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Chapter 32

Measure algebras

I now come to the real work of this volume, the study of the Boolean algebras of equivalence classes of
measurable sets. In this chapter I work through the ‘elementary’ theory, defining this to consist of the parts
which do not depend on Maharam’s theorem or the lifting theorem or non-trivial set theory.

§321 gives the definition of ‘measure algebra’, and relates this idea to its origin as the quotient of a σ-
algebra of measurable sets by a σ-ideal of negligible sets, both in its elementary properties (following those
of measure spaces treated in §112) and in an appropriate version of the Stone representation. §322 deals
with the classification of measure algebras according to the scheme already developed in §211 for measure
spaces. §323 discusses the standard topology and uniformity of a measure algebra. §324 contains results
concerning Boolean homomorphisms between measure algebras, with the relationships between topological
continuity, order-continuity and preservation of measure. §325 is devoted to the measure algebras of product
measures, and their abstract characterization as completed free products. §§326-327 address the properties
of additive functionals on Boolean algebras, generalizing the ideas of Chapter 23. Finally, §328 looks at
‘reduced products’ of probability algebras and some related constructions, including inductive limits.

Version of 3.1.11

321 Measure algebras

I begin by defining ‘measure algebra’ and relating this concept to the work of Chapter 31 and to the
elementary properties of measure spaces.

321A Definition A measure algebra is a pair (A, µ̄), where A is a Dedekind σ-complete Boolean
algebra and µ̄ : A → [0,∞] is a function such that

µ̄0 = 0;
whenever 〈an〉n∈N is a disjoint sequence in A, µ̄(supn∈N an) =

∑∞

n=0 µ̄an;
µ̄a > 0 whenever a ∈ A and a 6= 0.

321B Elementary properties of measure algebras Let (A, µ̄) be a measure algebra.

(a) If a, b ∈ A and a ∩ b = 0 then µ̄(a ∪ b) = µ̄a+ µ̄b.

(b) If a, b ∈ A and a ⊆ b then µ̄a ≤ µ̄b.

(c) For any a, b ∈ A, µ̄(a ∪ b) ≤ µ̄a+ µ̄b.

(d) If 〈an〉n∈N is any sequence in A, then µ̄(supn∈N an) ≤
∑∞

n=0 µ̄an.

(e) If 〈an〉n∈N is a non-decreasing sequence in A, then µ̄(supn∈N an) = limn→∞ µ̄an.

(f) If 〈an〉n∈N is a non-increasing sequence in A and infn∈N µ̄an <∞, then µ̄(infn∈N an) = limn→∞ µ̄an.

321C Proposition Let (A, µ̄) be a measure algebra, and A ⊆ A a non-empty upwards-directed set. If
supa∈A µ̄a <∞, then supA is defined in A and µ̄(supA) = supa∈A µ̄a.
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2 Measure algebras 321D

321D Corollary Let (A, µ̄) be a measure algebra and A ⊆ A a non-empty upwards-directed set. If supA
is defined in A, then µ̄(supA) = supa∈A µ̄a.

321E Corollary Let (A, µ̄) be a measure algebra and A ⊆ A a disjoint set. If supA is defined in A, then
µ̄(supA) =

∑
a∈A µ̄a.

321F Corollary Let (A, µ̄) be a measure algebra and A ⊆ A a non-empty downwards-directed set. If
infa∈A µ̄a <∞, then inf A is defined in A and µ̄(inf A) = infa∈A µ̄a.

321G Subalgebras If (A, µ̄) is a measure algebra, and B is a σ-subalgebra of A, then (B, µ̄↾B) is a
measure algebra.

321H The measure algebra of a measure space: Theorem Let (X,Σ, µ) be a measure space,
and N the null ideal of µ. Let A be the Boolean algebra quotient Σ/Σ ∩ N . Then we have a functional
µ̄ : A → [0,∞] defined by setting

µ̄E• = µE for every E ∈ Σ,

and (A, µ̄) is a measure algebra. The canonical map E 7→ E• : Σ → A is sequentially order-continuous.

321I Definition For any measure space (X,Σ, µ) I will call (A, µ̄), as constructed above, the measure
algebra of (X,Σ, µ).

321J The Stone representation of a measure algebra: Theorem Let (A, µ̄) be any measure
algebra. Then it is isomorphic, as measure algebra, to the measure algebra of some measure space.

321K Definition I will call the measure space (Z,Σ, ν) constructed in the proof of 321J the Stone
space of the measure algebra (A, µ̄).
Z is a compact Hausdorff space, being the Stone space of A. A can be identified with the algebra of open-

and-closed sets in Z. The null ideal of ν coincides with the ideal of meager subsets of Z; ν is complete.
The measurable sets are precisely those expressible in the form E = â△M where a ∈ A, â ⊆ Z is the
corresponding open-and-closed set, and M is meager; in this case νE = µ̄a and a is the member of A

corresponding to E.

Version of 24.4.06

322 Taxonomy of measure algebras

Before going farther with the general theory of measure algebras, I run through those parts of the
classification of measure spaces in §211 which have expressions in terms of measure algebras. The most
important concepts at this stage are those of ‘semi-finite’, ‘localizable’ and ‘σ-finite’ measure algebra (322Ac-
322Ae); these correspond exactly to the same terms applied to measure spaces (322B). I briefly investigate
the Boolean-algebra properties of semi-finite and σ-finite measure algebras (322F, 322G), with mentions of
completions and c.l.d. versions (322D), subspace measures (322I-322J), indefinite-integral measures (322K),
direct sums of measure spaces (322L, 322M) and subalgebras of measure algebras (322N). It turns out that
localizability of a measure algebra is connected in striking ways to the properties of the canonical measure
on its Stone space (322O). I end the section with a description of the ‘localization’ of a semi-finite measure
algebra (322P-322Q) and with some further properties of Stone spaces (322R).

322A Definitions Let (A, µ̄) be a measure algebra.

(a) (A, µ̄) is a probability algebra if µ̄1 = 1.

(b) (A, µ̄) is totally finite if µ̄1 <∞.

Measure Theory (abridged version)



322I Taxonomy of measure algebras 3

(c) (A, µ̄) is σ-finite if there is a sequence 〈an〉n∈N in A such that µ̄an < ∞ for every n ∈ N and
supn∈N an = 1. Note that in this case 〈an〉n∈N can be taken either to be non-decreasing or to be disjoint.

(d) (A, µ̄) is semi-finite if whenever a ∈ A and µ̄a = ∞ there is a non-zero b ⊆ a such that µ̄b <∞.

(e) (A, µ̄) is localizable if it is semi-finite and the Boolean algebra A is Dedekind complete.

322B Theorem Let (X,Σ, µ) be a measure space, and (A, µ̄) its measure algebra. Then
(a) (X,Σ, µ) is a probability space iff (A, µ̄) is a probability algebra;
(b) (X,Σ, µ) is totally finite iff (A, µ̄) is;
(c) (X,Σ, µ) is σ-finite iff (A, µ̄) is;
(d) (X,Σ, µ) is semi-finite iff (A, µ̄) is;
(e) (X,Σ, µ) is localizable iff (A, µ̄) is;
(f) if E ∈ Σ, then E is an atom for µ iff E• is an atom in A;
(g) (X,Σ, µ) is atomless iff A is;
(h) (X,Σ, µ) is purely atomic iff A is.

322C Theorem (a) A probability algebra is totally finite.
(b) A totally finite measure algebra is σ-finite.
(c) A σ-finite measure algebra is localizable.
(d) A localizable measure algebra is semi-finite.

322D Proposition Let (X,Σ, µ) be a measure space, with completion (X, Σ̂, µ̂) and c.l.d. version

(X, Σ̃, µ̃). Write (A, µ̄), (A1, µ̄1) and (A2, µ̄2) for the measure algebras of µ, µ̂ and µ̃ respectively.

(a) The embedding Σ ⊂→ Σ̂ corresponds to an isomorphism between (A, µ̄) and (A1, µ̄1).

(b)(i) The embedding Σ ⊂→ Σ̃ defines an order-continuous Boolean homomorphism π : A → A2. Setting

Af = {a : a ∈ A, µ̄a <∞}, π↾Af is a measure-preserving bijection between Af and A
f
2 = {c : c ∈ A2, µ̄2c <

∞}.
(ii) π is injective iff µ is semi-finite, and in this case µ̄2(πa) = µ̄a for every a ∈ A.
(iii) If µ is localizable, π is a bijection.

322E Proposition Let (A, µ̄) be a measure algebra.
(a) (A, µ̄) is semi-finite iff it has a partition of unity consisting of elements of finite measure.
(b) If (A, µ̄) is semi-finite, a = sup{b : b ⊆ a, µ̄b <∞} and µ̄a = sup{µ̄b : b ⊆ a, µ̄b <∞} for every a ∈ A.

322F Proposition If (A, µ̄) is a semi-finite measure algebra, then A is a weakly (σ,∞)-distributive
Boolean algebra.

322G Proposition Let (A, µ̄) be a semi-finite measure algebra. Then the following are equiveridical:
(i) (A, µ̄) is σ-finite;
(ii) A is ccc;
(iii) either A = {0} or there is a functional ν̄ : A → [0, 1] such that (A, ν̄) is a probability algebra.

322H Principal ideals If (A, µ̄) is a measure algebra and a ∈ A, then (Aa, µ̄↾Aa) is a measure algebra,
where Aa is the principal ideal of A generated by a.

322I Subspace measures: Proposition Let (X,Σ, µ) be a measure space, and A ⊆ X a set with
a measurable envelope E. Let µA be the subspace measure on A, and ΣA its domain; let (A, µ̄) be the
measure algebra of (X,Σ, µ) and (AA, µ̄A) the measure algebra of (A,ΣA, µA). Set a = E• and let Aa be
the principal ideal of A generated by a. Then we have an isomorphism between (Aa, µ̄↾Aa) and (AA, µ̄A)
given by the formula

F • 7→ (F ∩A)◦

whenever F ∈ Σ and F ⊆ E, writing F • for the equivalence class of F in A and (F ∩A)◦ for the equivalence
class of F ∩A in AA.

D.H.Fremlin



4 Measure algebras 322J

322J Corollary Let (X,Σ, µ) be a measure space, with measure algebra (A, µ̄).
(a) If E ∈ Σ, then the measure algebra of the subspace measure µE can be identified with the principal

ideal AE• of A.
(b) If A ⊆ X is a set of full outer measure (in particular, if µ∗A = µX < ∞), then the measure algebra

of the subspace measure µA can be identified with A.

322K Indefinite-integral measures: Proposition Let (X,Σ, µ) be a measure space and ν an indefinite-
integral measure over µ. Then the measure algebra of ν can be identified, as Boolean algebra, with a principal
ideal of the measure algebra of µ.

322L Simple products (a) Let 〈(Ai, µ̄i)〉i∈I be an indexed family of measure algebras. Let A be the
simple product Boolean algebra

∏
i∈I Ai, and for a ∈ A set µ̄a =

∑
i∈I µ̄ia(i). Then (A, µ̄) is a measure

algebra; I will call it the simple product of the family 〈(Ai, µ̄i)〉i∈I . Each of the Ai corresponds to a
principal ideal Aei say in A, where ei ∈ A corresponds to 1Ai

∈ Ai, and the Boolean isomorphism between
Ai and Aei is a measure algebra isomorphism between (Ai, µ̄i) and (Aei , µ̄↾Aei).

(b) If 〈(Xi,Σi, µi)〉i∈I is a family of measure spaces, with direct sum (X,Σ, µ), then the measure al-
gebra (A, µ̄) of (X,Σ, µ) can be identified with the simple product of the measure algebras (Ai, µ̄i) of the
(Xi,Σi, µi).

(c) A simple product of measure algebras is semi-finite, or localizable, or atomless, or purely atomic, iff
every factor is.

(d) Let (A, µ̄) be a measure algebra, and 〈ei〉i∈I a countable partition of unity in A. Then (A, µ̄) is
isomorphic to the product

∏
i∈I(Aei , µ̄↾Aei) of the corresponding principal ideals.

(e) Let (A, µ̄) be a localizable measure algebra.

(i) If 〈ei〉i∈I is any partition of unity in A, then (A, µ̄) is isomorphic to the product
∏
i∈I(Aei , µ̄↾Aei)

of the corresponding principal ideals.

(ii) (A, µ̄) is isomorphic to the measure algebra of a direct sum of totally finite measure spaces, which
is strictly localizable.

*322M Strictly localizable spaces: Proposition Let (X,Σ, µ) be a strictly localizable measure space
with µX > 0, and (A, µ̄) its measure algebra. If 〈ai〉i∈I is a partition of unity in A, there is a partition
〈Xi〉i∈I of X into members of Σ such that X•

i = ai for every i ∈ I and

Σ = {E : E ⊆ X, E ∩Xi ∈ Σ ∀ i ∈ I},

µE =
∑
i∈I µ(E ∩Xi) for every E ∈ Σ;

that is, the isomorphism between A and the simple product
∏
i∈I Aai of its principal ideals corresponds to

an isomorphism between (X,Σ, µ) and the direct sum of the subspace measures on Xi.

322N Subalgebras: Proposition Let (A, µ̄) be a measure algebra, and B a σ-subalgebra of A. Set
ν̄ = µ̄↾B.

(a) (B, ν̄) is a measure algebra.
(b) If (A, µ̄) is totally finite, or a probability algebra, so is (B, ν̄).
(c) If (A, µ̄) is σ-finite and (B, ν̄) is semi-finite, then (B, ν̄) is σ-finite.
(d) If (A, µ̄) is localizable and B is order-closed and (B, ν̄) is semi-finite, then (B, ν̄) is localizable.
(e) If (B, ν̄) is a probability algebra, or totally finite, or σ-finite, so is (A, µ̄).

322O The Stone space of a localizable measure algebra: Theorem Let (A, µ̄) be a measure
algebra, Z the Stone space of A, and ν the standard measure on Z. Then the following are equiveridical:

(i) (A, µ̄) is localizable;
(ii) ν is localizable;
(iii) ν is locally determined;
(iv) ν is strictly localizable.

Measure Theory (abridged version)



323C The topology of a measure algebra 5

322P Theorem Let (A, µ̄) be a semi-finite measure algebra, and let Â be the Dedekind completion of

A. Then there is a unique extension of µ̄ to a functional µ̃ on Â such that (Â, µ̃) is a localizable measure

algebra. The embedding A ⊂→ Â identifies the ideals {a : a ∈ A, µ̄a <∞} and {a : a ∈ Â, µ̃a <∞}.

322Q Definition Let (A, µ̄) be any semi-finite measure algebra. I will call (Â, µ̃), as constructed above,
the localization of (A, µ̄).

322R Further properties of Stone spaces: Proposition Let (A, µ̄) be a semi-finite measure algebra
and (Z,Σ, ν) its Stone space.

(a) Meager sets in Z are nowhere dense; every E ∈ Σ is uniquely expressible as G△M where G ⊆ Z is
open-and-closed and M is nowhere dense, and νE = sup{νH : H ⊆ E is open-and-closed}.

(b) The c.l.d. version ν̃ of ν is strictly localizable, and has the same negligible sets as ν.

(c) If (A, µ̄) is totally finite then νE = inf{νH : H ⊇ E is open-and-closed} for every E ∈ Σ.

Version of 20.7.06

323 The topology of a measure algebra

I take a short section to discuss one of the fundamental tools for studying totally finite measure algebras,
the natural metric that each carries. The same ideas, suitably adapted, can be applied to an arbitrary
measure algebra, where we have a topology corresponding closely to the topology of convergence in measure
on the function space L0. Most of the section consists of an analysis of the relations between this topology
and the order structure of the measure algebra.

323A The pseudometrics ρa (a) Let (A, µ̄) be a measure algebra. Write Af = {a : a ∈ A, µ̄a < ∞}.
For a ∈ Af and b, c ∈ A, write ρa(b, c) = µ̄(a ∩ (b△ c)). ρa is a pseudometric on A.

(b) Now the measure-algebra topology of the measure algebra (A, µ̄) is that generated by the family
P = {ρa : a ∈ Af} of pseudometrics on A. Similarly the measure-algebra uniformity on A is that
generated by P.

(c) P is upwards-directed.

(d) On the ideal Af we have an actual metric ρ defined by saying that ρ(a, b) = µ̄(a△ b) for a, b ∈ Af ;
this is the measure metric. I will call the topology it generates the strong measure-algebra topology
on Af .

When µ̄ is totally finite, ρ = ρ1 defines the measure-algebra topology and uniformity of A.

323B Proposition Let (A, µ̄) be any measure algebra, and give A its measure-algebra topology.

(a) The operations ∪ , ∩ , \ and △ are all uniformly continuous.

(b) Af is dense in A.

323C Proposition (a) Let (A, µ̄) be a totally finite measure algebra. Then µ̄ : A → [0,∞[ is uniformly
continuous.

(b) Let (A, µ̄) be a semi-finite measure algebra. Then µ̄ : A → [0,∞] is lower semi-continuous.

(c) Let (A, µ̄) be any measure algebra. If a ∈ A and µ̄a < ∞, then b 7→ µ̄(b ∩ a) : A → R is uniformly
continuous.

c© 1999 D. H. Fremlin
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6 Measure algebras 323D

323D Lemma Let (A, µ̄) be a measure algebra.
(a) Let B ⊆ A be a non-empty upwards-directed set. For b ∈ B set Fb = {c : b ⊆ c ∈ B}.

(i) {Fb : b ∈ B} generates a Cauchy filter F(B↑) on A.
(ii) If supB is defined in A, then it is a topological limit of F(B↑); it belongs to the topological closure

of B.
(b) Let B ⊆ A be a non-empty downwards-directed set. For b ∈ B set F ′

b = {c : b ⊇ c ∈ B}.
(i) {F ′

b : b ∈ B} generates a Cauchy filter F(B↓) on A.
(ii) If inf B is defined in A, then it is a topological limit of F(B↓); it belongs to the topological closure

of B.
(c)(i) Closed subsets of A are order-closed.

(ii) An order-dense subalgebra of A must be dense in the topological sense.
(d) Now suppose that (A, µ̄) is semi-finite.
(i) The sets {b : b ⊆ c}, {b : b ⊇ c} are closed for every c ∈ A.
(ii) If B ⊆ A is non-empty and upwards-directed and e is a cluster point of F(B↑), then e = supB.
(iii) If B ⊆ A is non-empty and downwards-directed and e is a cluster point of F(B↓), then e = inf B.

323E Corollary Let (A, µ̄) be a measure algebra.
(a) If 〈bn〉n∈N is a non-decreasing sequence in A with supremum b, then 〈bn〉n∈N converges topologically

to b.
(b) If 〈bn〉n∈N is a non-increasing sequence in A with infimum b, then 〈bn〉n∈N converges topologically to

b.

323F Lemma Let (A, µ̄) be a measure algebra and 〈cn〉n∈N a sequence in A such that
∑∞

n=0 µ̄(cn △ cn+1)
is finite. Set d0 = supn∈N infm≥n cm, d1 = infn∈N supm≥n cm. Then d0 = d1 and, writing d for their common
value, limn→∞ µ̄(cn △ d) = 0.

323G The classification of measure algebras: Theorem Let (A, µ̄) be a measure algebra, T its
measure-algebra topology and U its measure-algebra uniformity.

(a) (A, µ̄) is semi-finite iff T is Hausdorff.
(b) (A, µ̄) is σ-finite iff T is metrizable, and in this case U also is metrizable.
(c) (A, µ̄) is localizable iff T is Hausdorff and A is complete under U .

323H Closed subalgebras: Theorem Let (A, µ̄) be a localizable measure algebra, and B a subalgebra
of A. Then it is topologically closed iff it is order-closed.

323I Notation In the context of 323H, I will say that B is a closed subalgebra of A.

323J Proposition If (A, µ̄) is a localizable measure algebra and B is a subalgebra of A, then the
topological closure B of B in A is precisely the order-closed subalgebra of A generated by B.

323K Lemma If (A, µ̄) is a localizable measure algebra and B is a closed subalgebra of A, then for any
a ∈ A the subalgebra of A generated by B ∪ {a} is closed.

323L Proposition Let 〈(Ai, µ̄i)〉i∈I be a family of measure algebras with simple product (A, µ̄). Then
the measure-algebra topology on A =

∏
i∈I Ai defined by µ̄ is the product of the measure-algebra topologies

of the Ai.

*323M Proposition Let (A, µ̄) be a measure algebra, and give Af its measure metric.
(a) The Boolean operations △ , ∩ , ∪ and \ on Af are uniformly continuous.
(b) µ̄↾Af : Af → [0,∞[ is 1-Lipschitz, therefore uniformly continuous.
(c) Af is complete.
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324H Homomorphisms 7

Version of 29.11.17

324 Homomorphisms

In the course of Volume 2, I had occasion to remark that elementary measure theory is unusual among
abstract topics in pure mathematics in not being dominated by any particular class of structure-preserving
operators. We now come to what I think is one of the reasons for the gap: the most important operators
of the theory are not between measure spaces at all, but between their measure algebras. In this section I
run through the most elementary facts about Boolean homomorphisms between measure algebras. I start
with results on the construction of such homomorphisms from functions between measure spaces (324A-
324E), then investigate continuity and order-continuity of homomorphisms (324F-324H) before turning to
measure-preserving homomorphisms (324I-324P).

324A Theorem Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and (A, µ̄), (B, ν̄) their measure algebras.

Write Σ̂ for the domain of the completion µ̂ of µ. Let D ⊆ X be a set of full outer measure, and Σ̂D the
subspace σ-algebra on D induced by Σ̂. Let φ : D → Y be a function such that φ−1[F ] ∈ Σ̂D for every
F ∈ T and φ−1[F ] is µ-negligible whenever νF = 0. Then there is a sequentially order-continuous Boolean
homomorphism π : B → A defined by the formula

πF • = E• whenever F ∈ T, E ∈ Σ and (E ∩D)△φ−1[F ] is negligible.

324B Corollary Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and (A, µ̄), (B, ν̄) their measure algebras.
Let φ : X → Y be a function such that φ−1[F ] ∈ Σ for every F ∈ T and µφ−1[F ] = 0 whenever νF = 0.
Then there is a sequentially order-continuous Boolean homomorphism π : B → A defined by the formula

πF • = (φ−1[F ])• for every F ∈ T.

324D Proposition Let (X,Σ, µ), (Y,T, ν) and (Z,Λ, λ) be measure spaces, with measure algebras (A, µ̄),
(B, ν̄), (C, λ̄). Suppose that φ : X → Y and ψ : Y → Z satisfy the conditions of 324B, that is,

φ−1[F ] ∈ Σ if F ∈ T, µφ−1[F ] = 0 if νF = 0,

ψ−1[G] ∈ T if G ∈ Λ, µψ−1[G] = 0 if λG = 0.

Let πφ : B → A, πψ : C → B be the corresponding homomorphisms. Then ψφ : X → Z is another map of
the same type, and πψφ = πφπψ : C → A.

324E Stone spaces: Proposition Let (A, µ̄) and (B, ν̄) be measure algebras, with Stone spaces Z
and W ; let µ, ν be the corresponding measures on Z and W , and Σ, T their domains. If π : B → A is
any order-continuous Boolean homomorphism, let φ : Z → W be the corresponding continuous function.
Then φ−1[F ] ∈ Σ for every F ∈ T, µφ−1[F ] = 0 whenever νF = 0, and (writing E∗ for the member of A
corresponding to E ∈ Σ) πF ∗ = (φ−1[F ])∗ for every F ∈ T.

324F Theorem Let (A, µ̄) and (B, ν̄) be measure algebras and π : A → B a Boolean homomorphism.
Give A and B their measure-algebra topologies and uniformities.

(a) π is continuous iff it is continuous at 0 iff it is uniformly continuous.
(b) If (B, ν̄) is semi-finite and π is continuous, then it is order-continuous.
(c) If (A, µ̄) is semi-finite and π is order-continuous, then it is continuous.

324G Corollary If (A, µ̄) and (B, ν̄) are semi-finite measure algebras, a Boolean homomorphism π :
A → B is continuous iff it is order-continuous.

324H Corollary If A is a Boolean algebra and µ̄, ν̄ are two measures both rendering A a semi-finite
measure algebra, then they endow A with the same uniformity (and the same topology).

c© 1998 D. H. Fremlin
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8 Measure algebras 324I

324I Definition Let (A, µ̄) and (B, ν̄) be measure algebras. A Boolean homomorphism π : A → B is
measure-preserving if ν̄(πa) = µ̄a for every a ∈ A.

324J Proposition Let (A, µ̄), (B, ν̄) and (C, λ̄) be measure algebras, and π : A → B, θ : B → Cmeasure-
preserving Boolean homomorphisms. Then θπ : A → C is a measure-preserving Boolean homomorphism.

324K Proposition Let (A, µ̄) and (B, ν̄) be measure algebras, and π : A → B a measure-preserving
Boolean homomorphism.

(a) π is injective.
(b) (A, µ̄) is totally finite iff (B, ν̄) is, and in this case π is order-continuous, therefore continuous, and

π[A] is a closed subalgebra of B.
(c) If (A, µ̄) is semi-finite and (B, ν̄) is σ-finite, then (A, µ̄) is σ-finite.
(d) If (A, µ̄) is σ-finite and π is sequentially order-continuous, then (B, ν̄) is σ-finite.
(e) If (A, µ̄) is semi-finite and π is order-continuous, then (B, ν̄) is semi-finite.
(f) If (A, µ̄) is atomless and semi-finite, and π is order-continuous, then B is atomless.
(g) If B is purely atomic and (A, µ̄) is semi-finite, then A is purely atomic.

324L Corollary Let (A, µ̄) be a totally finite measure algebra, (B, ν̄) a measure algebra, and π : A → B

a measure-preserving homomorphism. If C ⊆ A and C is the closed subalgebra of A generated by C, then
π[C] is the closed subalgebra of B generated by π[C].

324M Proposition Let (X,Σ, µ) and (Y,T, ν) be measure spaces, with measure algebras (A, µ̄) and
(B, ν̄). Let φ : X → Y be inverse-measure-preserving. Then we have a sequentially order-continuous
measure-preserving Boolean homomorphism π : B → A defined by setting πF • = φ−1[F ]• for every F ∈ T.

324N Proposition Let (A, µ̄) and (B, ν̄) be measure algebras, with Stone spaces Z and W ; let µ, ν
be the corresponding measures on Z and W . If π : B → A is an order-continuous measure-preserving
Boolean homomorphism, and φ : Z →W the corresponding continuous function, then φ is inverse-measure-
preserving.

324O Proposition Let (A, µ̄) and (B, ν̄) be totally finite measure algebras, A0 a topologically dense
subalgebra of A, and π : A0 → B a Boolean homomorphism such that ν̄πa = µ̄a for every a ∈ A0. Then π
has a unique extension to a measure-preserving homomorphism from A to B.

*324P Proposition Let (A, µ̄) and (B, ν̄) be totally finite measure algebras such that µ̄1 = ν̄1. Suppose
that A ⊆ A and φ : A → B are such that ν̄(infi≤n φai) = µ̄(infi≤n ai) for all a0, . . . , an ∈ A. Let C be
the smallest closed subalgebra of A including A. Then φ has a unique extension to a measure-preserving
Boolean homomorphism from C to B.

Version of 30.8.06

325 Free products and product measures

In this section I aim to describe the measure algebras of product measures as defined in Chapter 25. This
will involve the concept of ‘free product’ set out in §315. It turns out that we cannot determine the measure
algebra of a product measure from the measure algebras of the factors (325B), unless we are told that the
product measure is localizable; but that there is nevertheless a general construction of ‘localizable measure
algebra free product’, applicable to any pair of semi-finite measure algebras (325D), which represents the
measure algebra of the product measure in the most important cases (325Eb). In the second part of the
section (325I-325M) I deal with measure algebra free products of probability algebras, corresponding to the
products of probability spaces treated in §254.

c© 1999 D. H. Fremlin
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325A Theorem Let (X,Σ, µ) and (Y,T, ν) be measure spaces, with measure algebras (A, µ̄) and (B, ν̄).
Let λ be the c.l.d. product measure on X × Y , and Λ its domain; let (C, λ̄) be the corresponding measure
algebra.

(a)(i) The map E 7→ E × Y : Σ → Λ induces an order-continuous Boolean homomorphism from A to C.
(ii) The map F 7→ X × F : T → Λ induces an order-continuous Boolean homomorphism from B to C.

(b) The map (E,F ) 7→ E × F : Σ× T → Λ induces a Boolean homomorphism ψ : A⊗B → C.
(c) ψ[A⊗B] is topologically dense in C for the measure-algebra topology of C.
(d) For every c ∈ C,

λ̄c = sup{λ̄(c ∩ ψ(a⊗ b)) : a ∈ A, b ∈ B, µ̄a <∞, ν̄b <∞}.

(e) If µ and ν are semi-finite, ψ is injective and λ̄ψ(a⊗ b) = µ̄a · µ̄b for every a ∈ A, b ∈ B.

325B Characterizing the measure algebra of a product space: Example There are complete
locally determined localizable measure spaces (X,µ), (X ′, µ′), with isomorphic measure algebras, and a
probability space (Y, ν) such that the measure algebras of the c.l.d. product measures on X × Y , X ′ × Y
are not isomorphic.

325C Theorem Let (X1,Σ1, µ1) and (X2,Σ2, µ2) be semi-finite measure spaces, with measure algebras
(A1, µ̄1) and (A2, µ̄2). Let λ be the c.l.d. product measure on X1 × X2, and (C, λ̄) the corresponding
measure algebra. Let (B, ν̄) be a localizable measure algebra, and φ1 : A1 → B, φ2 : A2 → B order-
continuous Boolean homomorphisms such that ν̄(φ1(a1) ∩ φ2(a2)) = µ̄1a1 · µ̄2a2 for all a1 ∈ A1, a2 ∈ A2.
Then there is a unique order-continuous measure-preserving Boolean homomorphism φ : C → B such that
φ(ψ(a1 ⊗ a2)) = φ1(a1) ∩ φ2(a2) for all a1 ∈ A1, a2 ∈ A2, writing ψ : A1 ⊗ A2 → C for the canonical map.

325D Theorem Let (A1, µ̄1) and (A2, µ̄2) be semi-finite measure algebras.
(a) There is a localizable measure algebra (C, λ̄), together with order-continuous Boolean homomorphisms

ε1 : A1 → C and ε2 : A2 → C, such that whenever (B, ν̄) is a localizable measure algebra, and φ1 : A1 → B,
φ2 : A2 → B are order-continuous Boolean homomorphisms and ν̄(φ1(a1) ∩ φ2(a2)) = µ̄1a1 · µ̄2a2 for all
a1 ∈ A1, a2 ∈ A2, then there is a unique order-continuous measure-preserving Boolean homomorphism
φ : C → B such that φεj = φj for both j.

(b) The structure (C, λ̄, ε1, ε2) is determined up to isomorphism by this property.
(c)(i) The Boolean homomorphism ψ : A1 ⊗ A2 → C defined from ε1 and ε2 is injective, and ψ[A1 ⊗ A2]

is topologically dense in C.
(ii) The closed subalgebra of C generated by ψ[A1 ⊗ A2] is the whole of C.

(d) If j ∈ {1, 2} and (Aj , µ̄j) is localizable, then εj [Aj ] is a closed subalgebra of (C, λ̄).

325E Remarks We could say that a measure algebra (C, λ̄), together with embeddings ε1 and ε2, as
described in 325D, is a localizable measure algebra free product of (A1, µ̄1) and (A2, µ̄2).

325F Example Let (A, µ̄) be the measure algebra of Lebesgue measure µ on [0, 1], and (C, λ̄) the measure
algebra of Lebesgue measure λ on [0, 1]2. Then (C, λ̄) can be regarded as the localizable measure algebra
free product of (A, µ̄) with itself. Let ψ : A⊗A → C be the canonical map. Then ψ[A⊗A] is not order-dense
in C, and ψ is not order-continuous.

325G Example Again, let (A, µ̄) be the measure algebra of Lebesgue measure on [0, 1], and (C, λ̄) the
measure algebra of Lebesgue measure on [0, 1]2. Then there is no order-continuous Boolean homomorphism
φ : C → A such that φ(a⊗ b) = a ∩ b for all a, b ∈ A.

*325H Products of more than two factors (a) Let 〈(Ai, µ̄i)〉i∈I be a non-empty finite family of semi-
finite measure algebras. Then there is a localizable measure algebra (C, λ̄), together with order-continuous
Boolean homomorphisms εi : Ai → C for i ∈ I, such that whenever (B, ν̄) is a localizable measure algebra,
and φi : Ai → B are order-continuous Boolean homomorphisms such that ν̄(infi∈I φi(ai)) =

∏
i∈I µ̄iai when-

ever ai ∈ Ai for each i, then there is a unique order-continuous measure-preserving Boolean homomorphism
φ : C → B such that φεi = φi for every i.

D.H.Fremlin
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(b) The structure (C, λ̄, 〈εi〉i∈I) is determined up to isomorphism by this property.

(c) The Boolean homomorphism ψ :
⊗

i∈I Ai → C defined from the εi is injective, and ψ[
⊗

i∈I Ai] is
topologically dense in C.

(d) Write
⊗̂loc

i∈I(Ai, µ̄i) for (a particular version of) the localizable measure algebra free product described
in (a). If 〈(Ai, µ̄i)〉i∈I is a finite family of semi-finite measure algebras and 〈Ik〉k∈K is a partition of I into

non-empty sets, then
⊗̂loc

i∈I(Ai, µ̄i) is isomorphic, in a canonical way, to
⊗̂loc

k∈K

(⊗̂loc

i∈Ik
(Ai, µ̄i)

)
.

(e) Let 〈(Xi,Σi, µi)〉i∈I be a finite family of semi-finite measure spaces, and write (Ai, µ̄i) for the measure
algebra of (Xi,Σi, µi). Let λ be the c.l.d. product measure on

∏
i∈I Xi, and (C, λ̄) the corresponding

measure algebra. Then there is a canonical order-continuous measure-preserving embedding of (C, λ̄) into
the localizable measure algebra free product of the (Ai, µ̄i). If each µi is strictly localizable, this embedding
is an isomorphism.

325I Infinite products: Theorem Let 〈(Xi,Σi, µi)〉i∈I be any family of probability spaces, with
measure algebras (Ai, µ̄i). Let λ be the product measure on X =

∏
i∈I Xi, and (C, λ̄) the corresponding

measure algebra. For each i ∈ I, we have a measure-preserving homomorphism εi : Ai → C corresponding
to the inverse-measure-preserving function x 7→ x(i) : X → Xi. Let (B, ν̄) be a probability algebra, and
φi : Ai → B Boolean homomorphisms such that ν̄(infi∈J φi(ai)) =

∏
i∈J µ̄iai whenever J ⊆ I is a finite set

and ai ∈ Ai for every i. Then there is a unique measure-preserving Boolean homomorphism φ : C → B such
that φεi = φi for every i ∈ I.

325J Theorem Let 〈(Ai, µ̄i)〉i∈I be a family of probability algebras.
(a) There is a probability algebra (C, λ̄), together with measure-preserving Boolean homomorphisms

εi : Ai → C for i ∈ I, such that whenever (B, ν̄) is a probability algebra, and φi : Ai → B are Boolean
homomorphisms such that ν̄(infi∈J φi(ai)) =

∏
i∈J µ̄iai whenever J ⊆ I is finite and ai ∈ Ai for each i ∈ J ,

then there is a unique measure-preserving Boolean homomorphism φ : C → B such that φεi = φi for every
i ∈ I.

(b) The structure (C, λ̄, 〈εi〉i∈I) is determined up to isomorphism by this property.
(c) The Boolean homomorphism ψ :

⊗
i∈I Ai → C defined from the εi is injective, and ψ[

⊗
i∈I Ai] is

topologically dense in C.

325K Definition As in 325Ea, we can say that (C, λ̄, 〈εi〉i∈I) is the probability algebra free product
of 〈(Ai, µ̄i)〉i∈I .

325L Independent subalgebras If (A, µ̄) is a probability algebra, we say that a family 〈Bi〉i∈I of
subalgebras of A is stochastically independent if µ̄(infi∈J bi) =

∏
i∈J µ̄bi whenever J ⊆ I is finite and

bi ∈ Bi for each i. If every Bi is closed, so that (Bi, µ̄↾Bi) is a probability algebra, the identity maps
ιi : Bi → A satisfy the conditions of the universal mapping theorem 325Ja, so we have a probability algebra
free product (C, µ̄↾C, 〈ιi〉i∈I) of 〈(Bi, µ̄↾Bi)〉i∈I , where C =

∨
i∈I Bi is the closed subalgebra of A generated

by
⋃
i∈I Bi.

Conversely, if 〈(Ai, µ̄i)〉i∈I is any family of probability algebras with probability algebra free product
(C, λ̄, 〈εi〉i∈I), then 〈εi[Ai]〉i∈I is an independent family of closed subalgebras of C.

325M Theorem Let 〈(Ai, µ̄i)〉i∈I be a family of probability algebras and (C, λ̄, 〈εi〉i∈I) their probability
algebra free product. For J ⊆ I let CJ =

∨
i∈J εi[Ai] be the closed subalgebra of C generated by

⋃
i∈J εi[Ai].

(a) For any J ⊆ I, (CJ , λ̄↾CJ , 〈εi〉i∈J ) is a probability algebra free product of 〈(Ai, µ̄i)〉i∈J .
(b)(i) For any c ∈ C, there is a unique smallest Jc ⊆ I such that c ∈ CJc , and this Jc is countable.

(ii) If c, d ∈ C and c ⊆ d, then there is an e ∈ CJc∩Jd such that c ⊆ e ⊆ d.
(c) For any non-empty family J ⊆ PI,

⋂
J∈J CJ = C⋂

J .

*325N Notation In this context, I will say that an element c of C is determined by coordinates in
J if c ∈ CJ .

Measure Theory (abridged version)
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Version of 21.5.11

326 Additive functionals on Boolean algebras

I devote two sections to the general theory of additive functionals on measure algebras. As many readers
will rightly be in a hurry to get on to the next two chapters, I remark that the only significant result needed
for §§331-332 is the Hahn decomposition of a countably additive functional (326M), and that this is no more
than a translation into the language of measure algebras of a theorem already given in Chapter 23. The
concept of ‘standard extension’ of a countably additive functional from a subalgebra (327F-327G) will be
used for a theorem in §333, and as preparation for Chapter 36.

I begin with notes on the space of additive functionals on an arbitrary Boolean algebra (326A-326D),
corresponding to 231A-231B, but adding a more general form of the Jordan decomposition of a bounded
additive functional into positive and negative parts (326D). The next four paragraphs are starred, because
they will not be needed in this volume; 326E is essential if you want to look at additive functionals on free
products, 326F is a basic classification criterion, and 326H is an important extension of a fundamental fact
about atomless measures noted in 215D, but all can be passed over on first reading. The next subsection
(326I-326M) deals with countably additive functionals, corresponding to 231C-231F. In 326N-326T I develop
a new idea, that of ‘completely additive’ functional, which does not match anything in the previous treatment.

326A Additive functionals: Definition Let A be a Boolean algebra. A functional ν : A → R is
finitely additive, or just additive, if ν(a ∪ b) = νa+ νb whenever a, b ∈ A and a ∩ b = 0.

326B Elementary facts Let A be a Boolean algebra and ν : A → R a finitely additive functional.

(a) ν0 = 0.

(b) If c ∈ A, then a 7→ ν(a ∩ c) is additive.

(c) αν is an additive functional for any α ∈ R. If ν ′ is another finitely additive functional on A, then
ν + ν ′ is additive.

(d) If 〈νi〉i∈I is any family of finitely additive functionals such that ν ′a =
∑
i∈I νia is defined in R for

every a ∈ A, then ν ′ is additive.

(e) If B is another Boolean algebra and π : B → A is a Boolean homomorphism, then νπ : B → R is
additive. In particular, if B is a subalgebra of A, then ν↾B : B → R is additive.

(f) ν is non-negative iff it is order-preserving – that is,

νa ≥ 0 for every a ∈ A ⇐⇒ νb ≤ νc whenever b ⊆ c.

326C The space of additive functionals Let A be any Boolean algebra. From 326Bc we see that the
set M of all finitely additive real-valued functionals on A is a linear space. We give it the ordering induced
by that of RA. This renders it a partially ordered linear space.

326D The Jordan decomposition (I): Proposition Let A be a Boolean algebra, and ν a finitely
additive real-valued functional on A. Then the following are equiveridical:

(i) ν is bounded;
(ii) supn∈N |νan| <∞ for every disjoint sequence 〈an〉n∈N in A;
(iii) limn→∞ |νan| = 0 for every disjoint sequence 〈an〉n∈N in A;
(iv)

∑∞

n=0 |νan| <∞ for every disjoint sequence 〈an〉n∈N in A;
(v) ν is expressible as the difference of two non-negative additive functionals.

*326E Additive functionals on free products: Theorem Let 〈Ai〉i∈I be a non-empty family of
Boolean algebras, with free product A; write εi : Ai → A for the canonical maps, and

c© 2001 D. H. Fremlin
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C = {infj∈J εj(aj) : J ⊆ I is finite, aj ∈ Aj for every j ∈ J}.

Suppose that θ : C → R is such that

θc = θ(c ∩ εi(a)) + θ(c ∩ εi(1 \ a))

whenever c ∈ C, i ∈ I and a ∈ Ai. Then there is a unique finitely additive functional ν : A → R extending
θ.

*326F Definition Let A be a Boolean algebra, and ν a finitely additive functional on A. ν is properly
atomless if for every ǫ > 0 there is a finite partition 〈ai〉i∈I of unity in A such that |νa| ≤ ǫ whenever i ∈ I
and a ⊆ ai.

*326G Lemma Let A be a Boolean algebra.
(a)(i) If ν, ν′ : A → R are properly atomless finitely additive functionals and α ∈ R, then αν and ν + ν′

are properly atomless additive functionals.
(ii) If ν : A → R is a properly atomless finitely additive functional, then ν is bounded and ν can be

expressed as the difference of two non-negative properly atomless additive functionals.
(b) Suppose that A is Dedekind σ-complete and that 〈νi〉i∈I is a family of non-negative additive functionals

on A such that for every a ∈ A there are an α ∈ [ 13 ,
2
3 ] and an a′ ⊆ a such that νia

′ = ανia for every i ∈ I.
Then for any a ∈ A there is a non-decreasing family 〈at〉t∈[0,1] in A such that a0 = 0, a1 = a and νiat = tνia
for every t ∈ [0, 1] and i ∈ I.

(c) Suppose that A is Dedekind σ-complete and that ν0, . . . , νn : A → [0,∞[ are properly atomless
additive functionals such that νia ≤ ν0a for every i ≤ n and a ∈ A. Then for any a ∈ A there is a
non-decreasing family 〈at〉t∈[0,1] in A such that a0 = 0, a1 = a and νiat = tνia for every t ∈ [0, 1] and i ≤ n.

*326H Liapounoff’s convexity theorem Let A be a Dedekind σ-complete Boolean algebra, and r ≥ 1
an integer. Suppose that ν : A → R

r is additive in the sense that ν(a ∪ b) = νa + νb whenever a ∩ b = 0,
and properly atomless in the sense that for every ǫ > 0 there is a finite partition 〈aj〉j∈J of unity in A such
that ‖νa‖ ≤ ǫ whenever j ∈ J and a ⊆ aj . Then {νa : a ∈ A} is a convex set in R

r.

326I Countably additive functionals: Definition Let A be a Boolean algebra. A functional ν :
A → R is countably additive or σ-additive if

∑∞

n=0 νan is defined and equal to ν(supn∈N an) whenever
〈an〉n∈N is a disjoint sequence in A and supn∈N an is defined in A.

326J Elementary facts Let A be a Boolean algebra and ν : A → R a countably additive functional.

(a) ν is finitely additive.

(b) If 〈an〉n∈N is a non-decreasing sequence in A with a supremum a ∈ A, then

νa = limn→∞ νan.

(c) If 〈an〉n∈N is a non-increasing sequence in A with an infimum a ∈ A, then

νa = limn→∞ νan.

(d) If c ∈ A, then a 7→ ν(a ∩ c) is countably additive.

(e) αν is a countably additive functional for any α ∈ R. If ν ′ is another countably additive functional on
A, then ν + ν ′ is countably additive.

(f) If B is another Boolean algebra and π : B → A is a sequentially order-continuous Boolean homomor-
phism, then νπ is a countably additive functional on B.

(g) If A is Dedekind σ-complete and B is a σ-subalgebra of A, then ν↾B : B → R is countably additive.
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326K Corollary Let A be a Boolean algebra and ν a finitely additive real-valued functional on A.
(a) ν is countably additive iff limn→∞ νan = 0 whenever 〈an〉n∈N is a non-increasing sequence in A with

infimum 0 in A.
(b) If ν ′ is an additive functional on A and |ν ′a| ≤ νa for every a ∈ A, and ν is countably additive, then

ν ′ is countably additive.
(c) If ν is non-negative, then ν is countably additive iff it is sequentially order-continuous.

326L The Jordan decomposition (II): Proposition Let A be a Boolean algebra and ν a bounded
countably additive real-valued functional on A. Then ν is expressible as the difference of two non-negative
countably additive functionals.

326M The Hahn decomposition: Theorem Let A be a Dedekind σ-complete Boolean algebra and
ν : A → R a countably additive functional. Then ν is bounded and there is a c ∈ A such that νa ≥ 0
whenever a ⊆ c, while νa ≤ 0 whenever a ∩ c = 0.

326N Completely additive functionals: Definition Let A be a Boolean algebra. A functional
ν : A → R is completely additive or τ-additive if it is finitely additive and infa∈A |νa| = 0 whenever A
is a non-empty downwards-directed set in A with infimum 0.

326O Basic facts Let A be a Boolean algebra and ν a completely additive real-valued functional on A.

(a) ν is countably additive.

(b) Let A be a non-empty downwards-directed set in A with infimum 0. Then for every ǫ > 0 there is an
a ∈ A such that |νb| ≤ ǫ whenever b ⊆ a.

(c) If ν is non-negative, it is order-continuous.

(d) If c ∈ A, then a 7→ ν(a ∩ c) is completely additive.

(e) αν is a completely additive functional for any α ∈ R. If ν ′ is another completely additive functional
on A, then ν + ν ′ is completely additive.

(f) If B is another Boolean algebra and π : B → A is an order-continuous Boolean homomorphism, then
νπ is a completely additive functional on B. In particular, if B is a regularly embedded subalgebra of A,
then ν↾B is completely additive.

(g) If ν ′ is another additive functional on A and |ν ′a| ≤ νa for every a ∈ A, then ν ′ is completely
additive.

326P Proposition If A is a ccc Boolean algebra, a functional ν : A → R is countably additive iff it is
completely additive.

326Q The Jordan decomposition (III): Proposition Let A be a Boolean algebra and ν a completely
additive real-valued functional on A. Then ν is bounded and expressible as the difference of two non-negative
completely additive functionals.

326R Proposition Let A be a Boolean algebra, and ν : A → R a function. Then the following are
equiveridical:

(i) ν is completely additive;
(ii) ν1 =

∑
i∈I νai whenever 〈ai〉i∈I is a partition of unity in A;

(iii) νa =
∑
i∈I νai whenever 〈ai〉i∈I is a disjoint family in A with supremum a.

326S Proposition Let A be a Dedekind σ-complete Boolean algebra and ν : A → R a completely
additive functional. Then there is a unique element of A, which I will denote [[ν > 0]], such that νa > 0
whenever 0 6= a ⊆ [[ν > 0]], while νa ≤ 0 whenever a ∩ [[ν > 0]] = 0.

D.H.Fremlin
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326T Corollary Let A be a Dedekind σ-complete Boolean algebra and µ, ν two completely additive
functionals on A. Then there is a unique element of A, which I will denote [[µ > ν]], such that

µa > νa whenever 0 6= a ⊆ [[µ > ν]],

µa ≤ νa whenever a ∩ [[µ > ν]] = 0.

Version of 13.7.11

327 Additive functionals on measure algebras

When we turn to measure algebras, we have a simplification, relative to the general context of §326,
because the algebras are always Dedekind σ-complete; but there are also elaborations, because we can ask
how the additive functionals we examine are related to the measure. In 327A-327C I work through the
relationships between the concepts of ‘absolute continuity’, ‘(true) continuity’ and ‘countable additivity’,
following §232, and adding ‘complete additivity’ from §326. These ideas provide a new interpretation of
the Radon-Nikodým theorem (327D). I then use this theorem to develop some machinery (the ‘standard
extension’ of an additive functional from a closed subalgebra to the whole algebra, 327F-327G) which will
be used in §333.

327A Definition Let (A, µ̄) be a measure algebra and ν : A → R a finitely additive functional. Then ν
is absolutely continuous with respect to µ̄ if for every ǫ > 0 there is a δ > 0 such that |νa| ≤ ǫ whenever
µ̄a ≤ δ.

327B Theorem Let (A, µ̄) be a measure algebra, and ν : A → R a finitely additive functional. Give A

its measure-algebra topology and uniformity.
(a) If ν is continuous at 0, it is completely additive.
(b) If ν is countably additive, it is absolutely continuous with respect to µ̄.
(c) The following are equiveridical:
(i) ν is continuous at 0;
(ii) ν is countably additive and whenever a ∈ A and νa 6= 0 there is a b ∈ A such that µ̄b < ∞ and

ν(a ∩ b) 6= 0;
(iii) ν is continuous everywhere on A;
(iv) ν is uniformly continuous.

(d) If (A, µ̄) is semi-finite, then ν is continuous iff it is completely additive.
(e) If (A, µ̄) is σ-finite, then ν is continuous iff it is countably additive iff it is completely additive.
(f) If (A, µ̄) is totally finite, then ν is continuous iff it is absolutely continuous with respect to µ̄ iff it is

countably additive iff it is completely additive.

327C Proposition Let (X,Σ, µ) be a measure space and (A, µ̄) its measure algebra.
(a) There is a one-to-one correspondence between finitely additive functionals ν̄ on A and finitely additive

functionals ν on Σ such that νE = 0 whenever µE = 0, given by the formula ν̄E• = νE for every E ∈ Σ.
(b) In (a), ν̄ is absolutely continuous with respect to µ̄ iff ν is absolutely continuous with respect to µ.
(c) In (a), ν̄ is countably additive iff ν is countably additive; so that we have a one-to-one correspondence

between the countably additive functionals on A and the absolutely continuous countably additive functionals
on Σ.

(d) In (a), ν̄ is continuous for the measure-algebra topology on A iff ν is truly continuous in the sense of
232Ab.

(e) Suppose that µ is semi-finite. Then, in (a), ν̄ is completely additive iff ν is truly continuous.

327D The Radon-Nikodým theorem Let (X,Σ, µ) be a semi-finite measure space, with measure
algebra (A, µ̄). Let L1 be the space of equivalence classes of real-valued integrable functions on X, and write

c© 1995 D. H. Fremlin
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Mτ for the set of completely additive real-valued functionals on A. Then there is an ordered linear space
bijection between Mτ and L1 defined by saying that ν̄ ∈Mτ corresponds to u ∈ L1 if

ν̄a =
∫
E
f whenever a = E• in A and f• = u in L1.

327E Proposition If (A, µ̄) is a measure algebra, then the functional a 7→ µca = µ̄(a ∩ c) is completely
additive whenever c ∈ A and µ̄c <∞.

327F Standard extensions: Lemma Let (A, µ̄) be a totally finite measure algebra and C ⊆ A a
closed subalgebra. Write Mσ(A), Mσ(C) for the spaces of countably additive real-valued functionals on A,
C respectively.

(a) There is an operator R : Mσ(C) → Mσ(A) defined by saying that, for every ν ∈ Mσ(C), Rν is the
unique member of Mσ(A) such that [[Rν > αµ̄]] = [[ν > αµ̄↾C]] for every α ∈ R.

(b)(i) Rν extends ν for every ν ∈Mσ(C).
(ii) R is linear and order-preserving.
(iii) R(µ̄↾C) = µ̄.
(iv) If 〈νn〉n∈N is a sequence of non-negative functionals in Mσ(C) such that

∑∞

n=0 νnc = µ̄c for every
c ∈ C, then

∑∞

n=0(Rνn)(a) = µ̄a for every a ∈ A.

327G Definition In the context of 327F, I will call Rν the standard extension of ν to A.
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Version of 2.6.09

*328 Reduced products and other constructions

I devote a section to some related constructions. At the end of §315 I mentioned projective and inductive
limits of systems of Boolean algebras with linking homomorphisms. In the context of the present chapter,
we naturally ask whether similar constructions can be found for probability algebras. For projective limits
there is no difficulty (328I). For inductive limits the situation is more complex (328H). Some ideas in Volume
5 will depend on what I call ‘reduced products’ (328A-328F), which also provide a route to 328H. The same
methods give a route to a useful result relating measure-preserving Boolean homomorphisms on a probability
algebra to measure-preserving automorphisms on a larger probability algebra (328J).

328A Construction Let 〈(Ai, µ̄i)〉i∈I be a non-empty family of probability algebras, and F an ultrafilter
on I.

(a) Set

J = {〈ai〉i∈I : 〈ai〉i∈I ∈
∏
i∈I Ai, limi→F µ̄iai = 0}.

Then J is an ideal in the simple product Boolean algebra
∏
i∈I Ai.

(b) Let A be the quotient Boolean algebra
∏
i∈I Ai/J . Then we have a functional µ̄ : A → [0, 1] defined

by saying that

µ̄(〈ai〉•i∈I) = limi→F µ̄iai

whenever 〈ai〉i∈I ∈
∏
i∈I Ai.

328B Proposition Let 〈(Ai, µ̄i)〉i∈I be a non-empty family of probability algebras and F an ultrafilter
on I, and construct A and µ̄ as in 328A. Then (A, µ̄) is a probability algebra.

328C Definition In the context of 328A/328B, I will call (A, µ̄) the probability algebra reduced
product of 〈(Ai, µ̄i)〉i∈I modulo F ; I will sometimes write it as

∏
i∈I(Ai, µ̄i)|F .

If all the (Ai, µ̄i) are the same, with common value (B, ν̄), I will write (B, ν̄)I |F for
∏
i∈I(Ai, µ̄i)|F , and

call it the probability algebra reduced power.

328D Proposition Let I be a set, 〈(Ai, µ̄i)〉i∈I , 〈(Bi, ν̄i)〉i∈I and 〈(Ci, λ̄i)〉i∈I three families of probability
algebras, and F an ultrafilter on I; let (A, µ̄) =

∏
i∈I(Ai, µ̄i)|F , (B, ν̄) =

∏
i∈I(Bi, ν̄i)|F and (C, λ̄) =∏

i∈I(Ci, λ̄i)|F be the corresponding reduced products.
(a) If πi : Ai → Bi is a measure-preserving Boolean homomorphism for each i ∈ I, we have a measure-

preserving Boolean homomorphism π : A → B given by saying that

π(〈ai〉•i∈I) = 〈πiai〉•i∈I

whenever ai ∈ Ai for every i ∈ I.
(b) If, in addition, φi : Bi → Ci is a measure-preserving Boolean homomorphism for each i ∈ I, and

φ : B → C is constructed as in (a), then φπ : A → C corresponds to the family 〈φiπi〉i∈I .

328E Proposition Let I be a non-empty set, ≤ a reflexive transitive relation on I, and F an ultrafilter
on I such that {j : j ∈ I, j ≥ i} belongs to F for every i ∈ I. Let 〈(Ai, µ̄i)〉i∈I be a family of probability
algebras, and suppose that we are given a family 〈πji〉i≤j such that

πji is a measure-preserving Boolean homomorphism from Ai to Aj whenever i ≤ j in I,
πki = πkjπji whenever i ≤ j ≤ k in I.

Let (A, µ̄) be the probability algebra reduced product
∏
i∈I(Ai, µ̄i)|F .

(a) For each i ∈ I we have a measure-preserving Boolean homomorphism πi : Ai → A defined by saying
that πia = 〈aj〉

•

j∈I whenever aj = πjia for every j ≥ i, and πi = πjπji whenever i ≤ j in I.

(b) 〈ai〉
•

i∈I ⊆ supj∈A πjaj whenever 〈ai〉i∈I ∈
∏
i∈I Ai and A ∈ F .
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328F Corollary Suppose that 〈(An, µ̄n)〉n∈N is a sequence of probability algebras, φn : An → An+1 is a
measure-preserving Boolean homomorphism for each n and F is a non-principal ultrafilter on N. Let (A, µ̄)
be the probability algebra reduced product

∏
n∈N

(An, µ̄n)|F . Then we have canonical measure-preserving
Boolean homomorphisms πn : An → A such that 〈an〉

•

n∈N
⊆ supn∈A πnan whenever 〈an〉n∈N ∈

∏
n∈N

An and
A ∈ F , and πn+1φn = πn for every n ∈ N.

328G Corollary Let (B, ν̄) be a probability algebra, I a non-empty set, and F an ultrafilter on I. Let
(A, µ̄) be the probability algebra reduced power (B, ν̄)I |F .

(a) We have a measure-preserving Boolean homomorphism π : B → A defined by saying that πb = 〈b〉•i∈I
for b ∈ B.

(b)

〈bi〉
•

i∈I ⊆ supj∈A πbj = π(supj∈A bj)

whenever A ∈ F and 〈bi〉i∈I ∈ BI .

328H Proposition Let (I,≤) be an upwards-directed partially ordered set, and 〈(Ai, µ̄i)〉i∈I a family of
probability algebras; suppose that πji : Ai → Aj is a measure-preserving Boolean homomorphism whenever
i ≤ j, and that πki = πkjπji whenever i ≤ j ≤ k. Then there are a probability algebra (C, λ̄) and a family
〈πi〉i∈I such that

πi : Ai → C is a measure-preserving Boolean homomorphism for each i ∈ I,

πi = πjπji whenever i ≤ j,

{0, 1} ∪
⋃
i∈I πi[Ai] is topologically dense in C,

and whenever (B, ν̄), 〈φi〉i∈I are such that

(B, ν̄) is a probability algebra,

φi : Ai → B is a measure-preserving Boolean homomorphism for each i ∈ I,

φi = φjπji whenever i ≤ j,

then there is a unique measure-preserving Boolean homomorphism φ : C → B such that φπi = φi for every
i ∈ I.

328I Proposition Let (I,≤) be a non-empty upwards-directed set, and 〈(Ai, µ̄i)〉i∈I a family of proba-
bility algebras; suppose that πij : Aj → Ai is a measure-preserving Boolean homomorphism for i ≤ j in I,
and that πijπjk = πik whenever i ≤ j ≤ k. Then there are a probability algebra (C, λ̄) and a family 〈πi〉i∈I
such that

πi : C → Ai is a measure-preserving Boolean homomorphism for each i ∈ I,

πi = πijπj whenever i ≤ j,

and whenever (B, ν̄), 〈φi〉i∈I are such that

(B, ν̄) is a probability algebra,

φi : B → Ai is a measure-preserving Boolean homomorphism for each i ∈ I,

φi = πijφj whenever i ≤ j,

then there is a unique measure-preserving Boolean homomorphism φ : B → C such that πiφ = φi for every
i ∈ I.

328J Theorem Let (A, µ̄) be a probability algebra, and Φ a family of measure-preserving Boolean
homomorphisms from A to itself such that φψ = ψφ for all φ, ψ ∈ Φ. Then there are a probability algebra
(C, λ̄), a measure-preserving Boolean homomorphism π : A → C and a family 〈φ̃〉φ∈Φ such that

(i) φ̃ : C → C is a measure-preserving Boolean automorphism and φ̃π = πφ for every φ ∈ Φ;

(ii) (φψ)
∼

= φ̃ψ̃ for all φ, ψ ∈ Φ.
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Version of 24.4.06

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

322K Paragraphs 322K (simple products of measure algebras), 322N (the Stone space of a measure
algebra) and 322Q (further properties of Stone spaces), referred to in the 2003 and 2006 editions of Volume
4, are now 322L, 322O and 322R.

326E Countably additive functionals Definition 326E, referred to in the 2003 and 2006 editions of
Volume 4 and the 2008 edition of Volume 5, is now 326I.

326G Corollary 326G, referred to in the 2008 edition of Volume 5, is now 326K.

326I Hahn decomposition Theorem 326I, referred to in the 2003 and 2006 editions of Volume 4, is
now 326M.

326K Completely additive functionals The notes in 326K, referred to in the 2003 and 2006 editions
of Volume 4, have been moved to 326O.

326Q Finitely additive functionals on free products Theorem 326Q, referred to in the 2003 and
2006 editions of Volume 4 and the 2008 edition of Volume 5, is now 326E.

328D Reduced products of probability algebras Paragraph 328D, referred to in the 2008 edition
of Volume 5, is now 328E.
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