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Chapter 35

Riesz spaces

The next three chapters are devoted to an abstract description of the ‘function spaces’ described in
Chapter 24, this time concentrating on their internal structure and relationships with their associated
measure algebras. I find that any convincing account of these must involve a substantial amount of general
theory concerning partially ordered linear spaces, and in particular various types of Riesz space or vector
lattice. I therefore provide an introduction to this theory, a kind of appendix built into the middle of the
volume. The relation of this chapter to the next two is very like the relation of Chapter 31 to Chapter 32.
As with Chapter 31, it is not really meant to be read for its own sake; those with a particular interest in
Riesz spaces might be better served by Luxemburg & Zaanen 71, Schaefer 74, Zaanen 83 or my own
book Fremlin 74a.

I begin with three sections in an easy gradation towards the particular class of spaces which we need
to understand: partially ordered linear spaces (§351), general Riesz spaces (§352) and Archimedean Riesz
spaces (§353); the last includes notes on Dedekind (σ-)complete spaces. These sections cover the fragments
of the algebraic theory of Riesz spaces which I will use. In the second half of the chapter, I deal with normed
Riesz spaces (in particular, L- and M -spaces)(§354), spaces of linear operators (§355) and dual Riesz spaces
(§356).

Version of 16.10.07

351 Partially ordered linear spaces

I begin with an account of the most basic structures which involve an order relation on a linear space,
partially ordered linear spaces. As often in this volume, I find myself impelled to do some of the work in very
much greater generality than is strictly required, in order to show more clearly the nature of the arguments
being used. I give the definition (351A) and most elementary properties (351B-351L) of partially ordered
linear spaces; then I describe a general representation theorem for arbitrary partially ordered linear spaces
as subspaces of reduced powers of R (351M-351Q). I end with a brief note on Archimedean partially ordered
linear spaces (351R).

351A Definition I repeat a definition mentioned in 241E. A partially ordered linear space is a linear
space (U,+, ·) over R together with a partial order ≤ on U such that

u ≤ v =⇒ u+ w ≤ v + w,

u ≥ 0, α ≥ 0 =⇒ αu ≥ 0

for u, v, w ∈ U and α ∈ R.

351B Elementary facts Let U be a partially ordered linear space. We have the following elementary
consequences of the definition above, corresponding to the familiar rules for manipulating inequalities among
real numbers.

(a) For u, v ∈ U ,

u ≤ v =⇒ 0 = u+ (−u) ≤ v + (−u) = v − u =⇒ u = 0 + u ≤ v − u+ u = v,

u ≤ v =⇒ −v = u+ (−v − u) ≤ v + (−v − u) = −u.
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2 Riesz spaces 351Bb

(b) Suppose that u, v ∈ U and u ≤ v. Then αu ≤ αv for every α ≥ 0 and αv ≤ αu for every α ≤ 0. PPP
(i) If α ≥ 0, then α(v − u) ≥ 0 so αv ≥ αu. (ii) If α ≤ 0 then (−α)u ≤ (−α)v so

αv = −(−α)v ≤ −(−αu) = u. QQQ

(c) If u ≥ 0 and α ≤ β in R, then (β−α)u ≥ 0, so αu ≤ βu. If 0 ≤ u ≤ v in U and 0 ≤ α ≤ β in R, then
αu ≤ βu ≤ βv.

351C Positive cones Let U be a partially ordered linear space.

(a) I will write U+ for the positive cone of U , the set {u : u ∈ U, u ≥ 0}.

(b) By 351Ba, the ordering is determined by the positive cone U+, in the sense that u ≤ v ⇐⇒ v− u ∈
U+.

(c) It is easy to characterize positive cones. If U is a real linear space, a set C ⊆ U is the positive cone
for some ordering rendering U a partially ordered linear space iff

u+ v ∈ C, αu ∈ C whenever u, v ∈ C and α ≥ 0,

0 ∈ C, u ∈ C & − u ∈ C =⇒ u = 0.

PPP (i) If C = U+ for some partially ordered linear space ordering ≤ of U , then

u, v ∈ C =⇒ 0 ≤ u ≤ u+ v =⇒ u+ v ∈ C,

u ∈ C, α ≥ 0 =⇒ αu ≥ 0, i.e., αu ∈ C,

0 ≤ 0 so 0 ∈ C,

u, −u ∈ C =⇒ u = 0 + u ≤ (−u) + u = 0 ≤ u =⇒ u = 0.

(ii) On the other hand, if C satisfies the conditions, define the relation ≤ by writing u ≤ v ⇐⇒ v− u ∈ C;
then

u− u = 0 ∈ C so u ≤ u for every u ∈ U ,

if u ≤ v and v ≤ w then w − u = (w − v) + (v − u) ∈ C so u ≤ w,

if u ≤ v and v ≤ u then u− v, v − u ∈ C so u− v = 0 and u = v

and ≤ is a partial order; moreover,

if u ≤ v and w ∈ U then (v + w) − (u+ w) = v − u ∈ C and u+ w ≤ v + w,

if u, α ≥ 0 then αu ∈ C and αu ≥ 0,

u ≥ 0 ⇐⇒ u ∈ C.

So ≤ makes U a partially ordered linear space in which C is the positive cone. QQQ

(d) An incidental useful fact. Let U be a partially ordered linear space, and u ∈ U . Then u ≥ 0 iff
u ≥ −u. PPP If u ≥ 0 then 0 ≥ −u so u ≥ −u. If u ≥ −u then 2u ≥ 0 so u = 1

2 · 2u ≥ 0. QQQ

(e) I have called U+ a ‘positive cone’ without defining the term ‘cone’. I think this is something we can
pass by for the moment; but it will be useful to recognise that U+ is always convex, for if u, v ∈ U+ and
α ∈ [0, 1] then αu, (1 − α)v ≥ 0 and αu+ (1 − α)v ∈ U+, so is a ‘convex cone’ as defined in 3A5Ba.

351D Suprema and infima Let U be a partially ordered linear space.

(a) The definition of ‘partially ordered linear space’ implies that u 7→ u + w is always an order-
isomorphism; on the other hand, u 7→ −u is order-reversing, by 351Ba.

Measure Theory



351G Partially ordered linear spaces 3

(b) It follows that if A ⊆ U and v ∈ U then

supu∈A(v + u) = v + supA if either side is defined,

infu∈A(v + u) = v + inf A if either side is defined,

supu∈A(v − u) = v − inf A if either side is defined,

infu∈A(v − u) = v − supA if either side is defined.

(c) Moreover, we find that if A, B ⊆ U and supA and supB are defined, then sup(A+B) is defined and
equal to supA + supB, writing A + B = {u + v : u ∈ A, v ∈ B} as usual. PPP Set u0 = supA, v0 = supB.
Using (b), we have

u0 + v0 = sup
u∈A

(u+ v0)

= sup
u∈A

(sup
v∈B

(u+ v)) = sup(A+B). QQQ

Similarly, if A, B ⊆ U and inf A, inf B are defined then inf(A+B) = inf A+ inf B.

(d) If α > 0 then u 7→ αu is an order-isomorphism, so we have sup(αA) = α supA if either side is defined;
similarly, inf(αA) = α inf A.

351E Linear subspaces If U is a partially ordered linear space, and V is any linear subspace of U , then
V , with the induced linear and order structures, is a partially ordered linear space; this is obvious from the
definition.

351F Positive linear operators Let U and V be partially ordered linear spaces, and write L(U ;V ) for
the linear space of all linear operators from U to V . For S, T ∈ L(U ;V ) say that S ≤ T iff Su ≤ Tu for every
u ∈ U+. Under this ordering, L(U ;V ) is a partially ordered linear space; its positive cone is {T : Tu ≥ 0 for
every u ∈ U+}. PPP This is an elementary verification. QQQ Note that, for T ∈ L(U ;V ),

T ≥ 0 =⇒ Tu ≤ Tu+ T (v − u) = Tv whenever u ≤ v in U

=⇒ 0 = T0 ≤ Tu for every u ∈ U+

=⇒ T ≥ 0,

so that T ≥ 0 iff T is order-preserving. In this case we say that T is a positive linear operator.
Clearly ST is a positive linear operator whenever U , V and W are partially ordered linear spaces and

T : U → V , S : V →W are positive linear operators (cf. 313Ia).

351G Order-continuous positive linear operators: Proposition Let U and V be partially ordered
linear spaces and T : U → V a positive linear operator.

(a) The following are equiveridical:
(i) T is order-continuous;
(ii) inf T [A] = 0 in V whenever A ⊆ U is a non-empty downwards-directed set with infimum 0 in U ;
(iii) supT [A] = Tw in V whenever A ⊆ U+ is a non-empty upwards-directed set with supremum w in

U .
(b) The following are equiveridical:

(i) T is sequentially order-continuous;
(ii) infn∈N Tun = 0 in V whenever 〈un〉n∈N is a non-increasing sequence in U with infimum 0 in U ;
(iii) supn∈N Tun = Tw in V whenever 〈un〉n∈N is a non-decreasing sequence in U+ with supremum w

in U .

proof (a)(i)⇒(iii) is trivial.

D.H.Fremlin



4 Riesz spaces 351G

(iii)⇒(ii) Assuming (iii), and given that A is non-empty, downwards-directed and has infimum 0, take
any u0 ∈ A and consider A′ = {u : u ∈ A, u ≤ u0}, B = u0−A

′. Then A′ is non-empty, downwards-directed
and has infimum 0, so B is non-empty, upwards-directed and has supremum u0 (using 351Db); by (iii),
supT [B] = Tu0 and (inverting again)

inf T [A′] = inf T [u0 −B] = inf(Tu0 − T [B]) = Tu0 − supT [B] = 0.

But (because T is positive) 0 is surely a lower bound for T [A], so it is also the infimum of T [A]. As A is
arbitrary, (ii) is true.

(ii)⇒(i) Suppose now that (ii) is true. (ααα) If A ⊆ U is non-empty, downwards-directed and has
infimum w, then A− w is non-empty, downwards-directed and has infimum 0, so

inf T [A− w] = 0, inf T [A] = inf(T [A− w] + Tw) = Tw + inf T [A− w] = Tw.

(βββ) If A ⊆ U is non-empty, upwards-directed and has supremum w, then −A is non-empty, downwards-
directed and has infimum −w, so

supT [A] = − inf(−T [A]) = − inf T [−A] = −T (−w) = Tw.

Putting these together, T is order-continuous.

(b) The arguments are identical, replacing each directed set by an appropriate sequence.

351H Riesz homomorphisms (a) For the sake of a representation theorem below (351Q), I introduce
the following definition. Let U , V be partially ordered linear spaces. A Riesz homomorphism from U to
V is a linear operator T : U → V such that whenever A ⊆ U is a finite non-empty set and inf A = 0 in U ,
then inf T [A] = 0 in V . The following facts are now nearly obvious.

(b) Any Riesz homomorphism is a positive linear operator. (For if T is a Riesz homomorphism and
u ≥ 0, then inf{0, u} = 0 so inf{0, Tu} = 0 and Tu ≥ 0.)

(c) Let U and V be partially ordered linear spaces and T : U → V a Riesz homomorphism. Then

inf T [A] exists = T (inf A), supT [A] exists = T (supA)

whenever A ⊆ U is a finite non-empty set and inf A, supA exist. (Apply the definition in (a) to

A′ = {u− inf A : u ∈ A}, A′′ = {supA− u : u ∈ A}.)

(d) If U , V and W are partially ordered linear spaces and T : U → V , S : V → W are Riesz homomor-
phisms then ST : U →W is a Riesz homomorphism.

351I Solid sets Let U be a partially ordered linear space. I will say that a subset A of U is solid if

A = {v : v ∈ U, −u ≤ v ≤ u for some u ∈ A} =
⋃

u∈A[−u, u]

in the notation of 2A1Ab. (I should perhaps remark that while this definition is well established in the case
of Riesz spaces (352J), the extension to general partially ordered linear spaces is not standard. See 351Yb
for a warning.)

351J Proposition Let U be a partially ordered linear space and V a solid linear subspace of U . Then
the quotient linear space U/V has a partially ordered linear space structure defined by either of the rules

u• ≤ w• iff there is some v ∈ V such that u ≤ v + w,

(U/V )+ = {u• : u ∈ U+},

and for this partial order on U/V the map u 7→ u• : U → U/V is a Riesz homomorphism.

proof (a) I had better start by giving priority to one of the descriptions of the relation ≤ on U/V ; I choose
the first. To see that this makes U/V a partially ordered linear space, we have to check the following.

(i) 0 ∈ V and u ≤ u+ 0, so u• ≤ u• for every u ∈ U .
(ii) If u1, u2, u3 ∈ U and u•

1 ≤ u•

2, u•

2 ≤ u•

3 then there are v1, v2 ∈ V such that u1 ≤ u2 +v1, u2 ≤ u3 +v2;
in which case v1 + v2 ∈ V and u1 ≤ u3 + v1 + v2, so u•

1 ≤ u•

3.
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351N Partially ordered linear spaces 5

(iii) If u, w ∈ U and u• ≤ w•, w• ≤ u• then there are v, v′ ∈ V such that u ≤ w + v, w ≤ u + v′. Now
there are v0, v′0 ∈ V such that −v0 ≤ v ≤ v0, −v′0 ≤ v′ ≤ v′0, and in this case v0, v′0 ≥ 0 (351Cd), so

−v0 − v′0 ≤ −v′ ≤ u− w ≤ v ≤ v0 + v′0 ∈ V ,

.
Accordingly u− w ∈ V and u• = w•. Thus U/V is a partially ordered set.

(iv) If u1, u2, w ∈ U and u•

1 ≤ u•

2, then there is a v ∈ V such that u1 ≤ u2 + v, in which case
u1 + w ≤ u2 + w + v and u•

1 + w• ≤ u•

2 + w•.
(v) If u ∈ U , α ∈ R, u• ≥ 0 and α ≥ 0 then there is a v ∈ V such that u + v ≥ 0; now αv ∈ V and

αu+ αv ≥ 0, so αu• = (αu)• ≥ 0.
Thus U/V is a partially ordered linear space.

(b) Now (U/V )+ = {u• : u ≥ 0}. PPP If u ≥ 0 then of course u• ≥ 0 because 0 ∈ V and u+ 0 ≥ 0. On the
other hand, if we have any element p of (U/V )+, there are u ∈ U , v ∈ V such that u• = p and u + v ≥ 0;
but now p = (u+ v)• is of the required form. QQQ

(c) Finally, u 7→ u• is a Riesz homomorphism. PPP Suppose that A ⊆ U is a non-empty finite set and that
inf A = 0 in U . Then u• ≥ 0 for every u ∈ A, that is, 0 is a lower bound for {u• : u ∈ A}. Let p ∈ U/V be
any other lower bound for {u• : u ∈ A}. Express p as w• where w ∈ U . For each u ∈ A, w• ≤ u• so there is
a vu ∈ V such that w ≤ u+ vu. Next, there is a v′u ∈ V such that −v′u ≤ vu ≤ v′u. Set v∗ =

∑
u∈A v

′
u ∈ V .

Then vu ≤ v′u ≤ v∗ so w ≤ u + v∗ for every u ∈ A, and w − v∗ is a lower bound for A in U . Accordingly
w − v∗ ≤ 0, w ≤ 0 + v∗ and p = w• ≤ 0. As p is arbitrary, inf{u• : u ∈ A} = 0; as A is arbitrary, u 7→ u• is
a Riesz homomorphism. QQQ

351K Lemma Suppose that U is a partially ordered linear space, and that W , V are solid linear
subspaces of U such that W ⊆ V . Then V1 = {v• : v ∈ V } is a solid linear subspace of U/W .

proof (i) Because the map u 7→ u• is linear, V1 is a linear subspace of U/W . (ii) If p ∈ V1, there is a v ∈ V
such that p = v•; because V is solid in U , there is a v0 ∈ V such that −v0 ≤ v ≤ v0; now v•

0 ∈ V1 and
−v•

0 ≤ p ≤ v•

0. (iii) If p ∈ V1, q ∈ U/W and −p ≤ q ≤ p, take v0 ∈ V , u ∈ U such that v•

0 = p and u• = q.
Because −v•

0 ≤ u• ≤ v•

0, there are w, w′ ∈W such that −v0 −w ≤ u ≤ v0 +w′. Now −v0 −w, v0 +w′ both
belong to V , which is solid, so u ∈ V and q = u• ∈ V1. (iv) Putting (ii) and (iii) together, V1 is solid.

351L Products If 〈Ui〉i∈I is any family of partially ordered linear spaces, we have a product linear space
U =

∏
i∈I Ui; if we set u ≤ v in U iff u(i) ≤ v(i) for every i ∈ I, U becomes a partially ordered linear

space, with positive cone {u : u(i) ≥ 0 for every i ∈ I}. For each i ∈ I the map u 7→ u(i) : U → Ui is an
order-continuous Riesz homomorphism (in fact, it preserves arbitrary suprema and infima).

351M Reduced powers of R (a) Let X be any set. Then RX is a partially ordered linear space if we
say that f ≤ g means that f(x) ≤ g(x) for every x ∈ X, as in 351L. If now F is a filter on X, we have a
corresponding set

V = {f : f ∈ RX , {x : f(x) = 0} ∈ F};

it is easy to see that V is a linear subspace of RX , and is solid because f ∈ V iff |f | ∈ V . By the reduced
power RX |F I shall mean the quotient partially ordered linear space RX/V .

(b) Note that for f ∈ RX ,

f• ≥ 0 in RX |F ⇐⇒ {x : f(x) ≥ 0} ∈ F .

PPP (i) If f• ≥ 0, there is a g ∈ V such that f + g ≥ 0; now

{x : f(x) ≥ 0} ⊇ {x : g(x) = 0} ∈ F .

(ii) If {x : f(x) ≥ 0} ∈ F , then {x : (|f | − f)(x) = 0} ∈ F , so f• = |f |• ≥ 0. QQQ

351N On the way to the next theorem, the main result (in terms of mathematical content) of this
section, we need a string of lemmas.

D.H.Fremlin



6 Riesz spaces 351N

Lemma Let U be a partially ordered linear space. If u, v0, . . . , vn ∈ U are such that u 6= 0 and v0, . . . , vn ≥ 0
then there is a linear functional f : U → R such that f(u) 6= 0 and f(vi) ≥ 0 for every i.

proof The point is that at most one of u, −u can belong to the convex cone C generated by {v0, . . . , vn},
because this is included in the convex cone set U+, and since u 6= 0 at most one of u, −u can belong to U+.

Now however the Hahn-Banach theorem, in the form 3A5D, tells us that if u /∈ C there is a linear
functional f : U → R such that f(u) < 0 and f(vi) ≥ 0 for every i; while if −u /∈ C we can get f(−u) < 0
and f(vi) ≥ 0 for every i. Thus in either case we have a functional of the required type.

351O Lemma Let U be a partially ordered linear space, and u0 a non-zero member of U . Then there is
a solid linear subspace V of U such that u0 /∈ V and whenever A ⊆ U is finite, non-empty and has infimum
0 then A ∩ V 6= ∅.

proof (a) Let W be the family of all solid linear subspaces of U not containing u0. Then any non-empty
totally ordered V ⊆ W has an upper bound

⋃
V in W. By Zorn’s Lemma, W has a maximal element V say.

This is surely a solid linear subspace of U not containing u0.

(b) Now for any w ∈ U+ \ V there are α ≥ 0, v ∈ V + such that −αw − v ≤ u0 ≤ αw + v. PPP Let V1 be

{u : u ∈ U , there are α ≥ 0, v ∈ V + such that −αw − v ≤ u ≤ αw + v}.

Then it is easy to check that V1 is a solid linear subspace of U , including V , and containing w; because
w /∈ V , V1 6= V , so V1 /∈ W and u ∈ V1, as claimed. QQQ

(c) It follows that if A ⊆ U is finite and non-empty and inf A = 0 in U then A∩V 6= ∅. PPP??? Otherwise, for
every w ∈ A there must be αw ≥ 0, vw ∈ V + such that −αww−vw ≤ u0 ≤ αww+vw. Set α = 1+

∑
w∈A αw,

v =
∑

w∈A vw ∈ V ; then −αw − v ≤ u0 ≤ αw + v for every w ∈ A. Accordingly 1
α

(u0 − v) ≤ w for every

w ∈ A and 1
α

(u0−v) ≤ 0, so u0 ≤ v. Similarly, − 1
α

(v+u0) ≤ w for every w ∈ A and −v ≤ u0. But (because
V is solid) this means that u0 ∈ V , which is not so. XXXQQQ

Accordingly V has the required properties.

351P Lemma Let U be a partially ordered linear space and u a non-zero element of U , and suppose
that A0, . . . , An are finite non-empty subsets of U such that inf Aj = 0 for every j ≤ n. Then there is a
linear functional f : U → R such that f(u) 6= 0 and min f [Aj ] = 0 for every j ≤ n.

proof By 351O, there is a solid linear subspace V of U such that u /∈ V and Aj ∩ V 6= 0 for every j ≤ n.
Give the quotient space U/V its standard partial ordering (351J), and in U/V set C = {v• : v ∈

⋃
j≤nAj}.

Then C is a finite subset of (U/V )+, while u• 6= 0, so by 351N there is a linear functional g : U/V → R such
that g(u•) 6= 0 but g(p) ≥ 0 for every p ∈ C. Set f(v) = g(v•) for v ∈ U ; then f : U → R is linear, f(u) 6= 0
and f(v) ≥ 0 for every v ∈

⋃
j≤nAj . But also, for each j ≤ n, there is a vj ∈ Aj ∩ V , so that f(vj) = 0;

and this means that min f [Aj ] must be 0, as required.

351Q Now we are ready for the theorem.

Theorem Let U be any partially ordered linear space. Then we can find a set X, a filter F on X and an
injective Riesz homomorphism from U to the reduced power RX |F described in 351M.

proof Let X = U ′ be the set of all linear functionals f : U → R; for u ∈ U define û ∈ RX by setting
û(f) = f(u) whenever f ∈ X and u ∈ U . Let A be the family of non-empty finite sets A ⊆ U such that
inf A = 0. For A ∈ A let FA be the set of those f ∈ X such that min f [A] = 0. Since 0 ∈ FA for every
A ∈ A, the set

F = {F : F ⊆ X, there are A0, . . . , An ∈ A such that F ⊇
⋂

j≤n FAj
}

is a filter on X. Set ψ(u) = û• ∈ RX |F for u ∈ U . Then ψ : U → RX |F is an injective Riesz homomorphism.
PPP (i) ψ is linear because u 7→ û : U → RX and h 7→ h• : RX → RX |F are linear. (ii) If A ∈ A, then

FA ∈ F . So, first, if v ∈ A, then {f : v̂(f) ≥ 0} ∈ F , so that ψ(v) = v̂• ≥ 0 in RX |F (351Mb). Next, if
w ∈ RX |F and w ≤ ψ(v) for every v ∈ A, we can express w as h• where h• ≤ v̂• for every v ∈ A, that is,
Hv = {f : h(f) ≤ v̂(f)} ∈ F for every v ∈ A. But now H = FA ∩

⋂
v∈AHv ∈ F , and for f ∈ H we have

Measure Theory



351Yd Partially ordered linear spaces 7

h(f) ≤ minv∈A f(v) = 0. This means that w = h• ≤ 0. As w is arbitrary, inf ψ[A] = 0. As A is arbitrary,
ψ is a Riesz homomorphism. (iii) Finally, ??? suppose, if possible, that there is a non-zero u ∈ U such that
ψ(u) = 0. Then F = {f : f(u) = 0} ∈ F , and there are A0, . . . , An ∈ A such that F ⊇

⋂
j≤n FAj

. By 351P,

there is an f ∈
⋂

j≤n FAj
such that f(u) 6= 0; which is impossible. XXX Accordingly ψ is injective, as claimed.

QQQ

351R Archimedean spaces (a) For a partially ordered linear space U , the following are equiveridical:
(i) if u, v ∈ U are such that nu ≤ v for every n ∈ N then u ≤ 0 (ii) if u ≥ 0 in U then infδ>0 δu = 0.
PPP(i)⇒(ii) If (i) is true and u ≥ 0, then of course δu ≥ 0 for every δ > 0; on the other hand, if v ≤ δu for
every δ > 0, then nv ≤ n · 1

n
u = u for every n ≥ 1, while of course 0v = 0 ≤ u, so v ≤ 0. Thus 0 is the

greatest lower bound of {δu : δ > 0}. (ii)⇒(i) If (ii) is true and nu ≤ v for every n ∈ N, then 0 ≤ v and
u ≤ 1

n
v for every n ≥ 1. If now δ > 0, then there is an n ≥ 1 such that 1

n
≤ δ, so that u ≤ 1

n
v ≤ δv (351Bc).

Accordingly u is a lower bound for {δv : δ > 0} and u ≤ 0. QQQ

(b) I will say that partially ordered linear spaces satisfying the equiveridical conditions of (a) above are
Archimedean.

(c) Any linear subspace of an Archimedean partially ordered linear space, with the induced partially
ordered linear space structure, is Archimedean.

(d) Any product of Archimedean partially ordered linear spaces is Archimedean. PPP If U =
∏

i∈I Ui is
a product of Archimedean spaces, and nu ≤ v in U for every n ∈ N, then for each i ∈ I we must have
nu(i) ≤ v(i) for every n, so that u(i) ≤ 0; accordingly u ≤ 0. QQQ In particular, RX is Archimedean for any
set X.

351X Basic exercises >>>(a) Let ζ be any ordinal. The lexicographic ordering of Rζ is defined by
saying that f ≤ g iff either f = g or there is a ξ < ζ such that f(η) = g(η) for η < ξ and f(ξ) < g(ξ). Show
that this is a total order on Rζ which renders Rζ a partially ordered linear space.

(b) Let U be a partially ordered linear space and V a linear subspace of U . Show that the formulae of
351J define a partially ordered linear space structure on the quotient U/V iff V is order-convex, that is,
u ∈ V whenever v1, v2 ∈ V and v1 ≤ u ≤ v2.

(c) Let 〈Ui〉i∈I be a family of partially ordered linear spaces with product U . For i ∈ I, define Ti : Ui → U
by setting Tix = u where u(i) = x, u(j) = 0 for j 6= i. Show that Ti is an injective order-continuous Riesz
homomorphism.

>>>(d) Let U be a partially ordered linear space and 〈Vi〉i∈I a family of partially ordered linear spaces
with product V . Show that L(U ;V ) can be identified, as partially ordered linear space, with

∏
i∈I L(U ;Vi).

>>>(e) Show that if U , V are partially ordered linear spaces and V is Archimedean, then L(U ;V ) is
Archimedean.

351Y Further exercises (a) Give an example of two partially ordered linear spaces U and V and a
bijective Riesz homomorphism T : U → V such that T−1 : V → U is not a Riesz homomorphism.

(b)(i) Let U be a partially ordered linear space. Show that U is a solid subset of itself (on the definition
351I) iff U = U+ − U+. (ii) Give an example of a partially ordered linear space U satisfying this condition
with an element u ∈ U such that the intersection of the solid sets containing u is not solid.

(c) Show that a reduced power RX |F , as described in 351M, is totally ordered iff F is an ultrafilter, and
in this case has a natural structure as a totally ordered field.

(d) Let U be a partially ordered linear space, and suppose that A, B ⊆ U are two non-empty finite sets
such that (α) u ∨ v = sup{u, v} is defined for every u ∈ A, v ∈ B (β) inf A and inf B and (inf A) ∨ (inf B)
are defined. Show that inf{u∨ v : u ∈ A, v ∈ B} = (inf A)∨ (inf B). (Hint : show that this is true if U = R,
if U = RX and if U = RX |F , and use 351Q.)

D.H.Fremlin



8 Riesz spaces 351Ye

(e) Show that a reduced power RX |F , as described in 351M, is Archimedean iff
⋂

n∈N
Fn ∈ F whenever

〈Fn〉n∈N is a sequence in F .

351 Notes and comments The idea of ‘partially ordered linear space’ is a very natural abstraction from
the elementary examples of RX and its subspaces, and the only possible difficulty lies in guessing the exact
boundary at which one’s standard manipulations with such familiar spaces cease to be valid in the general
case. (For instance, most people’s favourite examples are Archimedean, in the sense of 351R, so it is prudent
to check your intuitions against a non-Archimedean space like that of 351Xa.) There is really no room for
any deep idea to appear in 351B-351F. When I come to what I call ‘Riesz homomorphisms’, however (351H),
there are some more interesting possibilities in the background.

I shall not discuss the applications of Theorem 351Q to general partially ordered linear spaces; it is here
for the sake of its application to Riesz spaces in the next section. But I think it is a very striking fact that
not only does any partially ordered linear space U appear as a linear subspace of some reduced power of R,
but the embedding can be taken to preserve any suprema and infima of finite sets which exist in U . This is
in a sense a result of the same kind as the Stone representation theorem for Boolean algebras; it gives us a
chance to confirm that an intuition valid for R or RX may in fact apply to arbitrary partially ordered linear
spaces. If you like, this provides a metamathematical foundation for such results as those in 351B. I have to
say that for partially ordered linear spaces it is generally quicker to find a proof directly from the definition
than to trace through an argument relying on 351Q; but this is not always the case for Riesz spaces. I offer
351Yd as an example of a result where a direct proof does at least call for a moment’s thought, while the
argument through 351Q is straightforward.

‘Reduced powers’ are of course of great importance for other reasons; I mention 351Yc as a hint of what
can be done.

Version of 9.6.16/16.8.22

352 Riesz spaces

In this section I sketch those fragments of the theory we need which can be expressed as theorems about
general Riesz spaces or vector lattices. I begin with the definition (352A) and most elementary properties
(352C-352F). In 352G-352J I discuss Riesz homomorphisms and the associated subspaces (Riesz subspaces,
solid linear subspaces); I mention product spaces (352K, 352T) and quotient spaces (352Jb, 352U) and the
form the representation theorem 351Q takes in the present context (352L-352M). Most of the second half
of the section concerns the theory of ‘bands’ in Riesz spaces, with the algebras of complemented bands
(352Q) and projection bands (352S) and a description of bands generated by upwards-directed sets (352V).
I conclude with a description of ‘f -algebras’ (352W).

352A I repeat a definition from 241E.

Definition A Riesz space or vector lattice is a partially ordered linear space which is a lattice.

352B Lemma If U is a partially ordered linear space, then it is a Riesz space iff sup{0, u} is defined for
every u ∈ U .

proof If U is a lattice, then of course sup{u, 0} is defined for every u. If sup{u, 0} is defined for every u,
and v1, v2 are any two members of U , consider w = v1 + sup{0, v2 − v1}; by 351Db, w = sup{v1, v2}. Next,

inf{v1, v2} = − sup{−v1,−v2}

must also be defined in U , because v 7→ −v is order-reversing; as v1 and v2 are arbitrary, U is a lattice.

352C Notation In any Riesz space U I will write

u+ = u ∨ 0, u− = (−u) ∨ 0 = (−u)+, |u| = u ∨ (−u)

where (as in any lattice) u ∨ v = sup{u, v} (and u ∧ v = inf{u, v}).
I mention immediately a term which will be useful: a family 〈ui〉i∈I in U is disjoint if |ui| ∧ |uj | = 0 for

all distinct i, j ∈ I. Similarly, a set C ⊆ U is disjoint if |u| ∧ |v| = 0 for all distinct u, v ∈ C.

c© 1998 D. H. Fremlin
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352Ea Riesz spaces 9

352D Elementary identities Let U be a Riesz space. The translation-invariance of the order, and its
invariance under positive scalar multiplication, reversal under negative multiplication, lead directly to the
following, which are in effect special cases of 351D:

u+ (v ∨ w) = (u+ v) ∨ (u+ w), u+ (v ∧ w) = (u+ v) ∧ (u+ w),

α(u ∨ v) = αu ∨ αv and α(u ∧ v) = αu ∧ αv if α ≥ 0,

−(u ∨ v) = (−u) ∧ (−v).

Combining and elaborating on these facts, we get

u+ − u− = (u ∨ 0) − ((−u) ∨ 0) = u+ (0 ∨ (−u)) − ((−u) ∨ 0) = u,

u+ + u− = 2u+ − u = (2u ∨ 0) − u = u ∨ (−u) = |u|,

u ≥ 0 ⇐⇒ −u ≤ 0 ⇐⇒ u− = 0 ⇐⇒ u = u+ ⇐⇒ u = |u|,

| − u| = |u|, | |u| | = |u|, |αu| = |α||u|

(looking at the cases α ≥ 0, α ≤ 0 separately),

u ∨ v + u ∧ v = u+ (0 ∨ (v − u)) + v + ((u− v) ∧ 0)

= u+ (0 ∨ (v − u)) + v − ((v − u) ∨ 0) = u+ v,

u ∨ v = u+ (0 ∨ (v − u)) = u+ (v − u)+,

u ∧ v = u+ (0 ∧ (v − u)) = u− (−0 ∨ (u− v)) = u− (u− v)+,

u ∨ v =
1

2
(2u ∨ 2v) =

1

2
(u+ v + (u− v) ∨ (v − u)) =

1

2
(u+ v + |u− v|),

u ∧ v = u+ v − u ∨ v =
1

2
(u+ v − |u− v|),

u+ ∨ u− = u ∨ (−u) ∨ 0 = |u|, u+ ∧ u− = u+ + u− − (u+ ∨ u−) = 0,

|u+ v| = (u+ v) ∨ ((−u) + (−v)) ≤ (|u| + |v|) ∨ (|u| + |v|) = |u| + |v|,

||u| − |v|| = (|u| − |v|) ∨ (|v| − |u|) ≤ (|u− v| + |v| − |v|) ∨ (|v − u| + |u| − |u|)

= |u− v| ∨ |v − u| = |u− v|,

|u ∨ v| ≤ |u| + |v|

(because − |u| ≤ u ∨ v ≤ |u| ∨ |v| ≤ |u| + |v|)

for u, v ∈ U and α ∈ R.

352E Distributive laws Let U be a Riesz space.

(a) If A, B ⊆ U have suprema a, b in U , then C = {u ∧ v : u ∈ A, v ∈ B} has supremum a ∧ b. PPP Of
course u∧ v ≤ a∧ b for all u ∈ A, v ∈ B, so a∧ b is an upper bound for C. Now suppose that c is any upper
bound for C. If u ∈ A and v ∈ B then

u− (u− v)+ = u ∧ v ≤ c, u ≤ c+ (u− v)+ ≤ c+ (a− v)+

(because (a − v)+ = sup{a − v, 0} ≥ sup{u − v, 0} = (u − v)+). As u is arbitrary, a ≤ c + (a − v)+ and
a ∧ v ≤ c. Now turn the argument round:

D.H.Fremlin



10 Riesz spaces 352Ea

v = (a ∧ v) + (v − a)+ ≤ c+ (v − a)+ ≤ c+ (b− a)+,

and this is true for every v ∈ B, so b ≤ c + (b − a)+ and a ∧ b ≤ c. As c is arbitrary, a ∧ b = supC, as
claimed. QQQ

(b) Similarly, or applying (a) to −A and −B, inf{u ∨ v : u ∈ A, v ∈ B} = inf A ∨ inf B whenever A,
B ⊆ U and the right-hand-side is defined.

(c) In particular, U is a distributive lattice (definition: 3A1Ic).

352F Further identities and inequalities At a slightly deeper level we have the following facts.

Proposition Let U be a Riesz space.
(a)(i) If u, v, w ≥ 0 in U then u ∧ (v + w) ≤ (u ∧ v) + (u ∧ w).

(ii) If v0, . . . , vm, w0, . . . , wn ∈ U+ then
∑m

i=0 vi ∧
∑n

j=0 wj ≤
∑m

i=0

∑n
j=0 vi ∧ wj .

(b) If u0, . . . , un ∈ U are disjoint, then |
∑n

i=0 αiui| =
∑n

i=0 |αi||ui| for any α0, . . . , αn ∈ R.
(c) If u, v ∈ U then

u+ ∧ v+ ≤ (u+ v)+ ≤ u+ + v+.

(d) If u0, . . . , um, v0, . . . , vn ∈ U+ and
∑m

i=0 ui =
∑n

j=0 vj , then there is a family 〈wij〉i≤m,j≤n in U+

such that
∑m

i=0 wij = vj for every j ≤ n and
∑n

j=0 wij = ui for every i ≤ m.

proof (a)(i)

u ∧ (v + w) =
(
(u+ w) ∧ (v + w)

)
∧ u

≤
(
(u ∧ v) + w

)
∧
(
(u ∧ v) + u

)
= (u ∧ v) + (u ∧ w).

(ii) Inducing on n, we see that

u ∧
∑n

j=0 wi ≤
∑n

j=0 u ∧ wi

for every u ≥ 0; so that
∑m

i=0 vi ∧
∑n

j=0 wj ≤
∑n

j=0(
∑m

i=0 vi) ∧ wj ≤
∑n

j=0

∑m
i=0 vi ∧ wj .

(b)(i)(ααα) If u ∧ v = 0 then

(u− v)+ = u− (u ∧ v) = u, (u− v)− = (v − u)+ = v − (v ∧ u) = v,

|u− v| = (u− v)+ + (u− v)− = u+ v = |u+ v|,

so if |u| ∧ |v| = 0 then

(u+ + v+) ∧ (u− + v−) ≤ (u+ ∧ u−) + (u+ ∧ v−) + (v+ ∧ u−) + (v+ ∧ v−)

≤ 0 + (|u| ∧ |v|) + (|v| ∧ |u|) + 0 = 0

and

|u+ v| = |(u+ + v+) − (u− + v−)| = u+ + v+ + u− + v− = |u| + |v|.

(βββ) Now if |u| ∧ |v| = 0 and α, β ∈ R,

|αu| ∧ |βv| = |α||u| ∧ |β||v| ≤ (|α| + |β|)|u| ∧ (|α| + |β|)|v| = (|α| + |β|)(|u| ∧ |v|) = 0.

(ii) We may therefore proceed by induction. The case n = 0 is trivial. For the inductive step to n+ 1,
setting u′i = αiui we have |u′i| ∧ |u′j | = 0 for all i 6= j, by (i-γ). By (i-α),

|u′n+1| ∧ |
∑n

i=0 u
′
i| ≤

∑n
i=0 |u

′
n+1| ∧ |u′i| = 0,

so by (i-β) and the inductive hypothesis

Measure Theory



352H Riesz spaces 11

|
∑n+1

i=0 u
′
i| = |u′n+1| + |

∑n
i=0 u

′
i| =

∑n+1
i=0 |u′i|

as required.

(c) By 352E,

u+ ∧ v+ = (u ∨ 0) ∧ (v ∨ 0) = (u ∧ v) ∨ 0.

Now

u ∧ v =
1

2
(u+ v − |u− v|) ≤

1

2
(u+ v + |u+ v|) = (u+ v)+,

and of course 0 ≤ (u+ v)+, so u+ ∧ v+ ≤ (u+ v)+.
For the other inequality we need only note that u + v ≤ u+ + v+ (because u ≤ u+, v ≤ v+) and

0 ≤ u+ + v+.

(d) Write w for the common value of
∑m

i=0 ui and
∑n

j=0 vj .

Induce on k = #({(i, j) : i ≤ m, j ≤ n, ui ∧ vj > 0}). If k = 0, that is, ui ∧ vj = 0 for all i, j, then, by
(a-ii), we must have w ∧ w = 0, that is, w = 0, and we can take wij = 0 for all i, j. For the inductive step
to k ≥ 1, take i∗, j∗ such that w∗ = ui∗ ∧ vj∗ > 0. Set

ũi∗ = ui∗ − w∗, ũi = ui for i 6= i∗,

ṽj∗ = vj∗ − w∗, ṽj = vj for j 6= j∗.

Then
∑m

i=0 ũi =
∑n

j=0 ṽj = w − w∗ and ũi ∧ ṽj ≤ ui ∧ vj for all i, j, while ũi∗ ∧ ṽj∗ = 0; so that

#({(i, j) : ũi ∧ ṽj > 0}) < k.

By the inductive hypothesis, there are w̃ij ≥ 0, for i ≤ m and j ≤ n, such that ũi =
∑n

j=0 w̃ij for each i

and ṽj =
∑m

i=0 w̃ij for each j. Set wi∗j∗ = w̃i∗j∗ + w∗, wij = w̃ij for (i, j) 6= (i∗, j∗); then ui =
∑n

j=0 wij

and vj =
∑m

i=0 wij , so the induction proceeds.

352G Riesz homomorphisms: Proposition Let U be a Riesz space, V a partially ordered linear
space and T : U → V a linear operator. Then the following are equiveridical:

(i) T is a Riesz homomorphism in the sense of 351H;
(ii) (Tu)+ = sup{Tu, 0} is defined and equal to T (u+) for every u ∈ U ;
(iii) sup{Tu,−Tu} is defined and equal to T |u| for every u ∈ U ;
(iv) inf{Tu, Tv} = 0 in V whenever u ∧ v = 0 in U .

proof (i)⇒(iii) and (i)⇒(iv) are special cases of 351Hc. For (iii)⇒(ii) we have

sup{Tu, 0} =
1

2
Tu+ sup{

1

2
Tu,−

1

2
Tu} =

1

2
Tu+

1

2
T |u| = T (u+).

For (ii)⇒(i), argue as follows. If (ii) is true and u, v ∈ U , then

Tu ∧ Tv = inf{Tu, Tv} = Tu+ inf{0, T v − Tu} = Tu− sup{0, T (u− v)}

is defined and equal to

Tu− T ((u− v)+) = T (u− (u− v)+) = T (u ∧ v).

Inducing on n,

infi≤n Tui = T (infi≤n ui)

for all u0, . . . , un ∈ U ; in particular, if infi≤n ui = 0 then infi≤n Tui = 0; which is the definition I gave of
Riesz homomorphism.

Finally, for (iv)⇒(ii), we know from (iv) that 0 = inf{T (u+), T (u−)}, so −T (u+) = inf{0,−Tu} and
T (u+) = sup{0, Tu}.

352H Proposition If U and V are Riesz spaces and T : U → V is a bijective Riesz homomorphism,
then T is a partially-ordered-linear-space isomorphism, and T−1 : V → U is a Riesz homomorphism.

D.H.Fremlin



12 Riesz spaces 352H

proof Use 352G(ii). If v ∈ V , set u = T−1v; then T (u+) = v+ so T−1(v+) = u+ = (T−1v)+. Thus T−1 is
a Riesz homomorphism; in particular, it is order-preserving, so T is an isomorphism for the order structures
as well as for the linear structures.

352I Riesz subspaces (a) If U is a partially ordered linear space, a Riesz subspace of U is a linear
subspace V such that sup{u, v} and inf{u, v} are defined in U and belong to V for every u, v ∈ V . In this
case they are the supremum and infimum of {u, v} in V , so V , with the induced order and linear structure,
is a Riesz space in its own right, and the embedding map u 7→ u : V → U is a Riesz homomorphism.

(b) Generally, if U is a Riesz space, V is a partially ordered linear space and T : U → V is a Riesz
homomorphism, then T [U ] is a Riesz subspace of V (because, by 351Hc, Tu ∨ Tu′ = T (u ∨ u′), Tu ∧ Tu′ =
T (u ∧ u′) are defined in V and belong to T [U ] for all u, u′ ∈ U).

(c) If U is a Riesz space and V is a linear subspace of U , then V is a Riesz subspace of U iff |u| ∈ V for
every u ∈ V . PPP In this case,

u ∨ v =
1

2
(u+ v + |u− v|), u ∧ v =

1

2
(u+ v − |u− v|)

belong to V for all u, v ∈ V . QQQ

352J Solid subsets (a) If U is a Riesz space, a subset A of U is solid (in the sense of 351I) iff v ∈ A
whenever u ∈ A and |v| ≤ |u|. PPP (α) If A is solid, u ∈ A and |v| ≤ |u|, then there is some w ∈ A such
that −w ≤ u ≤ w; in this case |v| ≤ |u| ≤ w and −w ≤ v ≤ w and v ∈ A. (β) Suppose that A satisfies
the condition. If u ∈ A, then |u| ∈ A and −|u| ≤ u ≤ |u|. If w ∈ A and −w ≤ u ≤ w then −u ≤ w,
|u| ≤ w = |w| and u ∈ A. Thus A is solid. QQQ In particular, if A is solid, then v ∈ A iff |v| ∈ A.

For any set A ⊆ U , the set

{u : there is some v ∈ A such that |u| ≤ |v|}

is a solid subset of U , the smallest solid set including A; we call it the solid hull of A in U .
Any solid linear subspace of U is a Riesz subspace (use 352Ic). If V ⊆ U is a Riesz subspace, then the

solid hull of V in U is

{u : there is some v ∈ V such that |u| ≤ v}

and is a solid linear subspace of U .

(b) If T is a Riesz homomorphism from a Riesz space U to a partially ordered linear space V , then its
kernel W is a solid linear subspace of U . PPP If u ∈W and |v| ≤ |u|, then T |u| = sup{Tu, T (−u)} = 0, while
−|u| ≤ v ≤ |u|, so that −0 ≤ Tv ≤ 0 and v ∈W . QQQ

Now the quotient space U/W , as defined in 351J, isomorphic, as partially ordered linear space, to T [U ],
and in particular is a Riesz space. PPP Because U/W is the linear space quotient of V by the kernel of the
linear operator T , we have an induced linear space isomorphism S : U/W → T [U ] given by setting Su• = Tu
for every u ∈ U . If p ≥ 0 in U/W there is a u ∈ U+ such that u• = p (351J), so that Sp = Tu ≥ 0. On the
other hand, if p ∈ U/W and Sp ≥ 0, take u ∈ U such that u• = p. By 352G, we have

T (u+) = (Tu)+ = sup{Sp, 0} = Sp = Tu,

so that T (u−) = Tu+ − Tu = 0, u− ∈ W and p = (u+)• ≥ 0. Thus Sp ≥ 0 iff p ≥ 0, and S is a
partially-ordered-linear-space isomorphism. We know from 352Ib that T [U ] is a Riesz space, so U/W also
is. QQQ

(c) Because a subset of a Riesz space is a solid linear subspace iff it is the kernel of a Riesz homomorphism
(see 352U below), such subspaces are sometimes called ideals.

352K Products If 〈Ui〉i∈I is any family of Riesz spaces, then the product partially ordered linear space
U =

∏
i∈I Ui (351L) is a Riesz space, with

u ∨ v = 〈u(i) ∨ v(i)〉i∈I , u ∧ v = 〈u(i) ∧ v(i)〉i∈I , |u| = 〈|u(i)|〉i∈I

for all u, v ∈ U .
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352L Theorem Let U be any Riesz space. Then there are a set X, a filter F on X and a Riesz subspace
of the Riesz space RX |F (definition: 351M) which is isomorphic, as Riesz space, to U .

proof By 351Q, we can find such X and F and an injective Riesz homomorphism T : U → RX |F . By
352K, or otherwise, RX is a Riesz space; by 352Jb, RX |F is a Riesz space (recall that it is a quotient of RX

by a solid linear subspace, as explained in 351M); by 352Ib, T [U ] is a Riesz subspace of RX |F ; and by 352H
it is isomorphic to U .

352M Corollary Any identity involving the operations +, −, ∨, ∧, +, −, | | and scalar multiplication,
and the relation ≤, which is valid in R, is valid in all Riesz spaces.

Remark I suppose some would say that a strict proof of this must begin with a formal description of what
the phrase ‘any identity involving the operations. . . ’ means. However I think it is clear in practice what is
involved. Given a proposed identity like

0 ≤
∑n

i=0 |αi||ui| − |
∑n

i=0 αiui| ≤
∑

i6=j(|αi| + |αj |)(|ui| ∧ |uj |),

(compare 352Fb), then to check that it is valid in all Riesz spaces you need only check (i) that it is true in R

(ii) that it is true in RX (iii) that it is true in any RX |F (iv) that it is true in any Riesz subspace of RX |F ;
and you can hope that the arguments for (ii)-(iv) will be nearly trivial, since (ii) is generally nothing but a
coordinate-by-coordinate repetition of (i), and (iii) and (iv) involve only transformations of the formula by
Riesz homomorphisms which preserve its structure.

352N Order-density and order-continuity Let U be a Riesz space.

(a) Definition A Riesz subspace V of U is quasi-order-dense if for every u > 0 in U there is a v ∈ V
such that 0 < v ≤ u; it is order-dense if u = sup{v : v ∈ V, 0 ≤ v ≤ u} for every u ∈ U+.

(b) If U is a Riesz space and V is a quasi-order-dense Riesz subspace of U , then the embedding V ⊂→ U
is order-continuous. PPP Let A ⊆ V be a non-empty set such that inf A = 0 in V . ??? If 0 is not the infimum
of A in U , then there is a u > 0 such that u is a lower bound for A in U ; now there is a v ∈ V such that
0 < v ≤ u, and v is a lower bound for A in V which is strictly greater than 0. XXX Thus 0 = inf A in U . As
A is arbitrary, the embedding is order-continuous, by 351Ga. QQQ

(c)(i) If V ⊆ U is an order-dense Riesz subspace, it is quasi-order-dense. (ii) If V is a quasi-order-dense
Riesz subspace of U and W is a quasi-order-dense Riesz subspace of V , then W is a quasi-order-dense Riesz
subspace of U . (iii) If V is an order-dense Riesz subspace of U and W is an order-dense Riesz subspace of
V , then W is an order-dense Riesz subspace of U . (Use (b).) (iv) If V is a quasi-order-dense solid linear
subspace of U and W is a quasi-order-dense Riesz subspace of U then V ∩W is quasi-order-dense in V ,
therefore in U .

(d) I ought somewhere to remark that a Riesz homomorphism, being a lattice homomorphism, is order-
continuous iff it preserves arbitrary suprema and infima; compare 313L(b-iv) and (b-v).

(e) If V is a Riesz subspace of U , we say that it is regularly embedded in U if the identity map from
V to U is order-continuous, that is, whenever A ⊆ V is non-empty and has infimum 0 in V , then 0 is still its
greatest lower bound in U . Thus quasi-order-dense Riesz subspaces and solid linear subspaces are regularly
embedded.

352O Bands Let U be a Riesz space.

(a) Definition A band or normal subspace of U is an order-closed solid linear subspace.

(b) If V ⊆ U is a solid linear subspace then it is a band iff supA ∈ V whenever A ⊆ V + is a non-empty,
upwards-directed subset of V with a supremum in U . PPP Of course the condition is necessary; I have to show
that it is sufficient. (i) Let A ⊆ V be any non-empty upwards-directed set with a supremum in V . Take any
u0 ∈ A and set A1 = {u−u0 : u ∈ A, u ≥ u0}. Then A1 is a non-empty upwards-directed subset of V +, and
u0 +A1 = {u : u ∈ A, u ≥ u0} has the same upper bounds as A, so supA1 = supA− u0 is defined in U and
belongs to V . Now supA = u0 + supA1 also belongs to V . (ii) If A ⊆ V is non-empty, downwards-directed
and has an infimum in U , then −A ⊆ V is upwards-directed, so inf A = sup(−A) belongs to V . Thus V is
order-closed. QQQ
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(c) For any set A ⊆ U set A⊥ = {v : v ∈ U, |u| ∧ |v| = 0 for every u ∈ A}. Then A⊥ is a band. PPP (i) Of
course 0 ∈ A⊥. (ii) If v, w ∈ A⊥ and u ∈ A, then

0 ≤ |u| ∧ |v + w| ≤ (|u| ∧ |v|) + (|u| ∧ |w|) = 0,

so v + w ∈ A⊥. (iii) If v ∈ A⊥ and |w| ≤ |v| then

0 ≤ |u| ∧ |w| ≤ |u| ∧ |v| = 0

for every u ∈ A, so w ∈ A⊥. (iv) If v ∈ A⊥ then nv ∈ A⊥ for every n, by (ii). So if α ∈ R, take n ∈ N such
that |α| ≤ n; then

|αv| = |α||v| ≤ n|v| ∈ A⊥

and αv ∈ A⊥. Thus A⊥ is a solid linear subspace of U . (v) If B ⊆ (A⊥)+ is non-empty and upwards-directed
and has a supremum w in U , then

|u| ∧ |w| = |u| ∧ w = supv∈B |u| ∧ v = 0

by 352Ea, so w ∈ A⊥. Thus A⊥ is a band. QQQ

(d) For any A ⊆ U , A ⊆ (A⊥)⊥. Also B⊥ ⊆ A⊥ whenever A ⊆ B. So

A⊥⊥⊥ ⊆ A⊥ ⊆ A⊥⊥⊥

and A⊥ = A⊥⊥⊥.

(e) If W is another Riesz space and T : U → W is an order-continuous Riesz homomorphism then its
kernel is a band. (For {0} is order-closed in W and the inverse image of an order-closed set under an
order-continuous order-preserving function is order-closed (313Id).)

352P Complemented bands Let U be a Riesz space. A band V ⊆ U is complemented if V ⊥⊥ = V ,
that is, if V is of the form A⊥ for some A ⊆ U (352Od). In this case its complement is the complemented
band V ⊥.

352Q Theorem In any Riesz space U , the set C of complemented bands forms a Dedekind complete
Boolean algebra, with

V ∩CW = V ∩W , V ∪CW = (V +W )⊥⊥,

1C = U , 0C = {0}, 1C \C V = V ⊥,

V ⊆CW ⇐⇒ V ⊆W

for V , W ∈ C.

proof To show that C is a Boolean algebra, I use the identification of Boolean algebras with complemented
distributive lattices (311L).

(a) Of course C is partially ordered by ⊆. If V , W ∈ C then

V ∩W = V ⊥⊥ ∩W⊥⊥ = (V ⊥ ∪W⊥)⊥ ∈ C,

and V ∩W must be inf{V,W} in C. The map V 7→ V ⊥ : C → C is an order-reversing permutation, so that
V ⊆ W iff W⊥ ⊆ V ⊥ and V ∨W = sup{V,W} will be (V ⊥ ∩W⊥)⊥; thus C is a lattice. Note also that
V ∨W must be the smallest complemented band including V +W , that is, it is (V +W )⊥⊥.

(b) If V1, V2, W ∈ C then (V1 ∨ V2) ∧ W = (V1 ∧ W ) ∨ (V2 ∧ W ). PPP Of course (V1 ∨ V2) ∧ W ⊇
(V1∧W )∨ (V2∧W ). ??? Suppose, if possible, that there is a u ∈ (V1∨V2)∩W \ ((V1∩W )∨ (V2∩W )). Then
u /∈ ((V1 ∩W )⊥ ∩ (V2 ∩W )⊥)⊥, so there is a v ∈ (V1 ∩W )⊥ ∩ (V2 ∩W )⊥ such that u1 = |u| ∧ |v| > 0. Now
u1 ∈ V1∨V2 = (V ⊥

1 ∩V ⊥
2 )⊥ so u1 /∈ V ⊥

1 ∩V ⊥
2 ; say u1 /∈ V ⊥

j , and there is a vj ∈ Vj such that u2 = u1∧|vj | > 0.

In this case we still have u2 ∈ (Vj ∩W )⊥, because u2 ≤ |v|, but also u2 ∈ Vj and u2 ∈W because u2 ≤ |u|;
but this means that u2 = u2 ∧ u2 = 0, which is absurd. XXX Thus (V1 ∨ V2) ∧W ⊆ (V1 ∧W ) ∨ (V2 ∧W ) and
the two are equal. QQQ
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(c) Now if V ∈ C,

V ∧ V ⊥ = {0}

is the least member of C, because if v ∈ V ∩ V ⊥ then |v| = |v| ∧ |v| = 0. By 311L, C has a Boolean algebra
structure, with the Boolean relations described; by 312M, this structure is uniquely defined.

(d) Finally, if V ⊆ C is non-empty, then
⋂
V = (

⋃
V ∈V V

⊥)⊥ ∈ C

and is inf V in C. So C is Dedekind complete.

352R Projection bands Let U be a Riesz space.

(a) A projection band in U is a set V ⊆ U such that V + V ⊥ = U . In this case V is a complemented
band. PPP If v ∈ V ⊥⊥ then v is expressible as v1 + v2 where v1 ∈ V and v2 ∈ V ⊥. Now |v| = |v1|+ |v2| ≥ |v2|
(352Fb), so

|v2| = |v2| ∧ |v2| ≤ |v2| ∧ |v| = 0

and v = v1 ∈ V . Thus V = V ⊥⊥ is a complemented band. QQQ Observe that U = V ⊥ + V ⊥⊥ so V ⊥ also is a
projection band.

(b) Because V ∩V ⊥ is always {0}, we must have U = V ⊕V ⊥ for any projection band V ⊆ U ; accordingly
there is a corresponding band projection PV : U → U defined by setting P (v + w) = v whenever v ∈ V ,
w ∈ V ⊥. In this context I will say that v is the component of v + w in V . The kernel of P is V ⊥, the set
of values is V , and P 2 = P . Moreover, P is an order-continuous Riesz homomorphism. PPP (i) P is a linear
operator because V and V ⊥ are linear subspaces. (ii) If v ∈ V and w ∈ V ⊥ then |v + w| = |v| + |w|, by
352Fb, so P |v + w| = |v| = |P (v + w)|; consequently P is a Riesz homomorphism (352G). (iii) If A ⊆ U
is downwards-directed and has infimum 0, then Pu ≤ u for every u ∈ A, so inf P [A] = 0; thus P is
order-continuous. QQQ

(c) Note that for any band projection P , and any u ∈ U , we have |Pu| ∧ |u − Pu| = 0, so that
|u| = |Pu| + |u− Pu| and (in particular) |Pu| ≤ |u|; consequently P [W ] ⊆ W for any solid linear subspace
W of U .

(d) A linear operator P : U → U is a band projection iff Pu ∧ (u − Pu) = 0 for every u ∈ U+. PPP I
remarked in (c) that the condition is satisfied for any band projection. Now suppose that P has the property.
(i) For any u ∈ U+, Pu ≥ 0 and u− Pu ≥ 0; in particular, P is a positive linear operator. (ii) If u, v ∈ U+

then u− Pu ≤ (u+ v) − P (u+ v), so

Pv ∧ (u− Pu) ≤ P (u+ v) ∧ ((u+ v) − P (u+ v)) = 0

and Pv ∧ (u− Pu) = 0. (iii) If u, v ∈ U then |Pv| ≤ P |v|, |u− Pu| ≤ |u| − P |u| (because w 7→ w− Pw is a
positive linear operator), so

|Pv| ∧ |u− Pu| ≤ P |v| ∧ (|u| − P |u|) = 0.

(iv) Setting V = P [U ], we see that u− Pu ∈ V ⊥ for every u ∈ U , so that

u = u+ (u− Pu) ∈ V + V ⊥

for every u, and U = V + V ⊥; thus V is a projection band. (v) Since Pu ∈ V and u− Pu ∈ V ⊥ for every
u ∈ U , P is the band projection onto V . QQQ

352S Proposition Let U be any Riesz space.
(a) The family B of projection bands in U is a subalgebra of the Boolean algebra C of complemented

bands in U .
(b) For V ∈ B let PV : U → V be the corresponding projection. Then for any e ∈ U+,

PV ∩W e = PV e ∧ PW e = PV PW e, PV ∨W e = PV e ∨ PW e
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for all V , W ∈ B. In particular, band projections commute.

(c) If V ∈ B then the algebra of projection bands in V is just the principal ideal of B generated by V .

proof (a) Of course 0C = {0} ∈ B. If V ∈ B then V ⊥ = 1C \ V belongs to B. If now W is another member
of B, then

(V ∩W ) + (V ∩W )⊥ ⊇ (V ∩W ) + V ⊥ +W⊥.

But if u ∈ U then we can express u as v+ v′, where v ∈ V and v′ ∈ V ⊥, and v as w+w′, where w ∈W and
w′ ∈W⊥; and as |w| ≤ |v|, we also have w ∈ V , so that

u = w + v′ + w′ ∈ (V ∩W ) + V ⊥ +W⊥.

This shows that V ∩W ∈ B. Thus B is closed under intersection and complements and is a subalgebra of
C.

(b) If V , W ∈ B and e ∈ U+, we have e = e1 + e2 + e3 + e4 where

e1 = PWPV e ∈ V ∩W , e2 = PW⊥PV e ∈ V ∩W⊥,

e3 = PWPV ⊥e ∈ V ⊥ ∩W , e4 = PW⊥PV ⊥e ∈ V ⊥ ∩W⊥,

e1 + e2 = PV e, e1 + e3 = PW e.

Now e2 + e3 + e4 belongs to (V ∩W )⊥, so e1 must be the component of e in V ∩W ; similarly e4 is the
component of e in V ⊥ ∩W⊥, and e1 + e2 + e3 is the component of e in V ∨W . But as e2 ∧ e3 = 0, we have

PV ∩W e = e1 = (e1 + e2) ∧ (e1 + e3) = PV e ∧ PW e,

PV ∨W e = e1 + e2 + e3 = (e1 + e2) ∨ (e1 + e3) = PV e ∨ PW e,

as required.

It follows that

PV PW = PV ∩W = PW∩V = PWPV .

(c) If V , W ∈ B and W ⊆ V , then of course W is a band in the Riesz space V (because V is order-
closed in U , so that for any set A ⊆ W its supremum in U will be its supremum in V if either is defined).
For any v ∈ V , we have an expression of it as w + w′, where w ∈ W and w′ ∈ W⊥, taken in U ; but as
|w| + |w′| = |w + w′| = |v| ∈ V , w′ belongs to V , and is in W⊥

V , the band in V orthogonal to W . Thus
W + W⊥

V = V and W is a projection band in V . Conversely, if W is a projection band in V , then W⊥

(taken in U) includes W⊥
V + V ⊥, so that

W +W⊥ ⊇W +W⊥
V + V ⊥ = V + V ⊥ = U

and W ∈ B.

Thus the algebra of projection bands in V is, as a set, equal to the principal ideal BV ; because their
orderings agree, or otherwise, their Boolean algebra structures coincide.

352T Products again (a) If U =
∏

i∈I Ui is a product of Riesz spaces, then for any J ⊆ I we have a
subspace

VJ = {u : u ∈ U, u(i) = 0 for all i ∈ I \ J}

of U , canonically isomorphic to
∏

i∈J Ui. Each VJ is a projection band, its complement being VI\J ; the map
J 7→ VJ is a Boolean homomorphism from PI to the algebra B of projection bands in U , and 〈V{i}〉i∈I is a
partition of unity in B.

(b) Conversely, if U is a Riesz space and (V0, . . . , Vn) is a finite partition of unity in the algebra B of
projection bands in U , then every element of U is uniquely expressible as

∑n
i=0 ui where ui ∈ Vi for each

i. (Induce on n, using 352Rb for the case n = 2, and 352Sc in the inductive step.) This decomposition
corresponds to a Riesz space isomorphism between U and

∏
i≤n Vi.

Measure Theory
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352U Quotient spaces (a) If U is a Riesz space and V is a solid linear subspace, then the canonical
map from U onto the quotient partially ordered linear space U/V is a Riesz homomorphism (351J), so U/V
is a Riesz space (352Ib). I have already noted that if U and W are Riesz spaces and T : U → W a Riesz
homomorphism, then the kernel V of T is a solid linear subspace of U and the Riesz subspace T [U ] of W is
isomorphic to U/V (352Jb).

(b) Suppose that U is a Riesz space and V a solid linear subspace. Then the canonical map from U
to U/V is order-continuous iff V is a band. PPP (i) If u 7→ u• is order-continuous, its kernel V is a band,
by 352Oe. (ii) If V is a band, and A ⊆ U is non-empty and downwards-directed and has infimum 0, let
p ∈ U/V be any lower bound for {u• : u ∈ A}. Express p as w•. Then ((w − u)+)• = (w• − u•)+ = 0, that
is, (w − u)+ ∈ V for every u ∈ A. But this means that

w+ = supu∈A(w − u)+ ∈ V , p+ = (w+)• = 0,

that is, p ≤ 0. As p is arbitrary, infu∈A u
• = 0; as A is arbitrary, u 7→ u• is order-continuous. QQQ

352V Principal bands Let U be a Riesz space. Evidently the intersection of any family of Riesz
subspaces of U is a Riesz subspace, the intersection of any family of solid linear subspaces is a solid linear
subspace and the intersection of any family of bands is a band; we may therefore speak of the band generated
by a subset A of U , the intersection of all the bands including A. Now we have the following description of
the band generated by a single element.

Lemma Let U be a Riesz space.
(a) If A ⊆ U+ is upwards-directed and 2w ∈ A for every w ∈ A, then an element u of U belongs to the

band generated by A iff |u| = supw∈A |u| ∧ w.
(b) If u ∈ U and w ∈ U+, then u belongs to the band in U generated by w iff |u| = supn∈N |u| ∧ nw.

proof (a) Let W be the band generated by A and W ′ the set of elements of U satisfying the condition.

(i) If u ∈ W ′ then |u| ∧ w ∈ W for every w ∈ A, because W is a solid linear subspace; because W is
also order-closed, |u| and u belong to W . Thus W ′ ⊆W .

(ii) Now W ′ is a band.

PPP(ααα) If u ∈W ′ and |v| ≤ |u| then

supw∈A |v| ∧ w = supw∈A |v| ∧ |u| ∧ w = |v| ∧ supw∈A |u| ∧ w = |v| ∧ |u| = |v|

by 352Ea, so v ∈W ′.

(βββ) If u, v ∈ W ′ then, for any w1, w2 ∈ A there is a w ∈ A such that w ≥ w1 ∨ w2. Now
w1 + w2 ≤ 2w ∈ A, and

(|u| + |v|) ∧ 2w ≥ (|u| ∧ w1) + (|v| ∧ w2).

So any upper bound for {(|u|+|v|)∧w : w ∈ A} must also be an upper bound for {|u|∧w : w ∈ A}+{|v|∧w :
w ∈ A} and therefore greater than or equal to

sup({|u| ∧ w : w ∈ A} + {|v| ∧ w : w ∈ A}) = sup
w∈A

|u| ∧ w + sup
w∈A

|v| ∧ w

= |u| + |v|

(351Dc). But this means that supw∈A(|u|+ |v|)∧w must be |u|+ |v|, and |u|+ |v| belongs to W ′; it follows
from (α) that u+ v belongs to W ′.

(γγγ) Just as in 352Oc, we now have

nu ∈W ′ for every n ∈ N, u ∈W ′,

and therefore αu ∈ W ′ for every α ∈ R, u ∈ W ′, since |αu| ≤ |nu| if |α| ≤ n. Thus W ′ is a solid linear
subspace of U .

(δδδ) Now suppose that C ⊆ (W ′)+ has a supremum v in U . Then any upper bound of {v∧w : w ∈ A}
must also be an upper bound of {u ∧ w : u ∈ C, w ∈ A} and greater than or equal to u = supw∈A u ∧ w for
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every u ∈ C, therefore greater than or equal to v = supC. Thus v = supw∈A v ∧ w and v ∈ W ′. As C is
arbitrary, W ′ is a band (352Ob). QQQ

(iii) Since A is obviously included in W ′, W ′ must include W ; putting this together with (i), W = W ′,
as claimed.

(b) Apply (a) with A = {nw : n ∈ N}.

352W f-algebras Some of the most important Riesz spaces have multiplicative structures as well as
their order and linear structures. A particular class of these structures appears sufficiently often for it to be
useful to develop a little of its theory. The following definition is a common approach.

(a) Definition An f-algebra is a Riesz space U with a multiplication × : U × U → U such that

u× (v × w) = (u× v) × w,

(u+ v) × w = (u× w) + (v × w), u× (v + w) = (u× v) + (u× w),

α(u× v) = (αu) × v = u× (αv)

for all u, v, w ∈ U and α ∈ R, and

u× v ≥ 0 whenever u, v ≥ 0,

if u ∧ v = 0 then (u× w) ∧ v = (w × u) ∧ v = 0 for every w ≥ 0.

An f -algebra is commutative if u× v = v × u for all u, v.

(b) Let U be an f -algebra.

(i) If u∧v = 0 in U , then u×v = 0. PPP v ≥ 0 so v∧(u×v) = (u×v)∧v = 0 and u×v = (u×v)∧(u×v) = 0.
QQQ

(ii) u× u ≥ 0 for every u ∈ U . PPP

(u+ − u−) × (u+ − u−) = u+ × u+ − u+ × u− − u− × u+ + u− × u−

= u+ × u+ + u− × u− ≥ 0. QQQ

(iii) If u, v ∈ U then |u× v| = |u| × |v|. PPP u+ × v+, u+ × v−, u− × v+ and u+ × v− are disjoint, so

|u× v| = |u+ × v+ − u+ × v− − u− × v+ + u− × v−|

= u+ × v+ + u+ × v− + u− × v+ + u− × v−

= |u| × |v|

by 352Fb. QQQ

(iv) If v ∈ U+ the maps u 7→ u× v, u 7→ v × u : U → U are Riesz homomorphisms. PPP The first four
clauses of the definition in (a) ensure that they are linear operators. If u ∈ U , then

|u| × v = |u× v|, v × |u| = |v × u|

by (iii), so we have Riesz homomorphisms, by 352G(iii). QQQ

(c) Let 〈Ui〉i∈I be a family of f -algebras, with Riesz space product U (352K). If we set u× v = 〈u(i) ×
v(i)〉i∈I for all u, v ∈ U , then U becomes an f -algebra.

352X Basic exercises >>>(a) Let U be any Riesz space. Show that |u+ − v+| ≤ |u− v| for all u, v ∈ U .

>>>(b) Let U , V be Riesz spaces and T : U → V a linear operator. Show that the following are equiveridical:
(i) T is a Riesz homomorphism; (ii) T (u ∨ v) = Tu ∨ Tv for all u, v ∈ U ; (iii) T (u ∧ v) = Tu ∧ Tv for all u,
v ∈ U ; (iv) |Tu| = T |u| for every u ∈ U .

Measure Theory
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(c) Let U be a Riesz space and V a solid linear subspace; for u ∈ U write u• for the corresponding
element of U/V . Show that if A ⊆ U is solid then {u• : u ∈ A} is solid in U/W .

(d) Let U be a Riesz space. Show that med(αu, αv, αw) = αmed(u, v, w) for all u, v, w ∈ U and all
α ∈ R. (Hint : 3A1Ic, 352M.)

(e) Let U and V be Riesz spaces and T : U → V a Riesz homomorphism with kernel W . Show that if
W is a band in U and T [U ] is regularly embedded in V then T is order-continuous.

(f) Give U = R2 its lexicographic ordering (351Xa). Show that it has a band V which is not comple-
mented.

(g) Let U be a Riesz space and C the algebra of complemented bands in U . Show that for any V ∈ C the
algebra of complemented bands in V is just the principal ideal of C generated by V .

>>>(h) Let U = C([0, 1]) be the space of continuous functions from [0, 1] to R, with its usual linear and
order structures, so that it is a Riesz subspace of R[0,1]. Set V = {u : u ∈ U, u(t) = 0 if t ≤ 1

2}. Show that

V is a band in U and that V ⊥ = {u : u(t) = 0 if t ≥ 1
2}, so that V is complemented but is not a projection

band.

(i) Show that the Boolean homomorphism J 7→ VJ : PI → B of 352Ta is order-continuous.

(j) Let U be a Riesz space and A ⊆ U+ an upwards-directed set. Show that the band generated by A is
{u : |u| = supn∈N,w∈A |u| ∧ nw}.

>>>(k)(i) Let X be any set. Setting (u × v)(x) = u(x)v(x) for u, v ∈ RX , x ∈ X, show that RX is a
commutative f -algebra. (ii) With the same definition of ×, show that ℓ∞(X) is an f -algebra. (iii) If X is
a topological space, show that C(X), Cb(X) (definition: 281A, 354Hb) are f -algebras. (iv) If (X,Σ, µ) is a
measure space, show that L0(µ) and L∞(µ) (§241, §243) are f -algebras.

(l) Let U ⊆ RZ be the set of sequences u such that {n : u(n) 6= 0} is bounded above in Z. For u, v ∈ U
(i) say that u ≤ v if either u = v or there is an n ∈ Z such that u(n) < v(n), u(i) = v(i) for every i > n (ii)
say that (u ∗ v)(n) =

∑∞
i=−∞ u(i)v(n− i) for every n ∈ Z. Show that U is a commutative f -algebra under

this ordering and multiplication, and that (U,+, ∗) is a field.

(m) Let U be an f -algebra. (i) Show that any complemented band in U is an ideal in the ring (U,+,×).
(ii) Show that if P : U → U is a band projection, then P (u× v) = Pu× Pv for every u, v ∈ U .

(n) Let U be an f -algebra with multiplicative identity e. Show that u − γe ≤
1

2γ
u2 for every u ∈ U ,

γ > 0. (Hint : (u+ − γe)2 ≥ 0.)

(o) Let U be a Riesz space. (i) Show that if u, v, u′, v′ ∈ U then |u ∨ v − u′ ∨ v′| ≤ |u − u′| ∨ |v − v′|.
(ii) Show that if u, v, w, u′, v′, w′ ∈ U then |med(u, v, w) − med(u′, v′, w′)| ≤ |u− u′| ∨ |v − v′| ∨ |w − w′|.

352Y Further exercises (a) Find an f -algebra with a non-commutative multiplication.

(b) Let U be an f -algebra. Show that the multiplication of U is commutative iff u× v = (u∧ v)× (u∨ v)
for all u, v ∈ U .

(c) Let U be an f -algebra. Show that u× med(v1, v2, v3) = med(u× v1, u × v2, u × v3) whenever u, v1,
v2, v3 ∈ U .

352 Notes and comments In this section we begin to see a striking characteristic of the theory of Riesz
spaces: repeated reflections of results in Boolean algebra. Without spelling out a complete list, I mention
the distributive laws (313Bc, 352Ea) and the behaviour of order-continuous homomorphisms (313Pa, 313Qa,
352N, 352Oe, 352Ub, 352Xe). Riesz subspaces correspond to subalgebras, solid linear subspaces to ideals
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and Riesz homomorphisms to Boolean homomorphisms. We even have a correspondence, though a weaker
one, between the representation theorems available; every Boolean algebra is isomorphic to a subalgebra of a
power of Z2 (311D-311E), while every Riesz space is isomorphic to a Riesz subspace of a quotient of a power
of R (352L). It would be a closer parallel if every Riesz space were embeddable in some RX ; I must emphasize
that the differences are as important as the agreements. Subspaces of RX are of great importance, but are
by no means adequate for our needs. And of course the details – for instance, the identities in 352D-352F,
or 352V – frequently involve new techniques in the case of Riesz spaces. Elsewhere, as in 352G, I find myself
arguing rather from the opposite side, when applying results from the theory of general partially ordered
linear spaces, which has little to do with Boolean algebra.

In the theory of bands in Riesz spaces – corresponding to order-closed ideals in Boolean algebras – we
have a new complication in the form of bands which are not complemented, which does not arise in the
Boolean algebra context; but it will disappear again when we come to specialize to Archimedean Riesz
spaces (353B). (Similarly, order-density and quasi-order-density coincide in both Boolean algebras (313K)
and Archimedean Riesz spaces (353A).) Otherwise the algebra of complemented bands in a Riesz space looks
very like the algebra of order-closed ideals in a Boolean algebra (314Yh, 352Q). The algebra of projection
bands in a Riesz space (352S) would correspond, in a Boolean algebra, to the algebra itself.

I draw your attention to 352H. The result is nearly trivial, but it amounts to saying that the theory of
Riesz spaces will be ‘algebraic’, like the theories of groups or linear spaces, rather than ‘analytic’, like the
theories of partially ordered linear spaces or topological spaces, in which we can have bijective morphisms
which are not isomorphisms.

Version of 16.2.17

353 Archimedean and Dedekind complete Riesz spaces

I take a few pages over elementary properties of Archimedean and Dedekind (σ)-complete Riesz spaces.

353A Proposition Let U be an Archimedean Riesz space. Then every quasi-order-dense Riesz subspace
of U is order-dense.

proof Let V ⊆ U be a quasi-order-dense Riesz subspace, and u ≥ 0 in U . Set A = {v : v ∈ V, v ≤ u}. ???
Suppose, if possible, that u is not the least upper bound of A. Then there is a u1 < u such that v ≤ u1
for every v ∈ A. Because 0 ∈ A, u1 ≥ 0. Because V is quasi-order-dense, there is a v ∈ V such that
0 < v ≤ u− u1. Now nv ≤ u1 for every n ∈ N. PPP Induce on n. For n = 0 this is trivial. For the inductive
step, given nv ≤ u1, then (n + 1)v ≤ u1 + v ≤ u, so (n + 1)v ∈ A and (n + 1)v ≤ u1. Thus the induction
proceeds. QQQ But this is impossible, because v > 0 and U is supposed to be Archimedean. XXX

So u = supA. As u is arbitrary, V is order-dense.

353B Proposition Let U be an Archimedean Riesz space. Then
(a) for every A ⊆ U , the band generated by A is A⊥⊥,
(b) every band in U is complemented.

proof (a) Let V be the band generated by A. Then V is surely included in A⊥⊥, because this is a band
including A (352O). ??? Suppose, if possible, that V 6= A⊥⊥. Then there is a w ∈ A⊥⊥ \ V , so that |w| /∈ V .
Set B = {v : v ∈ V, v ≤ |w|}; then B is upwards-directed and non-empty. Because V is order-closed, |w|
cannot be the supremum of A, and there is a u0 > 0 such that |w|−u0 ≥ v for every v ∈ B. Now u0∧|w| 6= 0,
so u0 /∈ A⊥, and there is a u1 ∈ A such that v = u0 ∧ |u1| > 0. In this case nv ∈ B for every n ∈ N. PPP
Induce on n. For n = 0 this is trivial. For the inductive step, given that nv ∈ B, then nv ≤ |w| − u0 so
(n + 1)v ≤ nv + u0 ≤ |w|; but also (n + 1)v ≤ nv + |u1| ∈ V , so (n + 1)v ∈ B. QQQ But this means that
nv ≤ |w| for every n, which is impossible, because U is Archimedean. XXX

(b) Now if V ⊆ U is any band, it is surely the band generated by itself, so is equal to V ⊥⊥, and is
complemented (352P).

Remark We may therefore speak of the band algebra of an Archimedean Riesz space, rather than the
‘complemented band algebra’ (352Q).
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353C Corollary Let U be an Archimedean Riesz space and v ∈ U . Let V be the band in U generated
by v. If u ∈ U , then u ∈ V iff there is no w such that 0 < w ≤ |u| and w ∧ |v| = 0.

proof By 353B, V = {v}⊥⊥. Now, for u ∈ U ,

u /∈ V ⇐⇒ ∃w ∈ {v}⊥, |u| ∧ |w| > 0 ⇐⇒ ∃w ∈ {v}⊥, 0 < w ≤ |u|.

Turning this round, we have the condition announced.

353D Proposition Let U be an Archimedean Riesz space and V an order-dense Riesz subspace of U .
Then the map W 7→W ∩ V is an isomorphism between the band algebras of U and V .

proof If W ⊆ U is a band, then W ∩ V is surely a band in V (it is order-closed in V because it is the
inverse image of the order-closed set W under the embedding V ⊂→ U , which is order-continuous by 352Nc

and 352Nb). If W , W ′ are distinct bands in U , say W ′ 6⊆W , then W ′ 6⊆W⊥⊥, by 353B, so W ′∩W⊥ 6= {0};
because V is order-dense, V ∩W ′ ∩W⊥ 6= {0}, and V ∩W ′ 6= V ∩W . Thus W 7→W ∩ V is injective.

If Q ⊆ V is a band in V , then its complementary band in V is just Q⊥ ∩ V , where Q⊥ is taken in U . So
(because V , like U , is Archimedean, by 351Rc) Q = (Q⊥ ∩ V )⊥ ∩ V = W ∩ V , where W = (Q⊥ ∩ V )⊥ is a
band in U . Thus the map W 7→W ∩ V is an order-preserving bijection between the two band algebras. By
312M, it is a Boolean isomorphism, as claimed.

353E Lemma Let U be an Archimedean Riesz space and V ⊆ U a band such that sup{v : v ∈ V, 0 ≤
v ≤ u} is defined for every u ∈ U+. Then V is a projection band.

proof Take any u ∈ U+ and set v = sup{v′ : v′ ∈ V +, v′ ≤ u}, w = u − v. v ∈ V because V is a band.
Also w ∈ V ⊥. PPP??? If not, there is some v0 ∈ V + such that w ∧ v0 > 0. Now for any n ∈ N we see that

n(w ∧ v0) ≤ u =⇒ n(w ∧ v0) ≤ v =⇒ (n+ 1)(w ∧ v0) ≤ v + w = u,

so an induction on n shows that n(w ∧ v0) ≤ u for every n; which is impossible, because U is supposed to
be Archimedean. XXXQQQ Accordingly u = v + w ∈ V + V ⊥. As u is arbitrary, U+ ⊆ V + V ⊥, and V is a
projection band (352R).

353F Lemma Let U be an Archimedean Riesz space. If A ⊆ U is non-empty and bounded above and
B is the set of its upper bounds, then inf(B −A) = 0.

proof ??? If not, let w > 0 be a lower bound for B − A. If u ∈ A and v ∈ B, then v − u ≥ w, that
is, u ≤ v − w; as u is arbitrary, v − w ∈ B. Take any u0 ∈ A and v0 ∈ B. Inducing on n, we see that
v0−nw ∈ B for every n ∈ N, so that v0−nw ≥ u0, nw ≤ v0−u0 for every n; but this is impossible, because
U is supposed to be Archimedean. XXX

353G Proposition Let U be a Riesz space and V an order-dense Riesz subspace of U . If V is Archime-
dean, so is U .

proof ??? Otherwise, let u′, u ∈ U be such that u′ > 0 and nu′ ≤ u for every n ∈ N. Let v′ ∈ V be such
that 0 < v′ ≤ u′; set ũ = u − v′; let v ∈ V be such that v ≤ u but v 6≤ ũ. (This is where we need V to be
order-dense rather than just quasi-order-dense.) Let w ∈ V be such that w > 0 and w ≤ (v− ũ)+; note that
w ≤ u− ũ = v′.

Because V is Archimedean, there is an n ≥ 1 such that nw 6≤ v. In this case,

0 < (nw − v)+ ≤ ((n+ 1)v′ − (v + v′))+ ≤ (u− (v + v′))+ = (ũ− v)+

but

(nw − v)+ ∧ (ũ− v)+ ≤ nw ∧ n(ũ− v)+ ≤ n((v − ũ)+ ∧ (ũ− v)+) = 0,

which is impossible. XXX

353H Dedekind completeness Recall that a partially ordered set P is Dedekind (σ)-complete if
(countable) non-empty sets with upper and lower bounds have suprema and infima in P (314A). For a Riesz
space U , U is Dedekind complete iff every non-empty upwards-directed subset of U+ with an upper bound
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has a least upper bound, and is Dedekind σ-complete iff every non-decreasing sequence in U+ with an upper
bound has a least upper bound. PPP (Compare 314Bc.) (i) Suppose that any non-empty upwards-directed
order-bounded subset of U+ has an upper bound, and that A ⊆ U is any non-empty set with an upper
bound. Take u0 ∈ A and set

B = {u0 ∨ u1 ∨ . . . ∨ un − u0 : u1, . . . , un ∈ A}.

Then B is an upwards-directed subset of U+, and if w is an upper bound of A then w − u0 is an upper
bound of B. So supB is defined in U , and in this case u0 + supB = supA. As A is arbitrary, U is Dedekind
complete. (ii) Suppose that order-bounded non-decreasing sequences in U+ have suprema, and that A ⊆ U
is any countable non-empty set with an upper bound. Let 〈un〉n∈N be a sequence running over A, and set
vn = supi≤n ui − u0 for each n. Then 〈vn〉n∈N is a non-decreasing order-bounded sequence in U+, and

u0 + supn∈N vn = supA. (iii) Finally, still supposing that order-bounded non-decreasing sequences in U+

have suprema, if A ⊆ U is non-empty, countable and bounded below, inf A will be defined and equal to
− sup(−A). QQQ

353I Proposition Let U be a Dedekind σ-complete Riesz space.
(a) U is Archimedean.
(b) For any v ∈ U the band generated by v is a projection band.
(c) If u, v ∈ U , then u is uniquely expressible as u1 + u2, where u1 belongs to the band generated by v

and |u2| ∧ |v| = 0.

proof (a) Suppose that u, v ∈ U are such that nu ≤ v for every n ∈ N. Then nu+ ≤ v+ for every n, and
A = {nu+ : n ∈ N} is a countable non-empty upwards-directed set with an upper bound; say w = supA.
Since A+ u+ ⊆ A, w + u+ = sup(A+ u+) ≤ w, and u ≤ u+ ≤ 0. As u, v are arbitrary, U is Archimedean.

(b) Let V be the band generated by v. Take any u ∈ U+ and set A = {v′ : v′ ∈ V, 0 ≤ v′ ≤ u}. Then
{u ∧ n|v| : n ∈ N} is a countable set with an upper bound, so has a supremum u1 say in U . Now u1 is an
upper bound for A. PPP If v′ ∈ A, then

v′ = supn∈N v
′ ∧ n|v| ≤ u1

by 352Vb. QQQ Since u ∧ n|v| ∈ A for every n, u1 = supA.
As u is arbitrary, 353E tells us that V is a projection band.

(c) Again let V be the band generated by v. Then {v}⊥⊥ is a band containing v, so

{v} ⊆ V ⊆ {v}⊥⊥, {v}⊥ ⊇ V ⊥ ⊇ {v}⊥⊥⊥ = {v}⊥

(352Od), and V ⊥ = {v}⊥.
Now, if u ∈ U , u is uniquely expressible in the form u1 + u2 where u1 ∈ V and u2 ∈ V ⊥, by (b). But

u2 ∈ V ⊥ ⇐⇒ u2 ∈ {v}⊥ ⇐⇒ |u2| ∧ |v| = 0.

So we have the result.

353J Proposition In a Dedekind complete Riesz space, all bands are projection bands.

proof Use 353E, noting that the sets {v : v ∈ V, 0 ≤ v ≤ u} there are always non-empty, upwards-directed
and bounded above, so always have suprema.

353K Proposition (a) Let U be a Dedekind σ-complete Riesz space.
(i) If V is a solid linear subspace of U , then V is (in itself) Dedekind σ-complete.
(ii) If V is a sequentially order-closed Riesz subspace of U then V is Dedekind σ-complete.
(iii) If V is a sequentially order-closed solid linear subspace of U , the canonical map from U to the

quotient space U/V is sequentially order-continuous, and U/V also is Dedekind σ-complete.
(b) Let U be a Dedekind complete Riesz space.

(i) If V is a solid linear subspace of U , then V is Dedekind complete.
(ii) If V ⊆ U is an order-closed Riesz subspace then V is Dedekind complete.
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proof (a)(i) If 〈un〉n∈N is a non-decreasing sequence in V + with an upper bound v ∈ V , then w = supn∈N un
is defined in U ; but as 0 ≤ w ≤ v, w ∈ V and w = supn∈N un in V . Thus V is Dedekind σ-complete.

(ii) If 〈un〉n∈N is a non-decreasing order-bounded sequence in W , then u = supn∈N un is defined in U ;
but because V is sequentially order-closed, u ∈ V and u = supn∈N un in V .

(iii) Let 〈un〉n∈N be a non-decreasing sequence in U with supremum u. Then of course u• is an upper
bound for A = {u•

n : n ∈ N} in U/V . Now let p be any other upper bound for A. Express p as v•.
Then for each n ∈ N we have u•

n ≤ p, so that (un − v)+ ∈ V . Because V is sequentially order-closed,
(u− v)+ = supn∈N(un − v)+ ∈ V and u• ≤ p. Thus u• is the least upper bound of A. By 351Gb, u 7→ u• is
sequentially order-continuous.

Now suppose that 〈pn〉n∈N is a non-decreasing sequence in (U/V )+ with an upper bound p ∈ (U/V )+. Let
u ∈ U+ be such that u• = p, and for each n ∈ N let un ∈ U+ be such that u•

n = pn. Set vn = u ∧ supi≤n ui
for each n; then v•

n = pn for each n, and 〈vn〉n∈N is a non-decreasing order-bounded sequence in U . Set
v = supn∈N vn; by the last paragraph, v• = supn∈N pn in U/V . As 〈pn〉n∈N is arbitrary, U/V is Dedekind
σ-complete, as claimed.

(b) The argument is the same as parts (i) and (ii) of the proof of (a).

353L Proposition Let U be a Riesz space and V a quasi-order-dense Riesz subspace of U which is (in
itself) Dedekind complete. Then V is a solid linear subspace of U .

proof Suppose that v ∈ V , u ∈ U and |u| ≤ |v|. Consider A = {w : w ∈ V, 0 ≤ w ≤ u+}. Then A is a
non-empty subset of V with an upper bound in V (viz., |v|). So A has a supremum v0 in V . Because the
embedding V ⊂→ U is order-continuous (352Nb), v0 is the supremum of A in U . But as V is order-dense
(353A), v0 = u+ and u+ ∈ V . Similarly, u− ∈ V and u ∈ V . As u and v are arbitrary, V is solid.

353M Order units Let U be a Riesz space.

(a) An element e of U+ is an order unit in U if U is the solid linear subspace of itself generated by e;
that is, if for every u ∈ U there is an n ∈ N such that |u| ≤ ne. (For the solid linear subspace generated by
v ∈ U+ is

⋃
n∈N

[−nv, nv].)

(b) An element e of U+ is a weak order unit in U if U is the principal band generated by e; that is, if
u = supn∈N u ∧ ne for every u ∈ U+ (352Vb).

Of course an order unit is a weak order unit.

(c) If U is Archimedean, then an element e of U+ is a weak order unit iff {e}⊥⊥ = U (353B), that is, iff
{e}⊥ = {0} (because

{e}⊥ = {0} =⇒ {e}⊥⊥ = {0}⊥ = U =⇒ {e}⊥ = {e}⊥⊥⊥ = U⊥ = {0},)

that is, iff u ∧ e > 0 whenever u > 0.

353N Theorem Let U be an Archimedean Riesz space with order unit e. Then it can be embedded as
an order-dense and norm-dense Riesz subspace of C(X), where X is a compact Hausdorff space, in such a
way that e corresponds to χX; moreover, this embedding is essentially unique.

Remark Here C(X) is the space of all continuous functions from X to R; because X is compact, they are
all bounded, so that χX is an order unit in C(X).

proof (a) Let X be the set of Riesz homomorphisms x from U to R such that x(e) = 1. Define T : U → RX

by setting (Tu)(x) = x(u) for x ∈ X, u ∈ U ; then it is easy to check that T is a Riesz homomorphism, just
because every member of X is a Riesz homomorphism, and of course Te = χX.

(b) The key to the proof is the fact that X separates the points of U , that is, that T is injective. I choose
the following method to show this. Suppose that w ∈ U and w > 0. Because U is Archimedean, there is a
δ > 0 such that (w − δe)+ 6= 0. Now there is an x ∈ X such that x(w) ≥ δ. PPP (i) By 351O, there is a solid
linear subspace V of U such that (w− δe)+ /∈ V and whenever u∧ v = 0 in U then one of u, v belongs to V .
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(ii) Because V 6= U , e /∈ V , so no non-zero multiple of e can belong to V . Also observe that if u, v ∈ U \ V ,
then one of (u− v)+, (v−u)+ must belong to V , while neither u = u∧ v+ (u− v)+ nor v = u∧ v+ (v−u)+

does; so u ∧ v /∈ V . (iii) For each u ∈ U set Au = {α : α ∈ R, (u− αe)+ ∈ V }. Then

α ≥ β ∈ Au =⇒ 0 ≤ (u− αe)+ ≤ (u− βe)+ ∈ V =⇒ α ∈ Au.

Also Au is non-empty and bounded below, because if α ≥ 0 is such that −αe ≤ u ≤ αe then α ∈ Au and
−α − 1 /∈ Au (since (u − (−α − 1)e)+ ≥ e /∈ V ). (iv) Set x(u) = inf Au for every u ∈ U ; then α ∈ Au for
every α > x(u), α /∈ Au for every α < x(u). (v) If u, v ∈ U , α > x(u) and β > x(v) then

((u+ v) − (α+ β)e)+ ≤ (u− αe)+ + (v − βe)+ ∈ V

(352Fc), so α+ β ∈ Au+v; as α and β are arbitrary, x(u+ v) ≤ x(u) + x(v). (vi) If u, v ∈ U , α < x(u) and
β < x(v) then

((u+ v) − (α+ β)e)+ ≥ (u− αe)+ ∧ (v − βe)+ /∈ V ,

using (ii) of this argument and the other part of 352Fc, so α + β /∈ Au+v. As α and β are arbitrary,
x(u+ v) ≥ x(u) + x(v). (vii) Thus x : U → R is additive. (viii) If u ∈ U and γ > 0 then

α ∈ Au =⇒ (γu− αγe)+ = γ(u− αe)+ ∈ V =⇒ γα ∈ Aγu;

thus Aγu ⊇ γAu; similarly, Au ⊇ γ−1Aγu so Aγu = γAu and x(γu) = γx(u). (ix) Consequently x is linear,
since we know already from (vii) that x(0u) = 0.x(u), x(−u) = −x(u). (x) If u ≥ 0 then u + αe ≥ αe /∈ V
for every α > 0, that is, −α /∈ Au for every α > 0, and x(u) ≥ 0; thus x is a positive linear functional. (xi)
If u ∧ v = 0, then one of u, v belongs to V , so min(x(u), x(v)) ≤ 0 and (using (x)) min(x(u), x(v)) = 0;
thus x is a Riesz homomorphism (352G(iv)). (xii) Ae = [1,∞[ so x(e) = 1. Thus x ∈ X. (xiii) δ /∈ Aw so
x(w) ≥ δ. QQQ

(c) Thus Tw 6= 0 whenever w > 0; consequently |Tw| = T |w| 6= 0 whenever w 6= 0, and T is injective. I
now have to define the topology of X. This is just the subspace topology on X if we regard X as a subset
of RU with its product topology. To see that X is compact, observe that if for each u ∈ U we choose an
αu such that |u| ≤ αue, then X is a subspace of Q =

∏
u∈U [−αu, αu]. Because Q is a product of compact

spaces, it is compact, by Tychonoff’s theorem (3A3J). Now X is a closed subset of Q. PPP X is just the
intersection of the sets

{x : x(u+ v) = x(u) + x(v)}, {x : x(αu) = αx(u)},

{x : x(u+) = max(x(u), 0)}, {x : x(e) = 1}

as u, v run over U and α over R; and each of these is closed, so X is an intersection of closed sets and
therefore itself closed. QQQ Consequently X also is compact. Moreover, the coordinate functionals x 7→ x(u)
are continuous on Q, therefore on X also, that is, Tu : X → R is a continuous function for every u ∈ U .

Note also that because Q is a product of Hausdorff spaces, Q and X are Hausdorff (3A3Id, 3A3Bh).

(d) So T is a Riesz homomorphism from U to C(X). Now T [U ] is a Riesz subspace of C(X), containing
χX, and such that if x, y ∈ X are distinct there is an f ∈ T [U ] such that f(x) 6= f(y) (because there is
surely a u ∈ U such that x(u) 6= y(u)). By the Stone-Weierstrass theorem (281A), T [U ] is ‖ ‖∞-dense in
C(X).

Consequently it is also order-dense. PPP If f > 0 in C(X), set ǫ = 1
3‖f‖∞, and let u ∈ U be such that

‖f − Tu‖∞ ≤ ǫ; set v = (u− ǫe)+. Since

0 < (f − 2ǫχX)+ ≤ (Tu− ǫχX)+ ≤ f+ = f ,

0 < Tv ≤ f . As f is arbitrary, T [U ] is quasi-order-dense, therefore order-dense (353A). QQQ

(e) I have still to show that the representation is (essentially) unique. Suppose, then, that we have
another representation of U as a norm-dense Riesz subspace of C(Z), with e this time corresponding to
χZ; to simplify the notation, let us suppose that U is actually a subspace of C(Z). Then for each z ∈ Z,
we have a functional ẑ : U → R defined by setting ẑ(u) = u(z) for every u ∈ U ; of course ẑ is a Riesz
homomorphism such that ẑ(e) = 1, that is, ẑ ∈ X. Thus we have a function z 7→ ẑ : Z → X. For any
u ∈ U , the function z 7→ ẑ(u) = u(z) is continuous, so the function z 7→ ẑ is continuous (3A3Ib). If z1, z2
are distinct members of Z, there is an f ∈ C(Z) such that f(z1) 6= f(z2) (3A3Bf); now there is a u ∈ U
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such that ‖f − u‖∞ ≤ 1
3 |f(z1)− f(z2)|, so that u(z1) 6= u(z2) and ẑ1 6= ẑ2. Thus z 7→ ẑ is injective. Finally,

it is also surjective. PPP Suppose that x ∈ X. Set V = {u : u ∈ U, x(u) = 0}; then V is a solid linear
subspace of U (352Jb), not containing e. For z ∈ V + set Gv = {z : v(z) > 1}. Because e /∈ V , Gv 6= Z.
G = {Gv : v ∈ V +} is an upwards-directed family of open sets in Z, not containing Z; consequently, because
Z is compact, G cannot be an open cover of Z. Take z ∈ Z \

⋃
G. Then v(z) ≤ 1 for every v ∈ V +; because

α|v| ∈ V + whenever v ∈ V and α ≥ 0, we must have v(z) = 0 for every v ∈ V . Now, given any u ∈ U ,
consider v = u− x(u)e. Then x(v) = 0 so v ∈ V and v(z) = 0, that is,

u(z) = (v + x(u)e)(z) = v(z) + x(u)e(z) = x(u).

As u is arbitrary, ẑ = x; as x is arbitrary, we have the result. QQQ
Thus z 7→ ẑ is a continuous bijection from the compact Hausdorff space Z to the compact Hausdorff

space X; it must therefore be a homeomorphism (3A3Dd).
This argument shows that if U is embedded as a norm-dense Riesz subspace of C(Z), where Z is compact

and Hausdorff, then Z must be homeomorphic to X. But it shows also that a homeomorphism is canonically
defined by the embedding; z ∈ Z corresponds to the Riesz homomorphism u 7→ u(z) in X.

353O Lemma Let U be a Riesz space, V an Archimedean Riesz space and S, T : U → V Riesz
homomorphisms such that Su ∧ Tu′ = 0 in V whenever u ∧ u′ = 0 in U . Set W = {u : Su = Tu}. Then W
is a solid linear subspace of U ; if S and T are order-continuous, W is a band.

proof (a) It is easy to check that, because S and T are Riesz homomorphisms, W is a Riesz subspace of U .

(b) If w ∈ W and 0 ≤ u ≤ w in U , then Su ≤ Tu. PPP??? Otherwise, set e = Sw = Tw, and let Ve be
the solid linear subspace of V generated by e, so that Ve is an Archimedean Riesz space with order unit,
containing both Su and Tu. By 353N (or its proof), there is a Riesz homomorphism x : Ve → R such
that x(e) = 1 and x(Su) > x(Tu). Take α such that x(Su) > α > x(Tu), and consider u′ = (u − αw)+,
u′′ = (αw − u)+. Then

x(Su′) = max(0, x(Su) − αx(Sw)) = max(0, x(Su) − α) > 0,

x(Tu′′) = max(0, αx(Tw) − x(Tu)) = max(0, α− x(Tu)) > 0,

so

x(Su′ ∧ Tu′′) = min(x(Su′), x(Tu′′)) > 0

and Su′ ∧ Tu′′ > 0, while u′ ∧ u′′ = 0. XXXQQQ
Similarly, Tu ≤ Su and u ∈W . As u and w are arbitrary, W is a solid linear subspace.

(c) Finally, suppose that S and T are order-continuous, and that A ⊆W is a non-empty upwards-directed
set with supremum u in U . Then

Su = supS[A] = supT [A] = Tu

and u ∈W . As u and A are arbitrary, W is a band (352Ob).

353P f-algebras I give two results on f -algebras, intended to clarify the connexions between the mul-
tiplicative and lattice structures of the Riesz spaces in Chapter 36.

Proposition Let U be an Archimedean f -algebra (352W). Then
(a) the multiplication is separately order-continuous in the sense that the maps u 7→ u × w, u 7→ w × u

are order-continuous for every w ∈ U+;
(b) the multiplication is commutative.

proof (a) Let A ⊆ U be a non-empty set with infimum 0, and v0 ∈ U+ a lower bound for {u×w : u ∈ A}.
Fix u0 ∈ A. If u ∈ A and δ > 0, then v0 ∧ (u0 −

1
δ
u)+ ≤ δu0 × w. PPP Set v = v0 ∧ (u0 −

1
δ
u)+. Then

δv ∧ (u− δu0)+ ≤ (δu0 − u)+ ∧ (u− δu0)+ = 0,

so v ∧ (u− δu0)+ = 0 and v ∧ ((u− δu0)+ × w) = 0. But

v ≤ v0 ≤ u× w ≤ (u− δu0)+ × w + δu0 × w,
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so

v ≤ ((u− δu0)+ × w) ∧ v + (δu0 × w) ∧ v ≤ δu0 × w,

by 352Fa. QQQ
Taking the infimum over u, and using the distributive laws (352E), we get

v0 ∧ u0 ≤ δu0 × w.

Taking the infimum over δ, and using the hypothesis that U is Archimedean,

v0 ∧ u0 = 0.

But this means that v0 ∧ (u0 × w) = 0, while v0 ≤ u0 × w, so v0 = 0. As v0 is arbitrary, infu∈A u× w = 0;
as A is arbitrary, u 7→ u× w is order-continuous. Similarly, u 7→ w × u is order-continuous.

(b)(i) Fix v ∈ U+, and for u ∈ U set

Su = u× v, Tu = v × u.

Then S and T are both order-continuous Riesz homomorphisms from U to itself (352W(b-iv) and (a) above).
Also, Su ∧ Tu′ = 0 whenever u ∧ u′ = 0. PPP

0 = (u× v) ∧ u′ = (u× v) ∧ (v × u′). QQQ

So W = {u : u × v = v × u} is a band in U (353O). Of course v ∈ W (because Sv = Tv = v2). If
u ∈ W⊥, then v ∧ |u| = 0 so Su = Tu = 0 (352W(b-i)), and u ∈ W ; but this means that W⊥ = {0} and
W = W⊥⊥ = U (353Bb). Thus v × u = u× v for every u ∈ U .

(ii) This is true for every v ∈ U+. Of course it follows that v × u = u× v for every u, v ∈ U , so that
multiplication is commutative.

353Q Proposition Let U be an Archimedean f -algebra with multiplicative identity e.
(a) e is a weak order unit in U .
(b) If u, v ∈ U then u× v = 0 iff |u| ∧ |v| = 0.
(c) If u ∈ U has a multiplicative inverse u−1 then |u| also has a multiplicative inverse; if u ≥ 0 then

u−1 ≥ 0 and u is a weak order unit.
(d) If V is another Archimedean f -algebra with multiplicative identity e′, and T : U → V is a positive

linear operator such that Te = e′, then T is a Riesz homomorphism iff T (u× v) = Tu× Tv for all u, v ∈ U .

proof (a) e = e2 ≥ 0 by 352W(b-ii). If u ∈ U and e ∧ |u| = 0 then |u| = (e× |u|) ∧ |u| = 0; by 353Mc, e is
a weak order unit.

(b) If |u| ∧ |v| = 0 then u× v = 0, by 352Wb. If w = |u| ∧ |v| > 0, then w2 ≤ |u| × |v|. Let n ∈ N be such
that nw 6≤ e, and set w1 = (nw − e)+, w2 = (e− nw)+. Then

0 6= w1 = w1 × e = w1 × w2 + w1 × (e ∧ nw)

= w1 × (e ∧ nw) ≤ (nw)2 ≤ n2|u| × |v| = n2|u× v|,

so u× v 6= 0.

(c) u × u−1 = e so |u| × |u−1| = |e| = e (352W(b-iii)), and |u−1| = |u|−1. (Recall that inverses in any
semigroup with identity are unique, so that we need have no inhibitions in using the formulae u−1, |u|−1.)

Now suppose that u ≥ 0. Then u−1 = |u−1| ≥ 0. If u ∧ |v| = 0 then

e ∧ |v| = (u× u−1) ∧ |v| = 0,

so v = 0; accordingly u is a weak order unit.

(d)(i) If T is multiplicative, and u∧ v = 0 in U , then Tu× Tv = T (u× v) = 0 and Tu∧ Tv = 0, by (b).
So T is a Riesz homomorphism, by 352G.

(ii) Accordingly I shall henceforth assume that T is a Riesz homomorphism and seek to show that it
is multiplicative.
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If u, v ∈ U+, then T (u× v) and Tu× Tv both belong to the band generated by Tu. PPP Write W for this
band. (α) For any n ≥ 1 we have (v − ne)2 ≥ 0, that is, 2nv ≤ v2 + n2e, so

n(v − ne) ≤ 2nv − n2e ≤ v2.

Consequently

T (u× v) − nTu = T (u× v) − nT (u× e) = T (u× (v − ne)) ≤
1

n
T (u× v2)

because v′ 7→ T (u × v′) is a positive linear operator; as V is Archimedean, infn∈N(T (u × v) − nTu)+ = 0
and T (u× v) = supn∈N T (u× v) ∧ nTu belongs to W . (β) If w ∧ |Tu| = 0 then

w ∧ |Tu× Tv| = w ∧ (|Tu| × |Tv|) = 0;

so Tu× Tv ∈W⊥⊥ = W . QQQ

(iii) Fix v ∈ U+. For u ∈ U , set S1u = Tu× Tv and S2u = T (u× v). (Cf. (b-i) of the proof of 353P.)
Then S1 and S2 are both Riesz homomorphisms from U to V . If u ∧ u′ = 0 in U , then S1u ∧ S2u

′ = 0 in
V , because (by (ii) just above) S1u belongs to the band generated by Tu, while S2u

′ belongs to the band
generated by Tu′, and Tu ∧ Tu′ = T (u ∧ u′) = 0. By 353O, W = {u : S1u = S2u} is a solid linear subspace
of U . Of course it contains e, since

S1e = Te× Tv = e′ × Tv = Tv = T (e× v) = S2e.

In fact u ∈W for every u ∈ U+. PPP As noted in (ii) just above, u− ne ≤ 1
n
u2 for every n ≥ 1. So

|S1u− S2u| = |S1(u− ne)+ + S1(u ∧ ne) − S2(u− ne)+ − S2(u ∧ ne)|

≤ S1(u− ne)+ + S2(u− ne)+ ≤
1

n
(S1u

2 + S2u
2)

for every n ≥ 1, and |S1u− S2u| = 0, that is, S1u = S2u. QQQ
So W = U , that is, Tu× Tv = T (u× v) for every u ∈ U . And this is true for every v ∈ U+. It follows at

once that it is true for every v ∈ U , so that T is multiplicative, as claimed.

353X Basic exercises >>>(a) Let U be a Riesz space in which every band is complemented. Show that
U is Archimedean.

(b) A Riesz space U has the principal projection property iff the band generated by any single
member of U is a projection band. Show that any Dedekind σ-complete Riesz space has the principal
projection property, and that any Riesz space with the principal projection property is Archimedean.

>>>(c) Fill in the missing part (b-iii) of 353K.

(d) Let U be an Archimedean f -algebra with an order-unit which is a multiplicative identity. Show that
U can be identified, as f -algebra, with a subspace of C(X) for some compact Hausdorff space X.

353Y Further exercises (a) Let U be a Riesz space in which every quasi-order-dense solid linear
subspace is order-dense. Show that U is Archimedean.

(b) Let X be a completely regular Hausdorff space. Show that C(X) is Dedekind complete iff Cb(X) is
Dedekind complete iff X is extremally disconnected.

(c) Let X be a compact Hausdorff space. Show that C(X) is Dedekind σ-complete iff G is open for every
cozero set G ⊆ X. (Cf. 314Yf.) Show that in this case X is zero-dimensional.

(d) Let U be an Archimedean Riesz space. Show that the following are equiveridical: (i) U has the
countable sup property (241Ye) (ii) for every A ⊆ U there is a countable B ⊆ A such that A and B have
the same upper bounds (iii) every order-bounded disjoint subset of U+ is countable.
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28 Riesz Spaces 353Ye

(e) Let U be an Archimedean Riesz space such that every order-bounded disjoint sequence in U+ has a
supremum in U . Show that U has the principal projection property, but need not be Dedekind σ-complete.

(f) Let U be an Archimedean f -algebra. Show that an element e of U is a multiplicative identity iff
e2 = e and e is a weak order unit.

(g) Let U be an Archimedean f -algebra with a multiplicative identity. Show that if u ∈ U then u is
invertible iff |u| is invertible.

353 Notes and comments As in the last section, many of the results above have parallels in the theory of
Boolean algebras; thus 353A corresponds to 313K, 353H corresponds in part to remarks in 314Bc and 314Xa,
and 353K corresponds to 314C-314E. Riesz spaces are more complicated; for instance, principal ideals in
Boolean algebras are straightforward, while in Riesz spaces we have to distinguish between the solid linear
subspace generated by an element and the band generated by the same element. Thus an ‘order unit’ in a
Boolean ring would just be an identity, while in a Riesz space we must distinguish between ‘order unit’ and
‘weak order unit’. As this remark may suggest to you, (Archimedean) Riesz spaces are actually closer in
spirit to arbitrary Boolean rings than to the Boolean algebras we have been concentrating on so far; to the
point that in §361 below I will return briefly to general Boolean rings.

Note that the standard definition of ‘order-dense’ in Boolean algebras, as given in 313J, corresponds to
the definition of ‘quasi-order-dense’ in Riesz spaces (352Na); the point here being that Boolean algebras
behave like Archimedean Riesz spaces, in which there is no need to make a distinction.

I give the representation theorem 353N more for completeness than because we need it in any formal
sense. In 351Q and 352L I have given representation theorems for general partially ordered linear spaces,
and general Riesz spaces, as quotients of spaces of functions; in 368F below I give a theorem for Archimedean
Riesz spaces corresponding rather more closely to the expressions of the Lp spaces as quotients of spaces of
measurable functions. In 353N, by contrast, we have a theorem expressing Archimedean Riesz spaces with
order units as true spaces of functions, rather than as spaces of equivalence classes of functions. All these
theorems are important in forming an appropriate mental picture of ordered linear spaces, as in 352M.

I give a bare-handed proof of 353N, using only the Riesz space structure of C(X); if you know a little
about extreme points of dual unit balls you can approach from that direction instead, using 354Yj. The
point is that (as part (d) of the proof of 353N makes clear) the space X can be regarded as a subset of the
normed space dual U∗ of U with its weak* topology. In this treatise generally, and in the present chapter
in particular, I allow myself to be slightly prejudiced against normed-space methods; you can find them in
any book on functional analysis, and I prefer here to develop techniques like those in part (b) of the proof
of 353N, which will be a useful preparation for such theorems as 368E.

There is a very close analogy between 353N and the Stone representation of Boolean algebras (311E,
311I-311K). Just as the proof of 311E looked at the set of ring homomorphisms from A to the elementary
Boolean algebra Z2, so the proof of 353N looks at Riesz homomorphisms from U to the elementary M -space
R. Later on, the most important M -spaces, from the point of view of this treatise, will be the L∞ spaces of
§363, explicitly defined in terms of Stone representations (363A).

Of the two parts of 353P, it is (a) which is most important for the purposes of this book. The f -algebras
we shall encounter in Chapter 36 can be seen to be commutative for different, and more elementary, reasons.
The (separate) order-continuity of multiplication, however, is not always immediately obvious. Similarly,
the uniferent Riesz homomorphisms we shall encounter can generally be seen to be multiplicative without
relying on the arguments of 353Qd.

Version of 18.8.08

354 Banach lattices

The next step is a brief discussion of norms on Riesz spaces. I start with the essential definitions (354A,
354D) with the principal properties of general Riesz norms (354B-354C) and order-continuous norms (354E).
I then describe two of the most important classes of Banach lattice: M -spaces (354F-354L) and L-spaces

c© 2000 D. H. Fremlin
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(354M-354R), with their elementary properties. For M -spaces I give the basic representation theorem
(354K-354L), and for L-spaces I give a note on uniform integrability (354P-354R).

354A Definitions (a) If U is a Riesz space, a Riesz norm or lattice norm on U is a norm ‖ ‖ such
that ‖u‖ ≤ ‖v‖ whenever |u| ≤ |v|; that is, a norm such that ‖|u|‖ = ‖u‖ for every u and ‖u‖ ≤ ‖v‖
whenever 0 ≤ u ≤ v.

(b) A Banach lattice is a Riesz space with a Riesz norm under which it is complete.

Remark We have already seen many examples of Banach lattices; I list some in 354Xa below.

354B Lemma Let U be a Riesz space with a Riesz norm ‖ ‖.
(a) U is Archimedean.
(b) The maps u 7→ |u| and u 7→ u+ are uniformly continuous.
(c) For any u ∈ U , the sets {v : v ≤ u} and {v : v ≥ u} are closed; in particular, the positive cone of U is

closed.
(d) Any band in U is closed.
(e) If V is a norm-dense Riesz subspace of U , then V + = {v : v ∈ V, v ≥ 0} is norm-dense in the positive

cone U+ of U .

proof (a) If u, v ∈ U are such that nu ≤ v for every n ∈ N, then nu+ ≤ v+ so n‖u+‖ ≤ ‖v+‖ for every n,
and ‖u+‖ = 0, that is, u+ = 0 and u ≤ 0. As u, v are arbitrary, U is Archimedean.

(b) For any u, v ∈ U , ||u| − |v|| ≤ |u − v| (352D), so ‖|u| − |v|‖ ≤ ‖u − v‖; thus u 7→ |u| is uniformly
continuous. Consequently u 7→ 1

2 (u+ |u|) = u+ is uniformly continuous.

(c) Now {v : v ≤ u} = {v : (v − u)+ = 0} is closed because the function v 7→ (v − u)+ is continuous and
{0} is closed. Similarly {v : v ≥ u} = {v : (u− v)+ = 0} is closed.

(d) If V ⊆ U is a band, then V = V ⊥⊥ (353B), that is, V = {v : |v| ∧ |w| = 0 for every w ∈ V ⊥}.
Because the function v 7→ |v| ∧ |w| = 1

2 (|v| + |w| − ||v| − |w||) is continuous, all the sets {v : |v| ∧ |w| = 0}
are closed, and so is their intersection V .

(e) Observe that V + = {v+ : v ∈ V } and U+ = {u+ : u ∈ U}; recall that u 7→ u+ is continuous, and
apply 3A3Eb.

354C Lemma If U is a Banach lattice and 〈un〉n∈N is a sequence in U such that
∑∞

n=0 ‖un‖ <∞, then
supn∈N un is defined in U , with ‖ supn∈N un‖ ≤

∑∞
n=0 ‖un‖.

proof Set vn = supi≤n ui for each n. Then

0 ≤ vn+1 − vn ≤ (un+1 − un)+ ≤ |un+1 − un|

for each n ∈ N, so
∑∞

n=0 ‖vn+1 − vn‖ ≤
∑∞

n=0 ‖un+1 − un‖ ≤
∑∞

n=0 ‖un+1‖ + ‖un‖

is finite, and 〈vn〉n∈N is Cauchy. Let u be its limit; because 〈vn〉n∈N is non-decreasing, and the sets {v : v ≥
vn} are all closed, u ≥ vn for each n ∈ N. On the other hand, if v ≥ vn for every n, then

(u− v)+ = limn→∞(vn − v)+ = 0,

and u ≤ v. So

u = supn∈N vn = supn∈N un

is the required supremum.
To estimate its norm, observe that |vn| ≤

∑n
i=0 |ui| for each n (induce on n, using the last item in 352D

for the inductive step), so that

‖u‖ = limn→∞ ‖vn‖ ≤
∑∞

i=0 ‖|ui|‖ =
∑∞

i=0 ‖ui‖.
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354D I come now to the basic properties according to which we classify Riesz norms.

Definitions (a) A Fatou norm on a Riesz space U is a Riesz norm on U such that whenever A ⊆ U+ is
non-empty and upwards-directed and has a least upper bound in U , then ‖ supA‖ = supu∈A ‖u‖. (Observe
that, once we know that ‖ ‖ is a Riesz norm, we can be sure that ‖u‖ ≤ ‖ supA‖ for every u ∈ A, so that
all we shall need to check is that ‖ supA‖ ≤ supu∈A ‖u‖.)

(b) A Riesz norm on a Riesz space U has the Levi property if every upwards-directed norm-bounded
set is bounded above.

(c) A Riesz norm on a Riesz space U is order-continuous if infu∈A ‖u‖ = 0 whenever A ⊆ U is a
non-empty downwards-directed set with infimum 0.

354E Proposition Let U be a Riesz space with an order-continuous Riesz norm ‖ ‖.

(a) If A ⊆ U is non-empty and upwards-directed and has a supremum, then supA ∈ A.
(b) ‖ ‖ is Fatou.
(c) If A ⊆ U is non-empty and upwards-directed and bounded above, then for every ǫ > 0 there is a

u ∈ A such that ‖(v − u)+‖ ≤ ǫ for every v ∈ A; that is, the filter F(A↑) on U generated by {{v : v ∈ A,
u ≤ v} : u ∈ A} is a Cauchy filter.

(d) Any non-decreasing order-bounded sequence in U is Cauchy.
(e) If U is a Banach lattice it is Dedekind complete.
(f) Every order-dense Riesz subspace of U is norm-dense.
(g) Every norm-closed solid linear subspace of U is a band.

proof (a) Suppose that A ⊆ U is non-empty and upwards-directed and has a least upper bound u0. Then
B = {u0 − u : u ∈ A} is downwards-directed and has infimum 0. So infu∈A ‖u0 − u‖ = 0, and u0 ∈ A.

(b) If, in (a), A ⊆ U+, then we must have

‖u0‖ ≤ infu∈A ‖u‖ + ‖u− u0‖ ≤ supu∈A ‖u‖.

As A is arbitary, ‖ ‖ is a Fatou norm.

(c) Let B be the set of upper bounds for A. Then B is downwards-directed; because A is upwards-
directed, B − A = {v − u : v ∈ B, u ∈ A} is downwards-directed. By 353F, inf(B − A) = 0. So there are
w ∈ B, u ∈ A such that ‖w − u‖ ≤ ǫ. Now if v ∈ A,

(v − u)+ = (v ∨ u) − u ≤ w − u,

so ‖(v − u)+‖ ≤ ǫ.
In terms of the filter F(A↑), this tells us that if v0, v1 belong to Fu = {v : v ∈ A, v ≥ u} then

|v0 − v1| ≤ w− u so ‖v0 − v1‖ ≤ ǫ and the diameter of Fu is at most ǫ. As ǫ is arbitrary, F(A↑) is a Cauchy
filter.

(d) If 〈un〉n∈N is a non-decreasing order-bounded sequence, and ǫ > 0, then, applying (c) to {un : n ∈ N},
we find that there is an m ∈ N such that ‖um − un‖ ≤ ǫ whenever m ≥ n.

(e) Now suppose that U is a Banach lattice. Let A ⊆ U be any non-empty set with an upper bound.
Set B = {u0 ∨ . . . ∨ un : u0, . . . , un ∈ A}, so that B is upwards-directed and has the same upper bounds as
A. Let F(B↑) be the filter on U generated by {B ∩ [v,∞[ : v ∈ B}. By (c), this is a Cauchy filter with a
limit u∗ say. For every u ∈ A, [u,∞[ is a closed set belonging to F(B↑), so contains u∗; thus u∗ is an upper
bound for A. If w is any upper bound for A, ]−∞, w] is a closed set belonging to F(B↑), so contains u∗;
thus u∗ = supA and A has a supremum.

(f) If V is an order-dense Riesz subspace of U and u ∈ U+, set A = {v : v ∈ V, v ≤ u}. Then A is
upwards-directed and has supremum u, so u ∈ A ⊆ V , by (a). Thus U+ ⊆ V ; it follows at once that
U = U+ − U+ ⊆ V .

(g) If V is a norm-closed solid linear subspace of U , and A ⊆ V + is a non-empty, upwards-directed subset
of V with a supremum in U , then supA ∈ A ⊆ V , by (a); by 352Ob, V is a band.
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354F Lemma If U is an Archimedean Riesz space with an order unit e (definition: 353M), there is a
Riesz norm ‖ ‖e defined on U by the formula

‖u‖e = min{α : α ≥ 0, |u| ≤ αe}

for every u ∈ U .

proof This is a routine verification. Because e is an order-unit, {α : α ≥ 0, |u| ≤ αe} is always non-empty,
so always has an infimum α0 say; now |u| − α0e ≤ δe for every δ > 0, so (because U is Archimedean)
|u| − α0e ≤ 0 and |u| ≤ α0e, so that the minimum is attained. In particular, ‖u‖e = 0 iff u = 0. The
subadditivity and homogeneity of ‖ ‖e are immediate from the facts that |u+ v| ≤ |u| + |v|, |αu| = |α||u|.

354G Definitions (a) If U is an Archimedean Riesz space and e an order unit in U , the norm ‖ ‖e as
defined in 354F is the order-unit norm on U associated with e.

(b) An M-space is a Banach lattice in which the norm is an order-unit norm.

(c) If U is an M -space, its standard order unit is the order unit e such that ‖ ‖e is the norm of U . (To
see that e is uniquely defined, observe that it is sup{u : u ∈ U, ‖u‖ ≤ 1}.)

354H Examples (a) For any set X, ℓ∞(X) is an M -space with standard order unit χX. (As remarked
in 243Xl, the completeness of ℓ∞(X) can be regarded as the special case of 243E in which X is given counting
measure.)

(b) For any topological space X, the space Cb(X) of bounded continuous real-valued functions on X is
an M -space with standard order unit χX. (It is a Riesz subspace of ℓ∞(X) containing the order unit of
ℓ∞(X), therefore in its own right an Archimedean Riesz space with order unit. To see that it is complete, it
is enough to observe that it is closed in ℓ∞(X) because a uniform limit of continuous functions is continuous
(3A3Nb).)

(c) For any measure space (X,Σ, µ), the space L∞(µ) is an M -space with standard order unit χX•.

354I Lemma Let U be an Archimedean Riesz space with order unit e, and V a subset of U which is
dense for the order-unit norm ‖ ‖e. Then for any u ∈ U there are sequences 〈vn〉n∈N, 〈wn〉n∈N in V such
that vn ≤ vn+1 ≤ u ≤ wn+1 ≤ wn and ‖wn − vn‖e ≤ 2−n for every n; so that u = supn∈N vn = infn∈N wn in
U .

If V is a Riesz subspace of U , and u ≥ 0, we may suppose that vn ≥ 0 for every n. Consequently V is
order-dense in U .

proof For each n ∈ N, take vn, wn ∈ V such that

‖u−
3

2n+3
e− vn‖e ≤

1

2n+3
, ‖u+

3

2n+3
e− wn‖e ≤

1

2n+3
.

Then

u−
1

2n+1
e ≤ vn ≤ u−

1

2n+2
e ≤ u ≤ u+

1

2n+2
e ≤ wn ≤ u+

1

2n+1
e.

Accordingly 〈vn〉n∈N is non-decreasing, 〈wn〉n∈N is non-increasing and ‖wn−vn‖e ≤ 2−n for every n. Because
U is Archimedean, supn∈N vn = infn∈N wn = u.

If V is a Riesz subspace of U , then replacing vn by v+n if necessary we may suppose that every vn is
non-negative; and V is order-dense by the definition in 352Na.

354J Proposition Let U be an Archimedean Riesz space with an order unit e. Then ‖ ‖e is Fatou and
has the Levi property.

proof This is elementary. If A ⊆ U+ is non-empty, upwards-directed and norm-bounded, then it is bounded
above by αe, where α = supu∈A ‖u‖e. This is all that is called for in the Levi property. If moreover supA
is defined, then supA ≤ αe so ‖ supA‖ ≤ α, as required in the Fatou property.
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354K Theorem Let U be an Archimedean Riesz space with order unit e. Then it can be embedded as
an order-dense and norm-dense Riesz subspace of C(X), where X is a compact Hausdorff space, in such a
way that e corresponds to χX and ‖ ‖e corresponds to ‖ ‖∞; moreover, this embedding is essentially unique.

proof This is nearly word-for-word a repetition of 353N. The only addition is the mention of the norms.
Let X and T : U → C(X) be as in 353N. Then, for any u ∈ U , |u| ≤ ‖u‖ee, so that

|Tu| = T |u| ≤ ‖u‖eTe = ‖u‖eχX,

and ‖Tu‖∞ ≤ ‖u‖e. On the other hand, if 0 < δ < ‖u‖e then u1 = (|u| − δe)+ > 0, so that Tu1 =
(|Tu| − δχX)+ > 0 and ‖Tu‖∞ ≥ δ; as δ is arbitrary, ‖Tu‖∞ ≥ ‖u‖e.

354L Corollary Any M -space U is isomorphic, as Banach lattice, to C(X) for some compact Hausdorff
X, and the isomorphism is essentially unique. X can be identified with the set of Riesz homomorphisms
x : U → R such that x(e) = 1, where e is the standard order unit of U , with the topology induced by the
product topology on RU .

proof By 354K, there are a compact Hausdorff space X and an embedding of U as a norm-dense Riesz
subspace of C(X) matching ‖ ‖e to ‖ ‖∞. Since U is complete under ‖ ‖e, its image is closed in C(X) (3A4Ff),
and must be the whole of C(X). The expression is unique just in so far as the expression of 353N/354K is
unique. In particular, we may, if we wish, take X to be the set of normalized Riesz homomorphisms from
U to R, as in the proof of 353N.

Remark The set of uniferent Riesz homomorphisms from U to R is sometimes called the spectrum of U .

354M I come now to a second fundamental class of Banach lattices, in a strong sense ‘dual’ to the class
of M -spaces, as will appear in §356.

Definition An L-space is a Banach lattice U such that ‖u+ v‖ = ‖u‖ + ‖v‖ whenever u, v ∈ U+.

Example If (X,Σ, µ) is any measure space, then L1(µ), with its norm ‖ ‖1, is an L-space (242D, 242F). In
particular, taking µ to be counting measure on N, ℓ1 is an L-space (242Xa).

354N Theorem If U is an L-space, then its norm is order-continuous and has the Levi property.

proof (a) Both of these are consequences of the following fact: if A ⊆ U is norm-bounded and non-empty
and upwards-directed, then supA is defined in U and belongs to the norm-closure of A in U . PPP Fix u0 ∈ A;
set B = {u − u0 : u ∈ A, u ≥ u0}. Then B ⊆ U+ is norm-bounded, non-empty and upwards-directed.
Set γ = supu∈B ‖u‖. Consider the filter F(B↑) on U generated by sets of the form {v : v ∈ B, v ≥ u} for
u ∈ B. If ǫ > 0 there is a u ∈ B such that ‖u‖ ≥ γ − ǫ; now if v, v′ ∈ B ∩ [u,∞[, there is a w ∈ B such that
v ∨ v′ ≤ w, so that

‖v − v′‖ ≤ ‖w − u‖ = ‖w‖ − ‖u‖ ≤ ǫ.

As ǫ is arbitrary, F(B↑) is Cauchy and has a limit u∗ say. If u ∈ B, [u,∞[ is a closed set belonging to
F(B↑), so contains u∗; thus u∗ is an upper bound for B. If w is an upper bound for B, then ]−∞, w] is a
closed set belonging to F(B↑), so contains u∗; thus u∗ is the least upper bound of B. And B ∈ F(B↑), so
u∗ ∈ B.

Because u 7→ u0 is an order-preserving homeomorphism,

u∗ + u0 = sup{u : u0 ≤ u ∈ A} = supA

and u∗ + u0 ∈ A, as required. QQQ

(b) This shows immediately that the norm has the Levi property. But also it must be order-continuous.
PPP If A ⊆ U is non-empty and downwards-directed and has infimum 0, take any u0 ∈ A and consider
B = {u0 − u : u ∈ A, u ≤ u0}. Then B is upwards-directed and has supremum u0, so u0 ∈ B and

infu∈A ‖u‖ ≤ infv∈B ‖u0 − v‖ = 0. QQQ
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354O Proposition If U is an L-space and V is a norm-closed Riesz subspace of U , then V is an L-space
in its own right. In particular, any band in U is an L-space.

proof For any Riesz subspace V of U , we surely have ‖u + v‖ = ‖u| + ‖v‖ whenever u, v ∈ V +; so if
V is norm-closed, therefore a Banach lattice, it must be an L-space. But in any Banach lattice, a band is
norm-closed (354Bd), so a band in an L-space is again an L-space.

354P Uniform integrability in L-spaces Some of the ideas of §246 can be readily expressed in this
abstract context.

Definition Let U be an L-space. A set A ⊆ U is uniformly integrable if for every ǫ > 0 there is a w ∈ U+

such that ‖(|u| − w)+‖ ≤ ǫ for every u ∈ A.

354Q Since I have already used the phrase ‘uniformly integrable’ based on a different formula, I had
better check instantly that the two definitions are consistent.

Proposition If (X,Σ, µ) is any measure space, then a subset of L1 = L1(µ) is uniformly integrable in the
sense of 354P iff it is uniformly integrable in the sense of 246A.

proof (a) If A ⊆ L1 is uniformly integrable in the sense of 246A, then for any ǫ > 0 there are M ≥ 0,
E ∈ Σ such that µE <∞ and

∫
(|u| −MχE•)+ ≤ ǫ for every u ∈ A; now w = MχE• belongs to (L1)+ and

‖(|u| − w)+‖ ≤ ǫ for every u ∈ A. As ǫ is arbitrary, A is uniformly integrable in the sense of 354P.

(b) Now suppose that A is uniformly integrable in the sense of 354P. Let ǫ > 0. Then there is a w ∈ (L1)+

such that ‖(|u|−w)+‖ ≤ 1
2ǫ for every u ∈ A. There is a simple function h : X → R such that ‖w−h•‖ ≤ 1

2ǫ
(242Mb); now take E = {x : h(x) 6= 0}, M = supx∈X |h(x)| (I pass over the trivial case X = ∅), so that
h ≤MχE and

(|u| −MχE•)+ ≤ (|u| − w)+ + (w −MχE•)+ ≤ (|u| − w)+ + (w − h•)+,

∫
(|u| −MχE•)+ ≤ ‖(|u| − w)+‖ + ‖w − h•‖ ≤ ǫ

for every u ∈ A. As ǫ is arbitrary, A is uniformly integrable in the sense of 354P.

354R I give abstract versions of the easiest results from §246.

Theorem Let U be an L-space.
(a) If A ⊆ U is uniformly integrable, then

(i) A is norm-bounded;
(ii) every subset of A is uniformly integrable;
(iii) for any α ∈ R, αA is uniformly integrable;
(iv) there is a uniformly integrable, solid, convex, norm-closed set C ⊇ A;
(v) for any other uniformly integrable set B ⊆ U , A ∪B and A+B are uniformly integrable.

(b) For any set A ⊆ U , the following are equiveridical:
(i) A is uniformly integrable;
(ii) limn→∞(|un| − supi<n |ui|)

+ = 0 for every sequence 〈un〉n∈N in A;
(iii) either A is empty or for every ǫ > 0 there are u0, . . . , un ∈ A such that ‖(|u| − supi≤n |ui|)

+‖ ≤ ǫ
for every u ∈ A;

(iv) A is norm-bounded and any disjoint sequence in the solid hull of A is norm-convergent to 0.
(c) If V ⊆ U is a closed Riesz subspace then a subset of V is uniformly integrable when regarded as a

subset of V iff it is uniformly integrable when regarded as a subset of U .

proof (a)(i) There must be a w ∈ U+ such that
∫

(|u| − w)+ ≤ 1 for every u ∈ A; now

|u| ≤ |u| − w + |w| ≤ (|u| − w)+ + |w|, ‖u‖ ≤ ‖(|u| − w)+‖ + ‖w‖ ≤ 1 + ‖w‖

for every u ∈ A, so A is norm-bounded.

(ii) This is immediate from the definition.
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(iii) Given ǫ > 0, we can find w ∈ U+ such that |α|‖(|u| − w)+‖ ≤ ǫ for every u ∈ A; now ‖(|v| −
|α|w)+‖ ≤ ǫ for every v ∈ αA.

(iv) If A is empty, take C = A. Otherwise, try

C = {v : v ∈ U, ‖(|v| − w)+‖ ≤ supu∈A ‖(|u| − w)+‖ for every w ∈ U+}.

Evidently A ⊆ C, and C satisfies the definition 354M because A does. The functionals

v 7→ ‖(|v| − w)+‖ : U → R

are all continuous for ‖ ‖ (because the operators v 7→ |v|, v 7→ v − w, v 7→ v+, v 7→ ‖v‖ are continuous), so
C is closed. If |v′| ≤ |v| and v ∈ C, then

‖(|v′| − w)+‖ ≤ ‖(|v| − w)+‖ ≤ supu∈A ‖(|u| − w)+‖

for every w, and v′ ∈ C. If v = αv1 +βv2 where v1, v2 ∈ C, α ∈ [0, 1] and β = 1−α, then |v| ≤ α|v1|+β|v2|,
so

|v| − w ≤ (α|v1| − αw) + (β|v2| − βw) ≤ (α|v1| − αw)+ + (β|v2| − βw)+

and

(|v| − w)+ ≤ α(|v1| − w)+ + β(|v2| − w)+

for every w; accordingly

‖(|v| − w)+‖ ≤ α‖(|v1| − w)+‖ + β‖(|v2| − w)+‖

≤ (α+ β) sup
u∈A

‖(|u| − w)+‖ = sup
u∈A

‖(|u| − w)+‖

for every w, and v ∈ C.
Thus C has all the required properties.

(v) I show first that A ∪B is uniformly integrable. PPP Given ǫ > 0, let w1, w2 ∈ U+ be such that

‖(|u| − w1)+‖ ≤ ǫ for every u ∈ A, ‖(|u| − w2)+‖ ≤ ǫ for every u ∈ B.

Set w = w1∨w2; then ‖(|u|−w)+‖ ≤ ǫ for every u ∈ A∪B. As ǫ is arbitrary, A∪B is uniformly integrable.
QQQ

Now (iv) tells us that there is a convex uniformly integrable set C including A ∪ B, and in this case
A+B ⊆ 2C, so A+B is also uniformly integrable, using (ii) and (iii).

(b)(i)⇒(ii)&(iv) Suppose that A is uniformly integrable and that 〈un〉n∈N is any sequence in the solid
hull of A. Set vn = supi≤n |ui| for n ∈ N and

v′0 = v0 = |u0|, v′n = vn − vn−1 = (|un| − supi<n |ui|)
+

for n ≥ 1. Given ǫ > 0, there is a w ∈ U+ such that ‖(|u| − w)+‖ ≤ ǫ for every u ∈ A, and therefore for
every u in the solid hull of A. Of course supn∈N ‖vn ∧ w‖ ≤ ‖w‖ is finite, so there is an n ∈ N such that
‖vi ∧ w‖ ≤ ǫ+ ‖vn ∧ w‖ for every i ∈ N. But now, for m > n,

v′m ≤ (|um| − vn)+ ≤ (|um| − |um| ∧ w)+ + ((|um| ∧ w) − vn)+

≤ (|um| − w)+ + (vm ∧ w) − (vn ∧ w),

so that

‖v′m‖ ≤ ‖(|um| − w)+‖ + ‖(vm ∧ w) − (vn ∧ w)‖

= ‖(|um| − w)+‖ + ‖vm ∧ w‖ − ‖vn ∧ w‖ ≤ 2ǫ,

using the L-space property of the norm for the equality in the middle. As ǫ is arbitrary, limn→∞ v′n = 0. As
〈un〉n∈N is arbitrary, condition (ii) is satisfied; but so is condition (iv), because we know from (a-i) that A
is norm-bounded, and if 〈un〉n∈N is disjoint then v′n = |un| for every n, so that in this case limn→∞ un = 0.

(ii)⇒(iii)⇒(i) are elementary.
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not-(i)⇒not-(iv) Now suppose that A is not uniformly integrable. If it is not norm-bounded, we can
stop. Otherwise, there is some ǫ > 0 such that supu∈A ‖(|u| − w)+‖ > ǫ for every w ∈ U+. Consequently
we shall be able to choose inductively a sequence 〈un〉n∈N in A such that ‖(|un| − 2n supi<n |ui|)

+‖ > ǫ for
every n ≥ 1. Because A is norm-bounded,

∑∞
i=0 2−i‖ui‖ is finite, and we can set

vn = (|un| − 2n supi<n |ui| −
∑∞

i=n+1 2−i|ui|)
+

for each n. (The sum
∑∞

i=n+1 2−i|ui| is defined because 〈
∑m

i=n+1 2−i|ui|〉m≥n+1 is a Cauchy sequence.) We
have vm ≤ |um|,

vm ∧ vn ≤ (|um| − 2−n|un|)
+ ∧ (|un| − 2n|um|)+

≤ (2n|um| − |un|)
+ ∧ (|un| − 2n|um|)+ = 0

whenever m < n, so 〈vn〉n∈N is a disjoint sequence in the solid hull of A; while

‖vn‖ ≥ ‖(|un| − 2n supi<n |ui|)
+‖ −

∑∞
i=n+1 2−i‖ui‖ ≥ ǫ− 2−n supu∈A ‖u‖ → ǫ

as n→ ∞, so condition (iv) is not satisfied.

(c) Now this follows at once, because conditions (b-ii) and (b-iv) are satisfied in V iff they are satsified
in U .

354X Basic exercises >>>(a) Work through the proofs that the following are all Banach lattices. (i) Rr

with (α) ‖x‖1 =
∑r

i=1 |ξi| (β) ‖x‖2 =
√∑r

i=1 |ξi|
2 (γ) ‖x‖∞ = maxi≤r |ξi|, where x = (ξ1, . . . , ξr). (ii)

ℓp(X), for any set X and any p ∈ [1,∞] (242Xa, 243Xl, 244Xn). (iii) Lp(µ), for any measure space (X,Σ, µ)
and any p ∈ [1,∞] (242F, 243E, 244G). (iv) ccc0, the space of sequences convergent to 0, with the norm ‖ ‖∞
inherited from ℓ∞.

(b) Let 〈Ui〉i∈I be any family of Banach lattices. Write U for their Riesz space product (352K), and in
U set

‖u‖1 =
∑

i∈I ‖u(i)‖, V1 = {u : ‖u‖1 <∞},

‖u‖∞ = supi∈I ‖u(i)‖ (counting sup ∅ as 0), V∞ = {u : ‖u‖∞ <∞}.

Show that V1, V∞ are solid linear subspaces of U and are Banach lattices under their norms ‖ ‖1, ‖ ‖∞.

>>>(c) Let U be a Riesz space with a Riesz norm. Show that the maps ∧ : U2 → U , ∨ : U2 → U and
med : U3 → U are all uniformly continuous.

>>>(d) Let U be a Riesz space with a Riesz norm. (i) Show that any order-bounded set in U is norm-
bounded. (ii) Show that in Rr, with any of the standard Riesz norms (354Xa(i)), norm-bounded sets are
order-bounded. (iii) Show that in ℓ1(N) there is a sequence converging to 0 (for the norm) which is not order-
bounded. (iv) Show that in ccc0 any sequence converging to 0 is order-bounded, but there is a norm-bounded
set which is not order-bounded.

(e) Let U be a Riesz space with a Riesz norm. Show that it is a Banach lattice iff non-decreasing Cauchy
sequences are convergent. (Hint : if ‖un+1 − un‖ ≤ 2−n for every n, show that 〈supi≤n ui〉n∈N is Cauchy,
and that 〈un〉n∈N converges to infn∈N supm≥n um.)

(f) Let U be a Riesz space with a Riesz norm. Show that U is a Banach lattice iff every non-decreasing
Cauchy sequence 〈un〉n∈N in U+ has a least upper bound u with ‖u‖ = limn→∞ ‖un‖.

(g) Let U be a Banach lattice. Suppose that B ⊆ U is solid and supn∈N un ∈ B whenever 〈un〉n∈N is a
non-decreasing sequence in B with a supremum in U . Show that B is closed. (Hint : show first that u ∈ B
whenever there is a sequence 〈un〉n∈N in B∩U+ such that ‖u−un‖ ≤ 2−n for every n; do this by considering
vm = infn≥m un.)

(h) Let U be any Riesz space with a Riesz norm. Show that the Banach space completion of U (3A5Jb)
has a unique partial ordering under which it is a Banach lattice.
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>>>(i) Show that ccc0 is a Banach lattice with an order-continuous norm which does not have the Levi
property.

>>>(j) Show that ℓ∞, with ‖ ‖∞, is a Banach lattice with a Fatou norm which has the Levi property but
is not order-continuous.

(k) Let U be a Riesz space with a Fatou norm. Show that if V ⊆ U is a regularly embedded Riesz
subspace then the induced norm on V is a Fatou norm.

(l) Let U be a Riesz space and ‖ ‖ a Riesz norm on U which is order-continuous in the sense of 354Dc.
Show that its restriction to U+ is order-continuous in the sense of 313H.

(m) Let U be a Riesz space with an order-continuous norm. Show that if V ⊆ U is a regularly embedded
Riesz subspace then the induced norm on V is order-continuous.

(n) Let U be a Dedekind σ-complete Riesz space with a Fatou norm which has the Levi property. Show
that it is a Banach lattice. (Hint : 354Xf.)

(o) Let 〈Ui〉i∈I be any family of Banach lattices and let V1, V∞ be the subspaces of U =
∏

i∈I Ui as
described in 354Xb. (i) Show that V1, V∞ have norms which are Fatou, or have the Levi property, iff every
Ui has. (ii) Show that the norm of V1 is order-continuous iff the norm of every Ui is. (iii) Show that V∞ is
an M -space iff every Ui is. (iv) Show that V1 is an L-space iff every Ui is.

(p) Let U be a Banach lattice with an order-continuous norm. (i) Show that a sublattice of U is norm-
closed iff it is order-closed in the sense of 313Da. (ii) Show that a norm-closed Riesz subspace of U is itself
a Banach lattice with an order-continuous norm.

>>>(q) Let U be an M -space and V a norm-closed Riesz subspace of U containing the standard order unit
of U . (i) Show that V , with the induced norm, is an M -space. (ii) Deduce that the space ccc of convergent
sequences is an M -space if given the norm ‖ ‖∞ inherited from ℓ∞.

(r) Show that a Banach lattice U is an M -space iff (α) its norm is a Fatou norm with the Levi property
(β) ‖u ∨ v‖ = max(‖u‖, ‖v‖) for all u, v ∈ U+.

>>>(s) Describe a topological space X such that the space ccc of convergent sequences (354Xq) can be
identified with C(X).

(t) Let D ⊆ R be any non-empty set, and V the space of functions f : D → R of bounded variation
(§224). For f ∈ V set ‖f‖ = sup{|f(t0)| +

∑n
i=1 |f(ti) − f(ti−1)| : t0 ≤ t1 ≤ . . . ≤ tn in D} (224Yb). Let C

be the set of bounded non-decreasing functions from D to [0,∞[. Show that C is the positive cone of V for
a Riesz space ordering under which V is an L-space.

354Y Further exercises (a) Let U be a Riesz space with a Riesz norm, and V a norm-dense Riesz
subspace of U . Suppose that the induced norm on V is Fatou, when regarded as a norm on the Riesz space
V . Show (i) that V is order-dense in U (ii) that the norm of U is Fatou. (Hint : for (i), show that if u ∈ U+,
vn ∈ V + and ‖u− vn‖ ≤ 2−n−2‖u‖ for every n, then ‖v0 − infi≤n vi‖ ≤ 1

2‖u‖ for every n, so that 0 cannot
be infn∈N vn in V .)

(b) Let U be a Riesz space with a Riesz norm. Show that the following are equiveridical: (i) limn→∞ un =
0 whenever 〈un〉n∈N is a disjoint order-bounded sequence in U+ (ii) limn→∞ un+1 − un = 0 for every
order-bounded non-decreasing sequence 〈un〉n∈N in U (iii) whenever A ⊆ U+ is a non-empty downwards-
directed set in U+ with infimum 0, infu∈A supv∈A,v≤u ‖u − v‖ = 0. (Hint : for (i)⇒(ii), show by induction
that limn→∞ un = 0 whenever 〈un〉n∈N is an order-bounded sequence such that, for some fixed k ≥ 1,
infi∈K ui = 0 for every K ⊆ N with k members; now show that if 〈un〉n∈N is non-decreasing and 0 ≤ un ≤ u
for every n, then infi∈K(ui+1 − ui −

1
k
u)+ = 0 whenever K ⊆ N and #(K) = k ≥ 1. For (iii)⇒(i), set

A = {u : ∃n, u ≥ ui ∀ i ≥ n}. See Fremlin 74a, 24H.)
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(c) Show that any Riesz space with an order-continuous norm has the countable sup property (definition:
241Ye).

(d) Let U be a Banach lattice. Show that the following are equiveridical: (i) the norm on U is order-
continuous; (ii) U satisfies the conditions of 354Yb; (iii) every order-bounded monotonic sequence in U is
Cauchy.

(e) Let U be a Riesz space with a Fatou norm. Show that the norm on U is order-continuous iff it satisfies
the conditions of 354Yb.

(f) For f ∈ C([0, 1]), set ‖f‖1 =
∫
|f(x)|dx. Show that ‖ ‖1 is a Riesz norm on C([0, 1]) satisfying the

conditions of 354Yb, but is not order-continuous.

(g) Let U be a Riesz space with a Riesz norm ‖ ‖. Show that (U, ‖ ‖) satisfies the conditions of 354Yb iff
the norm of its completion is order-continuous.

(h) Let U be a Riesz space with a Riesz norm, and V ⊆ U a norm-dense Riesz subspace such that the
induced norm on V is order-continuous. Show that the norm of U is order-continuous. (Hint : use 354Ya.)

(i) Let U be an Archimedean Riesz space. For any e ∈ U+, let Ue be the solid linear subspace of U
generated by e, so that e is an order unit in Ue, and let ‖ ‖e be the corresponding order-unit norm on Ue. We
say that U is uniformly complete if Ue is complete under ‖ ‖e for every e ∈ U+. (i) Show that any Banach
lattice is uniformly complete. (ii) Show that any Dedekind σ-complete Riesz space is uniformly complete
(cf. 354Xn). (iii) Show that if U is a uniformly complete Riesz space with a Riesz norm which has the Levi
property, then U is a Banach lattice. (iv) Show that if U is a Banach lattice then a set A ⊆ U is closed,
for the norm topology, iff A ∩ Ue is ‖ ‖e-closed for every e ∈ U+. (v) Let V be a solid linear subspace of
U . Show that the quotient Riesz space U/V is Archimedean iff V ∩ Ue is ‖ ‖e-closed for every e ∈ U+. (vi)
Show that if U is uniformly complete and V ⊆ U is a solid linear subspace such that U/V is Archimedean,
then U/V is uniformly complete. (vii) Show that U is Dedekind σ-complete iff it is uniformly complete and
has the principal projection property (353Xb).

(j) Let U be an Archimedean Riesz space with an order unit, endowed with its order-unit norm. Let Z
be the unit ball of U∗. Show that for a linear functional f : U → R the following are equiveridical: (i) f is
an extreme point of Z, that is, f ∈ Z and Z \ {f} is convex (ii) |f(e)| = 1 and one of f , −f is a Riesz
homomorphism.

(k) Let U be a Banach lattice such that ‖u + v‖ = ‖u‖ + ‖v‖ whenever u ∧ v = 0. Show that U is
an L-space. (Hint : by 354Yd, the norm is order-continuous, so U is Dedekind complete. If u, v ≥ 0, set
e = u+ v, and represent Ue as C(X) where X is extremally disconnected (353Yb); now approximate u and
v by functions taking only finitely many values to show that ‖u+ v‖ = ‖u‖ + ‖v‖.)

(l) Let U be a uniformly complete Archimedean Riesz space (354Yi). Set UC = U ×U with the complex
linear structure defined by identifying (u, v) ∈ U ×U as u+ iv ∈ UC, so that u = Re(u+ iv), v = Im(u+ iv)
and (α+ iβ)(u+ iv) = (αu− βv) + i(αv + βu). (i) Show that for w ∈ UC we can define |w| ∈ U by setting
|w| = sup|ζ|=1 Re(ζw). (ii) Show that if U is a uniformly complete Riesz subspace of RX for some set X,

then we can identify UC with the linear subspace of CX generated by U . (iii) Show that |w+w′| ≤ |w|+ |w′|,
|γw| = |γ||w| for all w ∈ UC, γ ∈ C. (iv) Show that if w ∈ UC and |w| ≤ u1 + u2, where u1, u2 ∈ U+, then
w is expressible as w1 + w2 where |wj | ≤ uj for both j. (Hint : set e = u1 + u2 and represent Ue as C(X).)
(v) Show that if U0 is a solid linear subspace of U , then, for w ∈ UC, |w| ∈ U0 iff Rew, Imw both belong
to U0. (vi) Show that if U has a Riesz norm then we have a norm on UC defined by setting ‖w‖ = ‖|w|‖,
and that if U is a Banach lattice then UC is a (complex) Banach space. (vii) Show that if U = Lp(µ), where
(X,Σ, µ) is a measure space and p ∈ [1,∞], then UC can be identified with Lp

C
(µ) as defined in 242P, 243K

and 244P. (We may call UC the complexification of the Riesz space U .)

(m) Let (X,Σ, µ) be a measure space and V a Banach lattice. Write L
1
V for the space of Bochner

integrable functions from conegligible subsets of X to V , and L1
V for the corresponding set of equivalence
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classes (253Yf). (i) Show that L1
V is a Banach lattice under the ordering defined by saying that f• ≤ g• iff

f(x) ≤ g(x) in V for µ-almost every x ∈ X. (ii) Show that when V = L1(ν), for some other measure space
(Y,T, ν), then this ordering of L1

V agrees with the ordering of L1(λ) where λ is the (c.l.d.) product measure
on X × Y and we identify L1

V with L1(λ), as in 253Yi. (iii) Show that if V has an order-continuous norm,
so has L1

V . (Hint : 354Yd.) (iv) Show that if µ is Lebesgue measure on [0, 1] and V = ℓ∞, then L1
V is not

Dedekind σ-complete.

354 Notes and comments Apart from some of the exercises, the material of this section is pretty strictly
confined to ideas which will be useful later in this volume. The basic Banach lattices of measure theory
are the Lp spaces of Chapter 24; these all have Fatou norms with the Levi property (244Yf-244Yg), and
for p < ∞ their norms are order-continuous (244Ye). In Chapter 36 I will return to these spaces in a more
abstract context. Here I am mostly concerned to establish a vocabulary in which their various properties,
and the relationships between these properties, can be expressed.

In normed Riesz spaces we have a very rich mixture of structures, and must take particular care over the
concepts of ‘boundedness’, ‘convergence’ and ‘density’, which have more than one possible interpretation.
In particular, we must scrupulously distinguish between ‘order-bounded’ and ‘norm-bounded’ sets. I have
not yet formally introduced any of the various concepts of order-convergence (see §367), but I think that
even so it is best to get into the habit of reminding oneself, when a convergent sequence appears, that it is
convergent for the norm topology, rather than in any sense related directly to the order structure.

I should perhaps warn you that for the study of M -spaces 354L is not as helpful as it may look. The
trouble is that apart from a few special cases (as in 354Xs) the topological space used in the representation
is actually more complicated and mysterious than the M -space it is representing.

After the introduction of M -spaces, this section becomes a natural place for ‘uniformly complete’ spaces
(354Yi). For the moment I leave these in the exercises. But I mention them now because they offer a
straightforward route towards a theory of ‘complex Riesz spaces’ (354Yl). In large parts of functional
analysis it is natural, and in some parts it is necessary, to work with normed spaces over C rather than over
R, and for L2 spaces in particular it is useful to have a proper grasp of the complex case. And while the
insights offered by the theory of Riesz spaces are not especially important in such areas, I think we should
always seek connexions between different topics. So it is worth remembering that uniformly complete Riesz
spaces have complexifications.

I shall have a great deal more to say about L-spaces when I come to spaces of additive functionals (§362)
and to L1 spaces again (§365) and to linear operators on them (§371); and before that, there will be something
in the next section on their duals, and on L-spaces which are themselves dual spaces. For the moment I just
give some easy results, direct translations of the corresponding facts in §246, which have natural expressions
in the language of this section, holding deeper ideas over. In particular, the characterization of uniformly
integrable sets as relatively weakly compact sets (247C) is valid in general L-spaces (356Q).

For an extensive treatment of Banach lattices, going very much deeper than I have space for in this
volume, see Lindenstrauss & Tzafriri 79. For a careful exposition of a great deal of useful information,
see Schaefer 74.

Version of 1.12.07

355 Spaces of linear operators

We come now to a discussion of linear operators between Riesz spaces. Linear operators are central to
any kind of functional analysis, and a feature of the theory of Riesz spaces is the way the order structure
picks out certain classes of operators for special consideration. Here I concentrate on positive and order-
continuous operators, with a brief mention of sequential order-continuity. It turns out, in fact, that we need
to work with operators which are differences of positive operators or of order-continuous positive operators.
I define the basic spaces L

∼, L× and L
∼
c (355A, 355G), with their most important properties (355B, 355E,

355H-355I) and some remarks on the special case of Banach lattices (355C, 355K). At the same time I give
an important theorem on extension of operators (355F) and a corollary (355J).

c© 1996 D. H. Fremlin
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The most important case is of course that in which the codomain is R, so that our operators become
real-valued functionals; I shall come to these in the next section.

355A Definition Let U and V be Riesz spaces. A linear operator T : U → V is order-bounded if
T [A] is order-bounded in V for every order-bounded A ⊆ U .

I will write L
∼(U ;V ) for the set of order-bounded linear operators from U to V .

355B Lemma If U and V are Riesz spaces,
(a) a linear operator T : U → V is order-bounded iff {Tu : 0 ≤ u ≤ w} is bounded above in V for every

w ∈ U+;
(b) in particular, any positive linear operator from U to V belongs to L

∼ = L
∼(U ;V );

(c) L
∼ is a linear space;

(d) if W is another Riesz space and T : U → V and S : V →W are order-bounded linear operators, then
ST : U →W is order-bounded.

proof (a) This is elementary. If T ∈ L
∼ and w ∈ U+, [0, w] is order-bounded, so its image must be order-

bounded in V , and in particular bounded above. On the other hand, if T satisfies the condition, and A is
order-bounded, then A ⊆ [u1, u2] for some u1 ≤ u2, and

T [A] ⊆ T [u1 + [0, u2 − u1]] = Tu1 + T [[0, u2 − u1]]

is bounded above; similarly, T [−A] is bounded above, so T [A] is bounded below; as A is arbitrary, T is
order-bounded.

(b) If T is positive then {Tu : 0 ≤ u ≤ w} is bounded above by Tw for every w ≥ 0, so T ∈ L
∼.

(c) If T1, T2 ∈ L
∼, α ∈ R andA ⊆ U is order-bounded, then there are v1, v2 ∈ V such that Ti[A] ⊆ [−vi, vi]

for both i. Setting v = (1 + |α|)v1 + v2, (αT1 + T2)[A] ⊆ [−v, v]; as A is arbitrary, αT1 + T2 belongs to L
∼;

as α, T1, T2 are arbitrary, and since the zero operator surely belongs to L
∼, L∼ is a linear subspace of the

space of all linear operators from U to V .

(d) This is immediate from the definition; if A ⊆ U is order-bounded, then T [A] ⊆ V and (ST )[A] =
S[T [A]] ⊆W are order-bounded.

355C Theorem If U and V are Banach lattices then every order-bounded linear operator (in particular,
every positive linear operator) from U to V is continuous.

proof ??? Suppose, if possible, that T : U → V is an order-bounded linear operator which is not continuous.
Then for each n ∈ N we can find a un ∈ U such that ‖un‖ ≤ 2−n but ‖Tun‖ ≥ n. Now u = supn∈N |un| is
defined in U (354C), and there is a v ∈ V such that −v ≤ Tw ≤ v whenever −u ≤ w ≤ u; but this means
that ‖v‖ ≥ ‖Tun‖ ≥ n for every n, which is impossible. XXX

355D Lemma Let U be a Riesz space and V any linear space over R. Then a function T : U+ → V
extends to a linear operator from U to V iff

T (u+ u′) = Tu+ Tu′, T (αu) = αTu

for all u, u′ ∈ U+ and every α > 0, and in this case the extension is unique.

proof For in this case we can, and must, set

T1u = Tu1 − Tu2 whenever u1, u2 ∈ U+ and u = u1 − u2;

it is elementary to check that this defines T1u uniquely for every u ∈ U , and that T1 is a linear operator
extending T .

355E Theorem Let U be a Riesz space and V a Dedekind complete Riesz space.
(a) The space L

∼ of order-bounded linear operators from U to V is a Dedekind complete Riesz space; its
positive cone is the set of positive linear operators from U to V . In particular, every order-bounded linear
operator from U to V is expressible as the difference of positive linear operators.
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(b) For T ∈ L
∼, T+ and |T | are defined in the Riesz space L

∼ by the formulae

T+(w) = sup{Tu : 0 ≤ u ≤ w},

|T |(w) = sup{Tu : |u| ≤ w} = sup{
∑n

i=0 |Tui| :
∑n

i=0 |ui| = w}

for every w ∈ U+.
(c) If S, T ∈ L

∼ then

(S ∨ T )(w) = sup0≤u≤w Su+ T (w − u), (S ∧ T )(w) = inf0≤u≤w Su+ T (w − u)

for every w ∈ U+.
(d) Suppose that A ⊆ L

∼ is non-empty and upwards-directed. Then A is bounded above in L
∼ iff

{Tu : T ∈ A} is bounded above in V for every u ∈ U+, and in this case (supA)(u) = supT∈A Tu for every
u ≥ 0.

(e) Suppose that A ⊆ (L∼)+ is non-empty and downwards-directed. Then inf A = 0 in L
∼ iff infT∈A Tu =

0 in V for every u ∈ U+.

proof (a)(i) Suppose that T ∈ L
∼. For w ∈ U+ set RT (w) = sup{Tu : 0 ≤ u ≤ w}; this is defined because V

is Dedekind complete and {Tu : 0 ≤ u ≤ w} is bounded above in V . Then RT (w1 +w2) = RTw1 +RTw2 for
all w1, w2 ∈ U+. PPP Setting Ai = [0, wi] for each i, w = w1 +w2 and A = [0, w], then of course A1 +A2 ⊆ A;
but also A ⊆ A1 +A2, because if u ∈ A then u = (u∧w1)+(u−w1)+, and 0 ≤ (u−w1)+ ≤ (w−w1)+ = w2,
so u ∈ A1 +A2. Consequently

RTw = supT [A] = supT [A1 +A2] = sup(T [A1] + T [A2])

= supT [A1] + supT [A2] = RTw1 +RTw2

by 351Dc. QQQ Next, it is easy to see that RT (αw) = αRTw for w ∈ U+ and α > 0, just because u 7→ αu,
v 7→ αv are isomorphisms of the partially ordered linear spaces U and V . It follows from 355D that we can
extend RT to a linear operator from U to V .

Because RTu ≥ T0 = 0 for every u ∈ U+, RT is a positive linear operator. But also RTu ≥ Tu for every
u ∈ U+, so RT −T is also positive, and T = RT − (RT −T ) is the difference of two positive linear operators.

(ii) This shows that every order-bounded operator is a difference of positive operators. But of course if
T1 and T2 are positive, then (T1 − T2)u ≤ T1w whenever 0 ≤ u ≤ w in U , so that T1 − T2 is order-bounded,
by the criterion in 355Ba. Thus L

∼ is precisely the set of differences of positive operators.

(iii) Just as in 351F, L
∼ is a partially ordered linear space if we say that S ≤ T iff Su ≤ Tu for

every u ∈ U+. Now it is a Riesz space. PPP Take any T ∈ L
∼. Then RT , as defined in (i), is an upper

bound for {0, T} in L
∼. If S ∈ L

∼ is any other upper bound for {0, T}, then for any w ∈ U+ we must
have Sw ≥ Su ≥ Tu whenever u ∈ [0, w], so that Sw ≥ RTw; as w is arbitrary, S ≥ RT ; as S is arbitrary,
RT = sup{0, T} in L

∼. Thus sup{0, T} is defined in L
∼ for every T ∈ L

∼; by 352B, L∼ is a Riesz space. QQQ
(I defer the proof that it is Dedekind complete to (d-ii) below.)

(b) As remarked in (a-iii), RT = T+ for each T ∈ L
∼; but this is just the formula given for T+. Now, if

T ∈ L
∼ and w ∈ U+,

|T |(w) = 2T+w − Tw = 2 sup
u∈[0,w]

Tu− Tw

= sup
u∈[0,w]

T (2u− w) = sup
u∈[−w,w]

Tu,

which is the first formula offered for |T |. In particular, if |u| ≤ w then Tu, −Tu = T (−u) are both less than
or equal to |T |(w), so that |Tu| ≤ |T |(w). So if u0, . . . , un are such that

∑n
i=0 |ui| = w, then

∑n
i=0 |Tui| ≤

∑n
i=0 |T |(|ui|) = |T |(w).

Thus B = {
∑n

i=0 |Tui| :
∑n

i=0 |ui| = w} is bounded above by |T |(w). On the other hand, if v is an upper
bound for B and |u| ≤ w, then

Tu ≤ |Tu| + |T (w − |u|)| ≤ v;
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as u is arbitrary, |T |(w) ≤ v; thus |T |(w) is the least upper bound for B. This completes the proof of part
(b) of the theorem.

(c) We know that S ∨ T = T + (S − T )+ (352D), so that

(S ∨ T )(w) = Tw + (S − T )+(w) = Tw + sup
0≤u≤w

(S − T )(u)

= sup
0≤u≤w

Tw + (S − T )(u) = sup
0≤u≤w

Su+ T (w − u)

for every w ∈ U+, by the formula in (b). Also from 352D we have S ∧ T = S + T − T ∨ S, so that

(S ∧ T )(w) = Sw + Tw − sup
0≤u≤w

Tu+ S(w − u)

= inf
0≤u≤w

Sw + Tw − Tu− S(w − u)

(351Db)

= inf
0≤u≤w

Su+ T (w − u)

for w ∈ U+.

(d)(i) Now suppose that A ⊆ L
∼ is non-empty and upwards-directed and that {Tu : T ∈ A} is bounded

above in V for every u ∈ U+. In this case, because V is Dedekind complete, we may set Ru = supT∈A Tu
for every u ∈ U+. Now R(u1 + u2) = Ru1 +Ru2 for all u1, u2 ∈ U+. PPP Set Bi = {Tui : T ∈ A} for each i,
B = {T (u1 + u2) : T ∈ A}. Then B ⊆ B1 +B2, so

R(u1 + u2) = supB ≤ sup(B1 +B2) = supB1 + supB2 = Ru1 +Ru2.

On the other hand, if vi ∈ Bi for both i, there are Ti ∈ A such that vi = Tiui for each i; because A is
upwards-directed, there is a T ∈ A such that T ≥ Ti for both i, and now

R(u1 + u2) ≥ T (u1 + u2) = Tu1 + Tu2 ≥ T1u1 + T2u2 = v1 + v2.

As v1, v2 are arbitrary,

R(u1 + u2) ≥ sup(B1 +B2) = supB1 + supB2 = Ru1 +Ru2. QQQ

It is also easy to see that R(αu) = αRu for every u ∈ U+ and α > 0. So, using 355D again, R has an
extension to a linear operator from U to V .

If we fix any T0 ∈ A, we have T0u ≤ Ru for every u ∈ U+, so R − T0 is a positive linear operator, and
R = (R − T0) + T0 belongs to L

∼. Again, Tu ≤ Ru for every T ∈ A and u ∈ U+, so R is an upper bound
for A in L

∼; and, finally, if S is any upper bound for A in L
∼, then Su is an upper bound for {Tu : T ∈ A},

and must be greater than or equal to Ru, for every u ∈ U+; so that R ≤ S and R = supA in L
∼.

(ii) Consequently L
∼ is Dedekind complete. PPP If A ⊆ L

∼ is non-empty and bounded above by S
say, then A′ = {T0 ∨ T1 ∨ . . . ∨ Tn : T0, . . . , Tn ∈ A} is upwards-directed and bounded above by S, so
{Tu : T ∈ A′} is bounded above by Su for every u ∈ U+; by (i) just above, A′ has a supremum in L

∼, which
will also be the supremum of A. QQQ

(e) Suppose that A ⊆ (L∼)+ is non-empty and downwards-directed. Then −A = {−T : T ∈ A} is
non-empty and upwards-directed, so

inf A = 0 ⇐⇒ sup(−A) = 0

⇐⇒ sup
T∈A

(−Tu) = 0 for every u ∈ U+

⇐⇒ inf
T∈A

Tu = 0 for every u ∈ U+.

355F Theorem Let U and V be Riesz spaces, U0 ⊆ U a Riesz subspace and T0 : U0 → V a positive
linear operator such that Su = sup{T0w : w ∈ U0, 0 ≤ w ≤ u} is defined in V for every u ∈ U+. Suppose
either that U0 is order-dense and that T0 is order-continuous or that U0 is solid.
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(a) There is a unique positive linear operator T : U → V , extending T0, which agrees with S on U+.
(b) If T0 is a Riesz homomorphism so is T .
(c) If T0 is order-continuous so is T .
(d) If U0 is order-dense and T0 is an injective Riesz homomorphism, then T is injective.
(e) If U0 is order-dense and T0 is order-continuous then T is the only order-continuous positive linear

operator from U to V extending T0.

proof (a)(i) (The key.) If u, u′ ∈ U+ then S(u + u′) = Su + Su′. PPP If w, w′ ∈ U+
0 , w ≤ u and w′ ≤ u′,

then w + w′ ≤ u+ u′, so

T0w + T0w
′ = T0(w + w′) ≤ S(u+ u′);

as w and w′ are arbitrary, Su+ Su′ ≤ S(u+ u′) (351Dc). In the other direction, suppose that w ∈ U+
0 and

w ≤ u+ u′.

case 1 Suppose that U0 is solid. Then w ∧ u and (w − u)+ belong to U0, while w ∧ u ≤ u and
(w − u)+ ≤ (u+ u′ − u)+ = u′; so

T0w = T0(w ∧ u+ (w − u)+) = T0(w ∧ u) + T0(w − u)+ ≤ Su+ Su′;

as w is arbitrary, S(u+ u′) ≤ Su+ Su′ and we must have equality.

case 2 Suppose that U0 is order-dense and T0 is order-continuous. Set A = {v : v ∈ U+
0 , v ≤ w ∧ u}

and B = {v : v ∈ U+
0 , v ≤ (w−u)+}. Then (taking the suprema in U) w∧u = supA and (w−u)+ = supB,

because U0 is order-dense; by 351Dc again, w = sup(A+B) in U and therefore w = sup(A+B) in U0. Also
both A and B are upwards-directed, so A+B also is. Because T0 is order-continuous,

T0w = supT0[A+B] = sup(T0[A] + T0[B]) ≤ Su+ Su′.

So once again we must have S(u+ u′) ≤ Su+ Su′ and therefore S(u+ u′) = Su+ Su′. QQQ

(ii) Of course S(αu) = αSu whenever u ∈ U+ and α ≥ 0. By 355D, S has a unique extension to a
linear operator T : U → V . As Tu = Su ≥ 0 whenever u ≥ 0, T is positive. If u ∈ U+

0 then Su = T0u, so T
extends T0.

(b) Suppose that T0 is a Riesz homomorphism. If u ∧ u′ = 0 in U , then w ∧ w′ = 0 and T0w ∧ T0w
′ = 0

whenever w ∈ U0 ∩ [0, u] and w′ ∈ U0 ∩ [0, u′]. By 352Ea, Tu∧ Tu′ = Su∧ Su′ = 0 in V . By 352G(iv), T is
a Riesz homomorphism.

(c) Now suppose that T0 is order-continuous. Suppose that B ⊆ U+ is non-empty and upwards-directed
and has a supremum u0 ∈ U . Of course Tu ≤ Tu0 for every u ∈ B, so Tu0 is an upper bound for T [B]. On
the other hand, suppose that v is an upper bound for T [B]. If w ∈ U+

0 and u ∈ U+, w∧u = sup{w′ : w′ ∈ U0,
0 ≤ w′ ≤ w ∧ u}. PPP If U0 is solid, w ∧ u ∈ U0; and otherwise U0 is order-dense. QQQ So if w ∈ U0 and
0 ≤ w ≤ u0,

w = w ∧ supB = supu∈B w ∧ u = supu∈B sup(U0 ∩ [0, w ∧ u]) = supC,

where

C = {w′ : w′ ∈ U+
0 , w′ ≤ w ∧ u for some u ∈ B}.

Since C is upwards-directed,

T0w = supT0[C] ≤ v.

As w is arbitrary, Tu0 ≤ v; as v is arbitrary, Tu0 = supT [B]; as B is arbitrary, T is order-continuous
(351Ga).

(d) If U0 is order-dense and T0 is an injective Riesz homomorphism, then for any non-zero u ∈ U there
is a non-zero w ∈ U0 such that |w| ≤ |u|; so that

|Tu| = T |u| ≥ T0|w| > 0

because T is a Riesz homomorphism, by (b). As u is arbitrary, T is injective.

(e) Finally, if U0 is order-dense then any order-continuous positive linear operator extending T0 must
agree with S on U+ and is therefore equal to T .

Measure Theory



355I Spaces of linear operators 43

355G Definition Let U be a Riesz space and V a Dedekind complete Riesz space. Then L
×(U ;V ) will be

the set of those T ∈ L
∼(U ;V ) expressible as the difference of order-continuous positive linear operators, and

L
∼
c (U ;V ) will be the set of those T ∈ L

∼(U ;V ) expressible as the difference of sequentially order-continuous
positive linear operators.

Because a composition of (sequentially) order-continuous functions is (sequentially) order-continuous, we
shall have

ST ∈ L
×(U ;W ) whenever S ∈ L

×(V ;W ), T ∈ L
×(U ;V ),

ST ∈ L
∼
c (U ;W ) whenever S ∈ L

∼
c (V ;W ), T ∈ L

∼
c (U ;V ),

for all Riesz spaces U and all Dedekind complete Riesz spaces V , W .

355H Theorem Let U be a Riesz space and V a Dedekind complete Riesz space. Then
(i) L

× = L
×(U ;V ) is a projection band in L

∼ = L
∼(U ;V ), therefore a Dedekind complete Riesz space in

its own right;
(ii) a member T of L∼ belongs to L

× iff |T | is order-continuous.

proof There is a fair bit to check, but each individual step is easy enough.

(a) Suppose that S, T are order-continuous positive linear operators from U to V . Then S + T is order-
continuous. PPP If A ⊆ U is non-empty, downwards-directed and has infimum 0, then for any u1, u2 ∈ A
there is a u ∈ A such that u ≤ u1, u ≤ u2, and now (S+T )(u) ≤ Su1 +Tu2. Consequently any lower bound
for (S + T )[A] must also be a lower bound for S[A] + T [A]. But since

inf(S[A] + T [A]) = inf S[A] + inf T [A] = 0

(351Dc), inf(S + T )[A] must also be 0; as A is arbitrary, S + T is order-continuous, by 351Ga. QQQ

(b) Consequently S + T ∈ L
× for all S, T ∈ L

×. Since −T and αT belong to L
× for every T ∈ L

× and
α ≥ 0, we see that L

× is a linear subspace of L∼.

(c) If T : U → V is an order-continuous linear operator, S : U → V is linear and 0 ≤ S ≤ T , then S is
order-continuous. PPP If A ⊆ U is non-empty, downwards-directed and has infimum 0, then any lower bound
of S[A] must also be a lower bound of T [A], so inf S[A] = 0; as A is arbitrary, S is order-continuous. QQQ

It follows that L× is a solid linear subspace of L∼. PPP If T ∈ L
× and |S| ≤ |T | in L

∼, express T as T1 −T2
where T1, T2 are order-continuous positive linear operators. Then

S+, S− ≤ |S| ≤ |T | ≤ T1 + T2,

so S+ and S− are order-continuous and S = S+ − S− ∈ L
×. QQQ

Accordingly L
× is a Dedekind complete Riesz space in its own right (353K(b-i)).

(d) The argument of (c) also shows that if T ∈ L
× then |T | is order-continuous; so that for T ∈ L

∼,

T ∈ L
× ⇐⇒ |T | ∈ L

× ⇐⇒ |T | is order-continuous.

(e) If C ⊆ (L×)+ is non-empty, upwards-directed and has a supremum T ∈ L∼, then T is order-
continuous, so belongs to L

×. PPP Suppose that A ⊆ U+ is non-empty, upwards-directed and has supremum
w. Then

Tw = supS∈C Sw = supS∈C supu∈A Su = supu∈A Tu,

putting 355Ed and 351G(a-iii) together. So (using 351Ga again) T is order-continuous. QQQ Consequently
L
× is a band in L

∼ (352Ob), and it is a projection band because L
∼ is Dedekind complete (353J).

This completes the proof.

355I Theorem Let U be a Riesz space and V a Dedekind complete Riesz space. Then L
∼
c (U ;V ) is

a projection band in L
∼(U ;V ), and a member T of L

∼(U ;V ) belongs to L
∼
c (U ;V ) iff |T | is sequentially

order-continuous.

proof Copy the arguments of 355H.
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355J Proposition Let U be a Riesz space and V a Dedekind complete Riesz space. Let U0 ⊆ U be
an order-dense Riesz subspace; then T 7→ T ↾U0 is an embedding of L×(U ;V ) as a solid linear subspace of
L
×(U0;V ). In particular, any operator in L

×(U0;V ) has at most one extension in L
×(U ;V ).

proof (a) Because the embedding U0 ⊂→ U is positive and order-continuous (352Nb), T ↾U0 is positive and
order-continuous whenever T is; so T ↾U0 ∈ L

×(U0;V ) whenever T ∈ L
×(U ;V ). Because the map T 7→ T ↾U0

is linear, the image W of L×(U ;V ) is a linear subspace of L×(U0;V ).

(b) If T ∈ L
×(U ;V ) and T ↾U0 ≥ 0, then T ≥ 0. PPP??? Suppose, if possible, that there is a u ∈ U+ such

that Tu 6≥ 0. Because |T | ∈ L
×(U ;V ) is order-continuous and A = {v : v ∈ U0, v ≤ u} is an upwards-

directed set with supremum u, inf{|T |(u−v) : v ∈ A} = 0 and there is a v ∈ A such that Tu+ |T |(u−v) 6≥ 0.
But Tv = Tu+ T (v − u) ≤ Tu+ |T |(u− v) so Tv 6≥ 0 and T ↾U0 6≥ 0. XXXQQQ

This shows that the map T 7→ T ↾U0 is an order-isomorphism between L
×(U ;V ) and W , and in particular

is injective.

(c) Now suppose that S0 ∈ W and that |S| ≤ |S0| in L
×(U0;V ). Then S ∈ W . PPP Take T0 ∈ L

×(U ;V )
such that T0↾U0 = S0. Then S1 = |T0|↾U0 is a positive member of W such that S0 ≤ S1 and −S0 ≤ S1, so
S+ ≤ S1. Consequently, for any u ∈ U+,

sup{S+v : v ∈ U0, 0 ≤ v ≤ u} ≤ sup{S1v : v ∈ U0, 0 ≤ v ≤ u} ≤ |T0|(u)

is defined in V (recall that we are assuming that V is Dedekind complete). But this means that S+ has an
extension to an order-continuous positive linear operator from U to V (355F), and belongs to W . Similarly,
S− ∈W , so S ∈W . QQQ

This shows that W is a solid linear subspace of L×(U0;V ), as claimed.

355K Proposition Let U be a Banach lattice with an order-continuous norm.
(a) If V is any Archimedean Riesz space and T : U → V is a positive linear operator, then T is order-

continuous.
(b) If V is a Dedekind complete Riesz space then L

×(U ;V ) = L
∼(U ;V ).

proof (a) Suppose that A ⊆ U+ is non-empty and downwards-directed and has infimum 0. Then for
each n ∈ N there is a un ∈ A such that ‖un‖ ≤ 4−n. By 354C, u = supn∈N 2nun is defined in U . Now
Tun ≤ 2−nTu for every n, so any lower bound for T [A] must also be a lower bound for {2−nTu : n ∈ N}
and therefore (because V is Archimedean) less than or equal to 0. Thus inf T [A] = 0; as A is arbitrary, T
is order-continuous.

(b) This is now immediate from 355Ea and the definition of L×.

355X Basic exercises >>>(a) Let U and V be arbitrary Riesz spaces. (i) Show that the set L(U ;V ) of
all linear operators from U to V is a partially ordered linear space if we say that S ≤ T whenever Su ≤ Tu
for every u ∈ U+. (ii) Show that if U and V are Banach lattices then the set of positive operators is closed
in the normed space B(U ;V ) of bounded linear operators from U to V .

>>>(b) If U is a Riesz space and ‖ ‖, ‖ ‖′ are two norms on U both rendering it a Banach lattice, show that
they are equivalent, that is, give rise to the same topology.

(c) Let U be a Riesz space with a Riesz norm, V an Archimedean Riesz space with an order unit, and
T : U → V a linear operator which is continuous for the given norm on U and the order-unit norm on V .
Show that T is order-bounded.

(d) Let U be a Riesz space, V an Archimedean Riesz space, and T : U+ → V + a map such that
T (u1 + u2) = Tu1 + Tu2 for all u1, u2 ∈ U+. Show that T has an extension to a linear operator from U to
V .

>>>(e) Show that if r, s ≥ 1 are integers then the Riesz space L
∼(Rr;Rs) can be identified with the

space of real s × r matrices, saying that a matrix is positive iff every coefficient is positive, so that if
T = 〈τij〉1≤i≤s,1≤j≤r then |T |, taken in L

∼(Rr;Rs), is 〈|τij |〉1≤i≤s,1≤j≤r. Show that a positive matrix
represents a Riesz homomorphism iff each row has at most one non-zero coefficient.
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>>>(f) Let U be a Riesz space and V a Dedekind complete Riesz space. Show that if T0, . . . , Tn ∈ L
∼(U ;V )

then

(T0 ∨ . . . ∨ Tn)(w) = sup{
∑n

i=0 Tiui : ui ≥ 0 ∀ i ≤ n,
∑n

i=0 ui = w}

for every w ∈ U+.

>>>(g) Let U be a Riesz space, V a Dedekind complete Riesz space, and A ⊆ L
∼(U ;V ) a non-empty

set. Show that A is bounded above in L
∼(U ;V ) iff Cw = {

∑n
i=0 Tiui : T0, . . . , Tn ∈ A, u0, . . . , un ∈

U+,
∑n

i=0 ui = w} is bounded above in V for every w ∈ U+, and in this case (supA)(w) = supCw for every
w ∈ U+.

355Y Further exercises (a) Let U and V be Banach lattices. For T ∈ L
∼ = L

∼(U ;V ), set

‖T‖∼ = supw∈U+,‖w‖≤1 inf{‖v‖ : |Tu| ≤ v whenever |u| ≤ w}.

Show that ‖ ‖∼ is a norm on L
∼ under which L

∼ is a Banach space, and that the set of positive linear
operators is closed in L

∼.

(b) Give an example of a continuous linear operator from ℓ2 to itself which is not order-bounded.

(c) Let U and V be Riesz spaces and T : U → V a linear operator. (i) Show that for any w ∈ U+,
Cw = {

∑n
i=0 |Tui| : u0, . . . , un ∈ U+,

∑n
i=0 ui = w} is upwards-directed, and has the same upper bounds

as {Tu : |u| ≤ w}. (Hint : 352Fd.) (ii) Show that if supCw is defined for every w ∈ U+, then S = T ∨ (−T )
is defined in the partially ordered linear space L

∼(U ;V ) and Sw = supCw for every w ∈ U+.

(d) Let U , V and W be Riesz spaces, of which V and W are Dedekind complete. (i) Show that for
any S ∈ L

×(V ;W ), the map T 7→ ST : L∼(U ;V ) → L
∼(U ;W ) belongs to L

×(L∼(U ;V );L∼(U ;W )),
and is a Riesz homomorphism if S is. (Hint : 355Yc.) (ii) Show that for any T ∈ L

∼(U ;V ), the map
S 7→ ST : L∼(V ;W ) → L

∼(U ;W ) belongs to L
×(L∼(V ;W );L∼(U ;W )).

(e) Let νN be the usual measure on {0, 1}N and ccc the Banach lattice of convergent sequences. Find a
linear operator T : L2(νN) → ccc which is norm-continuous, therefore order-bounded, such that 0 and T have
no common upper bound in the partially ordered linear space of all linear operators from L2(νN) to ccc.

(f) Let U and V be Banach lattices. Let L
reg be the linear space of operators from U to V expressible as

the difference of positive operators. For T ∈ L
reg let ‖T‖reg be

inf{‖T1 + T2‖ : T1, T2 : U → V are positive, T = T1 − T2}.

Show that ‖ ‖reg is a norm under which L
reg is complete.

(g) Let U and V be Riesz spaces. For this exercise only, say that L
×(U ;V ) is to be the set of linear

operators T : U → V such that whenever A ⊆ U is non-empty, downwards-directed and has infimum 0 then
{v : v ∈ V +, ∃w ∈ A, |Tu| ≤ v whenever |u| ≤ w} has infimum 0 in V . (i) Show that L

×(U ;V ) is a linear
space. (ii) Show that if U is Archimedean then L

×(U ;V ) ⊆ L
∼(U ;V ). (iii) Show that if U is Archimedean

and V is Dedekind complete then this definition agrees with that of 355G. (iv) Show that for any Riesz
spaces U , V and W , ST ∈ L

×(U ;W ) for every S ∈ L
×(V ;W ) and T ∈ L

×(U ;V ). (v) Show that if U and V
are Banach lattices, then L

×(U ;V ) is closed in L
∼(U ;V ) for the norm ‖ ‖∼ of 355Ya. (vi) Show that if V is

Archimedean and U is a Banach lattice with an order-continuous norm, then L
×(U ;V ) = L

∼(U ;V ).

(h) Let U be a Riesz space and V a Dedekind complete Riesz space. Show that the band projection
P : L∼(U ;V ) → L

×(U ;V ) is given by the formula

(PT )(w) = inf{sup
u∈A

Tu : A ⊆ U+ is non-empty, upwards-directed

and has supremum w}

for every w ∈ U+, T ∈ (L∼(U ;V ))+. (Cf. 362Bd.)
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(i) Show that if U is a Riesz space with the countable sup property (241Ye), then L
∼
c (U ;V ) = L

×(U ;V )
for every Dedekind complete Riesz space V .

(j) Let U and V be Riesz spaces, of which V is Dedekind complete, and U0 a solid linear subspace of
U . Show that the map T 7→ T ↾U0 is an order-continuous Riesz homomorphism from L

×(U ;V ) onto a solid
linear subspace of L×(U0;V ).

(k) Let U be a uniformly complete Riesz space (354Yi) and V a Dedekind complete Riesz space. Let UC,
VC be their complexifications (354Yl). Show that the complexification of L∼(U ;V ) can be identified with
the complex linear space of linear operators T : UC → VC such that BT (w) = {|Tu| : |u| ≤ w} is bounded
above in V for every w ∈ U+, and that now |T |(w) = supBT (w) for every T ∈ L

∼(U ;V )C and w ∈ U+.
(Hint : if u, v ∈ U and |u + iv| = w, then u and v can be simultaneously approximated for the order-unit
norm ‖ ‖w on the solid linear subspace generated by w by finite sums

∑n
j=0(cos θj)wj ,

∑n
j=0(sin θj)wj where

wj ∈ U+,
∑n

j=0 wj = w. Consequently |T (u+ iv)| ≤ |T |(w) for every T ∈ L
∼
C

.)

355 Notes and comments I have had to make some choices in the basic definitions of this chapter
(355A, 355G). For Dedekind complete codomains V , there is no doubt what L

∼(U ;V ) should be, since
the order-bounded operators (in the sense of 355A) are just the differences of positive operators (355Ea).
(These are sometimes called ‘regular’ operators.) When V is not Dedekind complete, we have to choose
between the two notions, as not every order-bounded operator need be regular (355Ye). In my previous book
(Fremlin 74a) I chose the regular operators; I have still not encountered any really persuasive reason to
settle definitively on either class. In 355G the technical complications in dealing with any natural equivalent
of the larger space (see 355Yg) are such that I have settled for the narrower class, but explicitly restricting
the definition to the case in which V is Dedekind complete. In the applications in this book, the codomains
are nearly always Dedekind complete, so we can pass these questions by.

The elementary extension technique in 355D may recall the definition of the Lebesgue integral (122L-
122M). In the same way, 351G may remind you of the theorem that a linear operator between normed
spaces is continuous everywhere if it is continuous anywhere, or of the corresponding results about Boolean
homomorphisms and additive functionals on Boolean algebras (313L, 326Ka, 326R).

Of course 355Ea is the central fact about the space L
∼(U ;V ) for Dedekind complete V ; because we get a

new Riesz space from old ones, the prospect of indefinite recursion immediately presents itself. For Banach
lattices, L∼(U ;V ) is a linear subspace of the space B(U ;V ) of bounded linear operators (355C); the question
of when the two are equal will be of great importance to us. I give only the vaguest hints on how to show
that they can be different (355Yb, 355Ye), but these should be enough to make it plain that equality is
the exception rather than the rule. It is also very useful that we have effective formulae to describe the
Riesz space operations on L

∼(U ;V ) (355E, 355Xf-355Xg, 355Yc). You may wish to compare these with the
corresponding formulae for additive functionals on Boolean algebras in 326Yd and 362B.

If we think of L∼ as somehow corresponding to the space of bounded additive functionals on a Boolean
algebra, the bands L

∼
c and L

× correspond to the spaces of countably additive and completely additive
functionals. In fact (as will appear in §362) this correspondence is very close indeed. For the moment, all
I have sought to establish is that L

∼
c and L

× are indeed bands. Of course any case in which L
∼(U ;V ) =

L
∼
c (U ;V ) or L

∼
c (U ;V ) = L

×(U ;V ) is of interest (355Kb, 355Yi).

Between Banach lattices, positive linear operators are continuous (355C); it follows at once that the Riesz
space structure determines the topology (355Xb), so that it is not to be wondered at that there are further
connexions between the norm and the spaces L

∼ and L
×, as in 355K.

355F will be a basic tool in the theory of representations of Riesz spaces; if we can represent an order-
dense Riesz subspace of U as a subspace of a Dedekind complete space V , we have at least some chance of
expressing U also as a subspace of V . Of course it has other applications, starting with analysis of the dual
spaces.
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Version of 5.10.04

356 Dual spaces

As always in functional analysis, large parts of the theory of Riesz spaces are based on the study of linear
functionals. Following the scheme of the last section, I define spaces U∼, U∼

c and U×, the ‘order-bounded’,
‘sequentially order-continuous’ and ‘order-continuous’ duals of a Riesz space U (356A). These are Dedekind
complete Riesz spaces (356B). If U carries a Riesz norm they are closely connected with the normed space
dual U∗, which is itself a Banach lattice (356D). For each of them, we have a canonical Riesz homomorphism
from U to the corresponding bidual. The map from U to U×× is particularly important (356I); when this
map is an isomorphism we call U ‘perfect’ (356J). The last third of the section deals with L- and M -spaces
and the duality between them (356N, 356P), with two important theorems on uniform integrability (356O,
356Q).

356A Definition Let U be a Riesz space.

(a) I write U∼ for the space L
∼(U ;R) of order-bounded real-valued linear functionals on U , the order-

bounded dual of U .

(b) U∼
c will be the space L

∼
c (U ;R) of differences of sequentially order-continuous positive real-valued

linear functionals on U , the sequentially order-continuous dual of U .

(c) U× will be the space L
×(U ;R) of differences of order-continuous positive real-valued linear functionals

on U , the order-continuous dual of U .

Remark It is easy to check that the three spaces U∼, U∼
c and U× are in general different (356Xa-356Xc).

But the examples there leave open the question: can we find a Riesz space U , for which U∼
c 6= U×, and

which is actually Dedekind complete, rather than just Dedekind σ-complete, as in 356Xc? This leads to
unexpectedly deep water; it is yet another form of the Banach-Ulam problem. Really this is a question for
Volume 5, but in 363S below I collect the relevant ideas which are within the scope of the present volume.

356B Theorem For any Riesz space U , its order-bounded dual U∼ is a Dedekind complete Riesz space
in which U∼

c and U× are projection bands, therefore Dedekind complete Riesz spaces in their own right.
For f ∈ U∼, f+ and |f | ∈ U∼ are defined by the formulae

f+(w) = sup{f(u) : 0 ≤ u ≤ w}, |f |(w) = sup{f(u) : |u| ≤ w}

for every w ∈ U+. A non-empty upwards-directed set A ⊆ U∼ is bounded above iff supf∈A f(u) is finite for

every u ∈ U , and in this case (supA)(u) = supf∈A f(u) for every u ∈ U+.

proof 355E, 355H, 355I.

356C Proposition Let U be any Riesz space and P a band projection on U . Then its adjoint P ′ : U∼ →
U∼, defined by setting P ′(f) = fP for every f ∈ U∼, is a band projection on U∼.

proof Because P : U → U is a positive linear operator, P ′f ∈ U∼ for every f ∈ U∼ (355Bd), and P ′ is a
positive linear operator from U∼ to itself. Set Q = I − P , the complementary band projection on U ; then
Q′ is another positive linear operator on U∼, and P ′f +Q′f = f for every f . Now P ′f ∧Q′f = 0 for every
f ≥ 0. PPP For any w ∈ U+,

(P ′f −Q′f)+(w) = sup
0≤u≤w

(P ′f −Q′f)(u)

= sup
0≤u≤w

f(Pu−Qu) = f(Pw)

(because Pu−Qu ≤ Pu ≤ Pw = P (Pw) −Q(Pw) whenever 0 ≤ u ≤ w)

= (P ′f)(w),

so (P ′f −Q′f)+ = P ′f , that is, P ′f ∧Q′f = 0. QQQ By 352Rd, P ′ is a band projection.
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356D Proposition Let U be a Riesz space with a Riesz norm.
(a) The normed space dual U∗ of U is a solid linear subspace of U∼, and in itself is a Banach lattice with

a Fatou norm and has the Levi property.
(b) The norm of U is order-continuous iff U∗ ⊆ U×.
(c) If U is a Banach lattice, then U∗ = U∼, so that U∼, U× and U∼

c are all Banach lattices.
(d) If U is a Banach lattice with order-continuous norm then U∗ = U× = U∼.

proof (a)(i) If f ∈ U∗ then

sup|u|≤w f(u) ≤ sup|u|≤w ‖f‖‖u‖ = ‖f‖‖w‖ <∞

for every w ∈ U+, so f ∈ U∼ (355Ba). Thus U∗ ⊆ U∼.

(ii) If f ∈ U∼, g ∈ U∗ and |f | ≤ |g|, then for any w ∈ U

|f(w)| ≤ |f |(|w|) ≤ |g|(|w|) = sup|u|≤|w| g(u) ≤ sup|u|≤|w| ‖g‖‖u‖ ≤ ‖g‖‖w‖.

As w is arbitrary, f ∈ U∗ and ‖f‖ ≤ ‖g‖; as f and g are arbitrary, U∗ is a solid linear subspace of U∼ and
the norm of U∗ is a Riesz norm. Because U∗ is a Banach space it is also a Banach lattice.

(iii) IfA ⊆ (U∗)+ is non-empty and upwards-directed andM = supf∈A ‖f‖ is finite, then supf∈A f(u) ≤
M‖u‖ is finite for every u ∈ U+, so g = supA is defined in U∼ (355Ed). Now g(u) = supf∈A f(u) for every

u ∈ U+, as also noted in 355Ed, so

|g(u)| ≤ g(|u|) ≤M‖|u|‖ = M‖u‖

for every u ∈ U , and ‖g‖ ≤ M . But as A is arbitrary, this proves simultaneously that the norm of U∼ is
Fatou and has the Levi property.

(b)(i) Suppose that the norm of U is order-continuous. If f ∈ U∗ and A ⊆ U is a non-empty downwards-
directed set with infimum 0, then

infu∈A |f |(u) ≤ infu∈A ‖f‖‖u‖ = 0,

so |f | ∈ U× and f ∈ U×. Thus U∗ ⊆ U×.

(ii) Now suppose that the norm is not order-continuous. Then there is a non-empty downwards-directed
set A ⊆ U , with infimum 0, such that infu∈A ‖u‖ = δ > 0. Set

B = {v : v ≥ u for some u ∈ A}.

Then B is convex. PPP If v1, v2 ∈ B and α ∈ [0, 1], there are u1, u2 ∈ A such that vi ≥ ui for both i; now
there is a u ∈ A such that u ≤ u1 ∧ u2, so that

u = αu+ (1 − α)u ≤ αv1 + (1 − α)v2,

and αv1 + (1 − α)v2 ∈ B. QQQ Also infv∈B ‖v‖ = δ > 0. By the Hahn-Banach theorem (3A5Cb), there is an
f ∈ U∗ such that infv∈B f(v) > 0. But now

infu∈A |f |(u) ≥ infu∈A f(u) > 0

and |f | is not order-continuous; so U∗ 6⊆ U×.

(c) By 355C, U∼ ⊆ U∗, so U∼ = U∗. Now U× and U∼
c , being bands, are closed linear subspaces (354Bd),

so are Banach lattices in their own right.

(d) Put (b) and (c) together.

356E Biduals If you have studied any functional analysis at all, it will come as no surprise that duals-
of-duals are important in the theory of Riesz spaces. I start with a simple lemma.

Lemma Let U be a Riesz space and f : U → R a positive linear functional. Then for any u ∈ U+ there is
a positive linear functional g : U → R such that 0 ≤ g ≤ f , g(u) = f(u) and g(v) = 0 whenever u ∧ v = 0.

proof Set g(v) = supα≥0 f(v ∧ αu) for every v ∈ U+. Then it is easy to see that g(βv) = βg(v) for every

v ∈ U+, β ∈ [0,∞[. If v, w ∈ U+ then
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(v ∧ αu) + (w ∧ αu) ≤ (v + w) ∧ 2αu ≤ (v ∧ 2αu) + (w ∧ 2αu)

for every α ≥ 0 (352Fa), so g(v + w) = g(v) + g(w). Accordingly g has an extension to a linear functional
from U to R (355D). Of course 0 ≤ g(v) ≤ f(v) for v ≥ 0, so 0 ≤ g ≤ f in U∼. We have g(u) = f(u), while
if u ∧ v = 0 then αu ∧ v = 0 for every α ≥ 0, so g(v) = 0.

356F Theorem Let U be a Riesz space and V a solid linear subspace of U∼. For u ∈ U define û : V → R

by setting û(f) = f(u) for every f ∈ V . Then u 7→ û is a Riesz homomorphism from U to V ×.

proof (a) By the definition of addition and scalar multiplication in V , û is linear for every u; also α̂u = αû
and (u1 + u2)̂= û1 + û2 for all u, u1, u2 ∈ U and α ∈ R. If u ≥ 0 then û(f) = f(u) ≥ 0 for every f ∈ V +,
so û ≥ 0; accordingly every û is the difference of two positive functionals, and u 7→ û is a linear operator
from U to V ∼.

(b) If B ⊆ V is a non-empty downwards-directed set with infimum 0, then inff∈B f(u) = 0 for every
u ∈ U+, by 355Ee. But this means that û is order-continuous for every u ∈ U+, so that û ∈ V × for every
u ∈ U .

(c) If u∧v = 0 in U , then for any f ∈ V + there is a g ∈ [0, f ] such that g(u) = f(u) and g(v) = 0 (356E).
So

(û ∧ v̂)(f) ≤ û(f − g) + v̂(g) = f(u) − g(u) + g(v) = 0.

As f is arbitrary, û ∧ v̂ = 0. As u and v are arbitrary, u 7→ û is a Riesz homomorphism (352G).

356G Lemma Suppose that U is a Riesz space such that U∼ separates the points of U . Then U is
Archimedean.

proof ??? Otherwise, there are u, v ∈ U such that v > 0 and nv ≤ u for every n ∈ N. Now there is an
f ∈ U∼ such that f(v) 6= 0; but |f(v)| ≤ |f |(v) ≤ 1

n
|f |(u) for every n, so this is impossible. XXX

356H Lemma Let U be an Archimedean Riesz space and f > 0 in U×. Then there is a u ∈ U such that
(i) u > 0 (ii) f(v) > 0 whenever 0 < v ≤ u (iii) g(u) = 0 whenever g ∧ f = 0 in U×. Moreover, if u0 ∈ U+

is such that f(u0) > 0, we can arrange that u ≤ u0.

proof (a) Because f > 0 there is certainly some u0 ∈ U such that f(u0) > 0. Set A = {v : 0 ≤
v ≤ u0, f(v) = 0}. Then (v1 + v2) ∧ u0 ∈ A for all v1, v2 ∈ A, so A is upwards-directed. Because
f(u0) > 0 = sup f [A] and f is order-continuous, u0 cannot be the least upper bound of A, and there is
another upper bound u1 of A strictly less than u0.

Set u = u0 − u1 > 0. If 0 ≤ v ≤ u and f(v) = 0, then

w ∈ A =⇒ w ≤ u1 =⇒ w + v ≤ u0 =⇒ w + v ∈ A;

consequently nv ∈ A and nv ≤ u0 for every n ∈ N, so v = 0. Thus u has properties (i) and (ii).

(b) Now suppose that g ∧ f = 0 in U×. Let ǫ > 0. Then for each n ∈ N there is a vn ∈ [0, u] such that
f(vn) + g(u − vn) ≤ 2−nǫ (355Ec). If v ≤ vn for every n ∈ N then f(v) = 0 so v = 0; thus infn∈N vn = 0.
Set wn = infi≤n vi for each n ∈ N; then 〈wn〉n∈N is non-increasing and has infimum 0 so (because g is
order-continuous) infn∈N g(wn) = 0. But

u− wn = supi≤n u− vi ≤
∑n

i=0 u− vi,

so

g(u− wn) ≤
∑n

i=0 g(u− vi) ≤ 2ǫ

for every n, and

g(u) ≤ 2ǫ+ infn∈N g(wn) = 2ǫ.

As ǫ is arbitrary, g(u) = 0; as g is arbitrary, u has the third required property.
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356I Theorem Let U be any Archimedean Riesz space. Then the canonical map from U to U×× (356F)
is an order-continuous Riesz homomorphism from U onto an order-dense Riesz subspace of U××. If U is
Dedekind complete, its image in U×× is solid.

proof (a) By 356F, u 7→ û : U → U×× is a Riesz homomorphism.
To see that it is order-continuous, take any non-empty downwards-directed set A ⊆ U with infimum 0.

Then C = {û : u ∈ A} is downwards-directed, and for any f ∈ (U×)+

infφ∈C φ(f) = infu∈A f(u) = 0

because f is order-continuous. As f is arbitrary, inf C = 0 (355Ee); as A is arbitrary, u 7→ û is order-
continuous (351Ga).

(b) Now suppose that φ > 0 in U××. By 356H, there is an f > 0 in U× such that φ(f) > 0 and φ(g) = 0
whenever g ∧ f = 0. Next, there is a u > 0 in U such that f(u) > 0. Since u ≥ 0, û ≥ 0; since û(f) > 0,
û ∧ φ > 0.

Because U×× (being Dedekind complete) is Archimedean, infα>0 αû = 0, and there is an α > 0 such that

ψ = (û ∧ φ− αû)+ > 0.

Let g ∈ (U×)+ be such that ψ(g) > 0 and θ(g) = 0 whenever θ ∧ ψ = 0 in U××. Let v ∈ U+ be such that
g(v) > 0 and h(v) = 0 whenever h ∧ g = 0 in U×.

Because v̂(g) = g(v) > 0, v̂∧ψ > 0. As ψ ≤ û, v̂∧ û > 0 and v̂∧αû > 0. Set w = v∧αu; then ŵ = v̂∧αû,
by 356F, so ŵ > 0.

??? Suppose, if possible, that ŵ 6≤ φ. Then θ = (ŵ−φ)+ > 0, so there is an h ∈ (U×)+ such that θ(h) > 0
and θ(h′) > 0 whenever 0 < h′ ≤ h (356H, for the fourth and last time). Now examine

θ(h ∧ g) ≤ (αû− φ ∧ û)+(g)

(because ŵ ≤ αû, φ ∧ û ≤ φ, h ∧ g ≤ g)

= 0

because (αû− φ ∧ û)+ ∧ ψ = 0. So h ∧ g = 0 and h(v) = 0. But this means that

θ(h) ≤ ŵ(h) ≤ v̂(h) = 0,

which is impossible. XXX
Thus 0 < ŵ ≤ φ. As φ is arbitrary, the image Û of U is quasi-order-dense in U××, therefore order-dense

(353A).

(c) Now suppose that U is Dedekind complete and that 0 ≤ φ ≤ ψ ∈ Û . Express ψ as û where u ∈ U ,
and set A = {v : v ∈ U, v ≤ u+, v̂ ≤ φ}. If v ∈ U and 0 ≤ v̂ ≤ φ, then w = v+ ∧ u+ ∈ A and ŵ = v̂; thus

φ = sup{v̂ : v ∈ A} = v̂0, where v0 = supA. So φ ∈ Û . As φ and ψ are arbitrary, Û is solid in U××.

356J Definition A Riesz space U is perfect if the canonical map from U to U×× is an isomorphism.

356K Proposition A Riesz space U is perfect iff (i) it is Dedekind complete (ii) U× separates the points
of U (iii) whenever A ⊆ U is non-empty and upwards-directed and {f(u) : u ∈ A} is bounded for every
f ∈ U×, then A is bounded above in U .

proof (a) Suppose that U is perfect. Because it is isomorphic to U××, which is surely Dedekind complete,
U also is Dedekind complete. Because the map u 7→ û : U → U×× is injective, U× separates the points of
U . If A ⊆ U is non-empty and upwards-directed ad {f(u) : u ∈ A} is bounded above for every f ∈ U×,
then B = {û : u ∈ A} is non-empty and upwards-directed and supφ∈B φ(f) <∞ for every f ∈ U×, so supB

is defined in U×∼ (355Ed); but U×× is a band in U×∼, so supB belongs to U×× and is of the form ŵ for
some w ∈ U . Because u 7→ û is a Riesz space isomorphism, w = supA in U . Thus U satisfies the three
conditions.

(b) Suppose that U satisfies the three conditions. We know that u 7→ û is an order-continuous Riesz
homomorphism onto an order-dense Riesz subspace of U×× (356I). It is injective because U× separates the
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points of U . If φ ≥ 0 in U××, set A = {u : u ∈ U+, û ≤ φ}. Then A is non-empty and upwards-directed
and for any f ∈ U×

supu∈A f(u) ≤ supu∈A |f |(u) ≤ supu∈A û(|f |) ≤ φ(|f |) <∞,

so by condition (iii) A has an upper bound in U . Since U is Dedekind complete, w = supA is defined in U .
Now

ŵ = supu∈A û = φ.

As φ is arbitrary, the image of U includes (U××)+, therefore is the whole of U××, and u 7→ û is a bijective
Riesz homomorphism, that is, a Riesz space isomorphism.

356L Proposition (a) Any band in a perfect Riesz space is a perfect Riesz space in its own right.
(b) For any Riesz space U , U∼ is perfect; consequently U∼

c and U× are perfect.

proof (a) I use the criterion of 356K. Let U be a perfect Riesz space and V a band in U . Then V is
Dedekind complete because U is (353Kb). If v ∈ V \ {0} there is an f ∈ U× such that f(v) 6= 0; but
the embedding V ⊂→ U is order-continuous (352N), so g = f↾V belongs to V ×, and g(v) 6= 0. Thus V ×

separates the points of V . If A ⊆ V is non-empty and upwards-directed and supv∈A g(v) is finite for every
g ∈ V ×, then supv∈A f(v) < ∞ for every f ∈ U× (again because f↾V ∈ V ×), so A has an upper bound in
U ; because U is Dedekind complete, supA is defined in U ; because V is a band, supA ∈ V and is an upper
bound for A in V . Thus V satisfies the conditions of 356K and is perfect.

(b) U∼ is Dedekind complete, by 355Ea. If f ∈ U∼ \ {0}, there is a u ∈ U such that f(u) 6= 0; now
û(f) 6= 0, where û ∈ U∼× (356F). Thus U∼× separates the points of U∼. If A ⊆ U∼ is non-empty and
upwards-directed and supf∈A φ(f) is finite for every φ ∈ U∼×, then, in particular,

supf∈A f(u) = supf∈A û(f) <∞

for every u ∈ U , so A is bounded above in U∼, by 355Ed. Thus U∼ satisfies the conditions of 356K and is
perfect.

By (a), it follows at once that U× and U∼
c are perfect.

356M Proposition If U is a Banach lattice in which the norm is order-continuous and has the Levi
property, then U is perfect.

proof By 356Db, U∗ = U×; since U∗ surely separates the points of U , so does U×. By 354Ee, U is
Dedekind complete. If A ⊆ U is non-empty and upwards-directed and f [A] is bounded for every f ∈ U×,
then A is norm-bounded, by the Uniform Boundedness Theorem (3A5Hb). Because the norm is supposed to
have the Levi property, A is bounded above in U . Thus U satisfies all the conditions of 356K and is perfect.

356N L- and M-spaces I come now to the duality between L-spaces and M -spaces which I hinted at
in §354.

Proposition Let U be an Archimedean Riesz space with an order-unit norm.
(a) U∗ = U∼ is an L-space.
(b) If e is the standard order unit of U , then ‖f‖ = |f |(e) for every f ∈ U∗.
(c) A linear functional f : U → R is positive iff it belongs to U∗ and ‖f‖ = f(e).
(d) If e 6= 0 there is a positive linear functional f on U such that f(e) = 1.

proof (a)-(b) We know already that U∗ ⊆ U∼ is a Banach lattice (356Da). If f ∈ U∼ then

sup{|f(u)| : ‖u‖ ≤ 1} = sup{|f(u)| : |u| ≤ e} = |f |(e),

so f ∈ U∗ and ‖f‖ = |f |(e); thus U∼ = U∗. If f , g ≥ 0 in U∗, then

‖f + g‖ = (f + g)(e) = f(e) + g(e) = ‖f‖ + ‖g‖;

thus U∗ is an L-space.

(c) As already remarked, if f is positive then f ∈ U∗ and ‖f‖ = f(e). On the other hand, if f ∈ U∗ and
‖f‖ = f(e), take any u ≥ 0. Set v = (1 + ‖u‖)−1u. Then 0 ≤ v ≤ e and ‖e− v‖ ≤ 1 and
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f(e− v) ≤ |f(e− v)| ≤ ‖f‖ = f(e).

But this means that f(v) ≥ 0 so f(u) ≥ 0. As u is arbitrary, f ≥ 0.

(d) By the Hahn-Banach theorem (3A5Ac), there is an f ∈ U∗ such that f(e) = ‖f‖ = 1; by (c), f is
positive.

356O Theorem Let U be an Archimedean Riesz space with order-unit norm. Then a set A ⊆ U∗ = U∼ is
uniformly integrable iff it is norm-bounded and limn→∞ supf∈A |f(un)| = 0 for every order-bounded disjoint

sequence 〈un〉n∈N in U+.

proof (a) Suppose that A is uniformly integrable. Then it is surely norm-bounded (354Ra). If 〈un〉n∈N is
a disjoint sequence in U+ bounded above by w, then for any ǫ > 0 we can find an h ≥ 0 in U∗ such that
‖(|f | − h)+‖ ≤ ǫ for every f ∈ A. Now

∑n
i=0 h(ui) ≤ h(w) for every n, and limn→0 h(un) = 0; since at the

same time

|f(un)| ≤ |f |(un) ≤ h(un) + (|f | − h)+(un) ≤ h(un) + ǫ‖un‖ ≤ h(un) + ǫ‖w‖

for every f ∈ A and n ∈ N, lim supn→∞ supf∈A |f |(un) ≤ ǫ‖w‖. As ǫ is arbitrary,

limn→∞ supf∈A |f |(un) = 0,

and the conditions are satisfied.

(b)(i) Now suppose that A is norm-bounded but not uniformly integrable. Write B for the solid hull of
A, M for supf∈A ‖f‖ = supf∈B ‖f‖; then there is a disjoint sequence 〈gn〉n∈N in B ∩ (U∗)+ which is not
norm-convergent to 0 (354R(b-iv)), that is,

δ = 1
2 lim supn→∞ gn(e) = 1

2 lim supn→∞ ‖gn‖ > 0,

where e is the standard order unit of U .

(ii) Set

C = {v : 0 ≤ v ≤ e, supg∈B g(v) ≥ δ},

D = {w : 0 ≤ w ≤ e, lim supn→∞ gn(w) > δ}.

Then for any u ∈ D we can find v ∈ C and w ∈ D such that v ∧ w = 0. PPP Set δ′ = lim supn→∞ gn(u),
η = (δ′ − δ)/(3 +M) > 0; take k ∈ N so large that kη ≥M .

Because gn(u) ≥ δ′ − η for infinitely many n, we can find a set K ⊆ N, with k members, such that
gi(u) ≥ δ′ − η for every i ∈ K. Now we know that, for each i ∈ K, gi ∧ k

∑
j∈K,j 6=i gj = 0, so there is a

vi ≤ u such that gi(u− vi) + k
∑

j∈K,j 6=i gj(vi) ≤ η (355Ec). Now

gi(vi) ≥ gi(u) − η ≥ δ′ − 2η, gi(vj) ≤
η

k
for i, j ∈ K, i 6= j.

Set v′i = (vi −
∑

j∈K,j 6=i vj)
+ for each i ∈ K; then

gi(v
′
i) ≥ gi(vi) −

∑
j∈K,j 6=i gi(vj) ≥ δ′ − 3η

for every i ∈ K, while v′j ∧ v
′
i = 0 for distinct i, j ∈ K.

For each n ∈ N,

∑
i∈K gn(u ∧

1

η
v′i) ≤ gn(u) ≤ ‖gn‖ ≤ ηk,

so there is some i(n) ∈ K such that

gn(u ∧
1

η
v′i(n)) ≤ η, gn(u−

1

η
v′i(n))

+ ≥ gn(u) − η.

Since {n : gn(u) ≥ δ + 2η} is infinite, there is some m ∈ K such that J = {n : gn(u) ≥ δ + 2η, i(n) = m} is
infinite. Try

v = (v′m − ηu)+, w = (u−
1

η
v′m)+.
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Then v, w ∈ [0, u] and v ∧ w = 0. Next,

gm(v) ≥ gm(v′m) − ηM ≥ δ′ − 3η − ηM = δ,

so v ∈ C, while for any n ∈ J

gn(w) = gn(u−
1

η
v′i(n))

+ ≥ gn(u) − η ≥ δ + η;

since J is infinite,

lim supn→∞ gn(w) ≥ δ + η > δ

and w ∈ D. QQQ

(iii) Since e ∈ D, we can choose inductively sequences 〈wn〉n∈N in D, 〈vn〉n∈N in C such that w0 = e,
vn ∧ wn+1 = 0, vn ∨ wn+1 ≤ wn for every n ∈ N. But in this case 〈vn〉n∈N is a disjoint order-bounded
sequence in [0, u], while for each n ∈ N, we can find fn ∈ A such that |fn|(vn) > 2

3δ. Now there is a

un ∈ [0, vn] such that |fn(un)| ≥ 1
3δ. PPP Set γ = sup0≤v≤vn

|fn(v)|. Then f+n (vn), f−n (vn) are both less than

or equal to γ, so |fn|(vn) ≤ 2γ and γ > 1
3δ; so there is a un ∈ [0, vn] such that |fn(un)| ≥ 1

3δ. QQQ

Accordingly we have a disjoint sequence 〈un〉n∈N in [0, e] such that supf∈A |f(un)| ≥ 1
3δ for every n ∈ N.

(iv) All this is on the assumption that A is norm-bounded and not uniformly integrable. So, turning it
round, we see that if A is norm-bounded and limn→∞ supf∈A |f(un)| = 0 for every order-bounded disjoint
sequence 〈un〉n∈N, A must be uniformly integrable.

This completes the proof.

356P Proposition Let U be an L-space.
(a) U is perfect.
(b) U∗ = U∼ = U× is an M -space; its standard order unit is the functional

∫
defined by setting∫

u = ‖u+‖ − ‖u−‖ for every u ∈ U .
(c) If A ⊆ U is non-empty and upwards-directed and supu∈A

∫
u is finite, then supA is defined in U and∫

supA = supu∈A

∫
u.

proof (a) By 354N we know that the norm on U is order-continuous and has the Levi property, so 356M
tells us that U is perfect.

(b) 356Dd tells us that U∗ = U∼ = U×.
The L-space property tells us that the functional u 7→ ‖u‖ : U+ → R is additive; of course it is also

homogeneous, so by 355D it has an extension to a linear functional
∫

: U → R satisfying the given formula.
Because

∫
u = ‖u‖ ≥ 0 for u ≥ 0,

∫
∈ (U∼)+. For f ∈ U∼,

|f | ≤

∫
⇐⇒ |f |(u) ≤

∫
u for every u ∈ U+

⇐⇒ |f(v)| ≤ ‖u‖ whenever |v| ≤ u ∈ U

⇐⇒ |f(v)| ≤ ‖v‖ for every v ∈ U

⇐⇒ ‖f‖ ≤ 1,

so the norm on U∗ = U∼ is the order-unit norm defined from
∫

, and U∼ is an M -space, as claimed.

(c) Fix u0 ∈ A, and set B = {u+ : u ∈ A, u ≥ u0}. Then B ⊆ U+ is upwards-directed, and

sup
v∈B

‖v‖ = sup
u∈A,u≥u0

∫
u+ = sup

u∈A,u≥u0

∫
u+

∫
u−

≤ sup
u∈A,u≥u0

∫
u+

∫
u−0 <∞.

Because ‖ ‖ has the Levi property, B is bounded above. But (because A is upwards-directed) every member
of A is dominated by some member of B, so A also is bounded above. Because U is Dedekind complete,
supA is defined in U . Finally,

∫
supA = supu∈A

∫
u because

∫
, being a positive member of U×, is order-

continuous.
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356Q Theorem Let U be any L-space. Then a subset of U is uniformly integrable iff it is relatively
weakly compact.

proof (a) Let A ⊆ U be a uniformly integrable set.

(i) Suppose that F is an ultrafilter on X containing A. Then A 6= ∅. Because A is norm-bounded,
supu∈A |f(u)| <∞ and φ(f) = limu→F f(u) is defined in R for every f ∈ U∗ (2A3Se).

If f , g ∈ U∗ then

φ(f + g) = limu→F f(u) + g(u) = limu→F f(u) + limu→F g(u) = φ(f) + φ(g)

(2A3Sf). Similarly,

φ(αf) = limu→F αf(u) = αφ(f)

whenever f ∈ U∗ and α ∈ R. Thus φ : U∗ → R is linear. Also

|φ(f)| ≤ supu∈A |f(u)| ≤ ‖f‖ supu∈A ‖u‖,

so φ ∈ U∗∗ = U∗∼.

(ii) Now the point of this argument is that φ ∈ U∗×. PPP Suppose that B ⊆ U∗ is non-empty and
downwards-directed and has infimum 0. Fix f0 ∈ B. Let ǫ > 0. Then there is a w ∈ U+ such that
‖(|u| − w)+‖ ≤ ǫ for every u ∈ A, which means that

|f(u)| ≤ |f |(|u|) ≤ |f |(w) + |f |(|u| − w)+ ≤ |f |(w) + ǫ‖f‖

for every f ∈ U∗ and every u ∈ A. Accordingly |φ(f)| ≤ |f |(w)+ǫ‖f‖ for every f ∈ U∗. Now inff∈B f(w) = 0
(using 355Ee, as usual), so there is an f1 ∈ B such that f1 ≤ f0 and f1(w) ≤ ǫ. In this case

|φ|(f1) = sup|f |≤f1
|φ(f)| ≤ sup|f |≤f1

|f |(w) + ǫ‖f‖ ≤ f1(w) + ǫ‖f1‖ ≤ ǫ(1 + ‖f0‖).

As ǫ is arbitrary, inff∈B |φ|(f) = 0; as B is arbitrary, |φ| is order-continuous and φ ∈ U∗×. QQQ

(iii) At this point, we recall that U∗ = U× and that the canonical map from U to U×× is surjective
(356P). So there is a u0 ∈ U such that û0 = φ. But now we see that

f(u0) = φ(f) = limu→F f(u)

for every f ∈ U∗; which is just what is meant by saying that F → u0 for the weak topology on U (2A3Sd).
Accordingly every ultrafilter on U containing A has a limit in U . But because the weak topology on U

is regular (3A3Be), it follows that the closure of A for the weak topology is compact (3A3De), so that A is
relatively weakly compact.

(b) For the converse I use the criterion of 354R(b-iv). Suppose that A ⊆ U is relatively weakly compact.
Then A is norm-bounded, by the Uniform Boundedness Theorem. Now let 〈un〉n∈N be any disjoint sequence
in the solid hull of A. For each n, let Un be the band in U generated by un. Let Pn be the band projection
from U onto Un (353Ib). Let vn ∈ A be such that |un| ≤ |vn|; then

|un| = Pn|un| ≤ Pn|vn| = |Pnvn|,

so ‖un‖ ≤ ‖Pnvn‖ for each n. Let gn ∈ U∗ be such that ‖gn‖ = 1 and gn(Pnvn) = ‖Pnvn‖.
Define T : U → RN by setting Tu = 〈gn(Pnu)〉n∈N for each u ∈ U . Then T is a continuous linear operator

from U to ℓ1. PPP For m 6= n, Um ∩ Un = {0}, because |um| ∧ |un| = 0. So, for any u ∈ U , 〈Pnu〉n∈N is a
disjoint sequence in U , and

∑n
i=0 ‖Piu‖ = ‖

∑n
i=0 |Piu|‖ = ‖ supi≤n |Piu|‖ ≤ ‖u‖

for every n; accordingly

‖Tu‖1 =
∑∞

i=0 |giPiu| ≤
∑∞

i=0 ‖Piu‖ ≤ ‖u‖.

Since T is certainly a linear operator (because every coordinate functional giPi is linear), we have the result.
QQQ

Consequently T [A] is relatively weakly compact in ℓ1, because T is continuous for the weak topologies
(2A5If). But ℓ1 can be identified with L1(µ), where µ is counting measure on N. So T [A] is uniformly
integrable in ℓ1, by 247C, and in particular limn→∞ supw∈T [A] |w(n)| = 0. But this means that
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limn→∞ ‖un‖ ≤ limn→∞ |gn(Pnvn)| = limn→∞ |(Tvn)(n)| = 0.

As 〈un〉n∈N is arbitrary, A satisfies the conditions of 354R(b-iv) and is uniformly integrable.

356X Basic exercises (a) Show that if U = ℓ∞ then U× = U∼
c can be identified with ℓ1, and is properly

included in U∼. (Hint : show that if f ∈ U∼
c then f(u) =

∑∞
n=0 u(n)f(en), where en(n) = 1, en(i) = 0 for

i 6= n.)

(b) Show that if U = C([0, 1]) then U× = U∼
c = {0}. (Hint : show that if f ∈ (U∼

c )+ and 〈qn〉n∈N

enumerates Q ∩ [0, 1], then for each n ∈ N there is a un ∈ U+ such that un(qn) = 1 and f(un) ≤ 2−n.)

(c) Let X be an uncountable set, µ the countable-cocountable measure on X and Σ its domain (211R).
Let U be the space of bounded Σ-measurable real-valued functions on X. Show that U is a Dedekind
σ-complete Banach lattice if given the supremum norm ‖ ‖∞. Show that U× can be identified with ℓ1(X)
(cf. 356Xa), and that u 7→

∫
u dµ belongs to U∼

c \ U×.

(d) Let U be a Dedekind σ-complete Riesz space and f ∈ U∼
c . Let 〈un〉n∈N be an order-bounded sequence

in U which is order-convergent to u ∈ U in the sense that u = infn∈N supm≥n um = supn∈N infm≥n um. Show
that limn→∞ f(un) exists and is equal to f(u).

(e) Let U be any Riesz space. Show that the band projection P : U∼ → U× is defined by the formula

(Pf)(u) = inf{sup
v∈A

f(v) : A ⊆ U is non-empty, upwards-directed

and has supremum u}

for every f ∈ (U∼)+, u ∈ U+. (Hint : show that the formula for Pf always defines an order-continuous
linear functional. Compare 355Yh, 356Yb and 362Bd.)

(f) Let U be any Riesz space. Show that the band projection P : U∼ → U∼
c is defined by the formula

(Pf)(u) = inf{supn∈N f(vn) : 〈vn〉n∈N is a non-decreasing sequence with supremum u}

for every f ∈ (U∼)+, u ∈ U+.

(g) Let U be a Riesz space with a Riesz norm. Show that U∗ is perfect.

(h) Let U be a Riesz space with a Riesz norm. Show that the canonical map from U to U∗∗ is a Riesz
homomorphism.

(i) Let V be a perfect Riesz space and U any Riesz space. Show that L
∼(U ;V ) is perfect. (Hint : show

that if u ∈ U and g ∈ V × then T 7→ g(Tu) belongs to L
∼(U ;V )×.)

(j) Let U be an M -space. Show that it is perfect iff it is Dedekind complete and U× separates the points
of U .

(k) Let U be a Banach lattice which, as a Riesz space, is perfect. Show that its norm has the Levi
property.

(l) Write out a proof from first principles that if 〈un〉n∈N is a sequence in ℓ1 such that |un(n)| ≥ δ > 0
for every n ∈ N, then {un : n ∈ N} is not relatively weakly compact.

(m) Let U be an L-space and A ⊆ U a non-empty set. Show that the following are equiveridical: (i) A
is uniformly integrable (ii) inff∈B supu∈A |f(u)| for every non-empty downwards-directed set B ⊆ U× with
infimum 0 (iii) infn∈N supu∈A |fn(u)| = 0 for every non-increasing sequence 〈fn〉n∈N in U× with infimum 0
(iv) A is norm-bounded and limn→∞ supu∈A |fn(u)| = 0 for every disjoint order-bounded sequence 〈fn〉n∈N

in U×.
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356Y Further exercises (a) Let U be a Riesz space with the countable sup property. Show that
U× = U∼

c .

(b) Let U be a Riesz space, and A a family of non-empty downwards-directed subsets of U+ all with
infimum 0. (i) Show that U∼

A = {f : f ∈ U∼, infu∈A |f |(u) = 0 for every A ∈ A} is a band in U∼. (ii) Set
A∗ = {A0 + . . . + An : A0, . . . , An ∈ A}. Show that U∼

A = U∼
A∗ . (iii) Take any f ∈ (U∼)+, and let g, h be

the components of f in U∼
A , (U∼

A )⊥ respectively. Show that

g(u) = infA∈A∗ supv∈A f(u− v)+, h(u) = supA∈A∗ infv∈A f(u ∧ v)

for every u ∈ U+. (Cf. 362Xi.)

(c) Let U be a Riesz space. For any band V ⊆ U write V ◦ for {f : f ∈ U×, f(v) ≤ 1 for every
v ∈ V } = {f : f ∈ U×, f(v) = 0 for every v ∈ V }. Show that V 7→ (V ⊥)◦ is a surjective order-continuous
Boolean homomorphism from the algebra of complemented bands of U onto the band algebra of U×, and
that it is injective iff U× separates the points of U .

(d) Let U be a Dedekind complete Riesz space such that U× separates the points of U and U is the solid
linear subspace of itself generated by a countable set. Show that U is perfect.

(e) Let U be an L-space and 〈un〉n∈N a sequence in U such that 〈f(un)〉n∈N is Cauchy for every f ∈ U∗.
Show that 〈un〉n∈N is convergent for the weak topology of U . (Hint : use 356Xm(iv) to show that {un : n ∈ N}
is relatively weakly compact.)

(f) Let U be a perfect Banach lattice with order-continuous norm and 〈un〉n∈N a sequence in U such
that 〈f(un)〉n∈N is Cauchy for every f ∈ U∗. Show that 〈un〉n∈N is convergent for the weak topology of U .
(Hint : set φ(f) = limn→∞ fn(u). For any g ∈ (U∗)+ let Vg be the solid linear subspace of U∗ generated
by g, Wg = {u : g(|u|) = 0}⊥, ‖u‖g = g(|u|) for u ∈ Wg. Show that the completion of Wg under ‖ ‖g is an
L-space with dual isomorphic to Vg, and hence (using 356Ye) that φ↾Vg belongs to V ×

g ; as g is arbitrary,

φ ∈ V × and may be identified with an element of U .)

(g) Let U be a uniformly complete Archimedean Riesz space with complexification V (354Yl). (i) Show
that the complexification of U∼ can be identified with the space of linear functionals f : V → C such that
sup|v|≤u |f(v)| is finite for every u ∈ U+. (ii) Show that if U is a Banach lattice, then the complexification

of U∼ = U∗ can be identified (as normed space) with V ∗. (See 355Yk.)

(h) Let U be a perfect Banach lattice. Show that the family of closed balls in U is a compact class.
(Hint : 342Ya.)

356 Notes and comments The section starts easily enough, with special cases of results in §355 (356B).
When U has a Riesz norm, the identification of U∗ as a subspace of U∼, and the characterization of order-
continuous norms (356D) are pleasingly comprehensive and straightforward. Coming to biduals, we need
to think a little (356F), but there is still no real difficulty at first. In 356H-356I, however, something more
substantial is happening. I have written these arguments out in what seems to be the shortest route to the
main theorem, at the cost perhaps of neglecting any intuitive foundation. What I think we are really doing
is matching bands in U , U× and U××, as in 356Yc.

From now on, almost the first thing we shall ask of any new Riesz space will be whether it is perfect, and
if not, which of the three conditions of 356K it fails to satisfy. For reasons which will I hope appear in the
next chapter, perfect Riesz spaces are especially important in measure theory; in particular, all Lp spaces
for p ∈ [1,∞[ are perfect (366Dd), as are the L∞ spaces of localizable measure spaces (365M). Further
examples will be discussed in §369 and §374. Of course we have to remember that there are also important
Riesz spaces which are not perfect, of which C([0, 1]) and ccc0 are two of the simplest examples.

The duality between L- and M -spaces (356N, 356P) is natural and satisfying. We are now in a position
to make a determined attempt to tidy up the notion of ‘uniform integrability’. I give two major theorems.
The first is yet another ‘disjoint-sequence’ characterization of uniformly integrable sets, to go with 246G
and 354R. The essential difference here is that we are looking at disjoint sequences in a predual; in a sense,
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this means that the result is a sharper one, because the M -space U need not be Dedekind complete (for
instance, it could be C([0, 1]) – this indeed is the archetype for applications of the theorem) and therefore
need not have as many disjoint sequences as its dual. (For instance, in the dual of C([0, 1]) we have all
the point masses δt, where δt(u) = u(t); these form a disjoint family in C([0, 1])∼ not corresponding to any
disjoint family in C([0, 1]).) The essence of the proof is a device to extract a disjoint sequence in U to match
approximately a subsequence of a given disjoint sequence in U∼. In the example just suggested, this would
correspond, given a sequence 〈tn〉n∈N of distinct points in [0, 1], to finding a subsequence 〈tn(i)〉i∈N which is
discrete, so that we can find disjoint ui ∈ C([0, 1]) with ui(tn(i)) = 1 for each i.

The second theorem, 356Q, is a new version of a result already given in §247: in any L-space, uniform
integrability is the same as relative weak compactness. I hope you are not exasperated by having been
asked, in Volume 2, to master a complex argument (one of the more difficult sections of that volume) which
was going to be superseded. Actually it is worse than that. A theorem of Kakutani (369E) tells us that
every L-space is isomorphic to an L1 space. So 356Q is itself a consequence of 247C. I do at least owe you
an explanation for writing out two proofs. The first point is that the result is sufficiently important for
it to be well worth while spending time in its neighbourhood, and the contrasts and similarities between
the two arguments are instructive. The second is that the proof I have just given was not really accessible
at the level of Volume 2. It does not rely on every single page of this chapter, but the key idea (that U
is isomorphic to U××, so it will be enough if we can show that A is relatively compact in U××) depends
essentially on 356I, which lies pretty deep in the abstract theory of Riesz spaces. The third is an aesthetic
one: a theorem about L-spaces ought to be proved in the category of normed Riesz spaces, without calling
on a large body of theory outside. Of course this is a book on measure theory, so I did the measure theory
first, but if you look at everything that went into it, the proof in §247 is I believe longer, in the formal sense,
than the one here, even setting aside the labour of proving Kakutani’s theorem.

Let us examine the ideas in the two proofs. First, concerning the proof that uniformly integrable sets
are relatively compact, the method here is very smooth and natural; the definition I chose of ‘uniform
integrability’ is exactly adapted to showing that uniformly integrable sets are relatively compact in the
order-continuous bidual; all the effort goes into the proof that L-spaces are perfect. The previous argument
depended on identifying the dual of L1 as L∞ – and was disagreeably complicated by the fact that the
identification is not always valid, so that I needed to reduce the problem to the σ-finite case (part (b-ii) of
the proof of 247C). After that, the Radon-Nikodým theorem did the trick. Actually Kakutani’s theorem
shows that the side-step to σ-finite spaces is irrelevant. It directly represents an abstract L-space as L1(µ)
for a localizable measure µ, in which case (L1)∗ ∼= L∞ exactly.

In the other direction, both arguments depend on a disjoint-sequence criterion for uniform integrability
(246G(iii) or 354R(b-iv)). These criteria belong to the ‘easy’ side of the topic; straightforward Riesz space
arguments do the job, whether written out in that language or not. (Of course the new one in this section,
356O, lies a little deeper.) I go a bit faster this time because I feel that you ought by now to be happy
with the Hahn-Banach theorem and the Uniform Boundedness Theorem, which I was avoiding in Volume
2. And then of course I quote the result for ℓ1. This looks like cheating. But ℓ1 really is easier, as you
will find if you just write out part (a) of the proof of 247C for this case. It is not exactly that you can
dispense with any particular element of the argument; rather it is that the formulae become much more
direct when you can write u(i) in place of

∫
Fi
u, and ‘cluster points for the weak topology’ become pointwise

limits of subsequences, so that the key step (the ‘sliding hump’, in which uk(j)(n(k(j))) is the only significant
coordinate of uk(j)), is easier to find.

We now have a wide enough variety of conditions equivalent to uniform integrability for it to be easy to
find others; I give a couple in 356Xm, corresponding in a way to those in 246G. You may have noticed, in
the proof of 247C, that in fact the full strength of the hypothesis ‘relatively weakly compact’ is never used;
all that is demanded is that a couple of sequences should have cluster points for the weak topology. So we
see that a set A is uniformly integrable iff every sequence in A has a weak cluster point. But this extra
refinement is nothing to do with L-spaces; it is generally true, in any normed space U , that a set A ⊆ U is
relatively weakly compact iff every sequence in A has a cluster point in U for the weak topology (‘Eberlein’s
theorem’; see 462D in Volume 4, Köthe 69, 24.2.1, or Dunford & Schwartz 57, V.6.1).

There is a very rich theory concerning weak compactness in perfect Riesz spaces, based on the ideas here;
some of it is explored in Fremlin 74a. As a sample, I give one of the basic properties of perfect Banach
lattices with order-continuous norms: they are ‘weakly sequentially complete’ (356Yf).
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Version of 16.2.17

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

353H Principal bands This proposition, referred to in the 2003, 2006 and 2013 printings of Volume 4,
is now 353I.

353I Projection bands This proposition, referred to in the 2003, 2006 and 2013 printings of Volume 4
and the 2008 and 2015 printings of Volume 5, is now 353J.

353K Solid linear subspaces This proposition, referred to in the 2008 and 2015 printings of Volume
5, is now 353L.

353M Riesz spaces with order units This theorem, referred to in the 2003, 2006 and 2013 printings
of Volume 4, is now 353N.

353P f-algebras with identity This proposition, referred to in the 2003, 2006 and 2013 printings of
Volume 4, is now 353Q.

354Yk Complexifications of normed Riesz spaces This exercise, referred to in the 2003 edition of
Volume 4, is now 354Yl.
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Sinǎı Ya.G. [62] ‘Weak isomorphism of transformations with an invariant measure’, Soviet Math. 3 (1962)

1725-1729. [387E.]
Smorodinsky M. [71] Ergodic Theory, Entropy. Springer, 1971 (Lecture Notes in Math., 214). [§387

notes .]
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