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Chapter 34
The lifting theorem

Whenever we have a surjective homomorphism ¢ : P — @, where P and () are mathematical structures,
we can ask whether there is a right inverse of ¢, a homomorphism ¢ : Q — P such that ¢ is the identity on
Q. As a general rule, we expect a negative answer; those categories in which epimorphisms always have right
inverses (e.g., the category of linear spaces) are rather special, and elsewhere the phenomenon is relatively
rare and almost always important. So it is notable that we have a case of this at the very heart of the
theory of measure algebras: for any complete probability space (X, 3, i) (in fact, for any complete strictly
localizable space of non-zero measure) the canonical homomorphism from ¥ to the measure algebra of u has
a right inverse (341K). This is the von Neumann-Maharam lifting theorem. Its proof, together with some
essentially elementary remarks, takes up the whole of of §341.

As a first application of the theorem (there will be others in Volume 4) I apply it to one of the central
problems of measure theory: under what circumstances will a homomorphism between measure algebras
be representable by a function between measure spaces? Variations on this question are addressed in §343.
For a reasonably large proportion of the measure spaces arising naturally in analysis, homomorphisms are
representable (343B). New difficulties arise if we ask for isomorphisms of measure algebras to be representable
by isomorphisms of measure spaces, and here we have to work rather hard for rather narrowly applicable
results; but in the case of Lebesgue measure and its closest relatives, a good deal can be done, as in 3441-
344K.

Returning to liftings, there are many difficult questions concerning the extent to which liftings can be
required to have special properties, reflecting the natural symmetries of the standard measure spaces. For
instance, Lebesgue measure is translation-invariant; if liftings were in any sense canonical, they could be
expected to be automatically translation-invariant in some sense. It seems sure that there is no canonical
lifting for Lebesgue measure — all constructions of liftings involve radical use of the axiom of choice — but even
so we do have many translation-invariant liftings (§345). We have less luck with product spaces; here the
construction of liftings which respect the product structure is fraught with difficulties. I give the currently
known results in §346.

Version of 9.4.10

341 The lifting theorem

I embark directly on the principal theorem of this chapter (341K, ‘every non-trivial complete strictly
localizable measure space has a lifting’), using the minimum of advance preparation. 341A-341B give the
definition of ‘lifting’; the main argument is in 341F-341K, using the concept of ‘lower density’ (341C-341E)
and a theorem on martingales from §275. In 341P I describe an alternative way of thinking about liftings
in terms of the Stone space of the measure algebra.

341A Definition Let (X,X, 1) be a measure space, and 2 its measure algebra. By a lifting for 2 (or
for (X, %, p), or for u) I shall mean

either a Boolean homomorphism 6 : 2l — ¥ such that (6a)® = a for every a € 2

or a Boolean homomorphism ¢ : ¥ — ¥ such that (i) ¢E = 0 whenever uE = 0 (ii) u(EA¢E) = 0 for
every E € X.
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2 Liftings 341B

341B Remarks (a) I trust that the ambiguities permitted by this terminology will not cause any
confusion. The point is that there is a natural one-to-one correspondence between liftings 6 : A — ¥ and
liftings ¢ : ¥ — X given by the formula

OFE* = ¢F for every E € 3.
P (i) Given a lifting 6 : 2 — X, the formula defines a Boolean homomorphism ¢ : ¥ — 3 such that
M=600=0, (ErdE)=E*A(QE*)>* =0V EcX,

so that ¢ is a lifting. (ii) Given a lifting ¢ : ¥ — X, the kernel of ¢ includes {E : uE = 0}, so there is a
Boolean homomorphism 6 : 2 — ¥ such that 0E* = ¢F for every E (3A2G), and now

(05°) = (6E)* = E*

for every E € X, so 0 is a lifting. Q
I suppose that the word ‘lifting’ applies most naturally to functions from 2 to 3; but for applications in
measure theory the other type of lifting is used at least equally often.

(b) Note that if ¢ : ¥ — X is a lifting then ¢?> = ¢. P For any F € &,
P’EnPE = ¢(EAPE)=10. Q
If ¢ is associated with 6 : 2 — X, then ¢pha = Oa for every a € A. P ¢pa = 0((0a)*) = ba. Q

(c) In the theorems to follow, there will occasionally intrude a hypothesis ‘uX > 0’. The point is that if
we have a measure space (X, X, 1) which is trivial in the sense that uX = 0, then the only candidate for a
‘lifting” ¢ : ¥ — ¥ is the constant function with value (J; and if X # @ this is not a Boolean homomorphism
in the sense of this book. The simplest way of dealing with these cases is to rule them out of the discussion.

341C Definition Let (X, X, 1) be a measure space, and 2 its measure algebra. By a lower density for
A (or for (X, X, u), or for u) I shall mean

either a function € : A — ¥ such that (i) (fa)® = a for every a € A (ii) 80 = @ (iii) f(and) = fa N b for
all a, be A

or a function ¢ : ¥ — ¥ such that (i) ¢F = ¢F whenever E, F' € ¥ and u(EAF) =0 (ii) u(FAPE) =0
for every E € ¥ (iii) ¢f =0 (iv) g(ENF) = pEn¢F for all E, F € X.

341D Remarks (a) As in 341B, there is a natural one-to-one correspondence between lower densities
0 : A — ¥ and lower densities ¢ : ¥ — X given by the formula

OE* = ¢F for every F € .

(For the requirement ¢F = ¢F whenever £* = F* in 2 means that every ¢ corresponds to a function 6,
and the other clauses match each other directly.)

(b) As before, if ¢ : ¥ — X is a lower density then ¢? = ¢. If ¢ is associated with § : A — X, then
90 = 0.

(¢) Tt will be convenient, in the course of the proofs of 341F-341H below, to have the following concept
available. If (X, X, u) is a measure space with measure algebra 2, a partial lower density of 2 is a function
6 : B — ¥ such that (i) the domain 9B of g is a subalgebra of 2 (ii) (8b)* = b for every b € B (iii) 0 = )
(iv) 8(and) = Ban @b for all a, b € B.

Similarly, if T is a subalgebra of ¥, a function ¢ : T — X is a partial lower density if (i) oE = ¢F
whenever E, F' € T and u(EAF) =0 (ii) u(EAQE) = 0 for every E € T (iii) ¢ = 0 (iv) ¢(ENF) = pENGF
forall £, F € T. N N N -

(d) Note that lower densities and partial lower densities are order-preserving; if ¢ C b in 2, and 0 is a
lower density for 2, then

0a = 0(anb) = 0anbb C Ob.
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341F The lifting theorem 3

(e) Of course a Boolean homomorphism from 2 to ¥, or from ¥ to itself, is a lifting iff it is a lower
density.

341E Example Let y be Lebesgue measure on R”, where r > 1, and ¥ its domain. For E € ¥ set

int*E = {x : z € R", limg o % =1}

(Here B(x, ) is the closed ball with centre x and radius §.) Then int* is a lower density for p; we may call it
lower Lebesgue density. P (You may prefer at first to suppose that r = 1, so that B(z,d) = [x — §, 2+ ]
and uB(z,d) = 2J.) By 261Db (or 223B, for the one-dimensional case) EAInt*E is negligible for every E; in
particular, int*E € ¥ for every E € X. If EAF is negligible, then u(EN B(x,d)) = u(F N B(zx,)) for every
x and §, so int*E = int*F. If E C F, then u(ENB(x,9)) < p(FNB(x,d)) for every x, §, so int*E C int*F;
consequently int*(ENF) Cint*E Nint*F for all B, F e X. f E, F € ¥ and « € int*E Nint*F, then

w(ENFNB(z,d) =pu(ENB(x,6)) + u(F NB(x,0)) — p((FUF)N B(x,d))
> w(B N B(z,8)) + p(F 0 Bz, ) — u(B(z,9))

for every ¢, so
uw(ENFNB(x,)) > w(ENB(x,0)) | w(FNB(z,0))
nB(2,8) — uB(x,9) nB(x,8)
as d } 0, and x € int*(EF N F). Thus int*(F N F) = int*E Nint*F for all £, F' € ¥, and int* is a lower
density. Q

—1—=1

Remark In Chapter 47 of Volume 4 I will return to the operator int* in a context in which an alternative
name, ‘essential interior’, is more natural.

341F The hard work of this section is in the proof of 341H below. To make it a little more digestible, T
extract two parts of the proof as separate lemmas.

Lemma Let (X, X, i) be a probability space and 2 its measure algebra. Let 2B be a closed subalgebra of 2
and 0 : B — X a partial lower density. Then for any e € 2 there is a partial lower density 67, extending 0,
defined on the subalgebra B, of 2 generated by B U {e}.

proof (a) Because B is order-closed, therefore Dedekind complete in itself (314Ea),
v=upr(e,B) =inf{a:a €B,ade}, w=upr(l\e,B)
are defined in 9B. Let E € ¥ be such that E* =e.
(b) We have a function 6; : B; — X defined by writing
Bi((ane)ub\e)) = (B((anv)u (b\0)) N E) U (8((a\w) U (brw)) \ E)

for a, b € B. P By 312N, every element of 9B, is expressible as (ane)u (b\ e) for some a, b € B. If a, d,
b, b’ € B are such that (ane)u(b\e) = (a’'ne)u (V' \e), thenane=a" neand b\e =1 \e, that is,

anad Cl\eCcw, bAV CecCuw.

This means that e C1\(aAa’) € B and 1\eC1\(bAad) € B. So we also have v C 1\ (a A d’) and
wC 1\ (babd). Accordingly

anv=d nv, bnw=bnw. a\w=dad\w, b\v=0V\v.
But this means that
(0((anv)u(b\v))NE) U (8((a\w)u(bnw))\ E)
= (8((a'nv)u @ \v))NE)U (0((a"\w)u (t nw))\ E).
Thus the formula given defines #; uniquely. Q

(c) Now 6, is a partial lower density.

D.H.FREMLIN



4 Liftings 341F
P@) Ifa, be B,

(@:((ane)u(dre))) = ((B(anv)u(d\v))NE)U (B((a\w)u(bnw))\ E))’
(((anv)ud\v))ne) U (((a\w)u(bnw))\e)
=(ane)U(b\e).

So (81¢)® = ¢ for every c € B;.
(ii)
61(0) = (Q((Omv) u(0\)) ﬂE) U (Q((O\w) u(0nw))\ E) = 0.

(iii) If a, @', b, b’ € B, then

91(((ane)u(dre))n((ane)u(d’\e)))
=61((ana’ ne)u(bnNd’\e))
= (0((and nv)u(bnb'\v))NE)U (B((and \w)u (bnb nw)) \ E)
— (@(((anv) L bro) (@ I p)
U (8(((a\ w) U (b)) 0 (@ \ ) U (¥ ) \ B)

= (@((anv)u(d\v)) NO((a'n )U(b'\v))ﬁE)
U (0((a\w)u (bﬂw))ﬁﬁ(( \w)u (¥ nw))\ E)
= ((8((anv)u(b\v))NE)U (Q(a\w (bnw))\ E))
N ((0((a" nv)u ¥ \v))NE)U (8((a" \w)u (b’ nw))\ E))
=01((ane)u(b\e)) Nbi((a'ne)u(d \e)).
So f1(end)=01(c)n1(c) for all e, ¢ € B1. Q
(d) If a € B, then

01(a) =61((ane)u(a\e))
(0((anv)u(a\v))NE)U (0((a\w)u(anw))\ E)
= (8(a) N E) U (8(a) \ E) = fa.

Thus #; extends 6, as required.

341G Lemma Let (X, X, 1) be a probability space and (2, i) its measure algebra. Suppose we have
a sequence (f,)nen of partial lower densities such that, for each n, (i) the domain B, of 8, is a closed
subalgebra of 2 (ii) B,, C B,4+1 and 0,11 extends 8,,. Let B be the closed subalgebra of 2 generated by
Unen Brn- Then there is a partial lower density ¢, with domain B, extending every 0,,.

proof (a) For each n, set

S.={E:EcX E*€%B,}
and set

Seo = {E:E €3, B* ¢ B).

Then (because all the 9B, B are o-subalgebras of 2, and E — E* is sequentially order-continuous) all
the ¥,,, ¥ are o-subalgebras of 3. We need to know that ¥, is just the o-algebra X7 of subsets of X
generated by (J, cy Xn. PP Because ¥ is a o-algebra including J,,cy Xn, £35, € Yoo, On the other hand,
B* = {E* : F € X%} is a o-subalgebra of 2 including %B,, for every n € N. Because 2 is ccc, B* is
(order-)closed (316FDb), so includes B. This means that if £ € ¥, there must be an F' € ¥¥_ such that
E* = F*. But now (EAF)* =0 € By, so EAF € ¥y C X%, and E also belongs to X% . This shows that
Yoo € X%, and the two algebras are equal. Q
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341G The lifting theorem 5

(b) For each n € N, we have the partial lower density 6,, : B, — X. Since (8,a)* = a € B, for every
a € B, 0, takes all its values in ¥,,. For n € N| let P By — Xy be the lower density corresponding to
0, (341Ba), that is, ¢, E = 0, E°* for every E € %,,.

(c) For a € 2, n € N choose G, € X, gan such that G2 = a and g, is a conditional expectation of xG,
on Y,; that is,

[ 9an = [, XGa = p(ENGy) = W(E* na)

for every E € ¥,,. As remarked in 233Db, such a function g,, can always be found, and moreover we may
take it to be X, -measurable and defined everywhere on X. Now if a € B, lim,,_,o gan(x) exists and is
equal to xG,(x) for almost every z. I* By Lévy’s martingale theorem (275I), lim,, o0 garn is defined almost
everywhere and is a conditional expectation of xG, on the o-algebra generated by |J,c Zn. As observed
in (a), this is just Yoo; and as xG, is itself ¥ ,-measurable, it is also a conditional expectation of itself on
Yoo, and must be equal almost everywhere to lim, oo gan- Q

(d) Forae ®B, k>1,n e Nset
Hkn(af) - {J) T e X; gan(x) Z 1- Z_k} S Ena ﬁkn(a) = Qn(Hkn(a));

Oa = ﬂk21 UneN ﬂmZn Hp (a).
The rest of the proof is devoted to showing that 8 : 6 — 3 has the required properties.

(e) Gy is negligible, so every go,, is zero almost everywhere, every Hy,(0) is negligible and every Hj,(0)
is empty; so 60 = (.

(f) If a € b in B, then fa Cob. P Ga~\ G, is negligible, gon < gpn almost everywhere for every n, every
Hy(a) \ Hip(b) is negligible, Hyy,(a) C Hy, (b) for every n and k, and fa C 00. Q

(g) If a, b € B then Q(a n b) =0anfb. P XGamb Zae. XGa + XGb —1so Ganb,n Zae. Gan T gon — 1 for
every n. Accordingly

Hi1n(a) N Hip1,0(0) \ Hen(anbd)
is negligible, and (because ¢, is a lower density)
Hin(anb) 2 ¢n(Hyy1,n(a) N Hy1,0(b)) = Hiy1,n(a) N Hyy1,0(D)
for all k > 1, n € N. Now, if € 6a N 0b, then, for any k > 1, there are ny, ny € N such that
T € Vpsn, Hpiimla), z€ Nsns Hiy1.m(D).
But this means that
T € mmZmax(nl,ng) flkm(a nb).

As k is arbitrary, x € 8(anb); as x is arbitrary, a N gb C O(anb). We know already from (f) that
G(anb) CHanbb, sof(anb) =0anbb. Q

(h) If a € B, then da* = a. P {gan)nen — XGa a.e., so setting
Vo= nk21 Unen ﬂmZn Hym(a) = {z : iminf, o gan(z) > 1},
Vo AG, is negligible, and V) = a; but
OaV, C Uk21,neN H;m(a)AHkn(a)
is negligible, so fa* is also equal to a. @ Thus 0 is a partial lower density with domain B.

(i) Finally, 0 extends 0,, for every n € N. P If a € 9B,,, then G, € %,, for every m > n, S0 gam =ae. XGa
for every m > n; Hyp,(a)AG, is negligible for k > 1, m > n;

f{km = ?mGa = Qma = Qna

for k > 1, m > n (this is where I use the hypothesis that 6,,11 extends 8, for every m); and
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6 Liftings 341G

The proof is complete.

341H Now for the first main theorem.

Theorem Let (X, X, 1) be any strictly localizable measure space. Then it has a lower density ¢ : ¥ — X.
If uX >0 we can take ¢X = X.

proof : Part A I deal first with the case of probability spaces. Let (X,X, 1) be a probability space, and
(2, i) its measure algebra.

(a) Set k = #(A) and enumerate A as (ag)e<,. For & < k let A¢ be the closed subalgebra of 2 generated
by {a, : n < &}. Iseek to define a lower density § : A — ¥ as the last of a family (0¢)¢<,, where 8 : A — X
is a partial lower density for each £. The inductive hypothesis will be that 0¢ extends §,, whenever n < ¢ < k.

To start the induction, we have 2y = {0,1}, 800 = 0, 61 = X.

(b) Inductive step to a successor ordinal & Given a successor ordinal £ < k, express it as ( + 1; we are
supposing that . : A — X has been defined. Now 2 is the subalgebra of 2 generated by 2 U {a¢}
(because this is a closed subalgebra, by 323K). So 341F tells us that 6, can be extended to a partial lower
density 0¢ with domain .

(¢) Inductive step to a mon-zero limit ordinal & of countable cofinality In this case, there is a strictly
increasing sequence (((n))nen with supremum . Applying 341G with B,, = R¢(,), we see that there is a
partial lower density 0¢, with domain the closed subalgebra B generated by (J,, oy 2l¢(n), extending every
Oc(ny- Now ¢y € e for every n, so B C A¢; but also, if n < £, there is an n € N such that n < ((n),
so that a, € A¢n) C B; as n is arbitrary, ™A € B and A = B. Again, if n <, there is an n such that
1 < {(n), so that 0¢(n) extends 0, and 0¢ extends #,,. Thus the induction continues.

(d) Inductive step to a limit ordinal & of uncountable cofinality In this case, ¢ = Un<£ A,. PP Because
2 is ccc, every member a of ¢ must be in the closed subalgebra of 2 generated by some countable subset
A of {a, : n < &} (331Gd-331Ge). Now A can be expressed as {a, : 7 € I'} for some countable I C £. As I
cannot be cofinal with ¢, there is a ¢ < & such that n < ¢ for every n € I, so that A C 2 and a € ™. Q

But now, because 0. extends ¢, whenever n < ¢ < ¢, we have a function §¢ : A — X defined by writing
0ca = 0,0 whenever n < § and a € 2,,. Because the family {2, : n < £} is totally ordered and every 6, is a
partial lower density, 0¢ is a partial lower density.

Thus the induction proceeds when £ is a limit ordinal of uncountable cofinality.

(e) The induction stops when we reach 8, : 2l — X, which is a lower density such that 6,1 = X. Setting
¢oE = 0,E*, ¢ is a lower density such that ¢X = X.

Part B The general case of a strictly localizable measure space follows easily. First, if uX = 0, then
2A = {0} and we can set 0 = (). Second, if u is totally finite but not zero, we can replace it by v, where
vE = pE/uX for every E € 3; a lower density for v is also a lower density for p. Third, if p is not totally
finite, let (X;)ier be a decomposition of X (211E). There is surely some j such that pX; > 0; replacing
X; by X; UUHX; i € I, pX; = 0}, we may assume that pX; > 0 for every ¢ € I. For each i € I, let
¢; : 2; — X; be a lower density for p;, where ¥; = X NPX; and p; = plX;, such that ¢; X; = X;. Then it
is easy to check that we have a lower density ¢ : ¥ — ¥ given by setting B

?E = UieI @'(E N X;)
for every E € 3, and that ¢X = X.

3411 The next step is to give a method of moving from lower densities to liftings. I start with an
elementary remark on lower densities on complete measure spaces.
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341L The lifting theorem 7

Lemma Let (X, X, 1) be a complete measure space with measure algebra 2.

(a) Suppose that 6 : 2 — X is a lower density and §; : 2l — PX is a function such that 6,0 = 0,
G1(anb) = 61an b for all a, b € A and f1a 2 a for all @ € A. Then 6; is a lower density. If 0; is a
Boolean homomorphism, it is a lifting.

(b) Suppose that ¢ : ¥ — X is a lower density and ¢; : ¥ — PX is a function such that ¢1E = ¢ F
whenever EAF is negligible, ¢10 = 0, $1(EnF) = p1E N F for all E, F € ¥ and 1 E D ¢F for all
E € X. Then ¢, is a lower density. If ¢; is a Boolean homomorphism, it is a lifting. B B

proof (a) All T have to check is that 810 € ¥ and (61a)* = a for every a € 2. But
Oa C 0ia, 0(1\a) COi(1\a), 0G1anfdi(1\a)=0,0=0.
So
0a C 61a C X \0(1\a).
Since
(0a)* =a=(X\0(1\a))",
and p is complete, 07 is a lower density. If it is a Boolean homomorphism, then it is also a lifting (341De).

(b) This follows by the same argument, or by looking at the functions from 2 to ¥ defined by ¢ and ¢;
and using (a).

341J Proposition Let (X,X, ;) be a complete measure space such that X > 0, and 2 its measure
algebra.

(a) If 0 : A — ¥ is any lower density, there is a lifting 6 : 2 — X such that 6a O fa for every a € 2.

(b) If ¢ : ¥ — X is any lower density, there is a lifting ¢ : ¥ — ¥ such that ¢F D ¢F for every E € ¥.

proof (a) For each z € 01, set
I={a:acA zecf(l\a)}

Then I, is a proper ideal of 2. I® We have
0 € I, because = € 01,
if bCa €I, then b € I, because z € 6(1\ a) C 6(1\d),
if a, b € I, then aub € I, because x € (1\a) NH(1\b) = 4(1\ (aubd)),
1¢ I, because z ¢ 0 = 00. Q
For x € X\ 01, set I,, = {0}; this is also a proper ideal of 2, because 2 # {0}. By 311D, there is a surjective

Boolean homomorphism 7, : 2l — {0, 1} such that m,d = 0 for every d € L.
Define 0 : %l — PX by setting

Oa={z:2z € X, my(a) =1}

for every a € 2. It is easy to check that, because every 7, is a surjective Boolean homomorphism, 6 is a
Boolean homomorphism. Now for any a € U, = € X,

z€ba=—=1\ael, = 7m,(1\a)=0= 7m0 =1= z € ba.
Thus fa D fa for every a € 2. By 3411, 6 is a lifting, as required.
(b) Repeat the argument above, or apply it, defining 0 by setting 0(E*) = ¢F for every E € ¥, and ¢
by setting ¢ E = 0(E*) for every E.
341K The Lifting Theorem Every complete strictly localizable measure space of non-zero measure
has a lifting.

proof By 341H, it has a lower density, so by 341J it has a lifting.
341L Remarks If we count 341F-341K as a single argument, it may be the longest proof, after Carleson’s
theorem (§286), which I have yet presented in this treatise, and perhaps it will be helpful if T suggest ways

of looking at its components.
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8 Liftings 341La

(a) The first point is that the theorem should be thought of as one about probability spaces. The shift to
general strictly localizable spaces (Part B of the proof of 341H) is purely a matter of technique. I would not
have presented it if I did not think that it’s worth doing, for a variety of reasons, but there is no significant
idea needed, and if — for instance — the result were valid only for o-finite spaces, it would still be one of
the great theorems of mathematics. So the rest of these remarks will be directed to the ideas needed in
probability spaces.

(b) All the proofs I know of the theorem depend in one way or another on an inductive construction.
We do not, of course, need a transfinite induction written out in the way I have presented it in 341H above.
Essentially the same proof can be presented as an application of Zorn’s Lemma; if we take P to be the set
of partial lower densities, then the arguments of 341G and part (A-d) of the proof of 341H can be adapted
to prove that any totally ordered subset of P has an upper bound in P, while the argument of 341F shows
that any maximal element of P must have domain 2. I think it is purely a matter of taste which form
one prefers. I suppose I have used the ordinal-indexed form largely because that seemed appropriate for
Maharam’s theorem in the last chapter.

(c) There are then three types of inductive step to examine, corresponding to 341F, 341G and (A-d)
in 341H. The first and last are easier than the second. Seeking the one-step extension of § : B — ¥ to
01 :B7 — X, the natural model to use is the one-step extension of a Boolean homomorphism presented in
3120. The situation here is rather more complicated, as 6; is not fully specified by the value of #;e, and we
do in fact have more freedom at this point than is entirely welcome. The formula used in the proof of 341F
is derived from GRAF & WEIZSACKER 76.

(d) At this point I must call attention to the way in which the whole proof is dominated by the choice
of closed subalgebras as the domains of our partial liftings. This is what makes the inductive step to a
limit ordinal £ of countable cofinality difficult, because 2l¢ will ordinarily be larger than Un <€ 2,. But it is
absolutely essential in the one-step extensions as treated here. (I will return to this point in §535 of Volume
5. See also 341Ye.)

Because we are dealing with a ccc algebra 2, the requirement that the ¢ should be closed is not a
problem when cf¢ is uncountable, since in this case |, _. 2y, is already a closed subalgebra; this is the only
idea needed in (A-d) of 341H.

n<§

(e) So we are left with the inductive step to & when cf € = w, which is 341G. Here we actually need some
measure theory, and a particularly striking bit. (You will see that the measure p, as opposed to the algebras
Y and 2 and the homomorphism E — E* and the ideal of negligible sets, is simply not mentioned anywhere
else in the whole argument.)

(i) The central idea is to use the fact that bounded martingales converge to define da in terms of a
sequence of conditional expectations. Because I have chosen a fairly direct assault on the problem, some of
the surrounding facts are not perhaps so clearly visible as they might have been if I had used a more leisurely
route. For each a € 2, I start by choosing a representative G, € ¥; let me emphasize that this is a crude
application of the axiom of choice, and that the different sets G, are in no way coordinated. (The theorem
we are proving is that they can be coordinated, but we have not reached that point yet.) Next, I choose,
arbitrarily, a conditional expectation g,, of xG, on each ¥,. Once again, the choices are not coordinated;
but the martingale theorem assures us that g, = lim, . gqn is defined almost everywhere, and is equal
almost everywhere to xG, if a € B. Of course I could have gone to the g,, directly, without mentioning
the Gu; gan is a Radon-Nikodym derivative of the countably additive functional E — G(E®na): X%, — R.
Now the gqn, like the GG, are not uniquely defined. But they are defined ‘up to a negligible set’; so that any
alternative functions g/, would have g, =..c. gan- This means that the sets Hy,,(a) = {7 : gan(z) > 1-27F}
are also defined ‘up to a negligible set’, and consequently the sets Hyy, (@) = ¢ (Hgn(a)) are uniquely defined.
I point this out to show that it is not a complete miracle that we have formulae

Hyp(a) € Hyn (D) if a C b,
ﬁ;m(am b) 2 ~k+17n(a) N I~{k+1)n(b) foralla, be A
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which do not ask us to turn a blind eye to any negligible sets. I note in passing that I could have defined
the H,(a) without mentioning the g, ; in fact

Hin(a) = 8, (sup{c: c € B, i(and) > 1 —2%fid whenever d € B,, and d C c}).

(ii) Now, with the sets Hy,(a) in hand, we can look at
‘70« = mk21 UnEN ﬂmZn I:Ikn((l);

because gan — XGa a.e., VoAG, is negligible and V; = a for every a € A¢. The rest of the argument
amounts to checking that a — V, will serve for 6.

(f) The arguments above apply to all probability spaces, and show that every probability space has a
lower density. The next step is to convert a lower density into a lifting. It is here that we need to assume
completeness. The point is that we can find a Boolean homomorphism 6 : 21 — PX such that a C fa for
every a; this corresponds just to extending the ideals I, = {a : = € (1 \ a)} to maximal ideals (and giving
a moment’s thought to € X \ 01). In order to ensure that fa € ¥ and (fa)* = a, we have to observe that
fa is sandwiched between fa and X \ 6(1\ a), which differ by a negligible set; so that if p is complete all
will be well.

(g) The fact that completeness is needed at only one point in the argument makes it natural to wonder
whether the theorem might be true for probability spaces in general. (I will come later, in 341M, to non-
strictly-localizable spaces.) There is as yet no satisfactory answer to this. For Borel measure on R, the
question is known to be undecidable from the ordinary axioms of set theory (including the axiom of choice,
but not the continuum hypothesis, as usual); I will give the easy part of the argument in §535; see BURKE 93
for the rest. But I conjecture that there is a counter-example under the ordinary axioms (see 341Z below).

(h) Quite apart from whether completeness is needed in the argument, it is not absolutely clear why
measure theory is required. The general question of whether a lifting exists can be formulated for any triple
(X,X,7) where X is a set, ¥ is a o-algebra of subsets of X, and Z is a o-ideal of ¥. (See 341Ya below.)
S.Shelah has given an example of such a triple without a lifting in which two of the basic properties of the
measure-theoretic case are satisfied: (X,%,7) is ‘complete’ in the sense that every subset of any member of
7 belongs to ¥ (and therefore to 7), and 7 is wy-saturated in ¥ in the sense of 316C (see SHELAH 98). But
many other cases are known (e.g., 341Yb) in which liftings do exist.

(i) It is of course possible to prove 341K without mentioning ‘lower densities’, and there are even some
advantages in doing so. The idea is to follow the lines of 341H, but with ‘liftings’ instead of ‘lower densities’
throughout. The inductive step to a successor ordinal is actually easier, because we have a Boolean homo-
morphism 6 in 341F to extend, and we can use 3120 as it stands if we can choose the pair E, FF = X \ F
correctly. The inductive step to an ordinal of uncountable cofinality remains straightforward. But in the
inductive step to an ordinal of countable cofinality, we find that in 341G we get no help from assuming that
the 6,, are actually liftings; we are still led to a lower density §. So at this point we have to interpolate the
argument of 341J to convert this lower density into a lifting.

I have chosen the more leisurely exposition, with the extra concept, partly in order to get as far as possible
without assuming completeness of the measure and partly because lower densities are an important tool for
further work (see §§345-346).

(j) For more light on the argument of 341G see also 363Xe and 363Yf below.

341M I remarked above that the shift from probability spaces to general strictly localizable spaces
was simply a matter of technique. The question of which spaces have liftings is also primarily a matter
concerning probability spaces, as the next result shows.

Proposition Let (X, X, 1) be a complete locally determined space with X > 0. Then it has a lifting iff it
has a lower density iff it is strictly localizable.

D.H.FREMLIN



10 Liftings 341M

proof If (X, X, u) is strictly localizable then it has a lifting, by 341K. A lifting is already a lower density,
and if (X, ¥, ) has a lower density it has a lifting, by 341J. So we have only to prove that if it has a lifting
then it is strictly localizable.

Let 6 : 2 — X be a lifting, where 2 is the measure algebra of (X, 3, u). Let C be a partition of unity in
2 consisting of elements of finite measure (322Ea). Set A = {fc : ¢ € C'}. Because C is disjoint, so is A.
Because sup C = 1 in 2, every set of positive measure meets some member of A in a set of positive measure.
So the conditions of 2130a are satisfied, and (X, 3, ) is strictly localizable.

341N Extension of partial liftings The following facts are obvious from the proof of 341H, but it will
be useful to have them out in the open.

Proposition Let (X, X, i) be a probability space and T a o-subalgebra of X.

(a) Any partial lower density ¢ : T — ¥ has an extension to a lower density ¢ : ¥ — X.

(b) Suppose now that p is complete. If ¢g is a Boolean homomorphism, it has an extension to a lifting ¢
for p.

proof (a) In Part A of the proof of 341H, let 2 be the closed subalgebra of 2 generated by {E® : E €
T} U {a, : n <&}, and set gE* = ¢oF for every E € T. Proceed with the induction as before. The only
difference is that we no longer have a guarantee that ¢X = X.

(b) Suppose now that ¢ is a Boolean homomorphism and s is complete. 341J tells us that there is a
lifting ¢ : ¥ — ¥ such that ¢F 2 ¢F for every E € ¥. But if £ € T we must have ¢F 2 ¢oF,

PEN\ QoE = ¢EN ¢o(X \ E) CoENG(X \ E) =0,
so that ¢F = ¢oF, and ¢ extends ¢g.

3410 Liftings and Stone spaces The arguments of this section so far involve repeated use of the
axiom of choice, and offer no suggestion that any liftings (or lower densities) are in any sense ‘canonical’.
There is however one context in which we have a distinguished lifting. Suppose that we have the Stone
space (Z,T,v) of a measure algebra (2, ); as in 311E, I think of Z as being the set of surjective Boolean
homomorphisms from 2 to Zg, so that each a €  corresponds to the open-and-closed set @ = {z : z(a) = 1}.
Then we have a lifting 6 : 2 — T defined by setting 6a = a for each a € 2. (I am identifying 2 with the
measure algebra of v, as in 321J.) The corresponding lifting ¢ : T — T is defined by taking ¢F to be that
unique open-and-closed set such that EAQF is negligible (or, if you prefer, meager).

Generally, liftings can be described in terms of Stone spaces, as follows.

341P Proposition Let (X, X, 1) be a measure space, (2, ) its measure algebra, and (Z, T, v) the Stone
space of (2, i) with its canonical measure.
(a) There is a one-to-one correspondence between liftings 6 : A — ¥ and functions f : X — Z such that
f~a] € ¥ and (f~1[a])* = a for every a € A, defined by the formula
fa = f~1[a] for every a € 2.

(b) If (X, ¥, 1) is complete and locally determined, then a function f : X — Z satisfies the conditions of
(a) iff () it is inverse-measure-preserving (£) the homomorphism it induces between the measure algebras
of p and v is the canonical isomorphism defined by the construction of Z.

proof Recall that T is just the set {aAM :a € A, M C Z is meager}, and that v(@aAM) = fia for all such
a, M; while the canonical isomorphism 7 between 2 and the measure algebra of v is defined by the formula

7F* = a whenever F' € T, a € 2l and FAa is meager
(341K).

(a) If 0 : A — X is any Boolean homomorphism, then for every x € X we have a surjective Boolean
homomorphism fy(z) : A — Zs defined by saying that fo(z)(a) =1 if x € fa, 0 otherwise. fp is a function
from X to Z. We can recover 6 from fy by the formula

Oa={x: fo(z)(a) =1} = {z: fo(a) € a} = f '[al.
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So f, '[a] € ¥ and, if 0 is a lifting,
(fo '[al)* = (6a)* =a.

for every a € 2.

Similarly, given a function f: X — Z with this property, then we can set fa = f~1[a] for every a € 2 to
obtain a lifting 0 : 2 — X; and of course we now have

f(@)(a)=1 < f(z)€ea < =z € ba,
so fo = [
(b) Assume now that (X, X, 1) is complete and locally determined.

(i) Let f : X — Z be the function associated with a lifting 0, as in (a). I show first that f is inverse-
measure-preserving. B If I € T, express it as aAM, where a € A and M C Z is meager. By 322F, 2 is
weakly (o, 00)-distributive, so M is nowhere dense (3161). Consider f~![M]. If E C X is measurable and
of finite measure, then E N f~![M] has a measurable envelope H (132Ee). ? If uH > 0, then b = H* # 0
and b is a non-empty open set in Z. Because M is nowhere dense, there is a non-zero a € 2 such that
acC 3\ M. Now ,u(ffl[E]AH) =0, so f~![a] \ H is negligible, and f~'[a]N H is a non-negligible measurable
set disjoint from E N f~'[M] and included in H; which is impossible. X Thus H and E N f~[M] are
negligible. This is true for every measurable set E of finite measure. Because p is complete and locally
determined, f~![M] € ¥ and pf~[M] =0. So f~[F] = f~t[a]Af~[M] is measurable, and

pf=HF) = pf~tal = pba = fia = va = vF.
As F is arbitrary, f is inverse-measure-preserving. Q
It follows at once that for any F € T,
fUF]* =a=nF"
where a is that element of 2 such that M = F/Aa is meager, because in this case f~1[a]* = a, by (a), while

f~Y[M] is negligible. So 7 is the homomorphism induced by f.

(ii) Now suppose that f : X — Z is an inverse-measure-preserving function such that f~1[F|* = 7F*
for every F' € T. Then, in particular,

flal* =na* =a

for every a € 2, so that f satisfies the conditions of (a).

341Q Corollary Let (X, 3, i) be a strictly localizable measure space, (2, i) its measure algebra, and
Z the Stone space of 2A; suppose that uX > 0. For E € ¥ write E* for the open-and-closed subset of Z
corresponding to E* € 2. Then there is a function f : X — Z such that EAf~1[E*] is negligible for every
E € 3. If p is complete, then f is inverse-measure-preserving.

proof Let i be the completion of u, and 3 its domain. Then we can identify (2(, &) with the measure
algebra of fi (322Da). Let 6 : 2 — 3 be a lifting, and f : X — Z the corresponding function. If E € ¥ then
E* =@ where a = E*, so EAf~'[E*] = EAOE* is negligible. If y is itself complete, so that 3 = X, then f
is inverse-measure-preserving, by 341Pb.

341X Basic exercises (a) Let (X, X, i) be a measure space and ¢ : ¥ — ¥ a function. Show that ¢ is
a lifting iff it is a lower density and ¢E U ¢(X \ E) = X for every E € X.

>(b) Let vy be the usual measure on X = {0,1}", and Ty its domain. For x € X and n € N set
Un(z) ={y:y € X, yIn=2[n}. For E € Ty set ¢F = {x : lim, oo 2"u(E N Uy(z)) = 1}. Show that ¢ is
a lower density for vy.

>(c) Let 2 be a Boolean algebra, I an ideal of 2, and 98 a countable subalgebra of the quotient algebra
/1. Show that there is a Boolean homomorphism 6 : 8 — 2 such that (6b)* = b for every b € B. (Hint:
let (b,)nen run over B; let B, be the subalgebra of B generated by {b; : i < n}; given 6[9B,,, show that
there is an a,, € 2 such that a?, = b, and 0V’ C a,, C 00" whenever V', V" € B,, and b’ C b, C b".)

D.H.FREMLIN



12 Liftings 341Xd

>(d) Let P be the set of all lower densities of a complete measure space (X, 3, ), with measure algebra
2, ordered by saying that § < 0" if fa C 0'a for every a € A. Show that any non-empty totally ordered
subset of P has an upper bound in P. Show that if § € P, a € A\ {0} and z € X \ (Ba U 8(1\ a)), then
¢ : A — X is a lower density, where 8'b = 6b U {x} if either a C b or there is a ¢ € 2 such that z € fc and
anc Cb, and §'b = 0b otherwise. Hence prove 341J.

(e) Let (X,%, u) and (Y, T, v) be measure spaces and suppose that there is an inverse-measure-preserving
function f : X — Y such that the associated homomorphism from the measure algebra of v to that of
(324M) is an isomorphism. Show that for every lifting ¢ for (Y, T,v) we have a corresponding lifting + of
(X, X, 1) defined uniquely by the formula

W(fHF)) = f[¢F)] for every F € T.

(f) Let (X, X, 1) be a measure space, and write L>(X) for the linear space of all bounded X-measurable
functions from X to R. Show that for any lifting ¢ : ¥ — X of p there is a unique linear operator
T : L>®(u) — £2°(X) such that T(xE)® = x(¢F) for every E € 3 and Tu > 0 in £°°(X) whenever « > 0 in
L (). Show that (i) (Tw)® = v and sup,¢ x |[(Tu)(x)| = ||u|e for every u € L () (ii) T(uxv) = TuxTv
for all u, v € L*™(u).

(g) Let p be Lebesgue measure on [0,1]. Write leL for the linear space of integrable functions f :
[0,1] — R. Show that there is no operator T': L'(u) — L3, such that (i) (T'u)* = u for every u € L* () (ii)
Tu > Tv whenever u > v in L'(u). (Hint: Let F C L3, be the countable set {nx[27"k,27"(k+1)] : n € N,
k < 2"}. Show that if T satisfies (i) then there is an x € {0,1}" such that T(f*)(x) = f(z) for every f € F;
find a sequence (f,)nen in F such that {f3 : n € N} is bounded above in L'(p) but sup,,cy fn(z) = 00.)

341Y Further exercises (a) Let X be a set, & an algebra of subsets of X and Z an ideal of ¥; let
2A be the quotient Boolean algebra ¥/Z. We say that a function 0 : 2 — X is a lifting if it is a Boolean
homomorphism and (6a)* = a for every a € 2, and that § : 2 — X is a lower density if 60 = 0,
0(anb) =0angbfor all a, b € A, and (fa)* = a for every a € .

Show that if (X,%,7) is ‘complete’ in the sense that F' € ¥ whenever FF C F € Z, and if X ¢ Z, and
0 : A — X is a lower density, then there is a lifting 6 : 2l — X such that fa C fa for every a € .

(b) Let X be a Baire space, B the Baire-property algebra of X (314Yd) and M the ideal of meager
subsets of X. Show that there is a lifting 6 from B/M to B such that 6G* 2 G for every open G C X.
(Hint: in 341Ya, set §(G*) = G for every regular open set G.)

(c) Let (X,X, ) be a Maharam-type-homogeneous probability space with Maharam type x > w. Let
Ba, be the Baire o-algebra of Y = {0, 1}, that is, the o-algebra of subsets of ¥ generated by the family
{{z : 2(§) =1} : £ < K}, and let v be the restriction to Ba, of the usual measure on {0, 1}*. Show that there
is an inverse-measure-preserving function f : X — Y which induces an isomorphism between the measure
algebras of p and v.

(d) Let (X, X, 1) be a complete Maharam-type-homogeneous probability space with Maharam type x > w,
and give Y = {0,1}" its usual measure v,. Show that there is an inverse-measure-preserving function
f X — Y which induces an isomorphism between the measure algebras of u and v.

*(e) Give an example of a complete probability space (X, X, i), a subalgebra T of ¥, and a partial lower
density ¢ : T — X which has no extension to a lower density for p. (Hint: There is a subset of {0,1}, with
cardinal ¢, which is non-negligible for the usual measure on {0,1}¢.)

(f) Let 2 be a Dedekind o-complete Boolean algebra and (a;);ec; a family in 2(. Let Ba; be the Baire
o-algebra of Y = {0,1}!, that is, the o-algebra of subsets of Y generated by the family {F; : i € I} where
E,={y:yeY,y(i) =1} for i € I. Show that there is a unique sequentially order-continuous Boolean
homomorphism ¢ : Ba; — 2 such that ¢E; = a; for every i € I, and that ¢[Ba;] is the o-subalgebra of 2
generated by {a; : i € I}.
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3417 Problems (a) Can we construct, using the ordinary axioms of mathematics (including the axiom
of choice, but not the continuum hypothesis), a probability space (X, ¥, u) with no lifting?

(b) Set £ = ws. (There is a reason for taking ws here; see 535E in Volume 5.) Let Ba, be the Baire
o-algebra of {0,1}" (as in 341Yc), and p the restriction to Ba,, of the usual measure on {0,1}". Can we
show that p has no lifting?

341 Notes and comments Innumerable variations of the proof of 341K have been devised, as each author
has struggled with the technical complications. I have discussed the reasons for my own choices in 341L.

The theorem has a curious history. It was originally announced by von Neumann, but he seems never to
have written his proof down, and the first published proof is that of MAHARAM 58. That argument is based
on Maharam’s theorem, 341Xe and 341Yd, which show that it is enough to find liftings for every {0, 1}";
this requires most of the ideas presented above, but feels more concrete, and some of the details are slightly
simpler. The argument as I have written it owes a great deal to IONESCU TULCEA & IONESCU TULCEA 69.

The lifting theorem and Maharam’s theorem are the twin pillars of modern abstract measure theory. But
there remains a degree of mystery about the lifting theorem which is absent from the other. The first point
is that there is nothing canonical about the liftings we can construct, except in the quite exceptional case
of Stone spaces (3410). Even when there is a more or less canonical lower density present (341E, 341Xb),
the conversion of this into a lifting requires arbitrary choices, as in 341J. While we can distinguish some
liftings as being somewhat more regular than others, I know of no criterion which marks out any particular
lifting for Lebesgue measure, for instance, among the rest. Perhaps associated with this arbitrariness is the
extreme difficulty of deciding whether liftings of any given type exist. Neither positive nor negative results
are easily come by (I will present a few in the later sections of this chapter), and the nature of the obstacles
remains quite unclear.

Version of 9.7.10

342 Compact measure spaces

The next three sections amount to an extended parenthesis, showing how the Lifting Theorem can be used
to attack one of the fundamental problems of measure theory: the representation of Boolean homomorphisms
between measure algebras by functions between appropriate measure spaces. This section prepares for the
main idea by introducing the class of ‘locally compact’ measures (342Ad), with the associated concepts of
‘compact’ and ‘perfect’ measures (342Ac, 342K). These depend on the notions of ‘inner regularity’ (342Aa,
342B) and ‘compact class’ (342Ab, 342D). I list the basic permanence properties for compact and locally
compact measures (342G-342I) and mention some of the compact measures which we have already seen
(342J). Concerning perfect measures, I content myself with the proof that a locally compact measure is
perfect (342L). I end the section with two examples (342M, 342N).

342A Definitions (a) Let (X, X, 1) be a measure space. If  C PX, I will say that u is inner regular
with respect to K if

uE =sup{pK: K e KNnX, K CE}

for every E € 3.

Of course p is inner regular with respect to I iff it is inner regular with respect to NX. It is convenient
in this context to interpret sup () as 0, so that we have to check the definition only when uF > 0, and need
not insist that 0 € K.

(b) A family K of sets is a compact class if (\K' # () whenever K’ C K has the finite intersection
property.

Note that any subset of a compact class is again a compact class. (In particular, it is convenient to allow
the empty set as a compact class.)

(©) 2001 D. H. Fremlin

D.H.FREMLIN



14 The lifting theorem 342Ac

(c) A measure space (X,X, ), or a measure y, is compact if u is inner regular with respect to some
compact class of subsets of X.

Allowing @ as a compact class, and interpreting sup @) as 0 in (a) above, i is a compact measure whenever
puX =0.

(d) A measure space (X,X, u), or a measure p, is locally compact if the subspace measure pg is
compact whenever F € ¥ and pE < oc.

Remark I ought to point out that the original definitions of ‘compact class’ and ‘compact measure’ (MAR-
CZEWSKI 53) correspond to what I will call ‘countably compact class’ and ‘countably compact measure’ in
Volume 4. For another variation on the concept of ‘compact class’ see condition (5) in 343B(ii)-(iii).

For examples of compact measure spaces see 342J and 342Xf.

342B 1 prepare the ground with some straightforward lemmas.

Lemma Let (X, X, 1) be a measure space, and K C ¥ a set such that whenever £ € ¥ and pFE > 0 there
is a K € K such that K C E and uK > 0. Let £ € X.

(a) There is a countable disjoint set /Cy C K such that K C F for every K € Ky and pu(|JKy1) = pE.

(b) If uE < oo then u(E\UK;1) =0.

(c) In any case, there is for any v < pE a finite disjoint Ky C K such that K C E for every K € Ky and
w(UKo) > 7.

proof Set K'={K: K € K, K C E, uK > 0}. Let K* be a maximal disjoint subfamily of X'. If K* is
uncountable, then there is some n € N such that {K : K € K*, uK > 27"} is infinite, so that there is a
countable K3 C K* such that pu(|JK1) = 0o = pFE.

If K£* is countable, set Xy = K*. Then F' = |JK; is measurable, and FF C E. Moreover, there is no
member of K’ disjoint from F; but this means that F \ F must be negligible. So uF = pF, and (a) is true.
Now (b) and (c) follow at once, because

w(UJK1) = sup{u(JKo) : Ko C K is finite}.

Remark This lemma can be thought of as more versions of the principle of exhaustion; compare 215A.

342C Corollary Let (X, X, 1) be a measure space and K C PX a family of sets such that (o) KUK’ € K
whenever K, K' € K and KN K’ = ( (8) whenever E € ¥ and puE > 0, there is a K € K N X such that
K C E and pK > 0. Then p is inner regular with respect to K.

proof Apply 342Bc to X N 3.

342D Lemma Let X be a set and K a family of subsets of X.
(a) The following are equiveridical:
(i) K is a compact class;
(ii) there is a topology ¥ on X such that X is compact and every member of K is a closed set for ¥.
(b) If K is a compact class, so are the families K1 = {KoU... UK, : Kq,... ,K, € K} and Ko = {K':
0+#K CK}.

proof (a)(i)=-(ii) Let T be the topology generated by {X \ K : K € K}. Then of course every member of
K is closed for ¥. Let F be an ultrafilter on X. Then N F has the finite intersection property; because
is a compact class, it has non-empty intersection; take z € X N (X N F). The family

{G:G C X, either G € F or z ¢ G}

is easily seen to be a topology on X, and contains X \ K for every K € K (because if X \ K ¢ F then
K € F and z € K), so includes ¥; but this just means that every T-open set containing x belongs to F,
that is, that F — . As F is arbitrary, X is compact for T (2A3R).

(ii)=(i) Use 3A3Da.

(b) Let ¥ be a topology on X such that X is compact and every member of K is closed for ¥; then the
same is true of every member of Ky or KCs.
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342E Corollary Suppose that (X, X, ) is a measure space and that K is a compact class such that
whenever E € ¥ and puFE > 0 there is a K € K N X such that K C F and pK > 0. Then u is compact.

proof Set K1 = {KyU...UK, : Ky,...,K, € K}. By 342Db, K; is a compact class, and by 342C p is
inner regular with respect to ;.

342F Corollary A measure space (X, ) is compact iff there is a topology on X such that X is
compact and p is inner regular with respect to the closed sets.

proof (a) If y is inner regular with respect to a compact class I, then there is a compact topology on X
such that every member of K is closed (342Da); now the family F of closed sets includes K, so p is also
inner regular with respect to F.

(b) If there is a compact topology on X such that p is inner regular with respect to the family I of
closed sets, then this is a compact class, so p is a compact measure.

342G Now I look at the standard questions concerning preservation of the properties of ‘compactness’
or ‘local compactness’ under the usual manipulations.

Proposition (a) Any measurable subspace of a compact measure space is compact.
(b) The completion and c.l.d. version of a compact measure space are compact.
(¢) A semi-finite measure space is compact iff its completion is compact iff its c.l.d. version is compact.
(d) The direct sum of a family of compact measure spaces is compact.
(e) The c.l.d. product of two compact measure spaces is compact.
(f) The product of any family of compact probability spaces is compact.

proof (a) Let (X, X, 1) be a compact measure space, and F € X. If K is a compact class such that y is
inner regular with respect to K, then Kz = KNPE is a compact class (just because it is a subset of ) and
the subspace measure pg is inner regular with respect to Kg.

(b) Let (X, %, 1) be a compact measure space. Write (X, %, 1) for either the completion or the c.l.d.
version of (X, X, u). Let £ C PX be a compact class such that u is inner regular with respect to K. Then
fi also is inner regular with respect to K. P If E € ¥ and v < jiE there is an E’ € ¥ such that B/ C E
and pE’ > ~; if [i is the c.1.d. version of u, we may take pFE’ to be finite. There is a K € K NX such that
KCE and uK >~. Now ik =pK >~yand K CEand K € KNY. Q

(c) Now suppose that (X, X, i) is semi-finite; again write (X, ¥, 1) for either its completion or its c.l.d.
version. We already know that if u is compact, so is . If i is compact, let K C PX be a compact class
such that f is inner regular with respect to K. Set K* = {K' : 0 # K’ C K}; then K£* is a compact class
(342DDb). Now g is inner regular with respect to K*. I Take E' € ¥ and v < pE. Choose (Ep)nen, (Kn)nen
as follows. Because p is semi-finite, there is an Fg C E such that Ey € ¥ and v < pFy < co. Given E,, € &
such that pFE, >, thereis a K,, € KNY such that K,, C E,, and 1K, > ~. Now there is an F,, 1 € X such
that E, 1 C K, and pE, 41 > . Continue. On completing the induction, set K = (o Kn = [en En,
so that K € K*NY and K C E and pK = lim, o pFE, > . As E and + are arbitrary, u is inner regular
with respect to K*. Q As K* is a compact class, p is a compact measure.

(d) Let ((X;,%;, pi))ier be a family of compact measure spaces, with direct sum (X,¥, ). We may
suppose that each X; is actually a subset of X, with u; the subspace measure. For each i € I let K; C PX;
be a compact class such that p; is inner regular with respect to ;. Then K = (J,.; K; is a compact class, for
if K’ C K has the finite intersection property, then K’ C I; for some 4, so has non-empty intersection. Now
if E € ¥ and puFE > 0 there is some ¢ € I such that p;(FNX;) >0, and wecan finda K e K, NYE; CKNX
such that K C EN X; and p; K > 0, in which case uK > 0. By 342E, u is compact.

(e) Let (X,%, u) and (Y, T, v) be two compact measure spaces, with c.l.d. product measure (X x Y, A, \).
Let ¥, & be topologies on X, Y respectively such that X and Y are compact spaces and u, v are inner
regular with respect to the closed sets. Then the product topology on X x Y is compact (3A3J).

The point is that A is inner regular with respect to the family IC of closed subsets of X x Y. I Suppose
that W € A and AW > ~. Then there are E € X, F' € T such that uE < oo, vF < co and A(WN(EXF)) > v
(251F). Now there are sequences (Fy)nen, (Fn)nen in X, T respectively such that
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16 The lifting theorem 342G
(EXF)\WgUnENEn XF’n)

S By vF, < A(Ex F)\W)+A(E x F)NW) —~ = A(E x F) — v
(251C). Set

W' = (E X F)\ Upen En X Fy = N,en((E X (F\ F))U((E\ E,) x F)).
Then W/ C W, and

ME X F)\W') < MUpew En X Fn) < Y0 g uEy - vF, < ME X F) — 7,

so AW’ > ~.
Set € = T(AW' = 5)/(1 4+ pE + pF). For each n, we can find closed measurable sets K,,, K, C X and
L., L), CY such that

K, CE, uwFE\K,) <2 ",
L, CF\F,, v((F\F,)\L,) <27,
Kv/z cE \ Enp, N((E\En) \Krlz) < 27",

L,CF, u(F\L,) <2

Set
V = ﬂneN(Kn x LI)U (K], xL,) CW CW.
Now
WAV C | J(E\Kn) x F)U(E x (F\ F,)\ L))
neN
U(E\ En) \ K;,) x F)U(E x (F'\ L)),
SO

AW\V) <> w(E\K,) - vF + pE-v((F\ F,)\ L},)
n=0
+u(E\Ey)\ K) - vE + pE - v(F\ Ly)

<> 27"e(2uE + 2uF) < AW’ — 7,
n=0
and \V > ~. But V is a countable intersection of finite unions of products of closed measurable sets, so is

itself a closed measurable set, and belongs to LN A. Q
Accordingly the product topology on X x Y witnesses that A is a compact measure.

(f) The same method works. In detail: let ((X;,X;, p;))icr be a family of compact probability spaces,
with product (X, A, ). For each i, let T; be a topology on X; such that X; is compact and p; is inner
regular with respect to the closed sets. Give X the product topology; this is compact. If W € A and € > 0,
let (Cy)nen be a sequence of measurable cylinders (in the sense of 254A) such that X \ W C J,,c Crn and
ZZOZO ACy, < MX\W)+e. Express each O, as [[,c; Eni where Ey; € X; for each i and J,, = {i : En; # X}
is finite. For n € N set ¢,, = 27"¢/(1 + #(J,,)). Choose closed measurable sets K,,; C X; \ E,; such that
wi((Xi\ Eni) \ Kni) < €, whenever n € N and i € J,,. For each n € N, set

Vi =Ujes {z 7€ X, 2(i) € Kni},
so that V,, is a closed measurable subset of X. Observe that
X\V,={x:23) € X\ Ky forieJ,}
includes C,,, and that
AMXN\N (VaUCh)) <D ics Mz i2(i) € Xi \ (Kni UEn)} <) ic; en <277

MEASURE THEORY



342J Compact measure spaces 17

Now set V =N V,; then V is again a closed measurable set, and

X\vcy CrU X\ (CrLUW,)

neN

neN
has measure at most

ZZO:O AC, +27"e <1 — AW + €+ 2e,

so AV > AW — 3e. As W and e are arbitrary, A is inner regular with respect to the closed sets, and is a
compact measure.

342H Proposition (a) A compact measure space is locally compact.

(b) A strictly localizable locally compact measure space is compact.

(c) Let (X, X, 1) be a measure space. Suppose that whenever E € ¥ and pE > 0 there is an F' € ¥ such
that FF C E, uF' > 0 and the subspace measure on F' is compact. Then p is locally compact.

proof (a) This is immediate from 342Ga and the definition of ‘locally compact’ measure space.

(b) Suppose that (X,3%, pu) is a strictly localizable locally compact measure space. Let (X;);c; be a
decomposition of X, and for each i € I let u; be the subspace measure on X;. Then p; is compact. Now p
can be identified with the direct sum of the pu;, so itself is compact, by 342Gd.

(c) Write F for the set of measurable sets F' C X such that the subspace measures pup are compact.
Take E € ¥ with uE < co. By 342Bb, there is a countable disjoint family (F;);c; in F such that F; C E
for each i, and F' = E'\ |J,¢; Fi is negligible; now this means that ' € F (342Ac), so we may take it that
E = ;¢ Fi- In this case pp is isomorphic to the direct sum of the measures pp, and is compact. As F is
arbitrary, p is locally compact.

3421 Proposition (a) Any measurable subspace of a locally compact measure space is locally compact.

(b) A measure space is locally compact iff its completion is locally compact iff its c.l.d. version is locally
compact.

(¢) The direct sum of a family of locally compact measure spaces is locally compact.

(d) The c.l.d. product of two locally compact measure spaces is locally compact.

proof (a) Trivial: if (X, X, u) is locally compact, and E € ¥, and FF C E is a measurable set of finite
measure for the subspace measure on FE, then F' € ¥ and pF < oo, so the subspace measure on F is
compact.

(b) Let (X, 3, 1) be a measure space, and write (X, %, /1) for either its completion or its c.l.d. version.

(i) Suppose that 4 is locally compact, and that @F < co. Then there is an E € ¥ such that £ C F
and pF = [iF. Let ug be the subspace measure on E induced by the measure u; then we are assuming that
wg is compact. Let K C PE be a compact class such that pp is inner regular with respect to /C. Then, as
in the proof of 342Gb, the subspace measure fir on F' induced by fi is also inner regular with respect to C,
so fip is compact; as F' is arbitrary, j is locally compact.

(ii) Now suppose that fi is locally compact, and that uE < oo. Then the subspace measure fig is
compact. But this is just the completion of the subspace measure g, so pg is compact, by 342Gc; as E is
arbitrary, p is locally compact.

(c) Put (a) and 342Hc together.

(d) Let (X, 3, ) and (Y, T,v) be locally compact measure spaces, with product (X x YA, A). T W € A
and AW > 0, there are E € 3, F € T such that uE < oo, vF < co and AW N (E x F)) > 0. Now the
subspace measure Agx g induced by A on E X F is just the product of the subspace measures (251Q(ii-v)),
so is compact, and the subspace measure Ay (gxr) is therefore again compact, by 342Ga. By 342Hc, this
is enough to show that X is locally compact.

342J Examples It is time I listed some examples of compact measure spaces.

(a) Lebesgue measure on R" is compact. (Let K be the family of subsets of R™ which are compact for
the usual topology. By 134Fb, Lebesgue measure is inner regular with respect to K.)
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18 The lifting theorem 342Jb

(b) Similarly, any Radon measure on R” (256A) is compact.

(c) If (2, ) is any semi-finite measure algebra, the standard measure v on its Stone space Z is compact.
(By 322Ra, v is inner regular with respect to the family of open-and-closed subsets of Z, which are all
compact for the standard topology of Z, so form a compact class.)

(d) The usual measure on {0,1}! is compact, for any set I. (It is obvious that the usual measure on
{0,1} is compact; now use 342Gf.)

Remark Actually all these measures are ‘Radon’ in the sense of Volume 4.

342K One of the most important properties of (locally) compact measure spaces has been studied under
the following name.

Definition Let (X, ¥, 1) be a measure space. Then (X, X, 1), or u, is perfect if whenever f : X — R is
measurable, E € ¥ and uE > 0, then there is a compact set K C f[E] such that uf~![K] > 0.

342L Theorem A semi-finite locally compact measure space is perfect.

proof Let (X,X, ) be a semi-finite locally compact measure space, f : X — R a measurable function,
and E € ¥ a set of non-zero measure. Because p is semi-finite, there is an F' € ¥ such that F C E and
0 < uF' < co. Now the subspace measure pp is compact; let ¥ be a topology on F' such that F' is compact
and pp is inner regular with respect to the family K of closed sets for .

Let (€q)qeq be a family of strictly positive real numbers such that qu(@ €q < %,uF. (For instance, you
could set €4(,) = 27" ?uF where (g(n))nen is an enumeration of Q.) For each ¢ € Q, set E; = {z : x €
F, f(x) < q}, By = {x: 2 € F, f(x) > q}, and choose K,, K, € KNX such that K, C E,, K, C E|,
W(Eq \ Kq) < eq and p(E; \ Kg) < €g. Then K = oKUK ) € KNE, K C F and

WEN\K) <3 eqm(Bq \ Kq) + p(E \ Kj) < pF,
so K > 0.

The point is that f[K is continuous. I For any ¢ € Q, {z : z € K, f(z) < ¢} = KN K, and
{r:2e kK, flx) >q} = KNK,. If HCRisopen and z € K N f~Y[H], take q, ¢ € Q such that
f(z) €lg,q'] € H; then G = K \ (K, U K],) is a relatively open subset of K containing x and included in
f7Y[H]. Thus K N f~1[H] is relatively open in K; as H is arbitrary, f| K is continuous. Q

Accordingly f[K] is a continuous image of a compact set, therefore compact; it is a subset of f[E], and
wfYfIK]] > pK > 0. As f and E are arbitrary, u is perfect.

342M T ought to give examples to distinguish between the concepts introduced here, partly on general
principles, but also because it is not obvious that the concept of ‘locally compact’ measure space is worth
spending time on at all. It is easy to distinguish between ‘perfect’ and ‘(locally) compact’; ‘locally compact’
and ‘compact’ are harder to separate.

Example Let X be an uncountable set and p the countable-cocountable measure on X (211R). Then p is
perfect but not compact or locally compact.

proof (a) If f : X — R is measurable and F C X is measurable, with measure greater than 0, set
A={{a:a e R {z:ze X, f(x) < a} is negligible}. Then a € A whenever « < 8 € A. Since
X =U,eniz : f(x) < n}, there is some n such that n ¢ A, in which case A is bounded above by n. Also
there is some m € N such that {z : f(z) > —m} is non-negligible, in which case it must be conegligible, and
—m € A, so Ais non-empty. Accordingly v = sup A is defined in R. Now for any k € N, {z : f(z) <vy—27*%}
is negligible, so {z : f(z) < 7} is negligible. Also, for any k, {z : f(z) < v+ 27%} is non-negligible, so
{z : f(z) > v+ 27%} must be negligible; accordingly, {x : f(z) > 7} is negligible. But this means that
{z : f(x) = v} is conegligible and has measure 1. Thus we have a compact set K = {vy} such that
wuf K] =1, and v must belong to f[E]. As f and E are arbitrary, u is perfect.

(b) w is not compact. P? Suppose, if possible, that £ C PX is a compact class such that u is inner
regular with respect to K. Then for every x € X there is a measurable set K, € K such that K, C X \ {z}
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and pK, > 0, that is, K, is conegligible. But this means that {K, : ¢ € X} must have the finite intersection
property; as it also has empty intersection, I cannot be a compact class. XQ

(c) Because p is totally finite, it cannot be locally compact.

Remark See also 342X (n-viii).

*342N Example There is a complete locally determined localizable locally compact measure space which
is not compact.

proof (a) I refer to the example of 216E. In that construction, we have a set I and a family (z,)yec in
X = {0,1}! such that for every D C C there is an i € I such that D = {v: 2.,(i) = 1}; moreover, #(C) > «.
The o-algebra ¥ is the family of sets £ C X such that for every v there is a countable set J C I such that
{z:2]J =x,[J} is a subset of either E or X \ E; and for E € ¥, pE is #({v : «, € E}) if this is finite, oo
otherwise. Note that any subset of X determined by coordinates in a countable set belongs to X.

For each v € C, let i, € I be such that z,(iy) = 1, 5(iy) = 0 for 6 # . (In 216E I took I to be PC,
and i, would be {v}.) Set

Y={z:2eX, {y:7v€C, z(iy) = 1} is finite}.
Give Y its subspace measure py with domain ¥y . Then uy is complete, locally determined and localizable

(214Ie). Note that z, € Y for every v € C.

(b) py is locally compact. B Suppose that F' € Yy and py F' < co. If py F = 0 then surely the subspace
measure pup is compact. Otherwise, we can express F' as ENY where F € ¥ and uFE = puyF. Then
D={y:z,€ E}={y:x2, € F} is finite. For v € D set

G, ={z:2v€ X, 2(iy) =1, 2(is) = 0 for every 6 € D\ {7}} € %,

Ky={K:z,e KCFNG.}.

Then each IC, is a compact class, and members of different K, ’s are disjoint, so £ = J
class.

Now suppose that H belongs to the subpsace o-algebra X r and upH > 0. Then there is a v € D such
that z., € H, so that H NG, € KNXp and pp(H NGY) > 0. By 342E, this is enough to show that up is
compact. As F' is arbitrary, py is locally compact. Q

eD K, is a compact

(c) py is not compact. PP? Suppose, if possible, that py is inner regular with respect to a compact class
K CPY. Foreach v € C set Gy = {z : z € X, z(i,) = 1}, so that 2, € G, € ¥ and puy (G, NY) = 1.
There must therefore be a K, € K such that K, € G,NY and puy K, =1 (since py takes no value in ]0, 1[).
Express K, as Y N E,, where £, € X, and let J, C I be a countable set such that

E,D{z:ze X, z|J, =z,]J5}.

At this point I call on the full strength of 2A1P. There is a set B C (', with cardinal greater than ¢, such
that x[J, N Js = zs[Jy N Js for all v, 6 € B. But this means that, for any finite set D C B, we can define
x € X by setting

x(i) = 2,(8) if « € D, i € Jg,
=0ifiel)\ U Ja.

a€D
It is easy to check that {v:v € C, z(iy) = 1} = D, so that z € Y; but now
€Y NNaep Ba = Naep Ka-

What this shows is that {K, : a € B} has the finite intersection property. It must therefore have
non-empty intersection; say

Yy € moceB K(l g ﬂaEB GO"
But now we have a member y of Y such that {7 : y(iy) = 1} O B is infinite, contrary to the definition of Y.
xXQ
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20 The lifting theorem 342X

342X Basic exercises >(a) Show that a measure space (X,X,u) is semi-finite iff p is inner regular
with respect to {E : uE < oo}.

(b) Find a proof of 342B based on 215A.

(c) Let (X, X, u) be a locally compact semi-finite measure space in which all singleton sets are negligible.
Show that it is atomless.

(d) Let (X,X, 1) be a measure space, and v an indefinite-integral measure over u (234J!). Show that v
is compact, or locally compact, if p is. (Hint: if K satisfies the conditions of 342E with respect to p, then
it satisfies them for v.)

(e) Let f: R — R be any non-decreasing function, and vy the corresponding Lebesgue-Stieltjes measure.
Show that vy is compact. (Hint: 256Xg.)

(f) Let p be Lebesgue measure on [0, 1], v the countable-cocountable measure on [0,1], and A their c.1.d.
product. Show that A is a compact measure. (Hint: let K be the family of sets K x A where A C [0,1] is
cocountable and K C A is compact.)

(g)(i) Give an example of a compact probability space (X, %, 1), a set Y and a function f: X — Y such
that the image measure pf~! is not compact. (ii) Give an example of a compact probability space (X, ¥, p1)
and a o-subalgebra T of ¥ such that (X, T, 4| T) is not compact. (Hint: 342Xf.)

(h) Let (X,3, 1) be a perfect measure space, and f : X — R a measurable function. Show that the
image measure pf ! is inner regular with respect to the compact subsets of R, so is a compact measure.

(i) Let (X, X, 1) be a o-finite measure space. Show that it is perfect iff for every measurable f : X — R
there is a Borel set H C f[X] such that f~![H] is conegligible in X. (Hint: 342Xh for ‘only if’, 256C for
4f7.)

(J) Let (X, X, 1) be a complete totally finite perfect measure space and f : X — R a measurable function.
Show that the image measure uf~! is a Radon measure, and is the only Radon measure on R for which f
is inverse-measure-preserving. (Hint: 256G.)

(k) Suppose that (X,X, u) is a perfect measure space. (i) Show that if (Y, T,v) is a measure space,
and f : X — Y is a function such that f~![F] € ¥ for every FF € T and f~![F] is p-negligible for every
v-negligible set F, then (Y, T,v) is perfect. (ii) Show that if T is a o-subalgebra of ¥ then (X, T, u[T) is
perfect.

(D) Let (X, X, i) be a perfect measure space such that ¥ is the o-algebra generated by a sequence of sets.
Show that  is compact. (Hint: if ¥ is generated by {E, : n € N}, set f = > /37"xE, and consider
{f7YK]: K C f[X] is compact}.)

(m) Let (X,3, 1) be a semi-finite measure space. Show that p is perfect iff 4T is compact for every
countably generated o-subalgebra T of 3.

(n) Show that (i) a measurable subspace of a perfect measure space is perfect (ii) a semi-finite measure
space is perfect iff all its totally finite subspaces are perfect (iii) the direct sum of any family of perfect
measure spaces is perfect (iv) the c.l.d. product of two perfect measure spaces is perfect (hint: put 342Xm
and 342Ge together) (v) the product of any family of perfect probability spaces is perfect (vi) a measure
space is perfect iff its completion is perfect (vii) the c.l.d. version of a perfect measure space is perfect (viii)
any purely atomic measure space is perfect (ix) an indefinite-integral measure over a perfect measure is
perfect (x) a sum (234G?) of perfect measures is perfect.

Formerly 234B.
2Later editions only.
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(o) Let u be Lebesgue measure on R, A a subset of R, and g4 the subspace measure on A. Show that 14
is compact iff it is perfect iff A is Lebesgue measurable. (Hint: if p4 is perfect, consider the image measure
pah~! on R, where h(z) =z for x € A.)

342Y Further exercises (a) Let U be a Banach space such that there is a linear operator T : U** — U,
of norm at most 1, such that T4 = u for every u € U, writing @ for the member of U** corresponding to .
Show that the family of closed balls in U is a compact class.

(b) Give an example of a compact class K of subsets of N such that there is no compact Hausdorff
topology on N for which every member of K is closed.

(c) Show that the space (X, X, u) of 216E and 342N is a compact measure space. (Hint: use the usual
topology on X = {0,1}1.)

(d) Give an example of a compact complete locally determined measure space which is not localizable.
(Hint: in 216D, add a point to each horizontal and vertical section of X, so that all the sections become
compact measure spaces.)

342 Notes and comments The terminology I find myself using in this section — ‘compact’, ‘locally
compact’, ‘perfect’ — is not entirely satisfactory, in that it risks collision with the same words applied to
topological spaces. For the moment, this is not a serious problem; but when in Volume 4 we come to the
systematic analysis of spaces which have both topologies and measures present, it will be necessary to watch
our language carefully. Of course there are cases in which a ‘compact class’ of the sort discussed here can
be taken to be the family of compact sets for some familiar topology, as in 342Ja-342Jd, but in others this
is not so (see 342Xf); and even when we have a familiar compact class, the topology constructed from it by
the method of 342Da need not be one we might expect. (Consider, for instance, the topology on R for which
the closed sets are just the sets which are compact for the usual topology, together with the set R itself.)

I suppose that ‘compact’ and ‘perfect’ measure spaces look reasonably natural objects to study; they offer
to illuminate one of the basic properties of Radon measures, the fact that (at least for totally finite Radon
measures on Euclidean space) the image measure of a Radon measure under a measurable function is again
Radon (256G, 342Xj). Indeed this was the original impetus for the study of perfect measures (GNEDENKO
& KOLMOGOROV 54, SAZONOV 66). It is not obvious that there is any need to examine ‘locally compact’
measure spaces, but actually they are the chief purpose of this section, since the main theorem of the next
section is an alternative characterization of semi-finite locally compact measure spaces (343B). Of course you
may feel that the fact that ‘locally compact’ and ‘compact’ coincide for strictly localizable spaces (342Hb)
excuses you from troubling about the distinction at first reading.

As with any new classification of measure spaces, it is worth finding out how the classes of ‘compact’ and
‘perfect’ measure spaces behave with respect to the standard constructions. I run through the basic facts in
342(G-3421, 342Xd, 342Xk and 342Xn. We can also look for relationships between the new properties and
those already studied. Here, in fact, there is not much to be said; 342N and 342Yd show that ‘compactness’
is largely independent of the classification in §211. However there are interactions with the concept of ‘atom’
(342Xc, 342Xn(viii)).

I give examples to show that perfect measure spaces need not be locally compact, and that locally compact
measure spaces need not be compact (342M, 342N). The standard examples of measure spaces which are
not perfect are non-measurable subspaces (342Xo); I will return to these in the next section (343L-343M).

Something which is not important to us at the moment, but is perhaps worth taking note of, is the
following observation. To determine whether a measure space (X,Y,u) is compact, we need only the
structure (X, %, N), where N is the o-ideal of negligible sets, since that is all that is referred to in the
criterion of 342E. The same is true of local compactness, by 342Hc, and of perfectness, by the definition in
342K. Compare 342Xd, 342Xk and 342Xn(ix).

Much of the material of this section will be repeated in Volume 4 as part of a more systematic analysis
of inner regularity.
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343 Realization of homomorphisms

We are now in a position to make progress in one of the basic questions of abstract measure theory. In
§324 T have already described the way in which a function between two measure spaces can give rise to a
homomorphism between their measure algebras. In this section I discuss some conditions under which we
can be sure that a homomorphism can be represented by a function.

The principal theorem of the section is 343B. If a measure space (X, X, ) is locally compact, then many
homomorphisms from the measure algebra of p to other measure algebras will be representable by functions
into X; moreover, this characterizes locally compact spaces. In general, a homomorphism between measure
algebras can be represented by widely different functions (3431, 343J). But in some of the most important
cases (e.g., Lebesgue measure) representing functions are ‘almost’ uniquely defined; I introduce the concept
of ‘countably separated’” measure space to describe these (343D-343H).

343A Preliminary remarks It will be helpful to establish some vocabulary and a couple of elementary
facts.

(a) If (X,%,u) and (Y, T,v) are measure spaces, with measure algebras 2 and 9B, I will say that a
function f : X — Y represents a homomorphism 7 : B — 0 if f~1[F] € ¥ and (f~[F])* = n(F*) for
every F' e T.

(Perhaps I should emphasize here that some homomorphisms are representable in this sense, and some
are not; see 343M below for examples of non-representable homomorphisms.)

(b) If (X,%, ) and (Y, T,v) are measure spaces, with measure algebras 2 and B, f : X — Y is a
function, and 7 : B — 2 is a sequentially order-continuous Boolean homomorphism, then

(F:FeT, fF|eX and f1F]* =nF*}

is a o-subalgebra of T. (The verification is elementary.)

(c) Let (X,X,u) and (Y, T,v) be measure spaces, with measure algebras 2 and B, and 7 : B — A a
Boolean homomorphism which is represented by a function f : X — Y. Let (X,3,4), (Y,T,7) be the
completions of (X, 3, i), (Y, T,v); then 2 and B can be identified with the measure algebras of i and
7 (322Da). Now f still represents 7 when regarded as a function from (X,%, ) to (Y, T,7). P If G is
v-negligible, there is a negligible F' € T such that G C F'; since

fYUF) =7F* =0,

f7F] is p-negligible, so f~1[G] is negligible, therefore belongs to $. If G is any element of T, there is an
F € T such that GAF is negligible, so that

UG = fYUFIAfHGAF] € 3,
and

G = fFHF)* =nF* =7G*. Q

343B Theorem Let (X,X, 1) be a non-empty semi-finite measure space, and (2, i) its measure alge-
bra. Let (Z, A, \) be the Stone space of (2, zx); for E € X write E* for the open-and-closed subset of Z
corresponding to the image E* of E in 2. Then the following are equiveridical.

(i) (X, %, p) is locally compact in the sense of 342Ad.

(ii) There is a family K C 3 such that (o) whenever E € ¥ and pE > 0 there is a K € K such that
K C FE and pK > 0 (8) whenever K' C K is such that u([Kg) > 0 for every non-empty finite set Ko C K’,
then K’ # 0.

(iii) There is a family K C ¥ such that ()’ u is inner regular with respect to K () whenever K' C K is
such that u(()Ko) > 0 for every non-empty finite set Ko C K’, then (K" # 0.

(iv) There is a function f : Z — X such that f~![E]AE* is negligible for every E € X.

(v) Whenever (Y, T,v) is a complete strictly localizable measure space, with measure algebra %, and
m: A — B is an order-continuous Boolean homomorphism, then there is a g : Y — X representing .
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(vi) Whenever (Y, T,v) is a complete strictly localizable measure space, with measure algebra %, and
m:2A — B is an order-continuous measure-preserving Boolean homomorphism, then thereisa g: Y — X
representing 7.

proof (a)(i)=-(ii) Because p is semi-finite, there is a partition of unity (a;);es in 2 such that fia; < oo for
each i. For each i € I, let E; € ¥ be such that Ef = a;. Then the subspace measure pg, on E; is compact;
let IC; € PE; be a compact class such that pp, is inner regular with respect to KC;. Set K = (J;o; K. If
K' C K and u((Ko) > 0 for every non-empty finite Ko C K, then K’ C K; for some i, and surely has the
finite intersection property, so (K’ # 0; thus K’ satisfies (3) of condition (ii). And if F € ¥, uFE > 0 then
there must be some ¢ € I such that E? na; # 0, that is, u(ENE;) > 0, in which case thereisa K € K; CK
such that K C EN E; and pK > 0; so that K satisfies condition (a).

(b)(ii)=(iii) Suppose that K C ¥ witnesses that (ii) is true. If uX = 0 then K already witnesses that
(iii) is true, so we need consider only the case uX > 0. Set L = {KoU... UK, : Ko,... ,K, € K}. Then
L witnesses that (iii) is true. I* By 342Ba, u is inner regular with respect to £. Let £’ C £ be such that
1( Lo) > 0 for every non-empty finite Lo C L. Then

Fo={A:AC X, there is a finite Ly C £’ such that X N[ Lo \ 4 is negligible}

is a filter on X, so there is an ultrafilter 7 on X including Fy. Note that every conegligible set belongs to
Fo, so no negligible set can belong to F. Set K’ = K N F; then () Kg belongs to F, so is not negligible, for
every non-empty finite Ko C K’. Accordingly there is some z € [ K'. But any member of L’ is of the form
L = KogU...UK, where each K; € K; because F is an ultrafilter and L € F, there must be some i < n
such that K; € F, in which case x € K; C L. Thus « € (| £'. As £’ is arbitrary, £ satisfies the condition
(5). Q

(c)(iii)=(iv) Let K C ¥ witness that (iii) is true. For any z € Z, set K, = {K : K € K, z € K*}. If
Ko,... \Kn € K, then z € N, K = (Nic,, Ki)", 80 (N, Ki) ;é 0 and u(N;<, K:) > 0. By (B) of
condition (iii), (K. # 0; and even if K, = 0, X N(K. # § because X is non-empty. So we may choose
f(z) € X N K. This defines a function f: Z — X. Observe that, for K € K and z € Z,

reK*=KeK.= f(z) e K= z¢ ['[K],

so that K* C f~1[K].
Now take any F € ¥. Consider

Up=W{K*":KeK, KCE}C\{E*NnfK]|:KeK, KCE}CE*NnfE],

=U{K": K ek, KCX\E}C(X\E)" nf X\ E]=Z\(f[E]UE),

so that f~1[E]AE* C Z\ (U UU,). Now U; and Us are open subsets of Z, so M = Z \ (U; UU,) is closed,
and in fact M is nowhere dense. PP? Otherwise, there is a non-zero a € 2 such that the corresponding
open-and-closed set @ is included in M, and an F' € ¥ of non-zero measure such that a = F'*. At least one
of FNE, F\ E is non-negligible and therefore includes a non-negligible member K of K. But in this case
K* is a non-empty open subset of M which is included in either U; or Us, which is impossible. XQ

By the definition of A (321J-321K), M is A-negligible, so f~[E]AE* C M is negligible, as required.

(d)(iv)=(v) Now assume that f : Z — X witnesses (iv), and let (Y, T, v) be a complete strictly localiz-
able measure space, with measure algebra B, and 7 : 2 — B an order-continuous Boolean homomorphism.
If vY = 0 then any function from Y to X will represent 7, so we may suppose that vY > 0. Write W for
the Stone space of B. Then we have a continuous function ¢ : W — Z such that ¢—1[a] = 7a for every
a € 2 (312Q), and ¢~ 1[M] is nowhere dense in W for every nowhere dense M C Z (313R). It follows that
¢~ 1[M] is meager for every meager M C Z, that is, ¢~![M] is negligible in W for every negligible M C Z.
By 341Q, there is an inverse-measure-preserving function A : Y — W such that A1 [E}' = b for every b € B.
Consider g = foh: Y — X.

If E €%, seta=FE* €% sothat E* =a C Z, and M = f~[E]AE* is A-negligible; consequently
¢~ 1[M] is negligible in W. Because h is inverse-measure-preserving,

HEIART T B = h e T HEN AR o ET]] = e [M])]
is negligible. But ¢—1[E*] = 7a, so
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g~ (B = h (g (B = ma.
As E is arbitrary, g induces the homomorphism 7.
(e)(v)=(vi) is trivial.

(f)(vi)=(iv) Assume (vi). Let v be the c.l.d. version of A, T its domain, and B its measure algebra;
then v is strictly localizable (322Rb). The embedding A G T corresponds to an order-continuous measure-
preserving Boolean homomorphism from 2 to % (322Db). By (vi), there is a function f : Z — X such
that f~1[E] € T and f~![E]* = (E*)* in B for every E € 3. But as v and \ have the same negligible sets
(322Rb), f~1[E]AE* is A-negligible for every E € X, as required by (iv).

(g)(iv)=-(i) (@) To begin with (down to the end of (v) below) I suppose that  is totally finite. In this
case we have a function g : X — Z such that EAg~![E*] is negligible for every E € ¥ (341Q again). We
are supposing also that there is a function f: Z — X such that f~![E]AE* is negligible for every E € .
Write IC for the family of sets K C X such that K € ¥ and there is a compact set L C Z such that
fIL S K Cg L.

(B) p is inner regular with respect to K. I Take F' € ¥ and v < pF. Choose (V,)nen, (Fn)nen as
follows. Fy = F. Given that pF,, > -, then

MfTUE] N Ey) = NF = pF, > 7,

so there is an open-and-closed set V,, C f~1[F,] N F* with AV, > v. Express V,, as Fy . where F, 1 € 3
since F,,Ag~1'[F7] is negligible, and V;, C F*, we may take it that F, 1 C g~ '[F?]. Continue.

At the end of the induction, set K = (), oy Fn € ¥ and L = (o Fii- Because F, 11\ F, C g ' F]\ Fi,
is negligible for each n, uK = lim,_, pF, > =, while K C F and L is surely compact. We have

L g nnéN Vn g mnEN fﬁl[Fn] = fﬁl[K]?
so f[L] C K. Also

K C Npen Frsr € Mpen g™ HE] = g7 L]
So K € K. As F' and ~ are arbitrary, p is inner regular with respect to . Q

() Next, K is a compact class. PP Suppose that K’ C K has the finite intersection property. If ' = 0,
of course (K’ # 0; suppose that K’ is non-empty. Let £ be the family of closed sets L C Z such that
g~ Y[L] includes some member of K’. Then £ has the finite intersection property, and Z is compact, so
there is some z € [ L; also Z € £, so z € Z. For any K € K, there is some closed set L C Z such that
fIL] € K C g '[L],sothat L € £ and z € L and f(z) € K. Thus f(z) € (NK'. As K’ is arbitrary, K is a
compact class. Q

So I witnesses that p is a compact measure.

(8) Now consider the general case. Take any E € ¥ of finite measure. If E = ) then surely the subspace
measure pg is compact. Otherwise, we can identify the measure algebra of g with the principal ideal Age
of 2 generated by E* (322Ja), and E* C Z with the Stone space of 2g. (312T). Take any xy € E and
define f : E* — E by setting f(z) = f(z) if z € E* N f7YE], o if z € E*\ f~![E]. Then f and f agree
almost everywhere in E*, so f “YF])AF* is negligible for every F' € X, that is, f represents the canonical
isomorphism between the measure algebras of pg and the subspace measure Ag- on E*. But this means
that condition (iv) is true of ug, so pg is compact, by (a)-(7y) above. As E is arbitrary, p is locally compact.

This completes the proof.

343C Examples (a) Let I be any set. We know that the usual measure v; on {0, 1} is compact (342Jd).
It follows that if (X, X, ) is any complete probability space such that the measure algebra B of vy can be
embedded as a subalgebra of the measure algebra 2 of u, there is an inverse-measure-preserving function
from X to {0,1}!. For infinite I, this is so iff every non-zero principal ideal of 2 has Maharam type at least
K, by 332P. Of course this does not depend in any way on the results of the present chapter. If 9B, can be
embedded in 2, there must be a stochastically independent family (E¢)¢<, of sets of measure %; now we get
amap h: X — {0,1}" by saying that h(z)(§) = 1 iff x € E¢, which by 254G is inverse-measure-preserving.
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(b) In particular, if u is atomless, there is an inverse-measure-preserving function from X to {0, 1}"; since
this is isomorphic, as measure space, to [0,1] with Lebesgue measure (254K), there is an inverse-measure-
preserving function from X to [0, 1].

(c) More generally, if (X, X, 1) is any complete atomless totally finite measure space, there is an inverse-
measure-preserving function from X to the interval [0, uX| endowed with Lebesgue measure. (If uX > 0,
apply (b) to the normalized measure (uX)~1u; or argue directly from 343B, using the fact that Lebesgue
measure on [0, uX] is compact; or use the idea suggested in 343Xd.)

(d) In the other direction, if (X, X, u) is a compact probability space with Maharam type at most xk > w,
then there is an inverse-measure-preserving function from {0,1}* to X. P By 332N, there is a measure-
preserving homomorphism from the measure algebra of pu to the measure algebra of v,; by 343B, this is
represented by an inverse-measure-preserving function from {0,1}" to X. Q

(e) Throughout the work above — in §254 as well as in 343B — I have taken the measures involved to be
complete. It does occasionally happen, in this context, that this restriction is inconvenient. Typical results
not depending on completeness in the domain space X are in 343Xc-343Xd. Of course these depend not
only on the very special nature of the codomain spaces {0,1}! or [0, 1], but also on the measures on these
spaces being taken to be incomplete.

343D Uniqueness of realizations The results of 342E-342J], together with 343B, give a respectable
number of contexts in which homomorphisms between measure algebras can be represented by functions
between measure spaces. They say nothing about whether such functions are unique, or whether we can
distinguish, among the possible representations of a homomorphism, any canonical one. In fact the proof of
343B, using the Lifting Theorem as it does, strongly suggests that this is like looking for a canonical lifting,
and I am sure that (outside a handful of very special cases) any such search is vain. Nevertheless, we do
have a weak kind of uniqueness theorem, valid in a useful number of spaces, as follows.

Definition A measure space (X, Y, 1) is countably separated if there is a countable set A C ¥ separating
the points of X in the sense that for any distinct z, y € X there is an F € A containing one but not the
other. (Of course this is a property of the structure (X, ¥) rather than of (X, X, p).)

343E Lemma A measure space (X,X,u) is countably separated iff there is an injective measurable
function from X to R.

proof If (X,X,u) is countably separated, let A C % be a countable set separating the points of X. Let
(Ep)nen be a sequence running over A U {(}. Set

f=3,3""\E,: X - R.

Then f is measurable (because every E,, is measurable) and injective (because if z # y in X and n = min{i :
#(E;N{z,y}) =1} and = € E,,, then

On the other hand, if f : X — R is measurable and injective, then A = {f~![]—00,q]] : ¢ € Q} is a
countable subset of ¥ separating the points of X, so (X, X, 1) is countably separated.

Remark The construction of the function f from the sequence (FE,),cn in the proof above is a standard
trick; such f are sometimes called Marczewski functionals.

343F Proposition Let (X, X, ;1) be a countably separated measure space and (Y, T, v) any measure space.
Let f, g: Y — X be two functions such that f~1[E] and g~![E] both belong to T, and f~![E]Ag~[E] is
v-negligible, for every E € ¥. Then f = g v-almost everywhere, and {y : y €Y, f(y) # g(y)} is measurable
as well as negligible.

proof Let A C ¥ be a countable set separating the points of X. Then
{y:f@W) # 9W)} =Upea fEILgE]

is measurable and negligible.
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343G Corollary If, in 343B, (X, X, 1) is countably separated, then the functions g : ¥ — X of 343B(v)-
(vi) are almost uniquely defined in the sense that if f, g both represent the same homomorphism from 2 to
B then f =, g.

343H Examples Leading examples of countably separated measure spaces are

(i) R (take A = {]—0c,q] : q € Q});

(ii) {0,1}" (take A = {E, : n € N}, where E,, = {z : x(n) = 1});

(iil) subspaces (measurable or not) of countably separated spaces;

(iv) finite products of countably separated spaces;

(v) countable products of countably separated probability spaces;

(vi) completions and c.l.d. versions of countably separated spaces.

As soon as we move away from these elementary ideas, however, some interesting difficulties arise.

3431 Example Let v, be the usual measure on X = {0,1}°, where ¢ = #(R), and T, its domain. Then
there is a function f : X — X such that f(x) # x for every z € X, but EAf~1[E] is negligible for every
E € T,. P The set ¢\ w is still with cardinal ¢, so there is an injection h : {0,1}* — ¢\ w. (As usual, I am
identifying the cardinal number ¢ with the corresponding initial ordinal. But if you prefer to argue without
the full axiom of choice, you can express all the same ideas with R in the place of ¢ and N in the place of
w.) For z € X, set

f(@)(§) =1 —x(§) if § = h(z|w),

= z(£) otherwise .

Evidently f(z) # x for every . If E C X is measurable, then we can find a countable set J C ¢ and sets E’,
E"” | both determined by coordinates in J, such that E' C E C E” and E”\ E’ is negligible (2540c). Now for
any particular £ € ¢\w, {x : h(xz]w) = £} is negligible, being either empty or of the form {z : x(n) = z(n) for
every n < w} for some z € {0,1}*. So H = {z : h(z]w) € J} is negligible. Now we see that for x € X \ H,
fx)lJ=xlJ,soforze X\ (HU(E"\E)),

re€E=zscFE = f(z) e E' = f(z) € E,

r¢F=u1¢FE' = f(x)¢ ' = f(x) ¢ E.
Thus EAf~YE] C HU (E"\ E') is negligible. Q

343J The split interval I introduce a construction which here will seem essentially elementary, but in
other contexts is of great interest, as will appear in Volume 4.

(a) Take Il to consist of two copies of each point of the unit interval, so that Il = {tt+ :¢ € [0,1]}U{t~ :
t €[0,1]}. For A C Il write A; = {t:t~ € A}, A, = {t:t+ € A}. Let ¥ be the set

{E:ECI I, E; and E, are Lebesgue measurable and E;AE, is Lebesgue negligible}.
For F € ¥, set

b =B = pr kB,

where pp, is Lebesgue measure on [0,1]. Tt is easy to check that (Il S, 1) is a complete probability space
(cf. 234F, 234Ye). Also it is compact. I Take K to be the family of sets K C Il such that K; = K, is
a compact subset of [0,1], and check that K is a compact class and that p is inner regular with respect to
IC; or use 343Xa below. @ The sets {t~ : ¢ € [0,1]} and {t* : t € [0,1]} are non-measurable subsets of I';
on both of them the subspace measures correspond exactly to pur. We have a canonical inverse-measure-
preserving function h : Il — [0,1] given by setting h(t*t) = h(t™) = t for every t € [0,1]; h induces an
isomorphism between the measure algebras of u and puyp,.

I is called the split interval or (especially when given its standard topology, as in 343Yc below) the
double arrow space or two arrows space.

Now the relevance to the present discussion is this: we have a map f : Il — Il given by setting

ft)y=t", f(t7)=t" for every t € [0,1]
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such that f(z) # x for every x, but EAf~1[E] is negligible for every E € X, so that f represents the
identity homomorphism on the measure algebra of p. The function h : Il — [0,1] is canonical enough,
but is two-to-one, and the canonical map from the measure algebra of p to the measure algebra of uj is
represented equally by the functions ¢ — ¢t~ and ¢ — ¢, which are nowhere equal.

(b) Consider the direct sum (Y,v) of (I, 1) and ([0, 1], u1.); for definiteness, take Y to be (Il x {0}) U
([0,1] x {1}). Setting

hi(tT,0) = hy(t,0) = (¢t,1), hi(t,1) = (tT,0),

we see that hy : Y — Y induces a measure-preserving involution of the measure algebra B of v, corre-

sponding to its expression as a simple product of the isomorphic measure algebras of p and puy. But hy is
not invertible, and indeed there is no invertible function from Y to itself which induces this involution of 8.
P? Suppose, if possible, that g : Y — Y were such a function. Looking at the sets

E,=10,q] x {1}, F,={(t*,0):t€[0,q]} U{(t~,0):t€]0,q]}
for ¢ € Q, we must have g~ '[E,|AF, negligible for every ¢, so that we must have g(t*,0) = g(t~,0) = (£, 1)
for almost every t € [0, 1], and g cannot be injective. X Q

(c) Thus even with a compact probability space, and an automorphism ¢ of its measure algebra, we
cannot be sure of representing ¢ and ¢! by functions which will be inverses of each other.

343K 342L has a partial converse.

Proposition If (X, ¥, i) is a semi-finite countably separated measure space, it is compact iff it is locally
compact iff it is perfect.

proof We already know that compact measure spaces are locally compact and locally compact semi-finite
measure spaces are perfect (342Ha, 342L). So suppose that (X, X, ) is a perfect semi-finite countably
separated measure space. Let f : X — R be an injective measurable function (343E). Consider

K={f"1L]:LC f[X], Liscompact in R}.

The definition of ‘perfect’ measure space states exactly that whenever £ € ¥ and uFE > 0 thereis a K € K
such that K € F and puK > 0. And K is a compact class. P If K’ C K has the finite intersection
property, £ = {f[K] : K € K’} is a family of compact sets in R with the finite intersection property, and
has non-empty intersection; so that (| K’ is also non-empty, because f is injective. @ By 342E, (X, X, ) is
compact.

343L The time has come to give examples of spaces which are not locally compact, so that we can expect
to have measure-preserving homomorphisms not representable by inverse-measure-preserving functions. The
most commonly arising ones are covered by the following result.

Proposition Let (X, X, u) be a complete locally determined countably separated measure space, and A C X
a set such that the subspace measure p4 is perfect. Then A is measurable.

proof ? Otherwise, there is a set £ € ¥ such that yF < coand B=ANE ¢ 3. Let f: X — R be an
injective measurable function (343E again). Then f[|B is ¥ p-measurable, where X5 is the domain of the
subspace measure up on B. Set

K={f"1L]:LC f[B], Liscompact in R}.

Just as in the proof of 343K, K is a compact class and up is inner regular with respect to K. By 342Bb,
there is a sequence (K, )nen in K such that up(B \ U,cy Kn) = 0. But of course £ C X, because f is

Y-measurable, so |, . Kn € . Because p is complete, B\ |, .y Kn € £ and B . X

neN neN

343M Example 343L tells us that any non-measurable set X of R”, or of {0, 1}, with their usual
measures, is not perfect, therefore not (locally) compact, when given its subspace measure.

To find a non-representable homomorphism, we do not need to go through the whole apparatus of 343B.
Take Y to be a measurable envelope of X (132Ee). Then the identity function from X to Y induces an
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isomorphism of their measure algebras. But there is no function from Y to X inducing the same isomorphism.
P? Writing Z for R” or {0,1}" and p for its measure, Z is countably separated; suppose (E,)nen is a
sequence of measurable sets in Z separating its points. For each n, (Y N E,)* in the measure algebra of
wy corresponds to (X N E,)* in the measure algebra of ux. So if f: Y — X were a function representing
the isomorphism of the measure algebras, (Y N E,)Af~![E,] would have to be negligible for each n, and
A=U,en(¥Y N E,)Af71[E,] would be negligible. But for y € Y \ A, f(y) belongs to just the same E,, as
y does, so must be equal to y. Accordingly X D Y \ A and X is measurable. XQ

343X Basic exercises (a) Let (X, X, 1) be a semi-finite measure space. (i) Suppose that there is a set
A C X, of full outer measure, such that the subspace measure on A is compact. Show that p is locally
compact. (Hint: show that u satisfies (ii) or (v) of 343B.) (ii) Suppose that for every non-negligible E € ¥
there is a non-negligible set A C E such that the subspace measure on A is compact. Show that u is locally
compact.

(b) Let (X;);cr be a family of non-empty sets, with product X; write m; : X — X; for the coordinate
map. Suppose we are given a o-algebra X; of subsets of X; for each ; let ¥ = @ZEIZZ' be the corresponding
o-algebra of subsets of X generated by {W;l[E] :i1 €1, F € %;}. Let ube a totally finite measure with
domain ¥, and for ¢ € I let u; be the image measure pm;” ! Check that the domain of p; is ;. Show that if
every (X;,%;, 1) is compact, then so is (X, 3, u). (Hint: either show that p satisfies (v) of 343B or adapt
the method of 342Gf.)

(c) Let I be any set. Let Ba be the o-algebra of subsets of {0, 1}! generated by the sets F; = {z : z(i) = 1}
for ¢ € I, and v any probability measure with domain Ba; let B be the measure algebra of v. Let (X, %, )
be a measure space with measure algebra 2, and ¢ : 8 — 2 an order-continuous Boolean homomorphism.

Show that there is an inverse-measure-preserving function f : X — {0,1}! representing ¢. (Hint: for each
i € I, take E; € ¥ such that Ef = ¢F?; set f(z)(i) =1 if x € E;, and use 343Ab.)

(d) Let (X,X, ) be an atomless probability space. Let up be the restriction of Lebesgue measure to
the o-algebra of Borel subsets of [0,1]. Show that there is a function ¢ : X — [0, 1] which is inverse-
measure-preserving for p and pg. (Hint: find an f : X — {0,1} as in 343Xc, and set g = hf where
h(z) = 302 27" tg(n), as in 254K; or choose E, € ¥ such that pE, = q, B, C E, whenever ¢ < ¢’ in
[0,1]NQ, and set f(x) = inf{q: x € E,} for x € E.)

(e) Let (X, X, i) be a countably separated measure space, with measure algebra 2(. (i) Show that {z} € &
for every x € X. (ii) Show that every atom of « is of the form {z}* for some z € X.

(f) Let (X, X, 1) be a semi-finite countably separated measure space. (i) Show that u is point-supported
iff it is complete, strictly localizable and purely atomic. (ii) Show that u is atomless iff u{z} = 0 for every
e X.

(g) Let Il be the split interval, with its usual measure u described in 343J, and h : Il — [0,1] the
canonical surjection. Show that the canonical isomorphism between the measure algebras of p and Lebesgue
measure on [0, 1] is given by the formula ‘E* — h[E]* for every measurable E C I,

(h) Let (X,%, ) and (Y, T,v) be measure spaces with measure algebras (2, i), (2B,7). Suppose that
X NY =0 and that we have a measure-preserving isomorphism 7 : A — 9. Set
A={W . WCXUY,WnXeXZ, WnYeT, #(WnNX)=WnY)},

and for W € A set AW = p(WNX)=v(WNY). Show that (X UY,A,)\) is a measure space which is
locally compact, or perfect, if (X, ) is.

>(i) Let (X,X, 1) be a complete perfect totally finite measure space, (Y, T,v) a complete countably
separated measure space, and f : X — Y an inverse-measure-preserving function. Show that T = {F : F' C
Y, f71[F] € ¥}, so that a function h : Y — R is v-integrable iff hf is p-integrable. (Hint: if A CY and
E = f7A] € &, fIE is inverse-measure-preserving for the subspace measures ug, va; by 342Xk, va is
perfect, so by 343L A € T. Now use 235J.)
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(§) Let (X,X, u) be a complete compact measure space, Y a set and f: Y — X a surjection; set
T={F:FCY, fI[FleX u(f[FINfIY\F]) =0}, vF =uf[F]for FeT,

so that v is a measure on Y and f is inverse-measure-preserving (234Ye). Show that v is a compact measure.

343Y Further exercises (a) Let (X, X, 1) be a semi-finite measure space, and suppose that there is a
compact class K C PX such that (o) whenever E € ¥ and pE > 0 there is a non-negligible K € K such
that K C E () whenever Ky,... ,K, € K and (),.,, K; = 0 then there are measurable sets Ey, ..., E,
such that E; O K; for every ¢ and ﬂi<n E; is negligigle. Show that p is locally compact.

(b)(i) Show that a countably separated semi-finite measure space has magnitude and Maharam type
at most 2°. (ii) Show that the direct sum of ¢ or fewer countably separated measure spaces is countably
separated. (iii) Show that a countably separated perfect measure space has countable Maharam type.

(c) Let I = {tt :t € [0,1]} U {t~ : t € [0,1]} be the split interval (343J). (i) Show that the rules

sTL<tT = sT<tt = s<t, sT<tT <= s<t,

t= <tt for all t € [0,1]

define a Dedekind complete total order on Il with greatest and least elements. (ii) Show that the intervals
[0=,¢7], [tt,17], interpreted for this ordering, generate a compact Hausdorff topology on I!l for which the
map h : I — [0, 1] of 343] is continuous. (iii) Show that a subset E of Ill is Borel for this topology iff the
sets E,, E; C [0,1], as described in 343Ja, are Borel and E, AEj is countable. (iv) Show that if f: [0,1] - R
is of bounded variation then there is a continuous ¢ : Il = R such that ¢ = fh except perhaps at countably
many points. (v) Show that the measure p of 343J is inner regular with respect to the compact subsets of
Il (vi) Show that we have a lower density ¢ for u defined by setting

GE ={t":0<t<1, lgg;éu(E N[(t—o)*t7]) =1}
U{tt:o<t<1, %éu(Em [(th, (¢ +6)7]) = 1}
for measurable sets E C I

(d) Set X = {0,1}¢, with its usual measure v, . Show that there is an inverse-measure-preserving function
f: X — X such that f[X]is non-measurable but f induces the identity automorphism of the measure algebra
of v . (Hint: use the idea of 3431.) Show that under these conditions f[X], with its subspace measure, must
be compact. (Hint: use 343B(iv).)

(e) Let pp, be r-dimensional Hausdorff measure on R®, where s > 1 is an integer and r > 0 (§264). (i)
Show that p g, is countably separated. (ii) Show that the c.l.d. version of ug, is compact. (Hint: 264Yi.)

(f) Give an example of a countably separated probability space (X, X, ) and a function f from X to a
set Y such that the image measure pf~! is not countably separated. (Hint: use 223B to show that if E C R
is Lebesgue measurable and not negligible, then F + Q is conegligible; or use the zero-one law to show that
if £ C PN is measurable and not negligible for the usual measure on PN, then {a/Ab:a € E, b € [N]<*} is
conegligible.)

343 Notes and comments The points at which the Lifting Theorem impinges on the work of this section
are in the proofs of (iv)=-(i) and (iv)=-(v) in Theorem 343B. In fact the ideas can be rearranged to give a
proof of 343B which does not rely on the Lifting Theorem; I give a hint in Volume 4 (413Ye).

I suppose the significant new ideas of this section are in 343B and 343K. The rest is mostly a matter
of being thorough and careful. But I take this material at a slow pace because there are some potentially
confusing features, and the underlying question is of the greatest importance: when, given a Boolean
homomorphism from one measure algebra to another, can we be sure of representing it by a measurable
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function between measure spaces? The concept of ‘compact’ measure puts the burden firmly on the measure
space corresponding to the domain of the Boolean homomorphism, which will be the codomain of the
measurable function. So the first step is to try to understand properly which measures are compact, and
what other properties they can be expected to have; which accounts for much of the length of §342. But
having understood that many of our favourite measures are compact, we have to come to terms with the fact
that we still cannot count on a measure algebra isomorphism corresponding to a measure space isomorphism.
I introduce the split interval (343J, 343Xg, 343Yc) as a close approximation to Lebesgue measure on [0, 1]
which is not isomorphic to it. Of course we have already seen a more dramatic example: the Stone space
of the Lebesgue measure algebra also has the same measure algebra as Lebesgue measure, while being in
almost every other way very much more complex, as will appear in Volumes 4 and 5.

As 343C suggests, elementary cases in which 343B can be applied are often amenable to more primitive
methods, avoiding not only the concept of ‘compact’ measure, but also Stone spaces and the Lifting Theorem.
For substantial examples in which we can prove that a measure space (X, ) is compact, without simulta-
neously finding direct constructions for inverse-measure-preserving functions into X (as in 343Xc-343Xd), I
think we shall have to wait until Volume 4.

The concept of ‘countably separated’ measure space does not involve the measure at all, nor even the null
ideal; it belongs to the theory of o-algebras of sets. Some simple permanence properties are in 343H and
343YDb(ii). Let us note in passing that 343Xi describes some more situations in which the ‘image measure
catastrophe’, described in 235H, cannot arise.

I include the variants 343B(ii), 343B(iii) and 343Ya of the notion of ‘local compactness’ because they are
not obvious and may illuminate it.

Version of 22.3.06

344 Realization of automorphisms

In 343Jb, I gave an example of a ‘good’ (compact, complete) probability space X with an automorphism
¢ of its measure algebra such that both ¢ and ¢~! are representable by functions from X to itself, but there
is no such representation in which the two functions are inverses of each other. The present section is an
attempt to describe the further refinements necessary to ensure that automorphisms of measure algebras can
be represented by automorphisms of the measure spaces. It turns out that in the most important contexts
in which this can be done, a little extra work yields a significant generalization: the simultaneous realization
of countably many homomorphisms by a consistent family of functions.

I will describe three cases in which such simultaneous realizations can be achieved: Stone spaces (344A),
perfect complete countably separated spaces (344C) and suitable measures on {0,1}! (344E-344G). The
arguments for 344C, suitably refined, give a complete description of perfect complete countably separated
strictly localizable spaces which are not purely atomic (3441, 344Xc). At the same time we find that Lebesgue
measure, and the usual measure on {0,1}!, are ‘homogeneous’ in the strong sense that two measurable
subspaces (of non-zero measure) are isomorphic iff they have the same measure (344J, 344L).

344 A Stone spaces The first case is immediate from the work of §§312, 313 and 321, as collected
in 324E. If (Z,%, 1) is actually the Stone space of a measure algebra (2, i), then every order-continuous
Boolean homomorphism ¢ : 2 — 2 corresponds to a unique continuous function f, : Z — Z (312Q)
which represents ¢ (324E). The uniqueness of fs means that we can be sure that fs, = fy fy for all order-
continuous homomorphisms ¢ and 1); and of course f, is the identity map on Z, so that f,-1 will have to
be f o ! whenever ¢ is invertible. Thus in this special case we can consistently, and canonically, represent all
order-continuous Boolean homomorphisms from 2 to itself.

Now for two cases where we have to work for the results.

344B Theorem Let (X, X, 1) be a countably separated measure space with measure algebra 2, and G
a countable semigroup of Boolean homomorphisms from 2 to itself such that every member of G can be
represented by some function from X to itself. Then a family (fy)gsec of such representatives can be chosen
in such a way that fey = fyfs for all ¢, ¥ € G; and if the identity automorphism ¢ belongs to G, then we
may arrange that f, is the identity function on X.
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proof (a) Because G U {.} satisfies the same conditions as G, we may suppose from the beginning that ¢
belongs to G itself. Let A C X be a countable set separating the points of X. For each ¢ € G take some
representing function g4 : X — X; take g, to be the identity function. If ¢, ¢ € G, then of course

((969¢) " ED® = (9,195 [EI)* = ¥(g; ' [E))* = ¢oE* = (g,,4[E])*
for every E € 3. By 343F, the set

Hyy = {2 : gyo(x) # 9s9y ()}
is negligible and belongs to 3.

(b) Set

H = U¢,weG Hgy;

because G is countable, H also is measurable and negligible. Try defining f, : X — X by setting fy(x) =
go(x) if v € X\ H, fo(x) =2 if x € H. Because H is measurable, f;l[E] € 3 for every E € ¥; because H
is negligible,

(f5 '[ED® = (95 [E])* = oE*
for every E € 3, and fy represents ¢, for every ¢ € G. Of course f, = g, is the identity function on X.

(c) If 0 € G then f, '[H] = H. P (i) If 2 € H then fy(z) =z € H. (ii) If fo(z) € H and fp(z) = z then
of course x € H. (iii) If fo(x) = go(x) € H then there are ¢, 1 € G such that g4gy496(z) # gypege(z). So
either

gw96(x) 7 goy (),

or
96904 () 7 Goye ()
or

96v6(T) # guege(T),
and in any case x € H. Q

(d) It follows that fsfy = fye for every ¢, v € G. P (i) If x € H then

fofp(x) =2 = fpe(z).
(ii) If z € X \ H then fy(x) ¢ H, by (c), so

fofu(®) = gogu(x) = gyg () = fye(z). Q

344C Corollary Let (X, %, ) be a countably separated perfect complete strictly localizable measure
space with measure algebra 2[, and G a countable semigroup of order-continuous Boolean homomorphisms
from 2 to itself. Then we can choose simultaneously, for each ¢ € G, a function fy : X — X representing
@, in such a way that fgy = fy fe for all ¢, ¥ € G; and if the identity automorphism ¢ belongs to G, then
we may arrange that f, is the identity function on X. In particular, if ¢ € G is invertible, and ¢—! € G, we
shall have fy-1 = f;l; so that if moreover ¢ and ¢! are measure-preserving, f, will be an automorphism
of the measure space (X, %, ).

proof By 343K, (X, X, i) is compact. So 343B(v) tells us that every member of G is representable, and we
can apply 344B.

Reminder Spaces satisfying the conditions of this corollary include Lebesgue measure on R”, the usual
measure on {0, I}N, and their measurable subspaces; see also 342J, 342Xe, 343H and 343Ye.

344D The third case I wish to present requires a more elaborate argument. I start with a kind of
Schroder-Bernstein theorem for measurable spaces.
Lemma Let X and Y be sets, and ¥ C PX, T C PY o-algebras. Suppose that there are f : X — Y,
g:Y — X such that F = f[X] € T, E = g[Y] € ¥, f is an isomorphism between (X,¥) and (F,Tpg) and
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¢ is an isomorphism between (Y, T) and (E,Xg), writing X, Tr for the subspace o-algebras (see 121A).
Then (X, Y) and (Y, T) are isomorphic, and there is an isomorphism A : X — Y which is covered by f and
g in the sense that

{(z,h(z)) 2w € X} C{(x, f(x)) : v € X}U{(9(y),y) :y € Y}.

proof Set Xo = X, Yy, =Y, X, 11 = g[Vs] and Y, 1 = f[X,] for each n € N; then (X,,)nen is a non-
increasing sequence in ¥ and (Y;,)nen is a non-increasing sequence in T. Set Xoo = (,,cn Xns Yoo = [pen Yo
Then f]Xo; \ Xak+1 is an isomorphism between X, \ Xogt1 and Yori1 \ Yor42, while g[ Yai \ Yar41 is an
isomorphism between Yai, \ Yar41 and Xopi1 \ Xok12; and g Ye is an isomorphism between Y, and X.

So the formula

h(fﬁ) = f(.’L’) if x € U Xog \ X2k+1,
keN

= g~ !(x) for other z € X

gives the required isomorphism between X and Y.

Remark You will recognise the ordinary Schréder-Bernstein theorem (2A1G) as the case ¥ = PX, T = PY.

344E Theorem Let I be any set, and let u be a o-finite measure on X = {0,1}! with domain the
o-algebra Ba; generated by the sets {z : x(i) = 1} as i runs over I; write 2 for the measure algebra of
u. Let G be a countable semigroup of order-continuous Boolean homomorphisms from 2l to itself. Then
we can choose simultaneously, for each ¢ € G, a function f4 : X — X representing ¢, in such a way that
fow = fufe for all ¢, ¥ € G; and if the identity automorphism ¢ belongs to G, then we may arrange that f,
is the identity function on X. In particular, if ¢ € G is invertible and ¢! € G, we shall have fy-1 = f(b_l;
so that if moreover ¢ is measure-preserving, f, will be an automorphism of the measure space (X, Bay, ut).

proof (a) As in 344C, we may as well suppose from the beginning that ¢ € G. The case of finite I is trivial,
so I will suppose that I is infinite. For ¢ € I, set E; = {x : 2(i) = 1}; for J C I, let B; be the o-subalgebra
of Bay generated by {E; : I € J}. Fori € I, ¢ € G choose Fy; € Bay such that Fs = 0E;. (Of course we
take F,; = E; for every i.) Let J be the family of those subsets J of I such that Fy; € By for every i € J
and ¢ € G.

(b) For the purposes of this proof, I will say that a pair (J, (g4)scc) is consistent if J € J and, for

each ¢ € G, g4 is a function from X to itself such that
g;l[Ei] € By and (g;l[Ei])' = ¢E? whenever i € J, ¢ € G,

g;l[Ei] = F; whenever i € I\ J, ¢ € G,

969y = gy Whenever ¢, ¢ € G,

g.(x) = x for every z € X.
Now the key to the proof is the following fact: if (J, (94)gcc) is consistent, and J is a member of J such
that J\ J is countably infinite, then there is a family (tildegs)sec such that (J, (§e)ecc) is consistent and

g;l[Ei] = g(;l[Ei] whenever ¢ € J and ¢ € G, that is, §4(x)[J = gg(x)[J whenever ¢ € G and z € X. The
construction is as follows.

(i) Start by fixing on any infinite set K C .J\ .J such that (J\ J)\ K also is infinite. For z € {0,1}%,
set V. = {z:2 € X, 2] K = z}; then V. € Bj. All the sets V., as z runs over the uncountable set {0,1},
are disjoint, so they cannot all have non-zero measure (because pu is o-finite), and we can choose z such that
V. is p-negligible.

(ii) Define hy : X — X, for ¢ € G, by setting
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he () (i) = go(x)(i) if i € J,
w(i)ifieI\J,

(i)ifie J\Jand z € V;,
ifi e J\Jand z € Fy\ Vs,

=0ifie J\Jand x ¢ Fy UV,.

T
1

Because V, € Bj and pV, = 0, we see that

(@) hy'[E] =g, ' [E]eByifie ],

(B) hy,'[Ei] € By and hy'[E;)AF,; is negligible if i € .J \ J,
and consequently

¥) (h;l[Ei])° = ¢FE; for every i € J,

() (h;l[E})' = ¢E* for every E € Bj
(by 343Ab); moreover,

(€ h?[E] = Q;I[E} for every E € By,
(©) h;l[E] € Bj for every E € B3,
() hy' B = E;ifie I\ J,

so that

@) h;l[E] € Bay for every F € Bay;
finally, because F,; = Ej,

(¢) hy(x) = x for every z € X.

(iii) The next step is to note that if ¢, ¥ € G then
Hyp={x:zeX, hohy(z) # hyo(x)}
belongs to B; and is negligible. PP
Hyp = Ujer hy ' [h5 [Eill Ahy gl Ei).
Now if ¢ € J, then h;l[Ei] = g;l[Ei} € By, so
hy ' 1hg B = byt log (Bl = 9, (95 ' [Eil] = 9y 4l Bi] = hyy[Eil-
Next, for 7 € I\JN7
hyhy B = hy [Ei] = Bi = hyy,
So
Hyp = Uie.f\J hqzl [h;1 [Ez]]Ah;é [E].
But for any particular i € J \ J, E; and h;l[Ei] belong to B3, so
(hy (g M ED)® = (g [Ei])* = ¥oE; = (hy[Ei)*
and h;l[h;I[Ei]]Ah;; [E;] is a negligible set, which by (ii-¢) belongs to Bj. So Hg y is a countable union
of sets of measure 0 in B and is itself a negligible member of Bj, as claimed. Q
(iv) Set

H =y yec How UlUgeq ' V2]
Then H € Bj and pH = 0. P We know that every Hy 4 is negligible and belongs to B ((iii) above), that
every h;l[VZ] belongs to B (by (ii-¢), and that (h;l[Vz])’ = ¢V =0, so that h;l[Vz] is negligible, for every
¢ € G (by (ii-6)). Consequently H is negligible and belongs to Bj. Q Also, of course, V, = h; }[V.] C H.
Next, hg(x) ¢ H whenever x € X \ H and ¢ € G. P If ¢, € G then

hoyphe(x) = hegy () = hyhge(x) = hyhehy(z),
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hyhg(x) = hey(x) & V-

because
x ¢ Hyy s UHy goUHggUHy g U h(ﬁ[vz],
thus hy(z) ¢ Hye U h;l[VZ}; as ¢ and 0 are arbitrary, hy(z) ¢ H. Q
(v) The next fact we need is that there is a bijection ¢ : X — H such that («) for £ C H, FE € Bj iff
q '[E) € Bj (B) q(z)(i) = x(i) for every i € I\(J\J) and z € X. P Fix any bijection r : J\J — J\ (JUK).
Consider the maps p; : X — H, py : H — X given by
pi(z)(i) = 2(r~()) if i € J\ (JUK),
=z(i) ifi € K,
=a(i)ifie X\ (J\J),
p2(y) =y

for x € X, y € H. Then p; is actually an isomorphism between (X, Bj) and (V.,B; NPV;). So p1, pp are
isomorphisms between (X, Bj;), (H,B; N'PH) and measurable subspaces of H, X respectively. By 344D,
there is an isomorphism ¢ between X and H such that, for every x € X, either g(z) = p1(x) or pa(q(x)) = =.
Since py(x)[ I\ (J\J) = 2| I\ (J\J) for every z € X, and pa(y) [T\ (J\J) =y T\ (J\ J) for every y € H,
q(@)[ I\ (J\J) =TI\ (J\J) for every z € X. Q

(vi) An incidental fact which will be used below is the following: if i € J and ¢ € G then g;l[Ei]

belongs to Bj, because it belongs to B if i € J, and otherwise is equal to FE;. Consequently g;l[E] € Bj
for every E € Bj.

vii) I am at last ready to give a formula for g,. For ¢ € G set
¢
Gs(@) = hola) itz € X \ H,
= qg(z,q*l(:c) ifx e H.

. (§o)sec) is consistent. P
() Ifi € J and ¢ € G,

35 B = (h; B\ H) Udlg; '[a\[E: N H]]) € By

because H € Bj and h;l[E], ¢ '[HNE], g;l[E] and ¢[E] all belong to Bj for every E € Bj. At the same
time, because g, agrees with hy on the conegligible set X \ H,

(95 ' [Ea))* = (hg'[Ei])® = ¢E;.
(B)IfieI\J, ¢eGandzecX then
96()(1) = he(x)(i) = q(x)(i) = (i),

and if x € H then ¢~ !(x)(i) also is equal to z(i); so gy (z)(i) = z(i). But this means that Q;I[Ei}
(v) If ¢, € Gand z € X \ H, then

gy (x) = hy(x) € X\ H

Now (

I
=

by (iv) above. So
GGy () = hohy(x) = hy(x) = Jye ()
because x ¢ Hgy . While if x € H, then
gy(x) = qgpq~ ' (z) € H,
SO
963y (1) = 49699960 (2) = 994990~ () = 49ypeq " (x) = Gys ().
Thus gegy = Jye-
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(6) Because g,(z) = h,(z) = x for every z, §,(z) = x for every z. Q
(viii) Finally, if i € J and ¢ € G, ¢~ '[E;] = E;, so that ¢[E;] = E; N H. Accordingly q(x)[J = x[J for
every z € X, while ¢~ (2)]J = x| J for z € H. So gyq~*(z)|J = gy(x)]J for x € H, and
Go(@)]J = he(x)]J = go(x)]J if x € X \ H,
=q9pq" (2) 1] = goq~ " (2)1 ] = go(2)1J if x € H.

Thus (J, (§e)pec) satisfies all the required conditions.

(c) The remaining idea we need is the following: there is a non-decreasing family (J¢)e<, in J, for some
cardinal k, such that Jeyq1 \ Je is countably infinite for every & < k, Je = U77 <t Jy for every limit ordinal
n < Kk, and J, = I. PP Recall that I am already supposing that I is infinite. If I is countable, set x = 1,
Jo =0, J1 = I. Otherwise, set £ = #([) and let (i¢)¢<, be an enumeration of I. Fori € I, ¢ € Glet K4; C I
be a countable set such that Fy; € Bg,,. Choose the J¢ inductively, as follows. The inductive hypothesis
must include the requirement that #(J¢) < max(w, #(€)) for every £. Start by setting Jo = 0. Given £ < &
and J¢ € J with #(J¢) < max(w, #(£)) < &, take an infinite set L C x\ J¢ and set Jey1 = Je U, cn Lin,
where

LOZLU{Zg}a

L1 =Uier, sec Koi
for n € N, so that every L,, is countable,
Fyi € Br,,,
and Jey1 € J;since L € Jep1 \ Je € Upen Lns Jer1 \ Je is countably infinite, and
#(Jer1) = max(w, #(Jg)) < max(w, #(§)) = max(w, #(§ +1)).

For non-zero limit ordinals § < &, set Jg = Un <t Jp; then

#(Je) < max(w, #(£),sup, < #(Jy)) < max(w, #(§)).

Thus the induction proceeds. Observing that the construction puts ¢ into Je41 for every £, we see that J,
will be the whole of I, as required. Q

whenever i € L,, ¢ € G

(d) Now put (b) and (c) together, as follows. Take (J¢)e<, from (c). Set fyo(x) = x for every ¢ € G,
x € X; then, because Jy = 0, (Jo, (fs0)pcc) is consistent in the sense of (b). Given that (Jg, (fse)gec) is
consistent, where £ < &, use the construction of (b) to find a family (fy ¢41)pecq such that (Jei1, (fo.e41)pea)
is consistent and fy e+1()(7) = fpe(x)(2) for every ¢ € Je and x € X. At a non-zero limit ordinal £ < k, set

foe(@)(i) = fon(z)(@) if v € X, n <& i€y,
—2(i)ifie I\ Je.

(The inductive hypothesis includes the requirement that fg,(z)[J; = foc(z)lJ; whenever ¢ € G, z € X
and ¢ <n < &.) To see that (Je, (fse)pec) is consistent, the only non-trivial point to check is that

foefve = Fuoe
for all ¢, 1 € G. But if i € J¢ there is some 1 < { such that i € J,,, and in this case

frelBil = fi il € By,
is determined by coordinates in .J,,, so that (because fg¢(x)[Jy, = fg,n(z)[J, for every z)
Fo el el Bl = fonlfo Bl = [ (Bl = frp el Eil;
while if 4 € T'\ J¢ then
FroelBil = Ei = o ¢ [Eil = [y e[Bil = foelfy ¢ [Eill-
Thus
FoelfoelBill = fig el
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for every ’i, and f¢7§f¢7§ = fw¢7§.
On completing the induction, set fg = fg. for every ¢ € G; it is easy to see that (fy)scc satisfies the
conditions of the theorem.

344F Corollary Let I be any set, and let u be a o-finite measure on X = {0,1}!. Suppose that u
is the completion of its restriction to the o-algebra Ba; generated by the sets {x : z(i) = 1} as 4 runs
over I. Write 2 for the measure algebra of p. Let G be a countable semigroup of order-continuous Boolean
homomorphisms from A to itself. Then we can choose simultaneously, for each ¢ € G, a function fg : X — X
representing ¢, in such a way that fuy = fy fe for all ¢, ¥ € G; and if the identity automorphism ¢ belongs
to G, then we may arrange that f, is the identity function on X. In particular, if ¢ € G is invertible and
¢~ ! € G, we shall have fo1 = f(;l; so that if moreover ¢ is measure-preserving, fy will be an automorphism
of the measure space (X, 3, u).

proof Apply 344E to plBay; of course 2 is canonically isomorphic to the measure algebra of u[Baj
(322Da). The functions f, provided by 344E still represent the homomorphisms ¢ when re-interpreted as
functions on the completed measure space ({0, 1}!, 1), by 343Ac.

344G Corollary Let I be any set, v; the usual measure on {0, 1}/, and B; its measure algebra. Then any
measure-preserving automorphism of B is representable by a measure space automorphism of ({0, 1}, v7).

344H Lemma Let (X,X, u) be a perfect semi-finite measure space. If H € ¥ is a non-negligible set
which includes no atom, there is a negligible subset of H with cardinal c.

proof (a) Consider first the case in which p is atomless, compact and totally finite, and H = X. Let
K € PX be a compact class such that yu is inner regular with respect to K. Set S = J,,c5{0,1}", and
choose (K, ),es inductively, as follows. Kj is to be any non-negligible member of NX. Given that uK, > 0,
where o € {0,1}", take F,, F. C K, to be disjoint non-negligible measurable sets both of measure at most
37™; such exist because p is atomless (215D). Choose K,~ o> C Fy, K,~.1» C F. to be non-negligible
members of N .

For each w € {0, 1}, (Kyn)nen is a decreasing sequence of members of K all of non-zero measure, so
has non-empty intersection; choose a point z,, € (), ey Kwin. Since Ky~ g5 NKy~c15 = 0 for every o € S,
all the z,, are distinct, and A = {x,, : w € {0,1}"} has cardinal ¢. Also

A g UO’E{O,I}" KO’
which has measure at most 2”3~ ("1 for every n > 1, so u*A = 0 and A is negligible.

(b) Now consider the case in which p is atomless and totally finite and perfect, but not necessarily
compact, while again H = X. In this case, by 215D, we can choose (E,, ), cn inductively so that u(F,NE) =
% pE whenever n € N and F is an atom of the subalgebra of PX generated by {F; : i < n}. Now define
f: X — {0,1}Y by setting f(z) = (xEn(7))nen for z € X. Consider the image measure v = puf~! on
Y = f[X] C {0,1}. This is perfect. P If g : Y — R is T-measurable, where T = dom v, and vF > 0, then
gf : X — R is Y-measurable and puf ~![F] > 0. There is therefore a compact set K C gf[f~'[F]] such that
w(gf) K] > 0. In this case, K C g[F] and vg~'[K] > 0. Q

Next, for every n € N and o € {0, 1}",

Hy:yeY,yin=c}=pf{z:Vi<n,z€E, < o(i)=1}=2""uX.
So v can have no atom of measure greater than 27" X; as n is arbitrary, v is atomless. Thirdly, (Y, T,v)
is countably separated, because ({y : y € Y, y(n) = 1})nen is a sequence of measurable sets separating the
points of Y. By 343K, v is compact; by (a) here, there is a v-negligible set B C Y of cardinal ¢. Now f~![B]

is p-negligible, and because B C f[X], #(f~![B]) > #(B) = c¢. We therefore have a set A C f~![B] with
cardinal ¢, and A is p-negligible.

(c) Finally, for the general case in which p is just semi-finite and perfect, and H is a non-negligible subset
of X not including an atom, let E C H be a set of non-zero finite measure. Then the subspace measure g
is atomless. Also pg is perfect. P Let f : E— R be a measurable function. Define g : X — R by setting

MEASURE THEORY



3441 Realization of automorphisms 37

glz)=e@ifr e E,
—0ifze X\ E.

Then g is measurable. There is therefore a compact set K C g[E] such that pg~*[K] > 0. Now In[K] C f[E]
is compact and ppf~[In[K]] = pg~[K] > 0. Q

By (b), there is a pg-negligible set A C E with cardinal ¢, and of course A is also a p-negligible subset
of H.

Remark I see that in this proof I have slipped into a notation which is a touch more sophisticated than
what I have used so far. See 3A1H for a note on the interpretations of ‘{0, 1}"’, {0, 1}’ which make sense
of the formulae here.

3441 Theorem Let (X, 3, ) and (Y, T, v) be atomless, perfect, complete, strictly localizable, countably
separated measure spaces of the same non-zero magnitude. Then they are isomorphic.

proof (a) The point is that the measure algebra (2, ) of u has Maharam type w. P Let (E,)nen be a
sequence in ¥ separating the points of X. Let Xy be the o-subalgebra of ¥ generated by {E, : n € N},
and Ay the order-closed subalgebra of 2 generated by {E; : n € N}; then E* € g for every E € ¥, and
(X, X0, 1] Xp) is countably separated. Let f: X — R be Xp-measurable and injective (343E). Of course f
is also X-measurable. If a € 2\ {0}, express a as E* where E € ¥. Because (X, X, u) is perfect, there is a
compact K C R such that K C f[E] and uf~'[K] > 0. K is surely a Borel set, so f~![K] € ¥y and

b= fHK]* €2\ {0}.
But because f is injective, we also have f~'[K] C E and b C a. As a is arbitrary, 2o is order-dense in 2;
but 2 is order-closed, so must be the whole of 2. Thus 2 is 7-generated by the countable set {E;, : n € N},
and 7(2A) <w. Q
On the other hand, because 2 is atomless, and not {0}, none of its principal ideals can have finite
Maharam type, and it is Maharam-type-homogeneous, with type w.

(b) Writing (B,7) for the measure algebra of v, we see that the argument of (a) applies equally to
(B, 7), so that (A, i) and (B, V) are atomless localizable measure algebras, with Maharam type w and the
same magnitude. Consequently they are isomorphic as measure algebras, by 332J. Let ¢ : > — B be a
measure-preserving isomorphism.

By 343K, both p and v are (locally) compact. As they are also complete and strictly localizable, 343B
tells us that there are functions g : Y — X and f: X — Y representing ¢ and ¢~!. Now fg:Y — Y and
gf : X — X represent the identity automorphisms on 9B, 2, so by 343F are equal almost everywhere to the
identity functions on Y, X respectively. Set

E={s:xeX, gf(x)=1}, F={y:yeY, foly) =y}

then both E and F are conegligible. Of course f[E] C F (since fgf(x) = f(z) for every z € E), and
similarly g[F] C Fj; consequently flFE, g|F are the two halves of a one-to-one correspondence between F
and F. Because ¢ is measure-preserving, uf '[H] = vH and vg~![G] = uG for every G € ¥, H € T;
accordingly f[F is an isomorphism between the subspace measures on E and F.

(c) By 344H, there is a negligible set A C E with cardinal ¢. Now X and Y, being countably separated,
both have cardinal at most ¢. (There are injective functions from X and Y to R.) Set

B=AU(X\E), C=flAlU(\F).

Then B and C are negligible subsets of X, Y respectively, and both have cardinal ¢ precisely, so there is a
bijection h: B — C. Set

file) = f(z) itz e X\ B=E\A,
=h(z) if z € B.

Then, because p and v are complete, f; is an isomorphism between the measure spaces (X,X, u) and
(Y, T,v), as required.
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344J Corollary Suppose that E, F' are two Lebesgue measurable subsets of R" of the same non-zero
measure. Then the subspace measures on F and F' are isomorphic.

344K Corollary (a) A measure space is isomorphic to Lebesgue measure on [0,1] iff it is an atomless
countably separated compact (or perfect) complete probability space; in this case it is also isomorphic to
the usual measure on {0, 1}.

(b) A measure space is isomorphic to Lebesgue measure on R iff it is an atomless countably separated
compact (or perfect) o-finite measure space which is not totally finite; in this case it is also isomorphic to
Lebesgue measure on any Euclidean space R".

(c¢) Let u be Lebesgue measure on R. If 0 < puF < oo and we set vF = #LEMF for every measurable
F C E, then (E,v) is isomorphic to Lebesgue measure on [0, 1].

344L The homogeneity property of Lebesgue measure described in 344J is repeated in {0,1}! for any
infinite 1.

Theorem Let I be an infinite set, and v; the usual measure on {0,1}!. If E C {0,1}! is a measurable set
of non-zero measure, the subspace measure on FE is isomorphic to (v;E)v;.

proof For J C I let v; be the usual measure on X; = {0,1}”.

(a) If I is countably infinite, then the subspace measure on F is perfect and complete and countably
separated, so is isomorphic to Lebesgue measure on the interval [0, v E], by 3441. But by 344Kc, or otherwise,
this is isomorphic, up to a scalar multiple of the measure, to Lebesgue measure on [0, 1], which is in turn
isomorphic to v;.

So henceforth we can suppose that I is uncountable.

(b) By 2540c¢ there are a countable set J C I and a set ' C F, determined by coordinates in J, such
that E'\ E’ is negligible. Identifying X; with X; x X\ s (254N), we can think of £ as V' x X\ ; where V'
is measured by vy (see 2540). Take vy € V and set

V/:V\{UQ}, W/:XJ\{’UO}, EN:V/XXI\J, FN:W/XXI\J.

Then by (a), applied to V' and W' in turn, we have a bijection g : V' — W’ which, up to a scalar multiple
of the measure, is an isomorphism between the subspace measures. Now the subspace measure on V' x Xp\
is just the product of the subspace measure on V' with vp\ ; (251Q(ii)), so if we set fo(z, 2) = (g(x), 2) for
r € V' and z € Xp\ s, then fo : E” — F" is an isomorphism of the subspace measures on E” and F", up
to a scalar multiple of the measures as always. On the other hand, '\ E” and X\ F” are negligible and
both have cardinal #(Xp ;) = #(X1), so we have a bijection f; : B\ B — X;\ F". Putting fo and f;
together, we have a bijection f : E — X which, up to a scalar multiple of the measure, is an isomorphism
of the subspace measure on E with v;.

344X Basic exercises (a) Let (X, %, ) and (Y, T,v) be measure spaces, and suppose that there are
E € X, F € T such that (X, 3, ) is isomorphic to the subspace (F, Tg,vg), while (Y, T, v) is isomorphic to
(E,Xg,pg). Show that (X, %, u) and (Y, T, v) are isomorphic.

(b) Let (X, %, ) and (Y, T, v) be perfect countably separated complete strictly localizable measure spaces
with isomorphic measure algebras. Show that there are conegligible subsets X' C X, Y’ C Y such that X’
and Y, with the subspace measures, are isomorphic.

(c) Let (X, X, 1) and (Y, T, v) be perfect countably separated complete strictly localizable measure spaces
with isomorphic measure algebras. Suppose that they are not purely atomic. Show that they are isomorphic.

(d) Give an example of two perfect countably separated complete probability spaces, with isomorphic
measure algebras, which are not isomorphic.

(e) Let (Z,%, u) be the Stone space of a homogeneous measure algebra. Show that if E, F € ¥ have the
same non-zero finite measure, then the subspace measures on F and F' are isomorphic.
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(f) Let (I, %, 1) be the split interval with its usual measure (343J), and 2 its measure algebra. (i) Show
that every measure-preserving automorphism of 2 is represented by a measure space automorphism of Ill.
(ii) Show that if F, F € ¥ and uE = puF > 0 then the subspace measures on F and F' are isomorphic.

344Y Further exercises (a) Let X be a set, ¥ a o-algebra of subsets of X, Z a o-ideal of ¥, and
2 the quotient 3X/Z. Suppose that there is a countable set A C 3 separating the points of X. Let G be
a countable semigroup of Boolean homomorphisms from 2 to itself such that every member of G can be
represented by some function from X to itself. Show that a family (fy)secc of such representatives can be
chosen in such a way that fsy = fyfs for all ¢, » € G; and if the identity automorphism ¢ belongs to G,
then we may arrange that f, is the identity function on X.

(b) Let 2, B be Dedekind o-complete Boolean algebras. Suppose that each is isomorphic to a principal
ideal of the other. Show that they are isomorphic.

(c) Let I be an infinite set, and write Ba; for the o-algebra of subsets of X = {0,1}! generated by the
sets {x : x(i) = 1} as ¢ runs over I. Let g and v be o-finite measures on X, both with domain Bay, and
with measure algebras (2, i), (%8,7). Show that any Boolean isomorphism ¢ : 20 — B is represented by a
permutation f : X — X such that f~! represents ¢! : B — 2, and hence that (2, i) is isomorphic to
(B, v) iff (X, Bay, ) is isomorphic to (X, Bar,v).

(d) Let I be any set, and write Ba; for the o-algebra of subsets of X = {0,1}! generated by the sets
{z : z(i) = 1} as i runs over I. Let 7 be an w;-saturated o-ideal of Bay, and write 2 for the quotient
Boolean algebra B/Z. Let G be a countable semigroup of order-continuous Boolean homomorphisms from
2 to itself. Show that we can choose simultaneously, for each ¢ € G, a function fy : X — X representing ¢,
in such a way that fsy = fyfe for all ¢, ¢ € G; and if the identity automorphism ¢ belongs to G, then we
may arrange that f, is the identity function on X. In particular, if ¢ € G is invertible and ¢! € G, f, will
be an automorphism of the structure (X, Bay,T).

(e) Let I be any set, and write Bay for the o-algebra of subsets of X = {0,1}! generated by the sets
{z :x(i) = 1} as i runs over I. Let Z, J be w;-saturated o-ideals of Ba;. Show that if the Boolean algebras
Ba;/Z and Bajy/J are isomorphic, so are the structures (X, Bay,Z) and (X, Bay, J).

344 Notes and comments In this section and the last, I have allowed myself to drift some distance from
the avowed subject of this chapter; but it seemed a suitable place for this material, which is fundamental
to abstract measure theory. We find that the concepts of §§342-343 are just what is needed to characterize
Lebesgue measure (344K), and the characterization shows that among non-negligible measurable subspaces
of R” the isomorphism classes are determined by a single parameter, the measure of the subspace. Of course
a very large number of other spaces — indeed, most of those appearing in ordinary applications of measure
theory to other topics — are perfect and countably separated (for example, those of 342Xe and 343Ye), and
therefore covered by this classification. I note that it includes, as a special case, the isomorphism between
Lebesgue measure on [0, 1] and the usual measure on {0, 1} already described in 254K.

In 3441, the first part of the proof is devoted to showing that a perfect countably separated measure space
has countable Maharam type; I ought perhaps to note here that we must resist the temptation to suppose
that all countably separated measure spaces have countable Maharam type. In fact there are countably
separated probability spaces with Maharam type as high as 2°. The arguments are elementary but seem to
fit better into §521 of Volume 5 than here.

I have offered three contexts in which automorphisms of measure algebras are represented by automor-
phisms of measure spaces (344A, 344C, 344E). In the first case, every automorphism can be represented
simultaneously in a consistent way. In the other two cases, there is, I am sure, no such consistent family of
representations which can be constructed within ZFC; but the theorems I give offer consistent simultaneous
representations of countably many homomorphisms. The question arises, whether ‘countably many’ is the
true natural limit of the arguments. In fact it is possible to extend both results to families of at most wq
automorphisms.

Having successfully characterized Lebesgue measure — or, what is very nearly the same thing, the usual
measure on {0, 1}V — it is natural to seek similar characterizations of the usual measures on {0,1}* for
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uncountable cardinals k. This seems to be hard. A variety of examples (some touched on in the exercises
to §521) show that none of the most natural conjectures can be provable in ZFC.

In fact the principal new ideas of this section do not belong specifically to measure theory; rather, they
belong to the general theory of o-algebras and o-ideals of sets. In the case of the Schréder-Bernstein-type
theorem 344D, this is obvious from the formulation I give. (See also 344Yb.) In the case of 344B and
344F, 1 offer generalizations in 344Ya-344Ye. Of course the applications of 344B here, in 344C and its
corollaries, depend on Maharam’s theorem and the concept of ‘compact’ measure space. The former has
no generalization to the wider context, and the value of the latter is based on the equivalences in Theorem
343B, which also do not have simple generalizations.

The property described in 344J — a measure space (X,X, ) in which any two measurable subsets of
the same non-zero measure are isomorphic — seems to be a natural concept of ‘homogeneity’ for measure
spaces; it seems unreasonable to ask for all sets of zero measure to be isomorphic, since finite sets of different
cardinalities can be expected to be of zero measure. An extra property, shared by Lebesgue measure and the
usual measure on {0,1}! and by the measure on the split interval (344Kc, 344L, 344Xf) but not by counting
measure, would be the requirement that measurable sets of different non-zero finite measures should be
isomorphic up to a scalar multiple of the measure. All these examples have the further property, that all
automorphisms of their measure algebras correspond to automorphisms of the measure spaces.

Version of 27.6.06

345 Translation-invariant liftings

In this section and the next I complement the work of §341 by describing some important special properties
which can, in appropriate circumstances, be engineered into our liftings. I begin with some remarks on
translation-invariance. I restrict my attention to measure spaces which we have already seen, delaying a
general discussion of translation-invariant measures on groups until Volume 4.

345A Translation-invariant liftings I shall consider two forms of translation-invariance, as follows.

(a) Let p be Lebesgue measure on R”, and ¥ its domain. A lifting ¢ : ¥ — ¥ is translation-invariant
if (FE+x)=¢E+x for every E € &, x € R". (Recall from 134A that E +x = {y+ x : y € E} belongs to
Y for every E€ X, x € R".)

Similarly, writing 2 for the measure algebra of u, a lifting 6 : 2 — X is translation-invariant if
O(FE+z)* =0FE* 4+« for every E € X, x € R".

It is easy to see that if § and ¢ correspond to each other in the manner of 341B, then one is translation-
invariant if and only if the other is.

(b) Now let I be any set, and let v; be the usual measure on X = {0, 1}/, with T its domain and B;
its measure algebra. For x, y € X, define x +y € X by setting (x + y)(i) = x() +2 y(7) for every i € I; that
is, give X the group structure of the product group ZJ. This makes X an abelian group (isomorphic to the
additive group (PI,A) of the Boolean algebra PI, if we match x € X with {i:z(i) =1} C I).

Recall that the measure vy is a product measure (254J), being the product of copies of the fair-coin
probability measure on the two-element set {0,1}. If € X, then for each i € I the map € — € +5 x(4) :
{0,1} — {0,1} is a measure space automorphism of {0, 1}, since the two singleton sets {0} and {1} have the
same measure +. It follows at once that the map y — y 4+ z : X — X is a measure space automorphism.

2
Accordingly we can again say that a lifting 6 : B; — T, or ¢ : Ty — Ty, is translation-invariant if

O(E+z)*=0E*+z, ¢E+x)=0¢E+x
whenever £ € ¥ and =z € X.

345B Theorem For any r > 1, there is a translation-invariant lifting for Lebesgue measure on R”.

proof (a) Write p for Lebesgue measure on R", ¥ for its domain. Let ¢ : ¥ — ¥ be lower Lebesgue density
(341E). Then ¢ is translation-invariant in the sense that ¢(E + ) = ¢F + x for every E € ¥, z € R". P

(© 1995 D. H. Fremlin
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w(E+z)NB(y,0) _ 1}
w(B(y,9))

o v W(ENB(y—c.6) _
=y e R I o) }

— . T 3
O(E +x)={y:y eR", lim

(because (i is translation-invariant)
={y+x:yeR", limwzl}

510 p1(B(y,9))
=¢F+1.Q

(b) Let ¢ be any lifting for x4 such that ¢oE 2 ¢F for every E € ¥ (341Jb). Consider

PE ={y:0€ ¢o(E —y)}

for £ € 3. It is easy to check that ¢ : ¥ — X is a Boolean homomorphism because ¢ is, so that, for
instance,

Yy € QENPF = 0 € ¢po(E — y)Dgo(F —y)
= 0€ ¢((E—y)AF —y)) = do((EAF) —y)
< y € ¢(EAF).

(c) If uFE =0, then F — y is negligible for every y € R", so ¢o(F — y) is always empty and ¢FE = .
(d) Next, ¢F C ¢F for every £ € X. P If y € ¢F, then
0=y—yecoE—y=¢(E—y)C do(E—y),
soy € ¢F. Q By 3411b, ¢ is a lifting for pu.

(e) Finally, ¢ is translation-invariant, because if £ € ¥ and x, y € R” then

YyEPE+x) <= 0€go(E+x—y)=do(E—(y—x))
< y—1x € PF
— y € oF +x.

345C Theorem For any set I, there is a translation-invariant lifting for the usual measure on {0,1}!.

proof I base the argument on the same programme as in 345B. This time we have to work rather harder,
as we have no simple formula for a translation-invariant lower density. However, the ideas already used in
341F-341H are in fact adequate, if we take care, to produce one.

(a) Since there is certainly a bijection between I and its cardinal k = #([), it is enough to consider the
case I = . Write v, for the usual measure on X = {0,1} = {0,1}* and T, for its domain. For each ¢ < x
set Be ={z:x € X, z(§) = 1}, and let ¥¢ be the o-algebra generated by {E,, : n < £}. Because z + E,, is
either E, or X \ E,, and in either case belongs to X, for every n < { and = € X, X is translation-invariant.
(Consider the algebra

Zé:{E;E-f-erg for every z € X };

this must be X¢.) Let ®¢ be the set of partial lower densities ¢ : 3¢ — T, which are translation-invariant
in the sense that ¢(E + x) = ¢FE + x for any £ € ¥¢, x € X.

(b)(i) For £ < Kk, X¢4q is just the algebra of subsets of X generated by ¥¢ U {E¢}, that is, sets of the
form (FNE¢)U(G\ E¢) where F, G € ¥¢ (312N). Moreover, the expression is unique. I Define z¢ € X by
setting z¢(§) =1, z¢(n) = 0 if n # & Then z¢ + E,) = E, for every n < &, so x¢ + F = F for every F € ¥¢.
If H=(FNE:)U(G\ E¢) where F, G € ¢, then
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:U§+H:((:CngF)ﬁ(ﬂfgﬂLEg))U(($5+G)\(x§+E§)):(F\EE)U(GQEE),

F=(HNE)U((ve + H)\ E¢) = Fy,

G=(H\E)U((we + H)NEg) = Gu
are determined by H. Q

(ii) The functions H — Fy, H — Gg : L1 — X¢ defined above are clearly Boolean homomorphisms;
moreover, if H, H € ¥¢;1 and HAH' is negligible, then

(FHAFH/) U (GHAGH/) - (HAH/) U (J?g + (HAH/))
is negligible. It follows at once that if { < x and ¢ € ®¢, we can define ¢1 : ¢ — T, by setting
O1H = (9Fu N Eg) U (9Gu \ Ex),

and ¢; will be a lower density. If H € ¥¢ then Fy = Gg = H, so ¢1H = ¢H. Generally, if H, H' € %
then

O1((H N Eg) U (H'\ Ee)) = (9Fu N Ee) U (¢Grr \ Ee) = (0H N Ee) U (9H" \ Eg).

(iii) To see that ¢, is translation-invariant, observe that if 2 € X and 2(§) = 0 then = + E¢ = E, so,
for any F', G € ¥¢,

d1(z+ (FNE)U(G\ Ee))) =i ((F+2)NE)U((G+a)\ E))
( (F'+2) N Ee) U (o(G + )\ E)
((oF +2) N Ee) U ((¢G + ) \ E)
z+ (¢F NEe) U (G \ E)
G1((FNEg)U(G\ E)).

O(F +
F+

+
_|_

While if z(§) = 1 then z + Ee = X \ E¢, so

O1(x + ((F' N Eg) U (G\ Ex)))

O1(((F +2) \ Ee) U((G + )N Eg))

=( (F+x)\ Eeg) U ($(G + ) N E)
= ((oF +2) \ E¢) U ((¢G +x) N E)
=z + (QF N Eg) U (oG \ E)
=2+ ¢1((FNEg) U(G\ E)).

So ?1 € @5_;,.1.
(iv) Thus every member of ®¢ has an extension to a member of ®¢ .

(c) Now suppose that (((n))nen is a non-decreasing sequence in x with supremum & < k. Then X is
just the o-algebra generated by |, oy X¢(n)- If we have a sequence (¢n)nen such that ¢, € ®¢(,y and ¢p 1
extends ¢, for every n, then there is a ¢ € ®¢ extending every ¢,,. B I repeat the ideas of 341G.

(i) For E € ¥¢, n € N choose gg,, such that gg, is a conditional expectation of x £/ on ¥(,); that is,

ngEn :foE:Vﬁ(FﬂE)

for every E € ¥¢(,). Moreover, make these choices in such a way that («) every ggy is X¢(,)-measurable
and defined everywhere on X (8) ggn = grs for every n if EAE' is negligible. Now lim,,_, gg, exists and
is equal to xE almost everywhere, by Lévy’s martingale theorem (2751).

(ii) For E€ X¢, k> 1, n € N set
Hin(B)={z:2€ X, gpn(z) > 1 -2} € ¢y, Hpn(E) = ¢pn(Hin(E)),

MEASURE THEORY



345C Translation-invariant liftings 43

oE = ﬂk21 UneN mmZn ﬁkm(E)~

(iii) Every gg, is zero almost everywhere, every Hy,(0) is negligible and every Hy,(0) is empty;
so o0 = 0. If E, E' € X¢ and EAE’ is negligible, gp, = gpn for every n, Hyp(E) = Hpp(E') and

Hnp(E) = Hup(E') for all n, k, and ¢F = ¢FE'.
(iv) If~E CF iI~l e, then gg, < gp, almost everywhere for every n, every Hy,(E) \ Hy,(F) is
negligible, Hy,(E) C Hy,(F) for every n, k, and ¢E C ¢F.
(V)IfE, F € ¥¢ then x(ENF) >4 XE4+XF —150 ggnrn Zae. 9En+9grn—1 for every n. Accordingly
Hip1,0(E) N Hi1,n(F) \ Hin(E N F)
is negligible, and (because ¢,, is a lower density)
Hin(ENF) 2 ¢n(Hps1,0(E) N Hegr,n(F)) = Hig1,0(E) N Hyg1 0 (F)
for all k > 1, n € N. Now, if x € ¢E N ¢F, then, for any k > 1, there are ny, no € N such that
x € ﬂman ﬁk+17m(E), T € ﬂman ﬁk+1,m(F).
But this means that
2 € V> max(nsne) Him(ENF).
As k is arbitrary, z € ¢(E N F); as x is arbitrary, ¢FE N ¢F C ¢(E N F). We know already from (iv) that
S(ENF) C $ENF, s0 $(ENF) = ¢E N $F.
(vi) If E € X, then gg, — xE a.e., so setting
V= mkzl UneN nmzn Hypm(E) = {z : limsup,,_, , gEn(z) > 1},
V AFE is negligible; but
GEAV € Uysy pen Hin (B)AHyn (E)
is also negligible, so ¢ EAE is negligible. Thus ¢ is a partial lower density with domain .

(vii) If £ € X¢(p), then E € ¢y, for every m > n, 50 gpm =a.e. XE for every m > n; Hyp(E)AE is
negligible for £ > 1, m > n;
for k> 1, m > n; and QE = QnE Thus Q extends every Qn

(viii) I have still to check the translation-invariance of ¢. If £ € ¥¢ and = € X, consider g;,, defined
by setting

9n(y) = gEn(y — )

for every y € X, n € N; that is, ¢/, is the composition gg,, where ¥(y) =y — z for y € X. (I am not sure
whether it is more, or less, confusing to distinguish between the operations of addition and subtraction in
X. Of course y —x =y + (—x) = y + x for every y.) Because ¢ is a measure space automorphism, and in
particular is inverse-measure-preserving, we have

fF-l—l'g;L = f'&/)—l[F] g':L = ngEn = VH(EQF)

whenever F' € Y¢(p,) (235Gc?). But because Y¢(n 18 itself translation-invariant, we can apply this to F' —x
to get

ng;L =v(EN(F—2a)=v,(E+z)NF)
for every F' € X¢(,). Moreover, for any o € R,
{v:9.(y) 2 at ={y:gpny) = o} + 2 € B¢y

3Formerly 2351.
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for every a, and g;, is X (,)-measurable. So g;, is a conditional expectation of x (£ + x) on X¢(,), and must
be equal almost everywhere to gg4z.n-
This means that if we set

Hp, ={y:9,(y) 212"} = Hyn(E) + 2
for k, n € N, we shall have H},, € ¥¢(,) and H},, AHy,(E + z) will be negligible, so

Hyn(E +2) = %( <E+x>> bn(HY,)

Consequently

oE+z)=(\ U ) HnlE+2)

k>1neNm>n

=\ U ) Hn(E) + 2 =¢E + 2.

k>1neNm>n

As E and z are arbitrary, ¢ is translation-invariant and belongs to ®.. Q

(d) We are now ready for the proof that there is a translation-invariant lower density for v,. P Build
inductively a family (¢¢)e<w such that () ¢e € ®¢ for each £ (8) ¢¢ extends ¢, whenever n < & < k. The
induction starts with 2y = {0, X}, ol = 0, ¢poX = X. The inductive step to a successor ordinal is dealt
with in (b), and the inductive step to a non-zero ordinal of countable cofinality is dealt with in (c). If £ < &
has uncountable cofinality, then ¢ = (J, _. X, so we can (and must) take ¢¢ to be the unique common
extension of all the previous ¢,,. B

The induction ends with ¢, : ¥, — T,. Note that X, is not in general the whole of T,. But for every
E € T, there is an F € %, such that EAF is negligible (254Ff). So we can extend ¢, to a function ¢
defined on the whole of T, by setting N N

OF = ¢ I whenever E € Ty, F' € ¥, and v, (EAF) =0

(the point being that ¢ I = ¢ F" if F, F' € ¥, and v, (EAF) = v (EAF') = 0). It is easy to check that ¢
is a lower density, and it is translation-invariant because if E € Ty, z € X, F € ¥, and EAF is negligible,
then (E + z)A(F + x) = (EAF) + x is negligible, so

Q(E+1x)=¢u(F+2z)=0F+ax=09E+2. Q

n<§

(€) The rest of the argument is exactly that of parts (b)-(e) of the proof of 345B; you have to change R”
into X wherever it appears, but otherwise you can use it word for word, interpreting ‘0’ as the identity of
the group X, that is, the constant function with value 0.

345D Translation-invariant liftings are of great importance, and I will return to them in §447 with a
theorem dramatically generalizing the results above. Here I shall content myself with giving one of their
basic properties, set out for the two kinds of translation-invariant lifting we have seen.

Proposition Let (X,Y, 1) be either Lebesgue measure on R” or the usual measure on {0,1}! for some
set I, and let ¢ : ¥ — ¥ be a translation-invariant lifting. Then for any open set G C X we must have
G C ¢G C G, and for any closed set F' we must have int F' C ¢F C F.

proof (a) Suppose that G C X is open and that « € G. Then there is an open set U such that 0 € U and
2+U-U={s+y—2:y,2€ U} CG. P (a) If X =R", take § > 0 such that {y : |ly—z| <0} C G, and set
U={y:|ly—z| < 16}. (8)If X = {0,1}, then there is a finite set K C I such that {y: y|[K = 2[K} C G
(BA3K); set U ={y:y(i) =0 foreveryi € K}. Q

It follows that € ¢G. P Consider H = x + U. Then pH = pU > 0so HN¢H # (). Let y € U be such
that z +y € ¢H. Then

r=(zx+y)—y€dH—-y) C oG

because

MEASURE THEORY



345F Translation-invariant liftings 45
H-yCzx+U-UCG. Q

(b) Thus G C ¢G for every open set G C X. But it follows at once that if G is open and F is closed,
int F C ¢(int F) C ¢F,

G=X\int(X\G) 2 X\ o(X\G) = 9G,

F=X\(X\F)2X\g(X\F) = gF.

345E Iremarked in 341Lg that it is undecidable in ordinary set theory whether there is a lifting for Borel
measure on R. It is however known that there can be no translation-invariant Borel lifting. The argument
depends on the following fact about measurable sets in {0, 1}!.

Lemma Give X = {0, 1} its usual measure vy, and let E C X be any non-negligible measurable set. Then
there is an n € N such that for every k > n there are x, 2’ € E which differ at & and nowhere else.

proof By 254Fe, there is a set F', determined by coordinates in a finite set, such that vy(EAF) < iVNE;
we have vnF > %Z/NE, so un(EAF) < %VNF. Let n € N be such that F' is determined by coordinates
in {0,...,n —1}. Take any k > n. Then the map ¢ : X — X, defined by setting (vx)(k) = 1 — z(k),
(vx)(i) = x(i) for ¢ # k, is a measure space automorphism, and

1/N<’(/J_1[EAF] @] (EAF)) < QVN(EAF) < vNF.

Take any x € F\ (EAF) Uy~ Y[EAF]). Then 2’ = vz differs from x at k, and only there; but also 2’ € F,
by the choice of n, so both z and z’ belong to E.

345F Proposition Let p be the restriction of Lebesgue measure to the algebra BB of Borel subsets of R.
Then p is translation-invariant, but has no translation-invariant lifting.

proof (a) To see that y is translation-invariant all we have to know is that B is translation-invariant and that
Lebesgue measure is translation-invariant. I have already cited 134A for the proof that Lebesgue measure
is invariant, and B is invariant because G 4 x is open for every open set G and every x € R.

(b) The argument below is most easily expressed in terms of the geometry of the Cantor set C'. Recall
that C' is defined as the intersection [,y Cn of a sequence of closed subsets of [0, 1]; each C), consists of
2" closed intervals of length 37"; C, 41 is obtained from C,, by deleting the middle third of each interval of
Cy. Any point of C' is uniquely expressible as f(e) = 23" 37 "e(n) for some e € {0,1}. (See 134Gb.)
Let vy be the usual measure of {0, 1}. Because the map e +— e(n) : {0, 1} — {0, 1} is measurable for each
n, f:{0,1}V — R is measurable.

We can label the closed intervals constituting C;, as (J.).e0,13», taking Jy to be the unit interval [0, 1]
and, for z € {0,1}", taking J,~ g~ to be the left-hand third of J, and J,~ .~ to be the right-hand third
of J,. (If the notation here seems odd to you, there is an explanation in 3A1H.)

For n € N and z € {0,1}", let J. be the open interval with the same centre as J, and twice the length.
Then J. \ J, consists of two open intervals of length 37" /2 on either side of J; call the left-hand one V,
and the right-hand one W,. Thus V,_~ ;- is the right-hand half of the middle third of J,, and W_~ o~ is
the left-hand half of the middle third of J,.

Construct sets GG, H C R as follows.

G is to be the union of the intervals V, where z takes the value 1 an even number of times,
together with the intervals W, where z takes the value 0 an odd number of times;

H is to be the union of the intervals V, where z takes the value 1 an odd number of times,
together with the intervals W, where z takes the value 0 an even number of times.
G and H are open sets. The intervals V., W, between them cover the whole of the interval |—1, 3| with
the exception of the set C' and the countable set of midpoints of the intervals J.; so that |—%,3[\ (G U H)
is negligible. We have to observe that G N H = (). P For each z, J_os and J . _,_ are disjoint subsets
of J.. Consequently J. N .J/, is non-empty just when one of z, w extends the other, and we need consider

only the intersections of the four sets V., W,, V,,, W, when w is a proper extension of z; say w € {0,1}"
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and z = w|m, where m < n. (o) If in the extension (w(m),...

Liftings

345F

,w(n — 1)) both values 0 and 1 appear, J,

will be a subset of J,, and certainly the four sets will all be disjoint. (8) If w(i) = 0 for m < i < n, then
W C J, is disjoint from the rest, while V,,, C V,; but z and w take the value 1 the same number of times, so
Vi is assigned to G iff V; is, and otherwise both are assigned to H. () Similarly, if w(i) = 1 for m < i < n,
Vo C J,, Wy, CW, and z, w take the value 0 the same number of times, so W, and W,, are assigned to the

same set. Q

The following diagram may help you to see what is supposed to be happening:

E= =35 E= =3 E= =3 E= =2
G H G H G H
L | | L | | | L | | L |
VOO ‘]00 \/\60 VOl ‘]01 V\bl V10 ‘]10 V\I.LO Vll ‘]11 Vv.l.l
Vo Jo V\b V1 Jl Vv.l.
\% 0 J 1 w
The assignment rule can be restated as follows:
V =V} is assigned to G, W = W} is assigned to H;
V,~<o> is assigned to the same set as V,, and V,~_;< to the other;
W,~ <1~ is assigned to the same set as W, and W,~ .- to the other.
(c) Now take any n € N and z € {0,1}". Consider the two open intervals Iy = J/ L =J

~<0>?

27 <1>"

These are both of length v = 2-37"~! and abut at the centre of J,, so I; is just the translate Iy + . I
claim that I; N H = (I N G) + . P Let A be the set

Umsniw :w € {0,1}™, w extends 27 <0>},

and for w € A let w’ be the finite sequence obtained from w by changing w(n) = 0 into w’(n) = 1 but
leaving the other values of w unaltered. Then V,,, = V,, + v and W, = W,, + ~ for every w € A. Now

IhNnG = U{Vw :w € A, w takes the value 1 an even number of times}

U U{Ww cw € A, w takes the value 0 an odd number of times},

SO

(IoNG)+~v= U{Vw/ :w € A, w takes the value 1 an even number of times}

u U{Ww/ cw € A, w takes the value 0 an odd number of times}

= U{Vw/ cw € A, w' takes the value 1 an odd number of times}

u U{Ww/ cw € A, w' takes the value 0 an even number of times}

=LNH Q

(d) ? Now suppose, if possible, that ¢ : B — B is a translation-invariant lifting. Note first that U C ¢U
for every open U C R. P The argument is exactly that of 345D as applied to R = R!. @ Consequently

But as Jj \ (G U H) is negligible,
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Consider the sets E = f~'[¢G], F = {0,1}N\ E = f~1[¢H]. Because f is measurable and ¢G, ¢H are
Borel sets, E and F' are measurable subsets of {0, 1}, and at least one of them has positive measure for vy.
There must therefore be e, ¢’ € {0,1}Y, differing at exactly one coordinate, such that either both belong
to E or both belong to F' (345E). Let us suppose that n is such that e(n) = 0, ¢/(n) = 1 and e(i) = €'(i)
for i # n. Set 2 = e[n = ¢'[n. Then f(e) belongs to the open interval Iy = J,._,_, so f(e) € ¢ly and
f(e) € G iff f(e) € ¢p(Ip N G). But now

fleh=fle)+2-3 el =J

27 <1>7

SO

e€FE <= fle) e oG <= f(e) € p(IoNG)

= fle)eop((IyNnG)+2-377h)
(because ¢ is translation-invariant)

= f() €p(lLNH)
(by (c) above)

<~ f(¢') e pH
(because f(e') € Iy C ¢I7)

< ¢ eF

But this contradicts the choice of e. X
Thus there is no translation-invariant lifting for pu.

Remark This result is due to JOHNSON 80; the proof here follows TALAGRAND 82B. For references to
various generalizations see BURKE 93, §3.

345X Basic exercises (a) In 345Ab I wrote ‘It follows at once that the map y — y+2: X — X is a
measure space automorphism’. Write the details out in full, using 254G or otherwise.

(b) Let S* be the unit circle in R?, and let u be one-dimensional Hausdorff measure on St (§§264-265).
Show that g is translation-invariant, if S* is given its usual group operation corresponding to complex
multiplication (255M), and that it has a translation-invariant lifting ¢. (Hint: Identifying S! with ]—, 7]
with the group operation —+2., show that we can set ¢F = |—m, 7] N ¢’ (U, .z E + 27n), where ¢’ is any
translation-invariant lifting for Lebesgue measure.)

neEZ

>(c) Show that there is no lifting ¢ of Lebesgue measure on R which is ‘symmetric’ in the sense that
¢(—F) = —¢FE for every measurable set E, writing —F = {—z : « € E}. (Hint: can 0 belong to ¢([0, 00[)?)

>(d) Let p be Lebesgue measure on X = R\ {0}. Show that there is a lifting ¢ of u such that
¢(zE) = 2¢F for every x € X and every measurable E C X, writing F = {zy : y € E}.

(e) Let v7 be the usual measure on X = {0, 1}, for some set I, T its domain, and (B, ;) its measure
algebra. (i) Show that we can define 7, (a) = a+x, for a € By and z € X, by the formula E*+x = (E+1z)°;
and that x — 7, is a group homomorphism from X to the group of measure-preserving automorphisms of
2. (ii) Define 3¢ as in the proof of 345C, and set A¢ = {E* : E € X¢}. Say that a partial lifting 6 : 2 — T
is translation-invariant if f(a + ) = fa + = for every a € ¢ and x € X. Show that any such partial lifting
can be extended to a translation-invariant partial lifting on ¢14. (iil) Write out a proof of 345C in the
language of 341F-341H.

>(f) Let ¢ be a lower density for Lebesgue measure on R™ which is translation-invariant in the sense
that ¢(E + x) = ¢F + x for every € R” and every measurable set £. Show that ¢G' O G for every open
set G C R".
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(g) Let u be 1-dimensional Hausdorff measure on S!, as in 345Xb. Show that there is no translation-
invariant lifting ¢ of p such that ¢F is a Borel set for every E € dom p.

345Y Further exercises (a) Let (X,X, ) be a complete measure space, and suppose that X has a
group operation (z,y) — zy (not necessarily abelian!) such that p is left-translation-invariant, in the sense
that E = {zy : y € E} € ¥ and u(xF) = pE whenever E € ¥ and z € X. Suppose that ¢ : ¥ — 2
is a lower density which is left-translation-invariant in the sense that ¢(zFE) = x(¢E) for every E € ¥ and
x € X. Show that there is a left-translation-invariant lifting ¢ : & — ¥ such that ¢E C ¢F for every F € X.

(b) Write X for the o-algebra of Lebesgue measurable subsets of R, and £°(X) for the linear space of
Y-measurable functions from R to itself. Show that there is a linear operator T : L%(u) — £°(X) such that
(@) (Tw)* = u for every u € LO(u) (B) supyeg |(Tu)(z)] = ||lu||o for every u € L(p) () Tu > 0 whenever
w € L*(u) and u > 0 (&) T is translation-invariant in the sense that T'(S, f)* = S, Tf* for every x € R and
f e LX), where (S.f)(y) = f(z +y) for f € LX) and z, y € R (¢) T is reflection-invariant in the sense
that T(Rf)* = RT f* for every f € LO(X), where (Rf)(z) = f(—=z) for f € LX) and z € R. (Hint: for
f e Lo(x), set

p(f*) = inf{a: a € [0, 0], lims}o %,u{x Dl <6, | f(x)] > a} =0}

Set V.= {u:u € L°%u), p(u) < oo} and show that V is a linear subspace of L°(u) and that p|V is a
seminorm. Let hy : V' — R be a linear functional such that ho(xR)* = 1 and hg(u) < p(u) for every
u € V. Extend hg arbitrarily to a linear functional hy : L%(u) — R; set A(f*) = 5(h1(f*) + hi(Rf)*). Set
(Tf*)(x) = h(S—.f)*. You will need 223C.) Show that there must be a u € L'(x) such that u > 0 but
Tu 2 0.

(c) Show that there is no translation-invariant lifting ¢ of the usual measure on {0, 1} such that ¢F is
a Borel set for every measurable set F.

345 Notes and comments [ have taken a great deal of care over the concept of ‘translation-invariance’. I
hope that you are already a little impatient with some of the details as I have written them out; but while it
is very easy to guess at the structure of such arguments as part (e) of the proof of 345B, or (b-iii) and (c-viii)
in the proof of 345C, I am not sure that one can always be certain of guessing correctly. A fair test of your
intuition will be how quickly you can generate the formulae appropriate to a non-abelian group operation,
as in 345Ya.

Part (b) of the proof of 345C is based on the same idea as the proof of 341F. There is a useful simplification
because the set E¢ in 345C, corresponding to the set £ of the proof of 341F, is independent of the algebra
Y¢ in a very strong sense, so that the expression of an element of ¥¢; 1 in the form (F N E¢) U (G \ E¢) is
unique. Interpreted in the terms of 341F, we have w = v = 1, so that the formula

01((ane)u(b\e)) = (Q((amv) u((b\v))N E) U (Q((a\w) u(bnw)) \E)
used there becomes
Bi((ane)ub\e)) = (an E) U (8b\ E),

matching the formula for ¢; in the proof of 345C.

The results of this section are satisfying and natural; they have obvious generalizations, many of which
are true. The most important measure spaces come equipped with a variety of automorphisms, and we can
always ask which of these can be preserved by a lifting. The answers are not always obvious; I offer 345Xc
and 346Xc as warnings, and 345Xd as an encouragement. 345YDb is striking (I have made it as striking as I
can), but slightly off the most natural target; the sting is in the last sentence (see 341Xg).
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Version of 17.12.10
346 Consistent liftings

I turn now to a different type of condition which we should naturally prefer our liftings to satisfy. If we
have a product measure y on a product X = [],.; X; of probability spaces, then we can look for liftings ¢
which ‘respect coordinates’; that is, are compatible with the product structure in the sense that they factor
through subproducts (346A). There seem to be obstacles in the way of the natural conjecture (346Za), and
I give the partial results which are known. For Maharam-type-homogeneous spaces X;, there is always a
lifting which respects coordinates (346E), and indeed the translation-invariant liftings of §345 on {0, 1}
already have this property (346C). There is always a lower density for the product measure which respects
coordinates, and we can ask for a little more (346G); using the full strength of 346G, we can enlarge this
lower density to a lifting which respects single coordinates and initial segments of a well-ordered product
(346H). In the case in which all the factors are copies of each other, we can arrange for the induced liftings
on the factors to be copies also (3461, 346J, 346Ye). I end the section with an important fact about Stone
spaces which is relevant here (346K-346L).

346A Definition Let ((X;,Y;, ui))icr be a family of probability spaces, with product (X, %, u). T will
say that a lifting ¢ : ¥ — ¥ respects coordinates if ¢F is determined by coordinates in J whenever E € 3
is determined by coordinates in J C I.

Remark Recall that a set £ C X is ‘determined by coordinates in J’ if 2’ € E whenever z € E, 2’ € X
and z’[J = z|J; that is, if F is expressible as W;l[F] for some F' C [[,c; Xi, where 7;(x) = 2[J for every
z € X; that is, if E = 7, '[rs[E]]. See 254M. Recall also that in this case, if E is measured by the product
measure on X, then 7;[E] is measured by the product measure on [],; X; (2540Db).

346B Lemma (a) Let (X, X, u) be a measure space with a lifting ¢ : ¥ — X. Suppose that YV is a
set and f : X — Y a surjective function such that whenever E € X is such that f~![f[E]] = E, then
f7f[PE]] = ¢E. Then we have a lifting 1 for the image measure jf ! defined by the formula

[ YF] = ¢(f'[F]) whenever F CY and f~!'[F] € &.

(b) Let ((X;,%;,1i))icr be a family of probability spaces, with product (Z,A,\). For J C T let
(Zy,A7,Ay) be the product of ((X;,%;, p;))ics, and 7y : Z — Z; the canonical map. Let ¢ : A — A
be a lifting. If J C I is such that ¢W is determined by coordinates in J whenever W € A is determined by
coordinates in J, then ¢ induces a lifting ¢; : A;j — A; defined by the formula

77 ¢ E] = ¢(r; [E)) for every E € A ;.
proof (a) Set wF = flo(f~L[F])] for F € dom(uf~!). Because f is surjective, 1Y = Y, and it is now
elementary to check that 1 is a lifting for puf 1.
(b) By 2540a, \; is the image measure A7 ', so we can use (a).

Remark Of course we frequently wish to use part (b) here with a singleton set J = {j}. In this case we
must remember that (Z;,3, As) corresponds to the completion of the probability space (X;,%;, 1)

346C Theorem Let I be any set, and vy the usual measure on X = {0,1}!. Then any translation-
invariant lifting for v; respects coordinates.

proof Suppose that £ C X is a measurable set determined by coordinates in J C I; take x € ¢F and
2’ € X such that 2’| J = x]J. Set y =2’ — z; then y(i) = 0 for i € J, so that £+ y =y. Now

t'=r+y€PE+y=¢(E+y) =0¢F

because ¢ is translation-invariant. As x, 2’ are arbitrary, ¢F is determined by coordinates in J. As E and
J are arbitrary, ¢ respects coordinates.

346D I describe a standard method of constructing liftings from other liftings.
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Lemma Let (X, X, 1) and (Y, T, v) be measure spaces, with measure algebras 2, ®B; suppose that f : X - Y
represents an isomorphism F* + f71[F]* : B — A. Then if ¢ : T — T is a lifting for v, there is a
corresponding lifting ¢’ : 3 — ¥ given by the formula

¢'E = f~Y¢F] whenever u(EAf~1[F]) = 0.

proof If we say that 7 : 8 — 2l is the isomorphism induced by f, then
¢E=fHo(r E)],

where 6 : B — T is the lifting corresponding to ¢ : T — T. Since 6, 7! and F ~ f~![F] are all Boolean
homomorphisms; so is ¢, and it is easy to check that (¢'E)* = E* for every F € ¥ and that ¢'F = ) if
uwE =0.

Remark Compare the construction in 341P.

346E Theorem Let ((X;, %;, u;))icr be a family of Maharam-type-homogeneous probability spaces, with
product (X, X%, ). Then there is a lifting for u which respects coordinates.

proof (a) Replacing each p; by its completion does not change p (2541), so we may suppose that all the p;
are complete. In this case there is for each ¢ an isomorphism between the measure algebra (2(;, fi;) of p; and
the measure algebra (B 7,,7;,) of some {0, 1}”¢ with its usual measure v, (331L). We may suppose that the
sets J; are disjoint. Each v, is compact (342Jd), so the isomorphisms are represented by inverse-measure-
preserving functions f; : X; — {0,1}7¢ (343Ca).

Set K = J,c; Ji, and let vk be the usual measure on Y = {0,1}*, Tk its domain. We have a natural
bijection between [],.,{0,1}” and Y, so we obtain a function f : X — Y literally speaking,

f(@)(4) = fi(z(2)(5)
foriel,je J;and z € X.

(b) Now f is inverse-measure-preserving and induces an isomorphism between the measure algebras 2,
By of u, vi.

P(i) If L C K is finite and z € {0, 1}%, then, setting L, = LN J; for i € I,

ez e X, f(z)IL =z} = ﬂ(H{w tw € Xy, fi(w)[L; = z[Li})

i€l
= Hui{w cw € Xy, fi(w)[Li = 2 Li}
i€l
=[[vsdv:ve {01} vIL; =21 L;}
el

(because every f; is inverse-measure-preserving)

= HQ_#(L"’) =27 # L) —yp{y:y e, ylL ==z}
iel

So uf~1[C] = v C for every basic cylinder set C C Y. By 254G, f is inverse-measure-preserving.

(ii) Accordingly f induces a measure-preserving homomorphism 7 : By — 2A. To see that 7 is
surjective, consider

A ={E: E is X-measurable, E* € 7[Bk]|}.

Because 7[B k] is a closed subalgebra of 2 (324Kb), A’ is a o-subalgebra of the domain A of y, and of course
it contains all p-negligible sets. If i € J and G € %, then there is an H C {0,1}”: such that GAf;l[H] is
wi-negligible. Now if E={z:2€ X, 2(i) e G} and F={y:y €Y, y|J; € H},

EAfF] = {z:a(i) € GAST[H]}
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is p-negligible, and £ € A’. But this means that A’ D @iel&, and must therefore be the whole of A
(254Ff). Q

(c) By 345C, there is a translation-invariant lifting ¢ for vg; by 346C, this respects coordinates. By
346D, we have a corresponding lifting ¢’ for u such that

¢ fHE] = [ oF]
for every F' € Tx. Now suppose that £ € A is determined by coordinates in L C I. Then there is an E’
belonging to the o-algebra A} generated by
{{z:2(i)eG}:ie L, Gex;}

such that u(EAE’) = 0 (2540b). Write Ty, for the family of sets in Tk determined by coordinates in
Uicr Ji- Then, just as in (b-ii), every member of A’ differs by a negligible set from some set of the form
f7YF] with F € Tr. So there is an F' € Ty, such that EAf~1[F] is u-negligible. Consequently

¢'E=¢ fHF] = f[¢F].
But ¢ respects coordinates, so ¢F is determined by coordinates in (J;, J;. It follows at once that f ~LoF]

is determined by coordinates in L; that is, that ¢'F is determined by coordinates in L. As E and L are
arbitrary, ¢’ respects coordinates, and witnesses the truth of the theorem.

346F It seems to be unknown whether 346E is true of arbitrary probability spaces (346Za); I give some
partial results in this direction. The following general method of constructing lower densities will be useful.

Lemma Let (X, %, u) and (Y, T, v) be complete probability spaces, with product (X xY, A, X). If ¢ : A — A
is a lower density, then we have a lower density ¢ : X — X defined by saying that

¢ E={z:2€X {y:(z,y) € ¢(E x Y)} is conegligible in Y}
for every E € 3.
proof For E € X, (E x Y)A¢(E x Y) is negligible, so that
Hy ={y:(z,y) € (ExY)A$(E xY)}

is v-negligible for almost every x € X (252D). Now EA¢ E = {z : H, is not negligible} is negligible, so
¢ EeX. L E F €Y, then

P(ENF)xY)=¢(ExY)N(FxY))=¢(ExY)N¢g(F xY),
so that
{y:(x,y) € (ENF)xY)} ={y: (z,y) € o(ExY)}N{y: (x,y) € ¢(F x )}
is conegligible iff both {y : (,y) € ¢(ExY)} and {y : (z,y) € ¢(F x Y)} are conegligible, and ¢ (ENF) =
6, ENg F.
1The rlest is easy. Of course ¢() x Y) = 0 so ¢ 0 = 0. If B, F € ¥ and EAF is negligible, then
(ExY)A(F xY) is negligible, ¢(ExY) = ¢(F xY) and ¢ E = ¢ F. So ¢, is alower density, as claimed.

346G Theorem Let ((X;,X;, i;))icr be a family of probability spaces with product (X, %, u). For J C T
let 3 ; be the set of members of ¥ which are determined by coordinates in J. Then there is a lower density
¢ : 3 — ¥ such that
(i) whenever J C I and E € £, then ¢F € ¥,

(ii) whenever J, K C I are disjoint, E € ¥; and F € Sy then ¢(EUF) = ¢E U ¢F.

proof Foreachi eI, setY; = XzN7 with the product measure v;; set Y = Hiel Y, with its product measure
v; set Z; = X; x Y;, with its product measure \;, and Z = Hiel Z;, with its product measure A\. Then the
natural identification of Z = [],.; X; x Y; with J[,.; Xs x [[,c; Y = X x Y makes A correspond to the
product of p and v (254N).

Each (Z;, ;) can be identified with an infinite power of (X, u;), and is therefore Maharam-type-homo-
geneous (334E). Consequently there is a lifting ¢ : A — A which respects coordinates (346E). Regarding

iel
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(Z,\) as the product of (X, u) and (Y, v), we see that ¢ induces a lower density ¢ : ¥ — X by the formula
of 346F. B

If JC I and E € ¥ is determined by coordinates in J, then E x Y (regarded as a subset of [[,.; Z;) is
determined by coordinates in J, so ¢(E x Y) also is. Now suppose that x € ¢F, 2’ € X and z[J = 2'[J.
Then for any y € Y, (z[J,ylJ) = (z'[J,ylJ), so (z,y) € ¢(E xY) iff (2',y) € ¢(E x Y). Thus

{y: (@ y) ed(ExY)}={y:(z,y) € o(ExY)}
is conegligible in Y, and 2" € ¢E. This shows that ¢ is determined by coordinates in .J.

Now suppose that J and K are disjoint subsets of I, that F/, F' € ¥ are determined by coordinates in J,
K respectively, and that 2 ¢ ¢E U ¢F. Then A = {y: (2,y) ¢ ¢(E xY)} and B = {y: (z,y) ¢ ¢(F xY)}
are non-negligible. As noted just above, ¢(F x Y) is determined by coordinates in J, so A is determined
by coordinates in .J, and can be expressed as {y : y[J € A’}, where A" C Y; = [[,c,;Yi. Because
y — ylJ : Y — Y, is inverse-measure-preserving, A’ cannot be negligible in Y. Similarly, B can be
expressed as {y : y| K € B’} for some non-negligible B’ C Y.

By 251S/251Wm, A’ x B’ x Y} (juk), regarded as a subset of Y, is non-negligible, that is,

C={y:yeY,ylJe A, ylK € B'}
is non-negligible. But

C=ANB={y:(2,y) ¢ (EXY)USF xY)} ={y: (2,9) ¢ p((EUF) x Y}.
Sox ¢ §(EUF). As x is arbitrary, ¢(E U F) C ¢E U ¢F; but of course ¢F U ¢F C ¢(E U F), because ¢ is

a lower density, so that ¢(E U F') = ¢FE U ¢F, as required.

Remark See MACHERAS MUSIAL & STRAUSS 99 for an alternative proof.

346H Theorem Let ¢ be an ordinal, and ((X¢, 3¢, ft¢))e<¢ a family of probability spaces, with product
(Z,A,\). For J C ¢ let Aj be the set of those W € A which are determined by coordinates in J. Then
there is a lifting ¢ : A — A such that ¢W € A; whenever W € A; and J is either a singleton subset of ¢ or
an initial segment of (.

proof (a) Let P be the set of all lower densities ¢ : A — A such that, for every & < (, (i) whenever
E € A¢ then ¢oF € A¢ (ii) whenever E € Aggy thenigE € Aygy (iii) whenever £ € A¢ and F € Ag\¢ then
#(EUF) = ¢E U@F. By 346G, P is not empty. Order P by saying that ¢ < ¢’ if pF C ¢'E for every
E € A; then P is a partially ordered set. Note that if ¢ € P then ¢Z = Z (bgcau;e Ao = {0, Z})

(b) Any non-empty totally ordered subset @ of P has an upper bound in P. P Define ¢* : A = PX by
setting ¢"E = (J,c ¢F for every E € A. (i) B

0= UgeQ 0=0.
(ii) If E, F € A and A\(EAF) = 0 then ¢E = ¢F for every ¢ € Q so ¢"E = ¢*F. (iii) If E, F € A and
E C F then ¢FE C ¢F for every g € Q@ so ¢"E C ¢"F. (iv) If E, F € A and x € $"EN¢"F, then there are
917 92 € @ such that x € QlEﬂQQF; now either él < 92 or ?2 < 91, so that
re(pENG F)U(S,ENG,F)=0¢ (ENF)US(ENF)C¢"(ENF).
Accordingly ¢"EN@"F C ¢"(ENF) and ¢"EN¢'F = ¢*(ENF). (v) Taking any ¢, € Q, we have
¢, F C ¢"E for every E € A, so (because \ is complete) ¢" is a lower density, by 341Ib. (vi) Now suppose
that J C I is either a singleton {£} or an initial segment &, and that 2 € A;. Then ¢F is determined by
coordinates in J for every ¢ € @, so Q*E is determined by coordinates in J. (vii) Finally, suppose that
§ <(andthat B € Ag, ' € Ape. If 2 € ¢"(E U F) then there is a ¢ € Q such that
r€P(EUF)=¢EUPF C ¢"EUP"F.

So ¢"(EUF) C ¢"EU¢"F and (using (iii) again) ¢"(E U F) = ¢"EU¢"F. Thus ¢" belongs to P and is
an upper bound for @ in P. Q 3
By Zorn’s Lemma, P has a maximal element ¢.

(c) For any H € A we may define a function ¢, as follows. Set Ay = Z'\ (éH Ué(Z \ H)),
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6, B = SE U (Ag N o(H U E))

for E € A. Then ¢, is a lower density. I (i) Because HAéH and (Z\H)Aé(Z\H) are both negligible, Ay
is negligible and ¢ E' is measurable and (¢, E)* = (¢E)* = E* for every E € A. (ii) Because Ay NoH =0,
6,0 =0. (iii) If B, F € A and A(EAF) = 0 then ¢E = ¢F and $(EUH) = §(FUH), 50 ¢ E = ¢, F.
(iv) If E, F'€ A and E C F then ¢E C ¢F and ¢(EUH) C ¢(FUH),s0 ¢, EC ¢, F. (v)IIE, FeA
and x € (2 QQHF, then

() ifz ¢ Ay,

x€PENQGF =¢(ENF)C ¢, (ENF),
(8) if v € A,
red(EUH)NG(FUH)=¢(ENF)UH)C ¢, (ENF).
Thus ¢, EN¢, FC ¢, (ENF)and ¢, ENg, F=¢, (ENF) Q
(d) It is worth noting the following.
(i) If E, H € A and §(EU H) = $E U H then ¢, E = ¢E. P We have
¢, E=9¢EU(AuN¢(EUH))=$EU (Ay N$E) U (Ay NgH) = ¢E
because Ay N¢H = 0. Q

(ii) If H € A and ¢,, € P then ¢H U¢(Z\ H) = Z. P By the maximality of ¢, we must have ¢, =
But

[

An=9,(Z\H)\(Z\ H),
so Ay =0, that is, pHUG(Z\ H)=Z. Q
(ili) If E, F € A and 9E U G(Z \ E) = Z, then (EUF) = pEUGF. P
YEUF)\GE = o(EUF)N4(Z\ E) = 6(EUF)N(Z\ E)) = $(F \ E) C 6F,
S0 é(E UF)C éE U éF; as the reverse inclusion is true for all £ and F', we have the result. Q
(e) If § < (and H € Aggy, then ¢, € P.

P(i) If J C T is either a Singlfkton or an inital segment, and F € Ay, then
() if € J, EUH and ¢F and ¢(EU H) and Ay all belong to Ay, s0 ¢, E €A,
B)IEE ¢ T, ¢(EUH) = ¢EU@H, because there is some 7 such that J C n and {{} € ¢\ n; so
¢, E=0E € A by (d-).

(i) If n < ¢, E € A,y and F € Ay, then
if ¢ <n, EUH € A, s0 (EUFUH) =¢(EUH)U¢F, and

¢, (EUF)=¢(EUF)U(AgN$(EUFUH))
=¢EUQFU(AgNG(EUH))U(AgN¢F) C ¢, EUG, F;
ifn <& FUH € Apy, 50 g(EUFUH) =¢(E)U$(FUH), and

(EUF)U(AgN$(EUF UH))
EUGFU(AgN@E))U(Agng(FUH)) C ¢, EU¢, F;

6, (EUF)=4¢
=9

accordingly QH(E UF) = ?HE U?HF‘ Q
By (d-ii) we have

SHUG(Z\H) =7
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whenever § < ( and H € Agg.

(f) ¢ < Cand H € A¢, then ¢, € P. P Induce on §. For { =0, H € Ag = {0, Z} so éH is either @ or
Z, Ay =0 and QH = ¢ belongs to P. For the inductive step to £ < ¢, we have the following.
(i) If n < ¢ and E € Ay, then )
(a)if £ <m, EUH and ¢F and ¢(E U H) and Ag all belong to A, so ¢,E €A,
(8) if n <&, then, by the inductive hypothesis, ¢ . € P, oF' = Z\¢(Z\ E) and ¢(EUH) = ¢EUPH,
by (d-ii) and (d-iii) above; so ¢ B = ¢E € Ay by (d-i).

(ii) If n < ¢ and E € Ay, then, by (e), pEUG(Z \ E) = Z, so that ¢(EUH) = ¢E U H, by (d-iii),
and ¢ E = ¢F € Ay, by (d-i).

(iii) If n < ¢, E € Ay and F € A, then
(a) if € <n, then EUH € A, and F € Ap,, so that g(EUF U H) = ¢(EU H) U ¢F, and

¢, (EUF)=¢(EUF)U(AgN$(EUFUH))
=¢EUSFU(ApNG(EUH))U(AgNF) C ¢, EUG F,

as in (e-ii) above, and accordingly ¢ (EUF) =¢ EU$ F.
(B) If n < & then, as in (ii), using the inductive hypothesis, we have ¢(EUFUH) = ¢EU¢(F UH),
i & P the mtteion contnnies @
(g) But the case £ = ¢ of (f) just tells us that
SHUG(Z\ H) =7

for every H € A. This means that é is actually a lifting (since it preserves intersections and complements).
And the definition of P is just what is needed to ensure that it is a lifting of the right type.

Remark This result is due to MACHERAS & STRAUSS 96B.

3461 Theorem Let (X,X, 1) be a complete probability space. For any set I, write A; for the product
measure on X, A; for its domain and 7y;(z) = z(i) for z € X', i € I. Then there is a lifting ¢ : ¥ — %
such that for every set I there is a lifting ¢ : A; — Ay such that ¢(77;'[E]) = 7};' [ E] whenever E € ¥ and
1€l
proof ? Suppose, if possible, otherwise.

Let ¥ be the set of all liftings for ;. We are supposing that for every 1 € W there is a set I for
which there is no lifting for A; , consistent with + in the sense above. Let x be a cardinal greater than
max(w, #(V),sup,cqy #(Ly)). Let ¢o : Ay — A, be a lifting satisfying the conditions of 346H. 346Bb tells
us that for every & < k we have a lifting 1 for y defined by the formula w;g [WE] = ¢0(7r;§1 [E]). For ¢ € ¥
set

Ky = {€: € <k, do(m ¢ [E]) = 7 [WE] for every E € 3}
Then Uyey Ky = £, so £ < max(w, #(V),supycy #(Ky)) and there is some i) € ¥ such that #(Ky) >
#(Iy). Take I C Ky, such that #(I) = #(Iy).

We may regard X* as X! x X*\ and in this form we can use the method of 346F to obtain a lower

density ¢ : A — Az from ¢g : Ay — Ax. Now
O(mr [E]) = 7w WE] for every E€ X, { € 1.

P The point is that 77;51 [E] x X"\ corresponds to w;g [E] € X", while (;50(77;51 [E]) = W;EI [E] can be
identified with wfgl [ E] x X*\M . Now the construction of 346F obviously makes 9(77;61 [E]) equal to w;; [WE].

Q
By 341Jb, there is a lifting ¢ : Ay — A; such that ¢W 2 ¢W for every W € A;. But now we must have
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e WE] = ¢(np [B]) C ¢(r7 [E))
= X"\ p(r X\ E]) € X7\ ¢(m [ X\ E))
= X'\ 71 WX\ B)] = X'\ 7 (X \¢E] = 71! [V E]

and qﬁ(w;&l [E]) = 7'(';51 [WE] for every E € ¥ and & € I. But since #(I) = #(Iy), this must be impossible, by
the choice of I,. X
This contradiction proves the theorem.

346J Consistent liftings Let (X, X, 1) be a measure space. A lifting ¢ : ¥ — 3 is consistent if for
every n > 1 there is a lifting ¢,, of the product measure on X" such that ¢,,(E1 x...x E,) =vE; x...x¢YE,
for all Eq,...,E, € X. Thus 3461 tells us, in part, that every complete probability space has a consistent
lifting; it follows that every non-trivial complete totally finite measure space has a consistent lifting.

I do not suppose you will be surprised to be told that not all liftings on probability spaces are consistent.
What may be surprising is the fact that one of the standard liftings already introduced is not consistent. This
depends on a general fact about Stone spaces of measure algebras which has further important applications,
so I present it as a lemma.

346K Lemma Let (Z,T,v) be the Stone space of the measure algebra of Lebesgue measure on [0, 1],
and let A be the product measure on Z x Z, with A its domain. Then there is a set W € A, with AW < 1,

such that A*W = 1, where
W =U{G x H : G, H C Z are open-and-closed, (G x H) \ W is negligible}.

Remark For the sake of anybody who has already become acquainted with the alternative measures which
can be put on the product of topological measure spaces, I ought to insist that the ‘product measure’ A here
is, as always in this volume, the ordinary completed product measure as defined in Chapter 25.

proof (a) Let (E,)ncn be a sequence of measurable subsets of [0, 1], stochastically independent for Lebesgue
measure p on [0,1], such that pF, = %H for each n. Set a, = E; in the measure of algebra of u, and
E* =, the corresponding compact open subset of Z. Set W = E} x E*. Then

AW < ZZO:O(VEn)Z = 220:2

neN
1

n2

< 1.

7 Suppose, if possible, that MW < 1. Then there are sequences (Gp)nen, (Hp)nen in T such that
W C Upen Gn x Hy and MU, ey G X Hy) < 1. Recall from 322Rc that

vF = inf{vG : G is compact and open, F' C G}

for every F € T. Accordingly we can find compact open sets G, H, such that G, C G,, H, C H, for
every n € N and

S22 o v(Gn \ Gr) + 350 s v(Hy \ Hn) < 1= AU, ey Gn % Hy),

so that A(U,,cn Gn x Hy) < 1.
Let Uy be the family

{ZYU{E: :neN}U{Z\G, :neN}yU{Z\ H, :neN},

so that Uy is a countable subset of T. Let U be the set of finite intersections Uy N Uy N ... N U, where
Ug,...,U, € Uy, so that U also is a countable subset of T, and I/ is closed under N.

(b) For U € U, define Q(U) as follows. If vU = 0, then Q(U) = U. Otherwise,
QU) = Z\U{E: :n €N, v(E:NU) > 0}.

Then vQ(U) is always 0. P Of course this is true if U = 0, so suppose that vU > 0. Set I = {n :
v(E;NU) = 0}. Then we have vU’ > 0, where U' = U\U,,c; Ey;, and Z\ E}; D U’ for every n € I. Because
(Ep)nen is stochastically independent for p, (EX),en is stochastically independent for v, while
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V(Uper Ep) <1 -0U' < 1.
By the Borel-Cantelli lemma (273K), >_,,c; vE;, < co. Consequently >, .y ; VE;;, = 00, because > %H
is infinite, so
V(Z\QW)) =v(U,emi En) =1,
and vQ(U) = 0. Q
(c) Set Qo = Uyey Q(U); because U is countable, Qq is negligible. Accordingly (Z\ Qo)? has measure
1 and cannot be included in (J,, ¢y G x Hy; take (w,z) € (Z\ Qo)?\ Unen Gn x Hy.
(d) We can find sequences (Cp)nen, (Dn)nen, (Un)nen and (V,,)nen in U such that
W € Uny1 C Un, 2 € Vo1 € Vi, (Unt X Vig1) N (G x Hy) =0,
vC, >0,vD, >0,
Cn g Una Dn g Vn+17
Cn X VnJrl C W7 Un+1 X Dn c w
for every n € N. I Build the sequences inductively, as follows. Start with Uy = Vo = Z. Given that
w €U, €U and z € V,, € U, then we know that (w,2) ¢ G, x Hy. fw ¢ Gy, set U, = U, \ G,
Vi, = Vs otherwise set Uy, = Uy, V;; = V,, \ Hy,. In either case, we have w € Uy, € U, z € V;; € U and
(U’I/L X V,;) N(Gp x Hy,) = 0.

Because U), € U, w ¢ Q(U),). But w € U}, so this must be because vU;, > 0. Now z ¢ Q(U},), so
ze U{E} ke N, v(E;NU,) > 0}. Take some k € N such that z € E}; and v(E; NU}) > 0, and set

‘/n-‘rl = V’y;mE;:7 On :EZQU,,/L,
so that
€V €U, CoCU,, CoxVay CELxEf CW, vC, > 0.

Next, z ¢ Q(Vi11) and vV, 1 > 0; also w ¢ Q(Vy41), so there is an [ such that w € Eff and v(E;NV,41) > 0.
Set

Up1 =U,NE}, D,=E NVy,
so that
weUpr €U, D, CVppr, Uppi xD, CEfxEfCW, vD, >0,

(Uns1 % Vi) N (G x Hy) € (UL x Vi) N (G x Hy) =0,
and continue the process. Q

(e) Setting C' = {J,,c Cn and D = |J,,cyy Dn we see that C x D CW. P If m <n, D, C V41 € Vipya,
soCp, XD, CW.Ifm>n,C, CU,, CUpt1,%0 C,y x D, CW. Q

Recall from 321K that the measurable sets of Z are precisely those of the form GAM where M is nowhere
dense and negligible and G is compact and open. There must therefore be compact open sets G, H C Z
such that GAC and HAD are negligible. Consequently

(G x H)\W C ((G\C) x Z)U(Z x (H\ D))
is negligible, and
Gx HCW C ey Gn x Hy.

But because G x H is compact (3A3J), and all the Gn X H, are open, there must be some n such that
Gx HC ngn Gy x Hy, = S say. Now (Ug41 X Vit1) N (G x Hy) = 0 for every k, so

(Cn+2 X Dn+2) n (G X H) - (Un+1 X Vn+1) ns = (Z),
and either C,, .o NG =0 or D,,;. 2N H = {). Since
Chiz\GCC\G, Dpi2\HCD\H
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are both negligible, one of C), 12, D, 12 is negligible. But the construction took care to ensure that all the
Ck, Dy, were non-negligible. X

(f) Thus \*W =1, as required.

346L Proposition Let (Z, T, v) be the Stone space of the measure algebra of Lebesgue measure on [0, 1].
Let v : T — T be the canonical lifting, defined by setting ¢»E = G whenever E € T, G is open-and-closed
and EAG is negligible (3410). Then % is not consistent.

proof ? Suppose, if possible, that ¢ is a lifting on Z x Z such that ¢(E x F) = Y E x ¢F for every E,
FeT. Let W C Z x Z be aset as in 346K, and consider ¢W. If G, H C Z are open-and-closed and
(G x H)\ W is negligible, then

G x H=9GxyH =¢(G x H) C oW;

that is, in the language of 346K, we must have W C ¢W. But this means that
ANW) > MW =1 > AW,
which is impossible. X
Thus v fails the first test and cannot be consistent.

346X Basic exercises (a) Let (X, X, 1) be a measure space and (¢ _)nen a sequence of lower densities
for pu. (i) Show that E — 1,y @, E and E = U, cn (N>, @, F are also lower densities for . (ii) Show

that if 44 is complete and F is any filter on N, then E — Jpc+ ﬂneFQnE is a lower density for pu.

(b) Let (X,X, ) be a strictly localizable measure space, and G a countable group of measure space
automorphisms from X to itself. Show that there is a lower density ¢ : ¥ — X which is G-invariant in the
sense that ¢(g~'[E]) = g~ '[¢E] for every E € ¥ and g € G. (Hint: set 9E =, 9[¢, (9 [E])].)

>(c) Show that there is no lifting ¢ of Lebesgue measure on [0, 1]2 which is ‘symmetric’ in the sense that
d(E~1) = (pE)~! for every measurable set E, writing E~1 = {(y,z) : (z,y) € E}. (Hint: 345Xc.)

(d) Let (X, X, 1) be a measure space and ¢ a lower density for p. Take H € ¥ and set A = X \ (¢H U
¢(Z\H)), ¢'E=¢EU(AN$(H UE)) for E € ¥. Show that ¢’ is a lower density.

(e) Describe the connections between 3468, 346D and 346F.

>(f) Suppose, in 341H, that (X, X, 1) is a product of probability spaces, and that in the proof, instead of
taking (ag¢)e<y to run over the whole measure algebra 2, we take it to run over the elements of 2 expressible
as E* where F € ¥ is determined by a single coordinate. Show that the resulting lower density 8 respects
coordinates in the sense that §F* is determined by coordinates in J whenever E € ¥ is determined by
coordinates in J. (Compare MACHERAS & STRAUSS 95, Theorem 2.)

>(g) Let ¢ be lower Lebesgue density on R, and ¢ a translation-invariant lifting for Lebesgue measure
on R such that ¢F O ¢FE for every measurable set E. Show that ¢ is consistent. (Hint: given n > 1, let Qn
be lower Lebesgue density on R”. Let Z be the ideal generated by
(W:0eg, R\ W)} UU,,{r; ' [E]: 0 € (R \ B)};
show that R™ ¢ 7, so that we can use the method of 345B to construct a lifting for Lebesgue measure on
R™.)

(h) Show that Lemma 346K is valid for any (Z, T, v) which is the Stone space of an atomless probability
space.

346Y Further exercises (a) Let (X1,%q1,01),...,(Xn, X0, ttn) be probability spaces with product
(X, 3, p). Show that there is a lifting for p which respects coordinates. (BURKE N95.)
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(b) Let (X, X, 1) be a probability space, I any set, and A the product measure on X’. Show that there
is a lower density for A which is invariant under transpositions of pairs of coordinates.

(¢) Suppose that (X, 3, u) and (Y, T, v) are complete probability spaces with product (X x Y, A, \). Show
that for any lifting ¢1 : ¥ — ¥ there are liftings 12 : T — T and ¢ : A — A such that ¢(E X F) = Y1 E x o F
forall E € ¥, F € T. (Hint: use the methods of §341. In the inductive construction of 341H, start with
QO(E xY) = (1 E) x Y for every E € ¥. Extend each lower density é{ to the algebra generated by

dom(gb&) U {X X F¢} for some F¢ € T. Make sure that Qf(X x F) is always of the form X x F’, and that

QJ(E xY)U(X x F)) = Qg(E xY) UQS(X x F); adapt the construction of 341G to maintain this. Use

the method of 346H to generate a lifting from the final lower density ¢. See MACHERAS & STRAUSS 964,
Theorem 4.)

(d) Use 346Yc and induction on ¢ to prove 346H. (MACHERAS & STRAUSS 96B.)

(e) Let (X,X,u) be a complete probability space. Show that there is a lifting ¢ : ¥ — ¥ such that
whenever ((X;,%;, p;))ier is a family of probability spaces, with product measure A, there is a lifting ¢ for
A such that ¢(7; ' [E]) = 7; [ F] whenever E € ¥ and i € I is such that (X;, %, ;) = (X, 3, u), writing
mi(w) = x(i) for v € [, X

346Z Problems (a) Let ((X;,%;, ui))icr be a family of probability spaces, with product (X,X, ). Is
there always a lifting for p which respects coordinates in the sense of 346A7

(b) Is there a lower density ¢ for the usual measure on {0, 1} which is invariant under all permutations
of coordinates?

346 Notes and comments I ought to say at once that in writing this section I have been greatly assisted
by M.R.Burke.

The theorem that every complete probability space has a consistent lifting (346J) is due to TALAGRAND
824; it is the inspiration for the whole of the section. ‘Consistent’ liftings were devised in response to some
very interesting questions (see TALAGRAND 84, §6) which I do not discuss here; one will be mentioned in
Theorem 465P in Volume 4. My aim here is rather to suggest further ways in which a lifting on a product
space can be consistent with the product structure. The labour is substantial and the results achieved
are curiously partial. I offer 346Za as the easiest natural question which does not appear amenable to the
methods I describe.

The arguments I use are based on the fact that the translation-invariant measures of 345C already
respect coordinates (346C). Maharam’s theorem now makes it easy to show that any product of Maharam-
type-homogeneous probability spaces has a lifting which respects coordinates (346E). A kind of projection
argument (346F) makes it possible to obtain a lower density which respects coordinates on any product of
probability spaces (346G). In fact the methods of §341, very slightly refined, automatically produce such
lower densities (346Xf). But the extra power of 346G lies in the condition (ii): if E and F are ‘fully
independent’ in the sense of being determined by coordinates in disjoint sets, then ¢(E U F) = ¢E U ¢F,
that is, ¢ is making a tentative step towards being a lifting. (Remember that the difference between a lifting
and a lower density is mostly that a lifting preserves finite unions as well as finite intersections; see 341Xa.)
This can also be achieved by a modification of the previous method, but we have to work harder at one
point in the proof.

The next step is to move to liftings which continue, as far as possible, to respect coordinates. Here there
seem to be quite new obstacles, and 346H is the best result I know; the lifting respects individual coordinates,
and also, for a given well-ordering of the index set, initial segments of the coordinates. The treatment of
initial segments makes essential use of the well-ordering, which is what leaves 346Za open.

Finally, if all the factors are identical, we can seek lower densities and liftings which are invariant under
permutation of coordinates. I give 345Xc and 346Xc as examples to show that we must not just assume
that a symmetry in the underlying measure space can be reflected in a symmetry of a lifting. The problems
there concern liftings themselves, not lower densities, since we can frequently find lower densities which
share symmetries (346Xb, 346YDb). (Even for lower densities there seem to be difficulties if we are more
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ambitious (346Zb).) However a very simple argument (3461) shows that at least we can make each individual
coordinate look more or less the same, as long as we do not investigate its relations with others.

Still on the question of whether, and when, liftings can be ‘good’, note 346L/346Xh and 346Xg. The
most natural liftings for Lebesgue measure are necessarily consistent; but the only example we have of a
truly canonical lifting is not consistent in any non-trivial context.

I have deliberately used a variety of techniques here, even though 346H (for instance) has an alternative
proof based on the ideas of §341 (346Yc-346Yd). In particular, I give some of the standard methods of
constructing liftings and lower densities (346B, 346D, 346F, 346Xd, 346Xa). In fact 346D was one of the
elements of Maharam’s original proof of the lifting theorem (MAHARAM 58).
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Version of 10.4.10

Concordance for Volume 3

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this volume, and which have since been changed.

341X Exercises 341Xd and 341Xf, referred to in the 2003 and 2006 editions of Volume 4, are now 341Xc
and 341Xe.
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