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Chapter 32
Measure algebras

I now come to the real work of this volume, the study of the Boolean algebras of equivalence classes of
measurable sets. In this chapter I work through the ‘elementary’ theory, defining this to consist of the parts
which do not depend on Maharam’s theorem or the lifting theorem or non-trivial set theory.

§321 gives the definition of ‘measure algebra’, and relates this idea to its origin as the quotient of a o-
algebra of measurable sets by a o-ideal of negligible sets, both in its elementary properties (following those
of measure spaces treated in §112) and in an appropriate version of the Stone representation. §322 deals
with the classification of measure algebras according to the scheme already developed in §211 for measure
spaces. §323 discusses the standard topology and uniformity of a measure algebra. §324 contains results
concerning Boolean homomorphisms between measure algebras, with the relationships between topological
continuity, order-continuity and preservation of measure. §325 is devoted to the measure algebras of product
measures, and their abstract characterization as completed free products. §§326-327 address the properties
of additive functionals on Boolean algebras, generalizing the ideas of Chapter 23. Finally, §328 looks at
‘reduced products’ of probability algebras and some related constructions, including inductive limits.

Version of 3.1.11

321 Measure algebras

I begin by defining ‘measure algebra’ and relating this concept to the work of Chapter 31 and to the
elementary properties of measure spaces.

321A Definition A measure algebra is a pair (2, 1), where 2 is a Dedekind o-complete Boolean
algebra and fi : 2 — [0, 00] is a function such that
A0 =0;
whenever (a,)nen is a disjoint sequence in 2, fi(Sup, ey an) = D pe g fn;
fia > 0 whenever a € 2 and a # 0.

321B Elementary properties of measure algebras Corresponding to the most elementary properties
of measure spaces (112C in Volume 1), we have the following basic properties of measure algebras. Let (2, fz)
be a measure algebra.

(a) If a, b e A and anb =0 then fi(aubd) = fia + @b. P Set ag = a, a1 = b, a, =0 for n > 2; then
filaud) = A(suPpen an) = 5" Aan = fia + [ib. Q

a, be and a C b then pna < ib.
(b) If a, b € 2 and b then [ nb. P
jia < fia+ i(b\ a) = ib. Q

(c) For any a, b € 2, i(aub) < fa + ab. P
filaub) = pa+ fi(b\ a) < fia + jib. Q

(d) If {(an)nen is any sequence in 2, then fi(sup,,cy an) < >o- fian. B For each n, set b, = a, \ sup;_,, a;.
Inducing on n, we see that sup, <, a; = sup,<,, b; for each n, so sup,,cy an = sup,,cy b, and
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2 Measure algebras 321Bd

A(sup,en @n) = A(SUp, e bn) = Z:;o pbn, < Zzozo G
because (by,)nen is disjoint. Q

(e) If (an)nen is a non-decreasing sequence in 2, then fi(sup, ey n) = lim, o0 fia,. B Set by = ao,
b, = ay \ a,_1 for n > 1. Then

i(sup a,) = p(sup by,) b
Al ) = gl = 3 i

= nhHH;O Zub lim f(supb;) = nhﬁngo fia,. Q

n—oo i<n

(f) If (an)nen is a non-increasing sequence in A and inf, ey fia, < 0o, then f(inf, ey an) = limy, o0 fiay,.
P (Cf. 112Cf.) Set a = inf, ey ay,. Take k € N such that fiar < co. Set b, = ay \ a,, for n € N; then (b,)nen
is non-decreasing and sup,,cy b, = ay \ @ (313Ab). Because fiay, is finite,

fia = fiay, — plag \ @) = pay, — lim fiby,
(by (e) above)
= lim f(ag\b,) = lim fa,. Q
n—oo n—oo

321C Proposition Let (2, 1) be a measure algebra, and A C 2 a non-empty upwards-directed set. If
SUPge 4 [l < 00, then sup A is defined in 2 and fi(sup A) = sup,c 4 fla.

proof (Compare 215A.) Set v = sup,¢ 4 fia, and for each n € N choose a,, € A such that fa, >~y —27".
Next, choose (bn)new in A such that b, 2 b, Uay, for each n, and set b = sup,, ¢y bn. Then

b =lim, o b, <7, [a, < b for every n € N,

so b =~
If a € A, then for every n € N there is an a], € A such that aua, C a,, so that

f(a\d) < f(a\ay) < play, \ an) = paj, — fa, <y — pga, < 27"

This means that fi(a\b) =0,s0 a\b=0and a C b. Accordingly b is an upper bound of A, and is therefore
sup A; since we already know that pb = «y, the proof is complete.

321D Corollary Let (2, 1) be a measure algebra and A C 2l a non-empty upwards-directed set. If sup A
is defined in 2, then fi(sup A) = sup,c 4 fia.

proof If sup,c 4 fia = oo, this is trivial; otherwise it follows from 321C.

321E Corollary Let (2, i) be a measure algebra and A C 2 a disjoint set. If sup A is defined in 2, then
f(sup A) = 3° 4 Ha.

proof If A = () then sup A =0 and the result is trivial. Otherwise, set B = {agU ... Ua, : ag,... ,a, € A
are distinct}. Then B is upwards-directed, and sup,cp fib = ), 4 fia because A is disjoint. Also B has the
same upper bounds as A, so sup B = sup A and

fi(sup A) = [i(sup B) = supyep fib = }_ ¢ 4 Aa.

321F Corollary Let (2, i) be a measure algebra and A C 2 a non-empty downwards-directed set. If
infaea fia < 0o, then inf A is defined in 2 and f(inf A) = inf,c 4 fia.
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321J Measure algebras 3

proof Take ag € A with fiag < oo, and set B = {ag\a : a € A}. Then B is upwards-directed, and
supyep b < fiag < 00, so sup B is defined. Accordingly inf A = ag \ sup B is defined (313Aa), and

f(inf A) = ag — f(sup B) = fiag — :ug b
€

jeh Flaonb) = Ja pleo 1) = Jal e

321G Subalgebras If (2, i) is a measure algebra, and 98 is a o-subalgebra of 2, then (B, a[9B) is a
measure algebra. P As remarked in 314Eb, 9B is Dedekind o-complete. If (b, ),cn is a disjoint sequence in
B, then the supremum b = sup,,c by is the same whether taken in B or 2, so that we have gb =" | ib,,.

Q

321H The measure algebra of a measure space I introduce the abstract notion of ‘measure algebra’
because I believe that this is the right language in which to formulate the questions addressed in this volume.
However it is very directly linked with the idea of ‘measure space’, as the next two results show.

Theorem Let (X, 1) be a measure space, and N the null ideal of u. Let 2 be the Boolean algebra
quotient /¥ NAN. Then we have a functional fi : A — [0, 00] defined by setting

pE* = pE for every E € X,
and (2, 1) is a measure algebra. The canonical map E — E* : ¥ — 2 is sequentially order-continuous.

proof (a) By 314C, 2 is a Dedekind o-complete Boolean algebra. By 313Qb, E — E* is sequentially
order-continuous, because ¥ NN is a o-ideal of X.

(b) f E, Fe X and E* = F* in 2, then EAF € N, so
pE < pF + p(E\ F) = uF < pE+ p(F\ E) = pE

and pFE = pF. Accordingly the given formula does indeed define a function fi : 2 — [0, o0].

(c) Now

A0 = i = ph = 0.
If {an)nen is a disjoint sequence in 2, choose for each n € N an E,, € ¥ such that E? = a,. Set F,, =
En\ U<, Ei; then
Fy=FE;\ sup;., B} = a, \ sup;.,, a; = an
for each n, so fia, = pF, for each n. Now set £ = J, cyy En = U, ey Fn; then E* = sup,, o F); = sup,,cy Gn-
So
(SUPpen an) = pB = 3707 o ulFy = 32,7 it

Finally, if a # 0, then there is an E € ¥ such that E* = a, and E ¢ N, so jia = pE > 0. Thus (2, ) is a
measure algebra.

3211 Definition For any measure space (X, X, 1) I will call (2, i), as constructed above, the measure
algebra of (X, X, u).

321J The Stone representation of a measure algebra Just as with Dedekind o-complete Boolean
algebras (314N), every measure algebra is obtainable from the construction above.

Theorem Let (2, i) be any measure algebra. Then it is isomorphic, as measure algebra, to the measure
algebra of some measure space.

proof (a) We know from 314M that 2 is isomorphic, as Boolean algebra, to a quotient algebra /M where
3 is a o-algebra of subsets of the Stone space Z of 2, and M is the ideal of meager subsets of Z. Let
m: 3/M — 2 be the canonical isomorphism, and set F = wE* for each E € X; then § : ¥ — 2 is a
sequentially order-continuous surjective Boolean homomorphism with kernel M.
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4 Measure algebras 321J

(b) For E € %, set
vE = i(0F).
Then (Z,%,v) is a measure space. I (i) We know already that ¥ is a o-algebra of subsets of Z. (ii)
vl = [(00) = po = 0.

(iii) If (E,)nen is a disjoint sequence in X, then (because 6 is a Boolean homomorphism) (0F,),cn is a
disjoint sequence in 2 and (because 6 is sequentially order-continuous) 0(lJ,,cy £n) = sup,en 0Fn; so

V(UneN E,) = ﬂ(SUPneN 0E,) = fozo MOE,) = chzo vE,. Q

(c) For E € &,
VE=0 < p(lFE)=0 < 0E=0 < Ec M.
So the measure algebra of (Z, %, v) is just 3/ M, with
vE* =vE = i(0F) = p(rE*)

for every £ € ¥. Thus the Boolean algebra isomorphism 7 is also an isomorphism between the measure
algebras (X/M, ) and (2, i), and (2, 1) is represented in the required form.

321K Definition I will call the measure space (Z,%,v) constructed in the proof of 321J the Stone
space of the measure algebra (2, f1).

For later reference, I repeat the description of this space as developed in 311E, 3111, 314M and 321J. Z
is a compact Hausdorff space, being the Stone space of 2. 2 can be identified with the algebra of open-
and-closed sets in Z. The null ideal of v coincides with the ideal of meager subsets of Z; in particular, v is
complete. The measurable sets are precisely those expressible in the form £ = aAM where a € 2, a C Z is
the corresponding open-and-closed set, and M is meager; in this case VE = fia and a = §F is the member
of 2 corresponding to E.

For the most important classes of measure algebras, more can be said; see 3220 et seq. below.

321X Basic exercises >(a) Let (2, &) be a measure algebra, and a € 2; write 2, for the principal
ideal of 2 generated by a. Show that (., i[2,) is a measure algebra.

(b) Let (X, X, i) be a measure space, and 2 its measure algebra. (i) Show that if T is a o-subalgebra
of ¥, then {E* : E € T} is a o-subalgebra of 2. (ii) Show that if B is a o-subalgebra of 2 then {E : E €
Y, E* € B} is a o-subalgebra of X.

321Y Further exercises (a) Let (2, i) be a measure algebra, and I < 2 a o-ideal. For u € /I set
pu = inf{fia : a € A, a®* = u}. (i) Show that the infimum is always attained. (ii) Show that (A/I,7) is a
measure algebra.

321 Notes and comments The idea behind taking the quotient X /N, where ¥ is the algebra of measurable
sets and N is the null ideal, is just that if negligible sets can be ignored — as is the case for a very large
proportion of the results of measure theory — then two measurable sets can be counted as virtually the
same if they differ by a negligible set, that is, if they represent the same member of the measure algebra.
The definition in 321A is designed to be an exact characterization of these quotient algebras, taking into
account the measures with which they are endowed. In the course of the present chapter I will work through
many of the basic ideas dealt with in Volumes 1 and 2 to show how they can be translated into theorems
about measure algebras, as I have done in 321B-321F. It is worth checking these correspondences carefully,
because some of the ideas mutate significantly in translation. In measure algebras, it becomes sensible to
take seriously the suprema and infima of uncountable sets (see 321C-321F).

I should perhaps remark that while the Stone representation (321J-321K) is significant, it is not the most
important method of representing measure algebras, which is surely Maharam’s theorem, to be dealt with
in the next chapter. Nevertheless, the Stone representation is a canonical one, and will appear at each point
that we meet a new construction involving measure algebras, just as the ordinary Stone representation of
Boolean algebras can be expected to throw light on any aspect of Boolean algebra.
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322B Taxonomy of measure algebras 5

Version of 24.4.06

322 Taxonomy of measure algebras

Before going farther with the general theory of measure algebras, I run through those parts of the
classification of measure spaces in §211 which have expressions in terms of measure algebras. The most
important concepts at this stage are those of ‘semi-finite’; ‘localizable’ and ‘o-finite’ measure algebra (322Ac-
322Ae); these correspond exactly to the same terms applied to measure spaces (322B). I briefly investigate
the Boolean-algebra properties of semi-finite and o-finite measure algebras (322F, 322G), with mentions of
completions and c.l.d. versions (322D), subspace measures (3221-322J), indefinite-integral measures (322K),
direct sums of measure spaces (322L, 322M) and subalgebras of measure algebras (322N). It turns out that
localizability of a measure algebra is connected in striking ways to the properties of the canonical measure
on its Stone space (3220). I end the section with a description of the ‘localization’ of a semi-finite measure
algebra (322P-322Q) and with some further properties of Stone spaces (322R).

322A Definitions Let (2, fi) be a measure algebra.
(a) I will say that (2, i) is a probability algebra if a1l = 1.
(b) (2, iz) is totally finite if il < co.

(¢) (A, 1) is o-finite if there is a sequence (a,)nen in A such that fia, < oo for every n € N and
sup, ey @n = 1. Note that in this case (an)nen can be taken either to be non-decreasing (consider a), =
sup;_,, a;) or to be disjoint (consider a; = a, \ al,).

(d) (2, iz) is semi-finite if whenever a € 2 and fia = oo there is a non-zero b C a such that b < co.

(e) (AU, iz) is localizable if it is semi-finite and the Boolean algebra 2 is Dedekind complete.

322B The first step is to relate these concepts to the corresponding ones for measure spaces.

Theorem Let (X, 1) be a measure space, and (2, i) its measure algebra. Then
a) (X,X, ) is a probability space iff (2, ) is a probability algebra;

b) (X, X, u) is totally finite iff (2, i) is;

c) (X, Z,u) is o-finite iff (2, ) is;

d) (X, X, ) is semi-finite iff (A, @) is;

e) (X,X, u) is localizable iff (A, @) is;

f) if £ € X, then E is an atom for y iff E* is an atom in 2;

g) (X, %, u) is atomless iff A is;

(h) (X, X, ) is purely atomic iff 2 is.

proof (a), (b) are trivial, since il = pX.

(c)(d) If p is o-finite, let (E,)nen be a sequence of sets of finite measure covering X; then gE? < oo for
every n, and

SuPpeN Ev.z = (UneN E’ﬂ). =1,
o (A, ) is o-finite.
(ii) If (A, 1) is o-finite, let (an)nen be a sequence in A such that fia,, < oo for every n and sup,, ¢y an = 1.

For each n, choose E, € ¥ such that E}, = a,. Set E = {J, oy En; then E* = sup,cya, = 1, so E is
conegligible. Now (X \ E, Ey, E1,...) is a sequence of sets of finite measure covering X, so p is o-finite.

(d) (i) Suppose that p is semi-finite and that a € 2, fia = co. Then there is an E € ¥ such that E* = q,
so that ul/ = fia = co. As p is semi-finite, there is an ' € ¥ such that ' C F and 0 < uF < oo. Set
b= F*;then b C aand 0 < b < .

(ii) Suppose that (2, f) is semi-finite and that £ € 3, puE = oco. Then gE® = oo, so there is a
b C E* such that 0 < ub < oo. Let F € ¥ be such that F* =b. Then FNFE € ¥, FNE C FE and
(FNE)=E*nb=0b, so that u(FNE) = b €]0, 0.

D.H.FREMLIN



6 Measure algebras 322B

(e) (i) Note first that if £ C ¥ and F € X, then

E\ F is negligible for every E € &
< E°*\F*=0forevery F €&
<= F* is an upper bound for {E* : F € £}.

Soif £ C ¥ and H € 3, then H is an essential supremum of £ in X, in the sense of 211G, iff H* is the
supremum of A = {E*: E € £} in A. P Writing F for

{F:FeX, E\F is negligible for every E € £},

we see that B = {F* : F € F} is just the set of upper bounds of A, and that H is an essential supremum
of £iff H € F and H* is a lower bound for B; that is, iff H* =sup A. Q

(ii) Thus 2 is Dedekind complete iff every family in ¥ has an essential supremum in X. Since we
already know that (2, i) is semi-finite iff u is, we see that (2, i) is localizable iff u is.

(f) This is immediate from the definitions in 2111 and 316K, if we remember always that {b:b C E*} =
{F*:FeX FCE} (312Lb).

(g), (h) follow at once from (f).

322C 1 copy out the relevant parts of Theorem 211L in the new context.

Theorem (a) A probability algebra is totally finite.
(b) A totally finite measure algebra is o-finite.
(c) A o-finite measure algebra is localizable.

(d) A localizable measure algebra is semi-finite.

proof All except (c) are trivial; and (c) may be deduced from 211Lc-211Ld, 322Bc¢, 322Be and 321J, or
from 316Fa and 322G below.

322D Of course not all the definitions in §211 are directly relevant to measure algebras. The concepts
of ‘complete’; ‘locally determined’ and ‘strictly localizable’ measure space do not correspond in any direct
way to properties of the measure algebras. Indeed, completeness is just irrelevant, as the next proposition
shows.

Proposition Let (X, X, 1) be a measure space, with completion (X, 3, f1) and c.L.d. version (X, 3, i) (213E).
Write (21, i), (21, 1) and (g, fiz) for the measure algebras of p, fi and fi respectively.
(a) The embedding ¥ G X corresponds to an isomorphism between (2, ) and (2y, fi1).
(b)(i) The embedding ¥ & ¥ defines an order-continuous Boolean homomorphism 7 : % — ;. Setting
A ={a:a e jia< oo}, 72U is a measure-preserving bijection between A and A = {c: ¢ € A, fige <
(ii) 7 is injective iff p is semi-finite, and in this case fiz(7wa) = fia for every a € 2.
(iii) If p is localizable, 7 is a bijection.
proof For E € X, I write E° for its image in 2; for F € 3, I write F* for its image in 2l;; and for G € 3, 1
write G* for its image in %s.

(a) This is nearly trivial. The map E — E* : ¥ — 2, is a Boolean homomorphism, being the composition
of the Boolean homomorphisms E — F : ¥ — S and F — F*: 3 — ;. Its kernel is {E:EeX uFE =
0} ={F : E € X, uE = 0}, so it induces an injective Boolean homomorphism ¢ : 20 — 2l; given by the
formula ¢(E°) = E* for every E € ¥ (312F, 3A2G). To see that ¢ is surjective, take any b € ;. There is
an F € ¥ such that F* = b, and there is an E € ¥ such that £ C F and u(F \ E) = 0, so that

m(E°)=FE*=F*=h.
Thus 7 is a Boolean algebra isomorphism. It is a measure algebra isomorphism because for any F € ¥

nd(E°) = M E* = iE = uE = fE°.

MEASURE THEORY



322F Taxonomy of measure algebras 7

(b)(i) The map F +— E* : ¥ — s, is a Boolean homomorphism with kernel {E : E € ¥, fF =0} D {E:
E € 3, uFE = 0}, so induces a Boolean homomorphism 7 : 2l — 2, defined by saying that 7E° = E* for
every F € 3.

If a € A7, it is expressible as E° where uE < co. Then iE = pE (213Fa), so ma = E* belongs to ng,
and Jiz(ma) = jia. If a, a’ are distinct members of 217, then

fa(rasma’) = fgam(ana) = plasa) >0,

so ma # wa'; thus 7[2Af is an injective map from A to ng If c € ng, then ¢ = G* where G < oo; by
213Fc, there is an E € ¥ such that £ C G, uF = iG and ji(G \ E) = 0, so that E° € 2 and

TE°=FE*=G*=c.

As c is arbitrary, ¢[21f] = th

Finally, 7 is order-continuous. I* Let A C 2 be a non-empty downwards-directed set with infimum 0,
and b € Ay a lower bound for 7[A]. T If b # 0, then (because (Ay, i) is semi-finite) there is a by € AL such
that 0 # by C b. Let ag € 2 be such that wag = by. Then ag # 0, so there is an a € A such that a Z ag, that
is, anag # ag. But now, because 7| 2AS is injective,

by = mag # w(anag) = Tanmwag = wa N by,

and by ¢ ma, which is impossible. X Thus b = 0, and 0 is the only lower bound of 7w[A]. As A is arbitrary,
7 is order-continuous (313L(b-ii)). Q

(ii) (o) If p is semi-finite, then GF = pFE for every E € ¥ (213Hc), so
fio(7E°) = fia B* = i = pF = [iE°
for every E € X. In particular,
ma=0= 0= fiz(ma) = ja = a =0,

so 7 is injective. (B) If p is not semi-finite, there is an F € ¥ such that uF = oo but pH = 0 whenever
HeX¥ HCFEand pH < o0; so that gFE = 0 and

E°#0, 7wE°=E*=0.
So in this case 7 is not injective.

(iii) Now suppose that s is localizable. Then for every G € 3 there is an E € ¥ such that i(EAG) = 0,
by 213Hb; accordingly 7E° = E* = G*. As G is arbitrary, 7 is surjective; and we know from (ii) that = is
injective, so it is a bijection, as claimed.

322E Proposition Let (2, Z) be a measure algebra.
(a) (A, i) is semi-finite iff it has a partition of unity consisting of elements of finite measure.
(b) If (A, iz) is semi-finite, a = sup{b: b C a, b < oo} and fia = sup{fb : b C a, b < oo} for every a € 2.

proof Set A ={b:be A, b < oo}.

(a)(i) If (A, jz) is semi-finite, then 21/ is order-dense in 2, so there is a partition of unity consisting of
members of A/ (313K).

(ii) If there is a partition of unity C' C 21/, and fia = oo, then there is a ¢ € C such that anc # 0, and
now anc Caand 0 < fi(anc) < co; as a is arbitrary, (2, i) is semi-finite.

(b) Of course A/ is upwards-directed, by 321Bc, and we are supposing that its supremum is 1. If a € 2,
then

B={b:becA bca}={anb:bec A’}
is upwards-directed and has supremum a (313Ba), so fia = sup,c g fib, by 321D.
Remark Compare 213A.

322F Proposition If (2, ) is a semi-finite measure algebra, then 2 is a weakly (o, co)-distributive
Boolean algebra.
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8 Measure algebras 322F

proof Let (A, )nen be a sequence of non-empty downwards-directed subsets of 2, all with infimum 0. Set
B = {b: for every n € N there is an a € A,, such that b2 a}.

If ¢ € A\ {0}, let ¢ C ¢ be such that 0 < fic’ < co. For each n € N, inf,ca, fi(¢' na) = 0, by 321F; so we
may choose a,, € A,, such that fi(c’ nay,) < 27" 2ub. Set b = sup,,cy an € B. Then

i(c' nb) < 3207 Al nan) < fic,
so ¢ ¢gband ¢Zb. As c is arbitrary, inf B = 0; as (A, )nen is arbitrary, 2 is weakly (o, co)-distributive
(316G).

322G Corresponding to 215B, we have the following description of o-finite algebras.

Proposition Let (2, i) be a semi-finite measure algebra. Then the following are equiveridical:

(i) (A, ;) is o-finite;

(i) A is cec;

(iii) either 2A = {0} or there is a functional 7 : > — [0, 1] such that (A, 7) is a probability algebra.
proof (i)« (ii) By 321J, it is enough to consider the case in which (2, ) is the measure algebra of a measure
space (X, X, u), and p is semi-finite, by 322Bd. We know that 2 is ccc iff there is no uncountable disjoint
set in ¥\ NV, where N is the null ideal of u (316D). But 215B(iii) shows that this is equivalent to p being
o-finite, which is equivalent to (2, i) being o-finite, by 322Bc.

(i)=-(iii) If (A, a) is o-finite, and A # {0}, let {a,)nen be a disjoint sequence in 2 such that fa, < oo
for every n and sup, ¢y a, = 1. Then fa, > 0 for some n, so there are ,, > 0 such that > > v,ja, = 1.
(Set v, =27 /(1 + fian), Y = Y/ (D jop Viia;).) Set va =377 s ynfi(anay) for every a € A; it is easy to
check that (A, D) is a probability algebra.

(iii)=(i) is a consequence of (i)<(ii).

322H Principal ideals If (2, 1) is a measure algebra and a € 2, then it is easy to see (using 314Eb)
that (A, &|As) is a measure algebra, where 2, is the principal ideal of 2 generated by a.

3221 Subspace measures General subspace measures give rise to complications in the measure algebra
(see 322Xf, 322Yd). But subspaces with measurable envelopes (132D, 213L) are manageable.

Proposition Let (X, X, 1) be a measure space, and A C X a set with a measurable envelope E. Let 4 be
the subspace measure on A, and X 4 its domain; let (2, ) be the measure algebra of (X, %, 1) and (A4, /i4)
the measure algebra of (A,X 4, pua). Set a = E* and let 2, be the principal ideal of 2 generated by a. Then
we have an isomorphism between (g, i[2,) and (A4, ia) given by the formula

F*— (FnA)°
whenever F' € ¥ and F C E, writing F'* for the equivalence class of F' in 2 and (F'N A)° for the equivalence
class of FNAin Ay.
proof Set g ={ENF:FeX} For F, G € g,
F*=G* <= pu(FAG)=0 <= us(AN(FAG))=0 < (FNA)° =(GnNA)°,
because F is a measurable envelope of A. Accordingly the given formula defines an injective function from
the image {F* : F € Xg} of X in A to Ay; but this image is just the principal ideal ,. It is easy to

check that the map is a Boolean homomorphism from 2{, to 214, and it is a Boolean isomorphism because
Y4 ={FNA:F € Xg}. Finally, it is measure-preserving because

pE® = pF = p(FNA) = pa(FNA) = pa(FNA)°
for every F' € X, again using the fact that E is a measurable envelope of A.
322J Corollary Let (X, X, 1) be a measure space, with measure algebra (2, ).
(a) If E € 3, then the measure algebra of the subspace measure pg can be identified with the principal
ideal Age of 2.

(b) If A C X is a set of full outer measure (in particular, if 4*A = pX < 00), then the measure algebra
of the subspace measure p4 can be identified with 2.
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322K Indefinite-integral measures: Proposition Let (X, X, 1) be a measure space and v an indefinite-
integral measure over y (234J). Then the measure algebra of v can be identified, as Boolean algebra, with
a principal ideal of the measure algebra of pu.

proof Taking (X, 3, i) to be the completion of (X, X, 1), then we can identify the measure algebras of u
and [, by 322Da; and v is still an indefinite-integral measure over fi, just because p and fi give rise to the
same theory of integration (212Fb). Now there is a G € 3 such that the domain T of v is {E: FECX,
ENG € %} and the null ideal A, of vis {A: A C X, ANG € N,}, where N, is the null ideal of y or i
(234Lc!, 212Eb). Writing 2l for the measure algebra of fi, ¢ = G* € 2, and 2, for the principal ideal of A
generated by ¢, we have a Boolean homomorphism E + (E N G)* : T — 2. with kernel A,. So, writing
E° € %5 for the equivalence class of E € T, we have an injective Boolean homomorphism 7 : 8 — 2. defined
by setting 7E° = (ENG)* for every E € T. Of course

T[B] 2 {(ENG)*:EcX}={anc:acA} =2,

so 7 is actually an isomorphism, as required.

322L Simple products (a) Let ((2;, [i;))ier be an indexed family of measure algebras. Let 2 be the
simple product Boolean algebra [],.;2; (315A), and for a € ™A set fia = ), ; fi;a(i). Then it is easy to
check (using 315D(e-ii)) that (2, 1) is a measure algebra; I will call it the simple product of the family
(s, fi;)Yicr- Each of the 2; corresponds to a principal ideal 2., say in 2, where e; € 2l corresponds to
ly, € A; (315E), and the Boolean isomorphism between 2; and 2., is a measure algebra isomorphism
between (;, ;) and (Ae,, il Ae, ).

(b) If (X, X, pti))ier is a family of measure spaces, with direct sum (X, X, u) (214L), then the measure
algebra (U, ) of (X,X,u) can be identified with the simple product of the measure algebras (2;, ;) of
the (X;,%;,u;). P If, as in 214L, we set X = {(x,i) : ¢ € I, x € X;}, and for E C X, i € I we set
E; = {z : (x,i) € E}, then the Boolean isomorphism E +— (E;)icr : ¥ — [];c; % induces a Boolean
isomorphism from 2 to [],.; 2, which is also a measure algebra isomorphism, because

RE* =pE =3l =3 L E;

iel

for every E € X. Q

(c) A simple product of measure algebras is semi-finite, or localizable, or atomless, or purely atomic, iff
every factor is. (Compare 214Kb.)

(d) Let (2, 2) be a measure algebra, and (e;);c;r a countable partition of unity in 2(. Then (2, f) is
isomorphic to the product [],.;(2e,, [ %e,) of the corresponding principal ideals. ¥ By 315F(ii), the
map a — {(ane;)icr is a Boolean isomorphism between 21 and [];.; ;. Because (e;)ics is disjoint and
a=sup;crane;, fia =y ;. fi(aNe;) for every a € A (321E, or otherwise). So a — (ane;)icr is a measure
algebra isomorphism between (2, ii) and [T, (s, [ %Ae,). Q

(e) Let (A, 1) be a localizable measure algebra.

(i) If (ei)icr is any partition of unity in A, then (2, i) is isomorphic to the product [, (Ue,, il Ae;)
of the corresponding principal ideals. B By 315F(iii), the map a — {(ane;);cs is a Boolean isomorphism
between 2l and [],.; ;. Because (e;)ics is disjoint and a = sup;crane;, fia = Y . ;fi(aNe;) (321E, in
its full strength), for every a € 2. So a — (ane;);er is a measure algebra isomorphism between (2, i) and

Hie[(mivﬂrmei)' Q

(ii) In particular, since 2 has a partition of unity consisting of elements of finite measure (322Ea),
(2, ;1) is isomorphic to a simple product of totally finite measure algebras. Each of these is isomorphic to
the measure algebra of a totally finite measure space, so (2, i) is isomorphic to the measure algebra of a
direct sum of totally finite measure spaces, which is strictly localizable.
Thus every localizable measure algebra is isomorphic to the measure algebra of a strictly localizable
measure space. (See also 3220 below.)

TFormerly 234D.
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10 Measure algebras *322M

*322M Strictly localizable spaces The following fact is occasionally useful.

Proposition Let (X, X, 1) be a strictly localizable measure space with pX > 0, and (2, ) its measure
algebra. If (a;);e; is a partition of unity in 2, there is a partition (X;);c; of X into members of ¥ such that
X! = a; for every i € I and

S={E:ECX EnX,exViell}

pE =3 n(ENX;) for every E € 3

that is, the isomorphism between 24 and the simple product Hie 1 Uq, of its principal ideals (315F) corre-
sponds to an isomorphism between (X, X, 1) and the direct sum of the subspace measures on X;.

proof (a) Suppose to begin with that uX < co. In this case J = {i : a; # 0} must be countable (322G).

For each i € J, choose E; € ¥ such that Ef = q;, and set F; = E; \ UjEJj;éi Ej; then F? = a; for each
i € J, and (F;);c is disjoint. Because pX > 0, J is non-empty; fix some jo € J and set

X;=F;, u(X\ | F))ifi=jo,
jedJ
=F; forie J\ {jo},
=Qforiel\J

Then (X;)ics is a disjoint family in 3, (J,c; X; = X and X7 = a; for every i. Moreover, because only
countably many of the X; are non-empty, we certainly have

S={E:ECX,ENX;eSViell,
pE =3 u(ENX;) for every E € 3.

(b) For the general case, start by taking a decomposition (Y;),cs of X. We can suppose that no Yj is
negligible, because there is certainly some jo such that pYj;, > 0, and we can if necessary replace Y}, by
Yj, UIU{Y; : uY; = 0}. For each j, we can identify the measure algebra of the subspace measure on Y; with
the principal ideal 24, generated by b; = Y (322I). Now (a; nb;);er is a partition of unity in 2y, so by (a)
just above we can find a disjoint family (Xj;)ier in ¥ such that (J;c; X = Y;, X5; = a; nb; for every i and

SNPY;={E:ECY;, ENX;; eLViel},

pE =3 u(E N Xy;) for every £ € ¥ NPY.

Set X; = Ujel X for every ¢ € I. Then (X;);cr is a partition of X. Because X;NY; = Xj; is measurable
for every j, X; € ¥. Because X! Da; nb; for every j, and (b;);cs is a partition of unity in 2 (322Lb),
X7 D a; for each 4; because (X?);er is disjoint and sup;c;a; =1, X7 = a; for every i. If E C X is such that
ENX; €Xforevery i, then FENXj; € Xforallieland j€J,s0o ENY; € X forevery j€Jand E € 3.

If £ €%, then

pE =Y wENY;)=> > uENX)

jeJ jEJ i€l
=33 wENX;NY;) =Y wENX;).
el jeJ el

Thus (X;);er is a suitable family.

322N Subalgebras: Proposition Let (2, i) be a measure algebra, and B a o-subalgebra of 2. Set

If (2, z) is totally finite, or a probability algebra, so is (B, 7).
If (2, i) is o-finite and (B, 7) is semi-finite, then (9B, ) is o-finite.
If (2, fz) is localizable and 9B is order-closed and (%8, 7) is semi-finite, then (B, 7) is localizable.

]
) (9B, 7) is a measure algebra.
)
)
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3220 Taxonomy of measure algebras 11

(e) If (B, ) is a probability algebra, or totally finite, or o-finite, so is (2, ).

proof (a) By 314Eb, % is Dedekind o-complete, and the identity map 7 : B — 2 is sequentially order-
continuous; so that ¥ = g will be countably additive and (8, 7) will be a measure algebra.

(b) This is trivial.

(c) Use 322G. Every disjoint subset of 9B is disjoint in 2, therefore countable, because 2 is ccc; so B also
is ccc and (2B, 7) (being semi-finite) is o-finite.

(d) By 314Ea, B is Dedekind complete; we are supposing that (28, 7) is semi-finite, so it is localizable.

(e) This is elementary.

3220 The Stone space of a localizable measure algebra I said above that the concepts ‘strictly
localizable’ and ‘locally determined’ measure space have no equivalents in the theory of measure algebras.
But when we look at the canonical measure on the Stone space of a measure algebra, we can of course hope
that properties of the measure algebra will be reflected in the properties of this measure, as happens in the
next theorem.

Theorem Let (2, i) be a measure algebra, Z the Stone space of 2, and v the standard measure on Z
constructed by the method of 321J-321K. Then the following are equiveridical:

(i) (A, iz) is localizable;

(ii) v is localizable;

(iil) v is locally determined;

(iv) v is strictly localizable.

proof Write X for the domain of v, that is,
{EAA: E C Z is open-and-closed, A C Z is meager},

and M for the ideal of meager subsets of Z, that is, the null ideal of v (314M, 321K). Then a — a* : 2 —
¥ /M is an isomorphism between (2, i) and the measure algebra of (Z, %, v) (314M). Note that because any
subset of a meager set is meager, v is surely complete.

(a)(i)«<(ii) is a consequence of 322Be.

(b)(ii)=-(iii) Suppose that v is localizable. Of course it is semi-finite. Let V' C Z be a set such that
VNE €Y whenever E € ¥ and vE < oo. Because v is localizable, there is a W € ¥ which is an essential
supremum in X of {VNE: E € X, vE < oo}, that is, W* = sup{(VNE)* : vE < oo} in ¥/ M. T claim
that WAV is nowhere dense. P Let G C Z be a non-empty open set. Then there is a non-zero a € 2 such
that @ C G. Because (2, 1) is semi-finite, we may suppose that fia < co. Now

(Wna)* =W*na* =sup,p.o(VNE) na* =sup,p(VNENa)> =(VNa)*,

so (WAV)Na is negligible, therefore meager. But we know that 2 is weakly (o, co)-distributive (322F), so
that meager sets in Z are nowhere dense (316I), and there is a non-empty open set H C @\ (WAV). Now
H C G\WAV. As G is arbitrary, int WAV = () and WAV is nowhere dense. Q

But this means that WAV € M C ¥ and V = WA(WAV) € 3. As V is arbitrary, v is locally
determined.

(c)(iii)=(iv) Assume that v is locally determined. Because (2, i) is semi-finite, there is a partition of
unity C' C 2 consisting of elements of finite measure (322Ea). Set C = {¢: ¢ € C'}. This is a disjoint family
of sets of finite measure for v. Now suppose that F' € ¥ and vF > 0. Then there is an open-and-closed set
E C Z such that FAFE is meager, and F is of the form a for some a € 2. Since

pa=va=vF >0,
there is some ¢ € C such that a nc # 0, and now
v(FNe)=planc) > 0.
This means that v satisfies the conditions of 2130a and must be strictly localizable.

(d)(iv)=-(ii) This is just 211Ld.
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12 Measure algebras 322P

322P Theorem Let (2, 1) be a semi-finite measure algebra, and let 2 be the Dedekind completion of
2 (314U). Then there is a unique extension of i to a functional fi on 2 such that (2, 1) is a localizable
measure algebra. The embedding 2 C 2 identifies the ideals {a : a € 2, fia < oo} and {a : a € A, fia < oo}.

proof (I write the argument out as if 2 were actually a subalgebra of ﬁl) For c € gl, set
fc=sup{fia:a €U, aC c}.

Evidently fi is a function from A to [0, 0] extending fi, so 0 = 0. Because 2 is order-dense in A, jic>0
whenever ¢ # 0, because any such ¢ includes a non-zero member of 2. If (¢,,)en is a disjoint sequence in A
with supremum ¢, then fic = Y fic,. P Let A be the set of all members of 2 expressible as a = sup,,cy an
where a,, € 2 and a,, C ¢, for every n € N. Now

(o]
sup jia = sup{z fiay, @ an € 2, ay, C ¢, for every n € N}
a€A

n=0
o0 oo
= ZSup{ﬂan tan Cept = Z[Lcn
n=0 n=0

Also, because 2l is order-dense in ‘51, cn =sup{a:a €, aC ¢y} for each n, and sup A, taken in ﬁ, must be
c. But this means that if ' € 2 and a’ C ¢ then @’ = sup,c 4 ¢’ na in 2 and therefore also in 2; so that

/](1/ = SUPgeA [L(G/ n a) < SUPge A pa.

Accordingly
A€ = SUPge 4 L0 = Zf:o fcn. Q

This shows that (QA(, ft) is a measure algebra. It is semi-finite because (2, i) is and every non-zero element
of 2 includes a non-zero element of 2, which in turn includes a non-zero element of finite measure. Since A
is Dedekind complete, (é\[, ii) is localizable.

If fia is finite, then surely fia = fia is finite. If fic is finite, then A = {a : a € 2, a C ¢} is upwards-directed
and sup,c 4 fla = fic is finite, so b = sup A is defined in A and fib = fic. Because 2 is order-dense in QAl, b=c
(313K, 3130) and ¢ € 2, with fc = fic.

322Q Definition Let (2, i) be any semi-finite measure algebra. I will call (QAl, i1), as constructed above,
the localization of (2, i). Of course it is unique just in so far as the Dedekind completion of 2 is.

322R Further properties of Stone spaces: Proposition Let (2, i) be a semi-finite measure algebra
and (Z,%,v) its Stone space.

(a) Meager sets in Z are nowhere dense; every E € ¥ is uniquely expressible as GAM where G C 7 is
open-and-closed and M is nowhere dense, and vE = sup{vH : H C E is open-and-closed}.

(b) The c.l.d. version ¥ of v is strictly localizable, and has the same negligible sets as v.

(c) If (A, 1) is totally finite then vE = inf{vH : H D F is open-and-closed} for every E € X.

proof (a) I have already remarked (in the proof of 3220) that 2 is weakly (o, oco)-distributive, so that
meager sets in Z are nowhere dense. But we know that every member of ¥ is expressible as GAM where G
is open-and-closed and M is meager, therefore nowhere dense. Moreover, the expression is unique, because
if GAM = G'AM’ then GAG' € M U M’ is open and nowhere dense, therefore empty, so G = G’ and
M =M. R

Now let a € 2 be such that @ = G, and consider B ={b:b €2, b C E}. Then supB =a in 2A. P If
b € B, then B\ a C M is nowhere dense, therefore empty; so a is an upper bound for B. ? If a is not the
supremum of B, then there is a non-zero ¢ C a such that b C a\ ¢ for every b € B. But now ¢ cannot be
empty, so ¢\ M is non-empty, and there is a non-zero d € A such that d C ¢\ M. In this case d € B and
dZa\c. X Thus a =sup B. Q

It follows that

MEASURE THEORY



322Xg Taxonomy of measure algebras 13

vE = vG = ia = sup ib
beB

= sup vh < sup{vH : H C E is open-and-closed} < vE
beB

and vE = sup{vH : H C F is open-and-closed}.

(b) This is the same as part (c) of the proof of 3220. We have a disjoint family C of sets of finite measure
for v such that whenever E € ¥ and vE > 0 there is a C € C such that u(C N E) > 0. Now if DF is defined
and not 0, there is an E € 3 such that £ C F and vE > 0 (213Fc), so that there is a C' € C such that
v(ENC) > 0; since vC < o0, we have

HFNC)>HENC)=v(ENC) > 0.

And of course 7C' < oo for every C' € C. This means that C witnesses that U satisfies the conditions of
2130a, so that 7 is strictly localizable.

Any v-negligible set is surely -negligible. If M is D-negligible then it is nowhere dense. P If G C Z is
open and not empty then there is a non-empty open-and-closed set H; C G, and now H; € X, so there is a
non-empty open-and-closed set H C H; such that vH is finite (because v is semi-finite). In this case H N M
is v-negligible, therefore nowhere dense, and H ¢ M. But this means that G Z M; as G is arbitrary, M is
nowhere dense. Q Accordingly M € M and is v-negligible.

Thus v and 7 have the same negligible sets.

(c) Because vZ < oo,

vE=vZ —v(Z\E)=vZ —sup{vH : H C Z\ E is open-and-closed }
=inf{v(Z\ H): HC Z\ E is open-and-closed }
=inf{vH : H O F is open-and-closed}.

322X Basic exercises >(a) Let (2, i) be a measure algebra. Let I, be the set of those a € 2 which
are either 0 or ‘purely infinite’, that is, ub = oo for every non-zero b C a. Show that I is a o-ideal of 2.
Show that there is a function fiss : /I, — [0, 00] defined by setting fista® = sup{fib : b C a, fib < oo} for
every a € 2. Show that (2A/I, fist) is a semi-finite measure algebra.

(b) Let (X,X, 1) be a measure space and let ug be the ‘semi-finite version’ of p, as defined in 213Xc.
Let (2, i) be the measure algebra of (X, X, ). Show that the measure algebra of (X, X, ysf) is isomorphic
to the measure algebra (2/I, fist) of (a) above.

(c) Let (X,¥, ) be a measure space and (X, ¥, /i) its c.l.d. version. Let (2, ) and (s, fiz) be the
corresponding measure algebras, and 7 : 2 — 2[5 the canonical homomorphism, as in 322Db. Show that
the kernel of 7 is the ideal I, as described in 322Xa, so that /I is isomorphic, as Boolean algebra, to
w[2] C Ay. Show that this isomorphism identifies figt, as described in 322Xa, with fis[7[2].

(d) Give a direct proof of 322G, not relying on 215B and 321J.

>(e) Let (2, 1) be any measure algebra, A a non-empty subset of 2, and ¢ € 2 such that fic < oo.
Show that (i) ¢g = sup{anc : a € A} is defined in A (ii) there is a countable set B C A such that
co =sup{anc:a € B}.

(f) Let (X, %, u) be a measure space and A any subset of X; let 4 be the subspace measure on A and
Y4 its domain. Write (2, i) for the measure algebra of (X, %, u) and (A4, Ea) for the measure algebra
of (A,X4,p4). Show that the formula F* — (F N A)* defines a sequentially order-continuous Boolean
homomorphism 7 : 2 — 24 which has kernel I = {F* : F € ¥, FN A = (}. Show that for any a € 2,
fa(ma) =min{pb:be A, a\be I}

(g) Let (%, 1) be a measure algebra and 9B a regularly embedded o-subalgebra of 2[. Suppose that
(B, i B) is semi-finite. Show that (2, ) is semi-finite.
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14 Measure algebras 322Xh

(h) Let (2, i) be any measure algebra and (Z, X, v) its Stone space. Show that the c.l.d. version of v is
strictly localizable.

322Y Further exercises (a) Let X be a set, & a o-algebra of subsets of X, and Z a o-ideal of ¥. Set
N ={N:3FeZ NCF}. Show that NV is a o-ideal of subsets of X. Set ¥ = {EAN : E€ X, N € N'}.
Show that Y is a o-algebra of subsets of X and that X/AN is isomorphic to 3 /Z.

(b) Let (A, ) be a semi-finite measure algebra, and (Z, 3, v) its Stone space. Let © be the c.l.d. version
of v, and % its domain. Show that % is precisely the Baire-property algebra {GAA:GC Zisopen, ACZ
is meager}, so that ¥/M can be identified with the regular open algebra of Z (314Yd) and the measure
algebra of © can be identified with the localization of .

(c) Give an example of a localizable measure algebra (2, i) with a o-subalgebra % such that (B, u[B)
is semi-finite and atomless, but 2 has an atom.

(d) Let (X,%, ) be a measure space and A C X a subset; let pag be the subspace measure on A4, 2 and
A 4 the measure algebras of p and p4, and 7 : A — 204 the canonical homomorphism, as described in 322Xf.
(i) Show that if 4 is semi-finite, then 7 is order-continuous. (i) Show that if x is semi-finite but ;14 is not,
then 7 is not order-continuous.

(e) Show that if (A, i) is a semi-finite measure algebra, with Stone space (Z,3,v), then v has locally
determined negligible sets in the sense of 213I.

(f) Let (2, 1) be a localizable measure algebra and (Z, %, v) its Stone space. (i) Show that a function
f:Z — R is Z-measurable iff there is a conegligible set G C X such that f[G is continuous. (Hint: 316Y1i.)
(ii) Show that f : Z — [0,1] is X-measurable iff there is a continuous function g : Z — [0,1] such that

f=gv-ae.

322 Notes and comments I have taken this leisurely tour through the concepts of Chapter 21 partly to
recall them (or persuade you to look them up) and partly to give you practice in the elementary manipulations
of measure algebras. The really vital result here is the correspondence between ‘localizability’ in measure
spaces and measure algebras. Part of the object of this volume (particularly in Chapter 36) is to try to make
sense of the properties of localizable measure spaces, as discussed in Chapter 24 and elsewhere, in terms of
their measure algebras. I hope that 322Be has already persuaded you that the concept really belongs to
measure algebras, and that the formulation in terms of ‘essential suprema’ is a dispensable expedient.

I have given proofs of 322C and 322G depending on the realization of an arbitrary measure algebra as
the measure algebra of a measure space, and the corresponding theorems for measure spaces, because this
seems the natural approach from where we presently stand; but I am sympathetic to the view that such
proofs must be inappropriate, and that it is in some sense better style to look for arguments which speak
only of measure algebras (322Xd).

For any measure algebra (2, i), the set 2/ of elements of finite measure is an ideal of 2; consequently
it is order-dense iff it includes a partition of unity (322E). In 322F we have something deeper: any semi-
finite measure algebra must be weakly (o, 0o)-distributive when regarded as a Boolean algebra, and this has
significant consequences in its Stone space, which are used in the proofs of 3220 and 322R. Of course a
result of this kind must depend on the semi-finiteness of the measure algebra, since any Dedekind o-complete
Boolean algebra becomes a measure algebra if we give every non-zero element the measure co. It is natural
to look for algebraic conditions on a Boolean algebra sufficient to make it ‘measurable’; in the sense that it
should carry a semi-finite measure; this is an unresolved problem to which I will return in Chapter 39.

Subspace measures, indefinite-integral measures, simple products, direct sums, principal ideals and order-
closed subalgebras give no real surprises; I spell out the details in 322H-322N and 322Xf-322Xg. It is worth
noting that completing a measure space has no effect on its measure algebra (322D, 322Ya). We see also
that from the point of view of measure algebras there is no distinction to be made between ‘localizable’
and ‘strictly localizable’, since every localizable measure algebra is representable as the measure algebra of a
strictly localizable measure space (322Le). (But strict localizability does have implications for some processes
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starting in the measure algebra; see 322M.) It is nevertheless remarkable that the canonical measure on the
Stone space of a semi-finite measure algebra is localizable iff it is strictly localizable (3220). This canonical
measure has many other interesting properties, which I skim over in 322R, 322Xh, 322Yb and 322Yf. In
Chapter 21 I discussed a number of methods of improving measure spaces, notably ‘completions’ (212C)
and ‘c.l.d. versions’ (213E). Neither of these is applicable in any general way to measure algebras. But in
fact we have a more effective construction, at least for semi-finite measure algebras, that of ‘localization’
(322P-322Q)); I say that it is more effective just because localizability is more important than completeness or
local determinedness, being of vital importance in the behaviour of function spaces (241Gb, 243Gb, 245Ec,
363M, 364M, 365L, 367M, 369A, 369C). Note that the localization of a semi-finite measure algebra does
in fact correspond to the c.l.d. version of a certain measure (322Yb). But of course 2 and 2A do not have
the same Stone spaces, even when 2 can be effectively represented as the measure algebra of a measure on
the Stone space of 2[. What is happening in 322Yb is that we are using all the open sets of Z to represent
members of 5[, not just the open-and-closed sets, which correspond to members of 2.

Version of 20.7.06
323 The topology of a measure algebra

I take a short section to discuss one of the fundamental tools for studying totally finite measure algebras,
the natural metric that each carries. The same ideas, suitably adapted, can be applied to an arbitrary
measure algebra, where we have a topology corresponding closely to the topology of convergence in measure
on the function space L°. Most of the section consists of an analysis of the relations between this topology
and the order structure of the measure algebra.

323A The pseudometrics p, (a) Let (2, ii) be a measure algebra. Write A/ = {a : a € A, fia < co}.
For a € &/ and b, ¢ € 2, write p,(b,c) = fi(an (bAc)). Then p, is a pseudometric on A. P (i) Because
fia < 00, p, takes values in [0,00[. (ii) If b, ¢, d € A then bAd C (bac)u(cAd), so

palbd) = flan (b5 d)) < pl(an (b ) U(an (ca d))
< i@ (bae)) + (an (e A d)) = pabre) + palerd)
(iii) If b, ¢ € A then
palbrc) = ian (b2 6)) = Alan (e & 8) = pulcrh). Q

(b) Now the measure-algebra topology of the measure algebra (2, ) is that generated by the family
P = {p, : a € A} of pseudometrics on 2. Similarly the measure-algebra uniformity on 2 is that
generated by P. For the rest of this section I will take it that every measure algebra is endowed with its
measure-algebra topology and uniformity.

(For a general discussion of topologies defined by pseudometrics, see 2A3F et seq. For the associated
uniformities see §3A4.)

(c) Note that P is upwards-directed, since pguo > max(pg, por) for all a, a’ € AS.

(d) On the ideal 2 we have an actual metric p defined by saying that p(a,b) = fi(a A b) for a, b € 2 (to
see that p is a metric, repeat the formulae of (a) above); this is the measure metric or Fréchet-Nikodym
metric. T will call the topology it generates the strong measure-algebra topology on 2 .

When [ is totally finite, that is, A7 = 2, p = p; defines the measure-algebra topology and uniformity of
2.

323B Proposition Let (2, i) be any measure algebra, and give 2 its measure-algebra topology.
(a) The operations U, N, \ and A are all uniformly continuous.

(b) 217 is dense in .

(© 1999 D. H. Fremlin
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16 Measure algebras 323B

proof (a) The point is that for any b, ¢, b, ¢ € 2 we have
(bxe)a M x)c(Oab)u(ead)
for any of the operations * = U, n etc.; so that if a € A/ then
pa(bxc,b %) < pa(b,b) + palc, ).
Consequently the operation * must be uniformly continuous.
(b) Given b € A, a € A/ and € > 0, then anb € A and p,(b,anb) = 0. Because the family {p, : a € A/}

is upwards-directed, this is enough to show that every neighbourhood of b meets A7; as b is arbitrary, 2/ is
dense.

323C Proposition (a) Let (2, i) be a totally finite measure algebra. Then i : 2 — [0, oo[ is uniformly
continuous.

(b) Let (U, i) be a semi-finite measure algebra. Then i : A — [0, 00] is lower semi-continuous.

(c) Let (2, 1) be any measure algebra. If a € 2 and fia < oo, then b — fi(bna) : A — R is uniformly
continuous.

proof (a) For any a, b € 2,
|fa — pb| < fi(a & b) = p1(a,b).

(b) Suppose that b € 2 and ib > o € R. Then there is an a C b such that a < fia < co (322Eb). If
¢ € A is such that p, (b, ¢) < fia — o, then

pce > flanc) = pa—flan(b\c)) > a.
Thus {b: b > a} is open; as « is arbitrary, i is lower semi-continuous.

(c) |f(and) — alanc)| < pa(b,c) for all b, ¢ € A.

323D The following facts are basic to any understanding of the relationship between the order structure
and topology of a measure algebra.

Lemma Let (2, i) be a measure algebra.
(a) Let B C 2 be a non-empty upwards-directed set. For b € B set F, = {c: b C ¢ € B}.
(i) {Fy : b € B} generates a Cauchy filter F(BT) on 2.
(ii) If sup B is defined in 2, then it is a topological limit of F(B7); in particular, it belongs to the
topological closure of B.
(b) Let B C 2 be a non-empty downwards-directed set. For b € B set F| = {c:bDc € B}.
(i) {F{ : b € B} generates a Cauchy filter F(BJ) on .
(ii) If inf B is defined in %A, then it is a topological limit of F(BJ); in particular, it belongs to the
topological closure of B.
(c)(i) Closed subsets of 2 are order-closed in the sense of 313Da.
(ii) An order-dense subalgebra of 20 must be dense in the topological sense.
(d) Now suppose that (2, i) is semi-finite.
(i) The sets {b: b C ¢}, {b:bDc} are closed for every ¢ € 2.
(ii) If B C 2 is non-empty and upwards-directed and e is a cluster point of F(B7), then e = sup B.
(iii) If B C 2 is non-empty and downwards-directed and e is a cluster point of F(B]), then e = inf B.

proof I use the notations A7, p, from 323A.
(a)(i) (@) If b, ¢ € B then there is a d € B such that buc C d, so that F; C F}, N F,; consequently
F(BY)={F:FC%, 3be B, F, CF)}

is a filter on 2A. (B) Let a € A/, € > 0. Then there is a b € B such that i(anc) < ji(anb) + e for every
ce€ B,and F, € F(BYT). lf now ¢, ¢ € Fy, cAd C (e\b)u(d\b), so

pale;@) < filanc\b) + ilan ¢ \b) = ilanc) + iland) - 2j(anb) < .
As a and € are arbitrary, F(B7) is Cauchy.
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323F The topology of a measure algebra 17

(ii) Suppose that e = sup B is defined in 2. Let a € A/, € > 0. By 313Ba, ane = supycpanb;
but {anb : b € B} is upwards-directed, so fi(a ne) = sup,cp f(and), by 321D. Let b € B be such that
fa(anb) > fi(ane) —e. Then for any c € F, e Ac Ce\b, so

pale;c) = pilan(enc)) < p(an(e\b)) = p(ane) — pland) <e.

As a and € are arbitrary, F(B1) — e.
Because B € F(B?), e surely belongs to the topological closure of B.

(b) Either repeat the arguments above, with appropriate inversions, using 321F in place of 321D, or
apply (a) to the set {1\b: b€ B}.

(c)(i) This follows at once from (a) and (b) and the definition in 313Da.

(ii) If B C A is an order-dense subalgebra and a € 2, then B = {b:b € B, b C a} is upwards-directed
and has supremum a (313K); by (a-ii), a € B C B. As a is arbitrary, B is topologically dense.

(d)(i) Set F ={b:bCc}. If d € A\ F, then (because (2, i) is semi-finite) there is an a € A such that
0 =pland\c)>0; now if b € F,

pa(d,b) = i(and\b) = 0,
so that d cannot belong to the closure of F. As d is arbitrary, F is closed. Similarly, {b: b2 c} is closed.

(ii) (o) If b € B, then e € Fy, because F}, € F(B1); but {c : b C c} is a closed set including Fp, so
contains e, and b C e. As b is arbitrary, e is an upper bound for B. () If d is an upper bound of B, then
{c : ¢ Cd} is a closed set belonging to F(BT), so contains e. As d is arbitrary, this shows that e is the
supremum of B, as claimed.

(iii) Use the same arguments as in (ii), but inverted.

323E Corollary Let (2, 1) be a measure algebra.

(a) If (bp)nen is a non-decreasing sequence in 2 with supremum b, then (b, )nen converges topologically
to b.

(b) If (bn)nen is a non-increasing sequence in 2 with infimum b, then (b, ),en converges topologically to
b.

proof I call this a ‘corollary’ because it is the special case of 323Da-323Db in which B is the set of terms of
a monotonic sequence; but it is probably easier to work directly from the definition in 323A, and use 321Be
or 321Bf to see that lim,, o pq (b, b) = 0 whenever fia < oo.

323F The following is a useful calculation.

Lemma Let (2, 1) be a measure algebra and (¢,)nen a sequence in 2 such that the sum Y2 o fi(cn, A ¢pp1)
is finite. Set dy = sup,,cy infy>n cm, di = infyensup,, >, ¢m. Then dy = d; and, writing d for their common
value, lim, o fi(c, & d) = 0.

proof Write a,, = fi(cn & Cpt1), Bn = D pepn @ for n € N; we are supposing that lim,, . 8, = 0. Set
b, = SUD,,>p Cm A Gy then

fiby, < Zyo:;:n f(Cm A Cmy1) = Bn
for each n. If m > n, then
Cm A € C SUD, < e Ck A Cg1 C bn,y
SO
cn \bn C Cm C CpUb,.
Consequently
en \ by, C infg>mci C SUPg>m Ck € Cn U by,

for every m > n, and
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18 Measure algebras 323F

cn\bp Cdo Cdy CcpUbp,

so that
cpnANdy Cby, cpndy Cby, di\dy Cby.
As this is true for every n,
limy, 00 fi(en A d;) < limy, o0 iby, =0

for both 7, and

i(dy A dg) < infp ey jiby = 0,
so that d; = dp.

323G The classification of measure algebras: Theorem Let (2, i) be a measure algebra, T its
measure-algebra topology and U its measure-algebra uniformity.

(a) (U, ) is semi-finite iff T is Hausdorff.

(b) (A, z) is o-finite iff T is metrizable, and in this case U also is metrizable.

(¢) (AU, i) is localizable iff T is Hausdorft and 2 is complete under U.

proof I use the notations A7, p, from 323A.

(a)(i) Suppose that (U, ) is semi-finite and that b, ¢ are distinct members of 2. Then there is an
a C b A csuch that 0 < fia < oo, and now p,(b,¢) > 0. As b and ¢ are arbitrary, ¥ is Hausdorff (2A3L).

(ii) Suppose that T is Hausdorff and that b € 2l has fib = co. Then b # 0 so there must be an a € 2Af
such that fi(anb) = p,(0,b) > 0; in which case anb Cb and 0 < i(and) < co. As b is arbitrary, i is
semi-finite.

(b) (i) Suppose that fi is o-finite. Let (a,)nen be a non-decreasing sequence in 2/ with supremum 1. Set

o0

p(b, C) _ Pan, (b7 C)

= 1+ 2"pan,

for b, ¢ € A. Then p is a metric on 2, because if p(b,c¢) = 0 then a, N (bAc¢) =0 for every n, so bAc =0
and b= c.
If a € A/ and € > 0, take n such that fi(a\ a,) < 3e. If b, c € A and p(b,c) < €/2(1 + 2"[ia,,), then

Pa(b,¢) = para, (b;¢) + para, (b, c) < fi(a\ an) + pa, (b, c)

< et (1+27ian)p(b, 0) < e.

In the other direction, given € > 0, take n € N such that 27" < %e; then p(b, ¢) < e whenever p,,, (b,c) <
€/2(n+1).
This shows that U/ is the same as the metrizable uniformity defined by {p}; accordingly ¥ also is defined
by p.
(ii) Now suppose that T is metrizable, and let p be a metric defining T. For each n € N there must be
Anos - -+ nk, €A and 6, > 0 such that
Pa,,: (b, 1) < 6, for every i < k,, = p(b,1) <27,

Set d = sup, e i<k, @ni- Then pg,,(d,1) = 0 for every n and i, so p(d,1) < 27" for every n and d = 1. Thus
1 is the supremum of countably many elements of finite measure and (2, i) is o-finite.

(c) (i) Suppose that (2, fz) is localizable. Then ¥ is Hausdorff, by (a). Let F be a Cauchy filter on 2. For
each a € A/, choose a sequence (F),(a))nen in F such that p, (b, c¢) < 27" whenever b, ¢ € F,(a) and n € N.
Choose capn € (<, Fr(a) for each n; then pg(can, Cang1) < 27" for each n. Set dq = sup,,cy infr>n a N car-
Then B

hmn—)oo pa(da7 Can) = hmn—)oo ﬂ(da A (a N Can)) =0,
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323H The topology of a measure algebra 19

by 323F.
If a, b€ A and a C b, then d, = and,. P For each n € N, F,,(a) and F,(b) both belong to F, so must
have a point e in common; now

pa(da, db) (daa Can) + Pa(can; 6) + Pa(ea Cbn) + pa (Cbn; db)

Pa
Pa (daa can) + pa(can; 8) + Pb(& Cbn) + Pb(Cbn, db)
Pa
0

IN A IA

(daa Can) + 2n + 2=n + Pb(Cbn, db)

— U asn — oQ.

Consequently pq(dq,dy) = 0, that is,
de =and, =and, Q

Set d = sup{dy : b € A }; this is defined because 2 is Dedekind complete. Then F — d. P If a € A and
€ > 0, then

and = supycys aNdp = SUPpegr aNbNdaup = SUPpegr aNbNdq = andg.
So if we choose n € N such that 27" + p,(Can, da) < €, then for any e € F,,(a) we shall have
pale, d) < pale, can) + palCan,d) < 27" + po(can,da) < €.
Thus
{e:pu(d,e) <€} D F,(a) € F.
As a, € are arbitrary, F converges to d. Q As F is arbitrary, 2 is complete.

(ii) Now suppose that T is Hausdorff and that 2 is complete under #. By (a), (2, ) is semi-finite.
Let B be any non-empty subset of 2, and set B’ = {bgu ... Ub, : by, ... ,b, € B}, so that B’ is upwards-
directed and has the same upper bounds as B. By 323Da, we have a Cauchy filter F(B’1); because 2 is
complete, this is convergent; and because (2, i) is semi-finite, its limit must be sup B’ = sup B, by 323Dd.
As B is arbitrary, 2 is Dedekind complete, so (2, i) is localizable.

323H Closed subalgebras The ideas used in the proof of (¢) above have many other applications, of
which one of the most important is the following. You may find it helpful to read the next theorem first on
the assumption that (2L, i) is a probability algebra.

Theorem Let (2, i) be a localizable measure algebra, and 8 a subalgebra of 2(. Then it is topologically
closed iff it is order-closed.

proof (a) If B is closed, it must be order-closed, by 323Dc.

(b) Now suppose that B is order-closed. I repeat the ideas of part (c-i) of the proof of 323G. Let e be any
member of the closure of B in A. For each a € 2Af and n € N choose ¢,y € B such that Pa(Can,€) < 27
Then

o0

0o
ﬂ((a n Can) A ((l n Ca,n+1)) = Z pa(cana Ca,nJrl)
n=0

n=0
00
S Z pa(cana 6) + Pa(ff, Ca,n+l) < o0.
n=0
So if we set e, = sup,, ¢y infr>n Cak, then
pa(eaa Can) = pa(a Ne€g,an Can) —0

as n — 00, by 323F, and p, (e, e,) = 0, that is, a ne, = ane. Also, because B is order-closed, infy>,, cor € B
for every n, and e, € B.
Because 2 is Dedekind complete, we can set

e/, =inf{ey : b€ A, a Cb};
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20 Measure algebras 323H

then e}, € B and
el na=infps,epna =infpsaepnbna=infrs,enbna=ena.
Now €/, C e}, whenever a C b, so B = {¢/, : a € A/} is upwards-directed, and
sup B =sup{e, na:a €W} =sup{ena:ac W} =e

because (21, 1) is semi-finite. Accordingly e € 9B. As e is arbitrary, 9B is closed, as claimed.
3231 Notation In the context of 323H, I will say simply that B is a closed subalgebra of 2.

323J Proposition If (A, 1) is a localizable measure algebra and B is a subalgebra of 2(, then the
topological closure B of % in 2 is precisely the order-closed subalgebra of 2 generated by B.

proof Write %, for the smallest order-closed subset of 2 including 8. By 313Gc, 9B, is a subalgebra of
2, and is the order-closed subalgebra of 2 generated by B. Being an order-closed subalgebra of %A, it is
topologically closed, by 323H, and must include B. On the other hand, B, being topologically closed, is
order-closed (323D(c-i)), so includes B,. Thus B = 9B, is the order-closed subalgebra of 2 generated by B.

323K I note some simple results for future reference.

Lemma If (2, i) is a localizable measure algebra and B is a closed subalgebra of 2, then for any a € 2 the
subalgebra € of 2 generated by B U {a} is closed.

proof By 314Ja, € is order-closed.
323L Proposition Let ((2;, fi;))icr be a family of measure algebras with simple product (2, i) (322K).

Then the measure-algebra topology on 20 = []..; 2; defined by f is just the product of the measure-algebra
topologies of the ;.

el

proof I use the notations A/, p, from 323A. Write T for the topology of 2 and & for the product topology.
Forielandde Qllf define a pseudometric pg; on 2 by setting

pai(b, ) = pa(b(i), c(i))

whenever b, ¢ € 2; then & is defined by P = {pg; : i € I, a € Ql{} (3A3Ig). Now each pg; is one of the
defining pseudometrics for ¥, since

Pas(h,0) = aldn (bA))

where d(i) = d, d(j) =0 for j #i. So & C %.
Now suppose that a € A/ and € > 0. Then > icr Bia(i) = fia is finite, so there is a finite set J C I such
that ZieI\J fi;a(i) < te. For each j € J, Tj = fq(;),; belongs to P, and

palb,c) =Y fis(ali) n (b(i) & (i)

< D7 ai(ali) 0 (b(G) & (i) + 56 = Do mi(bic) +ge < e
JjeJ JjEJ

whenever b, ¢ are such that 7;(b, ¢) < €/(142#(J)) for every j € J. By 2A3H, the identity map from (2, &)
to (A, %) is continuous, that is, T C &.
Putting these together, we see that & = ¥, as claimed.

*323M In this volume we shall have little need to consider the measure metric on 2/, but the following
facts are sometimes useful.

Proposition Let (2, i) be a measure algebra, and give 2/ its measure metric.
(a) The Boolean operations A, n, U and \ on 2/ are uniformly continuous.
(b) p2Af - AF — [0, 00 is 1-Lipschitz, therefore uniformly continuous.
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323Yc The topology of a measure algebra 21

(c) A is complete.
proof (a) Writing p for the measure metric on 21/, then, just as in the proof of 323Ba,
plbxc, b xc) < p(b,b) + p(c,c)
for all b, ¢, b, ¢ € AS and any of the Boolean operations x = A, n, U and \.
(b) If a, b € AS then
\pa — pb| < |pa — p(and)| + |ab — flanb)| = ala\b) + a(b\ a) = p(a, b).

(c) If (an)nen is a sequence in A such that Yo7 p(an,ant1) < o0, set d = sup, ey infim>n am. By
323F, lim,, oo ji(d A ay,) = 0. In particular, there is some n € N such that fi(d\ a,,) is finite, so d € 2Af and
lim,, 00 p(d, ay,) = 0. As in 2A4E, this is enough to show that A is complete.

323X Basic exercises >(a) Let (X, %, ) be a measure space, and (2, i) its measure algebra. (i) Show
that we have an injection y : 2 — L%(u) (see §241) given by setting x(E*) = (xE)* for every E € X. (ii)
Show that x is a homeomorphism between 2f and its image if 2 is given its measure-algebra topology and
L°(u) is given its topology of convergence in measure (245A).

>(b) Let (2, 1) be a measure algebra and p the measure metric on the ideal 21/ of elements of finite
measure. (i) Show that the embedding 2/ C 2 is uniformly continuous for the measure-algebra uniformity
on 2. (ii) In the context of 323Xa, show that x : 2/ — L°(u) is an isometry between 2f and a subset of
L' ().

(c) Let (2, 1) be a semi-finite measure algebra. Show that the set {(a,b) : a C b} is a closed set in A x 2.

>(d) Let (X, X, u) be a o-finite measure space and (2, fi) its measure algebra. (i) Show that if T is a
o-subalgebra of ¥, then {F* : F € T} is a closed subalgebra of 2[. (ii) Show that if 9B is a closed subalgebra
of A, then {F: F € ¥, F* € B} is a o-subalgebra of ¥.

(e) Let (2, 1) be a localizable measure algebra, and C' C 2 a set such that sup A, inf A belong to C for
all non-empty subsets A of C. Show that C is topologically closed.

(f) Show that if (2, i) is any measure algebra and 9B is a subalgebra of 2l, then its topological closure B
is again a subalgebra.

(g) Let (2, 1) be a measure algebra, and e € 2; let 2. be the principal ideal of 2 generated by e, and fi,
its measure (322H). (i) Show that the measure-algebra topology on 2. defined by fi. is just the subspace
topology induced by the measure-algebra topology of 2(. (ii) Show that the measure-algebra uniformity on
2, is the subspace uniformity induced by the measure-algebra uniformity of . (iii) Show that the strong
measure-algebra topology on 21/ is the subspace topology induced by the strong measure-algebra topology
of A7

(h) Let (2, 1) be a measure algebra. Show that its localization (322P) can be identified with its completion
under its measure-algebra uniformity.

323Y Further exercises (a) Let (2, i) be a o-finite measure algebra. Show that a set FF C 2 is
topologically closed iff e € F whenever there are non-empty sets B, C' C 2 such that B is upwards-
directed, C' is downwards-directed, sup B = inf C = e and [b,c] N F # ) for every b € B, ¢ € C, writing
[b,c)={d:bcdcc}

(b) Give an example to show that (a) is false for general localizable measure algebras.

(c) Give an example of a semi-finite measure algebra (2, i) with an order-closed subalgebra which is not
topologically closed.
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22 Measure algebras 323Yd

(d) Let (2, 1) be a probability algebra and write B for the family of closed subalgebras of 2. For B,
C € B set p(*B,¢) = max(supyey infeee f(b A ¢),sup e infres (b A c)). Show that (B, p) is a complete
metric space. (Cf. 246Yb, 4A2T.)

(e) Let (A, 1) be the measure algebra of Lebesgue measure on R. Show that it is separable in its
measure-algebra topology. (Hint: 245Y].)

323 Notes and comments The message of this section is that the topology of a measure algebra is
essentially defined by its order and algebraic structure; see also 324F-324H below. Of course the results are
really about semi-finite measure algebras, and indeed this whole volume, like the rest of measure theory,
has little of interest to say about others; they are included only because they arise occasionally and it is
not absolutely essential to exclude them. We therefore expect to be able to describe such things as closed
subalgebras and continuous homomorphisms in terms of the ordering, as in 323H and 324G. For o-finite
algebras, indeed, there is an easy description of the topology in terms of the order (323Ya). I think the
result of this section on which I shall most often depend is 323H: in most contexts, there is no need to
distinguish between ‘topologically closed subalgebra’ and ‘order-closed subalgebra’. However a o-subalgebra
of a localizable measure algebra need not be topologically sequentially closed; there is an example in FREMLIN
PACGTER & RICKER 05.

It is also the case that the topology of a measure algebra corresponds very closely indeed to the topology
of convergence in measure. A description of this correspondence is in 323Xa. Indeed all the results of this
section have analogues in the theory of topological Riesz spaces. 1 will enlarge on the idea here in §367. For
the moment, however, if you look back to Chapter 24, you will see that 323B and 323G are closely paralleled
by 245D and 245E, while 323Ya is related to 245L.

It is I think natural to ask whether there are any other topological Boolean algebras with the properties
323B-323D. In fact there are; see 393G and 393Xf below.

Version of 29.11.17

324 Homomorphisms

In the course of Volume 2, I had occasion to remark that elementary measure theory is unusual among
abstract topics in pure mathematics in not being dominated by any particular class of structure-preserving
operators. We now come to what I think is one of the reasons for the gap: the most important operators
of the theory are not between measure spaces at all, but between their measure algebras. In this section I
run through the most elementary facts about Boolean homomorphisms between measure algebras. I start
with results on the construction of such homomorphisms from functions between measure spaces (324A-
324E), then investigate continuity and order-continuity of homomorphisms (324F-324H) before turning to
measure-preserving homomorphisms (3241-324P).

324A Theorem Let (X, X, 1) and (Y, T, v) be measure spaces, and (2, i), (B, 7) their measure algebras.
Write ¥ for the domain of the completion fi of . Let D C X be a set of full outer measure (definition:
132F), and $p the subspace o-algebra on D induced by & (121A). Let ¢ : D — Y be a function such that
¢~[F] € Sp for every F € T and ¢~ [F] is p-negligible whenever vF = 0. Then there is a sequentially
order-continuous Boolean homomorphism 7 : 8 — 2 defined by the formula

7F* = E* whenever F € T, E € ¥ and (E N D)A¢~}[F] is negligible.

proof Let F € T. Then there is an H € 3 such that HN D = ¢ [F); now there is an E € ¥ such
that EAH is negligible, so that (E N D)A¢~'[F] is negligible. If E; is another member of ¥ such that
(E1 N D)A¢~1[F] is negligible, then (EAE;) N D is negligible, so is included in a negligible member G of
Y. Since (EAE1) \ G belongs to ¥ and is disjoint from D, it is negligible; accordingly EAF; is negligible
and £* = E} in 2.

(© 1998 D. H. Fremlin
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What this means is that the formula offered defines a map 7 : 8 — L. It is now easy to check that 7 is
a Boolean homomorphism, because if

(END)A¢™HF],  (E'ND)A¢~[F']
are negligible, so are
(ENE)YAD)AG ' FAF],  ((X\E)ND)A¢ Y\ F),
and we can apply 312H.

To see that 7 is sequentially order-continuous, let (b,)nen be a sequence in 9B. For each n we may
choose an F), € T such that F? = b, and E, € ¥ such that (E, N D)A¢~![F,] is negligible; now, setting

F=U,en Fny E= U, en En,
(END)A¢~L[F] C Unen(En N D)A¢~F,)]
is negligible, so
T(supyen bn) = 7(F*) = E* = sup,,cn By, = sup,,en 7hn.

(Recall that the maps F — E*, F' — F* are sequentially order-continuous, by 321H.) So 7 is sequentially
order-continuous (313L(c-iii)).

324B Corollary Let (X, X, 1) and (Y, T, v) be measure spaces, and (2, 1), (B, 7) their measure algebras.
Let ¢ : X — Y be a function such that ¢~ 1[F] € X for every F' € T and pu¢~'[F] = 0 whenever vF = 0.
Then there is a sequentially order-continuous Boolean homomorphism 7 : B8 — 2{ defined by the formula

7F* = (¢~ L[F])* for every F € T.

324C Remarks (a) In §235 and elsewhere in Volume 2 I spent a good deal of time on functions between
measure spaces which satisfy the conditions of 324A. Indeed, I take the trouble to spell 324A out in such
generality just in order to catch these applications. Some of the results of the present chapter (322D, 322Jb)
can also be regarded as special cases of 324A.

(b) The question of which homomorphisms between the measure algebras of measure spaces (X, X, i),
(Y, T,v) can be realized by functions between X and Y is important and deep; I will return to it in §§343-344.

(c) In the simplified context of 324B, I have actually defined a contravariant functor; the relevant facts
are the following.

324D Proposition Let (X, ¥, i), (Y, T,v) and (Z, A, A) be measure spaces, with measure algebras (2, f1),
(B,7), (€, ). Suppose that ¢ : X = Y and ¢ : Y — Z satisfy the conditions of 324B, that is,

o UFeXif FeT, up l[F]=0ifvF =0,

PG e Tif Ge A, wp~ G =0if \G =0.
Let mg : B — A, my : € = B be the corresponding homomorphisms. Then ¢ : X — Z is another map of
the same type, and my¢ = mgmy 1 € — 2

proof The necessary checks are all elementary.

324E Stone spaces While in the context of general measure spaces the question of realizing homomor-
phisms is difficult, in the case of the Stone representation it is relatively straightforward.

Proposition Let (2, ) and (28,7) be measure algebras, with Stone spaces Z and W; let u, v be the
corresponding measures on Z and W, as described in 321J-321K, and ¥, T their domains. If 7 : B — 2 is
any order-continuous Boolean homomorphism, let ¢ : Z — W be the corresponding continuous function, as
described in 312Q. Then ¢~ '[F] € ¥ for every F € T, u¢~![F] = 0 whenever vF = 0, and (writing E* for
the member of 2 corresponding to E € ) nF* = (¢~ 1[F])* for every F € T.
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proof Recall that E* = a iff EAa is meager, where a is the open-and-closed subset of Z corresponding
to a € 2. In particular, uE = 0 iff E is meager. Now the point is that ¢~![F] is nowhere dense in Z
whenever F is a nowhere dense subset of W, by 313R. Consequently ¢~ ![F] is meager whenever F is meager
in W, since F is then just a countable union of nowhere dense sets. Thus we see already that pu¢=1[F] = 0
whenever vF = (0. If F' is any member of T, there is an open-and-closed set Fy such that FAF; is meager;
now ¢~ ![Fy] is open-and-closed, so ¢~ ![F] = ¢~ [Fy] A¢p~ [FAFy] belongs to X. Moreover, if b € 9B is such
that b = Fy, and a = b, then @ = ¢~ 1[Fy], so
TF* =7b=a=(¢"'[F])* = (o7 [F])*,

as required.

324F 1 turn now to the behaviour of order-continuous homomorphisms between measure algebras.

Theorem Let (2, ) and (B, 7) be measure algebras and 7 : 2 — 9B a Boolean homomorphism. Give 2
and B their measure-algebra topologies and uniformities (323Ab).

(a) 7 is continuous iff it is continuous at 0 iff it is uniformly continuous.

(b) If (B, D) is semi-finite and 7 is continuous, then it is order-continuous.

(c) If (A, 1) is semi-finite and 7 is order-continuous, then it is continuous.

proof I use the notations A/, p, from 323A.

(a) Suppose that 7 is continuous at 0; I seek to show that it is uniformly continuous. Take b € B and
€ > 0. Then there are ag, ... ,a, € A/ and § > 0 such that

v(bnme) = py(me,0) < € whenever max; <, pa, (¢,0) < §;
setting a = sup;<,, a;,
v(bnme) < e whenever fi(anc) < 0.
Now suppose that pg(c,c’) < §. Then i(an(cac’)) <4, so
po(me,md) =v(bn(meand)) =vbnr(cad)) <e

As b and € are arbitrary, 7 is uniformly continuous. The rest of the implications are elementary.

(b) Let A be a non-empty downwards-directed set in 2 with infimum 0. Then 0 € A (323D (b-ii)); because
7 is continuous, 0 € 7[A]. ? If b is a non-zero lower bound for 7[A] in 9B, then (because (B, 7) is semi-finite)
there is a ¢ C b with 0 < e < 00; now

pe(ma,0) =v(cnma) =ve >0

for every a € A, s0 0 ¢ w[A]. X
Thus inf 7[A] = 0 in B; as A is arbitrary, 7 is order-continuous (313L(b-ii)).

(c) By (a), it will be enough to show that 7 is continuous at 0. Take b € B/ and ¢ > 0. 7 Suppose, if
possible, that whenever a € 2/ and ¢ > 0 there is a ¢ € 2 such that fi(anc) < § but #(bnme) > e. For each
a € A7, n € N choose ¢y, such that fi(an ce,) < 27" but (bn7wca,) > €. Set cq = inf,en SUD,, >y, Cam; then

ilanc,) <infpend oo flance,) =0,
s0 ¢ na = 0. On the other hand, because 7 is order-continuous, wc, = inf,ensup,,>, Tam, so that
v(bnmea) = limy o0 (BN SUD, >y, TCam) > €.
This shows that
po(m(1\a),0) =o(bna(l\a)) > v(bnme,) > €.

But now observe that A = {1\ a: a € A/} is a downwards-directed subset of 21 with infimum 0, because
(2, fv) is semi-finite. So w[A] is downwards-directed and has infimum 0, and 0 must be in the closure of 7[A],
by 323D(b-ii) again; while we have just seen that py(d,0) > € for every d € n[A]. X

Thus there must be a € Af, § > 0 such that

po(me,0) =p(bnme) < e
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whenever
pa(c,0) = fi(anc) < 0.

As b and € are arbitrary, 7 is continuous at 0 and therefore continuous.

324G Corollary If (2, 1) and (B,7) are semi-finite measure algebras, a Boolean homomorphism 7 :
2 — B is continuous iff it is order-continuous.

324H Corollary If 2 is a Boolean algebra and fi, 7 are two measures both rendering 2l a semi-finite
measure algebra, then they endow 2 with the same uniformity (and, of course, the same topology).

proof By 324G, the identity map from 2 to itself is continuous whichever of the topologies we place on ;
and by 324Fa it is therefore uniformly continuous.

3241 Definition Let (A, i) and (B, 7) be measure algebras. A Boolean homomorphism 7 : 2 — B is
measure-preserving if 7(ra) = fia for every a € 2.

324J Proposition Let (2, i), (B, 7) and (€, \) be measure algebras, and 7 : 20 — B, 0 : B — € measure-
preserving Boolean homomorphisms. Then 67 : 2l — € is a measure-preserving Boolean homomorphism.

proof Elementary.

324K Proposition Let (2, i) and (*8,7) be measure algebras, and 7 : 2l — B a measure-preserving
Boolean homomorphism.
(a) 7 is injective.
(b) (A, ) is totally finite iff (B,7) is, and in this case 7 is order-continuous, therefore continuous, and
m[2A] is a closed subalgebra of 9B.
c) If (A, i) is semi-finite and (B, ) is o-finite, then (2, i) is o-finite.
d) If (A, 1) is o-finite and 7 is sequentially order-continuous, then (8, 7) is o-finite.
e) If (A, 1) is semi-finite and = is order-continuous, then (B, 7) is semi-finite.
) If (A, ir) is atomless and semi-finite, and 7 is order-continuous, then B is atomless.
(g) If B is purely atomic and (2, fi) is semi-finite, then 2 is purely atomic.

(
(
(
(

proof (a) If a # 0 in A, then 7wra = ia > 0 so wa # 0. By 3A2Db, 7 is injective.
(b) Because
17153 = 177'(191 = /.7,191,

(2, i2) is totally finite iff (B, ) is. Now suppose that A C 2 is downwards-directed and non-empty and that
inf A =0. Then

inf,cavma =infoecq ta =0

by 321F. So vb = 0 for any lower bound b of 7[A], and inf 7[A] = 0. As A is arbitrary, 7 is order-continuous,
by 313Lb again.
By 324Fc, 7 is continuous. By 314Fa, m[2(] is order-closed in 9B, that is, ‘closed’ in the sense of 3231.

(c) T appeal to 322G. If C is a disjoint family in 2\ {0}, then (7c).cc is a disjoint family in B \ {0}, so
is countable, and C' must be countable, because 7 is injective. Thus 2 is ccc and (being semi-finite) (2, fz)
is o-finite.

(d) Let (an)nen be a sequence in 2 such that fia,, < oo for every n and sup,,cya, = 1. Then vra, < oo
for every n and (because 7 is sequentially order-continuous) sup,,cy 7a, = 1, so (B, 7) is o-finite.

(e) Setting Af = {a : fia < oo}, supA/ = 1; because 7 is order-continuous, sup 7[2f] = 1 in B. So if
Ub = oo, there is an a € 2/ such that manb # 0, and now 0 < 7(bn7a) < oo.

(f) Take any non-zero b € B. As in (e), there is an a € 2 such that fia < co and ranb #0. If ranb # b,
then surely b is not an atom. Otherwise, set
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C={c:ce,cCa,bcCmnc}.
Then C' is downwards-directed and contains a, so ¢y = inf C' is defined in 2 (321F again), and
fcg = infeeo ic > vb > 0,

so ¢g # 0. Because 2l is atomless, there is a d C ¢y such that neither d nor ¢y \ d is zero, so that neither
¢p \ d nor d can belong to C'. But this means that bn7wd and bn(cg \ d) are both non-zero, so that again b
is not an atom. As b is arbitrary, B is atomless.

(g) Take any non-zero a € 2. Then there is an a’ C a such that 0 < i’ < co. Because B is purely
atomic, there is an atom b of B with b C wa’. Set

C={c:ceA,cca,bcmc}
Then C is downwards-directed and contains a’, so ¢y = inf C is defined in 2, and
fico = infoec ic > vb > 0,

so ¢g # 0. If d C ¢g, then bnwd must be either b or 0. If bnwd = b, then d € C and d = ¢y. If bnnwd =0,
then ¢p\d € C and d = 0. Thus ¢ is an atom in 2. As a is arbitrary, 2 is purely atomic.

324L Corollary Let (2, i) be a totally finite measure algebra, (98, 7) a measure algebra, and 7 : A — B
a measure-preserving homomorphism. If C' C 2 and € is the closed subalgebra of 2 generated by C, then
7[€] is the closed subalgebra of B generated by = [C].

proof By 324Ka, 7 is order-continuous, so we can apply 314H.

324M Proposition Let (X,X, ) and (Y, T,v) be measure spaces, with measure algebras (2, i) and
(B,7). Let ¢ : X — Y be inverse-measure-preserving. Then we have a sequentially order-continuous
measure-preserving Boolean homomorphism 7 : B — 2l defined by setting 7F* = ¢~ 1[F]* for every F € T.

proof This is immediate from 324B.

324N Proposition Let (2, ) and (28,7) be measure algebras, with Stone spaces Z and W; let p, v
be the corresponding measures on Z and W. If 7 : 8 — 2 is an order-continuous measure-preserving
Boolean homomorphism, and ¢ : Z — W the corresponding continuous function, then ¢ is inverse-measure-
preserving.

proof Use 324E. In the notation there, if F' € T, then
vF = DF* = i F* = i~ [F]* = po—[F].

3240 Proposition Let (2, i) and (B, 7) be totally finite measure algebras, 24y a topologically dense
subalgebra of 2, and 7 : %y — B a Boolean homomorphism such that vma = fia for every a € 2y. Then 7
has a unique extension to a measure-preserving homomorphism from 2 to 8.

proof Let p, o be the measure metrics on 2, B respectively, as in 323Ad. Then for any a, a’ € 2,
o(ra,mad’) = v(ralrwa') = vr(ala’) = plala’) = p(a,a’);

that is, 7 : Ao — B is an isometry. Because 2y is dense in the metric space (2, p), while B is complete
under o (323Gc), there is a unique continuous function 7 : A — B extending 7 (3A4G). Now the operations

(a,a') = w(anda’), (a,d')— Fanfa :AxA— B,

are continuous and agree on the dense subset Ay x Ay of A x 2A; because the topology of B is Hausdorff,
they agree on 2 x 2, that is, 7(ana’) = fan@a’ for all a, @’ € A (2A3Uc). Similarly, the operations

a—7(1\a), a—1\Fa:A—B

are continuous and agree on the dense subset 2 of 2, so they agree on 2, that is, #(1\ a) = 1\ a for every
a € 2. Thus 7 is a Boolean homomorphism (312H again). To see that it is measure-preserving, observe that

a+— jia = p(a,0), ar (fta)=o0(7a,0):A >R
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are continuous and agree on 2y, so agree on 2. Finally, 7 is the only measure-preserving Boolean homo-
morphism extending 7, because any such map must be continuous (324Kb), and # is the only continuous
extension of 7.

*324P The following fact will be applied in §387, by which time it will seem perfectly elementary; for
the moment, it may be a useful exercise.

Proposition Let (2, ) and (2B,7) be totally finite measure algebras such that il = #1. Suppose that
A C Aand ¢ : A — B are such that v(inf;<, ¢a;) = f(inf;<, a;) for all ag,...,a, € A. Let € be
the smallest closed subalgebra of 2 including A. Then ¢ has a unique extension to a measure-preserving
Boolean homomorphism from € to 3.

proof (a) Let ¥ be the family of all functions 1 extending ¢ and having the same properties; that is, ¢ is
a function from a subset of 2 to 9B, and v(inf;<, Ya;) = f(inf;<, a;) for all ay, ... ,a, € dom. By Zorn’s
Lemma, ¥ has a maximal member 0. Write D for the domain of 6.

(b)(3) If ¢, d € D then cnd € D. P? Otherwise, set D' = DU {cnd} and extend 6 to §' : D' — B by
writing 6’ (cnd) = fcn@d. Tt is easy to check that 8’ € ¥, which is supposed to be impossible. XQ
Now
p(@cnbdnb(cnd)) = f(end) = (6cnbd) = v0(cnd),
so 6(cnd) = 0cnbd.
(ii) If d € D then 1\d € D. P? Otherwise, set D’ = D U {1\ d} and extend 6 to D’ by writing
6'(1\d) =1\ 60d. Once again, it is easy to check that 8’ € ¥, which is impossible. XQ
Consequently (since D is certainly not empty, even if A is), D is a subalgebra of 2 (312B(iii)).
(iii) Since
701 = il = 71,
01 =1. If d € D then
p0(1\d) = p(1\d) = jil — id = 1 — vfd = (1 \ 6d),
while
P(0dn 00\ d)) = p(dn (11 d)) = 0,
so 0dnO(1\d)) =0, 0(1\d) C 1\0d and 0(1\ d) must be equal to 1\ 6d.
By 312H(ii), 6 : D — B is a Boolean homomorphism.

(iv) Let © be the topological closure of D in 2(. Then it is an order-closed subalgebra of 2 (323J), so,
with [, is a totally finite measure algebra in which D is a topologically dense subalgebra. By 3240, there
is an extension of # to a measure-preserving Boolean homomorphism from ® to B; of course this extension
belongs to U, so in fact D = © is a closed subalgebra of 2.

(c) Since A C D, € C D and ¢; = 0] € is a suitable extension of ¢.

To see that ¢; is unique, let ¢o : € — B be any other measure-preserving Boolean homomorphism
extending ¢. Set C = {a : ¢p1a = ¢2a}; then C is a topologically closed subalgebra of 2 including A, so is
the whole of €, and ¢o = ¢7.

324X Basic exercises (a) Let 2 and B be Boolean algebras, of which 2 is Dedekind o-complete, and
¢ : A — B a sequentially order-continuous Boolean homomorphism. Let I be an ideal of 2 included in the
kernel of ¢. Show that we have a sequentially order-continuous Boolean homomorphism 7 : 24/I — B given
by setting 7(a*) = ¢a for every a € 2.

(b) Let (A, &) be a measure algebra, and B an order-closed subalgebra of 2 such that (B, [ 9B) is semi-
finite. Show that the topology on B induced by f[*B is just the subspace topology induced by the topology
of 2.
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(c) Let (X, %, 1) be a measure space and (X, Y, i) its c.l.d. version. Let 2, 2y be the corresponding
measure algebras and 7 : 2 — 2y the canonical homomorphism (see 322Db). Show that = is topologically
continuous.

(d) Let (A, z) and (B, 7) be measure algebras, and 7 : 2 — 9B a bijective measure-preserving Boolean
homomorphism. Show that 77! : B — 2 is a measure-preserving homomorphism.

(e) Let fi be counting measure on PN. Show that (PN, fi) is a o-finite measure algebra. Find a measure-
preserving Boolean homomorphism from PN to itself which is not sequentially order-continuous.

324Y Further exercises (a) Let 2 and B be Boolean algebras, of which 2 is Dedekind complete, and
¢ : A — B an order-continuous Boolean homomorphism. Let I be an ideal of 2l included in the kernel of ¢.
Show that we have an order-continuous Boolean homomorphism 7 : (/T — 9B given by setting 7(a®) = ¢a
for every a € 2.

(b) Let 2 be a Dedekind o-complete Boolean algebra, and Z its Stone space. Write £ for the algebra of
open-and-closed subsets of Z, and Z for the family of nowhere dense zero sets of Z; let Z, be the o-ideal of
subsets of Z generated by Z. Show that ¥ = {EAU : E € £, U € Z,} is a o-algebra of subsets of Z, and
describe a canonical isomorphism between ¥/Z, and .

(c) Let 2 and B be Dedekind o-complete Boolean algebras, with Stone spaces Z and W. Construct
Z, C X CPZ as in 324YDb, and let W, C T C PW be the corresponding structure defined from 9B. Let
7w : B — 2 be a sequentially order-continuous Boolean homomorphism, and ¢ : Z — W the corresponding
continuous map. Show that if E* € 2 corresponds to E € X, then nF* = ¢~ 1[F]* for every F € T.

(d) Let 2 be a Boolean algebra, 8 a ccc Boolean algebra and 7 : 2 — 95 an injective Boolean homomor-
phism. Show that 2 is ccc.

(e) Let A be a Dedekind complete Boolean algebra, %6 a Boolean algebra, and 7 : 24 — 9B an order-
continuous Boolean homomorphism. Show that for every atom b € B there is an atom a € 2 such that
ma 2 b. Hence show that if 2 is atomless so is 9B, and that if B is purely atomic and 7 is injective then 2l is
purely atomic.

(f) Let (A, i) and (B, 7) be localizable measure algebras and 2, an order-dense subalgebra of 2. Suppose
that 7 : 2y — B is an order-continuous Boolean homomorphism such that 7ma = fia for every a € 2.
Show that 7 has a unique extension to a measure-preserving Boolean homomorphism from 2 to 8.

(g) Let (A, ) and (B, 7) be probability algebras, and f : 2 — 9B an isometry for the measure metrics.
Show that a — f(a) A f(0) is a measure-preserving Boolean homomorphism.

324 Notes and comments If you examine the arguments of this section carefully, you will see that rather
little depends on the measures named. Really this material deals with structures (X, 3, 7) where X is a set,
3 is a o-ideal of subsets of X, and Z is a o-ideal of 3, corresponding to the family of measurable negligible
sets. In this abstract form it is natural to think in terms of sequentially order-continuous homomorphisms,
as in 324Yc. I have stated 324E in terms of order-continuous homomorphisms just for a slight gain in
simplicity. But in fact, when there is a difference, it is likely that order-continuity, rather than sequential
order-continuity, will be the more significant condition. Note that when the domain algebra is o-finite, it is
cee (322G), so the two concepts coincide (316Fd).

Of course I need to refer to measures when looking at such concepts as o-finite measure algebra or measure-
preserving homomorphism, but even here the real ideas involved are such notions as order-continuity and
the countable chain condition, as you will see if you work through 324K. It is instructive to look at the
translations of these facts into the context of inverse-measure-preserving functions; see 234B.

324H shows that we may speak of ‘the’ topology and uniformity of a Dedekind o-complete Boolean algebra
which carries any semi-finite measure; the topology of such an algebra is determined by its algebraic structure.
Contrast this with the theory of normed spaces: two Banach spaces (e.g., £! and ¢2) can be isomorphic as
linear spaces, both being of algebraic dimension ¢, while they are not isomorphic as topological linear spaces.
When we come to the theory of ordered linear topological spaces, however, we shall again find ourselves
with operators whose algebraic properties guarantee continuity (355C, 3670).

MEASURE THEORY



325A Free products and product measures 29

Version of 30.8.06

325 Free products and product measures

In this section I aim to describe the measure algebras of product measures as defined in Chapter 25. This
will involve the concept of ‘free product’ set out in §315. It turns out that we cannot determine the measure
algebra of a product measure from the measure algebras of the factors (325B), unless we are told that the
product measure is localizable; but that there is nevertheless a general construction of ‘localizable measure
algebra free product’, applicable to any pair of semi-finite measure algebras (325D), which represents the
measure algebra of the product measure in the most important cases (325Eb). In the second part of the
section (3251-325M) I deal with measure algebra free products of probability algebras, corresponding to the
products of probability spaces treated in §254.

325A Theorem Let (X, Y, 1) and (Y, T, v) be measure spaces, with measure algebras (2, i) and (B, D).
Let A be the c.l.d. product measure on X x Y, and A its domain; let (¢, \) be the corresponding measure
algebra.

(a)(i) The map F — E x Y : ¥ — A induces an order-continuous Boolean homomorphism from 2 to €.

(ii) The map F — X x F': T — A induces an order-continuous Boolean homomorphism from %5 to €.
(b) The map (E,F)— E X F : ¥ x T — A induces a Boolean homomorphism ¢ : 2 ® B — €.
(c) Y[A ® B] is topologically dense in € for the measure-algebra topology of €.
(d) For every c € €,

Ac = sup{A(cny(a®@b)):a €, be B, jia < oo, vb < 0o}

(e) If y and v are semi-finite, 1 is injective and M\(a ® b) = fia - fib for every a € A, b € B.
proof (a) E xY € A for every E € ¥ (251E), and AM(E X Y) = 0 whenever uE = 0 (251Ia). Thus
Er~ (ExY)*:%¥ — €is a Boolean homomorphism with kernel including {E : uE = 0}, so descends to a
Boolean homomorphism € : A — €.

To see that €7 is order-continuous, let A C 2 be a non-empty downwards-directed set with infimum 0.
? If there is a non-zero lower bound c of £1[A], express ¢ as W* where W € A. We have A\(W) > 0; by the
definition of A (251F), there are G € ¥, H € T such that uG < oo, vH < 0o and AW N (G x H)) > 0. Of
course infyaeqaanG* =0 1in 2, so infuca i(anG*) = 0, by 321F; let a € A be such that p(anG*) - vH <
AW N (G x H)). Express a as E*, where E € X. Then A(W \ (F x Y)) = 0. But this means that

AMAWnN(GExH)SAM(ENG)xH)=uwENG) -vH =ji(anG*)-vH,

contradicting the choice of a. X Thus infe1[A] =0 in €; as A is arbitrary, e; is order-continuous.

Similarly g5 : 8 — €, induced by F'+— X x F': T — A, is order-continuous.

(b) Now there must be a corresponding Boolean homomorphism % : 2 ® B — € such that ¢¥(a ® b) =
eranesb for every a € A and b € B, that is,

YEQF)=(ExY)n(X xF)=(ExF)

for every E € X, F € T (315Jb).

(c) Suppose that ¢, e € €, e < oo and € > 0. Express c, e as U*, W* where U, W € A. By 251le, there
are Ey,... ,E, € X, Fy,...,F, € T, all of finite measure, such that A\(UNW)A,., F; X F;) <e. Set

c1 = (U<, Bi X Fi)* € Y[A @ B;

i<n

then
Men(cac))=AxWnN (UAUi<,, BEi x Fy)) <e.
As ¢, e and ¢ are arbitrary, [ ® 9B] is topologically dense in €.
(d) By the definition of A, we have

AW =sup{A\AWN(ExF):E€¥ FeT, uF < 00, vF < o0}
(© 1999 D. H. Fremlin
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for every W € A; so all we have to do is express ¢ as W*.

(e) Now suppose that p and v are semi-finite. Then A(E X F) = uFE -vF for any F € ¥, F € T (251]),
so M)(a ® b) = fia - vb for every a € A and b € B.

To see that 1 is injective, take any non-zero ¢ € 2 ® B; then there must be non-zero a € A, b € B such
that a ® b C ¢ (315Kb), so that

\pe > Mp(a ®@b) = fia - vb > 0
and e # 0.

325B Characterizing the measure algebra of a product space A very natural question to ask is,
whether it is possible to define a ‘measure algebra free product’ of two abstract measure algebras in a way
which will correspond to one of the constructions above. I give an example to show the difficulties involved.

Example There are complete locally determined localizable measure spaces (X, p), (X', 1'), with isomorphic
measure algebras, and a probability space (Y, v) such that the measure algebras of the c.l.d. product measures
on X xY, X’ xY are not isomorphic.

proof Let (X,¥%, 1) be the complete locally determined localizable not-strictly-localizable measure space
described in 216E. Recall that, for E € X, uE = #({y : v € C, f, € E}) if this is finite, co otherwise
(216EDb), where C is a set with cardinal greater than ¢. The map E — {v: f, € E} : ¥ — PC is surjective
(216Ec), so descends to an isomorphism between 2, the measure algebra of u, and PC. Let (X', X', 1) be
C with counting measure, so that its measure algebra (', i) is isomorphic to (2, i), while u" is of course
strictly localizable.

Let (Y, T,v) be {0,1}¢ with its usual measure. Let A, \’ be the c.l.d. product measures on X xY, X' xY
respectively, and (€, ), (¢, \') the corresponding measure algebras. Then A is not localizable (254U), so
(€, \) is not localizable (322Be). On the other hand, )\, being the c.l.d. product of strictly localizable
measures, is strictly localizable (2510), therefore localizable, so (€', \') is localizable, and is not, isomorphic
to (€, A).

325C Thus there can be no universally applicable method of identifying the measure algebra of a product
measure from the measure algebras of the factors. However, you have no doubt observed that the example
above involves non-o-finite spaces, and conjectured that this is not an accident. In contexts in which we
know that the algebras involved are localizable, there are positive results available, such as the following.

Theorem Let (X1,31, 1) and (Xa, X, p2) be semi-finite measure spaces, with measure algebras (2, fi1)
and (2z, fiz). Let A be the c.l.d. product measure on X; x Xo, and (€, \) the corresponding measure
algebra. Let (*8,7) be a localizable measure algebra, and ¢, : 2y — B, ¢o : Ay — B order-continuous
Boolean homomorphisms such that 7(¢1(a1) N ¢a(az)) = f1ar - fizas for all a; € Ay, as € As. Then there is a
unique order-continuous measure-preserving Boolean homomorphism ¢ : € — B such that ¢(¢(a; ® a2)) =
¢1(a1) N da(az) for all a1 € Ay, ag € As, writing ¢ : A; @ A — € for the canonical map described in 325A.

proof (a) Because ¢ is injective, it is an isomorphism between 20y ® s and its image in €. I trust it will
cause no confusion if I abuse notation slightly and treat 2; ® 25 as actually a subalgebra of €. Now the
Boolean homomorphisms ¢1, ¢2 correspond to a Boolean homomorphism 6 : 2(; @ 213 — B. The point is
that vfc = Ac for every ¢ € ; ®%;. B By 315Kb, every member of 20; @, is expressible as sup; <, a; @ a;,
where a; € Uy, a; € Ay for each i and (a; ® a});<,, is disjoint. Now for each ¢ we have
70(a; ® af) = v(¢1(ai) N ¢2(a})) = fna; - finaj = Ma; @ aj),
by 325Ae. So
v0(c) =31 v0(a; @al) =Y 1 o Ma; ®al) = Ae. Q

(b) The following fact will underlie many of the arguments below. If e € B, ve < co and € > 0, there
are e; € A ey € AL such that (e\0(e; ® e3)) < e, writing A/ for {a : fi;a < oo}, P Because (U, /i) is
semi-finite, Ql{ has supremum 1 in 20;; because ¢ is order-continuous, sup{¢1(a) : a € Ql{} =11in B, and
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inf{e\ ¢1(a) : a € A} = 0 (313Aa). Because A/ is upwards-directed, {e\ ¢1(a) : a € A/} is downwards-
directed, so inf{z(e\ ¢(a)) : a € A} = 0 (321F again). Let e; € A be such that v(e\ ¢1(er)) < €.
In the same way, there is an e; € ng such that (e\ ¢2(e2)) < %e. Consider ¢/ = €1 ® e5 € €. Then

v(e\be') = vle\ (¢1(er) Nda(e2))) < wle\gi(er)) +7(e\da(er)) <e Q

(c) The next step is to check that ¢ is uniformly continuous for the measure-algebra uniformities defined
by 7 and \. P Take any e € B/ and € > 0. By (b), there are ey, e such that Aer ® e2) < oo and
v(e\f(er ®ez)) < 2e. Set ¢’ = e1 ® e2. Now suppose that ¢, ¢ € 2; @ Ao and A((cac/)ne’) < Le. Then

p((0(c) 0 b())ne) <vb((crncd)ne)+p(e\fe) < X((CAC’)me')—l—%e <e

By 3A4Cc, 6 is uniformly continuous for the subspace uniformity on 2, ® . Q

(d) Recall that 2; ® 2y is topologically dense in € (325Ac), while B is complete for its uniformity
(323Gc). So there is a uniformly continuous function ¢ : € — B extending 6 (3A4G).

(e) Because 6 is a Boolean homomorphism, so is ¢. P (i) The functions ¢ — ¢(1\ ¢), ¢ — 1\ ¢(c) are
continuous and the topology of B is Hausdorff, so {c¢: ¢(1\¢) =1\ ¢(c)} is closed; as it includes 2y @ As,
it must be the whole of €. (ii) The functions (¢,c¢’) — ¢(cud), (¢,d) — ¢(c) up(c’) are continuous, so
{(ce,d) : plcuc) = p(c)up(cd)} is closed in € x €; as it includes (A; @ Aa) X (A; @A), it must be the whole
of €xC. Q

(fz Because 6 is measure-preserving, so is ¢. P Take any e; € Ql{ , eg € ng . Then the functions
¢ Men(ep ®eg)), ¢ — pd(cn(e; ® ez)) are continuous and equal on 2A; ® s, so are equal on €. The
argument of (b) shows that for any b € B,

vb=sup{p(bne):ec B’}
= sup{p(bnd(e; @ ey)) s e1 € A, ey € ALY,
so that

7¢(c) = sup{pp(cn (e @ ez)) s eg € A ey € AL}
=sup{\(cn(e1 ®ez)):es € 2[{, ez € ng} =Ac
for every c € €. Q

(g) To see that ¢ is order-continuous, take any non-empty downwards-directed set C' C € with infimum
0. ? If $[C] has a non-zero lower bound b in B, let e C b be such that 0 < Ze < co. Let €’ € € be such that
e/ < oo and (e \ ¢(e’)) < e, as in (b) above, so that 7(en ¢(e’)) > 0. Now, because inf C' = 0, there is a
c € C such that A(cne') < 7(en¢(e’)). But this means that

vbno(e)) <vp(cne)=Aene') <plend(e)) <vbne(e)),
which is absurd. X Thus inf ¢[C] = 0 in B. As C is arbitrary, ¢ is order-continuous.

(h) Finally, to see that ¢ is unique, observe that any order-continuous Boolean homomorphism from €
to B must be continuous (324Fc); so that if it agrees with ¢ on 205 ® 2y it must agree with ¢ on €.

325D Theorem Let (1, fi1) and (s, fiz) be semi-finite measure algebras.

(a) There is a localizable measure algebra (€, \), together with order-continuous Boolean homomorphisms
g1:2 — € and &5 : Ay — €, such that whenever (8B, D) is a localizable measure algebra, and ¢, : 2; — B,
@2 : Ay — B are order-continuous Boolean homomorphisms and 7(¢1(a1) N da(az)) = f1a1 - fizas for all
a; € Ay, az € Ay, then there is a unique order-continuous measure-preserving Boolean homomorphism
¢ : € — B such that ¢e; = ¢; for both j.

(b) The structure (€, \,£1,e3) is determined up to isomorphism by this property.

(c)(i) The Boolean homomorphism v : A; ® A, — € defined from e; and &5 is injective, and [ @ As]
is topologically dense in €.

(ii) The closed subalgebra of € generated by ¥[2; ® As] is the whole of €.
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(d) If j € {1,2} and (2;, fi;) is localizable, then £;[2;] is a closed subalgebra of (€, \).

proof (a)(i) We may regard (204, i1) as the measure algebra of (Z1, %1, 1) where Z; is the Stone space
of 2y, 37 is the algebra of subsets of Z; differing from an open-and-closed set by a meager set, and pu; is
an appropriate measure (321K). Note that in this representation, each a € 2(; becomes identified with a*,
where @ is the open-and-closed subset of Z; corresponding to a. Similarly, we may think of (s, fiz) as the
measure algebra of (Zs, Xg, u2), where Zs is the Stone space of s.

(ii) Let X be the c.l.d. product measure on Z; x Z5. The point is that A is strictly localizable. I By
322Ea, both ; and A, have partitions of unity consisting of elements of finite measure; let (¢;);cr, (d;);c. be
such partitions. Then (¢; x c/l\j>i€1,j€J is a disjoint family of sets of finite measure in Z; X Zy. If W C Z1 x Z3
is such that AW > 0, there must be sets Ey, Fs of finite measure such that A(W N (E; x E3)) > 0. Because
E} = sup;c; B} ne;, we must have

By =By =3 (B ne) =i (B NG).
Similarly, poFo =3, ; pa(E2 N c@) But this means that there must be finite I’ C I, J' C J such that
Yier jey P(ELNT)pua(E2 N d;) > By - paBy — NW N (B x By)),

so that there have to be i € I, j € J' such that A(W N (¢; x c/l\j)) > 0.

Now this means that (¢; x C/l\]>ze 1,jes satisfies the conditions of 2130. Because A is surely complete and
locally determined, it is strictly localizable. Q

(iii) We may therefore take (€, ) to be just the measure algebra of A\. The maps ¢, €2 will be the
canonical maps described in 325Aa, inducing the map v : 2; ® s — € referred to in 325C; and 325C now
gives the result.

(b) This is nearly obvious. Suppose we had an alternative structure (€', ', €7, €5) with the same property.
Then we must have an order-continuous measure-preserving Boolean homomorphism ¢ : € — ¢’ such that
pe; = 5; for both j; and similarly we have an order-continuous measure-preserving Boolean homomorphism
¢' : @ — & such that ¢’} = ¢; for both j. Now ¢'¢ : € — € is an order-continuous measure-preserving
Boolean homomorphism such that ¢’c; = ¢; for both j. By the uniqueness assertion in (a), applied with
B = ¢, ¢'¢ must be the identity on €. In the same way, ¢¢’ is the identity on €’. So ¢ and ¢’ are the two
halves of the required isomorphism.

(c) In view of the construction for € offered in part (a) of the proof, (i) is just a consequence of 325Ac
and 325Ae. Now (ii) follows by 323J.

(d) If 2, is Dedekind complete then €;[2;] is order-closed in € because ¢; is order-continuous (314F (a-1)).

325E Remarks (a) We could say that a measure algebra (€, \), together with embeddings £; and e,
as described in 325D, is a localizable measure algebra free product of (20, 1) and (s, fi2); and its
uniqueness up to isomorphism makes it safe, most of the time, to call it ‘the’ localizable measure algebra
free product. Observe that it can equally well be regarded as the uniform space completion of the algebraic
free product; see 325Yc.

(b) As the example in 325B shows, the localizable measure algebra free product of the measure algebras
of given measure spaces need not appear directly as the measure algebra of their product. But there is one
context in which it must so appear: if the product measure is localizable, 325C tells us at once that it has
the right measure algebra. For o-finite measure algebras, of course, any corresponding measure spaces have
to be strictly localizable, so again we can use the product measure directly.

325F 1 ought not to proceed to the next topic without giving another pair of examples to show the
subtlety of the concept of ‘measure algebra free product’.

Example Let (2, 1) be the measure algebra of Lebesgue measure y on [0, 1], and (&, \) the measure algebra
of Lebesgue measure A on [0, 1]2. Then (€, \) can be regarded as the localizable measure algebra free product
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of (2, i) with itself, by 251N and 325Eb. Let v : A ® 2 — € be the canonical map, as described in 325A.
Then [ ® 2] is not order-dense in €, and 1) is not order-continuous.

proof (a) Let (€,),en be a sequence in [0,1] such that > €, = oo, but Y oo €2 < 1; for instance, we
could take €, = %4-2 Let (E,)nen be a stochastically independent sequence of measurable subsets of [0, 1]

such that pE, = €, for each n. In % set a,, = E},, and consider ¢, = sup,;,, a; ® a; € A ® 2 for each n.

(b) We have sup,,cy ¢, = 1in A2, P? Otherwise, there is a non-zero a € A®A such that an (a,®a,) =
0 for every n, and now there are non-zero b, b’ € 2 such that b® b Ca. Set I ={n:a,nb=0}, J={n:
anNb'} = 0. Then (E,)ner is an independent family and pu(U,c; £i) <1 — b < 1,80 Y, o uk, < oo, by
the Borel-Cantelli lemma (273K). Similarly >, uFE, < oco. Because )y pE, = 0o, there must be some

n €N\ (IUJ). Now a,nb and a, nb" are both non-zero, so
0# (annb) @ (annd) =(a, Ran)n (b)) =0,
which is absurd. XQ
(c) On the other hand,

ZZO:O Mp(en) < Zzozo(ﬂan)Q = ZZO:O e <1,
by the choice of the €,. So sup,,cy ¥(cn) cannot be 1 in €.
Thus v is not order-continuous.

(d) By 313P(a-ii) and 3130, [2® 2] cannot be order-dense in €; alternatively, (b) shows that there can
be no non-zero member of ¥ [A ® | included in 1\ sup,,cy ¥(cn). (Both these arguments rely tacitly on the
fact that 4 is injective, as noted in 325Ae.)

325G Since 325F shows that the free product and the localizable measure algebra free product are very
different constructions, I had better repeat an idea from §315 in the new context.

Example Again, let (2, /i) be the measure algebra of Lebesgue measure on [0,1], and (¢, \) the measure
algebra of Lebesgue measure on [0, 1]2. Then there is no order-continuous Boolean homomorphism ¢ : € — 2/
such that ¢(a ® b) = anbd for all a, b € A. P Let ¢ : € — A be a Boolean homomorphism such that
¢(a®b) = anbforall a, b € A. Fori < 2™ let ay; be the equivalence class in 2 of the interval [2774, 27" (i+1)],
and set ¢, = sup; gn ani ® an;. Then ¢c, = 1 for every n, but e, = 27" for each n, so inf,enc, = 0 in €
thus ¢ cannot be order-continuous. @ (Compare 315Q.)

*325H Products of more than two factors We can of course extend the ideas of 325A, 325C and
325D to products of any finite number of factors. No new ideas are needed, so I spell the results out without
proofs.

(a) Let ((2;, f;))icr be a non-empty finite family of semi-finite measure algebras. Then there is a
localizable measure algebra (€, 5\), together with order-continuous Boolean homomorphisms ¢; : /; — € for
i € I, such that whenever (8,7) is a localizable measure algebra, and ¢; : 2; — 9 are order-continuous
Boolean homomorphisms such that o(inf;cr ¢s(a;)) = [[;c; fia; whenever a; € 24; for each i, then there is
a unique order-continuous measure-preserving Boolean homomorphism ¢ : € — B such that ¢e; = ¢; for
every 1.

(b) The structure (€, \, (g;);es) is determined up to isomorphism by this property.

(c) The Boolean homomorphism 9 : @),.;2; — € defined from the ¢; is injective, and [, 2As] is
topologically dense in €.
1
(d) Write ®iOECI(Qli7 fi;) for (a particular version of ) the localizable measure algebra free product described
in (a). If ((As, [1))ier is a finite family of semi-finite measure algebras and (Ij)rex is a partition of I into

—loc

—loc —loc
non-empty sets, then &), ; (s, fi;) is isomorphic, in a canonical way, to &), x (®ielk (A, ﬂi)).

(e) Let ((Xi, ¥y, i1i))ier be a finite family of semi-finite measure spaces, and write (2;, i;) for the measure
algebra of (X;, ¥, ;). Let A be the c.l.d. product measure on [[,.; X; (251W), and (€, A) the corresponding
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measure algebra. Then there is a canonical order-continuous measure-preserving embedding of (€, \) into
the localizable measure algebra free product of the (2, i1;). If each p; is strictly localizable, this embedding
is an isomorphism.

3251 Infinite products Just as in §254, we can now turn to products of infinite families of probability
algebras.
Theorem Let ((X;,X;, 11;))ier be any family of probability spaces, with measure algebras (;, i;). Let A
be the product measure on X = [];.; X;, and (€, \) the corresponding measure algebra. For each i € I,
we have a measure-preserving homomorphism ¢; : A; — € corresponding to the inverse-measure-preserving
function z — x(7) : X — X;. Let (B, V) be a probability algebra, and ¢; : 2; — B Boolean homomorphisms
such that 7(infic s ¢i(as)) = [[;c; fia; whenever J C I is a finite set and a; € 2; for every i. Then there is
a unique measure-preserving Boolean homomorphism ¢ : € — B such that ¢g; = ¢; for every ¢ € I.

proof (a) As remarked in 254FDb, all the maps = — (i) are inverse-measure-preserving, so correspond to
measure-preserving homomorphisms ¢; : 2; — € (324M). It will be helpful to use some notation from §254.
Write C for the family of measurable cylinders in X expressible in the form

E={z:z¢€ X, z(i) € E; for every i € J},
where J C [ is finite and E; € ¥; for every ¢ € J. Note that in this case

E* = infiej EZ(E;)
Set
C={E*:Fec(C}Cc,

so that C' is precisely the family of elements of € expressible in the form inf;c; ¢;(a;) where J C [ is finite
and a; € 2; for each 1.

The homomorphisms ¢; : A; — € define a Boolean homomorphism ¢ : &),.;A; — € (315J), which is
injective. P If ¢ € @, A; is non-zero, there must be a finite set J C I and a family (a;)ics such that
a; € A; \ {0} for each ¢ and ¢D inf;c;&;(a;), where for the moment I write &; for the canonical map from
2; to @, Ui (315Kb). Express each a; as E;, where E; € ¥;. Then

E={z:z€ X, z(i) € F; for each i € J}
has measure

AE = [Ticy nEi = [Licy pai # 0,

while
E* = 1(infic g &i(ai)) € ¥(c),
so Y(c) # 0. As ¢ is arbitrary, ¢ is injective. Q
(b) Because 1 is injective, it is an isomorphism between ), ; 2; and its image in €. T trust it will cause
no confusion if I abuse notation slightly and treat Q),.; ; as actually a subalgebra of €, so that ¢; : %; — €
becomes identified with &; : 2; — &),.; A;. Now the Boolean homomorphisms ¢; : 2; — B correspond to a
Boolean homomorphism 0 : &), A; — B. The point is that 70(c) = Ac for every ¢ € &), ;. B Suppose

to begin with that ¢ € C. Then we have ¢ = E*, where E = {x : (i) € E; Vi € J} and E; € ¥; for each
ieJ. So

Ae=AE = [[nE; = [[ mE; = #(inf ¢a;)
icJ icJ
= 5(1125 Oei(a;)) = 99(212551-(%)) = pf(c).

Next, any ¢ € @), ; 2; is expressible as the supremum of a finite disjoint family (¢x)rex in C (315Kb), so

59(0) = ZkeK EQ(ck) = EkeK S‘(Ck) = Ac. Q

icl

(c) Tt follows that @ is uniformly continuous for the measure metrics defined by 7 and A, since
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7(0(c) A O(c)) =vh(cnc) = Mcad)
for all ¢, ¢ € @, 2i.

(d) Next, @,;; is topologically dense in €. I Let ¢ € €, ¢ > 0. Express c as W*. Then by 254Fe
there are Ho, ... , Hy € C such that \(WA ;< Hj) < €. Now ¢; = Hs € C for each j, so

 =supjcy ¢; = (Uj<p Hj)* € Qicr i

and Mcacd)<e Q
Since B is complete for its uniformity (323Gc), there is a uniformly continuous function ¢ : € — B
extending 6 (3A4G).

(e) Because 6 is a Boolean homomorphism, so is ¢. P (i) The functions ¢ — ¢(1\¢), 1\ @(c) are
continuous and the topology of B is Hausdorff, so {c: ¢(1\c) = 1\ ¢(c)} is closed; as it includes &), A,
it must be the whole of €. (ii) The functions (c,¢’) — ¢(cuc), (¢,') — @(c) up(c’) are continuous, so
{(e,d) : p(cud) = p(c)up(c)} is closed in € x € as it includes &), ; Ar x @, A;, it must be the whole
of € x¢C. Q

(f) Because 6 is measure-preserving, so is ¢. P The functions ¢ — \c, ¢ — D¢(c) are continuous and
equal on ), ; i, so are equal on C. Q

(g) Finally, to see that ¢ is unique, observe that any measure-preserving Boolean homomorphism from
¢ to B must be continuous, so that if it agrees with ¢ on @), 2l; it must agree with ¢ on €.

325J Of course this leads at once to a result corresponding to 325D.

Theorem Let ((;, fi;))icr be a family of probability algebras.

(a) There is a probability algebra (€, )), together with measure-preserving Boolean homomorphisms
g; : A; — € for i € I, such that whenever (B, 7) is a probability algebra, and ¢; : 2; — B are Boolean
homomorphisms such that o(inf;c  ¢i(a;)) = [[;c; fia; whenever J C I is finite and a; € 2; for each i € J,
then there is a unique measure-preserving Boolean homomorphism ¢ : € — B such that ¢e; = ¢; for every
1€l

(b) The structure (€, \, (g;);es) is determined up to isomorphism by this property.

(c) The Boolean homomorphism 9 : @);.;%4; — € defined from the ¢; is injective, and ¥[Q),;.; As] is
topologically dense in €.

iel

proof For (a) and (c), all we have to do is represent each (2, fi;) as the measure algebra of a probability
space, and apply 3251. The uniqueness of € and the ¢; follows from the uniqueness of the homomorphisms
¢, as in 325Db.

325K Definition As in 325Ea, we can say that (&, \, (¢;);c7) is a, or the, probability algebra free
product of ((2;, fi;))icr-

325L Independent subalgebras If (2, 1) is a probability algebra, we say that a family (2B;);cr of
subalgebras of 2 is stochastically independent if ji(inf;c;b;) = [],c; fib; whenever J C I is finite and
b; € B, for each i. (Compare 272Ab.) If every ®B; is closed, so that (B;, i[B;) is a probability algebra,
the identity maps ¢; : B; — 2 satisfy the conditions of the universal mapping theorem 325Ja, so we have
a probability algebra free product (€, i€, (ti)icr) of (B, il Bi))icr, where € = \/,.;B; is the closed
subalgebra of 2 generated by J,;; Bi.

Conversely, if ((;,[i;))ier is any family of probability algebras with probability algebra free product
(€, ), {g:)ic1), then (g;[A;])ies is an independent family of closed subalgebras of €. (Compare 272J, 315Xp.)

325M We can now make a general trawl through Chapters 25 and 27 seeking results which can be
expressed in the language of this section. I give some in 325Xf-325Xi. Some ideas from §254 which are
thrown into sharper relief by a reformulation are in the following theorem.

Theorem Let ((2;,i;))icr be a family of probability algebras and (€, )\, (g;);cs) their probability algebra
free product. For J C I let €5 = \/,.; €i[2;] be the closed subalgebra of € generated by (J,. ; €:[2Li].
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(a) For any J C I, (€, [ €, (€;)ics) is a probability algebra free product of ((;, fis))ic -

(b)(i) For any ¢ € €, there is a unique smallest J. C I such that ¢ € €;_, and this J, is countable.
(ii) If ¢, d € € and ¢ C d, then there is an e € € 7, such that ¢ C e C d.

(c) For any non-empty family J C PI, (;c; €s = €n 7.

proof (a) If (B, 7, (¢:):cs) is any probability algebra free product of ((2;, [i;)):cs, then we have a measure-
preserving homomorphism 1 : 8 — € such that ¥¢; = ¢; for every ¢ € J. Because the subalgebra B of
B generated by J;c; #i[2i] is topologically dense in B (325Jc), and 4 is continuous (324Kb), |J,; £:[2]
is topologically dense in 9[%B]; also ¢[B] is closed in € (324Kb again). But this means that [B] is just the
topological closure of | J;;€;[2;] and must be €;. Thus ¢ is an isomorphism, and

(€1, A€y, (eidies) = (BBl 7™, (Wgi)ie)
also is a probability algebra free product of ((2;, fi;))icJ-

(b) Asin 325J, we may suppose that each (2;, fi;) is the measure algebra of a probability space (X;, ¥;, ),
and that € is the measure algebra of their product (X, A, X). For J C I let A; be the set of members of
A which are determined by coordinates in J. Then {x : a:( )€ E} € Ajforeveryi € Jand E € ;5 so
{U* : U € Ay} is a closed subalgebra of € including &;[2;] for every ¢ € J, and therefore including €.
On the other hand, as observed in 2540b, any member of A; is approximated, in measure, by sets in the
o-algebra T generated by sets of the form {z : z(i) € E} where i € J and E € %;. Of course T; C Ay, so
{We:WeA;} ={W*:W e T} is the closed subalgebra of € generated by J,.; €:[2;], which is €;.

(i) Let W € A be such that ¢ = W*. By 254Rd, there is a smallest J. C I such that WAU is negligible
for some U € Ay, and J. is countable. By the remarks above, J. is also the unique smallest subset of I
such that c € €.

(ii) Let U € Aj,, V € Ay, be such that ¢ = U* and d = V*. We can think of X as a product X' x A’
where A’ is the product measure on X' = [[,.; X; and \"” is the product measure on X" = [Licr, Xi
(254N). Express V as Vy x X" where V5 C X’ belongs to the domain of X (2540b). Consider

Wo={z:2z€ X', {w:we X" (z,w) € U} is not \'-negligible};

then Wy is measured by )\, by Fubini’s theorem (252B or 252D). Because ¢ C d, U \ V is A-negligible and
Wo\ Vy is N -negligible, while Wy is determined by coordinates in J.NJy. So W = Wy x X" also is determined
by coordinates in J. N Jy, while U\ W and W \ V are A-negligible. We can therefore take e = W*.

(c) Of course €x C €; whenever K C J C I, so ﬂ‘,ej ¢; D €ns. On the other hand, suppose
that ¢ € (;c; €; then by (b-i) there is some K C (1J such that ¢ € €x C €n 7. As c is arbitrary,
ﬂJeJ ¢ =<y

*325N Notation In this context, I will say that an element ¢ of € is determined by coordinates in
Jifced;.

325X Basic exercises (a) Let (2, fi1), (2, fi2) be two semi-finite measure algebras, and suppose that
for each j we are given a closed subalgebra B, of 2; such that (8;, ;) also is semi-finite, where 7; = fi; [ B;.
Show that the localizable measure algebra free product (B, 51)@)1%(%27 5) can be thought of as a closed
subalgebra of (2, ﬂ1)<§>1oc (A, fiz).

(b) Let (24, 71) and (2, fi2) be two semi-finite measure algebras, and suppose that for each j we are
given a principal ideal B; of ;. Set v; = [i;[*B;. Show that the localizable measure algebra free product
(B1, 71)®loc(B2, 72) can be thought of as a principal ideal of (Ay, fi1)Pioc(Aa, fiz).

(c) Let (2, z) and (B, 7) be semi-finite measure algebras with localizations (Ql i) and (B, 7). Show that
the localizable measure algebra free products (2, i)®10c(B, 7) and (Ql u)@loc(% V) are isomorphic.

>(d) Let ((2;, ti))ier and ((B,,7;)) ez be families of semi-finite measure algebras, with simple products
(2, i) and (B,7) (322L). Show that the localizable measure algebra free product (2, i)®i0c(B,7) can be
identified with the simple product of the family ((2;, ,a,»)@]oc(%j, Ui))ier,jes-
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>(e) Let (s, fi;))ier and {(A%, iit))ier be two families of probability algebras, and (&, A, (g;)ier), (€, X, (¢!
their probability algebra free products. Suppose that for each i € I we are given a measure-preserving
Boolean homomorphism 7; : 2; — A}. Show that there is a unique measure-preserving Boolean homomor-
phism 7 : € — @ such that 7e; = em; for every i € I.

>(f) Let (2, 1) be a probability algebra. We say that a family (a;);cr in 2 is stochastically inde-
pendent if fi(infic;a;) = [[;c; fia; for every non-empty finite J C I. Show that this is so iff (;)scr is
stochastically independent, where 2; = {0,a;,1\ a;,1} for each i. (Compare 272F.)

>(g) Let (2, 1) be a probability algebra, and (2;);c; a stochastically independent family of closed
subalgebras of 2. Let (J(k))rek be a disjoint family of subsets of I, and for each k € K let By, =\, ;) %
be the closed subalgebra of 2 generated by UiEJ(k) ;. Show that (Bj)rex is stochastically independent.
(Compare 272K.)

(h) Let (2, 1) be a probability algebra, and (2(;);c; a stochastically independent family of closed subal-
gebras of 2. For J C I set By = \/,.; ;. Show that ({B,\ s : J is a finite subset of I'} = {0,1}. (Hint:
For J C I, show that fi(bnc) = ib - fic for every b € B\ ;y and ¢ € B ;. Compare 2720, 325M.)

(i) Let {(A;, [i;))ser be a family of probability algebras with probability algebra free product (&, X, {&;)icr)-
For J C I set €; = \/,.;&i[2;]. Show that for any J, K C I and ¢ € €, €; N €k = €jnk and the upper
envelope upr(c, € nx) is equal to upr(upr(c, €;), €x).

325Y Further exercises (a) Let p be counting measure on X = {0}, p’ the countable-cocountable
measure on X’ = wy, and v counting measure on Y = w;. Show that the measure algebras of the primitive
product measures on X x Y, X’ x Y are not isomorphic.

(b) Let (A1, f11), (A2, fiz), (A7, @y) and (Aj, fi5) be semi-finite measure algebras with localizable measure
algebra free products (€, \,e1,£2) and (€', N, &],¢5). Suppose that w1 : A — A; and w2 : Ay — A, are
measure-preserving Boolean homomorphisms. Show that there is a measure-preserving Boolean homomor-
phism 7 : € — @ such that 7e; = e}m; for both ¢, but that 7 is not necessarily unique.

(c) Let 2 be a Boolean algebra, and p : 2 — [0,00] a functional such that x40 = 0, pa > 0 for every
a # 0, and pu(aub) = pa + pb whenever a, b € 2 and anb = 0; suppose that A/ = {a : pa < oo} is
order-dense in 2. For e € A, a, b € A set p.(a,b) = ulen(aab)). Give 2 the uniformity defined by
{pe : pe < oo}. (i) Show that the completion 2 of A under this uniformity has a measure fi, extending
u, under which it is a localizable measure algebra. (ii) Show that if a € QA[, fia < oo and € > 0, there is a
b € 2 such that fi(a A b) < e. (ili) Show that for every a € 2A there is a sequence (an)nen in A such that
a2 sup,,cy inf,>pn ap and fia = fi(sup,,cy inf,>pn am). (iv) In particular, the set of infima in A of sequences
in 2A is order-dense in 2A. (v) Explain the relevance of this construction to the embedding 2l; ® A S € in
325D.

(d) In 325F, set W = (J, oy
W N (A x B) is not negligible.

E, x E,. Show that if A, B are any non-negligible subsets of [0, 1], then

(e) Let (2, 1) be the measure algebra of Lebesgue measure on [0,1]. Show that 2 ® 2 is ccc but not
weakly (o, 00)-distributive. (Hint: (i) 2 ® 2 is embeddable as a subalgebra of a probability algebra (ii) in
the notation of 325F, look at ¢,y = Sup,,<;<, € @ €;.)

(f) Repeat 325F-325G and 325Yd-325Ye with an arbitrary atomless probability space in place of [0, 1].

(g) Let (A, 1) be a probability algebra and (a;);c; a stochastically independent family in 2. Show that
for any a € 2 and € > 0 the set {i : i € I, |i(ana;) — fia - fia;| > €} is finite, so that {i : flana;) # fa- fa;}
is countable. (Hint: 272Ye?.)

2Formerly 272Yd.
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325 Notes and comments 325B shows that the measure algebra of a product measure may be irregular
if we have factor measures which are not strictly localizable. But two facts lead the way to the ‘local-
izable measure algebra free product’ in 325D-325E. The first is that every semi-finite measure algebra is
embeddable, in a canonical way, in a localizable measure algebra (322P); and the second is that the Stone
representation of a localizable measure algebra is strictly localizable (3220). It is a happy coincidence that
we can collapse these two facts together in the construction of 325D. Another way of looking at the localiz-
able measure algebra free product of two localizable measure algebras is to express it as the simple product
of measure algebra free products of totally finite measure algebras, using 325Xd and the fact that for o-finite
measure algebras there is only one reasonable measure algebra free product, being that provided by any
representation of them as measure algebras of measure spaces (325Eb).

Yet a third way of approaching measure algebra free products is as the uniform space completions of
algebraic free products, using 325Yc. This gives the same result as the construction of 325D because
the algebraic free product appears as a topologically dense subalgebra of the localizable measure algebra
free product, which is complete as uniform space (325Dc). (I have to repeat such phrases as ‘topologically
dense’ because the algebraic free product is emphatically not order-dense in the measure algebra free product
(325F).) The results in 2511 on approximating measurable sets for a c.l.d. product measure by combinations of
measurable rectangles correspond to general facts about completions of finitely-additive measures (325Yc(ii),
325Yc(iii)). It is worth noting that the completion process can be regarded as made up of two steps; first
take infima of sequences of sets of finite measure, and then take arbitrary suprema (325Yc(iv)).

The idea of 325F appears in many guises, and this is only the first time that I shall wish to call on it.
The point of the set W = J,,cy En X E,, is that it is a measurable subset of the square (indeed, by taking
the E, to be open sets we can arrange that W should be open), of measure strictly less than 1 (in fact,
as small as we wish), such that its complement does not include any non-negligible ‘measurable rectangle’
G x H; indeed, W N (A x B) is non-negligible for any non-negligible sets A, B C [0,1] (325Yd). I believe
that the first published example of such a set was by ERDOs & OXTOBY 55 (a version of which is in 532N
in Volume 5); I learnt the method of 325F from R.O.Davies.

I include 325G as a kind of guard-rail. The relationship between preservation of measure and order-
continuity is a subtle one, as I have already tried to show in 324K, and it is often worth considering the
possibility that a result involving order-continuous measure-preserving homomorphisms has a form applying
to all order-continuous homomorphisms. However, there is no simple expression of such an idea in the
present context.

In the context of infinite free products of probability algebras, there is a degree of simplification, since there
is only one algebra which can plausibly be called the probability algebra free product, and this is produced
by any realization of the algebras as measure algebras of probability spaces (3251-325K). The examples
325F-325G apply equally, of course, to this context. At this point I mention the concept of ‘stochastically
independent’ family (325L, 325Xf) because we have the machinery to translate several results from §272
into the language of measure algebras (325Xf-325Xh). I feel that I have to use the phrase ‘stochastically
independent’ here because there is the much weaker alternative concept of ‘Boolean independence’ (315Xp)
also present. But I leave most of this as exercises, because the language of measure algebras offers few ideas
to the probability theory already covered in Chapter 27. All it can do is formalise the ever-present principle
that negligible sets often can and should be ignored.

Version of 21.5.11

326 Additive functionals on Boolean algebras

I devote two sections to the general theory of additive functionals on measure algebras. As many readers
will rightly be in a hurry to get on to the next two chapters, I remark that the only significant result needed
for §8331-332 is the Hahn decomposition of a countably additive functional (326M), and that this is no more
than a translation into the language of measure algebras of a theorem already given in Chapter 23. The
concept of ‘standard extension’ of a countably additive functional from a subalgebra (327F-327G) will be
used for a theorem in §333, and as preparation for Chapter 36.

(©) 2001 D. H. Fremlin
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I begin with notes on the space of additive functionals on an arbitrary Boolean algebra (326A-326D),
corresponding to 231A-231B, but adding a more general form of the Jordan decomposition of a bounded
additive functional into positive and negative parts (326D). The next four paragraphs are starred, because
they will not be needed in this volume; 326E is essential if you want to look at additive functionals on free
products, 326F is a basic classification criterion, and 326H is an important extension of a fundamental fact
about atomless measures noted in 215D, but all can be passed over on first reading. The next subsection
(3261-326M) deals with countably additive functionals, corresponding to 231C-231F. In 326N-326T I develop
anew idea, that of ‘completely additive’ functional, which does not match anything in the previous treatment.

326A Additive functionals: Definition Let 2 be a Boolean algebra. A functional v : 2 — R is
finitely additive, or just additive, if v(aUb) = va + vb whenever a, b € 2 and anb = 0.
A non-negative additive functional is sometimes called a finitely additive measure or charge.

326B Elementary facts Let 2 be a Boolean algebra and v : 2l — R a finitely additive functional. The
following will I hope be obvious.

(a) v0 =0 (because v0 = v0 + 10).
(b) If ¢ € A, then a — v(anc) is additive (because (anc)u(bne) = (aub)nc).

(c) av is an additive functional for any o € R. If v/ is another finitely additive functional on 2, then
v+ v is additive.

(d) If (v;)ier is any family of finitely additive functionals such that v'a = Y, ; v;a is defined in R for

every a € 2, then v/ is additive.

iel

(e) If B is another Boolean algebra and 7 : %8 — 2 is a Boolean homomorphism, then vz : 8 — R is
additive. In particular, if 8B is a subalgebra of 2, then v[B : B — R is additive.

(f) v is non-negative iff it is order-preserving — that is,
va > 0 for every a € ) <= vb < vc whenever b C ¢

(because ve = vb+v(c\b) if b C ¢).

326C The space of additive functionals Let 2 be any Boolean algebra. From 326Bc we see that the
set M of all finitely additive real-valued functionals on 2 is a linear space (a linear subspace of R*). We
give it the ordering induced by that of R®, so that v < v’ iff va < v'a for every a € 2. This renders it a
partially ordered linear space (because R? is).

326D The Jordan decomposition (I): Proposition Let 2 be a Boolean algebra, and v a finitely
additive real-valued functional on 2. Then the following are equiveridical:

(i) v is bounded;

(ii) sup,en [van| < oo for every disjoint sequence (an)nen in 2A;

(iil) lim,— 0 |va,| = 0 for every disjoint sequence {(a,)nen in 2A;

(iv) Y0 [van| < oo for every disjoint sequence (an)nen in 2;

(v) v is expressible as the difference of two non-negative additive functionals.

proof (a)(i)=-(v) Assume that v is bounded. For each a € 2, set
vta =sup{vb:bCa}.

Because v is bounded, v is real-valued. Now v is additive. P If a, b € A and anb = 0, then

vt(aub) = sup ve= sup v(due)= sup wvd+ve
cCaub dca,eCb dca,eCb

(because dne C anb =0 whenever d C a, e C b)
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=supvd+supre=vTa+vh Q

dca ecb
Consequently v~ = v — v also is additive (326Bc).
Since
0=v0<vta, va<vta

for every a € A, v > 0 and v~ > 0. Thus v = v — v~ is the difference of two non-negative additive
functionals.

(b)(v)=(iv) If v is expressible as v; — v, where 11 and v, are non-negative additive functionals, and
(an)nen is disjoint, then

Z?:o via; = v, (SUPign a;) <yl
for every n, both j, so that
Yoo lvai| <X gvia + Y e vea; < il 4 wpl < oo.

(c)(iv)=(iii)=(ii) are trivial.

(d) not-(i)=rnot-(ii) Suppose that v is unbounded. Choose sequences (@, )nen, (bn)nen inductively, as
follows. by = 1. Given that sup, ., |val = oo, choose ¢, C by, such that |vc,| > [vb,| + n; then [ve,| > n
and

|v(bn \ cn)| = |Vbn — ven| > |ven| — [vby| > n.

We have

oo = sup |val = sup |v(anc,) +v(a\cy)
acChb, acb,

< sup |v(aney)| + v(a\e,)| < sup |va|+ sup |val,

acCby, aCby,Ney aCbp\cpn

so at least one of sup, ;.. |val, sup,cy, \., [va] must be infinite; take b, 1 to be one of ¢,, b, \ ¢, such
that sup, ¢y, ., [val = oo, and set a, = by \ bp41, so that [va,| > n. Continue.

On completing the induction, we have a disjoint sequence (a,)nen such that |va,| > n for every n, so
that (ii) is false.

Remark I hope that this reminds you of the decomposition of a function of bounded variation as the
difference of monotonic functions (224D).

*326E Additive functionals on free products In Volume 4, when we return to the construction of
measures on product spaces, the following fundamental fact will be useful.

Theorem Let (2;);c; be a non-empty family of Boolean algebras, with free product 2; write &; : 2; — 2
for the canonical maps, and

C ={infjese;(a;): J C I is finite, a; € A; for every j € J}.
Suppose that 6 : C' — R is such that
Oc=0(cnei(a))+0(cne;(1\a))

whenever ¢ € C, i € I and a € ;. Then there is a unique finitely additive functional v : A — R extending
6.

proof (a) It will help if I note at once that 60 = 0. P
60 =6(0ne;(0)) +60(0ne;(1)) =260
forany i€ I. Q
(b) The key is of course the following fact: if (¢,)r<m and (ds)s<, are two disjoint families in C' with

the same supremum in 2, then E;n:o Oc, = E::o 0ds. I Let J C I be a finite set and B; C 2; a finite
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subalgebra, for each ¢ € J, such that every ¢, and every ds belongs to the subalgebra 2(y of 2l generated by
{ej(b): j € J, beB;}. Next, if j € J and b € B, then

Dorofer =320 0(cr nej (b)) + 3200 Oer \ &5(D))-
We can therefore find a disjoint family (c|.),<p/ in C' N2y such that

Sup’rﬁm’ C;‘ = Suprﬁm Cr, Z:‘rL:O 90;‘ = E;YL:O QCT’
and whenever » < m/, j € J and b € B; then either ¢, C ¢;(b) or ¢ ne;(b) = 0; that is, every ¢, is either 0
or of the form inf;c ;e;(b;) where b; is an atom of B, for every j. Similarly, we can find (d))s<n’ such that

SUPs<n/ d; = SUPs<n ds, ZZ:O Hd; = ZZ:O 0ds,

and whenever s < n' and j € J then d is either 0 or of the form inf;c s €;(b;) where b; is an atom of B; for
every j. But we now have sup,.«,,, ¢. = sup,«,,, d, while for any » < m’, s < n/ either ¢, = d), or ¢, nd, = 0.
It follows that the non-zero terms in the finite sequence (c.),.<, are just a rearrangement of the non-zero
terms in (d})s<n’, S0 that

Z:n:O e, = Z:n:/o fc, = Z:/:o od, = ZZ:O 0ds,
as required. Q

(c) By 315Kb, this means that we have a functional v : % — R such that v(sup,<,,c.) = >..L0c,
whenever (¢, ),<n, is a disjoint family in C. It is now elementary to check that v is additive, and it is clearly
the only additive functional on 2 extending 6.

*326F I give a couple of pages to an interesting property of additive functionals on Dedekind o-complete
Boolean algebras. I do not think it will be used in this book, and it really belongs to the theory of vector
measures, which is hardly considered here, but the ideas are important, and the following definition has
other uses.

Definition Let 2 be a Boolean algebra, and v a finitely additive functional on 2. I will say that v is
properly atomless if for every e > 0 there is a finite partition (a;);e; of unity in 2 such that |va| < e
whenever ¢ € I and a C a;.

*326G Lemma Let 2 be a Boolean algebra.

(a)(i) If v, v/ : A — R are properly atomless finitely additive functionals and « € R, then av and v + v/
are properly atomless additive functionals.

(ii) If v : A — R is a properly atomless finitely additive functional, then v is bounded and v can be
expressed as the difference of two non-negative properly atomless additive functionals.

(b) Suppose that 2 is Dedekind o-complete and that (;);c; is a family of non-negative additive functionals
on 2 such that for every a € 2 there are an «a € [%, %] and an a’ C a such that v;a’ = av;a for every i € I.
Then for any a € 2 there is a non-decreasing family <at>t€[0,1] in A such that ag = 0, a1 = a and v;a; = tr;a
for every t € [0,1] and i € I.

(c) Suppose that 2 is Dedekind o-complete and that vg,...,v, : A — [0,00[ are properly atomless
additive functionals such that v;a < vya for every i < n and a € 2A. Then for any a € 2 there is a
non-decreasing family (a¢)se[o,1) in 2 such that ag = 0, a1 = a and v;a; = tv;a for every t € [0,1] and i < n.

€
24|a

proof (a)(i) Let € > 0. Then there are finite partitions (a;)icr, (b;);jes of unity in 2 such that |va| <

whenever ¢ € I and a C a;, while [/a] < % whenever j € J and a C bj. Now |(av)(a)| < € whenever i € T

and a C a;. Moreover, (a; Nb;) @ j)erx. is a finite partition of unity in 2, and |(v + v’)(a)| < € whenever
1€l,j€JandacCa;nb;.

ii) (a ere is a finite partition (c;);cs of unity in 2 such that |va] < 1 whenever i € J and a C ¢;;
ii) (@) There is a finite partition (c;);c; of unity in 2 such that [va| < 1 wh i€ Jand a C ¢
now |va| <3, ;[v(ancs)| < #(J) for every a € %, so v is bounded.

(B) Define vt as in part (a) of the proof of 326D, so that v : A — [0, 00[ is additive. Now v+
is properly atomless. B Given ¢ > 0, there is a finite partition (a;);c; of unity in 2 such that |va| < €
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whenever ¢ € I and a C a;; in which case vta = SUp, g vb < e whenever i € I and a C a;. Q As in 326D,
v~ = vt — v is non-negative, and by (i) just above (or otherwise) it is properly atomless, so v = v+ — v~ is
the difference of non-negative properly atomless functionals.

(b) If v;a = 0 for every i € I, we can take a; = 0 for 0 < ¢ < 1 and a3 = a. So suppose that k € I is such

Vi

that vpa > 0. For ¢ € I, set y; = V Z Choose (Dy,)nen inductively, as follows. Dy = {0,a}. Given that
k

D,, is a finite totally ordered subset of {b:b C a} containing 0 and a and v;d = 7;v.d for every d € D,, and
1 € I, then for each d € D,, \ {a} let d’ be the next member of D,, strictly including d, and take by C d’ \ d,
ag € [%, %} such that v;bg = agr;(d'\ d) for every i € I. Then
vi(dubg) = (1 — ag)vid + agrid = v, (1 — ag)ved + aqurd’) = vivip(d U by)

for every i. Set D,,11 = D,,U{duby : d € D,}; observe that D, 11 is still totally ordered, and continue. At
the end of the induction, it is easy to see that v (d'\ d) < (3)"v;a whenever n € N and d ¢ d’ are successive
members of D,,.

Set D = |J,,cny Dn- Then D is a countable totally ordered set with least element 0 and greatest element
a, and {vd : d € D} is dense in [0, via]. For t € ]0,1], set a; = sup{d : d € D, vd < tvia}; this is where we
need to know that 2 is Dedekind o-complete. Set ag = 0. Then (a¢)c[o,1) is a non-decreasing family with
ap=0and a; =a. f0<t<1,i€ I and € > 0, there are d, d € D such that

trpa — € < vpd < tvga < vpd' < tvga + e,

tr;a — vie < vid < trja < vid' < tvga + i€
in this case d C a; C d’, so
tria — vie < viae < tria + ;€
as € is arbitrary, v;a; = tv;a. Thus we have a suitable family (at)¢>0.
(¢) Induce on n.

(i) The induction starts with a single non-negative properly atomless functional 1. Now for any a € 2
there is an a’ C a such that %V()CL < ppa’' < %lloa. P This is trivial if vga = 0. Otherwise, let C be a finite
partition of unity in 2 such that vgc < %l/oa for every ¢ € C. Enumerate C as (¢;)i<m and for i < m set
b; = ansup,;¢;. Then by =0, by, = a and vpbit1 — vob; < voc; < %Z/o(l for each i. So there must be an
i < m such that %lloa < ypb; < %l/oa, and we can set a’ = b;. Q

Now (b), with I = {0}, gives the result.

(ii) For the inductive step to n > 1, I show first that if a € 2 there is an ¢’ C a such that v;a’ = %Via
for every i < n. PP By the inductive hypothesis, we have a non-decreasing family (a¢)¢c[o,1) such that ag = 0,

a; = a and v;a; = tv;a whenever t € [0,1] and ¢ < n. Now observe that for 0 < s <t <1,
[vnar — vpas| = vp(ar \ as) < volat\ as) = (t — s)vpa.
So the functions ¢ — vpa, : [0,1] — [0,00[ and f : [0, 4] — [0, oo are continuous, where f(t) = Vnlyy 1 = Vnly
for 0 <t < 1. However, f(0) + f(3) = vna, so $v,a lies between f(0) and f(3) and there is a t € [0, 3]
such that f(t) = %z/na. Set a’ = ayy1\ag; then v;a’ = %z/l-a for every i < n, as required. Q
Once again (b), with I = {0,... ,n}, shows that for any a € 2 we have a non-decreasing family (a:):e[o,1]
such that ag =0, a; = 1 and v;a; = tv;a whenever t € [0,1] and i < n.

*326H Liapounoff’s convexity theorem (LIAPOUNOFF 1940) Let 2 be a Dedekind o-complete
Boolean algebra, and r > 1 an integer. Suppose that v : 2 — R" is additive in the sense that v(aub) =
va + vb whenever anb = 0 (see 361B), and properly atomless in the sense that for every € > 0 there is a
finite partition (a;);cs of unity in 2 such that ||val| < e whenever j € J and a C a;. Then {va:a € A} is
a convex set in R”.(%)

proof For 1 <i <r, let v; be the ith component of v, so that va = (1;a)1<,<, for each a € A. Then every
v; is additive. Moroever, it is properly atomless. I Given € > 0, there is a finite partition (a;);cs of unity

31 learnt this version of the theorem from K.P.S.Bhaskara Rao.
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in A such that |v;a| < ||val| < € whenever j € J and a C aj. Q So we can express v; as v;” — v; where v
and v; are non-negative properly atomless non-negative functionals (326G (a-ii)). Set 7a = >;_, vfa+v; a
for a € A. Then 7 is again properly atomless (326G(a-i)).

Suppose that z, y € v[2] and « € [0,1]. Let a, b € A be such that va = x and vb = y. By 326Gc, applied
to D,Vfr,uf,... v, v7, there is an ¢ C @\ b such that

y Y sV

vie=av(a\b), v;c=av; (a\b),

for every i < r, so that v;c = av;(a\b) for every ¢« < r. Similarly, there is a d C b\ a such that vd =
(I —a)v(b\d). Now e =cu(anb)ud,

ar+ (1 —a)y=ava+ (1 — a)vb
=av(a\b) +av(anbd)+ (1 —a)v(and) + (1 — a)r(b\a)
=ve+v(and) +vd=v(cu(anb)ud) € v[.

As z, y and « are arbitrary, v[2] is convex.

3261 Countably additive functionals: Definition Let 20 be a Boolean algebra. A functional v :
2 — R is countably additive or o-additive if _ ° jva, is defined and equal to v(sup, ¢y an) whenever
(an)nen is a disjoint sequence in A and sup,,cy ar is defined in L.

A warning is perhaps in order. It can happen that 2 is presented to us as a subalgebra of a larger algebra
B; for instance, 2 might be an algebra of sets, a subalgebra of some og-algebra > C PX. In this case,
there may be sequences in 2 which have a supremum in 20 which is not a supremum in % (indeed, this will
happen just when the embedding is not sequentially order-continuous). So we can have a countably additive
functional v : % — R such that v[2l is not countably additive in the sense used here. A similar phenomenon
will arise when we come to the Daniell integral in Volume 4 (§436).

326J Elementary facts Let 2 be a Boolean algebra and v : 2l — R a countably additive functional.

(a) v is finitely additive. (Setting a, = 0 for every n, we see from the definition in 3261 that v0 = 0.
Now, given anb =0, set ag = a, a; = b, a, = 0 for n > 2 to see that v(aub) = va + vb.)
(b) If (an)nen is a non-decreasing sequence in 2 with a supremum a € 2, then
va=vag+ Yoo V(ni1 \ an) = limy, o0 va,.
(¢) If {an)nen is a non-increasing sequence in A with an infimum a € A, then {(ag \ an)nen is a non-
decreasing sequence with supremum ag \ a, so

va =vag — v(ag\ a) = vag — lim, e ¥(ag \ apn) = limy, 00 Vay,.

(d) If ¢ € A, then a — v(anc) is countably additive. (For sup,cyan nc = cn sup,cy a, whenever the
right-hand-side is defined, by 313Ba.)

(e) av is a countably additive functional for any o € R. If v/ is another countably additive functional on
2, then v + v’ is countably additive.

(f) If B is another Boolean algebra and 7 : 8 — 2l is a sequentially order-continuous Boolean homomor-
phism, then v7 is a countably additive functional on B. (For if (b,)nen is a disjoint sequence in B with
supremum b, then (wb, ) en is a disjoint sequence with supremum 7b.)

(g) If A is Dedekind o-complete and 9B is a o-subalgebra of 2, then v[B : B — R is countably additive.
(For the identity map from 9B to 2 is sequentially order-continuous, by 314Gb.)

326K Corollary Let 2 be a Boolean algebra and v a finitely additive real-valued functional on L.
(a) v is countably additive iff lim,_,o va, = 0 whenever (a,)nen is a non-increasing sequence in 2 with

infimum 0 in 2L.

D.H.FREMLIN



44 Measure algebras 326K

(b) If v/ is an additive functional on 2 and |v'a| < va for every a € 2, and v is countably additive, then
v’ is countably additive.
(c) If v is non-negative, then v is countably additive iff it is sequentially order-continuous.

proof (a)(i) If v is countably additive and (a,)nen is a non-increasing sequence in 2 with infimum 0, then
lim,, oo va, = 0 by 326Jc. (ii) If v satisfies the condition, and (a,)nen is a disjoint sequence in 2 with
supremum a, set b, = a\ sup,<, a; for each n € N; then (b,,)nen is non-increasing and has infimum 0, so
va — Y1 gva; = va — v(sup,c, a;) = vb, — 0

as n — 0o, and va = Y~ va,; thus v is countably additive.

(b) If (an)nen is a disjoint sequence in A with supremum a, set b, = sup,;<,, a; for each n; then va =
lim,, o vy, SO

lim,, o0 |[Va — V'by| = limy, 00 [V (@ \ )| < limy, 00 v(a\ by) = 0,

and

Yoo oV a, =limy, oo v'b, = V'a.

(c) If v is countably additive, then it is sequentially order-continuous by 326Jb-326Jc. If v is sequentially
order-continuous, then of course it satisfies the condition of (a), so is countably additive.

326L The Jordan decomposition (II): Proposition Let 2 be a Boolean algebra and v a bounded
countably additive real-valued functional on 2. Then v is expressible as the difference of two non-negative
countably additive functionals.

proof Consider the functional v*a = sup, ., vb defined in the proof of 326D. If (ay)nen is a disjoint
sequence in 2 with supremum a, and b C a, then

vb=>% " jvbna,) <> jvta,.
As b is arbitrary, vta < Y7  vta,. But of course
vta > vt(sup,c, a;) = Siovta

for every n € N, so vta =" va,. As (a,)nen is arbitrary, v1 is countably additive.
Now v~ = v+ — v also is countably additive, and v = v — v~ is the difference of non-negative countably
additive functionals.

326M The Hahn decomposition: Theorem Let 2 be a Dedekind o-complete Boolean algebra and
v : A — R a countably additive functional. Then v is bounded and there is a ¢ € 2 such that va > 0
whenever a C ¢, while va < 0 whenever anc = 0.

first proof By 314M, there are a set X and a o-algebra Y of subsets of X and a sequentially order-continuous
Boolean homomorphism 7 from ¥ onto 2. Set v; = vw : ¥ — R. Then 14 is countably additive (326Jf).
So v is bounded and there is a set H € ¥ such that 1 F > 0 whenever F' € ¥ and ' C H and 1 F <0
whenever F' € ¥ and FNH = () (231Eb). Set ¢ = nH € . If a C ¢, then there is an F € ¥ such that
7F =a;now n(FNH)=anc=a,sova=v(FNH)>0. If anc =0, then there is an F € ¥ such that
7F =a;now n(F\ H)=a\c=a,sova=v(F\H)<O0.

second proof (a) Note first that v is bounded. P If (a,) ey is a disjoint sequence in 2, then Y7  va,

must exist and be equal to v(sup,,cy ar); in particular, lim, . va, = 0. By 326D, v is bounded. Q

(b)(i) We know that v = sup{ra : a € A} < co. Choose a sequence {a,)nen in 2 such that va, >~vy—27"
for every n € N. For m < n € N, set by, = inf,,<i<n a;. Then vby,, >y —2-27™ 4 27" for every n > m.
P Induce on n. For n = m, this is due to the choice of a,, = bnm. For the inductive step, we have
b, nt+1 = bmn N any1, while surely v > v(an+1 Ubmy), S0

Y + me,n+1 2 V(an+1 u bmn) + V(anJrl n bmn)
= Vapi1 + Vb >y — 27" 4y =227 277
(by the choice of a,4+1 and the inductive hypothesis)
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=2y —2.27" 4271

Subtracting vy from both sides, by, py1 > 7 —2-27" + 27"~ and the induction proceeds. Q
(ii) Set
by, = infy >, by = infy >, an.
Then
Vb, = limy, oo Vb > v — 227,
by 326Jc. Next, (by)nen is non-decreasing, so setting ¢ = sup,,cy b, we have
ve = lim,_ o0 Vb, > 7;

since ve is surely less than or equal to v, vec = 7.
If be A and b C ¢, then

ve—vb=v(c\b) <v=vc,
sovb>0.If bc A and bnc =0 then
ve+vb=v(cub) <y=vrc

so vb < 0. This completes the proof.

326N Completely additive functionals: Definition Let 2l be a Boolean algebra. A functional
v: A — R is completely additive or 7-additive if it is finitely additive and inf,c 4 |[va| = 0 whenever A
is a non-empty downwards-directed set in 2l with infimum O.

3260 Basic facts Let 2 be a Boolean algebra and v a completely additive real-valued functional on 2.

(a) v is countably additive. P If (a,)nen is a non-increasing sequence in 2 with infimum 0, then for any
infinite I C N the set {a; : 4 € I} is downwards-directed and has infimum 0, so inf;¢s |va;| = 0; which means
that lim,, ., va, must be zero. By 326Ka, v is countably additive. Q

(b) Let A be a non-empty downwards-directed set in 2 with infimum 0. Then for every € > 0 there is an
a € A such that |vb| < e whenever b C a. P? Suppose, if possible, otherwise. Set

B={b:|vb| >¢ Jac A, bDa}.

If a € A there is a b’ C a such that [vb'| > e. Now {a’\V' :d' € A, d/ C a} is downwards-directed and has
infimum 0, so there is an a’ € A such that a’ C a and |v(a’ \ )| < |vb/| —€. Set b= ua'; then o/ C b and

[wb| = b’ +v(a’ \ V)| =[] = [v(a"\ V)] = €,

so b € B. But also b € a. Thus every member of A includes some member of B. Since every member
of B includes a member of A, B is downwards-directed and has infimum 0; but this is impossible, since
infbeB |l/b| 2 €. XQ

(c) If v is non-negative, it is order-continuous. P (i) If A is a non-empty upwards-directed set with
supremum ag, then {ag\a:a € A} is a non-empty downwards-directed set with infimum 0, so
SUpgea va = vag — infaea v(ap \ @) = vay.

(ii) If A is a non-empty downwards-directed set with infimum ag, then {a\ag : a € A} is a non-empty
downwards-directed set with infimum 0, so

infaea va =vag +infaeav(a\ ag) = vag. Q

(d) If ¢ € A, then a — v(anc) is completely additive. B If A is a non-empty downwards-directed set
with infimum 0, so is {anc:a € A}, and inf,c4 [v(anc)| =0. Q
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(e) av is a completely additive functional for any o € R. If v/ is another completely additive functional
on 2, then v + v’ is completely additive. I We know from 326Bc that v + v/ is additive. Let A be a
non-empty downwards-directed set with infimum 0. For any € > 0, (b) tells us that there are a, a’ € A such
that |vb| < e whenever b C a and |v'b] < € whenever b C o/. But now, because A is downwards-directed,
there is a b € A such that b C ana’, which means that |vb+v'b| < |vb|+ |V'b] is at most 2¢. As € is arbitrary,
infoea |(v+v')(a)| =0, and v + v’ is completely additive. Q

(f) If B is another Boolean algebra and = : 8 — 2 is an order-continuous Boolean homomorphism,
then vm is a completely additive functional on 8. P By 326Be, v7 is additive. If B C B is a non-empty
downwards-directed set with infimum 0 in 9B, then 7[B] is a non-empty downwards-directed set with infimum
0 in A, because 7 is order-continuous, so infpep |vwb| = 0. Q In particular, if B is a regularly embedded
subalgebra of 2, then v[9B is completely additive.

(g) If v/ is another additive functional on 2 and |v’a| < va for every a € 2, then v’ is completely additive.
P If A C 2 is non-empty and downwards-directed and inf A = 0, then inf,ca [Va| < infacarva=0. Q

326P I squeeze a useful fact in here.

Proposition If 2 is a ccc Boolean algebra, a functional v : 2l — R is countably additive iff it is completely
additive.

proof If v is completely additive it is countably additive, by 3260a. If v is countably additive and A is
a non-empty downwards-directed set in 2 with infimum 0, then there is a (non-empty) countable subset B
of A also with infimum 0 (316E). Let (b,,)nen be a sequence running over B, and choose (an)nen in A such
that ag = bg, ant1 C an Nby, for every n € N. Then (a,)nen 18 a non-increasing sequence with infimum 0,
0 lim,, o0 va, = 0 (326Jc) and inf,c 4 |va| = 0. As A is arbitrary, v is completely additive.

326Q The Jordan decomposition (IIT): Proposition Let 2 be a Boolean algebra and v a completely
additive real-valued functional on 2. Then v is bounded and expressible as the difference of two non-negative
completely additive functionals.

proof (a) I must first check that v is bounded. PP Let (a,)necn be a disjoint sequence in 2. Set
A={a:ae, there is an n € N such that a; C a for every i > n}.

Then A is closed under n, and if b is any lower bound for A then b C 1\ a,, € A, so bna, = 0, for every
n € N; but this means that 1\b € A, so that b € 1\ b and b = 0. Thus inf A = 0. By 3260Db, there is
an a € A such that |vb| < 1 whenever b C a. By the definition of A, there must be an n € N such that
lva;| <1 for every ¢ > n. But this means that sup,,cy |vay,| is finite. As (an)nen is arbitrary, v is bounded,
by 326D(ii). Q

(b) As in 326D and 326L, set v a = sup,, ., vb for every a € 2. Then v+ is completely additive. I We
know that v is additive. If A is a non—emp;ty downwards-directed subset of 2f with infimum 0, then for
every € > 0 there is an a € A such that |vb| < € whenever b C a; in particular, vTa < e. As € is arbitrary,
infaea vTa = 0; as A is arbitrary, v™ is completely additive. @

Consequently v~ = v —v is completely additive (3260e) and v = v —v~ is the difference of non-negative
completely additive functionals.

326R I give an alternative definition of ‘completely additive’ which you may feel clarifies the concept.

Proposition Let 2 be a Boolean algebra, and v : 2l — R a function. Then the following are equiveridical:
(i) v is completely additive;
(ii) v1 = > ;c; va; whenever (a;)ics is a partition of unity in ;
(iii) va = ),y va; whenever (a;)icr is a disjoint family in 2 with supremum a.

proof (For notes on sums »_._;, see 226A.)

i€l
(a)(i)=-(ii) If v is completely additive and (a;);er is a partition of unity in A, then (inducing on #(J))
v(sup;ey ai) = ),y va; for every finite J C I. Consider
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A= {1\ sup;cya; : J C I is finite}.
Then A is non-empty and downwards-directed and has infimum 0, so for every € > 0 there is an a € A such
that |vb| < e whenever b C a (3260b again). Express a as 1\ sup;c;a; where J C I is finite. If now K is
another finite subset of I including J,
1 =3 ek ail = [V(1\ supic a;)| < e
As remarked in 226Ad, this means that v1 =}, _; va;, as claimed.

(b)(ii)=(iii) Suppose that v satisfies the condition (ii), and that (a;);cs is a disjoint family with supre-
mum a. Take any j ¢ I, set J =T1U{j} and a; = 1\ a; then (a;);cs, (a,1\ a) are both partitions of unity,
S0

v(INa)+va=vl=3_,va;=v(l\a)+ ) va;
and va =}, va;.

(c)(iii)=(i) Suppose that v satisfies (iii). Then v is additive.

(a) v is bounded. P Let {ay)nen be a disjoint sequence in 2. Applying Zorn’s Lemma to the set C

of all disjoint families C' C 2 including {a, : n € N}, we find a partition of unity C D {a, : n € N}. Now
> ccc ve is defined in R, so sup,,cy [va,| < sup.cc [ve| is finite. By 326D, v is bounded. Q

(B) Define v from v as in 326D. Then v satisfies the same condition as v. P Let (a;);er be a disjoint
family in 2 with supremum a. Then for any b C a, we have b = sup,c; bna;, so

vb=> . vbna) <3, vta
Thus v*a < Y, ; vTa;. But of course
Z vta; = Sup{z vta;: J C I is finite}
iel ieJ

=sup{rT(supa;) : J C I is finite} < v*a,
ieJ

sovta=3",vta;,. Q

(7) Tt follows that v* is completely additive. B If A is a non-empty downwards-directed set with
infimum 0, then B = {b:3 a € A, bna = 0} is order-dense in 2, so there is a partition of unity (b;)iecr
lying in B (313K). Now if J C I is finite, there is an a € A such that an sup;c;b; = 0 (because A is
downwards-directed), and

vta + Yicy vy, <vtl.
Since 1 = SUp jc i finite 2osey V' 0ir infacava =0. As A is arbitrary, v is completely additive. Q
() Now consider v~ = vt — v. Of course
via=vta—va=3,,vta; =Y o vai =0 v a

whenever (a;);cs is a disjoint family in 2 with supremum a. Because v~ is non-negative, the argument of
() shows that v~ = (v7)7 is completely additive. So v = v — v~ is completely additive, as required.

326S For completely additive functionals, we have a useful refinement of the Hahn decomposition. I
give it in a form adapted to the applications I have in mind.

Proposition Let 2 be a Dedekind o-complete Boolean algebra and v : 2 — R a completely additive
functional. Then there is a unique element of 2(, which I will denote [v > 0], ‘the region where v > 0’, such
that va > 0 whenever 0 # a C [v > 0], while va < 0 whenever an v > 0] = 0.

proof Set
Cy ={c:ce A\ {0}, va > 0 whenever 0 # a C c},

Cy ={c:ce va <0 whenever a C c}.

D.H.FREMLIN



48 Measure algebras 326S

Then Cy U Cy is order-dense in 2. I There is a ¢y € 2 such that va > 0 for every a C ¢y and va < 0
whenever ancy = 0 (326M). Given b € A\ {0}, then b\ ¢y € Cs, so if b\ ¢y # 0 we can stop. Otherwise,
b C cy. If b € Cq we can stop. Otherwise, there is a non-zero ¢ C b such that vc < 0; but in this case va > 0
and v(c\a) > 0so va =0 for every a C ¢, and ¢ € Cy. Q

There is therefore a partition of unity D C C7; U C5. Now D N (] is countable. P If d € DN Cy, vd > 0.
Also

#({d:de D, vd>27"}) < 2" sup,cq va

is finite for each n, so D N C} is the union of a sequence of finite sets, and is countable. Q
Accordingly D N C7 has a supremum e. If 0 # a C e then

va=7) .cpv(anc) =3 .cpnc, ¥l@anc) >0

by 326R. Also there must be some ¢ € DN} such that a ne¢ # 0, in which case v(anc) > 0, so that va > 0.
If ane =0, then

va = ECED V(amc) = ZCEDF\CQ I/(aﬂc) S O

Thus e has the properties demanded of [v > 0]. To see that e is unique, we need observe only that if
¢’ has the same properties then v(e\e’) < 0 (because (e\e)ne’ = 0), so e\ e’ = 0 (because e\ e’ C e).
Similarly, ¢’ \ e = 0 and e = ¢’. Thus we may properly denote e by the formula [v > 0].

326T Corollary Let 2 be a Dedekind o-complete Boolean algebra and u, v two completely additive
functionals on 2. Then there is a unique element of 2, which I will denote [ > v], ‘the region where p > v’
such that

pa > va whenever 0 # a C [p > V],

pa < va whenever an u > v] = 0.

proof Apply 326S to the functional p — v, and set [u > v] = [u — v > 0].

326X Basic exercises (a) Let 2 be a Boolean algebra and v : 2 — R a finitely additive functional. Show
that (i) v(aub) = va+vb—v(and) (ii) v(aubuc) =va+vb+vec—v(anb)—v(anc)—v(bne)+r(anbnc)
for all a, b, ¢ € 2. Generalize these results to longer sequences in 2.

(b) Let A be a Boolean algebra. (i) Show that a finitely additive functional v is properly atomless iff
there is a properly atomless additive functional v’ such that |va| < v/a for every a € . (ii) Show that a
non-negative finitely additive functional v on 2l is properly atomless iff whenever v’ is a non-zero finitely
additive functional such that 0 < v’a < va for every a € 2 there is an a € 2 such that v’a and v/(1\ a) are
both non-zero.

(c)(i) Suppose that 2 is a Dedekind o-complete Boolean algebra and v : 2l — R is countably additive.
Show that Z = {a : vb = 0 for every b C a} is an ideal of 2. Show that the following are equiveridical:
(a) v is properly atomless; (8) whenever va # 0 there is a b C a such that vb ¢ {0,va}; () the quotient
algebra /7 is atomless. (ii) Find an atomless Dedekind complete Boolean algebra 21 and a finitely additive
v: 20 — [0, 1] such that va > 0 for every non-zero a € 2 but v is not properly atomless.

(d) Let 2 be a Boolean algebra and v : 20 — R a finitely additive functional. Show that the following
are equiveridical: (i) v is countably additive; (ii) lim,—~ va, = va whenever (a,)nen is a non-decreasing
sequence in 2 with supremum a.

(e) Let 2 be a Dedekind o-complete Boolean algebra and v : 24 — R a finitely additive functional. Show
that the following are equiveridical: (i) v is countably additive; (ii) lim,— o va, = 0 whenever (a,)nen is a
sequence in A and inf,ensup,,s, a¢m = 0; (iii) lim, o va, = va whenever {a,)ncn is a sequence in 2 and
a = inf,enSup,, >, m = supneginfmZn Q. (Hint: for (i)=-(iii), consider non-negative v first.)
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(f) Let X be an uncountable set, and .J an infinite subset of X. Let 2 be the finite-cofinite algebra of X
(316Y1), and for a € A set va = #(anJ) if a is finite, —#(J \ a) if a is cofinite. Show that v is countably
additive and unbounded.

>(g) Let 2 be the algebra of subsets of [0,1] generated by the family of (closed) intervals. Show that
there is a unique additive functional v : 2 — R such that v]e, 8] = 8 — a whenever 0 < a < 8 < 1. Show
that v is countably additive but not completely additive.

(h)(i) Let (X,X, ) be any atomless probability space. Show that p : ¥ — R is a countably additive
functional which is not completely additive. (ii) Let X be any uncountable set and p the countable-
cocountable measure on X (211R). Show that p is countably additive but not completely additive.

(i) Let 2 be an atomless Boolean algebra. Show that every completely additive functional on 2l is properly
atomless.

(j) Let 2 be a Boolean algebra and v : 2 — R a function. (i) Show that v is finitely additive iff ), ; va; =
v1 for every finite partition of unity (a;)ics. (ii) Show that v is countably additive iff ), va; = v1 for
every countable partition of unity (a;)ie;.

(k) Show that 326S can fail if v is only countably additive, rather than completely additive. (Hint:
326Xh.)

(1) Let 2 be a Boolean algebra and v a finitely additive real-valued functional on 2. Let us say that
a € AU is a support of v if (a) vb = 0 whenever bna = 0 (8) for every non-zero b C a there is a ¢ C b such
that ve # 0. (i) Check that v can have at most one support. (ii) Show that if a is a support for v and v
is bounded, then the principal ideal 2, generated by a is ccc. (iii) Show that if 2 is Dedekind o-complete
and v is countably additive, then v is completely additive iff it has a support, and that in the language of
3268 this is [ > 0Ju[—v > 0]. (iv) Taking J = X in 326Xf, show that X is the support of the functional
v there.

326Y Further exercises (a) Show that there is a finitely additive functional v : PN — R such that
v{n} =1 for every n € N, so that v is not bounded. (Hint: Use Zorn’s Lemma to construct a maximal
linearly independent subset of £ including {x{n} : n € N}, and hence to construct a linear map f : £>* — R
such that f(x{n}) =1 for every n.)

(b) Let 2 be any infinite Boolean algebra. Show that there is an unbounded finitely additive functional
v: A — R. (Hint: let (t,)nen be a sequence of distinct points in the Stone space of 2, and set va = v'{n :
t, € a} for a suitable v'.)

(c) Let A be a Boolean algebra, and give R* its product topology. Show that the space of finitely additive
functionals on 2 is a closed subset of R¥, but that the space of bounded finitely additive functionals is closed
only when 2 is finite.

(d) Let A be a Boolean algebra, and M the linear space of all bounded finitely additive real-valued
functionals on 2. For v, v’ € M say that v < v’ if va < v'a for every a € 2. Show that
(i) v™, as defined in the proof of 326D, is just sup{0,v} in M;
(ii) M is a Dedekind complete Riesz space (241E-241F, 353H);
(iii) for v, v € M, lv| =v V (—v), vV V' and v AV’ are given by the formulae

[v|(a) = supyc,vb—v(a\b), (vV1')(a)=sup,c,vb+v'(a\b),
(v AV')(a) =infpcqvb+ v/ (a\b);
(iv) for any non-empty A C M, A is bounded above in M iff
sup{d i, via; : v; € A for each i < n, (a;)i<, is disjoint}
is finite, and then sup A is defined by the formula
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(sup A)(a) = sup{}_""  via; : v; € A for each i < n, (a;)i<, is disjoint, sup;.,, a; = a}
for every a € A;

(v) setting |lv|| = |v|(1), || || is an order-continuous norm (definition: 354Dc) on M under which M is
a Banach lattice.

(e) Let A be a Boolean algebra. A functional v : 2 — C is finitely additive if its real and imaginary
parts are. Show that the space of bounded finitely additive functionals from 2l to C is a Banach space under
the total variation norm ||v|| = sup{> . [va;| : {(a;)i<, is a partition of unity in 2A}.

(f) Let A and B be Boolean algebras and pu, v finitely additive functionals on 2, B respectively. Show
that there is a unique finitely additive functional A on the free product A®%B — R such that A(a®b) = pa-vb
for all a € A, b € B.

(g) Let (2;)ics be a family of Boolean algebras, with free product (&), i, (€:)icr), and for each i € I
let v; be a finitely additive functional on 2(; such that ;1 = 1. Show that there is a unique finitely additive
functional v : @),.; A — R such that v(inf;c;e;(a;)) = [[,c; via; whenever J C I is non-empty and finite
and a; € ; for each i € J.

(h) Let 2( be a Dedekind o-complete Boolean algebra and v : 20 — [0, oo[ a countably additive functional.
Show that v is properly atomless iff whenever a € 2 and va # 0 there is a b C a such that 0 < vb < va.

(i) Let 2 be a Dedekind o-complete Boolean algebra and v : 2 — R a countably additive functional.
Show that v[2(] is a compact subset of R.

(j) Let & be the regular open algebra of R (314P). Find a properly atomless finitely additive v: & — R
such that v[®] is not compact.

(k) (HALMOS 1948) Let A be a Dedekind o-complete Boolean algebra and r > 1 an integer. (i) Let
C C R” be a non-empty bounded convex set, and for z € R" set H, = {x : z.2 = SUPy,cc y.z}. Suppose

that H, N C C C for every z € R" \ {0}. Show that C is closed. (ii) Suppose that v : 2 — R" is countably
additive in the sense that all its coordinates are countably additive functionals. Show that v[2] is compact.

(1) Let 2 be a Boolean algebra, and give it the topology T, for which the closed sets are the sequentially
order-closed sets. Show that a finitely additive functional v : 24 — R is countably additive iff it is continuous
for T,.

(m) Let 2 be a Boolean algebra, and M, the set of all bounded countably additive real-valued functionals
on 2A. Show that M, is a closed and order-closed linear subspace of the normed space M of all additive
functionals on 2 (326Yd), and that |v| € M, whenever v € M,.

(n) Let A be a Boolean algebra and v a non-negative finitely additive functional on 2. Set

Vea = inf{sup, ey Van : (an)nen is a non-decreasing sequence with supremum a}
for every a € 2. Show that v, is countably additive, and is sup{v’ : v’ < v is countably additive}.
(o) Let 2 be a Dedekind o-complete Boolean algebra and (v,)nen @ sequence of countably additive

real-valued functionals on 2 such that va = lim,_,. v,a is defined in R for every a € . Show that v is
countably additive.

(p) Let 2 be a Boolean algebra, and M, the set of all completely additive real-valued functionals on 2.
Show that M. is a closed and order-closed linear subspace of the normed space M of all additive functionals,
and that |v| € M, whenever v € M.

(q) Let A be a Boolean algebra and v a non-negative finitely additive functional on 2(. Set

v;b = inf{sup,c 4 va : A is a non-empty upwards-directed set with supremum b}

for every b € 2. Show that v, is completely additive, and is sup{v’ : v/ < v is completely additive}.
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(r) Let 2 be a Boolean algebra, and give it the topology ¥ for which the closed sets are the order-closed
sets (313Xb). Show that a finitely additive functional v : 2 — R is completely additive iff it is continuous
for ¥.

(s) Let X be aset, X any o-algebra of subsets of X, and v : ¥ — R a functional. Show that v is completely
additive iff there are sequences (,)nen, (0n)nen such that Y07 o, | < 0o and vE = 00 anxE(xy,) for
every E € Y.

326 Notes and comments I have not mentioned the phrase ‘measure algebra’ anywhere in this section, and
in principle this material could have been part of Chapter 31; but countably additive functionals are kissing
cousins of measures, and most of the ideas here surely belong to ‘measure theory’ rather than to ‘Boolean
algebra’, in so far as such divisions are meaningful at all. I have given as much as possible of the theory
in a general form because the simplifications which are possible when we look only at measure algebras are
seriously confusing if they are allowed too much prominence. In particular, it is important to understand
that the principal properties of completely additive functionals do not depend on Dedekind completeness
of the algebra, provided we take care over the definitions. Similarly, the definition of ‘countably additive’
functional for algebras which are not Dedekind o-complete needs a moment’s attention to the phrase ‘and
Sup,,cn @ is defined in 2’. It can happen that a functional is countably additive mostly because there are
too few such sequences (326Xf).

The formulations I have chosen as principal definitions (326A, 3261, 326N) are those which I find closest
to my own intuitions of the concepts, but you may feel that 326K(i), 326Xe(iii) and 326R, or 326Y1 and
326Yr, provide useful alternative patterns. The point is that countable additivity corresponds to sequential
order-continuity (326Jb, 326Jc, 326Jf), while complete additivity corresponds to order-continuity (3260c,
3260f); the difficulty is that we must consider functionals which are not order-preserving, so that the simple
definitions in 313H cannot be applied directly. It is fair to say that all the additive functionals v we need
to understand are bounded, and therefore may be studied in terms of their positive and negative parts v,
v, which are order-preserving (326Bf); but many of the most important applications of these ideas depend
precisely on using facts about v to deduce facts about v and v~

It is in 326D that we seem to start getting more out of the theory than we have put in. The ideas here have
vast ramifications. What it amounts to is that we can discover much more than we might expect by looking
at disjoint sequences. To begin with, the conditions here lead directly to 326M and 326Q: every completely
additive functional is bounded, and every countably additive functional on a Dedekind o-complete Boolean
algebra is bounded. (But note 326Ya-326Yb.)

I have expressed 326H in terms of an additive function from a Boolean algebra to a finite-dimensional
space (it is already non-trivial in the two-dimensional case, which would correspond to an additive complex-
valued functional, as in 326Ye). It is usually regarded as a theorem about countably additive functions, or
‘vector measures’ (see 3940 below), but rather remarkably we do not in fact need countable additivity. Of
course it can also be regarded as a kind of ham-sandwich theorem for measures; we can simultaneously bisect
an element of a Dedekind o-complete Boolean algebra with respect to finitely many additive functionals.
If you like, the dimensionality requirement of the ordinary ham-sandwich theorems of topology is met by
the requirement of atomlessness here. A companion result, also due to Liapounoff, which requires countable
additivity but allows atoms, is in 362Yx.

Naturally enough, the theory of countably additive functionals on general Boolean algebras corresponds
closely to the special case of countably additive functionals on o-algebras of sets, already treated in §§231-232
for the sake of the Radon-Nikodym theorem. This should make 3261-326M very straightforward. When we
come to completely additive functionals, however, there is room for many surprises. The natural map from
a o-algebra of measurable sets to the corresponding measure algebra is sequentially order-continuous but
rarely order-continuous, so that there can be completely additive functionals on the measure algebra which
do not correspond to completely additive functionals on the o-algebra. Indeed there are very few completely
additive functionals on o-algebras of sets (326Ys). Of course these surprises can arise only when there is a
difference between completely additive and countably additive functionals, that is, when the algebra involved
is not cce (326P). But I think that neither 326Q nor 326R is obvious.

I find myself generally using the phrase ‘countably additive’ in preference to ‘completely additive’ in the
context of ccc algebras, where there is no difference between them. This is an attempt at user-friendliness;
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the phrase ‘countably additive’ is the commoner one in ordinary use. But I must say that my personal
inclination is to the other side. The reason why so many theorems apply to countably additive functionals
in these contexts is just that they are completely additive.

I have given two proofs of 326M. I certainly assume that if you have got this far you are acquainted
with the Radon-Nikodym theorem and the associated basic facts about countably additive functionals on
o-algebras of sets; so that the ‘first proof’ should be easy and natural. On the other hand, there are purist
objections on two fronts. First, it relies on the Stone representation, which involves a much stronger form of
the axiom of choice than is actually necessary. Second, the classical Hahn decomposition in 231E is evidently
a special case of 326M, and if we need both (as we certainly do) then one expects the ideas to stand out
more clearly if they are applied directly to the general case. In fact the two versions of the argument are so
nearly identical that (as you will observe, if you have Volume 2 to hand) they can share nearly every word.
You can take the ‘second proof’, therefore, as a worked example in the translation of ideas from the context
of o-algebras of sets to the context of Dedekind o-complete Boolean algebras. What makes it possible is the
fact that the only limit operations referred to involve countable families.

Arguments not involving limit operations can generally, of course, be applied to all Boolean algebras; I
have lifted some exercises (326Yd, 326Yn) from §231 to give you some practice in such generalizations.

Almost any non-trivial measure provides an example of a countably additive functional on a Dedekind
o-complete algebra which is not completely additive (326Xh). The question of whether such a functional
can exist on a Dedekind complete algebra is the ‘Banach-Ulam problem’, to which I will return in 363S.

In this section I have looked only at questions which can be adequately treated in terms of the underlying
algebras %A, without using any auxiliary structure. To go much farther we shall need to study the ‘function
spaces’ S(2() and L () of Chapter 36. In particular, the ideas of 326Ya, 326Yd-326Ye and 326Ym-326Yq
will make better sense when redeveloped in §362.

Version of 13.7.11

327 Additive functionals on measure algebras

When we turn to measure algebras, we have a simplification, relative to the general context of §326,
because the algebras are always Dedekind o-complete; but there are also elaborations, because we can ask
how the additive functionals we examine are related to the measure. In 327A-327C I work through the
relationships between the concepts of ‘absolute continuity’, ‘(true) continuity’ and ‘countable additivity’,
following §232, and adding ‘complete additivity’ from §326. These ideas provide a new interpretation of
the Radon-Nikodym theorem (327D). I then use this theorem to develop some machinery (the ‘standard
extension’ of an additive functional from a closed subalgebra to the whole algebra, 327F-327G) which will
be used in §333.

327A I start with the following definition and theorem corresponding to 232A-232B.

Definition Let (2(,) be a measure algebra and v : 2 — R a finitely additive functional. Then v is
absolutely continuous with respect to i if for every € > 0 there is a 6 > 0 such that |va| < € whenever
pa < 9.

327B Theorem Let (2, i) be a measure algebra, and v : 2 — R a finitely additive functional. Give 2
its measure-algebra topology and uniformity (§323).
(a) If v is continuous at 0, it is completely additive.
(b) If v is countably additive, it is absolutely continuous with respect to f.
(¢) The following are equiveridical:
(i) v is continuous at 0;
(ii) v is countably additive and whenever a € 2 and va # 0 there is a b € 2 such that b < oo and
v(anb) #0;
(iii) v is continuous everywhere on ;
(iv) v is uniformly continuous.

(© 1995 D. H. Fremlin
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(d) If (A, z) is semi-finite, then v is continuous iff it is completely additive.

(e) If (A, 1) is o-finite, then v is continuous iff it is countably additive iff it is completely additive.

(f) If (A, @) is totally finite, then v is continuous iff it is absolutely continuous with respect to i iff it is
countably additive iff it is completely additive.

proof (a) If v is continuous, and A C 2l is non-empty, downwards-directed and has infimum 0, then 0 € A
(323D(b-ii)), so infsea [va] = 0.

(b) ? Suppose, if possible, that v is countably additive but not absolutely continuous. Then there is an
€ > 0 such that for every § > 0 there is an a € 2 such that fia < § but |va] > e. For each n € N we may
choose a b, € A such that gb, < 27" and |vb,| > e. Consider b}, = SUPg >y, bi, b =inf,enb),. Then we have

fib < infren i(Supy s, br) < infpendope,, 277 =0,

so fib =0 and b = 0. On the other hand, v is expressible as a difference v+ — v~ of non-negative countably
additive functionals (326L), each of which is sequentially order-continuous (326Kc), and

0=1limy oo (vt +v7)b} > infpeny(vT +v7 )by, > infen |vbn| > €,
which is absurd. X

(c)(i)=-(ii) Suppose that v is continuous at 0. Then it is completely additive, by (a), therefore countably
additive. If va # 0, there must be a b of finite measure such that |vd| < |va| whenever dnb = 0, so that
|v(a\b)| < |va|] and v(anb) # 0. Thus the conditions are satisfied.

(ii)=(iv) Now suppose that v satisfies the two conditions in (ii). Because 2 is Dedekind o-complete, v
must be bounded (326M), therefore expressible as the difference v — v~ of countably additive functionals.
Set vy =vt +v7. Set

v =sup{mb:be, ub< oo},

and choose a sequence (b, )nen of elements of 2 of finite measure such that lim,, . 110, = 7; set b* =
Sup, ey bn- If d€ A and dnbd* =0 then vd = 0. PP If b € A and b < oo, then

[v(dnb)| <wvi(dnbd) <wv(b\b,) =vi(bub,) —vib, <~y —11b,

for every n € N, so v(dnb) = 0. As b is arbitrary, the second condition in (ii) tells us that vd = 0. Q
Setting b, = supy<,, by for each n, we have lim,, o v1(b* \ b},) = 0. Take any ¢ > 0, and (using (b) above)
let 6 > 0 be such that |va| < € whenever fia < J. Let n be such that 14 (b*\ b)) < e. Then

lval < |v(anby )+ [v(an (0" \by,))| + [v(a\ b)]
< [wlanby)l+ b\ b)) < [v(anby)| +e
for any a € .
Now if b, ¢ € 2 and f((bAc)nbk) < § then
lvb — ve| < |wv(b\ c)| + |v(c\b)|
< |w((b\e)nb™)| + [v((e\b) nb*)| + 26 < e+ €+ 2e = 4e

because fa((b\c)nbk), ((c\b)nbdk) are both less than or equal to 0. As € is arbitrary, v is uniformly
continuous.

(iv)=-(iii)=(i) are trivial.

(d) One implication is covered by (a). For the other, suppose that v is completely additive. Then it is
countably additive. On the other hand, if va # 0, consider B = {b: b C a, jib < co}. Then B is upwards-
directed and sup B = a, because [i is semi-finite (322Eb), so {a\b: b € B} is downwards-directed and has
infimum 0. Accordingly inf,ep |v(a\ b)| = 0, and there must be a b € B such that vb # 0. But this means
that condition (ii) of (c) is satisfied, so that v is continuous.

(e) Now suppose that (2, i) is o-finite. In this case 2l is ccc (322G) so complete additivity and countable
additivity are the same (326P) and we have a special case of (d).
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(f) Finally, suppose that il < oo and that v is absolutely continuous with respect to n. If A C 2 is
non-empty and downwards-directed and has infimum 0, then inf,ec 4 ia = 0 (321F), so inf,ec 4 |va| must be
0; thus v is completely additive. With (b) and (e) this shows that all four conditions are equiveridical.

327C Proposition Let (X, X, 1) be a measure space and (2, i) its measure algebra.

(a) There is a one-to-one correspondence between finitely additive functionals 7 on 2 and finitely additive
functionals v on X such that vF = 0 whenever pFE = 0, given by the formula 7E* = vE for every E € X.

(b) In (a), v is absolutely continuous with respect to i iff v is absolutely continuous with respect to p.

(c) In (a), 7 is countably additive iff v is countably additive; so that we have a one-to-one correspondence
between the countably additive functionals on 2 and the absolutely continuous countably additive functionals
on .

(d) In (a), 7 is continuous for the measure-algebra topology on 2 iff v is truly continuous in the sense of
232Ab.
(e) Suppose that p is semi-finite. Then, in (a), 7 is completely additive iff v is truly continuous.

proof (a) This should be nearly obvious. If 7 : 2 — R is additive, then the formula defines a functional
v : % — R which is additive by 326Be. Also, of course,

wbE=0= E*=0 = vE=0.
On the other hand, if v is an additive functional on ¥ which is zero on negligible sets, then, for E, F' € 3,
B = F* — u(E\ F) = u(F\ E) =0
= v(E\F)=v(F\E)=0
— vF=vE—-v(E\F)+v(F\E)=vE,
so we have a function 7 : 2l — R defined by the given formula. If F, F € ¥ and E*n F* = 0, then
V(E*UF*)=0(EUF)"=v(EUF)
=v(E\F)+vF =vE*+DF*
because (E \ F)* = E*\ F'* = E*. Thus 7 is additive, and the correspondence is complete.
(b) This is immediate from the definitions.

(c)(d) If v is countably additive, and {(a,)nen is a disjoint sequence in 2, we can express it as (Ep)nen
where (Ey,)nen is a sequence in X. Setting F, = E, \ U, ., i, (Fn)nen is a disjoint sequence in ¥ and

Fy =ap\ sup;., a4; = an
for each n. So
D(suppen an) = V(Unen Fn) = 2020 VFn = 3070 Van.
As (an)nen is arbitrary, 7 is countably additive.
(ii) If 7 is countably additive, then v is countably additive by 326Jf.

(iii) For the last remark, note that by 232Ba a countably additive functional on ¥ is absolutely
continuous with respect to p iff it is zero on the p-negligible sets.

(d) The definition of ‘truly continuous’ functional translates directly to continuity at 0 in the measure
algebra. But by 327Bc this is the same thing as continuity.

(e) Put (d) and 327Bd together.

327D The Radon-Nikodym theorem We are now ready for another look at this theorem.

Theorem Let (X, 3, i) be a semi-finite measure space, with measure algebra (2, ji). Let L' be the space of
equivalence classes of real-valued integrable functions on X (§242), and write M, for the set of completely
additive real-valued functionals on 2. Then there is an ordered linear space bijection between M, and L'
defined by saying that # € M, corresponds to u € L' if
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va = fEf whenever a = E* in 2 and f* = wu in L'.

proof (a) Given v € M,, we have a truly continuous v : ¥ — R given by setting vE = vE* for every
E € ¥ (327Ce). Now there is an integrable function f such that vE = [}, f for every E € ¥ (232E). There
is likely to be more than one such function, but any two must be equal almost everywhere (232Hd), so the
corresponding equivalence class uz = f* is uniquely defined.

(b) Conversely, given u € L', we have a well-defined functional v, on ¥ given by setting
v E= fEu: fEf whenever f* =u

for every E € ¥ (242Ac). By 232D, v, is additive and truly continuous, and of course it is zero when p is
zero, so corresponds to a completely additive functional 7, on 2 (327Ce).

(c) Clearly the maps u +— 7, and ¥ — uy are now the two halves of a one-to-one correspondence. To see
that it is linear, we need note only that

(ﬂquﬂq,)E':ﬂuE'JrDvE':fEu+va:fEu+v:17u+UE‘

for every E € X, 80 U, + 1, = Uy for all u, v € L'; and similarly 74, = a, for u € L' and a € R. As for
the ordering, given v and v € L', take integrable f, g such that u = f* and v = ¢*; then

Uy <0y, < p,E*<D,E* for every E € &

<— /ug/vforeveryEEZ
E E

(E)/fg/gforeveryEEZ
E E
— f<ae g = u<lv,

using 131Ha.

327E I slip in an elementary fact.

Proposition If (2, i) is a measure algebra, then the functional a — p.a = fi(anc) is completely additive
whenever ¢ € 2 and jic < co.

proof p. is additive because [i is additive, and by 321F again inf,c 4 uca = 0 whenever A is non-empty,
downwards-directed and has infimum 0.

327F Standard extensions The machinery of 327D provides the basis of a canonical method for
extending countably additive functionals from closed subalgebras, which we shall need in §333.

Lemma Let (2, &) be a totally finite measure algebra and € C 2 a closed subalgebra. Write M, (), M,(€)
for the spaces of countably additive real-valued functionals on 2, @ respectively.
(a) There is an operator R : M,(€) — M,(2) defined by saying that, for every v € M,(€), Rv is the
unique member of M, (2) such that [Rv > af] = [v > af| €] for every a € R.
(b)(i) Rv extends v for every v € M,(C).
(ii) R is linear and order-preserving.
(ii)) R(31 €) = i
(iv) If (vy)nen is a sequence of non-negative functionals in M, (€) such that Y 7 jvnc = fic for every
c €€, then Y 7 (Rv,)(a) = jia for every a € 2.

Remarks When saying that € is ‘closed’; I mean, indifferently, ‘topologically closed’ or ‘order-closed’; see
323H-3231.
For the notation ‘[v > afi]’ see 326S-326T.

proof (a)(i) By 321J-321K, we may represent (2, i) as the measure algebra of a measure space (X, %, u);
write 7 for the canonical map from ¥ to 2. Write T for {E : E € X, 7F € €}. Because € is a o-subalgebra
of € and 7 is a sequentially order-continuous Boolean homomorphism, T is a o-subalgebra of X..
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(ii) For each v € M,(€), vm : T — R is countably additive and zero on {F : F' € T, uF = 0}, so we
can choose a T-measurable function f, : X — R such that fF fod(u]T) = vaF for every F € T. Of course
we can now think of f, as a p-integrable function (233B), so we get a corresponding countably additive
functional Ry : A — R defined by setting (Rv)(wE) = [, f, for every E € ¥ (327D). (In this context, of
course, countably additive functionals are completely additive, by 327Bf.) Note that if ¢ € € there is an
F € T such that F'* = ¢, so that

(Rv)(c) = fF fu =ve.
For a € R, set Hy, = {z : f,(z) > a} € T. Then for any E € X,
EC Ha, pE>0= [_f, > auF,

ENHy=0= [, f, <aukE.
Translating into terms of elements of 2, and setting ¢, = 7H, € €, we have

0# a C cq = (Rv)(a) > ajia,

ancy =0= (Rv)(a) < afia.
So [Rv > afi] = ¢, € €. Of course we now have

ve = (Rv)(c) > ajic when ¢ € €, 0 # ¢ C ¢q,

ve < ajicwhen c € €, cnecy =0,

so that ¢, is also equal to [v > aul€].
Thus the functional Rv satisfies the declared formula.

(iii) To see that Rv is uniquely defined, observe that if A € M, () and [A > ap] = [Rr > af] for
every «, then there is a Y-measurable function g : X — R such that ngdu = AmFE for every F € 3; but
in this case (just as in (ii)) [A > afg] = 7Gq, where G, = {z : g(x) > a}, for each . So we must have
G = mH,, that is, u(GoAH,) = 0, for every a. Accordingly

{z: fu(@) #9(@)} = quQ GyAH,
is negligible; f, =ae. 9, [ fudp = [5 gdu for every E € ¥ and A = Rw.
(b) (i) I have already noted that (Rv)c = vc for every v € M,(€) and ¢ € €.
(i) If v = v1 + 2, we must have, in the language of (a) above,
Jofv=viF =waF+wrF = [ f, + [, fo.= [0+ I0n
for every F' € T, so f, =ae. fu, + fu,, and we can repeat the formulae
(R (xE) = [ fu= [ fi + foo = [ Fr + [} fun = (B)(RE) + (Rvo) (v E),

in a different order, for every E € X, to see that Rv = Rvy + Rve. Similarly, if v € M, (€) and v € R,
fyv =ae. vfi and R(yv) = yRv. If 11 <y in M, (€), then

fFful =V17TF§V27TF:fFfu2

for every F € T, so f,, <ae. fv, (131Ha again), and Rvy < Rus.
Thus R is linear and order-preserving.

(iii) If v = | € then
fny =vnF =puF = foX
for every F € T, so f, =a. xX and Rv = [i.

(iv) Now suppose that (V,)nen is a sequence in M, (€) such that, for every ¢ € €, v,¢ > 0 for every n
and ZZO:O vpc = fic. Set g, = Z;L:O fu, for each m; then 0 <,e. gn <ae gn+1 Zae XX for every n, and

limy, o0 fgn =limy 00 i g vl = fil.
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But this means that, setting ¢ = limy,, o0 gn, 9 <ae. XX and fg = fo, so that g =, xX and
ool o(Ry)(TE) = limnﬁoofE gn = pE
for every E € ¥. Thus Y2 (Rv;)(a) = jia for every a € 2.

327G Definition In the context of 327F, I will call Rv the standard extension of v to 2.

Remark The point of my insistence on the uniqueness of R, and on the formula in 327Fa, is that Rv really
is defined by the abstract structure (2, fi, €, v), even though I have used a proof which runs through the
representation of (2, i) as the measure algebra of a measure space (X, ¥, ).

327X Basic exercises (a) Let (X, 3, 1) be a probability space, and T a o-subalgebra of .. Let (2, i) be
the measure algebra of (X, X, u). Show that € = {F* : F' € T} is a closed subalgebra of 2. Identify the spaces
M, (), M,(€) of countably additive functionals with L'(u), L* (] T), as in 327D. Show that the conditional
expectation operator P : L'(u) — L'(u]'T) (242Jd) corresponds to the map v — v[€ : M, () — M, (€).

(b) Let (2(, ) be a totally finite measure algebra and v : 2l — R a countably additive functional. Show
that, for any a € 2,

va = fooo planv > apl)da — ffm gla\ v > ap])da

the integrals being taken with respect to Lebesgue measure. (Hint: take (2, 1) to be the measure algebra
of (X, %, u); represent v by a p-integrable function f; apply Fubini’s theorem to the sets {(x,t) : x € E, 0 <
t< f(x)}, {(z,t) :x € E, f(z) <t <0} in X x R, where a = E*.)

(c) Let (2, 1) and (B, ') be totally finite measure algebras, and 7 : 2 — 9B a measure-preserving
Boolean homomorphism. Let € be a closed subalgebra of 2, and v a countably additive functional on
the closed subalgebra 7[€] of B (324L). (i) Show that vm is a countably additive functional on €. (ii)
Show that if 7 is the standard extension of v to B, then Ur is the standard extension of vm to A. (Hint:
take @ € R and set eg = [0 > afi'] = [v > afi/|7[€]]; there is a ¢y € € such that mcy = ep; check that
co = [om > ap] = [vr > ail €].)

(d) Let (2, 1) be a totally finite measure algebra, € a closed subalgebra of 2 and v : € — R a countably
additive functional with standard extension 7 : 2l — R. Show that, for any a € 2,

ya—fo (an[v > apl Qﬂ)da—ffooﬂ(a\[[u>aﬂ[(’:]])da.

(e) Let (A, 1) be a probability algebra, and B, € stochastically independent closed subalgebras of 2
(definition: 325L). Let v be a countably additive functional on €, and ¥ its standard extension to 2. Show
that 7(bnc¢) = b - ve for every b € 9B, c € €.

(f) Let (X, X, 1) be a probability space, and T a o-subalgebra of 3. Let v be a probability measure with
domain T such that vE = 0 whenever E € T and pF = 0. Show that there is a probability measure A with
domain ¥ which extends v.

327Y Further exercises (a) Let (;, i) and (s, fiz) be localizable measure algebras with localizable
measure algebra free product (€, ). Show that if 11, vy are completely additive functionals on 2, 2As
respectively, there is a unique completely additive functional v : € — R such that v(a; ® a2) = v1a1 - veas
for every a1 € 2y, as € As. (Hint: 253D.)

(b) Let (2, i) be a totally finite measure algebra and € a closed subalgebra; let R : M,(€) — M, ()
be the standard extension operator (327G). Show (i) that R is order-continuous (ii) that R(v*) = (Rv)™,
|[Rv|| = ||v|| for every v € M,(€), defining vt and ||v| as in 326Yd.

(c) Let (2, 1) be a totally finite measure algebra and € a closed subalgebra of . For a countably additive
functional v on € write ¥ for its standard extension to 2. Show that if v, (v,)nen are countably additive
functionals on € and lim,_, s V¢ = ve for every ¢ € €, then lim,,_, o Upa = Da for every a € . (Hint: use
ideas from §§246-247, as well as from 327F and 326Yo.)
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327 Notes and comments When we come to measure algebras, it is the completely additive functionals
which fit most naturally into the topological theory (327Bd); they correspond to the ‘truly continuous’
functionals which I discussed in §232 (327Cd), and therefore to the Radon-Nikodym theorem (327D). I will
return to some of these questions in Chapter 36. I myself regard the form here as the best expression of the
essence of the Radon-Nikodym theorem, if not the one most commonly applied.

The concept of ‘standard extension’ of a countably additive functional (or, as we could equally well say,
of a completely additive functional, since in the context of 327F the two coincide) is in a sense dual to the
concept of ‘conditional expectation’. If (X, %, ) is a probability space and T is a o-subalgebra of ¥, then
we have a corresponding closed subalgebra € of the measure algebra (2, i) of p, and identifications between
the spaces M, (), M,(€) of countably additive functionals and the spaces L'(u), L*(u]T). Now we have
a natural embedding S of L'(u|T) as a subspace of L'(u) (242Jb), and a natural restriction map from
M, () to M, (€). These give rise to corresponding operators between the opposite members of each pair;
the standard extension operator R of 327F-327G, and the conditional expectation operator P of 242Jd. (See
327Xa.) The fundamental fact

PSv = for every v € L*(u|T)
(242J¢) is matched by the fact that
Rv|€ = v for every v € M,(€).

The further identification of Rv in terms of integrals [ fi(an [v > afi])da (327Xd) is relatively inessential,
but is striking, and perhaps makes it easier to believe that R is truly ‘standard’ in the abstract contexts
which will arise in §333 below. It is also useful in such calculations as 327Xe.

The isomorphisms between M, spaces and L' spaces described here mean that any of the concepts
involving L' spaces discussed in Chapter 24 can be applied to M, spaces, at least in the case of measure
algebras. In fact, as I will show in Chapter 36, there is much more to be said here; the space of bounded
additive functionals on a Boolean algebra is already an L' space in an abstract sense, and ideas such as
‘uniform integrability’ are relevant and significant there, as well as in the spaces of countably additive and
completely additive functionals. I hope that 326Yd, 326Ym-326Yn, 326Yp-326Yq and 327Yb will provide
some hints to be going on with for the moment.
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Version of 2.6.09

*328 Reduced products and other constructions

I devote a section to some related constructions. At the end of §315 I mentioned projective and inductive
limits of systems of Boolean algebras with linking homomorphisms. In the context of the present chapter,
we naturally ask whether similar constructions can be found for probability algebras. For projective limits
there is no difficulty (3281). For inductive limits the situation is more complex (328H). Some ideas in Volume
5 will depend on what I call ‘reduced products’ (328 A-328F), which also provide a route to 328H. The same
methods give a route to a useful result relating measure-preserving Boolean homomorphisms on a probability
algebra to measure-preserving automorphisms on a larger probability algebra (32817).

328A Construction Let ((2l;, [i;))ier be a non-empty family of probability algebras, and F an ultrafilter
on [.
(a) Set
J = {{ai)ier : (ai)ier € [[;c; s, limis 7 fiza; = 0},

Then J is an ideal in the simple product Boolean algebra [],.; ;. P If (a;)icr and (b;)ies belong to 7,
and (c;)ier € [[;c; 2As is such that (c;)icr C (as)ier U (bi)ier, then ¢; C a; U b; for every i, so

lim; , 7 fize; < limy 7 fiza; + fib; = lim, 7 fia; + lim; 7 f1;0; = 0
and (c;)icr € J. Of course (Og,)icr belongs to J, s0 J < [[;c; % Q

(b) Let 2 be the quotient Boolean algebra ]|
by saying that

ser i/ T . Then we have a functional fi : 21 — [0, 1] defined

f((ai)ier) = lim, 7 fiia;
whenever <ai>i61 S Hie[ A, P If <@i>i61a <bi>ieI S Hie[ A, and <ai>;el = <bi>;€[7 then <a,» Abi>i6[ € J, so
| limy 7 fija; — iy 7 figb;| = lim, 7 ;a0 — figb;| < lim; 7 fi;(a; A b)) = 0. Q
328B Proposition Let ((;, fi;))icr be a non-empty family of probability algebras and F an ultrafilter
on I, and construct 2 and i as in 328A. Then (2, ) is a probability algebra.
proof (a) If (a;)icr, (bi)ier € [[;c; i and (as)5c; 0 (bi)je; = 0, then (a; N bs)ier € T, s0
B({ai)ier U (bi)ier) = i(a; Ubi)ie ) = lim fig(a; U b;)
i—F
= lim fi;a; + fib; — fii(a; N b;)
i—F
= Zhjjl? i + 1113} fib; — }LH} fi(a; Nb;)
= lm fia; + lim fi;b; = i((ai)ier) + p((bi)ier)-
So [ is additive.
(b) 1 = (1a,)jc; s0
ply = lim; 7 11y, = 1.
(c) If (as)ier € [[;c; i and fi({ai)ic;) = 0, then (a;)icr € J and (a;);c; = 0; thus fi is strictly positive.

(d) Suppose that (an)nen is a disjoint sequence in 2. Express each @, as (an;);c; where a,; € 2; for
each i. Set by; = sup,, <, @mi for n € N and i € I; then (bn;)ic; = sup,, <, G in A. Set

Y= ZZO:O [y = SUpPy, eN la(<bni>;eI) = SUPpeN lim; 7 fi;bn;.
(©) 2008 D. H. Fremlin

D.H.FREMLIN



60 Measure algebras 328B

Set A, ={i:i€l, u;by; <v+ 27"} for each n € N; then (A4,,),en is a non-increasing sequence in F, and
Ag=1. For i€ I set

b; =by; ifi € A, \ An+17

= supby; if i € (] An.
neN neN

Consider b = (bi)scr € 2. For each n € N, {i : an; C by, ib; <y +27"} includes A, € F, 50 @, C b for every
n and ﬂIN) <.
If ¢ € 2 is another upper bound for {a, : n € N}, then, using (a),

Y = SUp, e A(SUP <, @) < (DN E) < fib <
so fi(b\ &) =0 and b\ &= 0, by (c). Thus b = sup,,cy @, in A, while ib = >.°° , fid,.

(e) If (an)nen is any sequence in 2, then (iv) tells us that {a, \ sup,,., @m : n € N} has a supremum in
2, which is also the supremum of {a, : n € N}. So 2 is Dedekind o-complete. Now (d) tells us also that f
is countably additive, so that (2, i) is a probability algebra.

328C Definition In the context of 328A/328B, I will call (2, i) the probability algebra reduced
product of ((2;, fi;))ic; modulo F; I will sometimes write it as [[,.;(2;, f1:)|F. (There are dangers in this
notation. In 351M I will speak of ‘reduced powers’ R!|F, and the rules will be significantly different there.)

If all the (2A;, f1;) are the same, with common value (B, 7), I will write (B, 7)!|F for [, (%, )| F, and
call it the probability algebra reduced power.

328D Proposition Let I be aset, (s, fi;))ier, (B, 7))ier and (€5, \;))ies three families of probability
algebras, and F an ultrafilter on I; let (A7) = [[,c; (i, )| F, (B,7) = [[;c;(Bs,7)|F and (€,\) =
[Tic:(€i, Ai)|F be the corresponding reduced products.

(a) If m; : A; — B, is a measure-preserving Boolean homomorphism for each ¢ € I, we have a measure-
preserving Boolean homomorphism 7 : 2l — B given by saying that

7T(<ai>;el) = <7Tiai>;el
whenever a; € 2; for every i € I.

(b) If, in addition, ¢; : B; — €; is a measure-preserving Boolean homomorphism for each i € I, and
¢ B — € is constructed as in (a), then ¢ : A — € corresponds to the family (¢;7;)icr-

proof (a) Following through the construction in 328A, we have ideals
J = {{as)ier : lim; F flza; = 0} < [ s,

K= {<b1>ze[ clim; 7 0;b; = 0} < Hie] B,

and a Boolean homomorphism 7 : [[;c; 2 — [[;c; B: given by the formula 7(a;)ic; = (miai)icr (use
315Bb). Because the homomorphisms m; are measure-preserving, 7a € K whenever @ € J. Consequently
we have a Boolean homomorphism 7 : [[,.; /T — [[,c; B:/K given by setting ma* = (7a)* whenever
acJ[,c; % (3A2G). And

vr({ai)ser) = v({mias)ser) = im,;, 7 Uymia; = limy, 7 fiia; = fA({aq)ier)
whenever (a;)ier € [[;c; 2, so m is measure-preserving.

(b) is now just a matter of writing the defining formulae out.

328E Proposition Let I be a non-empty set, < a reflexive transitive relation on I, and F an ultrafilter
on [ such that {j : j € I, j > i} belongs to F for every i € I. Let ((2;, [i;))icr be a family of probability
algebras, and suppose that we are given a family (7;;);<; such that
mj; is a measure-preserving Boolean homomorphism from 2l; to 2(; whenever ¢ < j in I,
ki = Tk;Tj; whenever ¢ < j < kin I.
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Let (21, 1) be the probability algebra reduced product [, (21:, fii)|F.

(a) For each i € I we have a measure-preserving Boolean homomorphism 7; : 2(; — 2 defined by saying
that m;a = (a;)%.; whenever a; = m;;a for every j > ¢, and m; = 7;m;; whenever ¢ < j in I.

jljel J J 3Ty

(b) (@i)jer © sup;ea mja; whenever (a;)icr € [[;c; % and A € F.
proof (a) m; is well-defined because {j : j > i} € F. It is a measure-preserving Boolean homomorphism
because every mj; is. If i < jin I, a € *; and ay = 7g;a for every k > 4, then ap = 7g;mj;a for every k > j,

J 3T

SO ;a0 = <ak>éel = m;a; as a is arbitrary, w;m;; = ;.

(b) Set ¢ = sup;c 4 mja; in A. For any € > 0, there is a finite K C A such that jic < € + fi(sup,c i m;a;)
(321C). The set B={k : k € I, j <k for every j € K} belongs to F, so is not empty; fix k € B, and set
b= sup;ck mrja; € AUp,

by = mnb if i >k,
= 0 for other 7 € I.
Then
(bi)ier = kb = Tx(SUD ek Thj@s) = SUD ;e ThTRjA; = SUDP ;e TjA; C C.

If i € Aand i > k, then

fi(a; \ b;) = a(mia; \ mb;) = a(ma; \ mimib)
= p(mia; \ mxb) = fi(mia; \ sup mja;) < ji(c\ sup mja;) <€
JEK jEK

by the choice of K. So

a{ai)ier \ ) < i({ai)ier \ (bi)ier) = n({ai \ bi)jer)
= lim f;(a; \b;) < sup fi(a;\b;) <e.
i=F i€A,i>k

As € is arbitrary, (a;);c; C c.

328F Corollary Suppose that ((2,, fin))nen is a sequence of probability algebras, ¢, : A, — Apy1 is a
measure-preserving Boolean homomorphism for each n and F is a non-principal ultrafilter on N. Let (2, i)
be the probability algebra reduced product [[, cn(2n; fin)|F. Then we have canonical measure-preserving
Boolean homomorphisms 7, : 2, — 2 such that {a,)5cn € SUp,e 4 Tna, Whenever (a,)nen € [[,cn ™n and
A e F, and w410, = m, for every n € N.

proof Apply 328E with 7j; = ¢j_1 ... ¢;11¢; whenever i < j.

328G Corollary Let (%8, 7) be a probability algebra, I a non-empty set, and F an ultrafilter on I. Let
(21, /) be the probability algebra reduced power (B, )| F.

(a) We have a measure-preserving Boolean homomorphism 7 : 8 — 2 defined by saying that b = (b)3;
for b € B.

(b)
(bi)ier € supjea mh; = T(supjea bs)
whenever A € F and (b;);es € B.
proof Apply 328E with < =1 x I and 7j; the identity operator on B for all 7, j € I.

328H Proposition Let (I, <) be an upwards-directed partially ordered set, and ((2;, [i;))iecr a family of
probability algebras; suppose that m;; : A; — 2(; is a measure-preserving Boolean homomorphism whenever
i < j, and that m; = m;m;; whenever ¢ < j < k. Then there are a probability algebra (€, A) and a family
(m;)icr such that
m; : A; — € is a measure-preserving Boolean homomorphism for each i € I,
m; = T;j7j; whenever ¢ < j,
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10,1} U ;e mi[2] is topologically dense in €,
and whenever (B,7), (¢i):cs are such that

(B, D) is a probability algebra,

¢; : 2A; — B is a measure-preserving Boolean homomorphism for each i € I,

@i = ¢;m;; whenever ¢ < j,
then there is a unique measure-preserving Boolean homomorphism ¢ : € — B such that ¢m; = ¢; for every
el
proof (a) If I is empty the result is trivial (take € = {0,1}); so let us suppose henceforth that I # (). In
this case,

{A: A C 1, there is some i € I such that j € A whenever i < j}

is a filter on 7, and is included in an ultrafilter 7 say (2A10). Let (2, 1) be the reduced product [ [, ; (s, fi;)|F.
Then we have for each ¢ € I a measure-preserving Boolean homomorphism 7; : 2(; — 2 such that m; = m;7;;
whenever 7 < j (328E). If ¢ < j in I, then m;[2;] C 7;[2;]; because (I, <) is upwards-directed, (m;[0;])icr
is an upwards-directed family of subalgebras of A, and © = J,.; mi[2] is a subalgebra of 2; let € be its
closure (323J). Set A = [i| €, so that (€, ) is a probability algebra, and 7; : 2; — € is a measure-preserving
Boolean homomorphism for each i € I, with m; = m;m;; whenever ¢ < j.

(b) Now suppose that B and (¢;);cs are as declared.
(i) Set
¢ = {(ma,p;a) i€, aecU} CD xB.

Then ¢’ is (the graph of) a function from ® to B. P If ¢ € D, there is surely an i € I such that ¢ € m;[20],
so that (¢, ¢;a) € ¢’ for some a € ;. If (¢,b) and (c,b’) belong to ¢', there are i, j € [ and a € 2;, a’ €
such that

ma=mja' =¢, ¢ia=b, ¢ja’ =V
Let k € I be such that ¢ < k and j < k; then
TR0 = Tia = ¢ = mja’ = Tpma’.
As mj, is measure-preserving, therefore injective, mp;a = mja’, and
b= ¢ia = PpTria = Qpmpja’ = ¢ja’ =1V

So each element of D is the first member of exactly one element of ¢’, and ¢’ is the graph of a function. Q
Of course the defining formula for ¢’ guarantees that ¢'m; = ¢; : ; — B for every i € I.

(ii) Next, ¢' : ® — B is a measure-preserving Boolean homomorphism. I If ¢, ¢ € © then there are
i,j€land a €2, o €U; such that ¢ = m;a and ¢ = m;a’. Again take k € I such that ¢ < k and j < k;
then

c=mpmpia, ¢ =mpmgga,  ¢lc = dpmria,  @'c = pmygal.

In this case, for either of the Boolean operations x = A or x = n, we have

dexd'd = ppmrpiax ppmrja = dr(mria* Trja)
= d)'wk(mﬂ-a * ija/) = ¢'(7rk7r;ﬂ-a * Wkﬂkja/) = gf)/(c * C/).
As ¢, ¢ and % are arbitrary, ¢’ is a ring homomorphism. Moreover, in the same context,
ve'c = vhia = fi;a = fimia = Ac,
so ¢’ is measure-preserving. It follows that ¢’'1¢ = 1y, and ¢’ is a Boolean homomorphism. @

(iii) By 3240, there is a unique extension of ¢’ to a measure-preserving Boolean homomorphism
¢ : € — B; and of course we still have ¢m; = ¢; for every ¢ € I.

(iv) To see that ¢ is unique, take any measure-preserving Boolean homomorphism ¢~> : € — B such that
¢m; = ¢; for every i. Then ¢ must agree with ¢ on m;[2;] for every i, so ¢|D = ¢[D; as D is topologically
dense in €, ¢ = ¢ (3240 again).
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3281 For completeness, I spell out the relatively elementary construction for projective limits.

Proposition Let (I,<) be a non-empty upwards-directed set, and ((2l;, i;))icr a family of probability
algebras; suppose that m;; : %; — l; is a measure-preserving Boolean homomorphism for ¢ < j in I, and
that ;7 = m;, whenever ¢ < j < k. Then there are a probability algebra (€, A) and a family (m;);er such
that

m; : € = 2; is a measure-preserving Boolean homomorphism for each i € I,

m; = 7;7; whenever ¢ < j,
and whenever (B,7), (¢;):cs are such that

(B, D) is a probability algebra,

¢; B — A; is a measure-preserving Boolean homomorphism for each ¢ € I,

¢; = m;;¢; whenever ¢ < j,
then there is a unique measure-preserving Boolean homomorphism ¢ : % — € such that m;¢ = ¢; for every
i€l

proof (a) Let € C ], ;2 be the set

el
{{ai)ier : mija(j) = a(i) whenever ¢ < j in I}.
Because every m;; is a Boolean homomorphism, € is a subalgebra of [],.;®;; taking m;({(a:)icr) = a;
whenever (a;);er € €, m; : € — 2 is a Boolean homomorphism for every j € I, and m; = m;;m; whenever
i < 7.
Because every 7;; is order-continuous, € is an order-closed subalgebra of [, ; 2;, so is Dedekind complete.
(b) If ¢ = (ai)ier € €, then
[Li’/TiC = ﬂiai = ﬂim-jaj = [Ljaj = ﬂj’/TjC
whenever ¢ < j in I; because I is upwards-directed, fi;m;c = ji;m;c for all 4, j € I. So we have a functional
A1 € — [0,1] defined by setting Ac = fi;mic whenever ¢ € € and i € I. Note that l¢ = (ly,)ic1, 50
Ale = f;lg, =1, for any i € 1.
If (¢p)nen is a disjoint sequence in € with supremum ¢, then express each ¢, as (an;)ier; we must have
¢ = (SUPpen Oni)icr, SO
Ac = i (SUPneN ani) = ZZO:() Wilni = ZZO:O S\Cn
for any i € I. Thus X is countably additive. If ¢ € € is non-zero, express it as (a;)iecr; there must be an

i € I such that a; # 0, so that Ac = fi;a; > 0. Thus X is strictly positive, and (€, \) is a probability algebra.

(c) If (B,7) is a probability algebra and (¢;);cr is a family such that ¢; : B — 2; is a measure-
preserving Boolean homomorphism and ¢; = m;;¢; whenever ¢ < j in I, set ¢b = (¢;b);cr for b € B. Then
¢ :B — [[,c; Ui is a Boolean homomorphism; also

i (¢D)(j) = mijd;b = dib = (db)(i)

whenever i < j and b € B, so ¢[B] C €, while m;¢p = ¢; for every i € I. And of course this uniquely
determines ¢. To see that ¢ is measure-preserving, we have only to check that

whenever b € B and 7 € I.

328J A different application of the method in 328A yields the following result on commuting families of
Boolean homomorphisms.

Theorem Let (2, i) be a probability algebra, and ® a family of measure-preserving Boolean homomorphisms
from 2 to itself such that ¢ip = ¢ for all ¢, 1» € &. Then there are a probability algebra (€, A), a measure-

preserving Boolean homomorphism 7 : 2l — € and a family (gi~>>¢eq> such that
(i) ¢ : € — € is a measure-preserving Boolean automorphism and ¢m = 7¢ for every ¢ € ®;

(i) (94)™ = &4 for all 6, ¥ € @.
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proof (a) Let ¥ be the set of all products ¢ods ... ¢, where ¢, € ® U {¢} for every i < n, ¢ here being the
identity map from 2 to itself. Then V¥ is a family of measure-preserving Boolean homomorphisms from 2
to itself, and ¢y = ¢ € Y for all ¢, ¢ € V.

(b) For ¢, 1 € U, say that ¢ < ¢ if there is a § € ¥ such that ¢0 = ¢. Then < is a reflexive transitive
relation on W. Note that if ¢ < ¢ in ¥ then there is exactly one 8 € ¥ such that ¢f = 1), because ¢ is
injective. So we may define 7y ¢ € ¥ by saying that ¢my ¢ = 1 whenever ¢ < ¢ in ¥; that is, Tgy.¢ = ¥
whenever ¢, 1 € ¥. Observe that if ¢ < <0 in U, then

Py, o704 = Yo,y = 0 = ¢Tp,4,
SO
T0,¢ = Tap,¢TO,p = TO,p e,
Of course ¢ < ¢ for every ¢ € W.
(c) If ¢1, ¢2 € U then ¢1 < P12 and o < dad1 = P1¢2; generally, if D C V¥ is finite, there is a ¢ € ¥
such that ¢ < 1 for every ¢ € D. Consequently
{A: A C U, there is some ¢ € ¥ such that ) € A whenever ¢ < ¢}

is a filter on ¥, and is included in an ultrafilter F say. Let (€, A\g) be the probability algebra reduced power
(2, 1)Y|F. By 328E, we have for each ¢ € ¥ a measure-preserving Boolean homomorphism T 1 A = &
defined by saying that mga = (aw;ﬁep if ay = my ¢a whenever ¢ < ¥ in U, and 7y = mymy 4 Whenever
¢ < 1. Re-interpreting this in terms of the definitions of < and my 4, we have 7y = T4y Whenever ¢,
Y e v
(d) If ¢, ¢ in ¥, then
T [A] U 7y [A] = T [ [A]] U 7y [G[A]] © s [A] U 7y [A] = 7o [A],

which is a subalgebra of €y. So D = [,y 7y [2] is a subalgebra of €y, and its closure € is a closed subalgebra

of €p; set A = A\o[€. Then 7 =7, : A — € is a measure-preserving Boolean homomorphism.

(e) If 6 € ¥, we have a measure-preserving Boolean homomorphism 6:¢ — € defined by the formula
é(<aw>zpenp) = (Oay) ey
for every family (ay)ypew in 2 (328Da); and §<\b = 0¢ for all 0, ¢ € ¥ (328Db). Also éﬂ'¢ = 7y for every @,
0 € V. P Let a € 2. Define (ay)yew, (ay)yecv by setting

y = Ty, pa When ¢ < ¢,
= 0 otherwise,
ay, = my pfa = Omy ga when ¢ < 1p,

= 0 otherwise.

Then

Toa = (ay)hew,
97r¢a = <9aw>1‘l}€‘p = (a:/);beq, = myba. Q
(f) It follows that, for § € U,

019] = Ugey Olmo[A]] = Uyew mol6[2]] € D.

But in fact (D] = D. P If d € D, there are ¢ € ¥ and a € A such that mga = d. Now define
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Ay = Ty,p0 if ¢ < 1),
=0 for other ¢ € W,
ay, = Ty ppa if ¢O < b,
= 0 for other ¢y € U,
d' = mgea = (ay) ey
In this case, if ¢ < 1),
gb@a;b =1va, ¢ay =1a

so fa, = ay. Consequently

(because {¢ : ¢ <} € F)

and d = Orgpa € 0[D]. Q

(g) Since 0[¢] is a closed subalgebra of ¢y (324Kb) in which §[D] = D is topologically dense (3A3ED),
0[€] = €. Setting § = 0] €, we see that 6 : € — € is a surjective measure-preserving Boolean homomorphism,
so is a Boolean automorphism. Since ¢ = ¢f, we have (¢p0)™ = ¢6 for all ¢, 6 € V.

(h) Finally, as observed at the beginning of (e),
Or = O, = ém =m,0 =m0

for every # € W. So (€, \, 7, <é>96@) has the required properties.

328X Basic exercises (a) Write out a version of the proof of 328J adapted to the case in which ® = {¢}
is a singleton. (This is an abstract version of a construction known as the ‘natural extension’ of an inverse-
measure-preserving function; see PETERSEN 83, 1.3G.)

(b) Let vy be the usual measure on X = {0,1}", and (By, 7y) its measure algebra. (i) Find inverse-
measure-preserving functions f, g : X — X such that gf = g but f(z) # « for every x € X. (Hint: try
g(x)(n) = xz(n + 1).) (ii) Find measure-preserving Boolean homomorphisms ¢, ¢ : By — By such that
@ = 1) but ¢ is not the identity. (iii) In 328J, show that the hypothesis that members of ® commute cannot
be omitted.

(c) Let (2, 1) be a purely atomic probability algebra, I a non-empty set and F an ultrafilter on /. Show
that (2, z)!|F is isomorphic to (2, i).

328 Notes and comments I have starred this section because it is far from the main line of argument
of the volume, and most readers should be moving on to Maharam’s theorem and the Lifting Theorem.
However the results here, while natural enough, have some features which demand a little attention, and it
will be useful to be able to call on exact formulations of the ideas.

The proof of 328H begins by taking an ultrafilter on I. This ought to ring bells. It should be clear
from the statement of the proposition that (€, \, (m;)scr) is determined up to isomorphism by the properties
declared here. It cannot therefore depend on which ultrafilter we pick, and there ought to be a construction
not relying on this approach (and, we can hope, not demanding any application of the axiom of choice).
This is indeed the case, and in 392Yd below I will sketch a method which can be adapted to give such a
proof. Yet another proof of 328H is proposed in 418Yn* in Volume 4.

4Formerly 418Yp.
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The same remarks apply to the proof of 328J. In the result as stated, I have not imposed conditions on
the structure (€, \, 7, (¢)gsca) sufficient to define it uniquely, but once again it is not necessary to employ
an ultrafilter, and in fact the filter

{A: A C ¥, there is some ¢ € ¥ such that ) € A whenever ¢ < ¢}

is already enough, if we take the trouble to move to the right subalgebra of A¥ before taking the quotient
algebra.

Version of 24.4.06

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

322K Paragraphs 322K (simple products of measure algebras), 322N (the Stone space of a measure
algebra) and 322Q) (further properties of Stone spaces), referred to in the 2003 and 2006 editions of Volume
4, are now 3221, 3220 and 322R.

326E Countably additive functionals Definition 326E, referred to in the 2003 and 2006 editions of
Volume 4 and the 2008 edition of Volume 5, is now 3261.

326G Corollary 326G, referred to in the 2008 edition of Volume 5, is now 326K.

3261 Hahn decomposition Theorem 326, referred to in the 2003 and 2006 editions of Volume 4, is
now 326M.

326K Completely additive functionals The notes in 326K, referred to in the 2003 and 2006 editions
of Volume 4, have been moved to 3260.

326Q Finitely additive functionals on free products Theorem 326Q), referred to in the 2003 and
2006 editions of Volume 4 and the 2008 edition of Volume 5, is now 326E.

328D Reduced products of probability algebras Paragraph 328D, referred to in the 2008 edition
of Volume 5, is now 328E.

(©) 2006 D. H. Fremlin
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