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Chapter 32

Measure algebras

I now come to the real work of this volume, the study of the Boolean algebras of equivalence classes of
measurable sets. In this chapter I work through the ‘elementary’ theory, defining this to consist of the parts
which do not depend on Maharam’s theorem or the lifting theorem or non-trivial set theory.

§321 gives the definition of ‘measure algebra’, and relates this idea to its origin as the quotient of a σ-
algebra of measurable sets by a σ-ideal of negligible sets, both in its elementary properties (following those
of measure spaces treated in §112) and in an appropriate version of the Stone representation. §322 deals
with the classification of measure algebras according to the scheme already developed in §211 for measure
spaces. §323 discusses the standard topology and uniformity of a measure algebra. §324 contains results
concerning Boolean homomorphisms between measure algebras, with the relationships between topological
continuity, order-continuity and preservation of measure. §325 is devoted to the measure algebras of product
measures, and their abstract characterization as completed free products. §§326-327 address the properties
of additive functionals on Boolean algebras, generalizing the ideas of Chapter 23. Finally, §328 looks at
‘reduced products’ of probability algebras and some related constructions, including inductive limits.

Version of 3.1.11

321 Measure algebras

I begin by defining ‘measure algebra’ and relating this concept to the work of Chapter 31 and to the
elementary properties of measure spaces.

321A Definition A measure algebra is a pair (A, µ̄), where A is a Dedekind σ-complete Boolean
algebra and µ̄ : A → [0,∞] is a function such that

µ̄0 = 0;
whenever 〈an〉n∈N is a disjoint sequence in A, µ̄(supn∈N an) =

∑∞
n=0 µ̄an;

µ̄a > 0 whenever a ∈ A and a 6= 0.

321B Elementary properties of measure algebras Corresponding to the most elementary properties
of measure spaces (112C in Volume 1), we have the following basic properties of measure algebras. Let (A, µ̄)
be a measure algebra.

(a) If a, b ∈ A and a ∩ b = 0 then µ̄(a ∪ b) = µ̄a+ µ̄b. PPP Set a0 = a, a1 = b, an = 0 for n ≥ 2; then

µ̄(a ∪ b) = µ̄(supn∈N an) =
∑∞
n=0 µ̄an = µ̄a+ µ̄b. QQQ

(b) If a, b ∈ A and a ⊆ b then µ̄a ≤ µ̄b. PPP

µ̄a ≤ µ̄a+ µ̄(b \ a) = µ̄b. QQQ

(c) For any a, b ∈ A, µ̄(a ∪ b) ≤ µ̄a+ µ̄b. PPP

µ̄(a ∪ b) = µ̄a+ µ̄(b \ a) ≤ µ̄a+ µ̄b. QQQ

(d) If 〈an〉n∈N is any sequence in A, then µ̄(supn∈N an) ≤
∑∞
n=0 µ̄an. PPP For each n, set bn = an \ supi<n ai.

Inducing on n, we see that supi≤n ai = supi≤n bi for each n, so supn∈N an = supn∈N bn and
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2 Measure algebras 321Bd

µ̄(supn∈N an) = µ̄(supn∈N bn) =
∑∞
n=0 µ̄bn ≤

∑∞
n=0 µ̄an

because 〈bn〉n∈N is disjoint. QQQ

(e) If 〈an〉n∈N is a non-decreasing sequence in A, then µ̄(supn∈N an) = limn→∞ µ̄an. PPP Set b0 = a0,
bn = an \ an−1 for n ≥ 1. Then

µ̄(sup
n∈N

an) = µ̄(sup
n∈N

bn) =
∞∑

n=0

µ̄bn

= lim
n→∞

n∑

i=0

µ̄bi = lim
n→∞

µ̄(sup
i≤n

bi) = lim
n→∞

µ̄an. QQQ

(f) If 〈an〉n∈N is a non-increasing sequence in A and infn∈N µ̄an <∞, then µ̄(infn∈N an) = limn→∞ µ̄an.
PPP (Cf. 112Cf.) Set a = infn∈N an. Take k ∈ N such that µ̄ak <∞. Set bn = ak \ an for n ∈ N; then 〈bn〉n∈N

is non-decreasing and supn∈N bn = ak \ a (313Ab). Because µ̄ak is finite,

µ̄a = µ̄ak − µ̄(ak \ a) = µ̄ak − lim
n→∞

µ̄bn

(by (e) above)

= lim
n→∞

µ̄(ak \ bn) = lim
n→∞

µ̄an. QQQ

321C Proposition Let (A, µ̄) be a measure algebra, and A ⊆ A a non-empty upwards-directed set. If
supa∈A µ̄a <∞, then supA is defined in A and µ̄(supA) = supa∈A µ̄a.

proof (Compare 215A.) Set γ = supa∈A µ̄a, and for each n ∈ N choose an ∈ A such that µ̄an ≥ γ − 2−n.
Next, choose 〈bn〉n∈N in A such that bn+1 ⊇ bn ∪ an for each n, and set b = supn∈N bn. Then

µ̄b = limn→∞ µ̄bn ≤ γ, µ̄an ≤ µ̄b for every n ∈ N,

so µ̄b = γ.
If a ∈ A, then for every n ∈ N there is an a′n ∈ A such that a ∪ an ⊆ a′n, so that

µ̄(a \ b) ≤ µ̄(a \ an) ≤ µ̄(a′n \ an) = µ̄a′n − µ̄an ≤ γ − µ̄an ≤ 2−n.

This means that µ̄(a \ b) = 0, so a \ b = 0 and a ⊆ b. Accordingly b is an upper bound of A, and is therefore
supA; since we already know that µ̄b = γ, the proof is complete.

321D Corollary Let (A, µ̄) be a measure algebra and A ⊆ A a non-empty upwards-directed set. If supA
is defined in A, then µ̄(supA) = supa∈A µ̄a.

proof If supa∈A µ̄a = ∞, this is trivial; otherwise it follows from 321C.

321E Corollary Let (A, µ̄) be a measure algebra and A ⊆ A a disjoint set. If supA is defined in A, then
µ̄(supA) =

∑
a∈A µ̄a.

proof If A = ∅ then supA = 0 and the result is trivial. Otherwise, set B = {a0 ∪ . . . ∪ an : a0, . . . , an ∈ A
are distinct}. Then B is upwards-directed, and supb∈B µ̄b =

∑
a∈A µ̄a because A is disjoint. Also B has the

same upper bounds as A, so supB = supA and

µ̄(supA) = µ̄(supB) = supb∈B µ̄b =
∑
a∈A µ̄a.

321F Corollary Let (A, µ̄) be a measure algebra and A ⊆ A a non-empty downwards-directed set. If
infa∈A µ̄a <∞, then inf A is defined in A and µ̄(inf A) = infa∈A µ̄a.
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321J Measure algebras 3

proof Take a0 ∈ A with µ̄a0 < ∞, and set B = {a0 \ a : a ∈ A}. Then B is upwards-directed, and
supb∈B µ̄b ≤ µ̄a0 <∞, so supB is defined. Accordingly inf A = a0 \ supB is defined (313Aa), and

µ̄(inf A) = µ̄a0 − µ̄(supB) = µ̄a0 − sup
b∈B

µ̄b

= inf
b∈B

µ̄(a0 \ b) = inf
a∈A

µ̄(a0 ∩ a) = inf
a∈A

µ̄a.

321G Subalgebras If (A, µ̄) is a measure algebra, and B is a σ-subalgebra of A, then (B, µ̄↾B) is a
measure algebra. PPP As remarked in 314Eb, B is Dedekind σ-complete. If 〈bn〉n∈N is a disjoint sequence in
B, then the supremum b = supn∈N bn is the same whether taken in B or A, so that we have µ̄b =

∑∞
n=0 µ̄bn.

QQQ

321H The measure algebra of a measure space I introduce the abstract notion of ‘measure algebra’
because I believe that this is the right language in which to formulate the questions addressed in this volume.
However it is very directly linked with the idea of ‘measure space’, as the next two results show.

Theorem Let (X,Σ, µ) be a measure space, and N the null ideal of µ. Let A be the Boolean algebra
quotient Σ/Σ ∩ N . Then we have a functional µ̄ : A → [0,∞] defined by setting

µ̄E• = µE for every E ∈ Σ,

and (A, µ̄) is a measure algebra. The canonical map E 7→ E• : Σ → A is sequentially order-continuous.

proof (a) By 314C, A is a Dedekind σ-complete Boolean algebra. By 313Qb, E 7→ E• is sequentially
order-continuous, because Σ ∩ N is a σ-ideal of Σ.

(b) If E, F ∈ Σ and E• = F • in A, then E△F ∈ N , so

µE ≤ µF + µ(E \ F ) = µF ≤ µE + µ(F \ E) = µE

and µE = µF . Accordingly the given formula does indeed define a function µ̄ : A → [0,∞].

(c) Now

µ̄0 = µ̄∅• = µ∅ = 0.

If 〈an〉n∈N is a disjoint sequence in A, choose for each n ∈ N an En ∈ Σ such that E•
n = an. Set Fn =

En \
⋃
i<nEi; then

F •
n = E•

n \ supi<nE
•
i = an \ supi<n ai = an

for each n, so µ̄an = µFn for each n. Now set E =
⋃
n∈NEn =

⋃
n∈N Fn; then E• = supn∈N F

•
n = supn∈N an.

So

µ̄(supn∈N an) = µE =
∑∞
n=0 µFn =

∑∞
n=0 µ̄an.

Finally, if a 6= 0, then there is an E ∈ Σ such that E• = a, and E /∈ N , so µ̄a = µE > 0. Thus (A, µ̄) is a
measure algebra.

321I Definition For any measure space (X,Σ, µ) I will call (A, µ̄), as constructed above, the measure
algebra of (X,Σ, µ).

321J The Stone representation of a measure algebra Just as with Dedekind σ-complete Boolean
algebras (314N), every measure algebra is obtainable from the construction above.

Theorem Let (A, µ̄) be any measure algebra. Then it is isomorphic, as measure algebra, to the measure
algebra of some measure space.

proof (a) We know from 314M that A is isomorphic, as Boolean algebra, to a quotient algebra Σ/M where
Σ is a σ-algebra of subsets of the Stone space Z of A, and M is the ideal of meager subsets of Z. Let
π : Σ/M → A be the canonical isomorphism, and set θE = πE• for each E ∈ Σ; then θ : Σ → A is a
sequentially order-continuous surjective Boolean homomorphism with kernel M.

D.H.Fremlin



4 Measure algebras 321J

(b) For E ∈ Σ, set

νE = µ̄(θE).

Then (Z,Σ, ν) is a measure space. PPP (i) We know already that Σ is a σ-algebra of subsets of Z. (ii)

ν∅ = µ̄(θ∅) = µ̄0 = 0.

(iii) If 〈En〉n∈N is a disjoint sequence in Σ, then (because θ is a Boolean homomorphism) 〈θEn〉n∈N is a
disjoint sequence in A and (because θ is sequentially order-continuous) θ(

⋃
n∈NEn) = supn∈N θEn; so

ν(
⋃
n∈NEn) = µ̄(supn∈N θEn) =

∑∞
n=0 µ̄(θEn) =

∑∞
n=0 νEn. QQQ

(c) For E ∈ Σ,

νE = 0 ⇐⇒ µ̄(θE) = 0 ⇐⇒ θE = 0 ⇐⇒ E ∈ M.

So the measure algebra of (Z,Σ, ν) is just Σ/M, with

ν̄E• = νE = µ̄(θE) = µ̄(πE•)

for every E ∈ Σ. Thus the Boolean algebra isomorphism π is also an isomorphism between the measure
algebras (Σ/M, ν̄) and (A, µ̄), and (A, µ̄) is represented in the required form.

321K Definition I will call the measure space (Z,Σ, ν) constructed in the proof of 321J the Stone
space of the measure algebra (A, µ̄).

For later reference, I repeat the description of this space as developed in 311E, 311I, 314M and 321J. Z
is a compact Hausdorff space, being the Stone space of A. A can be identified with the algebra of open-
and-closed sets in Z. The null ideal of ν coincides with the ideal of meager subsets of Z; in particular, ν is
complete. The measurable sets are precisely those expressible in the form E = â△M where a ∈ A, â ⊆ Z is
the corresponding open-and-closed set, and M is meager; in this case νE = µ̄a and a = θE is the member
of A corresponding to E.

For the most important classes of measure algebras, more can be said; see 322O et seq. below.

321X Basic exercises >>>(a) Let (A, µ̄) be a measure algebra, and a ∈ A; write Aa for the principal
ideal of A generated by a. Show that (Aa, µ̄↾Aa) is a measure algebra.

(b) Let (X,Σ, µ̄) be a measure space, and A its measure algebra. (i) Show that if T is a σ-subalgebra
of Σ, then {E• : E ∈ T} is a σ-subalgebra of A. (ii) Show that if B is a σ-subalgebra of A then {E : E ∈
Σ, E• ∈ B} is a σ-subalgebra of Σ.

321Y Further exercises (a) Let (A, µ̄) be a measure algebra, and I ⊳ A a σ-ideal. For u ∈ A/I set
ν̄u = inf{µ̄a : a ∈ A, a• = u}. (i) Show that the infimum is always attained. (ii) Show that (A/I, ν̄) is a
measure algebra.

321 Notes and comments The idea behind taking the quotient Σ/N , where Σ is the algebra of measurable
sets and N is the null ideal, is just that if negligible sets can be ignored – as is the case for a very large
proportion of the results of measure theory – then two measurable sets can be counted as virtually the
same if they differ by a negligible set, that is, if they represent the same member of the measure algebra.
The definition in 321A is designed to be an exact characterization of these quotient algebras, taking into
account the measures with which they are endowed. In the course of the present chapter I will work through
many of the basic ideas dealt with in Volumes 1 and 2 to show how they can be translated into theorems
about measure algebras, as I have done in 321B-321F. It is worth checking these correspondences carefully,
because some of the ideas mutate significantly in translation. In measure algebras, it becomes sensible to
take seriously the suprema and infima of uncountable sets (see 321C-321F).

I should perhaps remark that while the Stone representation (321J-321K) is significant, it is not the most
important method of representing measure algebras, which is surely Maharam’s theorem, to be dealt with
in the next chapter. Nevertheless, the Stone representation is a canonical one, and will appear at each point
that we meet a new construction involving measure algebras, just as the ordinary Stone representation of
Boolean algebras can be expected to throw light on any aspect of Boolean algebra.

Measure Theory



322B Taxonomy of measure algebras 5

Version of 24.4.06

322 Taxonomy of measure algebras

Before going farther with the general theory of measure algebras, I run through those parts of the
classification of measure spaces in §211 which have expressions in terms of measure algebras. The most
important concepts at this stage are those of ‘semi-finite’, ‘localizable’ and ‘σ-finite’ measure algebra (322Ac-
322Ae); these correspond exactly to the same terms applied to measure spaces (322B). I briefly investigate
the Boolean-algebra properties of semi-finite and σ-finite measure algebras (322F, 322G), with mentions of
completions and c.l.d. versions (322D), subspace measures (322I-322J), indefinite-integral measures (322K),
direct sums of measure spaces (322L, 322M) and subalgebras of measure algebras (322N). It turns out that
localizability of a measure algebra is connected in striking ways to the properties of the canonical measure
on its Stone space (322O). I end the section with a description of the ‘localization’ of a semi-finite measure
algebra (322P-322Q) and with some further properties of Stone spaces (322R).

322A Definitions Let (A, µ̄) be a measure algebra.

(a) I will say that (A, µ̄) is a probability algebra if µ̄1 = 1.

(b) (A, µ̄) is totally finite if µ̄1 <∞.

(c) (A, µ̄) is σ-finite if there is a sequence 〈an〉n∈N in A such that µ̄an < ∞ for every n ∈ N and
supn∈N an = 1. Note that in this case 〈an〉n∈N can be taken either to be non-decreasing (consider a′n =
supi<n ai) or to be disjoint (consider a′′n = an \ a′n).

(d) (A, µ̄) is semi-finite if whenever a ∈ A and µ̄a = ∞ there is a non-zero b ⊆ a such that µ̄b <∞.

(e) (A, µ̄) is localizable if it is semi-finite and the Boolean algebra A is Dedekind complete.

322B The first step is to relate these concepts to the corresponding ones for measure spaces.

Theorem Let (X,Σ, µ) be a measure space, and (A, µ̄) its measure algebra. Then
(a) (X,Σ, µ) is a probability space iff (A, µ̄) is a probability algebra;
(b) (X,Σ, µ) is totally finite iff (A, µ̄) is;
(c) (X,Σ, µ) is σ-finite iff (A, µ̄) is;
(d) (X,Σ, µ) is semi-finite iff (A, µ̄) is;
(e) (X,Σ, µ) is localizable iff (A, µ̄) is;
(f) if E ∈ Σ, then E is an atom for µ iff E• is an atom in A;
(g) (X,Σ, µ) is atomless iff A is;
(h) (X,Σ, µ) is purely atomic iff A is.

proof (a), (b) are trivial, since µ̄1 = µX.

(c)(i) If µ is σ-finite, let 〈En〉n∈N be a sequence of sets of finite measure covering X; then µ̄E•
n <∞ for

every n, and

supn∈NE
•
n = (

⋃
n∈NEn)• = 1,

so (A, µ̄) is σ-finite.

(ii) If (A, µ̄) is σ-finite, let 〈an〉n∈N be a sequence in A such that µ̄an <∞ for every n and supn∈N an = 1.
For each n, choose En ∈ Σ such that E•

n = an. Set E =
⋃
n∈NEn; then E• = supn∈N an = 1, so E is

conegligible. Now (X \ E,E0, E1, . . . ) is a sequence of sets of finite measure covering X, so µ is σ-finite.

(d)(i) Suppose that µ is semi-finite and that a ∈ A, µ̄a = ∞. Then there is an E ∈ Σ such that E• = a,
so that µE = µ̄a = ∞. As µ is semi-finite, there is an F ∈ Σ such that F ⊆ E and 0 < µF < ∞. Set
b = F •; then b ⊆ a and 0 < µ̄b <∞.

(ii) Suppose that (A, µ̄) is semi-finite and that E ∈ Σ, µE = ∞. Then µ̄E• = ∞, so there is a
b ⊆ E• such that 0 < µ̄b < ∞. Let F ∈ Σ be such that F • = b. Then F ∩ E ∈ Σ, F ∩ E ⊆ E and
(F ∩ E)• = E• ∩ b = b, so that µ(F ∩ E) = µ̄b ∈ ]0,∞[.

D.H.Fremlin



6 Measure algebras 322B

(e)(i) Note first that if E ⊆ Σ and F ∈ Σ, then

E \ F is negligible for every E ∈ E

⇐⇒ E•
\ F • = 0 for every E ∈ E

⇐⇒ F • is an upper bound for {E• : E ∈ E}.

So if E ⊆ Σ and H ∈ Σ, then H is an essential supremum of E in Σ, in the sense of 211G, iff H• is the
supremum of A = {E• : E ∈ E} in A. PPP Writing F for

{F : F ∈ Σ, E \ F is negligible for every E ∈ E},

we see that B = {F • : F ∈ F} is just the set of upper bounds of A, and that H is an essential supremum
of E iff H ∈ F and H• is a lower bound for B; that is, iff H• = supA. QQQ

(ii) Thus A is Dedekind complete iff every family in Σ has an essential supremum in Σ. Since we
already know that (A, µ̄) is semi-finite iff µ is, we see that (A, µ̄) is localizable iff µ is.

(f) This is immediate from the definitions in 211I and 316K, if we remember always that {b : b ⊆ E•} =
{F • : F ∈ Σ, F ⊆ E} (312Lb).

(g), (h) follow at once from (f).

322C I copy out the relevant parts of Theorem 211L in the new context.

Theorem (a) A probability algebra is totally finite.
(b) A totally finite measure algebra is σ-finite.
(c) A σ-finite measure algebra is localizable.
(d) A localizable measure algebra is semi-finite.

proof All except (c) are trivial; and (c) may be deduced from 211Lc-211Ld, 322Bc, 322Be and 321J, or
from 316Fa and 322G below.

322D Of course not all the definitions in §211 are directly relevant to measure algebras. The concepts
of ‘complete’, ‘locally determined’ and ‘strictly localizable’ measure space do not correspond in any direct
way to properties of the measure algebras. Indeed, completeness is just irrelevant, as the next proposition
shows.

Proposition Let (X,Σ, µ) be a measure space, with completion (X, Σ̂, µ̂) and c.l.d. version (X, Σ̃, µ̃) (213E).
Write (A, µ̄), (A1, µ̄1) and (A2, µ̄2) for the measure algebras of µ, µ̂ and µ̃ respectively.

(a) The embedding Σ ⊂→ Σ̂ corresponds to an isomorphism between (A, µ̄) and (A1, µ̄1).

(b)(i) The embedding Σ ⊂→ Σ̃ defines an order-continuous Boolean homomorphism π : A → A2. Setting

Af = {a : a ∈ A, µ̄a <∞}, π↾Af is a measure-preserving bijection between Af and A
f
2 = {c : c ∈ A2, µ̄2c <

∞}.
(ii) π is injective iff µ is semi-finite, and in this case µ̄2(πa) = µ̄a for every a ∈ A.
(iii) If µ is localizable, π is a bijection.

proof For E ∈ Σ, I write E◦ for its image in A; for F ∈ Σ̂, I write F ∗ for its image in A1; and for G ∈ Σ̃, I
write G• for its image in A2.

(a) This is nearly trivial. The map E 7→ E∗ : Σ → A1 is a Boolean homomorphism, being the composition

of the Boolean homomorphisms E 7→ E : Σ → Σ̂ and F 7→ F ∗ : Σ̂ → A1. Its kernel is {E : E ∈ Σ, µ̂E =
0} = {E : E ∈ Σ, µE = 0}, so it induces an injective Boolean homomorphism φ : A → A1 given by the
formula φ(E◦) = E∗ for every E ∈ Σ (312F, 3A2G). To see that φ is surjective, take any b ∈ A1. There is

an F ∈ Σ̂ such that F ∗ = b, and there is an E ∈ Σ such that E ⊆ F and µ̂(F \ E) = 0, so that

π(E◦) = E∗ = F ∗ = b.

Thus π is a Boolean algebra isomorphism. It is a measure algebra isomorphism because for any E ∈ Σ

µ̄1φ(E◦) = µ̄1E
∗ = µ̂E = µE = µ̄E◦.

Measure Theory



322F Taxonomy of measure algebras 7

(b)(i) The map E 7→ E• : Σ → A2 is a Boolean homomorphism with kernel {E : E ∈ Σ, µ̃E = 0} ⊇ {E :
E ∈ Σ, µE = 0}, so induces a Boolean homomorphism π : A → A2, defined by saying that πE◦ = E• for
every E ∈ Σ.

If a ∈ Af , it is expressible as E◦ where µE < ∞. Then µ̃E = µE (213Fa), so πa = E• belongs to A
f
2 ,

and µ̄2(πa) = µ̄a. If a, a′ are distinct members of Af , then

µ̄2(πa△ πa′) = µ̄2π(a△ a′) = µ̄(a△ a′) > 0,

so πa 6= πa′; thus π↾Af is an injective map from Af to A
f
2 . If c ∈ A

f
2 , then c = G• where µ̃G < ∞; by

213Fc, there is an E ∈ Σ such that E ⊆ G, µE = µ̃G and µ̃(G \ E) = 0, so that E◦ ∈ Af and

πE◦ = E• = G• = c.

As c is arbitrary, φ[Af ] = A
f
2 .

Finally, π is order-continuous. PPP Let A ⊆ A be a non-empty downwards-directed set with infimum 0,

and b ∈ A2 a lower bound for π[A]. ??? If b 6= 0, then (because (A2, µ̄2) is semi-finite) there is a b0 ∈ A
f
2 such

that 0 6= b0 ⊆ b. Let a0 ∈ A be such that πa0 = b0. Then a0 6= 0, so there is an a ∈ A such that a 6⊇ a0, that
is, a ∩ a0 6= a0. But now, because π↾Af is injective,

b0 = πa0 6= π(a ∩ a0) = πa ∩ πa0 = πa ∩ b0,

and b0 6⊆ πa, which is impossible. XXX Thus b = 0, and 0 is the only lower bound of π[A]. As A is arbitrary,
π is order-continuous (313L(b-ii)). QQQ

(ii) (α) If µ is semi-finite, then µ̃E = µE for every E ∈ Σ (213Hc), so

µ̄2(πE◦) = µ̄2E
• = µ̃E = µE = µ̄E◦

for every E ∈ Σ. In particular,

πa = 0 =⇒ 0 = µ̄2(πa) = µ̄a =⇒ a = 0,

so π is injective. (β) If µ is not semi-finite, there is an E ∈ Σ such that µE = ∞ but µH = 0 whenever
H ∈ Σ, H ⊆ E and µH <∞; so that µ̃E = 0 and

E◦ 6= 0, πE◦ = E• = 0.

So in this case π is not injective.

(iii) Now suppose that µ is localizable. Then for every G ∈ Σ̃ there is an E ∈ Σ such that µ̃(E△G) = 0,
by 213Hb; accordingly πE◦ = E• = G•. As G is arbitrary, π is surjective; and we know from (ii) that π is
injective, so it is a bijection, as claimed.

322E Proposition Let (A, µ̄) be a measure algebra.
(a) (A, µ̄) is semi-finite iff it has a partition of unity consisting of elements of finite measure.
(b) If (A, µ̄) is semi-finite, a = sup{b : b ⊆ a, µ̄b <∞} and µ̄a = sup{µ̄b : b ⊆ a, µ̄b <∞} for every a ∈ A.

proof Set Af = {b : b ∈ A, µ̄b <∞}.

(a)(i) If (A, µ̄) is semi-finite, then Af is order-dense in A, so there is a partition of unity consisting of
members of Af (313K).

(ii) If there is a partition of unity C ⊆ Af , and µ̄a = ∞, then there is a c ∈ C such that a ∩ c 6= 0, and
now a ∩ c ⊆ a and 0 < µ̄(a ∩ c) <∞; as a is arbitrary, (A, µ̄) is semi-finite.

(b) Of course Af is upwards-directed, by 321Bc, and we are supposing that its supremum is 1. If a ∈ A,
then

B = {b : b ∈ Af , b ⊆ a} = {a ∩ b : b ∈ Af}

is upwards-directed and has supremum a (313Ba), so µ̄a = supb∈B µ̄b, by 321D.

Remark Compare 213A.

322F Proposition If (A, µ̄) is a semi-finite measure algebra, then A is a weakly (σ,∞)-distributive
Boolean algebra.
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proof Let 〈An〉n∈N be a sequence of non-empty downwards-directed subsets of A, all with infimum 0. Set

B = {b : for every n ∈ N there is an a ∈ An such that b ⊇ a}.

If c ∈ A \ {0}, let c′ ⊆ c be such that 0 < µ̄c′ < ∞. For each n ∈ N, infa∈An
µ̄(c′ ∩ a) = 0, by 321F; so we

may choose an ∈ An such that µ̄(c′ ∩ an) ≤ 2−n−2µ̄b. Set b = supn∈N an ∈ B. Then

µ̄(c′ ∩ b) ≤
∑∞
n=0 µ̄(c′ ∩ an) < µ̄c′,

so c′ 6⊆ b and c 6⊆ b. As c is arbitrary, inf B = 0; as 〈An〉n∈N is arbitrary, A is weakly (σ,∞)-distributive
(316G).

322G Corresponding to 215B, we have the following description of σ-finite algebras.

Proposition Let (A, µ̄) be a semi-finite measure algebra. Then the following are equiveridical:
(i) (A, µ̄) is σ-finite;
(ii) A is ccc;
(iii) either A = {0} or there is a functional ν̄ : A → [0, 1] such that (A, ν̄) is a probability algebra.

proof (i)⇔(ii) By 321J, it is enough to consider the case in which (A, µ̄) is the measure algebra of a measure
space (X,Σ, µ), and µ is semi-finite, by 322Bd. We know that A is ccc iff there is no uncountable disjoint
set in Σ \ N , where N is the null ideal of µ (316D). But 215B(iii) shows that this is equivalent to µ being
σ-finite, which is equivalent to (A, µ̄) being σ-finite, by 322Bc.

(i)⇒(iii) If (A, µ̄) is σ-finite, and A 6= {0}, let 〈an〉n∈N be a disjoint sequence in A such that µ̄an < ∞
for every n and supn∈N an = 1. Then µ̄an > 0 for some n, so there are γn > 0 such that

∑∞
n=0 γnµ̄an = 1.

(Set γ′n = 2−n/(1 + µ̄an), γn = γ′n/(
∑∞
i=0 γ

′
iµ̄ai).) Set ν̄a =

∑∞
n=0 γnµ̄(a ∩ an) for every a ∈ A; it is easy to

check that (A, ν̄) is a probability algebra.

(iii)⇒(i) is a consequence of (i)⇔(ii).

322H Principal ideals If (A, µ̄) is a measure algebra and a ∈ A, then it is easy to see (using 314Eb)
that (Aa, µ̄↾Aa) is a measure algebra, where Aa is the principal ideal of A generated by a.

322I Subspace measures General subspace measures give rise to complications in the measure algebra
(see 322Xf, 322Yd). But subspaces with measurable envelopes (132D, 213L) are manageable.

Proposition Let (X,Σ, µ) be a measure space, and A ⊆ X a set with a measurable envelope E. Let µA be
the subspace measure on A, and ΣA its domain; let (A, µ̄) be the measure algebra of (X,Σ, µ) and (AA, µ̄A)
the measure algebra of (A,ΣA, µA). Set a = E• and let Aa be the principal ideal of A generated by a. Then
we have an isomorphism between (Aa, µ̄↾Aa) and (AA, µ̄A) given by the formula

F • 7→ (F ∩A)◦

whenever F ∈ Σ and F ⊆ E, writing F • for the equivalence class of F in A and (F ∩A)◦ for the equivalence
class of F ∩A in AA.

proof Set ΣE = {E ∩ F : F ∈ Σ}. For F , G ∈ ΣE ,

F • = G• ⇐⇒ µ(F△G) = 0 ⇐⇒ µA(A ∩ (F△G)) = 0 ⇐⇒ (F ∩A)◦ = (G ∩A)◦,

because E is a measurable envelope of A. Accordingly the given formula defines an injective function from
the image {F • : F ∈ ΣE} of ΣE in A to AA; but this image is just the principal ideal Aa. It is easy to
check that the map is a Boolean homomorphism from Aa to AA, and it is a Boolean isomorphism because
ΣA = {F ∩A : F ∈ ΣE}. Finally, it is measure-preserving because

µ̄F • = µF = µ∗(F ∩A) = µA(F ∩A) = µ̄A(F ∩A)◦

for every F ∈ ΣE , again using the fact that E is a measurable envelope of A.

322J Corollary Let (X,Σ, µ) be a measure space, with measure algebra (A, µ̄).
(a) If E ∈ Σ, then the measure algebra of the subspace measure µE can be identified with the principal

ideal AE• of A.
(b) If A ⊆ X is a set of full outer measure (in particular, if µ∗A = µX < ∞), then the measure algebra

of the subspace measure µA can be identified with A.

Measure Theory



322Le Taxonomy of measure algebras 9

322K Indefinite-integral measures: Proposition Let (X,Σ, µ) be a measure space and ν an indefinite-
integral measure over µ (234J). Then the measure algebra of ν can be identified, as Boolean algebra, with
a principal ideal of the measure algebra of µ.

proof Taking (X, Σ̂, µ̂) to be the completion of (X,Σ, µ), then we can identify the measure algebras of µ
and µ̂, by 322Da; and ν is still an indefinite-integral measure over µ̂, just because µ and µ̂ give rise to the
same theory of integration (212Fb). Now there is a G ∈ Σ̂ such that the domain T of ν is {E : E ⊆ X,

E ∩ G ∈ Σ̂} and the null ideal Nν of ν is {A : A ⊆ X, A ∩ G ∈ Nµ}, where Nµ is the null ideal of µ or µ̂
(234Lc1, 212Eb). Writing A for the measure algebra of µ̂, c = G• ∈ A, and Ac for the principal ideal of A
generated by c, we have a Boolean homomorphism E 7→ (E ∩ G)• : T → Ac with kernel Nν . So, writing
E◦ ∈ B for the equivalence class of E ∈ T, we have an injective Boolean homomorphism π : B → Ac defined
by setting πE◦ = (E ∩G)• for every E ∈ T. Of course

π[B] ⊇ {(E ∩G)• : E ∈ Σ̂} = {a ∩ c : a ∈ A} = Ac,

so π is actually an isomorphism, as required.

322L Simple products (a) Let 〈(Ai, µ̄i)〉i∈I be an indexed family of measure algebras. Let A be the
simple product Boolean algebra

∏
i∈I Ai (315A), and for a ∈ A set µ̄a =

∑
i∈I µ̄ia(i). Then it is easy to

check (using 315D(e-ii)) that (A, µ̄) is a measure algebra; I will call it the simple product of the family
〈(Ai, µ̄i)〉i∈I . Each of the Ai corresponds to a principal ideal Aei say in A, where ei ∈ A corresponds to
1Ai

∈ Ai (315E), and the Boolean isomorphism between Ai and Aei is a measure algebra isomorphism
between (Ai, µ̄i) and (Aei , µ̄↾Aei).

(b) If 〈(Xi,Σi, µi)〉i∈I is a family of measure spaces, with direct sum (X,Σ, µ) (214L), then the measure
algebra (A, µ̄) of (X,Σ, µ) can be identified with the simple product of the measure algebras (Ai, µ̄i) of
the (Xi,Σi, µi). PPP If, as in 214L, we set X = {(x, i) : i ∈ I, x ∈ Xi}, and for E ⊆ X, i ∈ I we set
Ei = {x : (x, i) ∈ E}, then the Boolean isomorphism E 7→ 〈Ei〉i∈I : Σ →

∏
i∈I Σi induces a Boolean

isomorphism from A to
∏
i∈I Ai, which is also a measure algebra isomorphism, because

µ̄E• = µE =
∑
i∈I µiEi =

∑
i∈I µ̄iE

•
i

for every E ∈ Σ. QQQ

(c) A simple product of measure algebras is semi-finite, or localizable, or atomless, or purely atomic, iff
every factor is. (Compare 214Kb.)

(d) Let (A, µ̄) be a measure algebra, and 〈ei〉i∈I a countable partition of unity in A. Then (A, µ̄) is
isomorphic to the product

∏
i∈I(Aei , µ̄↾Aei) of the corresponding principal ideals. PPP By 315F(ii), the

map a 7→ 〈a ∩ ei〉i∈I is a Boolean isomorphism between A and
∏
i∈I Ai. Because 〈ei〉i∈I is disjoint and

a = supi∈I a ∩ ei, µ̄a =
∑
i∈I µ̄(a∩ ei) for every a ∈ A (321E, or otherwise). So a 7→ 〈a ∩ ei〉i∈I is a measure

algebra isomorphism between (A, µ̄) and
∏
i∈I(Ai, µ̄↾Aei). QQQ

(e) Let (A, µ̄) be a localizable measure algebra.

(i) If 〈ei〉i∈I is any partition of unity in A, then (A, µ̄) is isomorphic to the product
∏
i∈I(Aei , µ̄↾Aei)

of the corresponding principal ideals. PPP By 315F(iii), the map a 7→ 〈a ∩ ei〉i∈I is a Boolean isomorphism
between A and

∏
i∈I Ai. Because 〈ei〉i∈I is disjoint and a = supi∈I a ∩ ei, µ̄a =

∑
i∈I µ̄(a ∩ ei) (321E, in

its full strength), for every a ∈ A. So a 7→ 〈a ∩ ei〉i∈I is a measure algebra isomorphism between (A, µ̄) and∏
i∈I(Ai, µ̄↾Aei). QQQ

(ii) In particular, since A has a partition of unity consisting of elements of finite measure (322Ea),
(A, µ̄) is isomorphic to a simple product of totally finite measure algebras. Each of these is isomorphic to
the measure algebra of a totally finite measure space, so (A, µ̄) is isomorphic to the measure algebra of a
direct sum of totally finite measure spaces, which is strictly localizable.

Thus every localizable measure algebra is isomorphic to the measure algebra of a strictly localizable
measure space. (See also 322O below.)

1Formerly 234D.
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10 Measure algebras *322M

*322M Strictly localizable spaces The following fact is occasionally useful.

Proposition Let (X,Σ, µ) be a strictly localizable measure space with µX > 0, and (A, µ̄) its measure
algebra. If 〈ai〉i∈I is a partition of unity in A, there is a partition 〈Xi〉i∈I of X into members of Σ such that
X•
i = ai for every i ∈ I and

Σ = {E : E ⊆ X, E ∩Xi ∈ Σ ∀ i ∈ I},

µE =
∑
i∈I µ(E ∩Xi) for every E ∈ Σ;

that is, the isomorphism between A and the simple product
∏
i∈I Aai of its principal ideals (315F) corre-

sponds to an isomorphism between (X,Σ, µ) and the direct sum of the subspace measures on Xi.

proof (a) Suppose to begin with that µX < ∞. In this case J = {i : ai 6= 0} must be countable (322G).
For each i ∈ J , choose Ei ∈ Σ such that E•

i = ai, and set Fi = Ei \
⋃
j∈J,j 6=iEj ; then F •

i = ai for each

i ∈ J , and 〈Fi〉i∈J is disjoint. Because µX > 0, J is non-empty; fix some j0 ∈ J and set

Xi = Fj0 ∪ (X \
⋃

j∈J

Fj) if i = j0,

= Fi for i ∈ J \ {j0},

= ∅ for i ∈ I \ J.

Then 〈Xi〉i∈I is a disjoint family in Σ,
⋃
i∈I Xi = X and X•

i = ai for every i. Moreover, because only
countably many of the Xi are non-empty, we certainly have

Σ = {E : E ⊆ X, E ∩Xi ∈ Σ ∀ i ∈ I},

µE =
∑
i∈I µ(E ∩Xi) for every E ∈ Σ.

(b) For the general case, start by taking a decomposition 〈Yj〉j∈J of X. We can suppose that no Yj is
negligible, because there is certainly some j0 such that µYj0 > 0, and we can if necessary replace Yj0 by
Yj0 ∪

⋃
{Yj : µYj = 0}. For each j, we can identify the measure algebra of the subspace measure on Yj with

the principal ideal Abj generated by bj = Y •
j (322I). Now 〈ai ∩ bj〉i∈I is a partition of unity in Abj , so by (a)

just above we can find a disjoint family 〈Xji〉i∈I in Σ such that
⋃
i∈I Xji = Yj , X

•
ji = ai ∩ bj for every i and

Σ ∩ PYj = {E : E ⊆ Yj , E ∩Xji ∈ Σ ∀ i ∈ I},

µE =
∑
i∈I µ(E ∩Xji) for every E ∈ Σ ∩ PYj .

Set Xi =
⋃
j∈I Xji for every i ∈ I. Then 〈Xi〉i∈I is a partition of X. Because Xi∩Yj = Xji is measurable

for every j, Xi ∈ Σ. Because X•
i ⊇ ai ∩ bj for every j, and 〈bj〉j∈J is a partition of unity in A (322Lb),

X•
i ⊇ ai for each i; because 〈X•

i 〉i∈I is disjoint and supi∈I ai = 1, X•
i = ai for every i. If E ⊆ X is such that

E ∩Xi ∈ Σ for every i, then E ∩Xji ∈ Σ for all i ∈ I and j ∈ J , so E ∩ Yj ∈ Σ for every j ∈ J and E ∈ Σ.
If E ∈ Σ, then

µE =
∑

j∈J

µ(E ∩ Yj) =
∑

j∈J

∑

i∈I

µ(E ∩Xji)

=
∑

i∈I

∑

j∈J

µ(E ∩Xi ∩ Yj) =
∑

i∈I

µ(E ∩Xi).

Thus 〈Xi〉i∈I is a suitable family.

322N Subalgebras: Proposition Let (A, µ̄) be a measure algebra, and B a σ-subalgebra of A. Set
ν̄ = µ̄↾B.

(a) (B, ν̄) is a measure algebra.
(b) If (A, µ̄) is totally finite, or a probability algebra, so is (B, ν̄).
(c) If (A, µ̄) is σ-finite and (B, ν̄) is semi-finite, then (B, ν̄) is σ-finite.
(d) If (A, µ̄) is localizable and B is order-closed and (B, ν̄) is semi-finite, then (B, ν̄) is localizable.

Measure Theory
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(e) If (B, ν̄) is a probability algebra, or totally finite, or σ-finite, so is (A, µ̄).

proof (a) By 314Eb, B is Dedekind σ-complete, and the identity map π : B → A is sequentially order-
continuous; so that ν̄ = µ̄π will be countably additive and (B, ν̄) will be a measure algebra.

(b) This is trivial.

(c) Use 322G. Every disjoint subset of B is disjoint in A, therefore countable, because A is ccc; so B also
is ccc and (B, ν̄) (being semi-finite) is σ-finite.

(d) By 314Ea, B is Dedekind complete; we are supposing that (B, ν̄) is semi-finite, so it is localizable.

(e) This is elementary.

322O The Stone space of a localizable measure algebra I said above that the concepts ‘strictly
localizable’ and ‘locally determined’ measure space have no equivalents in the theory of measure algebras.
But when we look at the canonical measure on the Stone space of a measure algebra, we can of course hope
that properties of the measure algebra will be reflected in the properties of this measure, as happens in the
next theorem.

Theorem Let (A, µ̄) be a measure algebra, Z the Stone space of A, and ν the standard measure on Z
constructed by the method of 321J-321K. Then the following are equiveridical:

(i) (A, µ̄) is localizable;
(ii) ν is localizable;
(iii) ν is locally determined;
(iv) ν is strictly localizable.

proof Write Σ for the domain of ν, that is,

{E△A : E ⊆ Z is open-and-closed, A ⊆ Z is meager},

and M for the ideal of meager subsets of Z, that is, the null ideal of ν (314M, 321K). Then a 7→ â• : A →
Σ/M is an isomorphism between (A, µ̄) and the measure algebra of (Z,Σ, ν) (314M). Note that because any
subset of a meager set is meager, ν is surely complete.

(a)(i)⇔(ii) is a consequence of 322Be.

(b)(ii)⇒(iii) Suppose that ν is localizable. Of course it is semi-finite. Let V ⊆ Z be a set such that
V ∩ E ∈ Σ whenever E ∈ Σ and νE < ∞. Because ν is localizable, there is a W ∈ Σ which is an essential
supremum in Σ of {V ∩ E : E ∈ Σ, νE < ∞}, that is, W • = sup{(V ∩ E)• : νE < ∞} in Σ/M. I claim
that W△V is nowhere dense. PPP Let G ⊆ Z be a non-empty open set. Then there is a non-zero a ∈ A such
that â ⊆ G. Because (A, µ̄) is semi-finite, we may suppose that µ̄a <∞. Now

(W ∩ â)• = W • ∩ â• = supνE<∞(V ∩ E)• ∩ â• = supνE<∞(V ∩ E ∩ â)• = (V ∩ â)•,

so (W△V ) ∩ â is negligible, therefore meager. But we know that A is weakly (σ,∞)-distributive (322F), so
that meager sets in Z are nowhere dense (316I), and there is a non-empty open set H ⊆ â \ (W△V ). Now
H ⊆ G \W△V . As G is arbitrary, intW△V = ∅ and W△V is nowhere dense. QQQ

But this means that W△V ∈ M ⊆ Σ and V = W△(W△V ) ∈ Σ. As V is arbitrary, ν is locally
determined.

(c)(iii)⇒(iv) Assume that ν is locally determined. Because (A, µ̄) is semi-finite, there is a partition of
unity C ⊆ A consisting of elements of finite measure (322Ea). Set C = {ĉ : c ∈ C}. This is a disjoint family
of sets of finite measure for ν. Now suppose that F ∈ Σ and νF > 0. Then there is an open-and-closed set
E ⊆ Z such that F△E is meager, and E is of the form â for some a ∈ A. Since

µ̄a = νâ = νF > 0,

there is some c ∈ C such that a ∩ c 6= 0, and now

ν(F ∩ ĉ) = µ̄(a ∩ c) > 0.

This means that ν satisfies the conditions of 213Oa and must be strictly localizable.

(d)(iv)⇒(ii) This is just 211Ld.
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322P Theorem Let (A, µ̄) be a semi-finite measure algebra, and let Â be the Dedekind completion of

A (314U). Then there is a unique extension of µ̄ to a functional µ̃ on Â such that (Â, µ̃) is a localizable

measure algebra. The embedding A ⊂→ Â identifies the ideals {a : a ∈ A, µ̄a <∞} and {a : a ∈ Â, µ̃a <∞}.

proof (I write the argument out as if A were actually a subalgebra of Â.) For c ∈ Â, set

µ̃c = sup{µ̄a : a ∈ A, a ⊆ c}.

Evidently µ̃ is a function from Â to [0,∞] extending µ̄, so µ̃0 = 0. Because A is order-dense in Â, µ̃c > 0

whenever c 6= 0, because any such c includes a non-zero member of A. If 〈cn〉n∈N is a disjoint sequence in Â

with supremum c, then µ̃c =
∑∞
n=0 µ̃cn. PPP Let A be the set of all members of A expressible as a = supn∈N an

where an ∈ A and an ⊆ cn for every n ∈ N. Now

sup
a∈A

µ̄a = sup{
∞∑

n=0

µ̄an : an ∈ A, an ⊆ cn for every n ∈ N}

=

∞∑

n=0

sup{µ̄an : an ⊆ cn} =

∞∑

n=0

µ̃cn.

Also, because A is order-dense in Â, cn = sup{a : a ∈ A, a ⊆ cn} for each n, and supA, taken in Â, must be

c. But this means that if a′ ∈ A and a′ ⊆ c then a′ = supa∈A a
′ ∩ a in Â and therefore also in A; so that

µ̄a′ = supa∈A µ̄(a′ ∩ a) ≤ supa∈A µ̄a.

Accordingly

µ̃c = supa∈A µ̄a =
∑∞
n=0 µ̃cn. QQQ

This shows that (Â, µ̃) is a measure algebra. It is semi-finite because (A, µ̄) is and every non-zero element

of Â includes a non-zero element of A, which in turn includes a non-zero element of finite measure. Since Â

is Dedekind complete, (Â, µ̄) is localizable.
If µ̄a is finite, then surely µ̃a = µ̄a is finite. If µ̃c is finite, then A = {a : a ∈ A, a ⊆ c} is upwards-directed

and supa∈A µ̄a = µ̃c is finite, so b = supA is defined in A and µ̄b = µ̃c. Because A is order-dense in Â, b = c
(313K, 313O) and c ∈ A, with µ̄c = µ̃c.

322Q Definition Let (A, µ̄) be any semi-finite measure algebra. I will call (Â, µ̃), as constructed above,
the localization of (A, µ̄). Of course it is unique just in so far as the Dedekind completion of A is.

322R Further properties of Stone spaces: Proposition Let (A, µ̄) be a semi-finite measure algebra
and (Z,Σ, ν) its Stone space.

(a) Meager sets in Z are nowhere dense; every E ∈ Σ is uniquely expressible as G△M where G ⊆ Z is
open-and-closed and M is nowhere dense, and νE = sup{νH : H ⊆ E is open-and-closed}.

(b) The c.l.d. version ν̃ of ν is strictly localizable, and has the same negligible sets as ν.
(c) If (A, µ̄) is totally finite then νE = inf{νH : H ⊇ E is open-and-closed} for every E ∈ Σ.

proof (a) I have already remarked (in the proof of 322O) that A is weakly (σ,∞)-distributive, so that
meager sets in Z are nowhere dense. But we know that every member of Σ is expressible as G△M where G
is open-and-closed and M is meager, therefore nowhere dense. Moreover, the expression is unique, because
if G△M = G′△M ′ then G△G′ ⊆ M ∪M ′ is open and nowhere dense, therefore empty, so G = G′ and
M = M ′.

Now let a ∈ A be such that â = G, and consider B = {b : b ∈ A, b̂ ⊆ E}. Then supB = a in A. PPP If

b ∈ B, then b̂ \ â ⊆ M is nowhere dense, therefore empty; so a is an upper bound for B. ??? If a is not the
supremum of B, then there is a non-zero c ⊆ a such that b ⊆ a \ c for every b ∈ B. But now ĉ cannot be

empty, so ĉ \M is non-empty, and there is a non-zero d ∈ A such that d̂ ⊆ ĉ \M . In this case d ∈ B and
d 6⊆ a \ c. XXX Thus a = supB. QQQ

It follows that
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νE = νG = µ̄a = sup
b∈B

µ̄b

= sup
b∈B

νb̂ ≤ sup{νH : H ⊆ E is open-and-closed} ≤ νE

and νE = sup{νH : H ⊆ E is open-and-closed}.

(b) This is the same as part (c) of the proof of 322O. We have a disjoint family C of sets of finite measure
for ν such that whenever E ∈ Σ and νE > 0 there is a C ∈ C such that µ(C ∩E) > 0. Now if ν̃F is defined
and not 0, there is an E ∈ Σ such that E ⊆ F and νE > 0 (213Fc), so that there is a C ∈ C such that
ν(E ∩ C) > 0; since νC <∞, we have

ν̃(F ∩ C) ≥ ν̃(E ∩ C) = ν(E ∩ C) > 0.

And of course ν̃C < ∞ for every C ∈ C. This means that C witnesses that ν̃ satisfies the conditions of
213Oa, so that ν̃ is strictly localizable.

Any ν-negligible set is surely ν̃-negligible. If M is ν̃-negligible then it is nowhere dense. PPP If G ⊆ Z is
open and not empty then there is a non-empty open-and-closed set H1 ⊆ G, and now H1 ∈ Σ, so there is a
non-empty open-and-closed set H ⊆ H1 such that νH is finite (because ν is semi-finite). In this case H ∩M
is ν-negligible, therefore nowhere dense, and H 6⊆ M . But this means that G 6⊆ M ; as G is arbitrary, M is
nowhere dense. QQQ Accordingly M ∈ M and is ν-negligible.

Thus ν and ν̃ have the same negligible sets.

(c) Because νZ <∞,

νE = νZ − ν(Z \ E) = νZ − sup{νH : H ⊆ Z \ E is open-and-closed}

= inf{ν(Z \H) : H ⊆ Z \ E is open-and-closed}

= inf{νH : H ⊇ E is open-and-closed}.

322X Basic exercises >>>(a) Let (A, µ̄) be a measure algebra. Let I∞ be the set of those a ∈ A which
are either 0 or ‘purely infinite’, that is, µ̄b = ∞ for every non-zero b ⊆ a. Show that I∞ is a σ-ideal of A.
Show that there is a function µ̄sf : A/I∞ → [0,∞] defined by setting µ̄sfa

• = sup{µ̄b : b ⊆ a, µ̄b < ∞} for
every a ∈ A. Show that (A/I∞, µ̄sf) is a semi-finite measure algebra.

(b) Let (X,Σ, µ) be a measure space and let µsf be the ‘semi-finite version’ of µ, as defined in 213Xc.
Let (A, µ̄) be the measure algebra of (X,Σ, µ). Show that the measure algebra of (X,Σ, µsf) is isomorphic
to the measure algebra (A/I∞, µ̄sf) of (a) above.

(c) Let (X,Σ, µ) be a measure space and (X, Σ̃, µ̃) its c.l.d. version. Let (A, µ̄) and (A2, µ̄2) be the
corresponding measure algebras, and π : A → A2 the canonical homomorphism, as in 322Db. Show that
the kernel of π is the ideal I∞, as described in 322Xa, so that A/I∞ is isomorphic, as Boolean algebra, to
π[A] ⊆ A2. Show that this isomorphism identifies µ̄sf, as described in 322Xa, with µ̄2↾π[A].

(d) Give a direct proof of 322G, not relying on 215B and 321J.

>>>(e) Let (A, µ̄) be any measure algebra, A a non-empty subset of A, and c ∈ A such that µ̄c < ∞.
Show that (i) c0 = sup{a ∩ c : a ∈ A} is defined in A (ii) there is a countable set B ⊆ A such that
c0 = sup{a ∩ c : a ∈ B}.

(f) Let (X,Σ, µ) be a measure space and A any subset of X; let µA be the subspace measure on A and
ΣA its domain. Write (A, µ̄) for the measure algebra of (X,Σ, µ) and (AA, µ̄A) for the measure algebra
of (A,ΣA, µA). Show that the formula F • 7→ (F ∩ A)• defines a sequentially order-continuous Boolean
homomorphism π : A → AA which has kernel I = {F • : F ∈ Σ, F ∩ A = ∅}. Show that for any a ∈ A,
µ̄A(πa) = min{µ̄b : b ∈ A, a \ b ∈ I}.

(g) Let (A, µ̄) be a measure algebra and B a regularly embedded σ-subalgebra of A. Suppose that
(B, µ̄↾B) is semi-finite. Show that (A, µ̄) is semi-finite.
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14 Measure algebras 322Xh

(h) Let (A, µ̄) be any measure algebra and (Z,Σ, ν) its Stone space. Show that the c.l.d. version of ν is
strictly localizable.

322Y Further exercises (a) Let X be a set, Σ a σ-algebra of subsets of X, and I a σ-ideal of Σ. Set

N = {N : ∃F ∈ I, N ⊆ F}. Show that N is a σ-ideal of subsets of X. Set Σ̂ = {E△N : E ∈ Σ, N ∈ N}.

Show that Σ̂ is a σ-algebra of subsets of X and that Σ̂/N is isomorphic to Σ/I.

(b) Let (A, µ̄) be a semi-finite measure algebra, and (Z,Σ, ν) its Stone space. Let ν̃ be the c.l.d. version

of ν, and Σ̃ its domain. Show that Σ̃ is precisely the Baire-property algebra {G△A : G ⊆ Z is open, A ⊆ Z

is meager}, so that Σ̃/M can be identified with the regular open algebra of Z (314Yd) and the measure
algebra of ν̃ can be identified with the localization of A.

(c) Give an example of a localizable measure algebra (A, µ̄) with a σ-subalgebra B such that (B, µ̄↾B)
is semi-finite and atomless, but A has an atom.

(d) Let (X,Σ, µ) be a measure space and A ⊆ X a subset; let µA be the subspace measure on A, A and
AA the measure algebras of µ and µA, and π : A → AA the canonical homomorphism, as described in 322Xf.
(i) Show that if µA is semi-finite, then π is order-continuous. (ii) Show that if µ is semi-finite but µA is not,
then π is not order-continuous.

(e) Show that if (A, µ̄) is a semi-finite measure algebra, with Stone space (Z,Σ, ν), then ν has locally
determined negligible sets in the sense of 213I.

(f) Let (A, µ̄) be a localizable measure algebra and (Z,Σ, ν) its Stone space. (i) Show that a function
f : Z → R is Σ-measurable iff there is a conegligible set G ⊆ X such that f↾G is continuous. (Hint : 316Yi.)
(ii) Show that f : Z → [0, 1] is Σ-measurable iff there is a continuous function g : Z → [0, 1] such that
f = g ν-a.e.

322 Notes and comments I have taken this leisurely tour through the concepts of Chapter 21 partly to
recall them (or persuade you to look them up) and partly to give you practice in the elementary manipulations
of measure algebras. The really vital result here is the correspondence between ‘localizability’ in measure
spaces and measure algebras. Part of the object of this volume (particularly in Chapter 36) is to try to make
sense of the properties of localizable measure spaces, as discussed in Chapter 24 and elsewhere, in terms of
their measure algebras. I hope that 322Be has already persuaded you that the concept really belongs to
measure algebras, and that the formulation in terms of ‘essential suprema’ is a dispensable expedient.

I have given proofs of 322C and 322G depending on the realization of an arbitrary measure algebra as
the measure algebra of a measure space, and the corresponding theorems for measure spaces, because this
seems the natural approach from where we presently stand; but I am sympathetic to the view that such
proofs must be inappropriate, and that it is in some sense better style to look for arguments which speak
only of measure algebras (322Xd).

For any measure algebra (A, µ̄), the set Af of elements of finite measure is an ideal of A; consequently
it is order-dense iff it includes a partition of unity (322E). In 322F we have something deeper: any semi-
finite measure algebra must be weakly (σ,∞)-distributive when regarded as a Boolean algebra, and this has
significant consequences in its Stone space, which are used in the proofs of 322O and 322R. Of course a
result of this kind must depend on the semi-finiteness of the measure algebra, since any Dedekind σ-complete
Boolean algebra becomes a measure algebra if we give every non-zero element the measure ∞. It is natural
to look for algebraic conditions on a Boolean algebra sufficient to make it ‘measurable’, in the sense that it
should carry a semi-finite measure; this is an unresolved problem to which I will return in Chapter 39.

Subspace measures, indefinite-integral measures, simple products, direct sums, principal ideals and order-
closed subalgebras give no real surprises; I spell out the details in 322H-322N and 322Xf-322Xg. It is worth
noting that completing a measure space has no effect on its measure algebra (322D, 322Ya). We see also
that from the point of view of measure algebras there is no distinction to be made between ‘localizable’
and ‘strictly localizable’, since every localizable measure algebra is representable as the measure algebra of a
strictly localizable measure space (322Le). (But strict localizability does have implications for some processes
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323B The topology of a measure algebra 15

starting in the measure algebra; see 322M.) It is nevertheless remarkable that the canonical measure on the
Stone space of a semi-finite measure algebra is localizable iff it is strictly localizable (322O). This canonical
measure has many other interesting properties, which I skim over in 322R, 322Xh, 322Yb and 322Yf. In
Chapter 21 I discussed a number of methods of improving measure spaces, notably ‘completions’ (212C)
and ‘c.l.d. versions’ (213E). Neither of these is applicable in any general way to measure algebras. But in
fact we have a more effective construction, at least for semi-finite measure algebras, that of ‘localization’
(322P-322Q); I say that it is more effective just because localizability is more important than completeness or
local determinedness, being of vital importance in the behaviour of function spaces (241Gb, 243Gb, 245Ec,
363M, 364M, 365L, 367M, 369A, 369C). Note that the localization of a semi-finite measure algebra does

in fact correspond to the c.l.d. version of a certain measure (322Yb). But of course A and Â do not have

the same Stone spaces, even when Â can be effectively represented as the measure algebra of a measure on
the Stone space of A. What is happening in 322Yb is that we are using all the open sets of Z to represent

members of Â, not just the open-and-closed sets, which correspond to members of A.

Version of 20.7.06

323 The topology of a measure algebra

I take a short section to discuss one of the fundamental tools for studying totally finite measure algebras,
the natural metric that each carries. The same ideas, suitably adapted, can be applied to an arbitrary
measure algebra, where we have a topology corresponding closely to the topology of convergence in measure
on the function space L0. Most of the section consists of an analysis of the relations between this topology
and the order structure of the measure algebra.

323A The pseudometrics ρa (a) Let (A, µ̄) be a measure algebra. Write Af = {a : a ∈ A, µ̄a < ∞}.
For a ∈ Af and b, c ∈ A, write ρa(b, c) = µ̄(a ∩ (b△ c)). Then ρa is a pseudometric on A. PPP (i) Because
µ̄a <∞, ρa takes values in [0,∞[. (ii) If b, c, d ∈ A then b△ d ⊆ (b△ c) ∪ (c△ d), so

ρa(b, d) = µ̄(a ∩ (b△ d)) ≤ µ̄((a ∩ (b△ c)) ∪ (a ∩ (c△ d)))

≤ µ̄(a ∩ (b△ c)) + µ̄(a ∩ (c△ d)) = ρa(b, c) + ρa(c, d).

(iii) If b, c ∈ A then

ρa(b, c) = µ̄(a ∩ (b△ c)) = µ̄(a ∩ (c△ b)) = ρa(c, b). QQQ

(b) Now the measure-algebra topology of the measure algebra (A, µ̄) is that generated by the family
P = {ρa : a ∈ Af} of pseudometrics on A. Similarly the measure-algebra uniformity on A is that
generated by P. For the rest of this section I will take it that every measure algebra is endowed with its
measure-algebra topology and uniformity.

(For a general discussion of topologies defined by pseudometrics, see 2A3F et seq. For the associated
uniformities see §3A4.)

(c) Note that P is upwards-directed, since ρa∪a′ ≥ max(ρa, ρa′) for all a, a′ ∈ Af .

(d) On the ideal Af we have an actual metric ρ defined by saying that ρ(a, b) = µ̄(a△ b) for a, b ∈ Af (to
see that ρ is a metric, repeat the formulae of (a) above); this is the measure metric or Fréchet-Nikodým
metric. I will call the topology it generates the strong measure-algebra topology on Af .

When µ̄ is totally finite, that is, Af = A, ρ = ρ1 defines the measure-algebra topology and uniformity of
A.

323B Proposition Let (A, µ̄) be any measure algebra, and give A its measure-algebra topology.
(a) The operations ∪ , ∩ , \ and △ are all uniformly continuous.
(b) Af is dense in A.

c© 1999 D. H. Fremlin
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16 Measure algebras 323B

proof (a) The point is that for any b, c, b′, c′ ∈ A we have

(b ∗ c) △ (b′ ∗ c′) ⊆ (b△ b′) ∪ (c△ c′)

for any of the operations ∗ = ∪ , ∩ etc.; so that if a ∈ Af then

ρa(b ∗ c, b′ ∗ c′) ≤ ρa(b, b′) + ρa(c, c′).

Consequently the operation ∗ must be uniformly continuous.

(b) Given b ∈ A, a ∈ Af and ǫ > 0, then a ∩ b ∈ Af and ρa(b, a ∩ b) = 0. Because the family {ρa : a ∈ Af}
is upwards-directed, this is enough to show that every neighbourhood of b meets Af ; as b is arbitrary, Af is
dense.

323C Proposition (a) Let (A, µ̄) be a totally finite measure algebra. Then µ̄ : A → [0,∞[ is uniformly
continuous.

(b) Let (A, µ̄) be a semi-finite measure algebra. Then µ̄ : A → [0,∞] is lower semi-continuous.
(c) Let (A, µ̄) be any measure algebra. If a ∈ A and µ̄a < ∞, then b 7→ µ̄(b ∩ a) : A → R is uniformly

continuous.

proof (a) For any a, b ∈ A,

|µ̄a− µ̄b| ≤ µ̄(a△ b) = ρ1(a, b).

(b) Suppose that b ∈ A and µ̄b > α ∈ R. Then there is an a ⊆ b such that α < µ̄a < ∞ (322Eb). If
c ∈ A is such that ρa(b, c) < µ̄a− α, then

µ̄c ≥ µ̄(a ∩ c) = µ̄a− µ̄(a ∩ (b \ c)) > α.

Thus {b : µ̄b > α} is open; as α is arbitrary, µ̄ is lower semi-continuous.

(c) |µ̄(a ∩ b) − µ̄(a ∩ c)| ≤ ρa(b, c) for all b, c ∈ A.

323D The following facts are basic to any understanding of the relationship between the order structure
and topology of a measure algebra.

Lemma Let (A, µ̄) be a measure algebra.
(a) Let B ⊆ A be a non-empty upwards-directed set. For b ∈ B set Fb = {c : b ⊆ c ∈ B}.

(i) {Fb : b ∈ B} generates a Cauchy filter F(B↑) on A.
(ii) If supB is defined in A, then it is a topological limit of F(B↑); in particular, it belongs to the

topological closure of B.
(b) Let B ⊆ A be a non-empty downwards-directed set. For b ∈ B set F ′

b = {c : b ⊇ c ∈ B}.
(i) {F ′

b : b ∈ B} generates a Cauchy filter F(B↓) on A.
(ii) If inf B is defined in A, then it is a topological limit of F(B↓); in particular, it belongs to the

topological closure of B.
(c)(i) Closed subsets of A are order-closed in the sense of 313Da.

(ii) An order-dense subalgebra of A must be dense in the topological sense.
(d) Now suppose that (A, µ̄) is semi-finite.

(i) The sets {b : b ⊆ c}, {b : b ⊇ c} are closed for every c ∈ A.
(ii) If B ⊆ A is non-empty and upwards-directed and e is a cluster point of F(B↑), then e = supB.
(iii) If B ⊆ A is non-empty and downwards-directed and e is a cluster point of F(B↓), then e = inf B.

proof I use the notations Af , ρa from 323A.

(a)(i) (α) If b, c ∈ B then there is a d ∈ B such that b ∪ c ⊆ d, so that Fd ⊆ Fb ∩ Fc; consequently

F(B↑) = {F : F ⊆ A, ∃ b ∈ B, Fb ⊆ F}

is a filter on A. (β) Let a ∈ Af , ǫ > 0. Then there is a b ∈ B such that µ̄(a ∩ c) ≤ µ̄(a ∩ b) + 1
2ǫ for every

c ∈ B, and Fb ∈ F(B↑). If now c, c′ ∈ Fb, c△ c′ ⊆ (c \ b) ∪ (c′ \ b), so

ρa(c, c′) ≤ µ̄(a ∩ c \ b) + µ̄(a ∩ c′ \ b) = µ̄(a ∩ c) + µ̄(a ∩ c′) − 2µ̄(a ∩ b) ≤ ǫ.

As a and ǫ are arbitrary, F(B↑) is Cauchy.
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323F The topology of a measure algebra 17

(ii) Suppose that e = supB is defined in A. Let a ∈ Af , ǫ > 0. By 313Ba, a ∩ e = supb∈B a ∩ b;
but {a ∩ b : b ∈ B} is upwards-directed, so µ̄(a ∩ e) = supb∈B µ̄(a ∩ b), by 321D. Let b ∈ B be such that
µ̄(a ∩ b) ≥ µ̄(a ∩ e) − ǫ. Then for any c ∈ Fb, e△ c ⊆ e \ b, so

ρa(e, c) = µ̄(a ∩ (e△ c)) ≤ µ̄(a ∩ (e \ b)) = µ̄(a ∩ e) − µ̄(a ∩ b) ≤ ǫ.

As a and ǫ are arbitrary, F(B↑) → e.
Because B ∈ F(B↑), e surely belongs to the topological closure of B.

(b) Either repeat the arguments above, with appropriate inversions, using 321F in place of 321D, or
apply (a) to the set {1 \ b : b ∈ B}.

(c)(i) This follows at once from (a) and (b) and the definition in 313Da.

(ii) If B ⊆ A is an order-dense subalgebra and a ∈ A, then B = {b : b ∈ B, b ⊆ a} is upwards-directed
and has supremum a (313K); by (a-ii), a ∈ B ⊆ B. As a is arbitrary, B is topologically dense.

(d)(i) Set F = {b : b ⊆ c}. If d ∈ A \ F , then (because (A, µ̄) is semi-finite) there is an a ∈ Af such that
δ = µ̄(a ∩ d \ c) > 0; now if b ∈ F ,

ρa(d, b) ≥ µ̄(a ∩ d \ b) ≥ δ,

so that d cannot belong to the closure of F . As d is arbitrary, F is closed. Similarly, {b : b ⊇ c} is closed.

(ii) (α) If b ∈ B, then e ∈ Fb, because Fb ∈ F(B↑); but {c : b ⊆ c} is a closed set including Fb, so
contains e, and b ⊆ e. As b is arbitrary, e is an upper bound for B. (β) If d is an upper bound of B, then
{c : c ⊆ d} is a closed set belonging to F(B↑), so contains e. As d is arbitrary, this shows that e is the
supremum of B, as claimed.

(iii) Use the same arguments as in (ii), but inverted.

323E Corollary Let (A, µ̄) be a measure algebra.
(a) If 〈bn〉n∈N is a non-decreasing sequence in A with supremum b, then 〈bn〉n∈N converges topologically

to b.
(b) If 〈bn〉n∈N is a non-increasing sequence in A with infimum b, then 〈bn〉n∈N converges topologically to

b.

proof I call this a ‘corollary’ because it is the special case of 323Da-323Db in which B is the set of terms of
a monotonic sequence; but it is probably easier to work directly from the definition in 323A, and use 321Be
or 321Bf to see that limn→∞ ρa(bn, b) = 0 whenever µ̄a <∞.

323F The following is a useful calculation.

Lemma Let (A, µ̄) be a measure algebra and 〈cn〉n∈N a sequence in A such that the sum
∑∞
n=0 µ̄(cn △ cn+1)

is finite. Set d0 = supn∈N infm≥n cm, d1 = infn∈N supm≥n cm. Then d0 = d1 and, writing d for their common
value, limn→∞ µ̄(cn △ d) = 0.

proof Write αn = µ̄(cn △ cn+1), βn =
∑∞
k=n αk for n ∈ N; we are supposing that limn→∞ βn = 0. Set

bn = supm≥n cm △ cm+1; then

µ̄bn ≤
∑∞
m=n µ̄(cm △ cm+1) = βn

for each n. If m ≥ n, then

cm △ cn ⊆ supn≤k<m ck △ ck+1 ⊆ bn,

so

cn \ bn ⊆ cm ⊆ cn ∪ bn.

Consequently

cn \ bn ⊆ infk≥m ck ⊆ supk≥m ck ⊆ cn ∪ bn

for every m ≥ n, and
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cn \ bn ⊆ d0 ⊆ d1 ⊆ cn ∪ bn,

so that

cn △ d0 ⊆ bn, cn △ d1 ⊆ bn, d1 \ d0 ⊆ bn.

As this is true for every n,

limn→∞ µ̄(cn △ di) ≤ limn→∞ µ̄bn = 0

for both i, and

µ̄(d1 △ d0) ≤ infn∈N µ̄bn = 0,

so that d1 = d0.

323G The classification of measure algebras: Theorem Let (A, µ̄) be a measure algebra, T its
measure-algebra topology and U its measure-algebra uniformity.

(a) (A, µ̄) is semi-finite iff T is Hausdorff.
(b) (A, µ̄) is σ-finite iff T is metrizable, and in this case U also is metrizable.
(c) (A, µ̄) is localizable iff T is Hausdorff and A is complete under U .

proof I use the notations Af , ρa from 323A.

(a)(i) Suppose that (A, µ̄) is semi-finite and that b, c are distinct members of A. Then there is an
a ⊆ b△ c such that 0 < µ̄a <∞, and now ρa(b, c) > 0. As b and c are arbitrary, T is Hausdorff (2A3L).

(ii) Suppose that T is Hausdorff and that b ∈ A has µ̄b = ∞. Then b 6= 0 so there must be an a ∈ Af

such that µ̄(a ∩ b) = ρa(0, b) > 0; in which case a ∩ b ⊆ b and 0 < µ̄(a ∩ b) < ∞. As b is arbitrary, µ̄ is
semi-finite.

(b)(i) Suppose that µ̄ is σ-finite. Let 〈an〉n∈N be a non-decreasing sequence in Af with supremum 1. Set

ρ(b, c) =

∞∑

n=0

ρan(b, c)

1 + 2nµ̄an

for b, c ∈ A. Then ρ is a metric on A, because if ρ(b, c) = 0 then an ∩ (b△ c) = 0 for every n, so b△ c = 0
and b = c.

If a ∈ Af and ǫ > 0, take n such that µ̄(a \ an) ≤ 1
2ǫ. If b, c ∈ A and ρ(b, c) ≤ ǫ/2(1 + 2nµ̄an), then

ρa(b, c) = ρa\an(b, c) + ρa∩an(b, c) ≤ µ̄(a \ an) + ρan(b, c)

≤
1

2
ǫ+ (1 + 2nµ̄an)ρ(b, c) ≤ ǫ.

In the other direction, given ǫ > 0, take n ∈ N such that 2−n ≤ 1
2ǫ; then ρ(b, c) ≤ ǫ whenever ρan(b, c) ≤

ǫ/2(n+ 1).
This shows that U is the same as the metrizable uniformity defined by {ρ}; accordingly T also is defined

by ρ.

(ii) Now suppose that T is metrizable, and let ρ be a metric defining T. For each n ∈ N there must be
an0, . . . , ankn ∈ Af and δn > 0 such that

ρani
(b, 1) ≤ δn for every i ≤ kn =⇒ ρ(b, 1) ≤ 2−n.

Set d = supn∈N,i≤kn ani. Then ρani
(d, 1) = 0 for every n and i, so ρ(d, 1) ≤ 2−n for every n and d = 1. Thus

1 is the supremum of countably many elements of finite measure and (A, µ̄) is σ-finite.

(c)(i) Suppose that (A, µ̄) is localizable. Then T is Hausdorff, by (a). Let F be a Cauchy filter on A. For
each a ∈ Af , choose a sequence 〈Fn(a)〉n∈N in F such that ρa(b, c) ≤ 2−n whenever b, c ∈ Fn(a) and n ∈ N.
Choose can ∈

⋂
k≤n Fk(a) for each n; then ρa(can, ca,n+1) ≤ 2−n for each n. Set da = supn∈N infk≥n a ∩ cak.

Then

limn→∞ ρa(da, can) = limn→∞ µ̄(da △ (a ∩ can)) = 0,
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by 323F.
If a, b ∈ Af and a ⊆ b, then da = a ∩ db. PPP For each n ∈ N, Fn(a) and Fn(b) both belong to F , so must

have a point e in common; now

ρa(da, db) ≤ ρa(da, can) + ρa(can, e) + ρa(e, cbn) + ρa(cbn, db)

≤ ρa(da, can) + ρa(can, e) + ρb(e, cbn) + ρb(cbn, db)

≤ ρa(da, can) + 2−n + 2−n + ρb(cbn, db)

→ 0 as n→ ∞.

Consequently ρa(da, db) = 0, that is,

da = a ∩ da = a ∩ db. QQQ

Set d = sup{db : b ∈ Af}; this is defined because A is Dedekind complete. Then F → d. PPP If a ∈ Af and
ǫ > 0, then

a ∩ d = supb∈Af a ∩ db = supb∈Af a ∩ b ∩ da∪b = supb∈Af a ∩ b ∩ da = a ∩ da.

So if we choose n ∈ N such that 2−n + ρa(can, da) ≤ ǫ, then for any e ∈ Fn(a) we shall have

ρa(e, d) ≤ ρa(e, can) + ρa(can, d) ≤ 2−n + ρa(can, da) ≤ ǫ.

Thus

{e : ρa(d, e) ≤ ǫ} ⊇ Fn(a) ∈ F .

As a, ǫ are arbitrary, F converges to d. QQQ As F is arbitrary, A is complete.

(ii) Now suppose that T is Hausdorff and that A is complete under U . By (a), (A, µ̄) is semi-finite.
Let B be any non-empty subset of A, and set B′ = {b0 ∪ . . . ∪ bn : b0, . . . , bn ∈ B}, so that B′ is upwards-
directed and has the same upper bounds as B. By 323Da, we have a Cauchy filter F(B′↑); because A is
complete, this is convergent; and because (A, µ̄) is semi-finite, its limit must be supB′ = supB, by 323Dd.
As B is arbitrary, A is Dedekind complete, so (A, µ̄) is localizable.

323H Closed subalgebras The ideas used in the proof of (c) above have many other applications, of
which one of the most important is the following. You may find it helpful to read the next theorem first on
the assumption that (A, µ̄) is a probability algebra.

Theorem Let (A, µ̄) be a localizable measure algebra, and B a subalgebra of A. Then it is topologically
closed iff it is order-closed.

proof (a) If B is closed, it must be order-closed, by 323Dc.

(b) Now suppose that B is order-closed. I repeat the ideas of part (c-i) of the proof of 323G. Let e be any
member of the closure of B in A. For each a ∈ Af and n ∈ N choose can ∈ B such that ρa(can, e) ≤ 2−n.
Then

∞∑

n=0

µ̄((a ∩ can) △ (a ∩ ca,n+1)) =

∞∑

n=0

ρa(can, ca,n+1)

≤
∞∑

n=0

ρa(can, e) + ρa(e, ca,n+1) <∞.

So if we set ea = supn∈N infk≥n cak, then

ρa(ea, can) = ρa(a ∩ ea, a ∩ can) → 0

as n→ ∞, by 323F, and ρa(e, ea) = 0, that is, a ∩ ea = a ∩ e. Also, because B is order-closed, infk≥n cak ∈ B

for every n, and ea ∈ B.
Because A is Dedekind complete, we can set

e′a = inf{eb : b ∈ Af , a ⊆ b};
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20 Measure algebras 323H

then e′a ∈ B and

e′a ∩ a = infb⊇a eb ∩ a = infb⊇a eb ∩ b ∩ a = infb⊇a e ∩ b ∩ a = e ∩ a.

Now e′a ⊆ e′b whenever a ⊆ b, so B = {e′a : a ∈ Af} is upwards-directed, and

supB = sup{e′a ∩ a : a ∈ Af} = sup{e ∩ a : a ∈ Af} = e

because (A, µ̄) is semi-finite. Accordingly e ∈ B. As e is arbitrary, B is closed, as claimed.

323I Notation In the context of 323H, I will say simply that B is a closed subalgebra of A.

323J Proposition If (A, µ̄) is a localizable measure algebra and B is a subalgebra of A, then the
topological closure B of B in A is precisely the order-closed subalgebra of A generated by B.

proof Write Bτ for the smallest order-closed subset of A including B. By 313Gc, Bτ is a subalgebra of
A, and is the order-closed subalgebra of A generated by B. Being an order-closed subalgebra of A, it is
topologically closed, by 323H, and must include B. On the other hand, B, being topologically closed, is
order-closed (323D(c-i)), so includes Bτ . Thus B = Bτ is the order-closed subalgebra of A generated by B.

323K I note some simple results for future reference.

Lemma If (A, µ̄) is a localizable measure algebra and B is a closed subalgebra of A, then for any a ∈ A the
subalgebra C of A generated by B ∪ {a} is closed.

proof By 314Ja, C is order-closed.

323L Proposition Let 〈(Ai, µ̄i)〉i∈I be a family of measure algebras with simple product (A, µ̄) (322K).
Then the measure-algebra topology on A =

∏
i∈I Ai defined by µ̄ is just the product of the measure-algebra

topologies of the Ai.

proof I use the notations Af , ρa from 323A. Write T for the topology of A and S for the product topology.

For i ∈ I and d ∈ A
f
i define a pseudometric ρ̃di on A by setting

ρ̃di(b, c) = ρd(b(i), c(i))

whenever b, c ∈ A; then S is defined by P = {ρ̃di : i ∈ I, a ∈ A
f
i } (3A3Ig). Now each ρ̃di is one of the

defining pseudometrics for T, since

ρ̃di(b, c) = µ̄(d̃ ∩ (b△c))

where d̃(i) = d, d̃(j) = 0 for j 6= i. So S ⊆ T.
Now suppose that a ∈ Af and ǫ > 0. Then

∑
i∈I µ̄ia(i) = µ̄a is finite, so there is a finite set J ⊆ I such

that
∑
i∈I\J µ̄ia(i) ≤ 1

2ǫ. For each j ∈ J , τj = ρ̃a(j),j belongs to P, and

ρa(b, c) =
∑

i∈I

µ̄i(a(i) ∩ (b(i) △ c(i)))

≤
∑

j∈J

µ̄j(a(j) ∩ (b(j) △ c(j))) +
1

2
ǫ =

∑

j∈J

τj(b, c) +
1

2
ǫ ≤ ǫ

whenever b, c are such that τj(b, c) ≤ ǫ/(1+2#(J)) for every j ∈ J . By 2A3H, the identity map from (A,S)
to (A,T) is continuous, that is, T ⊆ S.

Putting these together, we see that S = T, as claimed.

*323M In this volume we shall have little need to consider the measure metric on Af , but the following
facts are sometimes useful.

Proposition Let (A, µ̄) be a measure algebra, and give Af its measure metric.
(a) The Boolean operations △ , ∩ , ∪ and \ on Af are uniformly continuous.
(b) µ̄↾Af : Af → [0,∞[ is 1-Lipschitz, therefore uniformly continuous.
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(c) Af is complete.

proof (a) Writing ρ for the measure metric on Af , then, just as in the proof of 323Ba,

ρ(b ∗ c, b′ ∗ c′) ≤ ρ(b, b′) + ρ(c, c′)

for all b, c, b′, c′ ∈ Af and any of the Boolean operations ∗ = △ , ∩ , ∪ and \ .

(b) If a, b ∈ Af then

|µ̄a− µ̄b| ≤ |µ̄a− µ̄(a ∩ b)| + |µ̄b− µ̄(a ∩ b)| = µ̄(a \ b) + µ̄(b \ a) = ρ(a, b).

(c) If 〈an〉n∈N is a sequence in Af such that
∑∞
n=0 ρ(an, an+1) < ∞, set d = supn∈N infm≥n am. By

323F, limn→∞ µ̄(d△ an) = 0. In particular, there is some n ∈ N such that µ̄(d \ an) is finite, so d ∈ Af and
limn→∞ ρ(d, an) = 0. As in 2A4E, this is enough to show that Af is complete.

323X Basic exercises >>>(a) Let (X,Σ, µ) be a measure space, and (A, µ̄) its measure algebra. (i) Show
that we have an injection χ : A → L0(µ) (see §241) given by setting χ(E•) = (χE)• for every E ∈ Σ. (ii)
Show that χ is a homeomorphism between A and its image if A is given its measure-algebra topology and
L0(µ) is given its topology of convergence in measure (245A).

>>>(b) Let (A, µ̄) be a measure algebra and ρ the measure metric on the ideal Af of elements of finite
measure. (i) Show that the embedding Af ⊆ A is uniformly continuous for the measure-algebra uniformity
on A. (ii) In the context of 323Xa, show that χ : Af → L0(µ) is an isometry between Af and a subset of
L1(µ).

(c) Let (A, µ̄) be a semi-finite measure algebra. Show that the set {(a, b) : a ⊆ b} is a closed set in A×A.

>>>(d) Let (X,Σ, µ) be a σ-finite measure space and (A, µ̄) its measure algebra. (i) Show that if T is a
σ-subalgebra of Σ, then {F • : F ∈ T} is a closed subalgebra of A. (ii) Show that if B is a closed subalgebra
of A, then {F : F ∈ Σ, F • ∈ B} is a σ-subalgebra of Σ.

(e) Let (A, µ̄) be a localizable measure algebra, and C ⊆ A a set such that supA, inf A belong to C for
all non-empty subsets A of C. Show that C is topologically closed.

(f) Show that if (A, µ̄) is any measure algebra and B is a subalgebra of A, then its topological closure B

is again a subalgebra.

(g) Let (A, µ̄) be a measure algebra, and e ∈ A; let Ae be the principal ideal of A generated by e, and µ̄e
its measure (322H). (i) Show that the measure-algebra topology on Ae defined by µ̄e is just the subspace
topology induced by the measure-algebra topology of A. (ii) Show that the measure-algebra uniformity on
Ae is the subspace uniformity induced by the measure-algebra uniformity of A. (iii) Show that the strong
measure-algebra topology on Afe is the subspace topology induced by the strong measure-algebra topology
of Af .

(h) Let (A, µ̄) be a measure algebra. Show that its localization (322P) can be identified with its completion
under its measure-algebra uniformity.

323Y Further exercises (a) Let (A, µ̄) be a σ-finite measure algebra. Show that a set F ⊆ A is
topologically closed iff e ∈ F whenever there are non-empty sets B, C ⊆ A such that B is upwards-
directed, C is downwards-directed, supB = inf C = e and [b, c] ∩ F 6= ∅ for every b ∈ B, c ∈ C, writing
[b, c] = {d : b ⊆ d ⊆ c}.

(b) Give an example to show that (a) is false for general localizable measure algebras.

(c) Give an example of a semi-finite measure algebra (A, µ̄) with an order-closed subalgebra which is not
topologically closed.
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22 Measure algebras 323Yd

(d) Let (A, µ̄) be a probability algebra and write B for the family of closed subalgebras of A. For B,
C ∈ B set ρ(B,C) = max(supb∈B infc∈C µ̄(b△ c), supc∈C infb∈B µ̄(b△ c)). Show that (B, ρ) is a complete
metric space. (Cf. 246Yb, 4A2T.)

(e) Let (A, µ̄) be the measure algebra of Lebesgue measure on R. Show that it is separable in its
measure-algebra topology. (Hint : 245Yj.)

323 Notes and comments The message of this section is that the topology of a measure algebra is
essentially defined by its order and algebraic structure; see also 324F-324H below. Of course the results are
really about semi-finite measure algebras, and indeed this whole volume, like the rest of measure theory,
has little of interest to say about others; they are included only because they arise occasionally and it is
not absolutely essential to exclude them. We therefore expect to be able to describe such things as closed
subalgebras and continuous homomorphisms in terms of the ordering, as in 323H and 324G. For σ-finite
algebras, indeed, there is an easy description of the topology in terms of the order (323Ya). I think the
result of this section on which I shall most often depend is 323H: in most contexts, there is no need to
distinguish between ‘topologically closed subalgebra’ and ‘order-closed subalgebra’. However a σ-subalgebra
of a localizable measure algebra need not be topologically sequentially closed; there is an example in Fremlin

Pagter & Ricker 05.
It is also the case that the topology of a measure algebra corresponds very closely indeed to the topology

of convergence in measure. A description of this correspondence is in 323Xa. Indeed all the results of this
section have analogues in the theory of topological Riesz spaces. I will enlarge on the idea here in §367. For
the moment, however, if you look back to Chapter 24, you will see that 323B and 323G are closely paralleled
by 245D and 245E, while 323Ya is related to 245L.

It is I think natural to ask whether there are any other topological Boolean algebras with the properties
323B-323D. In fact there are; see 393G and 393Xf below.

Version of 29.11.17

324 Homomorphisms

In the course of Volume 2, I had occasion to remark that elementary measure theory is unusual among
abstract topics in pure mathematics in not being dominated by any particular class of structure-preserving
operators. We now come to what I think is one of the reasons for the gap: the most important operators
of the theory are not between measure spaces at all, but between their measure algebras. In this section I
run through the most elementary facts about Boolean homomorphisms between measure algebras. I start
with results on the construction of such homomorphisms from functions between measure spaces (324A-
324E), then investigate continuity and order-continuity of homomorphisms (324F-324H) before turning to
measure-preserving homomorphisms (324I-324P).

324A Theorem Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and (A, µ̄), (B, ν̄) their measure algebras.

Write Σ̂ for the domain of the completion µ̂ of µ. Let D ⊆ X be a set of full outer measure (definition:

132F), and Σ̂D the subspace σ-algebra on D induced by Σ̂ (121A). Let φ : D → Y be a function such that

φ−1[F ] ∈ Σ̂D for every F ∈ T and φ−1[F ] is µ-negligible whenever νF = 0. Then there is a sequentially
order-continuous Boolean homomorphism π : B → A defined by the formula

πF • = E• whenever F ∈ T, E ∈ Σ and (E ∩D)△φ−1[F ] is negligible.

proof Let F ∈ T. Then there is an H ∈ Σ̂ such that H ∩ D = φ−1[F ]; now there is an E ∈ Σ such
that E△H is negligible, so that (E ∩ D)△φ−1[F ] is negligible. If E1 is another member of Σ such that
(E1 ∩D)△φ−1[F ] is negligible, then (E△E1) ∩D is negligible, so is included in a negligible member G of
Σ. Since (E△E1) \ G belongs to Σ and is disjoint from D, it is negligible; accordingly E△E1 is negligible
and E• = E•

1 in A.

c© 1998 D. H. Fremlin
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What this means is that the formula offered defines a map π : B → A. It is now easy to check that π is
a Boolean homomorphism, because if

(E ∩D)△φ−1[F ], (E′ ∩D)△φ−1[F ′]

are negligible, so are

((E ∩ E′) ∩D)△φ−1[F ∩ F ′], ((X \ E) ∩D)△φ−1[Y \ F ],

and we can apply 312H.
To see that π is sequentially order-continuous, let 〈bn〉n∈N be a sequence in B. For each n we may

choose an Fn ∈ T such that F •
n = bn, and En ∈ Σ such that (En ∩D)△φ−1[Fn] is negligible; now, setting

F =
⋃
n∈N Fn, E =

⋃
n∈NEn,

(E ∩D)△φ−1[F ] ⊆
⋃
n∈N(En ∩D)△φ−1[Fn]

is negligible, so

π(supn∈N bn) = π(F •) = E• = supn∈NE
•
n = supn∈N πbn.

(Recall that the maps E 7→ E•, F 7→ F • are sequentially order-continuous, by 321H.) So π is sequentially
order-continuous (313L(c-iii)).

324B Corollary Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and (A, µ̄), (B, ν̄) their measure algebras.
Let φ : X → Y be a function such that φ−1[F ] ∈ Σ for every F ∈ T and µφ−1[F ] = 0 whenever νF = 0.
Then there is a sequentially order-continuous Boolean homomorphism π : B → A defined by the formula

πF • = (φ−1[F ])• for every F ∈ T.

324C Remarks (a) In §235 and elsewhere in Volume 2 I spent a good deal of time on functions between
measure spaces which satisfy the conditions of 324A. Indeed, I take the trouble to spell 324A out in such
generality just in order to catch these applications. Some of the results of the present chapter (322D, 322Jb)
can also be regarded as special cases of 324A.

(b) The question of which homomorphisms between the measure algebras of measure spaces (X,Σ, µ),
(Y,T, ν) can be realized by functions between X and Y is important and deep; I will return to it in §§343-344.

(c) In the simplified context of 324B, I have actually defined a contravariant functor; the relevant facts
are the following.

324D Proposition Let (X,Σ, µ), (Y,T, ν) and (Z,Λ, λ) be measure spaces, with measure algebras (A, µ̄),
(B, ν̄), (C, λ̄). Suppose that φ : X → Y and ψ : Y → Z satisfy the conditions of 324B, that is,

φ−1[F ] ∈ Σ if F ∈ T, µφ−1[F ] = 0 if νF = 0,

ψ−1[G] ∈ T if G ∈ Λ, µψ−1[G] = 0 if λG = 0.

Let πφ : B → A, πψ : C → B be the corresponding homomorphisms. Then ψφ : X → Z is another map of
the same type, and πψφ = πφπψ : C → A.

proof The necessary checks are all elementary.

324E Stone spaces While in the context of general measure spaces the question of realizing homomor-
phisms is difficult, in the case of the Stone representation it is relatively straightforward.

Proposition Let (A, µ̄) and (B, ν̄) be measure algebras, with Stone spaces Z and W ; let µ, ν be the
corresponding measures on Z and W , as described in 321J-321K, and Σ, T their domains. If π : B → A is
any order-continuous Boolean homomorphism, let φ : Z →W be the corresponding continuous function, as
described in 312Q. Then φ−1[F ] ∈ Σ for every F ∈ T, µφ−1[F ] = 0 whenever νF = 0, and (writing E∗ for
the member of A corresponding to E ∈ Σ) πF ∗ = (φ−1[F ])∗ for every F ∈ T.
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24 Measure algebras 324E

proof Recall that E∗ = a iff E△â is meager, where â is the open-and-closed subset of Z corresponding
to a ∈ A. In particular, µE = 0 iff E is meager. Now the point is that φ−1[F ] is nowhere dense in Z
whenever F is a nowhere dense subset of W , by 313R. Consequently φ−1[F ] is meager whenever F is meager
in W , since F is then just a countable union of nowhere dense sets. Thus we see already that µφ−1[F ] = 0
whenever νF = 0. If F is any member of T, there is an open-and-closed set F0 such that F△F0 is meager;
now φ−1[F0] is open-and-closed, so φ−1[F ] = φ−1[F0]△φ−1[F△F0] belongs to Σ. Moreover, if b ∈ B is such

that b̂ = F0, and a = πb, then â = φ−1[F0], so

πF ∗ = πb = a = (φ−1[F0])∗ = (φ−1[F ])∗,

as required.

324F I turn now to the behaviour of order-continuous homomorphisms between measure algebras.

Theorem Let (A, µ̄) and (B, ν̄) be measure algebras and π : A → B a Boolean homomorphism. Give A

and B their measure-algebra topologies and uniformities (323Ab).
(a) π is continuous iff it is continuous at 0 iff it is uniformly continuous.
(b) If (B, ν̄) is semi-finite and π is continuous, then it is order-continuous.
(c) If (A, µ̄) is semi-finite and π is order-continuous, then it is continuous.

proof I use the notations Af , ρa from 323A.

(a) Suppose that π is continuous at 0; I seek to show that it is uniformly continuous. Take b ∈ Bf and
ǫ > 0. Then there are a0, . . . , an ∈ Af and δ > 0 such that

ν̄(b ∩ πc) = ρb(πc, 0) ≤ ǫ whenever maxi≤n ρai(c, 0) ≤ δ;

setting a = supi≤n ai,

ν̄(b ∩ πc) ≤ ǫ whenever µ̄(a ∩ c) ≤ δ.

Now suppose that ρa(c, c′) ≤ δ. Then µ̄(a ∩ (c△ c′)) ≤ δ, so

ρb(πc, πc
′) = ν̄(b ∩ (πc△ πc′)) = ν̄(b ∩ π(c△ c′)) ≤ ǫ.

As b and ǫ are arbitrary, π is uniformly continuous. The rest of the implications are elementary.

(b) Let A be a non-empty downwards-directed set in A with infimum 0. Then 0 ∈ A (323D(b-ii)); because

π is continuous, 0 ∈ π[A]. ??? If b is a non-zero lower bound for π[A] in B, then (because (B, ν̄) is semi-finite)
there is a c ⊆ b with 0 < ν̄c <∞; now

ρc(πa, 0) = ν̄(c ∩ πa) = ν̄c > 0

for every a ∈ A, so 0 /∈ π[A]. XXX
Thus inf π[A] = 0 in B; as A is arbitrary, π is order-continuous (313L(b-ii)).

(c) By (a), it will be enough to show that π is continuous at 0. Take b ∈ Bf and ǫ > 0. ??? Suppose, if
possible, that whenever a ∈ Af and δ > 0 there is a c ∈ A such that µ̄(a ∩ c) ≤ δ but ν̄(b ∩ πc) ≥ ǫ. For each
a ∈ Af , n ∈ N choose can such that µ̄(a ∩ can) ≤ 2−n but ν̄(b ∩ πcan) ≥ ǫ. Set ca = infn∈N supm≥n cam; then

µ̄(a ∩ ca) ≤ infn∈N

∑∞
m=n µ̄(a ∩ can) = 0,

so ca ∩ a = 0. On the other hand, because π is order-continuous, πca = infn∈N supm≥n πcam, so that

ν̄(b ∩ πca) = limn→∞ ν̄(b ∩ supm≥n πcam) ≥ ǫ.

This shows that

ρb(π(1 \ a), 0) = ν̄(b ∩ π(1 \ a)) ≥ ν̄(b ∩ πca) ≥ ǫ.

But now observe that A = {1 \ a : a ∈ Af} is a downwards-directed subset of A with infimum 0, because
(A, µ̄) is semi-finite. So π[A] is downwards-directed and has infimum 0, and 0 must be in the closure of π[A],
by 323D(b-ii) again; while we have just seen that ρb(d, 0) ≥ ǫ for every d ∈ π[A]. XXX

Thus there must be a ∈ Af , δ > 0 such that

ρb(πc, 0) = ν̄(b ∩ πc) ≤ ǫ
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whenever

ρa(c, 0) = µ̄(a ∩ c) ≤ δ.

As b and ǫ are arbitrary, π is continuous at 0 and therefore continuous.

324G Corollary If (A, µ̄) and (B, ν̄) are semi-finite measure algebras, a Boolean homomorphism π :
A → B is continuous iff it is order-continuous.

324H Corollary If A is a Boolean algebra and µ̄, ν̄ are two measures both rendering A a semi-finite
measure algebra, then they endow A with the same uniformity (and, of course, the same topology).

proof By 324G, the identity map from A to itself is continuous whichever of the topologies we place on A;
and by 324Fa it is therefore uniformly continuous.

324I Definition Let (A, µ̄) and (B, ν̄) be measure algebras. A Boolean homomorphism π : A → B is
measure-preserving if ν̄(πa) = µ̄a for every a ∈ A.

324J Proposition Let (A, µ̄), (B, ν̄) and (C, λ̄) be measure algebras, and π : A → B, θ : B → C measure-
preserving Boolean homomorphisms. Then θπ : A → C is a measure-preserving Boolean homomorphism.

proof Elementary.

324K Proposition Let (A, µ̄) and (B, ν̄) be measure algebras, and π : A → B a measure-preserving
Boolean homomorphism.

(a) π is injective.
(b) (A, µ̄) is totally finite iff (B, ν̄) is, and in this case π is order-continuous, therefore continuous, and

π[A] is a closed subalgebra of B.
(c) If (A, µ̄) is semi-finite and (B, ν̄) is σ-finite, then (A, µ̄) is σ-finite.
(d) If (A, µ̄) is σ-finite and π is sequentially order-continuous, then (B, ν̄) is σ-finite.
(e) If (A, µ̄) is semi-finite and π is order-continuous, then (B, ν̄) is semi-finite.
(f) If (A, µ̄) is atomless and semi-finite, and π is order-continuous, then B is atomless.
(g) If B is purely atomic and (A, µ̄) is semi-finite, then A is purely atomic.

proof (a) If a 6= 0 in A, then ν̄πa = µ̄a > 0 so πa 6= 0. By 3A2Db, π is injective.

(b) Because

ν̄1B = ν̄π1A = µ̄1A,

(A, µ̄) is totally finite iff (B, ν̄) is. Now suppose that A ⊆ A is downwards-directed and non-empty and that
inf A = 0. Then

infa∈A ν̄πa = infa∈A µ̄a = 0

by 321F. So ν̄b = 0 for any lower bound b of π[A], and inf π[A] = 0. As A is arbitrary, π is order-continuous,
by 313Lb again.

By 324Fc, π is continuous. By 314Fa, π[A] is order-closed in B, that is, ‘closed’ in the sense of 323I.

(c) I appeal to 322G. If C is a disjoint family in A \ {0}, then 〈πc〉c∈C is a disjoint family in B \ {0}, so
is countable, and C must be countable, because π is injective. Thus A is ccc and (being semi-finite) (A, µ̄)
is σ-finite.

(d) Let 〈an〉n∈N be a sequence in A such that µ̄an <∞ for every n and supn∈N an = 1. Then ν̄πan <∞
for every n and (because π is sequentially order-continuous) supn∈N πan = 1, so (B, ν̄) is σ-finite.

(e) Setting Af = {a : µ̄a < ∞}, supAf = 1; because π is order-continuous, supπ[Af ] = 1 in B. So if
ν̄b = ∞, there is an a ∈ Af such that πa ∩ b 6= 0, and now 0 < ν̄(b ∩ πa) <∞.

(f) Take any non-zero b ∈ B. As in (e), there is an a ∈ A such that µ̄a <∞ and πa ∩ b 6= 0. If πa ∩ b 6= b,
then surely b is not an atom. Otherwise, set
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C = {c : c ∈ A, c ⊆ a, b ⊆ πc}.

Then C is downwards-directed and contains a, so c0 = inf C is defined in A (321F again), and

µ̄c0 = infc∈C µ̄c ≥ ν̄b > 0,

so c0 6= 0. Because A is atomless, there is a d ⊆ c0 such that neither d nor c0 \ d is zero, so that neither
c0 \ d nor d can belong to C. But this means that b ∩ πd and b ∩ π(c0 \ d) are both non-zero, so that again b
is not an atom. As b is arbitrary, B is atomless.

(g) Take any non-zero a ∈ A. Then there is an a′ ⊆ a such that 0 < µ̄a′ < ∞. Because B is purely
atomic, there is an atom b of B with b ⊆ πa′. Set

C = {c : c ∈ A, c ⊆ a′, b ⊆ πc}.

Then C is downwards-directed and contains a′, so c0 = inf C is defined in A, and

µ̄c0 = infc∈C µ̄c ≥ ν̄b > 0,

so c0 6= 0. If d ⊆ c0, then b ∩ πd must be either b or 0. If b ∩ πd = b, then d ∈ C and d = c0. If b ∩ πd = 0,
then c0 \ d ∈ C and d = 0. Thus c0 is an atom in A. As a is arbitrary, A is purely atomic.

324L Corollary Let (A, µ̄) be a totally finite measure algebra, (B, ν̄) a measure algebra, and π : A → B

a measure-preserving homomorphism. If C ⊆ A and C is the closed subalgebra of A generated by C, then
π[C] is the closed subalgebra of B generated by π[C].

proof By 324Ka, π is order-continuous, so we can apply 314H.

324M Proposition Let (X,Σ, µ) and (Y,T, ν) be measure spaces, with measure algebras (A, µ̄) and
(B, ν̄). Let φ : X → Y be inverse-measure-preserving. Then we have a sequentially order-continuous
measure-preserving Boolean homomorphism π : B → A defined by setting πF • = φ−1[F ]• for every F ∈ T.

proof This is immediate from 324B.

324N Proposition Let (A, µ̄) and (B, ν̄) be measure algebras, with Stone spaces Z and W ; let µ, ν
be the corresponding measures on Z and W . If π : B → A is an order-continuous measure-preserving
Boolean homomorphism, and φ : Z →W the corresponding continuous function, then φ is inverse-measure-
preserving.

proof Use 324E. In the notation there, if F ∈ T, then

νF = ν̄F ∗ = µ̄πF ∗ = µ̄φ−1[F ]∗ = µφ−1[F ].

324O Proposition Let (A, µ̄) and (B, ν̄) be totally finite measure algebras, A0 a topologically dense
subalgebra of A, and π : A0 → B a Boolean homomorphism such that ν̄πa = µ̄a for every a ∈ A0. Then π
has a unique extension to a measure-preserving homomorphism from A to B.

proof Let ρ, σ be the measure metrics on A, B respectively, as in 323Ad. Then for any a, a′ ∈ A0

σ(πa, πa′) = ν̄(πa△πa′) = ν̄π(a△a′) = µ̄(a△a′) = ρ(a, a′);

that is, π : A0 → B is an isometry. Because A0 is dense in the metric space (A, ρ), while B is complete
under σ (323Gc), there is a unique continuous function π̂ : A → B extending π (3A4G). Now the operations

(a, a′) 7→ π̂(a ∩ a′), (a, a′) 7→ π̂a ∩ π̂a′ : A× A → B,

are continuous and agree on the dense subset A0 × A0 of A × A; because the topology of B is Hausdorff,
they agree on A× A, that is, π̂(a ∩ a′) = π̂a ∩ π̂a′ for all a, a′ ∈ A (2A3Uc). Similarly, the operations

a 7→ π̂(1 \ a), a 7→ 1 \ π̂a : A → B

are continuous and agree on the dense subset A0 of A, so they agree on A, that is, π̂(1 \ a) = 1 \ a for every
a ∈ A. Thus π̂ is a Boolean homomorphism (312H again). To see that it is measure-preserving, observe that

a 7→ µ̄a = ρ(a, 0), a 7→ ν̄(π̂a) = σ(π̂a, 0) : A → R
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are continuous and agree on A0, so agree on A. Finally, π̂ is the only measure-preserving Boolean homo-
morphism extending π, because any such map must be continuous (324Kb), and π̂ is the only continuous
extension of π.

*324P The following fact will be applied in §387, by which time it will seem perfectly elementary; for
the moment, it may be a useful exercise.

Proposition Let (A, µ̄) and (B, ν̄) be totally finite measure algebras such that µ̄1 = ν̄1. Suppose that
A ⊆ A and φ : A → B are such that ν̄(infi≤n φai) = µ̄(infi≤n ai) for all a0, . . . , an ∈ A. Let C be
the smallest closed subalgebra of A including A. Then φ has a unique extension to a measure-preserving
Boolean homomorphism from C to B.

proof (a) Let Ψ be the family of all functions ψ extending φ and having the same properties; that is, ψ is
a function from a subset of A to B, and ν̄(infi≤n ψai) = µ̄(infi≤n ai) for all a0, . . . , an ∈ domψ. By Zorn’s
Lemma, Ψ has a maximal member θ. Write D for the domain of θ.

(b)(i) If c, d ∈ D then c ∩ d ∈ D. PPP??? Otherwise, set D′ = D ∪ {c ∩ d} and extend θ to θ′ : D′ → B by
writing θ′(c ∩ d) = θc ∩ θd. It is easy to check that θ′ ∈ Ψ, which is supposed to be impossible. XXXQQQ

Now

ν̄(θc ∩ θd ∩ θ(c ∩ d)) = µ̄(c ∩ d) = ν̄(θc ∩ θd) = ν̄θ(c ∩ d),

so θ(c ∩ d) = θc ∩ θd.

(ii) If d ∈ D then 1 \ d ∈ D. PPP??? Otherwise, set D′ = D ∪ {1 \ d} and extend θ to D′ by writing
θ′(1 \ d) = 1 \ θd. Once again, it is easy to check that θ′ ∈ Ψ, which is impossible. XXXQQQ

Consequently (since D is certainly not empty, even if A is), D is a subalgebra of A (312B(iii)).

(iii) Since

ν̄θ1 = µ̄1 = ν̄1,

θ1 = 1. If d ∈ D then

ν̄θ(1 \ d) = µ̄(1 \ d) = µ̄1 − µ̄d = ν̄1 − ν̄θd = ν̄(1 \ θd),

while

ν̄(θd ∩ θ(1 \ d)) = µ̄(d ∩ (1 \ d)) = 0,

so θd ∩ θ(1 \ d)) = 0, θ(1 \ d) ⊆ 1 \ θd and θ(1 \ d) must be equal to 1 \ θd.
By 312H(ii), θ : D → B is a Boolean homomorphism.

(iv) Let D be the topological closure of D in A. Then it is an order-closed subalgebra of A (323J), so,
with µ̄↾D, is a totally finite measure algebra in which D is a topologically dense subalgebra. By 324O, there
is an extension of θ to a measure-preserving Boolean homomorphism from D to B; of course this extension
belongs to Ψ, so in fact D = D is a closed subalgebra of A.

(c) Since A ⊆ D, C ⊆ D and φ1 = θ↾C is a suitable extension of φ.
To see that φ1 is unique, let φ2 : C → B be any other measure-preserving Boolean homomorphism

extending φ. Set C = {a : φ1a = φ2a}; then C is a topologically closed subalgebra of A including A, so is
the whole of C, and φ2 = φ1.

324X Basic exercises (a) Let A and B be Boolean algebras, of which A is Dedekind σ-complete, and
φ : A → B a sequentially order-continuous Boolean homomorphism. Let I be an ideal of A included in the
kernel of φ. Show that we have a sequentially order-continuous Boolean homomorphism π : A/I → B given
by setting π(a•) = φa for every a ∈ A.

(b) Let (A, µ̄) be a measure algebra, and B an order-closed subalgebra of A such that (B, µ̄↾B) is semi-
finite. Show that the topology on B induced by µ̄↾B is just the subspace topology induced by the topology
of A.
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(c) Let (X,Σ, µ) be a measure space and (X, Σ̃, µ̃) its c.l.d. version. Let A, A2 be the corresponding
measure algebras and π : A → A2 the canonical homomorphism (see 322Db). Show that π is topologically
continuous.

(d) Let (A, µ̄) and (B, ν̄) be measure algebras, and π : A → B a bijective measure-preserving Boolean
homomorphism. Show that π−1 : B → A is a measure-preserving homomorphism.

(e) Let µ̄ be counting measure on PN. Show that (PN, µ̄) is a σ-finite measure algebra. Find a measure-
preserving Boolean homomorphism from PN to itself which is not sequentially order-continuous.

324Y Further exercises (a) Let A and B be Boolean algebras, of which A is Dedekind complete, and
φ : A → B an order-continuous Boolean homomorphism. Let I be an ideal of A included in the kernel of φ.
Show that we have an order-continuous Boolean homomorphism π : A/I → B given by setting π(a•) = φa
for every a ∈ A.

(b) Let A be a Dedekind σ-complete Boolean algebra, and Z its Stone space. Write E for the algebra of
open-and-closed subsets of Z, and Z for the family of nowhere dense zero sets of Z; let Zσ be the σ-ideal of
subsets of Z generated by Z. Show that Σ = {E△U : E ∈ E , U ∈ Zσ} is a σ-algebra of subsets of Z, and
describe a canonical isomorphism between Σ/Zσ and A.

(c) Let A and B be Dedekind σ-complete Boolean algebras, with Stone spaces Z and W . Construct
Zσ ⊆ Σ ⊆ PZ as in 324Yb, and let Wσ ⊆ T ⊆ PW be the corresponding structure defined from B. Let
π : B → A be a sequentially order-continuous Boolean homomorphism, and φ : Z → W the corresponding
continuous map. Show that if E∗ ∈ A corresponds to E ∈ Σ, then πF ∗ = φ−1[F ]∗ for every F ∈ T.

(d) Let A be a Boolean algebra, B a ccc Boolean algebra and π : A → B an injective Boolean homomor-
phism. Show that A is ccc.

(e) Let A be a Dedekind complete Boolean algebra, B a Boolean algebra, and π : A → B an order-
continuous Boolean homomorphism. Show that for every atom b ∈ B there is an atom a ∈ A such that
πa ⊇ b. Hence show that if A is atomless so is B, and that if B is purely atomic and π is injective then A is
purely atomic.

(f) Let (A, µ̄) and (B, ν̄) be localizable measure algebras and A0 an order-dense subalgebra of A. Suppose
that π : A0 → B is an order-continuous Boolean homomorphism such that ν̄πa = µ̄a for every a ∈ A0.
Show that π has a unique extension to a measure-preserving Boolean homomorphism from A to B.

(g) Let (A, µ̄) and (B, ν̄) be probability algebras, and f : A → B an isometry for the measure metrics.
Show that a 7→ f(a) △ f(0) is a measure-preserving Boolean homomorphism.

324 Notes and comments If you examine the arguments of this section carefully, you will see that rather
little depends on the measures named. Really this material deals with structures (X,Σ, I) where X is a set,
Σ is a σ-ideal of subsets of X, and I is a σ-ideal of Σ, corresponding to the family of measurable negligible
sets. In this abstract form it is natural to think in terms of sequentially order-continuous homomorphisms,
as in 324Yc. I have stated 324E in terms of order-continuous homomorphisms just for a slight gain in
simplicity. But in fact, when there is a difference, it is likely that order-continuity, rather than sequential
order-continuity, will be the more significant condition. Note that when the domain algebra is σ-finite, it is
ccc (322G), so the two concepts coincide (316Fd).

Of course I need to refer to measures when looking at such concepts as σ-finite measure algebra or measure-
preserving homomorphism, but even here the real ideas involved are such notions as order-continuity and
the countable chain condition, as you will see if you work through 324K. It is instructive to look at the
translations of these facts into the context of inverse-measure-preserving functions; see 234B.

324H shows that we may speak of ‘the’ topology and uniformity of a Dedekind σ-complete Boolean algebra
which carries any semi-finite measure; the topology of such an algebra is determined by its algebraic structure.
Contrast this with the theory of normed spaces: two Banach spaces (e.g., ℓ1 and ℓ2) can be isomorphic as
linear spaces, both being of algebraic dimension c, while they are not isomorphic as topological linear spaces.
When we come to the theory of ordered linear topological spaces, however, we shall again find ourselves
with operators whose algebraic properties guarantee continuity (355C, 367O).
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Version of 30.8.06

325 Free products and product measures

In this section I aim to describe the measure algebras of product measures as defined in Chapter 25. This
will involve the concept of ‘free product’ set out in §315. It turns out that we cannot determine the measure
algebra of a product measure from the measure algebras of the factors (325B), unless we are told that the
product measure is localizable; but that there is nevertheless a general construction of ‘localizable measure
algebra free product’, applicable to any pair of semi-finite measure algebras (325D), which represents the
measure algebra of the product measure in the most important cases (325Eb). In the second part of the
section (325I-325M) I deal with measure algebra free products of probability algebras, corresponding to the
products of probability spaces treated in §254.

325A Theorem Let (X,Σ, µ) and (Y,T, ν) be measure spaces, with measure algebras (A, µ̄) and (B, ν̄).
Let λ be the c.l.d. product measure on X × Y , and Λ its domain; let (C, λ̄) be the corresponding measure
algebra.

(a)(i) The map E 7→ E × Y : Σ → Λ induces an order-continuous Boolean homomorphism from A to C.
(ii) The map F 7→ X × F : T → Λ induces an order-continuous Boolean homomorphism from B to C.

(b) The map (E,F ) 7→ E × F : Σ × T → Λ induces a Boolean homomorphism ψ : A⊗B → C.
(c) ψ[A⊗B] is topologically dense in C for the measure-algebra topology of C.
(d) For every c ∈ C,

λ̄c = sup{λ̄(c ∩ ψ(a⊗ b)) : a ∈ A, b ∈ B, µ̄a <∞, ν̄b <∞}.

(e) If µ and ν are semi-finite, ψ is injective and λ̄ψ(a⊗ b) = µ̄a · µ̄b for every a ∈ A, b ∈ B.

proof (a) E × Y ∈ Λ for every E ∈ Σ (251E), and λ(E × Y ) = 0 whenever µE = 0 (251Ia). Thus
E 7→ (E × Y )• : Σ → C is a Boolean homomorphism with kernel including {E : µE = 0}, so descends to a
Boolean homomorphism ε1 : A → C.

To see that ε1 is order-continuous, let A ⊆ A be a non-empty downwards-directed set with infimum 0.
??? If there is a non-zero lower bound c of ε1[A], express c as W • where W ∈ Λ. We have λ(W ) > 0; by the
definition of λ (251F), there are G ∈ Σ, H ∈ T such that µG < ∞, νH < ∞ and λ(W ∩ (G×H)) > 0. Of
course infa∈A a ∩G• = 0 in A, so infa∈A µ̄(a ∩G•) = 0, by 321F; let a ∈ A be such that µ̄(a ∩G•) · νH <
λ(W ∩ (G×H)). Express a as E•, where E ∈ Σ. Then λ(W \ (E × Y )) = 0. But this means that

λ(W ∩ (G×H)) ≤ λ((E ∩G) ×H) = µ(E ∩G) · νH = µ̄(a ∩G•) · νH,

contradicting the choice of a. XXX Thus inf ε1[A] = 0 in C; as A is arbitrary, ε1 is order-continuous.
Similarly ε2 : B → C, induced by F 7→ X × F : T → Λ, is order-continuous.

(b) Now there must be a corresponding Boolean homomorphism ψ : A ⊗ B → C such that ψ(a ⊗ b) =
ε1a ∩ ε2b for every a ∈ A and b ∈ B, that is,

ψ(E• ⊗ F •) = (E × Y )• ∩ (X × F )• = (E × F )•

for every E ∈ Σ, F ∈ T (315Jb).

(c) Suppose that c, e ∈ C, λ̄e <∞ and ǫ > 0. Express c, e as U•, W • where U , W ∈ Λ. By 251Ie, there
are E0, . . . , En ∈ Σ, F0, . . . , Fn ∈ T, all of finite measure, such that λ((U ∩W )△

⋃
i≤nEi × Fi) ≤ ǫ. Set

c1 = (
⋃
i≤nEi × Fi)

• ∈ ψ[A⊗B];

then

λ̄(e ∩ (c△ c1)) = λ(W ∩ (U△
⋃
i≤nEi × Fi)) ≤ ǫ.

As c, e and ǫ are arbitrary, ψ[A⊗B] is topologically dense in C.

(d) By the definition of λ, we have

λW = sup{λ(W ∩ (E × F )) : E ∈ Σ, F ∈ T, µE <∞, νF <∞}

c© 1999 D. H. Fremlin
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for every W ∈ Λ; so all we have to do is express c as W •.

(e) Now suppose that µ and ν are semi-finite. Then λ(E × F ) = µE · νF for any E ∈ Σ, F ∈ T (251J),
so λ̄ψ(a⊗ b) = µ̄a · ν̄b for every a ∈ A and b ∈ B.

To see that ψ is injective, take any non-zero c ∈ A⊗B; then there must be non-zero a ∈ A, b ∈ B such
that a⊗ b ⊆ c (315Kb), so that

λ̄ψc ≥ λ̄ψ(a⊗ b) = µ̄a · ν̄b > 0

and ψc 6= 0.

325B Characterizing the measure algebra of a product space A very natural question to ask is,
whether it is possible to define a ‘measure algebra free product’ of two abstract measure algebras in a way
which will correspond to one of the constructions above. I give an example to show the difficulties involved.

Example There are complete locally determined localizable measure spaces (X,µ), (X ′, µ′), with isomorphic
measure algebras, and a probability space (Y, ν) such that the measure algebras of the c.l.d. product measures
on X × Y , X ′ × Y are not isomorphic.

proof Let (X,Σ, µ) be the complete locally determined localizable not-strictly-localizable measure space
described in 216E. Recall that, for E ∈ Σ, µE = #({γ : γ ∈ C, fγ ∈ E}) if this is finite, ∞ otherwise
(216Eb), where C is a set with cardinal greater than c. The map E 7→ {γ : fγ ∈ E} : Σ → PC is surjective
(216Ec), so descends to an isomorphism between A, the measure algebra of µ, and PC. Let (X ′,Σ′, µ′) be
C with counting measure, so that its measure algebra (A′, µ̄′) is isomorphic to (A, µ̄), while µ′ is of course
strictly localizable.

Let (Y,T, ν) be {0, 1}C with its usual measure. Let λ, λ′ be the c.l.d. product measures on X×Y , X ′×Y
respectively, and (C, λ̄), (C′, λ̄′) the corresponding measure algebras. Then λ is not localizable (254U), so
(C, λ̄) is not localizable (322Be). On the other hand, λ′, being the c.l.d. product of strictly localizable
measures, is strictly localizable (251O), therefore localizable, so (C′, λ̄′) is localizable, and is not isomorphic
to (C, λ̄).

325C Thus there can be no universally applicable method of identifying the measure algebra of a product
measure from the measure algebras of the factors. However, you have no doubt observed that the example
above involves non-σ-finite spaces, and conjectured that this is not an accident. In contexts in which we
know that the algebras involved are localizable, there are positive results available, such as the following.

Theorem Let (X1,Σ1, µ1) and (X2,Σ2, µ2) be semi-finite measure spaces, with measure algebras (A1, µ̄1)
and (A2, µ̄2). Let λ be the c.l.d. product measure on X1 × X2, and (C, λ̄) the corresponding measure
algebra. Let (B, ν̄) be a localizable measure algebra, and φ1 : A1 → B, φ2 : A2 → B order-continuous
Boolean homomorphisms such that ν̄(φ1(a1) ∩ φ2(a2)) = µ̄1a1 · µ̄2a2 for all a1 ∈ A1, a2 ∈ A2. Then there is a
unique order-continuous measure-preserving Boolean homomorphism φ : C → B such that φ(ψ(a1 ⊗ a2)) =
φ1(a1) ∩ φ2(a2) for all a1 ∈ A1, a2 ∈ A2, writing ψ : A1 ⊗ A2 → C for the canonical map described in 325A.

proof (a) Because ψ is injective, it is an isomorphism between A1 ⊗ A2 and its image in C. I trust it will
cause no confusion if I abuse notation slightly and treat A1 ⊗ A2 as actually a subalgebra of C. Now the
Boolean homomorphisms φ1, φ2 correspond to a Boolean homomorphism θ : A1 ⊗ A2 → B. The point is
that ν̄θc = λ̄c for every c ∈ A1⊗A2. PPP By 315Kb, every member of A1⊗A2 is expressible as supi≤n ai⊗a

′
i,

where ai ∈ A1, a′i ∈ A2 for each i and 〈ai ⊗ a′i〉i≤n is disjoint. Now for each i we have

ν̄θ(ai ⊗ a′i) = ν̄(φ1(ai) ∩ φ2(a′i)) = µ̄1ai · µ̄2a
′
i = λ̄(ai ⊗ a′i),

by 325Ae. So

ν̄θ(c) =
∑n
i=0 ν̄θ(ai ⊗ a′i) =

∑n
i=0 λ̄(ai ⊗ a′i) = λ̄c. QQQ

(b) The following fact will underlie many of the arguments below. If e ∈ B, ν̄e < ∞ and ǫ > 0, there

are e1 ∈ A
f
1 , e2 ∈ A

f
2 such that ν̄(e \ θ(e1 ⊗ e2)) ≤ ǫ, writing A

f
i for {a : µ̄ia < ∞}. PPP Because (A1, µ̄1) is

semi-finite, Af1 has supremum 1 in A1; because φ1 is order-continuous, sup{φ1(a) : a ∈ A
f
1} = 1 in B, and
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inf{e \ φ1(a) : a ∈ A
f
1} = 0 (313Aa). Because A

f
1 is upwards-directed, {e \ φ1(a) : a ∈ A

f
1} is downwards-

directed, so inf{ν̄(e \ φ(a)) : a ∈ A
f
1} = 0 (321F again). Let e1 ∈ A

f
1 be such that ν̄(e \ φ1(e1)) ≤ 1

2ǫ.

In the same way, there is an e2 ∈ A
f
2 such that ν̄(e \ φ2(e2)) ≤ 1

2ǫ. Consider e′ = e1 ⊗ e2 ∈ C. Then

ν̄(e \ θe′) = ν̄(e \ (φ1(e1) ∩ φ2(e2))) ≤ ν̄(e \ φ1(e1)) + ν̄(e \ φ2(e2)) ≤ ǫ. QQQ

(c) The next step is to check that θ is uniformly continuous for the measure-algebra uniformities defined
by ν̄ and λ̄. PPP Take any e ∈ Bf and ǫ > 0. By (b), there are e1, e2 such that λ̄(e1 ⊗ e2) < ∞ and
ν̄(e \ θ(e1 ⊗ e2)) ≤ 1

2ǫ. Set e′ = e1 ⊗ e2. Now suppose that c, c′ ∈ A1 ⊗ A2 and λ̄((c△ c′) ∩ e′) ≤ 1
2ǫ. Then

ν̄((θ(c) △ θ(c′)) ∩ e) ≤ ν̄θ((c△ c′) ∩ e′) + ν̄(e \ θe′) ≤ λ̄((c△ c′) ∩ e′) +
1

2
ǫ ≤ ǫ.

By 3A4Cc, θ is uniformly continuous for the subspace uniformity on A1 ⊗ A2. QQQ

(d) Recall that A1 ⊗ A2 is topologically dense in C (325Ac), while B is complete for its uniformity
(323Gc). So there is a uniformly continuous function φ : C → B extending θ (3A4G).

(e) Because θ is a Boolean homomorphism, so is φ. PPP (i) The functions c 7→ φ(1 \ c), c 7→ 1 \ φ(c) are
continuous and the topology of B is Hausdorff, so {c : φ(1 \ c) = 1 \ φ(c)} is closed; as it includes A1 ⊗ A2,
it must be the whole of C. (ii) The functions (c, c′) 7→ φ(c ∪ c′), (c, c′) 7→ φ(c) ∪ φ(c′) are continuous, so
{(c, c′) : φ(c ∪ c′) = φ(c) ∪ φ(c′)} is closed in C×C; as it includes (A1⊗A2)× (A1⊗A2), it must be the whole
of C× C. QQQ

(f) Because θ is measure-preserving, so is φ. PPP Take any e1 ∈ A
f
1 , e2 ∈ A

f
2 . Then the functions

c 7→ λ̄(c ∩ (e1 ⊗ e2)), c 7→ ν̄φ(c ∩ (e1 ⊗ e2)) are continuous and equal on A1 ⊗ A2, so are equal on C. The
argument of (b) shows that for any b ∈ B,

ν̄b = sup{ν̄(b ∩ e) : e ∈ B
f}

= sup{ν̄(b ∩ φ(e1 ⊗ e2)) : e1 ∈ A
f
1 , e2 ∈ A

f
2},

so that

ν̄φ(c) = sup{ν̄φ(c ∩ (e1 ⊗ e2)) : e1 ∈ A
f
1 , e2 ∈ A

f
2}

= sup{λ̄(c ∩ (e1 ⊗ e2)) : e1 ∈ A
f
1 , e2 ∈ A

f
2} = λ̄c

for every c ∈ C. QQQ

(g) To see that φ is order-continuous, take any non-empty downwards-directed set C ⊆ C with infimum
0. ??? If φ[C] has a non-zero lower bound b in B, let e ⊆ b be such that 0 < ν̄e <∞. Let e′ ∈ C be such that
λ̄e′ < ∞ and ν̄(e \ φ(e′)) < ν̄e, as in (b) above, so that ν̄(e ∩ φ(e′)) > 0. Now, because inf C = 0, there is a
c ∈ C such that λ̄(c ∩ e′) < ν̄(e ∩ φ(e′)). But this means that

ν̄(b ∩ φ(e′)) ≤ ν̄φ(c ∩ e′) = λ̄(c ∩ e′) < ν̄(e ∩ φ(e′)) ≤ ν̄(b ∩ φ(e′)),

which is absurd. XXXThus inf φ[C] = 0 in B. As C is arbitrary, φ is order-continuous.

(h) Finally, to see that φ is unique, observe that any order-continuous Boolean homomorphism from C

to B must be continuous (324Fc); so that if it agrees with φ on A1 ⊗ A2 it must agree with φ on C.

325D Theorem Let (A1, µ̄1) and (A2, µ̄2) be semi-finite measure algebras.
(a) There is a localizable measure algebra (C, λ̄), together with order-continuous Boolean homomorphisms

ε1 : A1 → C and ε2 : A2 → C, such that whenever (B, ν̄) is a localizable measure algebra, and φ1 : A1 → B,
φ2 : A2 → B are order-continuous Boolean homomorphisms and ν̄(φ1(a1) ∩ φ2(a2)) = µ̄1a1 · µ̄2a2 for all
a1 ∈ A1, a2 ∈ A2, then there is a unique order-continuous measure-preserving Boolean homomorphism
φ : C → B such that φεj = φj for both j.

(b) The structure (C, λ̄, ε1, ε2) is determined up to isomorphism by this property.
(c)(i) The Boolean homomorphism ψ : A1 ⊗ A2 → C defined from ε1 and ε2 is injective, and ψ[A1 ⊗ A2]

is topologically dense in C.
(ii) The closed subalgebra of C generated by ψ[A1 ⊗ A2] is the whole of C.
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(d) If j ∈ {1, 2} and (Aj , µ̄j) is localizable, then εj [Aj ] is a closed subalgebra of (C, λ̄).

proof (a)(i) We may regard (A1, µ̄1) as the measure algebra of (Z1,Σ1, µ1) where Z1 is the Stone space
of A1, Σ1 is the algebra of subsets of Z1 differing from an open-and-closed set by a meager set, and µ1 is
an appropriate measure (321K). Note that in this representation, each a ∈ A1 becomes identified with â•,
where â is the open-and-closed subset of Z1 corresponding to a. Similarly, we may think of (A2, µ̄2) as the
measure algebra of (Z2,Σ2, µ2), where Z2 is the Stone space of A2.

(ii) Let λ be the c.l.d. product measure on Z1 × Z2. The point is that λ is strictly localizable. PPP By
322Ea, both A1 and A2 have partitions of unity consisting of elements of finite measure; let 〈ci〉i∈I , 〈dj〉j∈J be

such partitions. Then 〈ĉi× d̂j〉i∈I,j∈J is a disjoint family of sets of finite measure in Z1×Z2. If W ⊆ Z1×Z2

is such that λW > 0, there must be sets E1, E2 of finite measure such that λ(W ∩ (E1 ×E2)) > 0. Because
E•

1 = supi∈I E
•
1 ∩ ci, we must have

µ1E1 = µ̄1E
•
1 =

∑
i∈I µ̄1(E•

1 ∩ ci) =
∑
i∈I µ1(E1 ∩ ĉi).

Similarly, µ2E2 =
∑
i∈J µ2(E2 ∩ d̂j). But this means that there must be finite I ′ ⊆ I, J ′ ⊆ J such that

∑
i∈I′,j∈J ′ µ1(E1 ∩ ĉi)µ2(E2 ∩ d̂j) > µ1E1 · µ2E2 − λ(W ∩ (E1 × E2)),

so that there have to be i ∈ I ′, j ∈ J ′ such that λ(W ∩ (ĉi × d̂j)) > 0.

Now this means that 〈ĉi × d̂j〉i∈I,j∈J satisfies the conditions of 213O. Because λ is surely complete and
locally determined, it is strictly localizable. QQQ

(iii) We may therefore take (C, λ̄) to be just the measure algebra of λ. The maps ε1, ε2 will be the
canonical maps described in 325Aa, inducing the map ψ : A1 ⊗ A2 → C referred to in 325C; and 325C now
gives the result.

(b) This is nearly obvious. Suppose we had an alternative structure (C′, λ̄′, ε′1, ε
′
2) with the same property.

Then we must have an order-continuous measure-preserving Boolean homomorphism φ : C → C′ such that
φεj = ε′j for both j; and similarly we have an order-continuous measure-preserving Boolean homomorphism
φ′ : C′ → C such that φ′ε′j = εj for both j. Now φ′φ : C → C is an order-continuous measure-preserving
Boolean homomorphism such that φ′εj = εj for both j. By the uniqueness assertion in (a), applied with
B = C, φ′φ must be the identity on C. In the same way, φφ′ is the identity on C′. So φ and φ′ are the two
halves of the required isomorphism.

(c) In view of the construction for C offered in part (a) of the proof, (i) is just a consequence of 325Ac
and 325Ae. Now (ii) follows by 323J.

(d) If Aj is Dedekind complete then εj [Aj ] is order-closed in C because εj is order-continuous (314F(a-i)).

325E Remarks (a) We could say that a measure algebra (C, λ̄), together with embeddings ε1 and ε2,
as described in 325D, is a localizable measure algebra free product of (A1, µ̄1) and (A2, µ̄2); and its
uniqueness up to isomorphism makes it safe, most of the time, to call it ‘the’ localizable measure algebra
free product. Observe that it can equally well be regarded as the uniform space completion of the algebraic
free product; see 325Yc.

(b) As the example in 325B shows, the localizable measure algebra free product of the measure algebras
of given measure spaces need not appear directly as the measure algebra of their product. But there is one
context in which it must so appear: if the product measure is localizable, 325C tells us at once that it has
the right measure algebra. For σ-finite measure algebras, of course, any corresponding measure spaces have
to be strictly localizable, so again we can use the product measure directly.

325F I ought not to proceed to the next topic without giving another pair of examples to show the
subtlety of the concept of ‘measure algebra free product’.

Example Let (A, µ̄) be the measure algebra of Lebesgue measure µ on [0, 1], and (C, λ̄) the measure algebra
of Lebesgue measure λ on [0, 1]2. Then (C, λ̄) can be regarded as the localizable measure algebra free product
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of (A, µ̄) with itself, by 251N and 325Eb. Let ψ : A ⊗ A → C be the canonical map, as described in 325A.
Then ψ[A⊗ A] is not order-dense in C, and ψ is not order-continuous.

proof (a) Let 〈ǫn〉n∈N be a sequence in [0, 1] such that
∑∞
n=0 ǫn = ∞, but

∑∞
n=0 ǫ

2
n < 1; for instance, we

could take ǫn = 1
n+2 . Let 〈En〉n∈N be a stochastically independent sequence of measurable subsets of [0, 1]

such that µEn = ǫn for each n. In A set an = E•
n, and consider cn = supi≤n ai ⊗ ai ∈ A⊗ A for each n.

(b) We have supn∈N cn = 1 in A⊗A. PPP??? Otherwise, there is a non-zero a ∈ A⊗A such that a ∩ (an⊗an) =
0 for every n, and now there are non-zero b, b′ ∈ A such that b⊗ b′ ⊆ a. Set I = {n : an ∩ b = 0}, J = {n :
an ∩ b′} = 0. Then 〈En〉n∈I is an independent family and µ(

⋃
n∈I Ei) ≤ 1 − µ̄b < 1, so

∑
n∈I µEn <∞, by

the Borel-Cantelli lemma (273K). Similarly
∑
n∈J µEn <∞. Because

∑
n∈N µEn = ∞, there must be some

n ∈ N \ (I ∪ J). Now an ∩ b and an ∩ b′ are both non-zero, so

0 6= (an ∩ b) ⊗ (an ∩ b′) = (an ⊗ an) ∩ (b⊗ b′) = 0,

which is absurd. XXXQQQ

(c) On the other hand,
∑∞
n=0 λ̄ψ(cn) ≤

∑∞
n=0(µ̄an)2 =

∑∞
n=0 ǫ

2
n < 1,

by the choice of the ǫn. So supn∈N ψ(cn) cannot be 1 in C.
Thus ψ is not order-continuous.

(d) By 313P(a-ii) and 313O, ψ[A⊗A] cannot be order-dense in C; alternatively, (b) shows that there can
be no non-zero member of ψ[A⊗A] included in 1 \ supn∈N ψ(cn). (Both these arguments rely tacitly on the
fact that ψ is injective, as noted in 325Ae.)

325G Since 325F shows that the free product and the localizable measure algebra free product are very
different constructions, I had better repeat an idea from §315 in the new context.

Example Again, let (A, µ̄) be the measure algebra of Lebesgue measure on [0, 1], and (C, λ̄) the measure
algebra of Lebesgue measure on [0, 1]2. Then there is no order-continuous Boolean homomorphism φ : C → A

such that φ(a ⊗ b) = a ∩ b for all a, b ∈ A. PPP Let φ : C → A be a Boolean homomorphism such that
φ(a⊗b) = a ∩ b for all a, b ∈ A. For i < 2n let ani be the equivalence class in A of the interval [2−ni, 2−n(i+1)],
and set cn = supi<2n ani ⊗ ani. Then φcn = 1 for every n, but λ̄cn = 2−n for each n, so infn∈N cn = 0 in C;
thus φ cannot be order-continuous. QQQ (Compare 315Q.)

*325H Products of more than two factors We can of course extend the ideas of 325A, 325C and
325D to products of any finite number of factors. No new ideas are needed, so I spell the results out without
proofs.

(a) Let 〈(Ai, µ̄i)〉i∈I be a non-empty finite family of semi-finite measure algebras. Then there is a
localizable measure algebra (C, λ̄), together with order-continuous Boolean homomorphisms εi : Ai → C for
i ∈ I, such that whenever (B, ν̄) is a localizable measure algebra, and φi : Ai → B are order-continuous
Boolean homomorphisms such that ν̄(infi∈I φi(ai)) =

∏
i∈I µ̄iai whenever ai ∈ Ai for each i, then there is

a unique order-continuous measure-preserving Boolean homomorphism φ : C → B such that φεi = φi for
every i.

(b) The structure (C, λ̄, 〈εi〉i∈I) is determined up to isomorphism by this property.

(c) The Boolean homomorphism ψ :
⊗

i∈I Ai → C defined from the εi is injective, and ψ[
⊗

i∈I Ai] is
topologically dense in C.

(d) Write
⊗̂loc

i∈I(Ai, µ̄i) for (a particular version of) the localizable measure algebra free product described
in (a). If 〈(Ai, µ̄i)〉i∈I is a finite family of semi-finite measure algebras and 〈Ik〉k∈K is a partition of I into

non-empty sets, then
⊗̂loc

i∈I(Ai, µ̄i) is isomorphic, in a canonical way, to
⊗̂loc

k∈K

(⊗̂loc

i∈Ik
(Ai, µ̄i)

)
.

(e) Let 〈(Xi,Σi, µi)〉i∈I be a finite family of semi-finite measure spaces, and write (Ai, µ̄i) for the measure
algebra of (Xi,Σi, µi). Let λ be the c.l.d. product measure on

∏
i∈I Xi (251W), and (C, λ̄) the corresponding
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measure algebra. Then there is a canonical order-continuous measure-preserving embedding of (C, λ̄) into
the localizable measure algebra free product of the (Ai, µ̄i). If each µi is strictly localizable, this embedding
is an isomorphism.

325I Infinite products Just as in §254, we can now turn to products of infinite families of probability
algebras.

Theorem Let 〈(Xi,Σi, µi)〉i∈I be any family of probability spaces, with measure algebras (Ai, µ̄i). Let λ
be the product measure on X =

∏
i∈I Xi, and (C, λ̄) the corresponding measure algebra. For each i ∈ I,

we have a measure-preserving homomorphism εi : Ai → C corresponding to the inverse-measure-preserving
function x 7→ x(i) : X → Xi. Let (B, ν̄) be a probability algebra, and φi : Ai → B Boolean homomorphisms
such that ν̄(infi∈J φi(ai)) =

∏
i∈J µ̄iai whenever J ⊆ I is a finite set and ai ∈ Ai for every i. Then there is

a unique measure-preserving Boolean homomorphism φ : C → B such that φεi = φi for every i ∈ I.

proof (a) As remarked in 254Fb, all the maps x 7→ x(i) are inverse-measure-preserving, so correspond to
measure-preserving homomorphisms εi : Ai → C (324M). It will be helpful to use some notation from §254.
Write C for the family of measurable cylinders in X expressible in the form

E = {x : x ∈ X, x(i) ∈ Ei for every i ∈ J},

where J ⊆ I is finite and Ei ∈ Σi for every i ∈ J . Note that in this case

E• = infi∈J εi(E
•
i ).

Set

C = {E• : E ∈ C} ⊆ C,

so that C is precisely the family of elements of C expressible in the form infi∈J φi(ai) where J ⊆ I is finite
and ai ∈ Ai for each i.

The homomorphisms εi : Ai → C define a Boolean homomorphism ψ :
⊗

i∈I Ai → C (315J), which is
injective. PPP If c ∈

⊗
i∈I Ai is non-zero, there must be a finite set J ⊆ I and a family 〈ai〉i∈J such that

ai ∈ Ai \ {0} for each i and c ⊇ infi∈J ε̃i(ai), where for the moment I write ε̃i for the canonical map from
Ai to

⊗
i∈I Ai (315Kb). Express each ai as E•

i , where Ei ∈ Σi. Then

E = {x : x ∈ X, x(i) ∈ Ei for each i ∈ J}

has measure

λE =
∏
i∈J µEi =

∏
i∈J µ̄ai 6= 0,

while

E• = ψ(infi∈J ε̃i(ai)) ⊆ ψ(c),

so ψ(c) 6= 0. As c is arbitrary, ψ is injective. QQQ

(b) Because ψ is injective, it is an isomorphism between
⊗

i∈I Ai and its image in C. I trust it will cause
no confusion if I abuse notation slightly and treat

⊗
i∈I Ai as actually a subalgebra of C, so that εj : Aj → C

becomes identified with ε̃j : Aj →
⊗

i∈I Ai. Now the Boolean homomorphisms φi : Ai → B correspond to a

Boolean homomorphism θ :
⊗

i∈I Ai → B. The point is that ν̄θ(c) = λ̄c for every c ∈
⊗

i∈I Ai. PPP Suppose
to begin with that c ∈ C. Then we have c = E•, where E = {x : x(i) ∈ Ei ∀ i ∈ J} and Ei ∈ Σi for each
i ∈ J . So

λ̄c = λE =
∏

i∈J

µEi =
∏

i∈J

µ̄iE
•

i = ν̄(inf
i∈J

φai)

= ν̄(inf
i∈J

θεi(ai)) = ν̄θ(inf
i∈J

εi(ai)) = ν̄θ(c).

Next, any c ∈
⊗

i∈I Ai is expressible as the supremum of a finite disjoint family 〈ck〉k∈K in C (315Kb), so

ν̄θ(c) =
∑
k∈K ν̄θ(ck) =

∑
k∈K λ̄(ck) = λ̄c. QQQ

(c) It follows that θ is uniformly continuous for the measure metrics defined by ν̄ and λ̄, since
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ν̄(θ(c) △ θ(c′)) = ν̄θ(c△ c′) = λ̄(c△ c′)

for all c, c′ ∈
⊗

i∈I Ai.

(d) Next,
⊗

i∈I Ai is topologically dense in C. PPP Let c ∈ C, ǫ > 0. Express c as W •. Then by 254Fe
there are H0, . . . , Hk ∈ C such that λ(W△

⋃
j≤kHj) ≤ ǫ. Now cj = H•

j ∈ C for each j, so

c′ = supj≤k cj = (
⋃
j≤kHj)

• ∈
⊗

i∈I Ai,

and λ̄(c△ c′) ≤ ǫ. QQQ
Since B is complete for its uniformity (323Gc), there is a uniformly continuous function φ : C → B

extending θ (3A4G).

(e) Because θ is a Boolean homomorphism, so is φ. PPP (i) The functions c 7→ φ(1 \ c), 1 \ φ(c) are
continuous and the topology of B is Hausdorff, so {c : φ(1 \ c) = 1 \ φ(c)} is closed; as it includes

⊗
i∈I Ai,

it must be the whole of C. (ii) The functions (c, c′) 7→ φ(c ∪ c′), (c, c′) 7→ φ(c) ∪ φ(c′) are continuous, so
{(c, c′) : φ(c ∪ c′) = φ(c) ∪ φ(c′)} is closed in C× C; as it includes

⊗
i∈I AI ×

⊗
i∈I Ai, it must be the whole

of C× C. QQQ

(f) Because θ is measure-preserving, so is φ. PPP The functions c 7→ λ̄c, c 7→ ν̄φ(c) are continuous and
equal on

⊗
i∈I Ai, so are equal on C. QQQ

(g) Finally, to see that φ is unique, observe that any measure-preserving Boolean homomorphism from
C to B must be continuous, so that if it agrees with φ on

⊗
i∈I Ai it must agree with φ on C.

325J Of course this leads at once to a result corresponding to 325D.

Theorem Let 〈(Ai, µ̄i)〉i∈I be a family of probability algebras.
(a) There is a probability algebra (C, λ̄), together with measure-preserving Boolean homomorphisms

εi : Ai → C for i ∈ I, such that whenever (B, ν̄) is a probability algebra, and φi : Ai → B are Boolean
homomorphisms such that ν̄(infi∈J φi(ai)) =

∏
i∈J µ̄iai whenever J ⊆ I is finite and ai ∈ Ai for each i ∈ J ,

then there is a unique measure-preserving Boolean homomorphism φ : C → B such that φεi = φi for every
i ∈ I.

(b) The structure (C, λ̄, 〈εi〉i∈I) is determined up to isomorphism by this property.
(c) The Boolean homomorphism ψ :

⊗
i∈I Ai → C defined from the εi is injective, and ψ[

⊗
i∈I Ai] is

topologically dense in C.

proof For (a) and (c), all we have to do is represent each (Ai, µ̄i) as the measure algebra of a probability
space, and apply 325I. The uniqueness of C and the εi follows from the uniqueness of the homomorphisms
φ, as in 325Db.

325K Definition As in 325Ea, we can say that (C, λ̄, 〈εi〉i∈I) is a, or the, probability algebra free
product of 〈(Ai, µ̄i)〉i∈I .

325L Independent subalgebras If (A, µ̄) is a probability algebra, we say that a family 〈Bi〉i∈I of
subalgebras of A is stochastically independent if µ̄(infi∈J bi) =

∏
i∈J µ̄bi whenever J ⊆ I is finite and

bi ∈ Bi for each i. (Compare 272Ab.) If every Bi is closed, so that (Bi, µ̄↾Bi) is a probability algebra,
the identity maps ιi : Bi → A satisfy the conditions of the universal mapping theorem 325Ja, so we have
a probability algebra free product (C, µ̄↾C, 〈ιi〉i∈I) of 〈(Bi, µ̄↾Bi)〉i∈I , where C =

∨
i∈I Bi is the closed

subalgebra of A generated by
⋃
i∈I Bi.

Conversely, if 〈(Ai, µ̄i)〉i∈I is any family of probability algebras with probability algebra free product
(C, λ̄, 〈εi〉i∈I), then 〈εi[Ai]〉i∈I is an independent family of closed subalgebras of C. (Compare 272J, 315Xp.)

325M We can now make a general trawl through Chapters 25 and 27 seeking results which can be
expressed in the language of this section. I give some in 325Xf-325Xi. Some ideas from §254 which are
thrown into sharper relief by a reformulation are in the following theorem.

Theorem Let 〈(Ai, µ̄i)〉i∈I be a family of probability algebras and (C, λ̄, 〈εi〉i∈I) their probability algebra
free product. For J ⊆ I let CJ =

∨
i∈J εi[Ai] be the closed subalgebra of C generated by

⋃
i∈J εi[Ai].
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(a) For any J ⊆ I, (CJ , λ̄↾CJ , 〈εi〉i∈J ) is a probability algebra free product of 〈(Ai, µ̄i)〉i∈J .
(b)(i) For any c ∈ C, there is a unique smallest Jc ⊆ I such that c ∈ CJc , and this Jc is countable.

(ii) If c, d ∈ C and c ⊆ d, then there is an e ∈ CJc∩Jd such that c ⊆ e ⊆ d.
(c) For any non-empty family J ⊆ PI,

⋂
J∈J CJ = C⋂

J .

proof (a) If (B, ν̄, 〈φi〉i∈J) is any probability algebra free product of 〈(Ai, µ̄i)〉i∈J , then we have a measure-
preserving homomorphism ψ : B → C such that ψφi = εi for every i ∈ J . Because the subalgebra B0 of
B generated by

⋃
i∈J φi[Ai] is topologically dense in B (325Jc), and ψ is continuous (324Kb),

⋃
i∈J εi[Ai]

is topologically dense in ψ[B]; also ψ[B] is closed in C (324Kb again). But this means that ψ[B] is just the
topological closure of

⋃
i∈I εi[Ai] and must be CJ . Thus ψ is an isomorphism, and

(CJ , λ̄↾CJ , 〈εi〉i∈J) = (ψ[B], ν̄ψ−1, 〈ψφi〉i∈J )

also is a probability algebra free product of 〈(Ai, µ̄i)〉i∈J .

(b) As in 325J, we may suppose that each (Ai, µ̄i) is the measure algebra of a probability space (Xi,Σi, µi),
and that C is the measure algebra of their product (X,Λ, λ). For J ⊆ I let ΛJ be the set of members of
Λ which are determined by coordinates in J . Then {x : x(i) ∈ E} ∈ ΛJ for every i ∈ J and E ∈ Σi; so
{U• : U ∈ ΛJ} is a closed subalgebra of C including εi[Ai] for every i ∈ J , and therefore including CJ .
On the other hand, as observed in 254Ob, any member of ΛJ is approximated, in measure, by sets in the
σ-algebra TJ generated by sets of the form {x : x(i) ∈ E} where i ∈ J and E ∈ Σi. Of course TJ ⊆ ΛJ , so
{W • : W ∈ ΛJ} = {W • : W ∈ TJ} is the closed subalgebra of C generated by

⋃
i∈J εi[Ai], which is CJ .

(i) Let W ∈ Λ be such that c = W •. By 254Rd, there is a smallest Jc ⊆ I such that W△U is negligible
for some U ∈ ΛJc , and Jc is countable. By the remarks above, Jc is also the unique smallest subset of I
such that c ∈ CJc .

(ii) Let U ∈ ΛJc , V ∈ ΛJd be such that c = U• and d = V •. We can think of λ as a product λ′ × λ′′

where λ′ is the product measure on X ′ =
∏
i∈Jd

Xi and λ′′ is the product measure on X ′′ =
∏
i∈I\Jd

Xi

(254N). Express V as V0 ×X ′′ where V0 ⊆ X ′ belongs to the domain of λ′ (254Ob). Consider

W0 = {z : z ∈ X ′, {w : w ∈ X ′′, (z, w) ∈ U} is not λ′′-negligible};

then W0 is measured by λ′, by Fubini’s theorem (252B or 252D). Because c ⊆ d, U \ V is λ-negligible and
W0\V0 is λ′-negligible, while W0 is determined by coordinates in Jc∩Jd. So W = W0×X

′′ also is determined
by coordinates in Jc ∩ Jd, while U \W and W \ V are λ-negligible. We can therefore take e = W •.

(c) Of course CK ⊆ CJ whenever K ⊆ J ⊆ I, so
⋂
J∈J CJ ⊇ C⋂

J . On the other hand, suppose
that c ∈

⋂
J∈J CJ ; then by (b-i) there is some K ⊆

⋂
J such that c ∈ CK ⊆ C⋂

J . As c is arbitrary,⋂
J∈J CJ = C⋂

J .

*325N Notation In this context, I will say that an element c of C is determined by coordinates in
J if c ∈ CJ .

325X Basic exercises (a) Let (A1, µ̄1), (A2, µ̄2) be two semi-finite measure algebras, and suppose that
for each j we are given a closed subalgebra Bj of Aj such that (Bj , ν̄j) also is semi-finite, where ν̄j = µ̄j↾Bj .

Show that the localizable measure algebra free product (B1, ν̄1)⊗̂loc(B2, ν̄2) can be thought of as a closed
subalgebra of (A1, µ̄1)⊗̂loc(A2, µ̄2).

(b) Let (A1, µ̄1) and (A2, µ̄2) be two semi-finite measure algebras, and suppose that for each j we are
given a principal ideal Bj of Aj . Set ν̄j = µ̄j↾Bj . Show that the localizable measure algebra free product

(B1, ν̄1)⊗̂loc(B2, ν̄2) can be thought of as a principal ideal of (A1, µ̄1)⊗̂loc(A2, µ̄2).

(c) Let (A, µ̄) and (B, ν̄) be semi-finite measure algebras with localizations (Â, µ̃) and (B̂, ν̃). Show that

the localizable measure algebra free products (A, µ̄)⊗̂loc(B, ν̄) and (Â, µ̃)⊗̂loc(B̂, ν̃) are isomorphic.

>>>(d) Let 〈(Ai, µ̄i)〉i∈I and 〈(Bj , ν̄j)〉j∈J be families of semi-finite measure algebras, with simple products

(A, µ̄) and (B, ν̄) (322L). Show that the localizable measure algebra free product (A, µ̄)⊗̂loc(B, ν̄) can be
identified with the simple product of the family 〈(Ai, µ̄i)⊗̂loc(Bj , ν̄j)〉i∈I,j∈J .
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>>>(e) Let 〈(Ai, µ̄i)〉i∈I and 〈(A′
i, µ̄

′
i)〉i∈I be two families of probability algebras, and (C, λ̄, 〈εi〉i∈I), (C′, λ̄′, 〈ε′i〉i∈I)

their probability algebra free products. Suppose that for each i ∈ I we are given a measure-preserving
Boolean homomorphism πi : Ai → A′

i. Show that there is a unique measure-preserving Boolean homomor-
phism π : C → C′ such that πεi = ε′iπi for every i ∈ I.

>>>(f) Let (A, µ̄) be a probability algebra. We say that a family 〈ai〉i∈I in A is stochastically inde-
pendent if µ̄(infi∈J ai) =

∏
i∈J µ̄ai for every non-empty finite J ⊆ I. Show that this is so iff 〈Ai〉i∈I is

stochastically independent, where Ai = {0, ai, 1 \ ai, 1} for each i. (Compare 272F.)

>>>(g) Let (A, µ̄) be a probability algebra, and 〈Ai〉i∈I a stochastically independent family of closed
subalgebras of A. Let 〈J(k)〉k∈K be a disjoint family of subsets of I, and for each k ∈ K let Bk =

∨
i∈J(k) Ai

be the closed subalgebra of A generated by
⋃
i∈J(k) Ai. Show that 〈Bk〉k∈K is stochastically independent.

(Compare 272K.)

(h) Let (A, µ̄) be a probability algebra, and 〈Ai〉i∈I a stochastically independent family of closed subal-
gebras of A. For J ⊆ I set BJ =

∨
i∈J Ai. Show that

⋂
{BI\J : J is a finite subset of I} = {0, 1}. (Hint :

For J ⊆ I, show that µ̄(b ∩ c) = µ̄b · µ̄c for every b ∈ BI\J and c ∈ BJ . Compare 272O, 325M.)

(i) Let 〈(Ai, µ̄i)〉i∈I be a family of probability algebras with probability algebra free product (C, λ̄, 〈εi〉i∈I).
For J ⊆ I set CJ =

∨
i∈J εi[Ai]. Show that for any J , K ⊆ I and c ∈ C, CJ ∩ CK = CJ∩K and the upper

envelope upr(c,CJ∩K) is equal to upr(upr(c,CJ ),CK).

325Y Further exercises (a) Let µ be counting measure on X = {0}, µ′ the countable-cocountable
measure on X ′ = ω1, and ν counting measure on Y = ω1. Show that the measure algebras of the primitive
product measures on X × Y , X ′ × Y are not isomorphic.

(b) Let (A1, µ̄1), (A2, µ̄2), (A′
1, µ̄

′
1) and (A′

2, µ̄
′
2) be semi-finite measure algebras with localizable measure

algebra free products (C, λ̄, ε1, ε2) and (C′, λ̄′, ε′1, ε
′
2). Suppose that π1 : A1 → A′

1 and π2 : A2 → A′
2 are

measure-preserving Boolean homomorphisms. Show that there is a measure-preserving Boolean homomor-
phism π : C → C′ such that πεi = ε′iπi for both i, but that π is not necessarily unique.

(c) Let A be a Boolean algebra, and µ : A → [0,∞] a functional such that µ0 = 0, µa > 0 for every
a 6= 0, and µ(a ∪ b) = µa + µb whenever a, b ∈ A and a ∩ b = 0; suppose that Af = {a : µa < ∞} is
order-dense in A. For e ∈ Af , a, b ∈ A set ρe(a, b) = µ(e ∩ (a△ b)). Give A the uniformity defined by

{ρe : µe < ∞}. (i) Show that the completion Â of A under this uniformity has a measure µ̂, extending

µ, under which it is a localizable measure algebra. (ii) Show that if a ∈ Â, µ̂a < ∞ and ǫ > 0, there is a

b ∈ A such that µ̂(a△ b) ≤ ǫ. (iii) Show that for every a ∈ Â there is a sequence 〈an〉n∈N in A such that

a ⊇ supn∈N infm≥n am and µ̂a = µ̂(supn∈N infm≥n am). (iv) In particular, the set of infima in Â of sequences

in A is order-dense in Â. (v) Explain the relevance of this construction to the embedding A1 ⊗ A2 ⊂→ C in
325D.

(d) In 325F, set W =
⋃
n∈NEn × En. Show that if A, B are any non-negligible subsets of [0, 1], then

W ∩ (A×B) is not negligible.

(e) Let (A, µ̄) be the measure algebra of Lebesgue measure on [0, 1]. Show that A ⊗ A is ccc but not
weakly (σ,∞)-distributive. (Hint : (i) A ⊗ A is embeddable as a subalgebra of a probability algebra (ii) in
the notation of 325F, look at cmn = supm≤i≤n ei ⊗ ei.)

(f) Repeat 325F-325G and 325Yd-325Ye with an arbitrary atomless probability space in place of [0, 1].

(g) Let (A, µ̄) be a probability algebra and 〈ai〉i∈I a stochastically independent family in A. Show that
for any a ∈ A and ǫ > 0 the set {i : i ∈ I, |µ̄(a ∩ ai)− µ̄a · µ̄ai| ≥ ǫ} is finite, so that {i : µ̄(a ∩ ai) 6= µ̄a · µ̄ai}
is countable. (Hint : 272Ye2.)

2Formerly 272Yd.
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325 Notes and comments 325B shows that the measure algebra of a product measure may be irregular
if we have factor measures which are not strictly localizable. But two facts lead the way to the ‘local-
izable measure algebra free product’ in 325D-325E. The first is that every semi-finite measure algebra is
embeddable, in a canonical way, in a localizable measure algebra (322P); and the second is that the Stone
representation of a localizable measure algebra is strictly localizable (322O). It is a happy coincidence that
we can collapse these two facts together in the construction of 325D. Another way of looking at the localiz-
able measure algebra free product of two localizable measure algebras is to express it as the simple product
of measure algebra free products of totally finite measure algebras, using 325Xd and the fact that for σ-finite
measure algebras there is only one reasonable measure algebra free product, being that provided by any
representation of them as measure algebras of measure spaces (325Eb).

Yet a third way of approaching measure algebra free products is as the uniform space completions of
algebraic free products, using 325Yc. This gives the same result as the construction of 325D because
the algebraic free product appears as a topologically dense subalgebra of the localizable measure algebra
free product, which is complete as uniform space (325Dc). (I have to repeat such phrases as ‘topologically
dense’ because the algebraic free product is emphatically not order-dense in the measure algebra free product
(325F).) The results in 251I on approximating measurable sets for a c.l.d. product measure by combinations of
measurable rectangles correspond to general facts about completions of finitely-additive measures (325Yc(ii),
325Yc(iii)). It is worth noting that the completion process can be regarded as made up of two steps; first
take infima of sequences of sets of finite measure, and then take arbitrary suprema (325Yc(iv)).

The idea of 325F appears in many guises, and this is only the first time that I shall wish to call on it.
The point of the set W =

⋃
n∈NEn × En is that it is a measurable subset of the square (indeed, by taking

the En to be open sets we can arrange that W should be open), of measure strictly less than 1 (in fact,
as small as we wish), such that its complement does not include any non-negligible ‘measurable rectangle’
G ×H; indeed, W ∩ (A × B) is non-negligible for any non-negligible sets A, B ⊆ [0, 1] (325Yd). I believe
that the first published example of such a set was by Erdős & Oxtoby 55 (a version of which is in 532N
in Volume 5); I learnt the method of 325F from R.O.Davies.

I include 325G as a kind of guard-rail. The relationship between preservation of measure and order-
continuity is a subtle one, as I have already tried to show in 324K, and it is often worth considering the
possibility that a result involving order-continuous measure-preserving homomorphisms has a form applying
to all order-continuous homomorphisms. However, there is no simple expression of such an idea in the
present context.

In the context of infinite free products of probability algebras, there is a degree of simplification, since there
is only one algebra which can plausibly be called the probability algebra free product, and this is produced
by any realization of the algebras as measure algebras of probability spaces (325I-325K). The examples
325F-325G apply equally, of course, to this context. At this point I mention the concept of ‘stochastically
independent’ family (325L, 325Xf) because we have the machinery to translate several results from §272
into the language of measure algebras (325Xf-325Xh). I feel that I have to use the phrase ‘stochastically
independent’ here because there is the much weaker alternative concept of ‘Boolean independence’ (315Xp)
also present. But I leave most of this as exercises, because the language of measure algebras offers few ideas
to the probability theory already covered in Chapter 27. All it can do is formalise the ever-present principle
that negligible sets often can and should be ignored.

Version of 21.5.11

326 Additive functionals on Boolean algebras

I devote two sections to the general theory of additive functionals on measure algebras. As many readers
will rightly be in a hurry to get on to the next two chapters, I remark that the only significant result needed
for §§331-332 is the Hahn decomposition of a countably additive functional (326M), and that this is no more
than a translation into the language of measure algebras of a theorem already given in Chapter 23. The
concept of ‘standard extension’ of a countably additive functional from a subalgebra (327F-327G) will be
used for a theorem in §333, and as preparation for Chapter 36.

c© 2001 D. H. Fremlin
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I begin with notes on the space of additive functionals on an arbitrary Boolean algebra (326A-326D),
corresponding to 231A-231B, but adding a more general form of the Jordan decomposition of a bounded
additive functional into positive and negative parts (326D). The next four paragraphs are starred, because
they will not be needed in this volume; 326E is essential if you want to look at additive functionals on free
products, 326F is a basic classification criterion, and 326H is an important extension of a fundamental fact
about atomless measures noted in 215D, but all can be passed over on first reading. The next subsection
(326I-326M) deals with countably additive functionals, corresponding to 231C-231F. In 326N-326T I develop
a new idea, that of ‘completely additive’ functional, which does not match anything in the previous treatment.

326A Additive functionals: Definition Let A be a Boolean algebra. A functional ν : A → R is
finitely additive, or just additive, if ν(a ∪ b) = νa+ νb whenever a, b ∈ A and a ∩ b = 0.

A non-negative additive functional is sometimes called a finitely additive measure or charge.

326B Elementary facts Let A be a Boolean algebra and ν : A → R a finitely additive functional. The
following will I hope be obvious.

(a) ν0 = 0 (because ν0 = ν0 + ν0).

(b) If c ∈ A, then a 7→ ν(a ∩ c) is additive (because (a ∩ c) ∪ (b ∩ c) = (a ∪ b) ∩ c).

(c) αν is an additive functional for any α ∈ R. If ν ′ is another finitely additive functional on A, then
ν + ν ′ is additive.

(d) If 〈νi〉i∈I is any family of finitely additive functionals such that ν ′a =
∑
i∈I νia is defined in R for

every a ∈ A, then ν ′ is additive.

(e) If B is another Boolean algebra and π : B → A is a Boolean homomorphism, then νπ : B → R is
additive. In particular, if B is a subalgebra of A, then ν↾B : B → R is additive.

(f) ν is non-negative iff it is order-preserving – that is,

νa ≥ 0 for every a ∈ A ⇐⇒ νb ≤ νc whenever b ⊆ c

(because νc = νb+ ν(c \ b) if b ⊆ c).

326C The space of additive functionals Let A be any Boolean algebra. From 326Bc we see that the
set M of all finitely additive real-valued functionals on A is a linear space (a linear subspace of RA). We
give it the ordering induced by that of RA, so that ν ≤ ν ′ iff νa ≤ ν ′a for every a ∈ A. This renders it a
partially ordered linear space (because R

A is).

326D The Jordan decomposition (I): Proposition Let A be a Boolean algebra, and ν a finitely
additive real-valued functional on A. Then the following are equiveridical:

(i) ν is bounded;
(ii) supn∈N |νan| <∞ for every disjoint sequence 〈an〉n∈N in A;
(iii) limn→∞ |νan| = 0 for every disjoint sequence 〈an〉n∈N in A;
(iv)

∑∞
n=0 |νan| <∞ for every disjoint sequence 〈an〉n∈N in A;

(v) ν is expressible as the difference of two non-negative additive functionals.

proof (a)(i)⇒(v) Assume that ν is bounded. For each a ∈ A, set

ν+a = sup{νb : b ⊆ a}.

Because ν is bounded, ν+ is real-valued. Now ν+ is additive. PPP If a, b ∈ A and a ∩ b = 0, then

ν+(a ∪ b) = sup
c⊆a∪b

νc = sup
d⊆a,e⊆b

ν(d ∪ e) = sup
d⊆a,e⊆b

νd+ νe

(because d ∩ e ⊆ a ∩ b = 0 whenever d ⊆ a, e ⊆ b)
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40 Measure algebras 326D

= sup
d⊆a

νd+ sup
e⊆b

νe = ν+a+ ν+b. QQQ

Consequently ν− = ν+ − ν also is additive (326Bc).
Since

0 = ν0 ≤ ν+a, νa ≤ ν+a

for every a ∈ A, ν+ ≥ 0 and ν− ≥ 0. Thus ν = ν+ − ν− is the difference of two non-negative additive
functionals.

(b)(v)⇒(iv) If ν is expressible as ν1 − ν2, where ν1 and ν2 are non-negative additive functionals, and
〈an〉n∈N is disjoint, then

∑n
i=0 νjai = νj(supi≤n ai) ≤ νj1

for every n, both j, so that
∑∞
i=0 |νai| ≤

∑∞
i=0 ν1ai +

∑∞
i=0 ν2ai ≤ ν11 + ν21 <∞.

(c)(iv)⇒(iii)⇒(ii) are trivial.

(d) not-(i)⇒not-(ii) Suppose that ν is unbounded. Choose sequences 〈an〉n∈N, 〈bn〉n∈N inductively, as
follows. b0 = 1. Given that supa⊆bn

|νa| = ∞, choose cn ⊆ bn such that |νcn| ≥ |νbn| + n; then |νcn| ≥ n
and

|ν(bn \ cn)| = |νbn − νcn| ≥ |νcn| − |νbn| ≥ n.

We have

∞ = sup
a⊆bn

|νa| = sup
a⊆bn

|ν(a ∩ cn) + ν(a \ cn)|

≤ sup
a⊆bn

|ν(a ∩ cn)| + |ν(a \ cn)| ≤ sup
a⊆bn∩cn

|νa| + sup
a⊆bn\cn

|νa|,

so at least one of supa⊆bn∩cn |νa|, supa⊆bn\cn
|νa| must be infinite; take bn+1 to be one of cn, bn \ cn such

that supa⊆bn+1
|νa| = ∞, and set an = bn \ bn+1, so that |νan| ≥ n. Continue.

On completing the induction, we have a disjoint sequence 〈an〉n∈N such that |νan| ≥ n for every n, so
that (ii) is false.

Remark I hope that this reminds you of the decomposition of a function of bounded variation as the
difference of monotonic functions (224D).

*326E Additive functionals on free products In Volume 4, when we return to the construction of
measures on product spaces, the following fundamental fact will be useful.

Theorem Let 〈Ai〉i∈I be a non-empty family of Boolean algebras, with free product A; write εi : Ai → A

for the canonical maps, and

C = {infj∈J εj(aj) : J ⊆ I is finite, aj ∈ Aj for every j ∈ J}.

Suppose that θ : C → R is such that

θc = θ(c ∩ εi(a)) + θ(c ∩ εi(1 \ a))

whenever c ∈ C, i ∈ I and a ∈ Ai. Then there is a unique finitely additive functional ν : A → R extending
θ.

proof (a) It will help if I note at once that θ0 = 0. PPP

θ0 = θ(0 ∩ εi(0)) + θ(0 ∩ εi(1)) = 2θ0

for any i ∈ I. QQQ

(b) The key is of course the following fact: if 〈cr〉r≤m and 〈ds〉s≤n are two disjoint families in C with
the same supremum in A, then

∑m
r=0 θcr =

∑n
s=0 θds. PPP Let J ⊆ I be a finite set and Bi ⊆ Ai a finite
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subalgebra, for each i ∈ J , such that every cr and every ds belongs to the subalgebra A0 of A generated by
{εj(b) : j ∈ J, b ∈ Bj}. Next, if j ∈ J and b ∈ Bj , then

∑m
r=0 θcr =

∑m
r=0 θ(cr ∩ εj(b)) +

∑m
r=0 θ(cr \ εj(b)).

We can therefore find a disjoint family 〈c′r〉r≤m′ in C ∩ A0 such that

supr≤m′ c′r = supr≤m cr,
∑m′

r=0 θc
′
r =

∑m
r=0 θcr,

and whenever r ≤ m′, j ∈ J and b ∈ Bj then either c′r ⊆ εj(b) or c′r ∩ εj(b) = 0; that is, every c′r is either 0
or of the form infj∈J εj(bj) where bj is an atom of Bj for every j. Similarly, we can find 〈d′s〉s≤n′ such that

sups≤n′ d′s = sups≤n ds,
∑n′

s=0 θd
′
s =

∑n
s=0 θds,

and whenever s ≤ n′ and j ∈ J then d′s is either 0 or of the form infj∈J εj(bj) where bj is an atom of Bj for
every j. But we now have supr≤m′ c′r = sups≤n′ d′s while for any r ≤ m′, s ≤ n′ either c′r = d′s or c′r ∩ d′s = 0.
It follows that the non-zero terms in the finite sequence 〈c′r〉r≤m′ are just a rearrangement of the non-zero
terms in 〈d′s〉s≤n′ , so that

∑m
r=0 θcr =

∑m′

r=0 θc
′
r =

∑n′

s=0 θd
′
s =

∑n
s=0 θds,

as required. QQQ

(c) By 315Kb, this means that we have a functional ν : A → R such that ν(supr≤m cr) =
∑m
r=0 θcr

whenever 〈cr〉r≤m is a disjoint family in C. It is now elementary to check that ν is additive, and it is clearly
the only additive functional on A extending θ.

*326F I give a couple of pages to an interesting property of additive functionals on Dedekind σ-complete
Boolean algebras. I do not think it will be used in this book, and it really belongs to the theory of vector
measures, which is hardly considered here, but the ideas are important, and the following definition has
other uses.

Definition Let A be a Boolean algebra, and ν a finitely additive functional on A. I will say that ν is
properly atomless if for every ǫ > 0 there is a finite partition 〈ai〉i∈I of unity in A such that |νa| ≤ ǫ
whenever i ∈ I and a ⊆ ai.

*326G Lemma Let A be a Boolean algebra.
(a)(i) If ν, ν′ : A → R are properly atomless finitely additive functionals and α ∈ R, then αν and ν + ν′

are properly atomless additive functionals.
(ii) If ν : A → R is a properly atomless finitely additive functional, then ν is bounded and ν can be

expressed as the difference of two non-negative properly atomless additive functionals.
(b) Suppose that A is Dedekind σ-complete and that 〈νi〉i∈I is a family of non-negative additive functionals

on A such that for every a ∈ A there are an α ∈ [ 13 ,
2
3 ] and an a′ ⊆ a such that νia

′ = ανia for every i ∈ I.
Then for any a ∈ A there is a non-decreasing family 〈at〉t∈[0,1] in A such that a0 = 0, a1 = a and νiat = tνia
for every t ∈ [0, 1] and i ∈ I.

(c) Suppose that A is Dedekind σ-complete and that ν0, . . . , νn : A → [0,∞[ are properly atomless
additive functionals such that νia ≤ ν0a for every i ≤ n and a ∈ A. Then for any a ∈ A there is a
non-decreasing family 〈at〉t∈[0,1] in A such that a0 = 0, a1 = a and νiat = tνia for every t ∈ [0, 1] and i ≤ n.

proof (a)(i) Let ǫ > 0. Then there are finite partitions 〈ai〉i∈I , 〈bj〉j∈J of unity in A such that |νa| ≤
ǫ

2+|α

whenever i ∈ I and a ⊆ ai, while |ν′a| ≤
ǫ

2
whenever j ∈ J and a ⊆ bj . Now |(αν)(a)| ≤ ǫ whenever i ∈ I

and a ⊆ ai. Moreover, 〈ai ∩ bj〉(i,j)∈I×J is a finite partition of unity in A, and |(ν + ν′)(a)| ≤ ǫ whenever
i ∈ I, j ∈ J and a ⊆ ai ∩ bj .

(ii)(ααα) There is a finite partition 〈cj〉j∈J of unity in A such that |νa| ≤ 1 whenever i ∈ J and a ⊆ cj ;
now |νa| ≤

∑
j∈J |ν(a ∩ cj)| ≤ #(J) for every a ∈ A, so ν is bounded.

(βββ) Define ν+ as in part (a) of the proof of 326D, so that ν+ : A → [0,∞[ is additive. Now ν+

is properly atomless. PPP Given ǫ > 0, there is a finite partition 〈ai〉i∈I of unity in A such that |νa| ≤ ǫ
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whenever i ∈ I and a ⊆ ai; in which case ν+a = supb⊆a νb ≤ ǫ whenever i ∈ I and a ⊆ ai. QQQ As in 326D,

ν− = ν+ − ν is non-negative, and by (i) just above (or otherwise) it is properly atomless, so ν = ν+ − ν− is
the difference of non-negative properly atomless functionals.

(b) If νia = 0 for every i ∈ I, we can take at = 0 for 0 ≤ t < 1 and a1 = a. So suppose that k ∈ I is such

that νka > 0. For i ∈ I, set γi =
νia

νka
. Choose 〈Dn〉n∈N inductively, as follows. D0 = {0, a}. Given that

Dn is a finite totally ordered subset of {b : b ⊆ a} containing 0 and a and νid = γiνkd for every d ∈ Dn and
i ∈ I, then for each d ∈ Dn \ {a} let d′ be the next member of Dn strictly including d, and take bd ⊆ d′ \ d,
αd ∈ [ 13 ,

2
3 ] such that νibd = αdνi(d

′ \ d) for every i ∈ I. Then

νi(d ∪ bd) = (1 − αd)νid+ αdνid
′ = γi((1 − αd)νkd+ αdνkd

′) = γiνk(d ∪ bd)

for every i. Set Dn+1 = Dn ∪ {d ∪ bd : d ∈ Dn}; observe that Dn+1 is still totally ordered, and continue. At
the end of the induction, it is easy to see that νk(d′ \ d) ≤ ( 2

3 )nνia whenever n ∈ N and d ⊂ d′ are successive
members of Dn.

Set D =
⋃
n∈NDn. Then D is a countable totally ordered set with least element 0 and greatest element

a, and {νkd : d ∈ D} is dense in [0, νka]. For t ∈ ]0, 1], set at = sup{d : d ∈ D, νkd ≤ tνka}; this is where we
need to know that A is Dedekind σ-complete. Set a0 = 0. Then 〈at〉t∈[0,1] is a non-decreasing family with
a0 = 0 and a1 = a. If 0 < t < 1, i ∈ I and ǫ > 0, there are d, d′ ∈ D such that

tνka− ǫ ≤ νkd ≤ tνka < νkd
′ ≤ tνka+ ǫ,

tνia− γiǫ ≤ νid ≤ tνia < νid
′ ≤ tνia+ γiǫ;

in this case d ⊆ at ⊆ d′, so

tνia− γiǫ ≤ νiat ≤ tνia+ γiǫ;

as ǫ is arbitrary, νiat = tνia. Thus we have a suitable family 〈at〉t≥0.

(c) Induce on n.

(i) The induction starts with a single non-negative properly atomless functional ν0. Now for any a ∈ A

there is an a′ ⊆ a such that 1
3ν0a ≤ ν0a

′ ≤ 2
3ν0a. PPP This is trivial if ν0a = 0. Otherwise, let C be a finite

partition of unity in A such that ν0c ≤
1
3ν0a for every c ∈ C. Enumerate C as 〈ci〉i<m and for i ≤ m set

bi = a ∩ supj<i cj . Then b0 = 0, bm = a and ν0bi+1 − ν0bi ≤ ν0ci ≤
1
3ν0a for each i. So there must be an

i ≤ m such that 1
3ν0a ≤ ν0bi ≤

2
3ν0a, and we can set a′ = bi. QQQ

Now (b), with I = {0}, gives the result.

(ii) For the inductive step to n ≥ 1, I show first that if a ∈ A there is an a′ ⊆ a such that νia
′ = 1

2νia
for every i ≤ n. PPP By the inductive hypothesis, we have a non-decreasing family 〈at〉t∈[0,1] such that a0 = 0,
a1 = a and νiat = tνia whenever t ∈ [0, 1] and i < n. Now observe that for 0 ≤ s ≤ t ≤ 1,

|νnat − νnas| = νn(at \ as) ≤ ν0(at \ as) = (t− s)ν0a.

So the functions t 7→ νnat : [0, 1] → [0,∞[ and f : [0, 12 ] → [0,∞[ are continuous, where f(t) = νnat+ 1
2
−νnat

for 0 ≤ t ≤ 1
2 . However, f(0) + f( 1

2 ) = νna, so 1
2νna lies between f(0) and f( 1

2 ) and there is a t ∈ [0, 12 ]

such that f(t) = 1
2νna. Set a′ = at+ 1

2
\ at; then νia

′ = 1
2νia for every i ≤ n, as required. QQQ

Once again (b), with I = {0, . . . , n}, shows that for any a ∈ A we have a non-decreasing family 〈at〉t∈[0,1]

such that a0 = 0, a1 = 1 and νiat = tνia whenever t ∈ [0, 1] and i ≤ n.

*326H Liapounoff’s convexity theorem (Liapounoff 1940) Let A be a Dedekind σ-complete
Boolean algebra, and r ≥ 1 an integer. Suppose that ν : A → R

r is additive in the sense that ν(a ∪ b) =
νa + νb whenever a ∩ b = 0 (see 361B), and properly atomless in the sense that for every ǫ > 0 there is a
finite partition 〈aj〉j∈J of unity in A such that ‖νa‖ ≤ ǫ whenever j ∈ J and a ⊆ aj . Then {νa : a ∈ A} is
a convex set in R

r.(3)

proof For 1 ≤ i ≤ r, let νi be the ith component of ν, so that νa = 〈νia〉1≤i≤r for each a ∈ A. Then every
νi is additive. Moroever, it is properly atomless. PPP Given ǫ > 0, there is a finite partition 〈aj〉j∈J of unity

3I learnt this version of the theorem from K.P.S.Bhaskara Rao.

Measure Theory



326K Additive functionals on Boolean algebras 43

in A such that |νia| ≤ ‖νa‖ ≤ ǫ whenever j ∈ J and a ⊆ aj . QQQ So we can express νi as ν+i − ν−i where ν+i
and ν−i are non-negative properly atomless non-negative functionals (326G(a-ii)). Set ν̃a =

∑r
i=1 ν

+
i a+ν−i a

for a ∈ A. Then ν̃ is again properly atomless (326G(a-i)).
Suppose that x, y ∈ ν[A] and α ∈ [0, 1]. Let a, b ∈ A be such that νa = x and νb = y. By 326Gc, applied

to ν̃, ν+1 , ν
−
1 , . . . , ν

+
r , ν

−
r , there is an c ⊆ a \ b such that

ν+i c = αν+i (a \ b), ν−i c = αν−i (a \ b),

for every i ≤ r, so that νic = ανi(a \ b) for every i ≤ r. Similarly, there is a d ⊆ b \ a such that νd =
(1 − α)ν(b \ d). Now e = c ∪ (a ∩ b) ∪ d,

αx+ (1 − α)y = ανa+ (1 − α)νb

= αν(a \ b) + αν(a ∩ b) + (1 − α)ν(a ∩ b) + (1 − α)ν(b \ a)

= νc+ ν(a ∩ b) + νd = ν(c ∪ (a ∩ b) ∪ d) ∈ ν[A].

As x, y and α are arbitrary, ν[A] is convex.

326I Countably additive functionals: Definition Let A be a Boolean algebra. A functional ν :
A → R is countably additive or σ-additive if

∑∞
n=0 νan is defined and equal to ν(supn∈N an) whenever

〈an〉n∈N is a disjoint sequence in A and supn∈N an is defined in A.
A warning is perhaps in order. It can happen that A is presented to us as a subalgebra of a larger algebra

B; for instance, A might be an algebra of sets, a subalgebra of some σ-algebra Σ ⊆ PX. In this case,
there may be sequences in A which have a supremum in A which is not a supremum in B (indeed, this will
happen just when the embedding is not sequentially order-continuous). So we can have a countably additive
functional ν : B → R such that ν↾A is not countably additive in the sense used here. A similar phenomenon
will arise when we come to the Daniell integral in Volume 4 (§436).

326J Elementary facts Let A be a Boolean algebra and ν : A → R a countably additive functional.

(a) ν is finitely additive. (Setting an = 0 for every n, we see from the definition in 326I that ν0 = 0.
Now, given a ∩ b = 0, set a0 = a, a1 = b, an = 0 for n ≥ 2 to see that ν(a ∪ b) = νa+ νb.)

(b) If 〈an〉n∈N is a non-decreasing sequence in A with a supremum a ∈ A, then

νa = νa0 +
∑∞
n=0 ν(an+1 \ an) = limn→∞ νan.

(c) If 〈an〉n∈N is a non-increasing sequence in A with an infimum a ∈ A, then 〈a0 \ an〉n∈N is a non-
decreasing sequence with supremum a0 \ a, so

νa = νa0 − ν(a0 \ a) = νa0 − limn→∞ ν(a0 \ an) = limn→∞ νan.

(d) If c ∈ A, then a 7→ ν(a ∩ c) is countably additive. (For supn∈N an ∩ c = c ∩ supn∈N an whenever the
right-hand-side is defined, by 313Ba.)

(e) αν is a countably additive functional for any α ∈ R. If ν ′ is another countably additive functional on
A, then ν + ν ′ is countably additive.

(f) If B is another Boolean algebra and π : B → A is a sequentially order-continuous Boolean homomor-
phism, then νπ is a countably additive functional on B. (For if 〈bn〉n∈N is a disjoint sequence in B with
supremum b, then 〈πbn〉n∈N is a disjoint sequence with supremum πb.)

(g) If A is Dedekind σ-complete and B is a σ-subalgebra of A, then ν↾B : B → R is countably additive.
(For the identity map from B to A is sequentially order-continuous, by 314Gb.)

326K Corollary Let A be a Boolean algebra and ν a finitely additive real-valued functional on A.
(a) ν is countably additive iff limn→∞ νan = 0 whenever 〈an〉n∈N is a non-increasing sequence in A with

infimum 0 in A.
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(b) If ν ′ is an additive functional on A and |ν ′a| ≤ νa for every a ∈ A, and ν is countably additive, then
ν ′ is countably additive.

(c) If ν is non-negative, then ν is countably additive iff it is sequentially order-continuous.

proof (a)(i) If ν is countably additive and 〈an〉n∈N is a non-increasing sequence in A with infimum 0, then
limn→∞ νan = 0 by 326Jc. (ii) If ν satisfies the condition, and 〈an〉n∈N is a disjoint sequence in A with
supremum a, set bn = a \ supi≤n ai for each n ∈ N; then 〈bn〉n∈N is non-increasing and has infimum 0, so

νa−
∑n
i=0 νai = νa− ν(supi≤n ai) = νbn → 0

as n→ ∞, and νa =
∑∞
n=0 νan; thus ν is countably additive.

(b) If 〈an〉n∈N is a disjoint sequence in A with supremum a, set bn = supi≤n ai for each n; then νa =
limn→∞ νbn, so

limn→∞ |ν ′a− ν ′bn| = limn→∞ |ν ′(a \ bn)| ≤ limn→∞ ν(a \ bn) = 0,

and
∑∞
n=0 ν

′an = limn→∞ ν ′bn = ν ′a.

(c) If ν is countably additive, then it is sequentially order-continuous by 326Jb-326Jc. If ν is sequentially
order-continuous, then of course it satisfies the condition of (a), so is countably additive.

326L The Jordan decomposition (II): Proposition Let A be a Boolean algebra and ν a bounded
countably additive real-valued functional on A. Then ν is expressible as the difference of two non-negative
countably additive functionals.

proof Consider the functional ν+a = supb⊆a νb defined in the proof of 326D. If 〈an〉n∈N is a disjoint
sequence in A with supremum a, and b ⊆ a, then

νb =
∑∞
n=0 ν(b ∩ an) ≤

∑∞
n=0 ν

+an.

As b is arbitrary, ν+a ≤
∑∞
n=0 ν

+an. But of course

ν+a ≥ ν+(supi≤n ai) =
∑n
i=0 ν

+ai

for every n ∈ N, so ν+a =
∑∞
n=0 ν

+an. As 〈an〉n∈N is arbitrary, ν+ is countably additive.
Now ν− = ν+− ν also is countably additive, and ν = ν+− ν− is the difference of non-negative countably

additive functionals.

326M The Hahn decomposition: Theorem Let A be a Dedekind σ-complete Boolean algebra and
ν : A → R a countably additive functional. Then ν is bounded and there is a c ∈ A such that νa ≥ 0
whenever a ⊆ c, while νa ≤ 0 whenever a ∩ c = 0.

first proof By 314M, there are a set X and a σ-algebra Σ of subsets of X and a sequentially order-continuous
Boolean homomorphism π from Σ onto A. Set ν1 = νπ : Σ → R. Then ν1 is countably additive (326Jf).
So ν1 is bounded and there is a set H ∈ Σ such that ν1F ≥ 0 whenever F ∈ Σ and F ⊆ H and ν1F ≤ 0
whenever F ∈ Σ and F ∩ H = ∅ (231Eb). Set c = πH ∈ A. If a ⊆ c, then there is an F ∈ Σ such that
πF = a; now π(F ∩H) = a ∩ c = a, so νa = ν1(F ∩H) ≥ 0. If a ∩ c = 0, then there is an F ∈ Σ such that
πF = a; now π(F \H) = a \ c = a, so νa = ν1(F \H) ≤ 0.

second proof (a) Note first that ν is bounded. PPP If 〈an〉n∈N is a disjoint sequence in A, then
∑∞
n=0 νan

must exist and be equal to ν(supn∈N an); in particular, limn→∞ νan = 0. By 326D, ν is bounded. QQQ

(b)(i) We know that γ = sup{νa : a ∈ A} <∞. Choose a sequence 〈an〉n∈N in A such that νan ≥ γ−2−n

for every n ∈ N. For m ≤ n ∈ N, set bmn = infm≤i≤n ai. Then νbmn ≥ γ − 2 · 2−m + 2−n for every n ≥ m.
PPP Induce on n. For n = m, this is due to the choice of am = bmm. For the inductive step, we have
bm,n+1 = bmn ∩ an+1, while surely γ ≥ ν(an+1 ∪ bmn), so

γ + νbm,n+1 ≥ ν(an+1 ∪ bmn) + ν(an+1 ∩ bmn)

= νan+1 + νbmn ≥ γ − 2−n−1 + γ − 2 · 2−m + 2−n

(by the choice of an+1 and the inductive hypothesis)
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= 2γ − 2 · 2−m + 2−n−1.

Subtracting γ from both sides, νbm,n+1 ≥ γ − 2 · 2−m + 2−n−1 and the induction proceeds. QQQ

(ii) Set

bm = infn≥m bmn = infn≥m an.

Then

νbm = limn→∞ νbmn ≥ γ − 2 · 2−m,

by 326Jc. Next, 〈bn〉n∈N is non-decreasing, so setting c = supn∈N bn we have

νc = limn→∞ νbn ≥ γ;

since νc is surely less than or equal to γ, νc = γ.
If b ∈ A and b ⊆ c, then

νc− νb = ν(c \ b) ≤ γ = νc,

so νb ≥ 0. If b ∈ A and b ∩ c = 0 then

νc+ νb = ν(c ∪ b) ≤ γ = νc

so νb ≤ 0. This completes the proof.

326N Completely additive functionals: Definition Let A be a Boolean algebra. A functional
ν : A → R is completely additive or τ-additive if it is finitely additive and infa∈A |νa| = 0 whenever A
is a non-empty downwards-directed set in A with infimum 0.

326O Basic facts Let A be a Boolean algebra and ν a completely additive real-valued functional on A.

(a) ν is countably additive. PPP If 〈an〉n∈N is a non-increasing sequence in A with infimum 0, then for any
infinite I ⊆ N the set {ai : i ∈ I} is downwards-directed and has infimum 0, so infi∈I |νai| = 0; which means
that limn→∞ νan must be zero. By 326Ka, ν is countably additive. QQQ

(b) Let A be a non-empty downwards-directed set in A with infimum 0. Then for every ǫ > 0 there is an
a ∈ A such that |νb| ≤ ǫ whenever b ⊆ a. PPP??? Suppose, if possible, otherwise. Set

B = {b : |νb| ≥ ǫ, ∃ a ∈ A, b ⊇ a}.

If a ∈ A there is a b′ ⊆ a such that |νb′| > ǫ. Now {a′ \ b′ : a′ ∈ A, a′ ⊆ a} is downwards-directed and has
infimum 0, so there is an a′ ∈ A such that a′ ⊆ a and |ν(a′ \ b′)| ≤ |νb′| − ǫ. Set b = b′ ∪ a′; then a′ ⊆ b and

|νb| = |νb′ + ν(a′ \ b′)| ≥ |νb′| − |ν(a′ \ b′)| ≥ ǫ,

so b ∈ B. But also b ⊆ a. Thus every member of A includes some member of B. Since every member
of B includes a member of A, B is downwards-directed and has infimum 0; but this is impossible, since
infb∈B |νb| ≥ ǫ. XXXQQQ

(c) If ν is non-negative, it is order-continuous. PPP (i) If A is a non-empty upwards-directed set with
supremum a0, then {a0 \ a : a ∈ A} is a non-empty downwards-directed set with infimum 0, so

supa∈A νa = νa0 − infa∈A ν(a0 \ a) = νa0.

(ii) If A is a non-empty downwards-directed set with infimum a0, then {a \ a0 : a ∈ A} is a non-empty
downwards-directed set with infimum 0, so

infa∈A νa = νa0 + infa∈A ν(a \ a0) = νa0. QQQ

(d) If c ∈ A, then a 7→ ν(a ∩ c) is completely additive. PPP If A is a non-empty downwards-directed set
with infimum 0, so is {a ∩ c : a ∈ A}, and infa∈A |ν(a ∩ c)| = 0. QQQ
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(e) αν is a completely additive functional for any α ∈ R. If ν ′ is another completely additive functional
on A, then ν + ν ′ is completely additive. PPP We know from 326Bc that ν + ν ′ is additive. Let A be a
non-empty downwards-directed set with infimum 0. For any ǫ > 0, (b) tells us that there are a, a′ ∈ A such
that |νb| ≤ ǫ whenever b ⊆ a and |ν ′b| ≤ ǫ whenever b ⊆ a′. But now, because A is downwards-directed,
there is a b ∈ A such that b ⊆ a ∩ a′, which means that |νb+ν ′b| ≤ |νb|+ |ν ′b| is at most 2ǫ. As ǫ is arbitrary,
infa∈A |(ν + ν ′)(a)| = 0, and ν + ν ′ is completely additive. QQQ

(f) If B is another Boolean algebra and π : B → A is an order-continuous Boolean homomorphism,
then νπ is a completely additive functional on B. PPP By 326Be, νπ is additive. If B ⊆ B is a non-empty
downwards-directed set with infimum 0 in B, then π[B] is a non-empty downwards-directed set with infimum
0 in A, because π is order-continuous, so infb∈B |νπb| = 0. QQQ In particular, if B is a regularly embedded
subalgebra of A, then ν↾B is completely additive.

(g) If ν ′ is another additive functional on A and |ν ′a| ≤ νa for every a ∈ A, then ν ′ is completely additive.
PPP If A ⊆ A is non-empty and downwards-directed and inf A = 0, then infa∈A |ν ′a| ≤ infa∈A νa = 0. QQQ

326P I squeeze a useful fact in here.

Proposition If A is a ccc Boolean algebra, a functional ν : A → R is countably additive iff it is completely
additive.

proof If ν is completely additive it is countably additive, by 326Oa. If ν is countably additive and A is
a non-empty downwards-directed set in A with infimum 0, then there is a (non-empty) countable subset B
of A also with infimum 0 (316E). Let 〈bn〉n∈N be a sequence running over B, and choose 〈an〉n∈N in A such
that a0 = b0, an+1 ⊆ an ∩ bn for every n ∈ N. Then 〈an〉n∈N is a non-increasing sequence with infimum 0,
so limn→∞ νan = 0 (326Jc) and infa∈A |νa| = 0. As A is arbitrary, ν is completely additive.

326Q The Jordan decomposition (III): Proposition Let A be a Boolean algebra and ν a completely
additive real-valued functional on A. Then ν is bounded and expressible as the difference of two non-negative
completely additive functionals.

proof (a) I must first check that ν is bounded. PPP Let 〈an〉n∈N be a disjoint sequence in A. Set

A = {a : a ∈ A, there is an n ∈ N such that ai ⊆ a for every i ≥ n}.

Then A is closed under ∩ , and if b is any lower bound for A then b ⊆ 1 \ an ∈ A, so b ∩ an = 0, for every
n ∈ N; but this means that 1 \ b ∈ A, so that b ⊆ 1 \ b and b = 0. Thus inf A = 0. By 326Ob, there is
an a ∈ A such that |νb| ≤ 1 whenever b ⊆ a. By the definition of A, there must be an n ∈ N such that
|νai| ≤ 1 for every i ≥ n. But this means that supn∈N |νan| is finite. As 〈an〉n∈N is arbitrary, ν is bounded,
by 326D(ii). QQQ

(b) As in 326D and 326L, set ν+a = supb⊆a νb for every a ∈ A. Then ν+ is completely additive. PPP We

know that ν+ is additive. If A is a non-empty downwards-directed subset of A with infimum 0, then for
every ǫ > 0 there is an a ∈ A such that |νb| ≤ ǫ whenever b ⊆ a; in particular, ν+a ≤ ǫ. As ǫ is arbitrary,
infa∈A ν

+a = 0; as A is arbitrary, ν+ is completely additive. QQQ
Consequently ν− = ν+−ν is completely additive (326Oe) and ν = ν+−ν− is the difference of non-negative

completely additive functionals.

326R I give an alternative definition of ‘completely additive’ which you may feel clarifies the concept.

Proposition Let A be a Boolean algebra, and ν : A → R a function. Then the following are equiveridical:
(i) ν is completely additive;
(ii) ν1 =

∑
i∈I νai whenever 〈ai〉i∈I is a partition of unity in A;

(iii) νa =
∑
i∈I νai whenever 〈ai〉i∈I is a disjoint family in A with supremum a.

proof (For notes on sums
∑
i∈I , see 226A.)

(a)(i)⇒(ii) If ν is completely additive and 〈ai〉i∈I is a partition of unity in A, then (inducing on #(J))
ν(supi∈J ai) =

∑
i∈J νai for every finite J ⊆ I. Consider
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A = {1 \ supi∈J ai : J ⊆ I is finite}.

Then A is non-empty and downwards-directed and has infimum 0, so for every ǫ > 0 there is an a ∈ A such
that |νb| ≤ ǫ whenever b ⊆ a (326Ob again). Express a as 1 \ supi∈J ai where J ⊆ I is finite. If now K is
another finite subset of I including J ,

|ν1 −
∑
i∈K ai| = |ν(1 \ supi∈K ai)| ≤ ǫ.

As remarked in 226Ad, this means that ν1 =
∑
i∈I νai, as claimed.

(b)(ii)⇒(iii) Suppose that ν satisfies the condition (ii), and that 〈ai〉i∈I is a disjoint family with supre-
mum a. Take any j /∈ I, set J = I ∪ {j} and aj = 1 \ a; then 〈ai〉i∈J , (a, 1 \ a) are both partitions of unity,
so

ν(1 \ a) + νa = ν1 =
∑
i∈J νai = ν(1 \ a) +

∑
i∈I νai,

and νa =
∑
i∈I νai.

(c)(iii)⇒(i) Suppose that ν satisfies (iii). Then ν is additive.

(ααα) ν is bounded. PPP Let 〈an〉n∈N be a disjoint sequence in A. Applying Zorn’s Lemma to the set C
of all disjoint families C ⊆ A including {an : n ∈ N}, we find a partition of unity C ⊇ {an : n ∈ N}. Now∑
c∈C νc is defined in R, so supn∈N |νan| ≤ supc∈C |νc| is finite. By 326D, ν is bounded. QQQ

(βββ) Define ν+ from ν as in 326D. Then ν+ satisfies the same condition as ν. PPP Let 〈ai〉i∈I be a disjoint
family in A with supremum a. Then for any b ⊆ a, we have b = supi∈I b ∩ ai, so

νb =
∑
i∈I ν(b ∩ ai) ≤

∑
i∈I ν

+ai.

Thus ν+a ≤
∑
i∈I ν

+ai. But of course

∑

i∈I

ν+ai = sup{
∑

i∈J

ν+ai : J ⊆ I is finite}

= sup{ν+(sup
i∈J

ai) : J ⊆ I is finite} ≤ ν+a,

so ν+a =
∑
i∈I ν

+ai. QQQ

(γγγ) It follows that ν+ is completely additive. PPP If A is a non-empty downwards-directed set with
infimum 0, then B = {b : ∃ a ∈ A, b ∩ a = 0} is order-dense in A, so there is a partition of unity 〈bi〉i∈I
lying in B (313K). Now if J ⊆ I is finite, there is an a ∈ A such that a ∩ supi∈J bi = 0 (because A is
downwards-directed), and

ν+a+
∑
i∈J ν

+bi ≤ ν+1.

Since ν+1 = supJ⊆I is finite

∑
i∈J ν

+bi, infa∈A ν
+a = 0. As A is arbitrary, ν+ is completely additive. QQQ

(δδδ) Now consider ν− = ν+ − ν. Of course

ν−a = ν+a− νa =
∑
i∈I ν

+ai −
∑
i∈I νai =

∑
i∈I ν

−ai

whenever 〈ai〉i∈I is a disjoint family in A with supremum a. Because ν− is non-negative, the argument of
(γ) shows that ν− = (ν−)+ is completely additive. So ν = ν+ − ν− is completely additive, as required.

326S For completely additive functionals, we have a useful refinement of the Hahn decomposition. I
give it in a form adapted to the applications I have in mind.

Proposition Let A be a Dedekind σ-complete Boolean algebra and ν : A → R a completely additive
functional. Then there is a unique element of A, which I will denote [[ν > 0]], ‘the region where ν > 0’, such
that νa > 0 whenever 0 6= a ⊆ [[ν > 0]], while νa ≤ 0 whenever a ∩ [[ν > 0]] = 0.

proof Set

C1 = {c : c ∈ A \ {0}, νa > 0 whenever 0 6= a ⊆ c},

C2 = {c : c ∈ A, νa ≤ 0 whenever a ⊆ c}.
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Then C1 ∪ C2 is order-dense in A. PPP There is a c0 ∈ A such that νa ≥ 0 for every a ⊆ c0 and νa ≤ 0
whenever a ∩ c0 = 0 (326M). Given b ∈ A \ {0}, then b \ c0 ∈ C2, so if b \ c0 6= 0 we can stop. Otherwise,
b ⊆ c0. If b ∈ C1 we can stop. Otherwise, there is a non-zero c ⊆ b such that νc ≤ 0; but in this case νa ≥ 0
and ν(c \ a) ≥ 0 so νa = 0 for every a ⊆ c, and c ∈ C2. QQQ

There is therefore a partition of unity D ⊆ C1 ∪C2. Now D ∩C1 is countable. PPP If d ∈ D ∩C1, νd > 0.
Also

#({d : d ∈ D, νd ≥ 2−n}) ≤ 2n supa∈A νa

is finite for each n, so D ∩ C1 is the union of a sequence of finite sets, and is countable. QQQ

Accordingly D ∩ C1 has a supremum e. If 0 6= a ⊆ e then

νa =
∑
c∈D ν(a ∩ c) =

∑
c∈D∩C1

ν(a ∩ c) ≥ 0

by 326R. Also there must be some c ∈ D∩C1 such that a ∩ c 6= 0, in which case ν(a ∩ c) > 0, so that νa > 0.
If a ∩ e = 0, then

νa =
∑
c∈D ν(a ∩ c) =

∑
c∈D∩C2

ν(a ∩ c) ≤ 0.

Thus e has the properties demanded of [[ν > 0]]. To see that e is unique, we need observe only that if
e′ has the same properties then ν(e \ e′) ≤ 0 (because (e \ e′) ∩ e′ = 0), so e \ e′ = 0 (because e \ e′ ⊆ e).
Similarly, e′ \ e = 0 and e = e′. Thus we may properly denote e by the formula [[ν > 0]].

326T Corollary Let A be a Dedekind σ-complete Boolean algebra and µ, ν two completely additive
functionals on A. Then there is a unique element of A, which I will denote [[µ > ν]], ‘the region where µ > ν’,
such that

µa > νa whenever 0 6= a ⊆ [[µ > ν]],

µa ≤ νa whenever a ∩ [[µ > ν]] = 0.

proof Apply 326S to the functional µ− ν, and set [[µ > ν]] = [[µ− ν > 0]].

326X Basic exercises (a) Let A be a Boolean algebra and ν : A → R a finitely additive functional. Show
that (i) ν(a ∪ b) = νa+νb−ν(a ∩ b) (ii) ν(a ∪ b ∪ c) = νa+νb+νc−ν(a ∩ b)−ν(a ∩ c)−ν(b ∩ c)+ν(a ∩ b ∩ c)
for all a, b, c ∈ A. Generalize these results to longer sequences in A.

(b) Let A be a Boolean algebra. (i) Show that a finitely additive functional ν is properly atomless iff
there is a properly atomless additive functional ν′ such that |νa| ≤ ν′a for every a ∈ A. (ii) Show that a
non-negative finitely additive functional ν on A is properly atomless iff whenever ν ′ is a non-zero finitely
additive functional such that 0 ≤ ν ′a ≤ νa for every a ∈ A there is an a ∈ A such that ν ′a and ν ′(1 \ a) are
both non-zero.

(c)(i) Suppose that A is a Dedekind σ-complete Boolean algebra and ν : A → R is countably additive.
Show that I = {a : νb = 0 for every b ⊆ a} is an ideal of A. Show that the following are equiveridical:
(α) ν is properly atomless; (β) whenever νa 6= 0 there is a b ⊆ a such that νb /∈ {0, νa}; (γ) the quotient
algebra A/I is atomless. (ii) Find an atomless Dedekind complete Boolean algebra A and a finitely additive
ν : A → [0, 1] such that νa > 0 for every non-zero a ∈ A but ν is not properly atomless.

(d) Let A be a Boolean algebra and ν : A → R a finitely additive functional. Show that the following
are equiveridical: (i) ν is countably additive; (ii) limn→∞ νan = νa whenever 〈an〉n∈N is a non-decreasing
sequence in A with supremum a.

(e) Let A be a Dedekind σ-complete Boolean algebra and ν : A → R a finitely additive functional. Show
that the following are equiveridical: (i) ν is countably additive; (ii) limn→∞ νan = 0 whenever 〈an〉n∈N is a
sequence in A and infn∈N supm≥n am = 0; (iii) limn→∞ νan = νa whenever 〈an〉n∈N is a sequence in A and
a = infn∈N supm≥n am = supn∈N infm≥n am. (Hint : for (i)⇒(iii), consider non-negative ν first.)
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(f) Let X be an uncountable set, and J an infinite subset of X. Let A be the finite-cofinite algebra of X
(316Yl), and for a ∈ A set νa = #(a ∩ J) if a is finite, −#(J \ a) if a is cofinite. Show that ν is countably
additive and unbounded.

>>>(g) Let A be the algebra of subsets of [0, 1] generated by the family of (closed) intervals. Show that
there is a unique additive functional ν : A → R such that ν[α, β] = β − α whenever 0 ≤ α ≤ β ≤ 1. Show
that ν is countably additive but not completely additive.

(h)(i) Let (X,Σ, µ) be any atomless probability space. Show that µ : Σ → R is a countably additive
functional which is not completely additive. (ii) Let X be any uncountable set and µ the countable-
cocountable measure on X (211R). Show that µ is countably additive but not completely additive.

(i) Let A be an atomless Boolean algebra. Show that every completely additive functional on A is properly
atomless.

(j) Let A be a Boolean algebra and ν : A → R a function. (i) Show that ν is finitely additive iff
∑
i∈I νai =

ν1 for every finite partition of unity 〈ai〉i∈I . (ii) Show that ν is countably additive iff
∑
i∈I νai = ν1 for

every countable partition of unity 〈ai〉i∈I .

(k) Show that 326S can fail if ν is only countably additive, rather than completely additive. (Hint :
326Xh.)

(l) Let A be a Boolean algebra and ν a finitely additive real-valued functional on A. Let us say that
a ∈ A is a support of ν if (α) νb = 0 whenever b ∩ a = 0 (β) for every non-zero b ⊆ a there is a c ⊆ b such
that νc 6= 0. (i) Check that ν can have at most one support. (ii) Show that if a is a support for ν and ν
is bounded, then the principal ideal Aa generated by a is ccc. (iii) Show that if A is Dedekind σ-complete
and ν is countably additive, then ν is completely additive iff it has a support, and that in the language of
326S this is [[ν > 0]] ∪ [[−ν > 0]]. (iv) Taking J = X in 326Xf, show that X is the support of the functional
ν there.

326Y Further exercises (a) Show that there is a finitely additive functional ν : PN → R such that
ν{n} = 1 for every n ∈ N, so that ν is not bounded. (Hint : Use Zorn’s Lemma to construct a maximal
linearly independent subset of ℓ∞ including {χ{n} : n ∈ N}, and hence to construct a linear map f : ℓ∞ → R

such that f(χ{n}) = 1 for every n.)

(b) Let A be any infinite Boolean algebra. Show that there is an unbounded finitely additive functional
ν : A → R. (Hint : let 〈tn〉n∈N be a sequence of distinct points in the Stone space of A, and set νa = ν ′{n :
tn ∈ â} for a suitable ν ′.)

(c) Let A be a Boolean algebra, and give R
A its product topology. Show that the space of finitely additive

functionals on A is a closed subset of RA, but that the space of bounded finitely additive functionals is closed
only when A is finite.

(d) Let A be a Boolean algebra, and M the linear space of all bounded finitely additive real-valued
functionals on A. For ν, ν ′ ∈M say that ν ≤ ν ′ if νa ≤ ν ′a for every a ∈ A. Show that

(i) ν+, as defined in the proof of 326D, is just sup{0, ν} in M ;
(ii) M is a Dedekind complete Riesz space (241E-241F, 353H);
(iii) for ν, ν ′ ∈M , |ν| = ν ∨ (−ν), ν ∨ ν ′ and ν ∧ ν ′ are given by the formulae

|ν|(a) = supb⊆a νb− ν(a \ b), (ν ∨ ν ′)(a) = supb⊆a νb+ ν ′(a \ b),

(ν ∧ ν ′)(a) = infb⊆a νb+ ν ′(a \ b);

(iv) for any non-empty A ⊆M , A is bounded above in M iff

sup{
∑n
i=0 νiai : νi ∈ A for each i ≤ n, 〈ai〉i≤n is disjoint}

is finite, and then supA is defined by the formula
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(supA)(a) = sup{
∑n
i=0 νiai : νi ∈ A for each i ≤ n, 〈ai〉i≤n is disjoint, supi≤n ai = a}

for every a ∈ A;
(v) setting ‖ν‖ = |ν|(1), ‖ ‖ is an order-continuous norm (definition: 354Dc) on M under which M is

a Banach lattice.

(e) Let A be a Boolean algebra. A functional ν : A → C is finitely additive if its real and imaginary
parts are. Show that the space of bounded finitely additive functionals from A to C is a Banach space under
the total variation norm ‖ν‖ = sup{

∑n
i=0 |νai| : 〈ai〉i≤n is a partition of unity in A}.

(f) Let A and B be Boolean algebras and µ, ν finitely additive functionals on A, B respectively. Show
that there is a unique finitely additive functional λ on the free product A⊗B → R such that λ(a⊗b) = µa·νb
for all a ∈ A, b ∈ B.

(g) Let 〈Ai〉i∈I be a family of Boolean algebras, with free product (
⊗

i∈I Ai, 〈εi〉i∈I), and for each i ∈ I
let νi be a finitely additive functional on Ai such that νi1 = 1. Show that there is a unique finitely additive
functional ν :

⊗
i∈I Ai → R such that ν(infi∈J εi(ai)) =

∏
i∈J νiai whenever J ⊆ I is non-empty and finite

and ai ∈ Ai for each i ∈ J .

(h) Let A be a Dedekind σ-complete Boolean algebra and ν : A → [0,∞[ a countably additive functional.
Show that ν is properly atomless iff whenever a ∈ A and νa 6= 0 there is a b ⊆ a such that 0 < νb < νa.

(i) Let A be a Dedekind σ-complete Boolean algebra and ν : A → R a countably additive functional.
Show that ν[A] is a compact subset of R.

(j) Let G be the regular open algebra of R (314P). Find a properly atomless finitely additive ν : G → R

such that ν[G] is not compact.

(k) (Halmos 1948) Let A be a Dedekind σ-complete Boolean algebra and r ≥ 1 an integer. (i) Let
C ⊆ R

r be a non-empty bounded convex set, and for z ∈ R
r set Hz = {x : x .z = supy∈C y .z}. Suppose

that Hz ∩ C ⊆ C for every z ∈ R
r \ {0}. Show that C is closed. (ii) Suppose that ν : A → R

r is countably
additive in the sense that all its coordinates are countably additive functionals. Show that ν[A] is compact.

(l) Let A be a Boolean algebra, and give it the topology Tσ for which the closed sets are the sequentially
order-closed sets. Show that a finitely additive functional ν : A → R is countably additive iff it is continuous
for Tσ.

(m) Let A be a Boolean algebra, and Mσ the set of all bounded countably additive real-valued functionals
on A. Show that Mσ is a closed and order-closed linear subspace of the normed space M of all additive
functionals on A (326Yd), and that |ν| ∈Mσ whenever ν ∈Mσ.

(n) Let A be a Boolean algebra and ν a non-negative finitely additive functional on A. Set

νσa = inf{supn∈N νan : 〈an〉n∈N is a non-decreasing sequence with supremum a}

for every a ∈ A. Show that νσ is countably additive, and is sup{ν ′ : ν ′ ≤ ν is countably additive}.

(o) Let A be a Dedekind σ-complete Boolean algebra and 〈νn〉n∈N a sequence of countably additive
real-valued functionals on A such that νa = limn→∞ νna is defined in R for every a ∈ A. Show that ν is
countably additive.

(p) Let A be a Boolean algebra, and Mτ the set of all completely additive real-valued functionals on A.
Show that Mτ is a closed and order-closed linear subspace of the normed space M of all additive functionals,
and that |ν| ∈Mτ whenever ν ∈Mτ .

(q) Let A be a Boolean algebra and ν a non-negative finitely additive functional on A. Set

ντ b = inf{supa∈A νa : A is a non-empty upwards-directed set with supremum b}

for every b ∈ A. Show that ντ is completely additive, and is sup{ν ′ : ν ′ ≤ ν is completely additive}.
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(r) Let A be a Boolean algebra, and give it the topology T for which the closed sets are the order-closed
sets (313Xb). Show that a finitely additive functional ν : A → R is completely additive iff it is continuous
for T.

(s) Let X be a set, Σ any σ-algebra of subsets of X, and ν : Σ → R a functional. Show that ν is completely
additive iff there are sequences 〈xn〉n∈N, 〈αn〉n∈N such that

∑∞
n=0 |αn| <∞ and νE =

∑∞
n=0 αnχE(xn) for

every E ∈ Σ.

326 Notes and comments I have not mentioned the phrase ‘measure algebra’ anywhere in this section, and
in principle this material could have been part of Chapter 31; but countably additive functionals are kissing
cousins of measures, and most of the ideas here surely belong to ‘measure theory’ rather than to ‘Boolean
algebra’, in so far as such divisions are meaningful at all. I have given as much as possible of the theory
in a general form because the simplifications which are possible when we look only at measure algebras are
seriously confusing if they are allowed too much prominence. In particular, it is important to understand
that the principal properties of completely additive functionals do not depend on Dedekind completeness
of the algebra, provided we take care over the definitions. Similarly, the definition of ‘countably additive’
functional for algebras which are not Dedekind σ-complete needs a moment’s attention to the phrase ‘and
supn∈N an is defined in A’. It can happen that a functional is countably additive mostly because there are
too few such sequences (326Xf).

The formulations I have chosen as principal definitions (326A, 326I, 326N) are those which I find closest
to my own intuitions of the concepts, but you may feel that 326K(i), 326Xe(iii) and 326R, or 326Yl and
326Yr, provide useful alternative patterns. The point is that countable additivity corresponds to sequential
order-continuity (326Jb, 326Jc, 326Jf), while complete additivity corresponds to order-continuity (326Oc,
326Of); the difficulty is that we must consider functionals which are not order-preserving, so that the simple
definitions in 313H cannot be applied directly. It is fair to say that all the additive functionals ν we need
to understand are bounded, and therefore may be studied in terms of their positive and negative parts ν+,
ν−, which are order-preserving (326Bf); but many of the most important applications of these ideas depend
precisely on using facts about ν to deduce facts about ν+ and ν−.

It is in 326D that we seem to start getting more out of the theory than we have put in. The ideas here have
vast ramifications. What it amounts to is that we can discover much more than we might expect by looking
at disjoint sequences. To begin with, the conditions here lead directly to 326M and 326Q: every completely
additive functional is bounded, and every countably additive functional on a Dedekind σ-complete Boolean
algebra is bounded. (But note 326Ya-326Yb.)

I have expressed 326H in terms of an additive function from a Boolean algebra to a finite-dimensional
space (it is already non-trivial in the two-dimensional case, which would correspond to an additive complex-
valued functional, as in 326Ye). It is usually regarded as a theorem about countably additive functions, or
‘vector measures’ (see 394O below), but rather remarkably we do not in fact need countable additivity. Of
course it can also be regarded as a kind of ham-sandwich theorem for measures; we can simultaneously bisect
an element of a Dedekind σ-complete Boolean algebra with respect to finitely many additive functionals.
If you like, the dimensionality requirement of the ordinary ham-sandwich theorems of topology is met by
the requirement of atomlessness here. A companion result, also due to Liapounoff, which requires countable
additivity but allows atoms, is in 362Yx.

Naturally enough, the theory of countably additive functionals on general Boolean algebras corresponds
closely to the special case of countably additive functionals on σ-algebras of sets, already treated in §§231-232
for the sake of the Radon-Nikodým theorem. This should make 326I-326M very straightforward. When we
come to completely additive functionals, however, there is room for many surprises. The natural map from
a σ-algebra of measurable sets to the corresponding measure algebra is sequentially order-continuous but
rarely order-continuous, so that there can be completely additive functionals on the measure algebra which
do not correspond to completely additive functionals on the σ-algebra. Indeed there are very few completely
additive functionals on σ-algebras of sets (326Ys). Of course these surprises can arise only when there is a
difference between completely additive and countably additive functionals, that is, when the algebra involved
is not ccc (326P). But I think that neither 326Q nor 326R is obvious.

I find myself generally using the phrase ‘countably additive’ in preference to ‘completely additive’ in the
context of ccc algebras, where there is no difference between them. This is an attempt at user-friendliness;
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the phrase ‘countably additive’ is the commoner one in ordinary use. But I must say that my personal
inclination is to the other side. The reason why so many theorems apply to countably additive functionals
in these contexts is just that they are completely additive.

I have given two proofs of 326M. I certainly assume that if you have got this far you are acquainted
with the Radon-Nikodým theorem and the associated basic facts about countably additive functionals on
σ-algebras of sets; so that the ‘first proof’ should be easy and natural. On the other hand, there are purist
objections on two fronts. First, it relies on the Stone representation, which involves a much stronger form of
the axiom of choice than is actually necessary. Second, the classical Hahn decomposition in 231E is evidently
a special case of 326M, and if we need both (as we certainly do) then one expects the ideas to stand out
more clearly if they are applied directly to the general case. In fact the two versions of the argument are so
nearly identical that (as you will observe, if you have Volume 2 to hand) they can share nearly every word.
You can take the ‘second proof’, therefore, as a worked example in the translation of ideas from the context
of σ-algebras of sets to the context of Dedekind σ-complete Boolean algebras. What makes it possible is the
fact that the only limit operations referred to involve countable families.

Arguments not involving limit operations can generally, of course, be applied to all Boolean algebras; I
have lifted some exercises (326Yd, 326Yn) from §231 to give you some practice in such generalizations.

Almost any non-trivial measure provides an example of a countably additive functional on a Dedekind
σ-complete algebra which is not completely additive (326Xh). The question of whether such a functional
can exist on a Dedekind complete algebra is the ‘Banach-Ulam problem’, to which I will return in 363S.

In this section I have looked only at questions which can be adequately treated in terms of the underlying
algebras A, without using any auxiliary structure. To go much farther we shall need to study the ‘function
spaces’ S(A) and L∞(A) of Chapter 36. In particular, the ideas of 326Ya, 326Yd-326Ye and 326Ym-326Yq
will make better sense when redeveloped in §362.

Version of 13.7.11

327 Additive functionals on measure algebras

When we turn to measure algebras, we have a simplification, relative to the general context of §326,
because the algebras are always Dedekind σ-complete; but there are also elaborations, because we can ask
how the additive functionals we examine are related to the measure. In 327A-327C I work through the
relationships between the concepts of ‘absolute continuity’, ‘(true) continuity’ and ‘countable additivity’,
following §232, and adding ‘complete additivity’ from §326. These ideas provide a new interpretation of
the Radon-Nikodým theorem (327D). I then use this theorem to develop some machinery (the ‘standard
extension’ of an additive functional from a closed subalgebra to the whole algebra, 327F-327G) which will
be used in §333.

327A I start with the following definition and theorem corresponding to 232A-232B.

Definition Let (A, µ̄) be a measure algebra and ν : A → R a finitely additive functional. Then ν is
absolutely continuous with respect to µ̄ if for every ǫ > 0 there is a δ > 0 such that |νa| ≤ ǫ whenever
µ̄a ≤ δ.

327B Theorem Let (A, µ̄) be a measure algebra, and ν : A → R a finitely additive functional. Give A

its measure-algebra topology and uniformity (§323).
(a) If ν is continuous at 0, it is completely additive.
(b) If ν is countably additive, it is absolutely continuous with respect to µ̄.
(c) The following are equiveridical:

(i) ν is continuous at 0;
(ii) ν is countably additive and whenever a ∈ A and νa 6= 0 there is a b ∈ A such that µ̄b < ∞ and

ν(a ∩ b) 6= 0;
(iii) ν is continuous everywhere on A;
(iv) ν is uniformly continuous.

c© 1995 D. H. Fremlin
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(d) If (A, µ̄) is semi-finite, then ν is continuous iff it is completely additive.
(e) If (A, µ̄) is σ-finite, then ν is continuous iff it is countably additive iff it is completely additive.
(f) If (A, µ̄) is totally finite, then ν is continuous iff it is absolutely continuous with respect to µ̄ iff it is

countably additive iff it is completely additive.

proof (a) If ν is continuous, and A ⊆ A is non-empty, downwards-directed and has infimum 0, then 0 ∈ A
(323D(b-ii)), so infa∈A |νa| = 0.

(b) ??? Suppose, if possible, that ν is countably additive but not absolutely continuous. Then there is an
ǫ > 0 such that for every δ > 0 there is an a ∈ A such that µ̄a ≤ δ but |νa| ≥ ǫ. For each n ∈ N we may
choose a bn ∈ A such that µ̄bn ≤ 2−n and |νbn| ≥ ǫ. Consider b∗n = supk≥n bk, b = infn∈N b

∗
n. Then we have

µ̄b ≤ infn∈N µ̄(supk≥n bk) ≤ infn∈N

∑∞
k=n 2−k = 0,

so µ̄b = 0 and b = 0. On the other hand, ν is expressible as a difference ν+ − ν− of non-negative countably
additive functionals (326L), each of which is sequentially order-continuous (326Kc), and

0 = limn→∞(ν+ + ν−)b∗n ≥ infn∈N(ν+ + ν−)bn ≥ infn∈N |νbn| ≥ ǫ,

which is absurd. XXX

(c)(i)⇒(ii) Suppose that ν is continuous at 0. Then it is completely additive, by (a), therefore countably
additive. If νa 6= 0, there must be a b of finite measure such that |νd| < |νa| whenever d ∩ b = 0, so that
|ν(a \ b)| < |νa| and ν(a ∩ b) 6= 0. Thus the conditions are satisfied.

(ii)⇒(iv) Now suppose that ν satisfies the two conditions in (ii). Because A is Dedekind σ-complete, ν
must be bounded (326M), therefore expressible as the difference ν+ − ν− of countably additive functionals.
Set ν1 = ν+ + ν−. Set

γ = sup{ν1b : b ∈ A, µ̄b <∞},

and choose a sequence 〈bn〉n∈N of elements of A of finite measure such that limn→∞ ν1bn = γ; set b∗ =
supn∈N bn. If d ∈ A and d ∩ b∗ = 0 then νd = 0. PPP If b ∈ A and µ̄b <∞, then

|ν(d ∩ b)| ≤ ν1(d ∩ b) ≤ ν1(b \ bn) = ν1(b ∪ bn) − ν1bn ≤ γ − ν1bn

for every n ∈ N, so ν(d ∩ b) = 0. As b is arbitrary, the second condition in (ii) tells us that νd = 0. QQQ
Setting b∗n = supk≤n bk for each n, we have limn→∞ ν1(b∗ \ b∗n) = 0. Take any ǫ > 0, and (using (b) above)

let δ > 0 be such that |νa| ≤ ǫ whenever µ̄a ≤ δ. Let n be such that ν1(b∗ \ b∗n) ≤ ǫ. Then

|νa| ≤ |ν(a ∩ b∗n)| + |ν(a ∩ (b∗ \ b∗n))| + |ν(a \ b∗)|

≤ |ν(a ∩ b∗n)| + ν1(b∗ \ b∗n) ≤ |ν(a ∩ b∗n)| + ǫ

for any a ∈ A.
Now if b, c ∈ A and µ̄((b△ c) ∩ b∗n) ≤ δ then

|νb− νc| ≤ |ν(b \ c)| + |ν(c \ b)|

≤ |ν((b \ c) ∩ b∗)| + |ν((c \ b) ∩ b∗)| + 2ǫ ≤ ǫ+ ǫ+ 2ǫ = 4ǫ

because µ̄((b \ c) ∩ b∗n), µ̄((c \ b) ∩ b∗n) are both less than or equal to δ. As ǫ is arbitrary, ν is uniformly
continuous.

(iv)⇒(iii)⇒(i) are trivial.

(d) One implication is covered by (a). For the other, suppose that ν is completely additive. Then it is
countably additive. On the other hand, if νa 6= 0, consider B = {b : b ⊆ a, µ̄b < ∞}. Then B is upwards-
directed and supB = a, because µ̄ is semi-finite (322Eb), so {a \ b : b ∈ B} is downwards-directed and has
infimum 0. Accordingly infb∈B |ν(a \ b)| = 0, and there must be a b ∈ B such that νb 6= 0. But this means
that condition (ii) of (c) is satisfied, so that ν is continuous.

(e) Now suppose that (A, µ̄) is σ-finite. In this case A is ccc (322G) so complete additivity and countable
additivity are the same (326P) and we have a special case of (d).
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(f) Finally, suppose that µ̄1 < ∞ and that ν is absolutely continuous with respect to µ̄. If A ⊆ A is
non-empty and downwards-directed and has infimum 0, then infa∈A µ̄a = 0 (321F), so infa∈A |νa| must be
0; thus ν is completely additive. With (b) and (e) this shows that all four conditions are equiveridical.

327C Proposition Let (X,Σ, µ) be a measure space and (A, µ̄) its measure algebra.
(a) There is a one-to-one correspondence between finitely additive functionals ν̄ on A and finitely additive

functionals ν on Σ such that νE = 0 whenever µE = 0, given by the formula ν̄E• = νE for every E ∈ Σ.
(b) In (a), ν̄ is absolutely continuous with respect to µ̄ iff ν is absolutely continuous with respect to µ.
(c) In (a), ν̄ is countably additive iff ν is countably additive; so that we have a one-to-one correspondence

between the countably additive functionals on A and the absolutely continuous countably additive functionals
on Σ.

(d) In (a), ν̄ is continuous for the measure-algebra topology on A iff ν is truly continuous in the sense of
232Ab.

(e) Suppose that µ is semi-finite. Then, in (a), ν̄ is completely additive iff ν is truly continuous.

proof (a) This should be nearly obvious. If ν̄ : A → R is additive, then the formula defines a functional
ν : Σ → R which is additive by 326Be. Also, of course,

µE = 0 =⇒ E• = 0 =⇒ νE = 0.

On the other hand, if ν is an additive functional on Σ which is zero on negligible sets, then, for E, F ∈ Σ,

E• = F • =⇒ µ(E \ F ) = µ(F \ E) = 0

=⇒ ν(E \ F ) = ν(F \ E) = 0

=⇒ νF = νE − ν(E \ F ) + ν(F \ E) = νE,

so we have a function ν̄ : A → R defined by the given formula. If E, F ∈ Σ and E• ∩ F • = 0, then

ν̄(E•
∪ F •) = ν̄(E ∪ F )• = ν(E ∪ F )

= ν(E \ F ) + νF = ν̄E• + ν̄F •

because (E \ F )• = E• \ F • = E•. Thus ν̄ is additive, and the correspondence is complete.

(b) This is immediate from the definitions.

(c)(i) If ν is countably additive, and 〈an〉n∈N is a disjoint sequence in A, we can express it as 〈En〉n∈N

where 〈En〉n∈N is a sequence in Σ. Setting Fn = En \
⋃
i<nEi, 〈Fn〉n∈N is a disjoint sequence in Σ and

F •
n = an \ supi<n ai = an

for each n. So

ν̄(supn∈N an) = ν(
⋃
n∈N Fn) =

∑∞
n=0 νFn =

∑∞
n=0 ν̄an.

As 〈an〉n∈N is arbitrary, ν̄ is countably additive.

(ii) If ν̄ is countably additive, then ν is countably additive by 326Jf.

(iii) For the last remark, note that by 232Ba a countably additive functional on Σ is absolutely
continuous with respect to µ iff it is zero on the µ-negligible sets.

(d) The definition of ‘truly continuous’ functional translates directly to continuity at 0 in the measure
algebra. But by 327Bc this is the same thing as continuity.

(e) Put (d) and 327Bd together.

327D The Radon-Nikodým theorem We are now ready for another look at this theorem.

Theorem Let (X,Σ, µ) be a semi-finite measure space, with measure algebra (A, µ̄). Let L1 be the space of
equivalence classes of real-valued integrable functions on X (§242), and write Mτ for the set of completely
additive real-valued functionals on A. Then there is an ordered linear space bijection between Mτ and L1

defined by saying that ν̄ ∈Mτ corresponds to u ∈ L1 if
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ν̄a =
∫
E
f whenever a = E• in A and f• = u in L1.

proof (a) Given ν̄ ∈ Mτ , we have a truly continuous ν : Σ → R given by setting νE = ν̄E• for every
E ∈ Σ (327Ce). Now there is an integrable function f such that νE =

∫
E
f for every E ∈ Σ (232E). There

is likely to be more than one such function, but any two must be equal almost everywhere (232Hd), so the
corresponding equivalence class uν̄ = f• is uniquely defined.

(b) Conversely, given u ∈ L1, we have a well-defined functional νu on Σ given by setting

νuE =
∫
E
u =

∫
E
f whenever f• = u

for every E ∈ Σ (242Ac). By 232D, νu is additive and truly continuous, and of course it is zero when µ is
zero, so corresponds to a completely additive functional ν̄u on A (327Ce).

(c) Clearly the maps u 7→ ν̄u and ν̄ 7→ uν̄ are now the two halves of a one-to-one correspondence. To see
that it is linear, we need note only that

(ν̄u + ν̄v)E
• = ν̄uE

• + ν̄vE
• =

∫
E
u+

∫
E
v =

∫
E
u+ v = ν̄u+vE

•

for every E ∈ Σ, so ν̄u + ν̄v = ν̄u+v for all u, v ∈ L1; and similarly ν̄αu = αν̄u for u ∈ L1 and α ∈ R. As for
the ordering, given u and v ∈ L1, take integrable f , g such that u = f• and v = g•; then

ν̄u ≤ ν̄v ⇐⇒ ν̄uE
• ≤ ν̄vE

• for every E ∈ Σ

⇐⇒

∫

E

u ≤

∫

E

v for every E ∈ Σ

⇐⇒

∫

E

f ≤

∫

E

g for every E ∈ Σ

⇐⇒ f ≤a.e. g ⇐⇒ u ≤ v,

using 131Ha.

327E I slip in an elementary fact.

Proposition If (A, µ̄) is a measure algebra, then the functional a 7→ µca = µ̄(a ∩ c) is completely additive
whenever c ∈ A and µ̄c <∞.

proof µc is additive because µ̄ is additive, and by 321F again infa∈A µca = 0 whenever A is non-empty,
downwards-directed and has infimum 0.

327F Standard extensions The machinery of 327D provides the basis of a canonical method for
extending countably additive functionals from closed subalgebras, which we shall need in §333.

Lemma Let (A, µ̄) be a totally finite measure algebra and C ⊆ A a closed subalgebra. Write Mσ(A), Mσ(C)
for the spaces of countably additive real-valued functionals on A, C respectively.

(a) There is an operator R : Mσ(C) → Mσ(A) defined by saying that, for every ν ∈ Mσ(C), Rν is the
unique member of Mσ(A) such that [[Rν > αµ̄]] = [[ν > αµ̄↾C]] for every α ∈ R.

(b)(i) Rν extends ν for every ν ∈Mσ(C).
(ii) R is linear and order-preserving.
(iii) R(µ̄↾C) = µ̄.
(iv) If 〈νn〉n∈N is a sequence of non-negative functionals in Mσ(C) such that

∑∞
n=0 νnc = µ̄c for every

c ∈ C, then
∑∞
n=0(Rνn)(a) = µ̄a for every a ∈ A.

Remarks When saying that C is ‘closed’, I mean, indifferently, ‘topologically closed’ or ‘order-closed’; see
323H-323I.

For the notation ‘[[ν > αµ̄]]’ see 326S-326T.

proof (a)(i) By 321J-321K, we may represent (A, µ̄) as the measure algebra of a measure space (X,Σ, µ);
write π for the canonical map from Σ to A. Write T for {E : E ∈ Σ, πE ∈ C}. Because C is a σ-subalgebra
of C and π is a sequentially order-continuous Boolean homomorphism, T is a σ-subalgebra of Σ.
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(ii) For each ν ∈ Mσ(C), νπ : T → R is countably additive and zero on {F : F ∈ T, µF = 0}, so we
can choose a T-measurable function fν : X → R such that

∫
F
fνd(µ↾T) = νπF for every F ∈ T. Of course

we can now think of fν as a µ-integrable function (233B), so we get a corresponding countably additive
functional Rν : A → R defined by setting (Rν)(πE) =

∫
E
fν for every E ∈ Σ (327D). (In this context, of

course, countably additive functionals are completely additive, by 327Bf.) Note that if c ∈ C there is an
F ∈ T such that F • = c, so that

(Rν)(c) =
∫
F
fν = νc.

For α ∈ R, set Hα = {x : fν(x) > α} ∈ T. Then for any E ∈ Σ,

E ⊆ Hα, µE > 0 =⇒
∫
E
fν > αµE,

E ∩Hα = ∅ =⇒
∫
E
fν ≤ αµE.

Translating into terms of elements of A, and setting cα = πHα ∈ C, we have

0 6= a ⊆ cα =⇒ (Rν)(a) > αµ̄a,

a ∩ cα = 0 =⇒ (Rν)(a) ≤ αµ̄a.

So [[Rν > αµ̄]] = cα ∈ C. Of course we now have

νc = (Rν)(c) > αµ̄c when c ∈ C, 0 6= c ⊆ cα,

νc ≤ αµ̄c when c ∈ C, c ∩ cα = 0,

so that cα is also equal to [[ν > αµ̄↾C]].
Thus the functional Rν satisfies the declared formula.

(iii) To see that Rν is uniquely defined, observe that if λ ∈ Mσ(A) and [[λ > αµ̄]] = [[Rν > αµ̄]] for
every α, then there is a Σ-measurable function g : X → R such that

∫
E
g dµ = λπE for every E ∈ Σ; but

in this case (just as in (ii)) [[λ > αµ̄]] = πGα, where Gα = {x : g(x) > α}, for each α. So we must have
πGα = πHα, that is, µ(Gα△Hα) = 0, for every α. Accordingly

{x : fν(x) 6= g(x)} =
⋃
q∈QGq△Hq

is negligible; fν =a.e. g,
∫
E
fνdµ =

∫
E
g dµ for every E ∈ Σ and λ = Rν.

(b)(i) I have already noted that (Rν)c = νc for every ν ∈Mσ(C) and c ∈ C.

(ii) If ν = ν1 + ν2, we must have, in the language of (a) above,∫
F
fν = νπF = ν1πF + ν2πF =

∫
F
fν1 +

∫
F
fν2 =

∫
F
fν1 + fν2

for every F ∈ T, so fν =a.e. fν1 + fν2 , and we can repeat the formulae

(Rν)(πE) =
∫
E
fν =

∫
E
fν1 + fν2 =

∫
E
fν1 +

∫
E
fν2 = (Rν1)(πE) + (Rν2)(πE),

in a different order, for every E ∈ Σ, to see that Rν = Rν1 + Rν2. Similarly, if ν ∈ Mσ(C) and γ ∈ R,
fγν =a.e. γfν and R(γν) = γRν. If ν1 ≤ ν2 in Mσ(C), then∫

F
fν1 = ν1πF ≤ ν2πF =

∫
F
fν2

for every F ∈ T, so fν1 ≤a.e. fν2 (131Ha again), and Rν1 ≤ Rν2.
Thus R is linear and order-preserving.

(iii) If ν = µ̄↾C then ∫
F
fν = νπF = µF =

∫
F
χX

for every F ∈ T, so fν =a.e. χX and Rν = µ̄.

(iv) Now suppose that 〈νn〉n∈N is a sequence in Mσ(C) such that, for every c ∈ C, νnc ≥ 0 for every n
and

∑∞
n=0 νnc = µ̄c. Set gn =

∑n
i=0 fνi for each n; then 0 ≤a.e. gn ≤a.e. gn+1 ≤a.e. χX for every n, and

limn→∞

∫
gn = limn→∞

∑n
i=0 νi1 = µ̄1.
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But this means that, setting g = limn→∞ gn, g ≤a.e. χX and
∫
g =

∫
χX, so that g =a.e. χX and

∑∞
n=0(Rνi)(πE) = limn→∞

∫
E
gn = µE

for every E ∈ Σ. Thus
∑∞
n=0(Rνi)(a) = µ̄a for every a ∈ A.

327G Definition In the context of 327F, I will call Rν the standard extension of ν to A.

Remark The point of my insistence on the uniqueness of R, and on the formula in 327Fa, is that Rν really
is defined by the abstract structure (A, µ̄,C, ν), even though I have used a proof which runs through the
representation of (A, µ̄) as the measure algebra of a measure space (X,Σ, µ).

327X Basic exercises (a) Let (X,Σ, µ) be a probability space, and T a σ-subalgebra of Σ. Let (A, µ̄) be
the measure algebra of (X,Σ, µ). Show that C = {F • : F ∈ T} is a closed subalgebra of A. Identify the spaces
Mσ(A), Mσ(C) of countably additive functionals with L1(µ), L1(µ↾T), as in 327D. Show that the conditional
expectation operator P : L1(µ) → L1(µ↾T) (242Jd) corresponds to the map ν 7→ ν↾C : Mσ(A) →Mσ(C).

(b) Let (A, µ̄) be a totally finite measure algebra and ν : A → R a countably additive functional. Show
that, for any a ∈ A,

νa =
∫∞

0
µ̄(a ∩ [[ν > αµ̄]])dα−

∫ 0

−∞
µ̄(a \ [[ν > αµ̄]])dα,

the integrals being taken with respect to Lebesgue measure. (Hint : take (A, µ̄) to be the measure algebra
of (X,Σ, µ); represent ν by a µ-integrable function f ; apply Fubini’s theorem to the sets {(x, t) : x ∈ E, 0 ≤
t < f(x)}, {(x, t) : x ∈ E, f(x) ≤ t ≤ 0} in X × R, where a = E•.)

(c) Let (A, µ̄) and (B, µ̄′) be totally finite measure algebras, and π : A → B a measure-preserving
Boolean homomorphism. Let C be a closed subalgebra of A, and ν a countably additive functional on
the closed subalgebra π[C] of B (324L). (i) Show that νπ is a countably additive functional on C. (ii)
Show that if ν̃ is the standard extension of ν to B, then ν̃π is the standard extension of νπ to A. (Hint :
take α ∈ R and set e0 = [[ν̃ > αµ̄′]] = [[ν > αµ̄′↾π[C]]]; there is a c0 ∈ C such that πc0 = e0; check that
c0 = [[ν̃π > αµ̄]] = [[νπ > αµ̄↾C]].)

(d) Let (A, µ̄) be a totally finite measure algebra, C a closed subalgebra of A and ν : C → R a countably
additive functional with standard extension ν̃ : A → R. Show that, for any a ∈ A,

ν̃a =
∫∞

0
µ̄(a ∩ [[ν > αµ̄↾C]])dα−

∫ 0

−∞
µ̄(a \ [[ν > αµ̄↾C]])dα.

(e) Let (A, µ̄) be a probability algebra, and B, C stochastically independent closed subalgebras of A

(definition: 325L). Let ν be a countably additive functional on C, and ν̃ its standard extension to A. Show
that ν̃(b ∩ c) = µ̄b · νc for every b ∈ B, c ∈ C.

(f) Let (X,Σ, µ) be a probability space, and T a σ-subalgebra of Σ. Let ν be a probability measure with
domain T such that νE = 0 whenever E ∈ T and µE = 0. Show that there is a probability measure λ with
domain Σ which extends ν.

327Y Further exercises (a) Let (A1, µ̄1) and (A2, µ̄2) be localizable measure algebras with localizable
measure algebra free product (C, λ̄). Show that if ν1, ν2 are completely additive functionals on A1, A2

respectively, there is a unique completely additive functional ν : C → R such that ν(a1 ⊗ a2) = ν1a1 · ν2a2
for every a1 ∈ A1, a2 ∈ A2. (Hint : 253D.)

(b) Let (A, µ̄) be a totally finite measure algebra and C a closed subalgebra; let R : Mσ(C) → Mσ(A)
be the standard extension operator (327G). Show (i) that R is order-continuous (ii) that R(ν+) = (Rν)+,
‖Rν‖ = ‖ν‖ for every ν ∈Mσ(C), defining ν+ and ‖ν‖ as in 326Yd.

(c) Let (A, µ̄) be a totally finite measure algebra and C a closed subalgebra of A. For a countably additive
functional ν on C write ν̃ for its standard extension to A. Show that if ν, 〈νn〉n∈N are countably additive
functionals on C and limn→∞ νnc = νc for every c ∈ C, then limn→∞ ν̃na = ν̃a for every a ∈ A. (Hint : use
ideas from §§246-247, as well as from 327F and 326Yo.)
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327 Notes and comments When we come to measure algebras, it is the completely additive functionals
which fit most naturally into the topological theory (327Bd); they correspond to the ‘truly continuous’
functionals which I discussed in §232 (327Cd), and therefore to the Radon-Nikodým theorem (327D). I will
return to some of these questions in Chapter 36. I myself regard the form here as the best expression of the
essence of the Radon-Nikodým theorem, if not the one most commonly applied.

The concept of ‘standard extension’ of a countably additive functional (or, as we could equally well say,
of a completely additive functional, since in the context of 327F the two coincide) is in a sense dual to the
concept of ‘conditional expectation’. If (X,Σ, µ) is a probability space and T is a σ-subalgebra of Σ, then
we have a corresponding closed subalgebra C of the measure algebra (A, µ̄) of µ, and identifications between
the spaces Mσ(A), Mσ(C) of countably additive functionals and the spaces L1(µ), L1(µ↾T). Now we have
a natural embedding S of L1(µ↾T) as a subspace of L1(µ) (242Jb), and a natural restriction map from
Mσ(A) to Mσ(C). These give rise to corresponding operators between the opposite members of each pair;
the standard extension operator R of 327F-327G, and the conditional expectation operator P of 242Jd. (See
327Xa.) The fundamental fact

PSv = v for every v ∈ L1(µ↾T)

(242Jg) is matched by the fact that

Rν↾C = ν for every ν ∈Mσ(C).

The further identification of Rν in terms of integrals
∫
µ̄(a ∩ [[ν > αµ̄]])dα (327Xd) is relatively inessential,

but is striking, and perhaps makes it easier to believe that R is truly ‘standard’ in the abstract contexts
which will arise in §333 below. It is also useful in such calculations as 327Xe.

The isomorphisms between Mτ spaces and L1 spaces described here mean that any of the concepts
involving L1 spaces discussed in Chapter 24 can be applied to Mτ spaces, at least in the case of measure
algebras. In fact, as I will show in Chapter 36, there is much more to be said here; the space of bounded
additive functionals on a Boolean algebra is already an L1 space in an abstract sense, and ideas such as
‘uniform integrability’ are relevant and significant there, as well as in the spaces of countably additive and
completely additive functionals. I hope that 326Yd, 326Ym-326Yn, 326Yp-326Yq and 327Yb will provide
some hints to be going on with for the moment.
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Version of 2.6.09

*328 Reduced products and other constructions

I devote a section to some related constructions. At the end of §315 I mentioned projective and inductive
limits of systems of Boolean algebras with linking homomorphisms. In the context of the present chapter,
we naturally ask whether similar constructions can be found for probability algebras. For projective limits
there is no difficulty (328I). For inductive limits the situation is more complex (328H). Some ideas in Volume
5 will depend on what I call ‘reduced products’ (328A-328F), which also provide a route to 328H. The same
methods give a route to a useful result relating measure-preserving Boolean homomorphisms on a probability
algebra to measure-preserving automorphisms on a larger probability algebra (328J).

328A Construction Let 〈(Ai, µ̄i)〉i∈I be a non-empty family of probability algebras, and F an ultrafilter
on I.

(a) Set

J = {〈ai〉i∈I : 〈ai〉i∈I ∈
∏
i∈I Ai, limi→F µ̄iai = 0}.

Then J is an ideal in the simple product Boolean algebra
∏
i∈I Ai. PPP If 〈ai〉i∈I and 〈bi〉i∈I belong to J ,

and 〈ci〉i∈I ∈
∏
i∈I Ai is such that 〈ci〉i∈I ⊆ 〈ai〉i∈I ∪ 〈bi〉i∈I , then ci ⊆ ai ∪ bi for every i, so

limi→F µ̄ici ≤ limi→F µ̄iai + µ̄ibi = limi→F µ̄iai + limi→F µ̄ibi = 0

and 〈ci〉i∈I ∈ J . Of course 〈0Ai
〉i∈I belongs to J , so J ⊳

∏
i∈I Ai. QQQ

(b) Let A be the quotient Boolean algebra
∏
i∈I Ai/J . Then we have a functional µ̄ : A → [0, 1] defined

by saying that

µ̄(〈ai〉•i∈I) = limi→F µ̄iai

whenever 〈ai〉i∈I ∈
∏
i∈I Ai. PPP If 〈ai〉i∈I , 〈bi〉i∈I ∈

∏
i∈I Ai and 〈ai〉

•

i∈I = 〈bi〉
•

i∈I , then 〈ai △ bi〉i∈I ∈ J , so

| limi→F µ̄iai − limi→F µ̄ibi| = limi→F |µ̄iai − µ̄ibi| ≤ limi→F µ̄i(ai △ bi) = 0. QQQ

328B Proposition Let 〈(Ai, µ̄i)〉i∈I be a non-empty family of probability algebras and F an ultrafilter
on I, and construct A and µ̄ as in 328A. Then (A, µ̄) is a probability algebra.

proof (a) If 〈ai〉i∈I , 〈bi〉i∈I ∈
∏
i∈I Ai and 〈ai〉

•

i∈I ∩ 〈bi〉
•

i∈I = 0, then 〈ai ∩ bi〉i∈I ∈ J , so

µ̄(〈ai〉
•

i∈I ∪ 〈bi〉
•

i∈I) = µ̄(〈ai ∪ bi〉
•

i∈I) = lim
i→F

µ̄i(ai ∪ bi)

= lim
i→F

µ̄iai + µ̄ibi − µ̄i(ai ∩ bi)

= lim
i→F

µ̄iai + lim
i→F

µ̄ibi − lim
i→F

µ̄i(ai ∩ bi)

= lim
i→F

µ̄iai + lim
i→F

µ̄ibi = µ̄(〈ai〉
•

i∈I) + µ̄(〈bi〉
•

i∈I).

So µ̄ is additive.

(b) 1A = 〈1Ai
〉•i∈I so

µ̄1A = limi→F µ̄i1Ai
= 1.

(c) If 〈ai〉i∈I ∈
∏
i∈I Ai and µ̄(〈ai〉•i∈I) = 0, then 〈ai〉i∈I ∈ J and 〈ai〉•i∈I = 0; thus µ̄ is strictly positive.

(d) Suppose that 〈ãn〉n∈N is a disjoint sequence in A. Express each ãn as 〈ani〉
•

i∈I where ani ∈ Ai for
each i. Set bni = supm≤n ami for n ∈ N and i ∈ I; then 〈bni〉

•

i∈I = supm≤n ãm in A. Set

γ =
∑∞
n=0 µ̄ãn = supn∈N µ̄(〈bni〉

•

i∈I) = supn∈N limi→F µ̄ibni.

c© 2008 D. H. Fremlin
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Set An = {i : i ∈ I, µ̄ibni ≤ γ + 2−n} for each n ∈ N; then 〈An〉n∈N is a non-increasing sequence in F , and
A0 = I. For i ∈ I set

bi = bni if i ∈ An \An+1,

= sup
n∈N

bni if i ∈
⋂

n∈N

An.

Consider b̃ = 〈bi〉
•

i∈I ∈ A. For each n ∈ N, {i : ani ⊆ bi, µ̄bi ≤ γ+ 2−n} includes An ∈ F , so ãn ⊆ b̃ for every

n and µ̄b̃ ≤ γ.
If c̃ ∈ A is another upper bound for {ãn : n ∈ N}, then, using (a),

γ = supn∈N µ̄(supm≤n ãm) ≤ µ̄(b̃ ∩ c̃) ≤ µ̄b̃ ≤ γ;

so µ̄(b̃ \ c̃) = 0 and b̃ \ c̃ = 0, by (c). Thus b̃ = supn∈N ãn in A, while µ̄b̃ =
∑∞
n=0 µ̄ãn.

(e) If 〈ãn〉n∈N is any sequence in A, then (iv) tells us that {ãn \ supm<n ãm : n ∈ N} has a supremum in
A, which is also the supremum of {ãn : n ∈ N}. So A is Dedekind σ-complete. Now (d) tells us also that µ̄
is countably additive, so that (A, µ̄) is a probability algebra.

328C Definition In the context of 328A/328B, I will call (A, µ̄) the probability algebra reduced
product of 〈(Ai, µ̄i)〉i∈I modulo F ; I will sometimes write it as

∏
i∈I(Ai, µ̄i)|F . (There are dangers in this

notation. In 351M I will speak of ‘reduced powers’ RI |F , and the rules will be significantly different there.)
If all the (Ai, µ̄i) are the same, with common value (B, ν̄), I will write (B, ν̄)I |F for

∏
i∈I(Ai, µ̄i)|F , and

call it the probability algebra reduced power.

328D Proposition Let I be a set, 〈(Ai, µ̄i)〉i∈I , 〈(Bi, ν̄i)〉i∈I and 〈(Ci, λ̄i)〉i∈I three families of probability
algebras, and F an ultrafilter on I; let (A, µ̄) =

∏
i∈I(Ai, µ̄i)|F , (B, ν̄) =

∏
i∈I(Bi, ν̄i)|F and (C, λ̄) =∏

i∈I(Ci, λ̄i)|F be the corresponding reduced products.
(a) If πi : Ai → Bi is a measure-preserving Boolean homomorphism for each i ∈ I, we have a measure-

preserving Boolean homomorphism π : A → B given by saying that

π(〈ai〉
•

i∈I) = 〈πiai〉
•

i∈I

whenever ai ∈ Ai for every i ∈ I.
(b) If, in addition, φi : Bi → Ci is a measure-preserving Boolean homomorphism for each i ∈ I, and

φ : B → C is constructed as in (a), then φπ : A → C corresponds to the family 〈φiπi〉i∈I .

proof (a) Following through the construction in 328A, we have ideals

J = {〈ai〉i∈I : limi→F µ̄iai = 0} ⊳
∏
i∈I Ai,

K = {〈bi〉i∈I : limi→F ν̄ibi = 0} ⊳
∏
i∈I Bi,

and a Boolean homomorphism π̂ :
∏
i∈I Ai →

∏
i∈I Bi given by the formula π̂〈ai〉i∈I = 〈πiai〉i∈I (use

315Bb). Because the homomorphisms πi are measure-preserving, π̂aaa ∈ K whenever aaa ∈ J . Consequently
we have a Boolean homomorphism π :

∏
i∈I Ai/J →

∏
i∈I Bi/K given by setting πaaa• = (π̂aaa)• whenever

aaa ∈
∏
i∈I Ai (3A2G). And

ν̄π(〈ai〉•i∈I) = ν̄(〈πiai〉•i∈I) = limi→F ν̄iπiai = limi→F µ̄iai = µ̄(〈ai〉•i∈I)

whenever 〈ai〉i∈I ∈
∏
i∈I Ai, so π is measure-preserving.

(b) is now just a matter of writing the defining formulae out.

328E Proposition Let I be a non-empty set, ≤ a reflexive transitive relation on I, and F an ultrafilter
on I such that {j : j ∈ I, j ≥ i} belongs to F for every i ∈ I. Let 〈(Ai, µ̄i)〉i∈I be a family of probability
algebras, and suppose that we are given a family 〈πji〉i≤j such that

πji is a measure-preserving Boolean homomorphism from Ai to Aj whenever i ≤ j in I,
πki = πkjπji whenever i ≤ j ≤ k in I.
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Let (A, µ̄) be the probability algebra reduced product
∏
i∈I(Ai, µ̄i)|F .

(a) For each i ∈ I we have a measure-preserving Boolean homomorphism πi : Ai → A defined by saying
that πia = 〈aj〉

•

j∈I whenever aj = πjia for every j ≥ i, and πi = πjπji whenever i ≤ j in I.

(b) 〈ai〉
•

i∈I ⊆ supj∈A πjaj whenever 〈ai〉i∈I ∈
∏
i∈I Ai and A ∈ F .

proof (a) πi is well-defined because {j : j ≥ i} ∈ F . It is a measure-preserving Boolean homomorphism
because every πji is. If i ≤ j in I, a ∈ Ai and ak = πkia for every k ≥ i, then ak = πkjπjia for every k ≥ j,
so πjπjia = 〈ak〉

•

k∈I = πia; as a is arbitrary, πjπji = πi.

(b) Set c = supj∈A πjaj in A. For any ǫ > 0, there is a finite K ⊆ A such that µ̄c ≤ ǫ+ µ̄(supj∈K πjaj)
(321C). The set B = {k : k ∈ I, j ≤ k for every j ∈ K} belongs to F , so is not empty; fix k ∈ B, and set
b = supj∈K πkjaj ∈ Ak,

bi = πikb if i ≥ k,

= 0 for other i ∈ I.

Then

〈bi〉
•

i∈I = πkb = πk(supj∈K πkjaj) = supj∈K πkπkjaj = supj∈K πjaj ⊆ c.

If i ∈ A and i ≥ k, then

µ̄i(ai \ bi) = µ̄(πiai \ πibi) = µ̄(πiai \ πiπikb)

= µ̄(πiai \ πkb) = µ̄(πiai \ sup
j∈K

πjaj) ≤ µ̄(c \ sup
j∈K

πjaj) ≤ ǫ

by the choice of K. So

µ̄(〈ai〉
•

i∈I \ c) ≤ µ̄(〈ai〉
•

i∈I \ 〈bi〉
•

i∈I) = µ̄(〈ai \ bi〉
•

i∈I)

= lim
i→F

µ̄i(ai \ bi) ≤ sup
i∈A,i≥k

µ̄i(ai \ bi) ≤ ǫ.

As ǫ is arbitrary, 〈ai〉
•

i∈I ⊆ c.

328F Corollary Suppose that 〈(An, µ̄n)〉n∈N is a sequence of probability algebras, φn : An → An+1 is a
measure-preserving Boolean homomorphism for each n and F is a non-principal ultrafilter on N. Let (A, µ̄)
be the probability algebra reduced product

∏
n∈N(An, µ̄n)|F . Then we have canonical measure-preserving

Boolean homomorphisms πn : An → A such that 〈an〉•n∈N ⊆ supn∈A πnan whenever 〈an〉n∈N ∈
∏
n∈N An and

A ∈ F , and πn+1φn = πn for every n ∈ N.

proof Apply 328E with πji = φj−1 . . . φi+1φi whenever i < j.

328G Corollary Let (B, ν̄) be a probability algebra, I a non-empty set, and F an ultrafilter on I. Let
(A, µ̄) be the probability algebra reduced power (B, ν̄)I |F .

(a) We have a measure-preserving Boolean homomorphism π : B → A defined by saying that πb = 〈b〉•i∈I
for b ∈ B.

(b)

〈bi〉
•

i∈I ⊆ supj∈A πbj = π(supj∈A bj)

whenever A ∈ F and 〈bi〉i∈I ∈ BI .

proof Apply 328E with ≤ = I × I and πji the identity operator on B for all i, j ∈ I.

328H Proposition Let (I,≤) be an upwards-directed partially ordered set, and 〈(Ai, µ̄i)〉i∈I a family of
probability algebras; suppose that πji : Ai → Aj is a measure-preserving Boolean homomorphism whenever
i ≤ j, and that πki = πkjπji whenever i ≤ j ≤ k. Then there are a probability algebra (C, λ̄) and a family
〈πi〉i∈I such that

πi : Ai → C is a measure-preserving Boolean homomorphism for each i ∈ I,
πi = πjπji whenever i ≤ j,

D.H.Fremlin



62 Measure algebras 328H

{0, 1} ∪
⋃
i∈I πi[Ai] is topologically dense in C,

and whenever (B, ν̄), 〈φi〉i∈I are such that

(B, ν̄) is a probability algebra,
φi : Ai → B is a measure-preserving Boolean homomorphism for each i ∈ I,
φi = φjπji whenever i ≤ j,

then there is a unique measure-preserving Boolean homomorphism φ : C → B such that φπi = φi for every
i ∈ I.

proof (a) If I is empty the result is trivial (take C = {0, 1}); so let us suppose henceforth that I 6= ∅. In
this case,

{A : A ⊆ I, there is some i ∈ I such that j ∈ A whenever i ≤ j}

is a filter on I, and is included in an ultrafilter F say (2A1O). Let (A, µ̄) be the reduced product
∏
i∈I(Ai, µ̄i)|F .

Then we have for each i ∈ I a measure-preserving Boolean homomorphism πi : Ai → A such that πi = πjπji
whenever i ≤ j (328E). If i ≤ j in I, then πi[Ai] ⊆ πj [Aj ]; because (I,≤) is upwards-directed, 〈πi[Ai]〉i∈I
is an upwards-directed family of subalgebras of A, and D =

⋃
i∈I πi[Ai] is a subalgebra of A; let C be its

closure (323J). Set λ̄ = µ̄↾C, so that (C, λ̄) is a probability algebra, and πi : Ai → C is a measure-preserving
Boolean homomorphism for each i ∈ I, with πi = πjπji whenever i ≤ j.

(b) Now suppose that B and 〈φi〉i∈I are as declared.

(i) Set

φ′ = {(πia, φia) : i ∈ I, a ∈ Ai} ⊆ D×B.

Then φ′ is (the graph of) a function from D to B. PPP If c ∈ D, there is surely an i ∈ I such that c ∈ πi[Ai],
so that (c, φia) ∈ φ′ for some a ∈ Ai. If (c, b) and (c, b′) belong to φ′, there are i, j ∈ I and a ∈ Ai, a

′ ∈ Aj

such that

πia = πja
′ = c, φia = b, φja

′ = b′.

Let k ∈ I be such that i ≤ k and j ≤ k; then

πkπkia = πia = c = πja
′ = πkπkja

′.

As πk is measure-preserving, therefore injective, πkia = πkja
′, and

b = φia = φkπkia = φkπkja
′ = φja

′ = b′.

So each element of D is the first member of exactly one element of φ′, and φ′ is the graph of a function. QQQ
Of course the defining formula for φ′ guarantees that φ′πi = φi : Ai → B for every i ∈ I.

(ii) Next, φ′ : D → B is a measure-preserving Boolean homomorphism. PPP If c, c′ ∈ D then there are
i, j ∈ I and a ∈ Ai, a

′ ∈ Aj such that c = πia and c′ = πja
′. Again take k ∈ I such that i ≤ k and j ≤ k;

then

c = πkπkia, c′ = πkπkja
′, φ′c = φkπkia, φ′c′ = φkπkja

′.

In this case, for either of the Boolean operations ⋆ = △ or ⋆ = ∩ , we have

φ′c ⋆ φ′c′ = φkπkia ⋆ φkπkja
′ = φk(πkia ⋆ πkja

′)

= φ′πk(πkia ⋆ πkja
′) = φ′(πkπkia ⋆ πkπkja

′) = φ′(c ⋆ c′).

As c, c′ and ⋆ are arbitrary, φ′ is a ring homomorphism. Moreover, in the same context,

ν̄φ′c = ν̄φia = µ̄ia = µ̄πia = λ̄c,

so φ′ is measure-preserving. It follows that φ′1C = 1B, and φ′ is a Boolean homomorphism. QQQ

(iii) By 324O, there is a unique extension of φ′ to a measure-preserving Boolean homomorphism
φ : C → B; and of course we still have φπi = φi for every i ∈ I.

(iv) To see that φ is unique, take any measure-preserving Boolean homomorphism φ̃ : C → B such that

φ̃πi = φi for every i. Then φ̃ must agree with φ on πi[Ai] for every i, so φ̃↾D = φ↾D; as D is topologically

dense in C, φ̃ = φ (324O again).
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328I For completeness, I spell out the relatively elementary construction for projective limits.

Proposition Let (I,≤) be a non-empty upwards-directed set, and 〈(Ai, µ̄i)〉i∈I a family of probability
algebras; suppose that πij : Aj → Ai is a measure-preserving Boolean homomorphism for i ≤ j in I, and
that πijπjk = πik whenever i ≤ j ≤ k. Then there are a probability algebra (C, λ̄) and a family 〈πi〉i∈I such
that

πi : C → Ai is a measure-preserving Boolean homomorphism for each i ∈ I,

πi = πijπj whenever i ≤ j,

and whenever (B, ν̄), 〈φi〉i∈I are such that

(B, ν̄) is a probability algebra,

φi : B → Ai is a measure-preserving Boolean homomorphism for each i ∈ I,

φi = πijφj whenever i ≤ j,

then there is a unique measure-preserving Boolean homomorphism φ : B → C such that πiφ = φi for every
i ∈ I.

proof (a) Let C ⊆
∏
i∈I Ai be the set

{〈ai〉i∈I : πija(j) = a(i) whenever i ≤ j in I}.

Because every πij is a Boolean homomorphism, C is a subalgebra of
∏
i∈I Ai; taking πj(〈ai〉i∈I) = aj

whenever 〈ai〉i∈I ∈ C, πj : C → Aj is a Boolean homomorphism for every j ∈ I, and πi = πijπj whenever
i ≤ j.

Because every πij is order-continuous, C is an order-closed subalgebra of
∏
i∈I Ai, so is Dedekind complete.

(b) If c = 〈ai〉i∈I ∈ C, then

µ̄iπic = µ̄iai = µ̄iπijaj = µ̄jaj = µ̄jπjc

whenever i ≤ j in I; because I is upwards-directed, µ̄iπic = µ̄jπjc for all i, j ∈ I. So we have a functional
λ̄ : C → [0, 1] defined by setting λ̄c = µ̄iπic whenever c ∈ C and i ∈ I. Note that 1C = 〈1Ai

〉i∈I , so
λ̄1C = µ̄i1Ai

= 1, for any i ∈ I.

If 〈cn〉n∈N is a disjoint sequence in C with supremum c, then express each cn as 〈ani〉i∈I ; we must have
c = 〈supn∈N ani〉i∈I , so

λ̄c = µ̄i(supn∈N ani) =
∑∞
n=0 µ̄iani =

∑∞
n=0 λ̄cn

for any i ∈ I. Thus λ̄ is countably additive. If c ∈ C is non-zero, express it as 〈ai〉i∈I ; there must be an
i ∈ I such that ai 6= 0, so that λ̄c = µ̄iai > 0. Thus λ̄ is strictly positive, and (C, λ̄) is a probability algebra.

(c) If (B, ν̄) is a probability algebra and 〈φi〉i∈I is a family such that φi : B → Ai is a measure-
preserving Boolean homomorphism and φi = πijφj whenever i ≤ j in I, set φb = 〈φib〉i∈I for b ∈ B. Then
φ : B →

∏
i∈I Ai is a Boolean homomorphism; also

πij(φb)(j) = πijφjb = φib = (φb)(i)

whenever i ≤ j and b ∈ B, so φ[B] ⊆ C, while πiφ = φi for every i ∈ I. And of course this uniquely
determines φ. To see that φ is measure-preserving, we have only to check that

λ̄φb = µ̄iπiφb = µ̄iφib = ν̄b

whenever b ∈ B and i ∈ I.

328J A different application of the method in 328A yields the following result on commuting families of
Boolean homomorphisms.

Theorem Let (A, µ̄) be a probability algebra, and Φ a family of measure-preserving Boolean homomorphisms
from A to itself such that φψ = ψφ for all φ, ψ ∈ Φ. Then there are a probability algebra (C, λ̄), a measure-

preserving Boolean homomorphism π : A → C and a family 〈φ̃〉φ∈Φ such that

(i) φ̃ : C → C is a measure-preserving Boolean automorphism and φ̃π = πφ for every φ ∈ Φ;

(ii) (φψ)
∼

= φ̃ψ̃ for all φ, ψ ∈ Φ.
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proof (a) Let Ψ be the set of all products φ0φ1 . . . φn where φi ∈ Φ ∪ {ι} for every i ≤ n, ι here being the
identity map from A to itself. Then Ψ is a family of measure-preserving Boolean homomorphisms from A

to itself, and φψ = ψφ ∈ Ψ for all φ, ψ ∈ Ψ.

(b) For φ, ψ ∈ Ψ, say that φ ≤ ψ if there is a θ ∈ Ψ such that φθ = ψ. Then ≤ is a reflexive transitive
relation on Ψ. Note that if φ ≤ ψ in Ψ then there is exactly one θ ∈ Ψ such that φθ = ψ, because φ is
injective. So we may define πψ,φ ∈ Ψ by saying that φπψ,φ = ψ whenever φ ≤ ψ in Ψ; that is, πφψ,φ = ψ
whenever φ, ψ ∈ Ψ. Observe that if φ ≤ ψ ≤ θ in Ψ, then

φπψ,φπθ,ψ = ψπθ,ψ = θ = φπθ,φ,

so

πθ,φ = πψ,φπθ,ψ = πθ,ψπψ,φ.

Of course ι ≤ φ for every φ ∈ Ψ.

(c) If φ1, φ2 ∈ Ψ then φ1 ≤ φ1φ2 and φ2 ≤ φ2φ1 = φ1φ2; generally, if D ⊆ Ψ is finite, there is a ψ ∈ Ψ
such that φ ≤ ψ for every φ ∈ D. Consequently

{A : A ⊆ Ψ, there is some φ ∈ Ψ such that ψ ∈ A whenever φ ≤ ψ}

is a filter on Ψ, and is included in an ultrafilter F say. Let (C0, λ̄0) be the probability algebra reduced power
(A, µ̄)Ψ|F . By 328E, we have for each φ ∈ Ψ a measure-preserving Boolean homomorphism πφ : A → C0

defined by saying that πφa = 〈aψ〉
•

ψ∈Ψ if aψ = πψ,φa whenever φ ≤ ψ in Ψ, and πφ = πψπψ,φ whenever
φ ≤ ψ. Re-interpreting this in terms of the definitions of ≤ and πψ,φ, we have πφ = πφψψ whenever φ,
ψ ∈ Ψ.

(d) If φ, ψ in Ψ, then

πφ[A] ∪ πψ[A] = πφψ[ψ[A]] ∪ πψφ[φ[A]] ⊆ πφψ[A] ∪ πψφ[A] = πφψ[A],

which is a subalgebra of C0. So D =
⋃
φ∈Ψ πφ[A] is a subalgebra of C0, and its closure C is a closed subalgebra

of C0; set λ̄ = λ̄0↾C. Then π = πι : A → C is a measure-preserving Boolean homomorphism.

(e) If θ ∈ Ψ, we have a measure-preserving Boolean homomorphism θ̂ : C → C defined by the formula

θ̂(〈aψ〉
•

ψ∈Ψ) = 〈θaψ〉
•

ψ∈Ψ

for every family 〈aψ〉ψ∈Ψ in A (328Da); and θ̂φ = θ̂φ̂ for all θ, φ ∈ Ψ (328Db). Also θ̂πφ = πφθ for every φ,
θ ∈ Ψ. PPP Let a ∈ A. Define 〈aψ〉ψ∈Ψ, 〈a′ψ〉ψ∈Ψ by setting

aψ = πψ,φa when φ ≤ ψ,

= 0 otherwise,

a′ψ = πψ,φθa = θπψ,φa when φ ≤ ψ,

= 0 otherwise.

Then

πφa = 〈aψ〉
•

ψ∈Ψ,

θ̂πφa = 〈θaψ〉
•

ψ∈Ψ = 〈a′ψ〉
•

ψ∈Ψ = πφθa. QQQ

(f) It follows that, for θ ∈ Ψ,

θ̂[D] =
⋃
φ∈Ψ θ̂[πφ[A]] =

⋃
φ∈Ψ πφ[θ[A]] ⊆ D.

But in fact θ̂[D] = D. PPP If d ∈ D, there are φ ∈ Ψ and a ∈ A such that πφa = d. Now define
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aψ = πψ,φa if φ ≤ ψ,

= 0 for other ψ ∈ Ψ,

a′ψ = πψ,φθa if φθ ≤ ψ,

= 0 for other ψ ∈ Ψ,

d′ = πφθa = 〈a′ψ〉
•

ψ∈Ψ.

In this case, if φθ ≤ ψ,

φθa′ψ = ψa, φaψ = ψa

so θa′ψ = aψ. Consequently

θ̂d′ = θ̂(〈a′ψ〉
•

ψ∈Ψ) = 〈θa′ψ〉
•

ψ∈Ψ = 〈aψ〉
•

ψ∈Ψ

(because {ψ : φθ ≤ ψ} ∈ F)

= d,

and d = θ̂πφθa ∈ θ̂[D]. QQQ

(g) Since θ̂[C] is a closed subalgebra of C0 (324Kb) in which θ̂[D] = D is topologically dense (3A3Eb),

θ̂[C] = C. Setting θ̃ = θ̂↾C, we see that θ̃ : C → C is a surjective measure-preserving Boolean homomorphism,

so is a Boolean automorphism. Since φ̂θ = φ̂θ̂, we have (φθ)
∼

= φ̃θ̃ for all φ, θ ∈ Ψ.

(h) Finally, as observed at the beginning of (e),

θ̃π = θ̃πι = θ̂πι = πιθ = πθ

for every θ ∈ Ψ. So (C, λ̄, π, 〈θ̃〉θ∈Φ) has the required properties.

328X Basic exercises (a) Write out a version of the proof of 328J adapted to the case in which Φ = {φ}
is a singleton. (This is an abstract version of a construction known as the ‘natural extension’ of an inverse-
measure-preserving function; see Petersen 83, 1.3G.)

(b) Let νN be the usual measure on X = {0, 1}N, and (BN, ν̄N) its measure algebra. (i) Find inverse-
measure-preserving functions f , g : X → X such that gf = g but f(x) 6= x for every x ∈ X. (Hint : try
g(x)(n) = x(n + 1).) (ii) Find measure-preserving Boolean homomorphisms φ, ψ : BN → BN such that
φψ = ψ but φ is not the identity. (iii) In 328J, show that the hypothesis that members of Φ commute cannot
be omitted.

(c) Let (A, µ̄) be a purely atomic probability algebra, I a non-empty set and F an ultrafilter on I. Show
that (A, µ̄)I |F is isomorphic to (A, µ̄).

328 Notes and comments I have starred this section because it is far from the main line of argument
of the volume, and most readers should be moving on to Maharam’s theorem and the Lifting Theorem.
However the results here, while natural enough, have some features which demand a little attention, and it
will be useful to be able to call on exact formulations of the ideas.

The proof of 328H begins by taking an ultrafilter on I. This ought to ring bells. It should be clear
from the statement of the proposition that (C, λ̄, 〈πi〉i∈I) is determined up to isomorphism by the properties
declared here. It cannot therefore depend on which ultrafilter we pick, and there ought to be a construction
not relying on this approach (and, we can hope, not demanding any application of the axiom of choice).
This is indeed the case, and in 392Yd below I will sketch a method which can be adapted to give such a
proof. Yet another proof of 328H is proposed in 418Yn4 in Volume 4.

4Formerly 418Yp.
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The same remarks apply to the proof of 328J. In the result as stated, I have not imposed conditions on
the structure (C, λ̄, π, 〈φ̃〉φ∈Φ) sufficient to define it uniquely, but once again it is not necessary to employ
an ultrafilter, and in fact the filter

{A : A ⊆ Ψ, there is some φ ∈ Ψ such that ψ ∈ A whenever φ ≤ ψ}

is already enough, if we take the trouble to move to the right subalgebra of AΨ before taking the quotient
algebra.

Version of 24.4.06

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

322K Paragraphs 322K (simple products of measure algebras), 322N (the Stone space of a measure
algebra) and 322Q (further properties of Stone spaces), referred to in the 2003 and 2006 editions of Volume
4, are now 322L, 322O and 322R.

326E Countably additive functionals Definition 326E, referred to in the 2003 and 2006 editions of
Volume 4 and the 2008 edition of Volume 5, is now 326I.

326G Corollary 326G, referred to in the 2008 edition of Volume 5, is now 326K.

326I Hahn decomposition Theorem 326I, referred to in the 2003 and 2006 editions of Volume 4, is
now 326M.

326K Completely additive functionals The notes in 326K, referred to in the 2003 and 2006 editions
of Volume 4, have been moved to 326O.

326Q Finitely additive functionals on free products Theorem 326Q, referred to in the 2003 and
2006 editions of Volume 4 and the 2008 edition of Volume 5, is now 326E.

328D Reduced products of probability algebras Paragraph 328D, referred to in the 2008 edition
of Volume 5, is now 328E.
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Štěpánek P. & Rubin M. [89] ‘Homogeneous Boolean algebras’, pp. 679-715 in Monk 89. [382S, §382

notes .]

Talagrand M. [82a] ‘Closed convex hull of set of measurable functions, Riemann-measurable functions
and measurability of translations’, Ann. Institut Fourier (Grenoble) 32 (1982) 39-69. [§346 notes .]
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