure algebra.
(a) M0 = MYO(A i) is a norm-closed solid linear subspace of M1:°° =M1 (2, fi).
(b) The norm || ||1,c0 is order-continuous on M1°.
(c) S(AS) and L*(A, i) are norm-dense and order-dense in M.

proof (a) Of course M9 being a solid linear subspace of L° = LO(2) included in M1, is a solid linear
subspace of M. To see that it is norm-closed, take any point u of its closure. Then for any € > 0 there is
ave M"Y such that [|u—v1,00 < €& now (ju—v|—ex1)t € L' = L], so [Ju — v] > 2¢] has finite measure;

also [[v| > €] has finite measure, so
[lu| > 3e] € [lu—v| > 2] u[v] > €]
(364Ea) has finite measure. As e is arbitrary, u € M1%; as u is arbitrary, M is closed.
(b) Suppose that A € M0 is non-empty and downwards-directed and has infimum 0. Let € > 0. Set
B = {(u—ex)t : u € A}. Then B C L' (by 366Gc); B is non-empty and downwards-directed and
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has infimum 0. Because || |1 is order-continuous (365C), inf,cp ||v]l1 = 0 and there is a v € A such that
[[(w— ex1)T|l1 < e so that ||ull1,00 < 2e. As € is arbitrary, inf,ea ||ull1,00 = 0; as A is arbitrary, || [|1,00 18
order-continuous on M0,

(c) By 366Gb, S(217) is order-dense in M. Because the norm of M is order-continuous, S(21¥) is
also norm-dense (354Ef). Now S(A) C L' € M0 so L' must also be norm-dense and order-dense.

369Q Corollary Let (2, 1) be a localizable measure algebra. Set M1>° = MY (2, 1), etc.
(a) (M1>°)* and (M1?)* can both be identified with M1,
(b) (M>>1)* can be identified with M1:°°; M1:° and M°! are perfect Riesz spaces.

proof Everything is covered by 3690 and 369K except the identification of (M*?)* with M°1. For this
I return to 369C. Of course M!? is order-dense in L°, because it includes L!, or otherwise. Setting

V={v:ve L’ uxvelL!for every u € M0},

369C identifies V with (M1:0)%. Of course M1 C V just because M0 C M1,

Also V.C M*>!. P Because L' C M'0 and |||« is the associate of |||, V € L*. ? If there is a
v eV \ L', then (because (2, i) is semi-finite, so that |[v] = sup,cqs [v] X xa) sup,cqrs [, |v| = co. For each
n € N choose a, € 2/ such that [ |v] > 4", and set u = sup,ey 2~ "xan, € M'0; then [u x |v > 2" for
eachn,sov g V. X Thus V C L' and V C M><!. Q

So M1 =V can be identified with (M19)*.

369R The detailed formulae of 3690 are of course special to the norms || ||1, ||[lec, but the general
phenomenon is not.

Theorem Let (2, 1) be a localizable measure algebra, and 71, T two extended Fatou norms on L = L%(2()
with associates 71, 75. Then we have an extended Fatou norm 7 defined by the formula

7(u) = min{7 (v) + 72(w) : v, w € L°, v + w = u}
for every u € L°, and its associate 7/ is given by the formula
7 (u) = max(r (u), 75(u))
for every u € L°. Moreover, the corresponding function spaces are

L"=L"+L™ L7 =L"NL%

proof (a) For the moment, define 7 by setting
7(u) = inf{m (v) + T2 (w) : v + w = u}
for u € L0, Tt is easy to check that, for u, v’ € L and a € R,
Tu+u) <7(u)+7@W), 7(au)=ar(w), 7(u) <7@)if |u] <.

.
(For the last, remember that in this case u = u’ x z where ||z]|.c < 1.) Note also that if v > 0 then
7(u) = inf{7y (v) + T2(u —v) : 0 < v <}

(b) Take any non-empty, upwards-directed set A C (L°)*, with supremum wuy. Suppose that v =
sup,ea 7(u) < 0co. For u € A and n € N set

Cun={v:ve L’ 0<v<uy, 11(v) +7m2(u—v)T <y+27"}
(i) Every C,, is non-empty (because 7(u) < 7).
(ii) Every C,,, is convex (because if vq, vy € Cy, and « € [0,1] and v = avy + (1 — a)va, then
(u—v)" =(afu—v1)+ (1 —a)lu—v2))" <alu—v)T+ (1 —a)(u—uvs)T,
S0

71(0) + m(u—v)" <ar(v) + (1 —a)m(v2) +ame(u—v1)T + (1 — ) (u —ve) "
<y+27").
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(iii) if u, v € A, m, n € N, u < u' and m < n then Cyrp, C Cypn.

(iv) Every Cl, is closed for the topology of convergence in measure. ? Suppose otherwise. Then we
can find a v in the closure of C,,,, for the topology of convergence in measure, but such that 7 (v)+7m(u—v)* >
v+ 27", In this case

71(v) = sup{mi(v x xa) :a € W}, m(u—v)T =sup{r((u—v)T x xa) :a € A},
so there is an a € 2f such that
(v % xa) + 2((u —v)T x xa) >y +27".
Now there is a sequence (vg)gen in Cyy such that fi(an [Jv — vg| > 27F]) < 27F for every k. Setting
v, =inf>p v, wy = infi>k(u—v;) T
we have
T1(vg) + To(wy) < 11 (vg) + To(u —vp) T <y 277

for each k, and (v},)gen, (wk)ren are non-decreasing. So setting v* = supycy VAV, w* = supyey(u—v) T Awy,
we get

T (v") + (W) <y +27"
But v* > v x xa and w* > (u —v)* x xa, so
T1(v X xa) + T2 ((u —v)*T X xa) <y+27",
contrary to the choice of a. XQ

(v) If a € A\ {0}, there is a non-zero b C a such that ib < co and b C Jug < «f for some o > 0. Take
any u € A; then sup,cq [, [v] is finite.

(c) Thus {Cyn : u € A, n € N} satisfies all the conditions of 367V, and
belongs to the intersection, then

u€A,neEN Clyn is non-empty. If v

m1(v) + 12(u —v)T <y

for every u € A; since {(u —v)* : u € A} is an upwards-directed set with supremum (ug —v)*, and 75 is an
extended Fatou norm,

T1(v) + T2 (ug —v)T < .

(d) This shows both that the infimum in the definition of 7(u) is always attained (since this is trivial if
7(u) = oo, and otherwise we consider A = {|u|}), and also that 7(sup A) = sup,,c 4 7(u) whenever A C (L°)*
is a non-empty upwards-directed set with a supremum. Thus 7 satisfies conditions (i)-(iv) of 369F. Condition
(vi) there is trivial, since (for instance) 7(v) < 71(v) for every v. As for 369F(v), suppose that u > 0 in L°.

Take uq such that 0 < u; <w and 7{(u1) < 1, and wus such that 0 < ug < wu; and 74(usz) < 1. In this case, if
ugs = v + w, we must have

T1(v) + m2(w) = v x wrfly + lw x uzfls = [Jlug x uz|l1;
so that
T(u) > ||ug X ugl|; > 0.
Thus all the conditions of 369F are satisfied, and 7 is an extended Fatou norm on L°.

(e) The calculation of 7/ is now very easy. Since surely we have 7 < 7; for both i, we must have 7" > 7/
for both 7. On the other hand, if u, z € L, then there are v, w such that u = v+w and 7(u) = 71 (v) +72(w),
so that

lu > zlly < flox 2l 4 [lw x z[[y < 71(0)71(2) + T2(w)72(2) < 7(w) max(7i(2), 73(2));
as u is arbitrary, 7/(z) < max(7{(z),75(z)). So 7/ = max(7{,73), as claimed.
(f) Finally, it is obvious that

L™ ={z:7'(2) < oo} = {z: 7{(2) < 00, 7§(2) < o0} = LT N L™,
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while the fact that the infimum in the definition of 7 is always attained means that L™ C L™ + L™, so that
we have equality here also.

369X Basic exercises >(a) Let 2 be a Dedekind o-complete Boolean algebra. Show that the following
are equiveridical: (i) there is a function i such that (2, ) is a semi-finite measure algebra; (ii) (L>)*
separates the points of L = L>°(2); (iii) for every non-zero a € 2 there is a completely additive functional
v : A — R such that va # 0; (iv) there is some order-dense Riesz subspace U of L% = L°(2A) such that U*
separates the points of U; (v) for every order-dense Riesz subspace U of LY there is an order-dense Riesz
subspace V of U such that V> separates the points of V.

(b) Let us say that a function ¢ : R — ]—00, 0] is convex if ¢(as + (1 — a)t) < ag(s) + (1 — a)p(t)
for all s, t € R and « € [0, 1], interpreting 0 - co as 0, as usual. For any convex function ¢ : R — ]—00, 00]
which is not always infinite, set ¢*(t) = sup,cg st — ¢(s) for every ¢t € R. (i) Show that ¢* : R — |—o00, 00
is convex and lower semi-continuous and not always infinite. (Hint: 233Xh.) (ii) Show that if ¢ is lower
semi-continuous then ¢ = ¢**. (Hint: It is easy to check that ¢** < ¢. For the reverse inequality, consider
first the case ¢(t) = at + 3, and use 233Ha).)

>(c) For the purposes of this exercise and the next, say that a Young’s function is a non-negative
non-constant lower semi-continuous convex function ¢ : [0, co[ — [0, o] such that ¢(0) = 0 and ¢(¢) is finite
for some ¢ > 0. (Warning! the phrase ‘Young’s function’ has other meanings.) (i) Show that in this case ¢
is non-decreasing and continuous on the left and ¢*, defined by saying that ¢*(t) = supys st —¢(s) for every
t > 0, is again a Young’s function. (ii) Show that ¢** = ¢. Say that ¢ and ¢* are complementary. (iii)
Compute ¢* in the cases (o) ¢(t) =t (B8) ¢(t) = max(0,t — 1) (7) ¢(t) =t (§) ¢p(t) = t? where 1 < p < cc.

>(d) Let ¢, 1) = ¢* be complementary Young’s functions in the sense of 369Xec, and (2, i) a semi-finite
measure algebra. Set

B={u:uel® [(lu) <1}, C={v:vel® [¢(o])<1}.

(For finite-valued ¢, ¢ : (L°)* — L° is given by 364H. Devise an appropriate convention for the case in
which ¢ takes the value 0o.) (i) Show that B and C are order-closed solid convex sets, and that [ |uxv| <2
for all w € B, v € C. (Hint: for ‘order-closed’, use 364Xg(iv).) (ii) Show that there is a unique extended
Fatou norm 7, on LY for which B is the unit ball. (iii) Show that if u € L?\ B there is a v € C such
that [ |u x v| > 1. (Hint: start with the case in which v € S(A)*.) (iv) Show that 7, < 7} < 27,, where
7y is the extended Fatou norm corresponding to ¢ and 7; is the associate of 74, so that 7, and 7}, can be
interpreted as equivalent norms on the same Banach space.
(U and V are complementary Orlicz spaces; I will call 74, 7, Orlicz norms.)

(e) Let U be a Riesz space such that U* separates the points of U, and suppose that || || is a Fatou
norm on U. (i) Show that there is a localizable measure algebra (2, i) with an extended Fatou norm 7 on
L°(2A) such that U can be identified, as normed Riesz space, with an order-dense Riesz subspace of L7. (ii)
Hence, or otherwise, show that [|u|| = sup ey« | <1 |f(u)] for every u € U. (iii) Show that if U is Dedekind
complete and has the Levi property, then U becomes identified with L7 itself, and in particular is a Banach
lattice (cf. 354Xn).

(f) Let (A, i) be a semi-finite measure algebra, and 7 an extended Fatou norm on L°(2A). Show that
the norm of L™ is order-continuous iff the norm topology of L™ agrees with the topology of convergence in
measure on any order-bounded subset of L”.

(g) Let (U, i) be a o-finite measure algebra of countable Maharam type, and 7 an extended Fatou norm
on LY(2) such that the norm of L™ is order-continuous. Show that LT is separable in its norm topology.

(h) Let (A, i) and (°B,7) be semi-finite measure algebras, and 7 : Af — B/ a measure-preserving ring
homomorphism, as in 366H, with associated maps T : Mg — M2 and P : M;,o — M,%’O. Show that
174|001 = ||tt]|co,1 for every u € M/—fo’l and || Pvlloo1 < [|v]|co,1 for every v € M,‘;o’l.
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(i) Let (A, z) and (2B, ) be measure algebras, and 7 : 2 — 9B a measure-preserving Boolean homomor-
phism. (i) Show that there is a unique Riesz homomorphism 7 : M;’OO — M;™ such that T(ya) = x(ma)
for every a € A and ||Tu|l1,00 = ||ull1,00 for every u € M,—i’oo. (ii) Now suppose that (2, ) is localizable
and 7 is order-continuous. Show that there is a unique positive linear operator P : MY — M é"x’ such
that [ Pv = [ v for every a € A and v € My, and that |[Pv[e < ||[v[|le for every v € L®(B),

[Pv]loo1 < [|V]lo.1 for every v € MO, | Poll1.00 < ||v]l1.00 for every v € My ™. (Compare 3650.)

(j) Let (A, 1) be an atomless semi-finite measure algebra. Show that ||u|1,0c = max{[ |u|:a €A, fia <
1} for every u € LO(). (Hint: take a D [|u| > ag] in part (b-iv) of the proof of 3690.)

(k) Let (2, i) be any semi-finite measure algebra. Show that if 7, is any Orlicz norm on L° = LO(2A),
then there is a y > 0 such that [Jul|1 00 <774(u) < ¥?||ullco, for every u € LP, so that Mgo’l C L™ C M;’OO.

(1) Let (A, &) be a semi-finite measure algebra. Show that the subspaces M;’OO, Mgo’l of L(2l) can be
expressed as a complementary pair of Orlicz spaces, and that the norm || ||c,1 can be represented as an
Orlicz norm, but that if 2 is atomless and i is not totally finite. || ||1,00 cannot be represented as an Orlicz
norm.

>(m) Let (2, 1) be a measure algebra and U a Banach space. (i) Suppose that v : 2 — U is an additive
function such that ||val| < min(1, fia) for every a € 2. Show that there is a unique bounded linear operator
T: Mé’oo — U such that T(xa) = va for every a € 2. (ii) Suppose that v : A/ — U is an additive function
such that |lva|| < max(1,fia) for every a € /. Show that there is a unique bounded linear operator
T: Ml—fo’l — U such that T'(xa) = va for every a € 7.

(n) Let (2, ) and (B, 7) be semi-finite measure algebras, and ¢ : [0,00[ — [0, 0] a Young’s function;
write 74 for the corresponding Orlicz norm on either LO(2) or L°(B). Let m : A — B be a measure-
preserving Boolean homomorphism, with associated map T : M 5’00 — M} as in 369Xi. (i) Show that
Te(Tu) = 14(u) for every u € M,—i’oo. (ii) Show that if (2, f) is localizable, 7 is order-continuous and
P:MM> M&’OO is the map of 369Xi(ii), then 74(Pv) < 74(v) for every v € My, (Hint: 365Q.)

>(0) Let (2, 1) be any semi-finite measure algebra and 71, T2 two extended Fatou norms on L°(2(). Show
that u — max(7y (u), 72(u)) is an extended Fatou norm.

~

(p) Let (A, i) be a semi-finite measure algebra, and (

, it) its localization (322Q). Show that the Dedekind
completion of M1>°(2, 1) can be identified with M (2,

)
).
(q) Let (2, i) be a localizable measure algebra. (i) Show that if 8 is any closed subalgebra of 2 such that
sup{b: b€ B, b < oo} =1 in A, we have an order-continuous positive linear operator Py : M;’Oo — Mgrog
such that [, Pyu = [,u whenever u € My™, b € B and fib < cc. (ii) Show that if (B,)ney is a non-

decreasing sequence of closed subalgebras of 2 such that sup{b: b € By, ib < oo} =1 in 2, and B is the
closure of | J,,cj Bn, then (Py, u)nen is order*-convergent to Pyu for every u € M/—i’oo. (Cft. 367J.)

(r) Let ¢4 and ¢2 be Young’s functions and (2, i) a semi-finite measure algebra. Set ¢(f) = max(¢1(t),
¢2(t)) for t € [0,00[. (i) Show that ¢ is a Young’s function. (ii) Writing 74, 74,, 74 for the corresponding
extended Fatou norms on L°(2A) (369Xd), show that 74 > max(74,,7s,) > 374, so that L™ = L1 L2 and
L7e* = L7 + L% writing ¢* for the Young’s function complementary to ¢. (iii) Repeat with ¢ = ¢1 + ¢
in place of ¢.

369Y Further exercises (a) Let (2, /i) be a localizable measure algebra and A C L° = L9(2) a
countable set. Show that the solid linear subspace U of L° generated by A is a perfect Riesz space. (Hint:
reduce to the case in which U is order-dense. If A = {u,, :n € N}, w € (L°)* \ U find v,, € (L°)" such that
Jvn xw>2">4" [v, x |u;| for every i < n. Show that v = sup,,cy vy, is defined in LY and corresponds
to a member of U*.)
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(b) Let U be a Banach lattice and suppose that p € [1, 00| is such that ||u+ v||P = ||u||? + ||v||? whenever
u, v € U and |u| A|v| = 0. Show that U is isomorphic, as Banach lattice, to L}, for some localizable measure
algebra (U, i1). (Hint: start by using 354Yb to show that the norm of U is order-continuous, as in 354Yk.)

(c) Let (A, 1) be a semi-finite measure algebra, and 7 an Orlicz norm on L°(2). Show that LT has the
Levi property, whether or not 2 is Dedekind complete.

(d) Let ¢ : [0,00] — [0, 00[ be a strictly increasing Young’s function such that sup,., ¢(2t)/¢(t) is finite.
Show that the associated Orlicz norms 7,4 are always order-continuous on their function spaces.

(e) Let ¢ : [0,00] — [0,00] be a Young’s function, and suppose that the corresponding Orlicz norm on
LO(2A), where (2, /i) is an atomless measure algebra which is not totally finite, is order-continuous on its
function space L7®. Show that there is an M > 0 such that ¢(2t) < M¢(t) for every ¢ > 0.

(f) Let (2, 1) be a semi-finite measure algebra and ¢ : [0, 00[ — [0, 00[ be a strictly increasing Young’s
function such that sup,.q ¢(2t)/¢(t) is finite. Show that if F is a filter on L™, then F — u € L™ for the
norm 7, iff (i) F — wu for the topology of convergence in measure (ii) limsup,_, r 74 (v) < 74(u). (Compare
245X1.)

(g) Give examples of extended Fatou norms 7 on measure spaces L°(2), where (2, 1) is a semi-finite
measure algebra, such that («) 7] L7 is order-continuous (8) there is a sequence (u,)nen in L7, converging
in measure to u € L", such that lim, o 7(un) = 7(u) but (u,)nen does not converge to u for the norm on
L7™. Do this (i) with 7 an Orlicz norm (ii) with (2(, &) the measure algebra of Lebesgue measure on [0, 1].

(h) Let (A, &) be any measure algebra. Show that (Ml—i’o)X can be identified with M;—jo’l. (Hint: show
that neither M*° nor M°>! is changed by moving first to the semi-finite version of (2, ji), as described in
322Xa, and then to its localization.)

(i) Give an example to show that the result of 369R may fail if (2, i) is only semi-finite, not localizable.

369 Notes and comments The representation theorems 369A-369D give a concrete form to the notion
of ‘perfect’ Riesz space: it is just one which can be expressed as a subspace of L°(2(), for some localizable
measure algebra (2, /i), in such a way that it is its own second dual, where the duality here is between
subspaces of L?, taking V = {v : uxv € L for every u € U}. (I see that in this expression I ought somewhere
to mention that both U and V are assumed to be order-dense in L°.) Indeed I believe that the original
perfect spaces were the ‘vollkommene Riaume’ of G.K6the, which were subspaces of RN, corresponding to
the measure algebra PN with counting measure, so that V or U* was {v: u x v € £* for every u € U}.

I have presented Kakutani’s theorem on the representation of L-spaces as a corollary of 369A and 369C.
As usual in such things, this is a reversal of the historical relationship; Kakutani’s theorem was one of
the results which led to the general theory. The complete list of localizable measure algebras provided by
Maharam’s theorem (332B, 332J) now gives us a complete list of L-spaces.

Just as perfect Riesz spaces come in dual pairs, so do some of the most important Banach lattices: those
with Fatou norms and the Levi property for which the order-continuous dual separates the points. (Note that
the dual of any space with a Riesz norm has these properties; see 356Da.) I leave the details of representing
such spaces to you (369Xe). The machinery of 369F-369K gives a solid basis for studying such pairs.

Among the extended Fatou norms of 369F the Orlicz norms (369Xd, 369Yd-369Yf) form a significant
subfamily. Because they are defined in a way which is to some extent independent of the measure algebra
involved, these spaces have some of the same properties as LP spaces in relation to measure-preserving
homomorphisms (369Xi-369Xn). In §§373-374 I will elaborate on these ideas. Among the Orlicz spaces, we
have a largest and a smallest; these are just M1 = L! + L> and M*>>! = L' N L* (369N-3690, 369Xk,
369X1). Of course these two are particularly important.

There is an interesting phenomenon here. It is easy to see that || ||co,1 = max(|||1,] ||co) is an extended
Fatou norm and that the corresponding Banach lattice is L' N L>; and that the same ideas work for any pair
of extended Fatou norms (369Xo). To check that the dual of L! N L*° is precisely the linear sum L> + L!
a little more is needed, and the generalization of this fact to other extended Fatou norms (369R) seems to
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go quite deep. In view of our ordinary expectation that properties of these normed function spaces should
be reflected in perfect Riesz spaces in general, I mention that I believe I have found an example, dependent
on the continuum hypothesis, of two perfect Riesz subspaces U, V of RY such that their linear sum U + V/
is not perfect.
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Version of 20.7.11

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

364Be L°(A) This re-phrasing of the definition of L°(2(), referred to in the 2008 edition of Volume 5, is
now 364Af.

364D L° as f-algebra This paragraph, referred to in the 2008 edition of Volume 5, is now 364C.

364E Algebraic operations on L° This paragraph, referred to in the 2008 edition of Volume 5, is now
364D.

364G The identification of L°(2) with the set of sequentially order-continuous Boolean homomorphisms
from B(R) to 2, referred to in the 2008 edition of Volume 5, is now 364F.

3641 Action of Borel functions on L° This paragraph, referred to in the 2003 and 2006 editions of
Volume 4, is now 364H.

364J L°(X/Z) The identification of L°(3/Z) as a space of equivalence classes of functions, referred to in
the 2003 and 2206 editions of Volume 4 and the 2008 edition of Volume 5, is now 364I.

364K Embedding S and L™ in L° This paragraph, referred to in the 2003 and 2006 editions of Volume
4, is now 364J.

364M-364N Suprema and infima in L°(2) These paragraphs, referred to in the 2003 and 2006
editions of Volume 4 and the 2008 edition of Volume 5, have now been amalgamated as 364L.

3640 Dedekind completeness of L° This paragraph, referred to in the 2008 edition of Volume 5, is
now 364M.

364P Multiplicative inverses in L° This paragraph, referred to in the 2003 and 2006 editions of
Volume 4, is now 364J.

364R Action of Boolean homomorphisms on L° This paragraph, referred to the 2003 and 2006
editions of Volume 4 and in the 2008 edition of Volume 5, is now 364P.

364Xw Extension of { This exercise, referred to in the 2008 edition of Volume 5, is now 364Xj.

364Yn L2(2A) This exercise on complex L° spaces, referred to in the 2003 and 2006 editions of Volume
4, has been moved to 366M.

365K Additive functions on 2/ and linear operators on L' This theorem, referred to in the 2003,
2006 and 2013 printings of Volume 4, is now 365J.

365M L' and L*> This theorem, referred to in the 2008 printing of Volume 5, is now 365L.

3650 Ring homomorphisms on 2/ and Riesz homomorphisms on L' This theorem, referred to
in the 2013 printing of Volume 4 and the 2008 printing of Volume 5, is now 365N.
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365P Order-continuous ring homomorphisms on 2/ and conditional expectations This theo-
rem, referred to in the 2008 printing of Volume 5, is now 3650.

365R Conditional expectations These notes, referred to in the 2006 and 2013 printings of Volume 4
and the 2008 printing of Volume 5, is now 365Q.

365T Change of measure This proposition, referred to in the 2008 printing of Volume 5, is now 365S.
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