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One of the first things one learns, as a student of measure theory, is that sets of measure zero are
frequently ‘negligible’ in the straightforward sense that they can safely be ignored. This is not quite a
universal principle, and one of my purposes in writing this treatise is to call attention to the exceptional
cases in which negligible sets are important. But very large parts of the theory, including some of the topics
already treated in Volume 2, can be expressed in an appropriately abstract language in which negligible
sets have been factored out. This is what the present volume is about. A ‘measure algebra’ is a quotient of
an algebra of measurable sets by a null ideal; that is, the elements of the measure algebra are equivalence
classes of measurable sets. At the cost of an extra layer of abstraction, we obtain a language which can give
concise and elegant expression to a substantial proportion of the ideas of measure theory, and which offers
insights almost everywhere in the subject.

It is here that I embark wholeheartedly on ‘pure’ measure theory. I think it is fair to say that the
applications of measure theory to other branches of mathematics are more often through measure spaces

rather than measure algebras. Certainly there will be in this volume many theorems of wide importance
outside measure theory; but typically their usefulness will be in forms translated back into the language of
the first two volumes. But it is also fair to say that the language of measure algebras is the only reasonable
way to discuss large parts of a subject which, as pure mathematics, can bear comparison with any.

In the structure of this volume I can distinguish seven ‘working’ and two ‘accessory’ chapters. The
‘accessory’ chapters are 31 and 35. In these I develop the theories of Boolean algebras and Riesz spaces (=
vector lattices) which are needed later. As in Volume 2 you have a certain amount of choice in the order in
which you take the material. Everything except Chapter 35 depends on Chapter 31, and everything except
Chapters 31 and 35 depends on Chapter 32. Chapters 33, 34 and 36 can be taken in any order, but Chapter
36 relies on Chapter 35. (I do not mean that Chapter 33 is never referred to in Chapter 34, nor even that the
later chapters do not rely on results from Chapter 33. What I mean is that their most important ideas are
accessible without learning the material of Chapter 33 properly.) Chapter 37 depends on Chapters 35 and
36. Chapter 38 would be difficult to make sense of without some notion of what has been done in Chapter
33. Chapter 39 uses fragments of Chapters 35 and 36.

The first third of the volume follows almost the only line permitted by the structure of the subject. If we
are going to study measure algebras at all, we must know the relevant facts about Boolean algebras (Chapter
31) and how to translate what we know about measure spaces into the new language (Chapter 32). Then
we must get a proper grip on the two most important theorems: Maharam’s theorem on the classification of
measure algebras (Chapter 33) and the von Neumann-Maharam lifting theorem (Chapter 34). Since I am
now writing for readers who are committed – I hope, happily committed – to learning as much as they can
about the subject, I take the space to push these ideas as far as they can easily go, giving a full classification
of closed subalgebras of probability algebras, for instance (§333), and investigating special types of lifting
(§§345-346). I mention here three sections interpolated into Chapter 34 (§§342-344) which attack a subtle
and important question: when can we expect homomorphisms between measure algebras to be realizable in
terms of transformations between measure spaces, as discussed briefly in §234 and elsewhere.

Chapters 36 and 37 are devoted to re-working the ideas of Chapter 24 on ‘function spaces’ in the more
abstract context now available, and relating them to the general Riesz spaces of Chapter 35. I am concerned
here not to develop new structures, nor even to prove striking new theorems, but rather to offer new ways
of looking at the old ones. Only in the Ergodic Theorem (§372) do I come to a really important new result.
Chapter 38 looks at two questions, both obvious ones to ask if you have been trained in twentieth-century
pure mathematics: what does the automorphism group of a measure algebra look like, and inside such an
automorphism group, what do the conjugacy classes look like? (The second question is a fancy way of asking
how to decide, given two automorphisms of one of the structures considered in this volume, whether they
are really different, or just copies of each other obtained by looking at the structure a different way up.)
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Finally, in Chapter 39, I discuss what is known about the question of which Boolean algebras can appear
as measure algebras.

Concerning the prerequisites for this volume, we certainly do not need everything in Volume 2. The
important chapters there are 21, 23, 24, 25 and 27. If you are approaching this volume without having
read the earlier parts of this treatise, you will need the Radon-Nikodým theorem and product measures
(of arbitrary families of probability spaces), for Maharam’s theorem; a simple version of the martingale
theorem, for the lifting theorem; and an acquaintance with Lp spaces (particularly, with L0 spaces) for
Chapter 36. But I would recommend the results-only versions of Volumes 1 and 2 in case some reference
is totally obscure. Outside measure theory, I call on quite a lot of terms from general topology, but none
of the ideas needed are difficult (Baire’s and Tychonoff’s theorems are the deepest); they are sketched in
§§3A3 and 3A4. We do need some functional analysis for Chapters 36 and 39, but very little more than was
already used in Volume 2, except that I now call on versions of the Hahn-Banach theorem (§3A5).

In this volume I assume that readers have substantial experience in both real and abstract analysis, and
I make few concessions which would not be appropriate when addressing active researchers, except that
perhaps I am a little gentler when calling on ideas from set theory and general topology than I should be
with my own colleagues, and I continue to include all the easiest exercises I can think of. I do maintain
my practice of giving proofs in very full detail, not so much because I am trying to make them easier, but
because one of my purposes here is to provide a complete account of the ideas of the subject. I hope that
the result will be accessible to most doctoral students who are studying topics in, or depending on, measure
theory.
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Version of 29.10.12

Chapter 31

Boolean algebras

The theory of measure algebras naturally depends on certain parts of the general theory of Boolean
algebras. In this chapter I collect those results which will be useful later. Since many students encounter
the formal notion of Boolean algebra for the first time in this context, I start at the beginning; and indeed I
include in the Appendix (§3A2) a brief account of the necessary part of the theory of rings, as not everyone
will have had time for this bit of abstract algebra in an undergraduate course. But unless you find the
algebraic theory of Boolean algebras so interesting that you wish to study it for its own sake – in which case
you should perhaps turn to Sikorski 64 or Koppelberg 89 – I do not think it would be very sensible to
read the whole of this chapter before proceeding to the main work of the volume in Chapter 32. Probably
§311 is necessary to get an idea of what a Boolean algebra looks like, and a glance at the statements of
the theorems in §312 and 313A-313B would be useful, but the later sections can wait until you have need
of them, on the understanding that apparently innocent formal manipulations may depend on concepts
which take some time to master. I hope that the cross-references will be sufficiently well-targeted to make
it possible to read this material in parallel with its applications.

As for the actual material covered, §311 introduces Boolean rings and algebras, with M.H.Stone’s theorem
on their representation as rings and algebras of sets. §312 is devoted to subalgebras, homomorphisms and
quotients, following a path parallel to the corresponding ideas in group theory, ring theory and linear algebra.
In §313 I come to the special properties of Boolean algebras associated with their lattice structures, with
notions of order-preservation, order-continuity and order-closure. §314 continues this with a discussion of
order-completeness, and the elaboration of the Stone representation of an arbitrary Boolean algebra into
the Loomis-Sikorski representation of a σ-complete Boolean algebra; this brings us to regular open algebras.
§315 deals with ‘simple’ and ‘free’ products of Boolean algebras, corresponding to ‘products’ and ‘tensor
products’ of linear spaces, and to projective and inductive limits of families of Boolean algebras. Finally,
§316 examines three special topics: the countable chain condition, weak distributivity and homogeneity.

Version of 15.10.08

311 Boolean algebras

In this section I try to give a sufficient notion of the character of abstract Boolean algebras to make the
calculations which will appear on almost every page of this volume seem both elementary and natural. The
principal result is of course M.H.Stone’s theorem: every Boolean algebra can be expressed as an algebra of
sets (311E). So the section divides naturally into the first part, proving Stone’s theorem, and the second,
consisting of elementary consequences of the theorem and a little practice in using the insights it offers.

311A Definitions (a) A Boolean ring is a ring (A,+, .) in which a2 = a for every a ∈ A.

(b) A Boolean algebra is a Boolean ring A with a multiplicative identity 1 = 1A; I allow 1 = 0 in this
context.

311B Examples (a) For any set X, (PX,△,∩) is a Boolean algebra; its zero is ∅ and its multiplicative
identity is X.

(b) Recall that an ‘algebra of subsets of X’ is a family Σ ⊆ PX such that ∅ ∈ Σ, X \ E ∈ Σ for every
E ∈ Σ, and E ∪F ∈ Σ for all E, F ∈ Σ. In this case (Σ,△,∩) is a Boolean algebra with zero ∅ and identity
X.

(c) Consider the ring Z2 = {0, 1}, with its ring operations +2, · given by setting

0 +2 0 = 1 +2 1 = 0, 0 +2 1 = 1 +2 0 = 1,

0 · 0 = 0 · 1 = 1 · 0 = 0, 1 · 1 = 1.

Because 0 · 0 = 0 and 1 · 1 = 1, it is a Boolean algebra.

c© 1996 D. H. Fremlin
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4 Boolean algebras 311C

311C Proposition Let A be a Boolean ring.
(a) a+ a = 0 for every a ∈ A.
(b) ab = ba for all a, b ∈ A.

311D Lemma Let A be a Boolean ring, I an ideal of A, and a ∈ A\I. Then there is a ring homomorphism
φ : A → Z2 such that φa = 1 and φd = 0 for every d ∈ I.

311E M.H.Stone’s theorem: first form Let A be any Boolean ring, and let Z be the set of ring
homomorphisms from A onto Z2. Then we have an injective ring homomorphism a 7→ â : A → PZ, setting
â = {z : z ∈ Z, z(a) = 1}. If A is a Boolean algebra, then 1̂A = Z.

311F Remarks For any Boolean ring A, I will say that the Stone space of A is the set Z of non-zero
ring homomorphisms from A to Z2, and the canonical map a 7→ â : A → PZ is the Stone representation.

311G The operations ∪ , \ , △ on a Boolean ring Let A be a Boolean ring.

(a) Set

a ∪ b = a+ b+ ab, a ∩ b = ab, a \ b = a+ ab, a△ b = a+ b

for a, b ∈ A.

(b) I will say that a set A ⊆ A is disjoint if a ∩ b = 0, that is, ab = 0, for all distinct a, b ∈ A; and that
an indexed family 〈ai〉i∈I in A is disjoint if ai ∩ aj = 0 for all distinct i, j ∈ I. (I allow 0 ∈ A or ai = 0.)

(c) A partition of unity in A will be either a disjoint set C ⊆ A such that there is no non-zero a ∈ A

such that a ∩ c = 0 for every c ∈ C or a disjoint family 〈ci〉i∈I in A such that there is no non-zero a ∈ A

such that a ∩ ci = 0 for every i ∈ I.

(d) Note that a set C ⊆ A is a partition of unity iff C ∪ {0} is a maximal disjoint set.
If A ⊆ A is any disjoint set, there is a partition of unity including A.

(e) If C and D are two partitions of unity, I say that C refines D if for every c ∈ C there is a d ∈ D
such that cd = c. Note that if C refines D and D refines E then C refines E.

311H The order structure of a Boolean ring Again treating a Boolean ring A as an algebra of

sets, it has a natural ordering, setting a ⊆ b if ab = a, so that a ⊆ b iff â ⊆ b̂. This translation makes it
obvious that ⊆ is a partial order on A, with least element 0, and with greatest element 1 iff A is a Boolean
algebra. Moreover, A is a lattice, with a ∪ b = sup{a, b} and a ∩ b = inf{a, b} for all a, b ∈ A. Generally, for
a0, . . . , an ∈ A,

supi≤n ai = a0 ∪ . . . ∪ an, infi≤n ai = a0 ∩ . . . ∩ an;

suprema and infima of finite subsets of A correspond to unions and intersections of the corresponding families
in the Stone space.

311I The topology of a Stone space: Theorem Let Z be the Stone space of a Boolean ring A, and
let T be

{G : G ⊆ Z and for every z ∈ G there is an a ∈ A such that z ∈ â ⊆ G}.

Then T is a topology on Z, under which Z is a locally compact zero-dimensional Hausdorff space, and
E = {â : a ∈ A} is precisely the set of compact open subsets of Z. A is a Boolean algebra iff Z is compact.

311J Proposition LetX be a locally compact zero-dimensional Hausdorff space. Then the set A of open-
and-compact subsets of X is a subring of PX. If Z is the Stone space of A, there is a unique homeomorphism
θ : Z → X such that â = θ−1[a] for every a ∈ A.

Measure Theory (abridged version)



312H Homomorphisms 5

311L Complemented distributive lattices: Proposition Let A be a lattice such that

(i) (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) for all a, b, c ∈ A;
(ii) there is a permutation a 7→ a′ : A → A which is order-reversing, that is, a ≤ b iff b′ ≤ a′,

and such that a′′ = a for every a;
(iii) A has a least element 0 and a ∧ a′ = 0 for every a ∈ A.

Then A has a Boolean algebra structure for which a ⊆ b iff a ≤ b.

Version of 29.5.07

312 Homomorphisms

I continue the theory of Boolean algebras with a section on subalgebras, ideals and homomorphisms.
From now on, I will relegate Boolean rings which are not algebras to the exercises; I think there is no need
to set out descriptions of the (mostly trifling) modifications necessary to deal with the extra generality. The
first part of the section (312A-312L) concerns the translation of the basic concepts of ring theory into the
language which I propose to use for Boolean algebras. 312M shows that the order relation on a Boolean
algebra defines the algebraic structure, and in 312N-312O I give a fundamental result on the extension of
homomorphisms. I end the section with results relating the previous ideas to the Stone representation of a
Boolean algebra (312P-312T).

312A Subalgebras Let A be a Boolean algebra. I will use the phrase subalgebra of A to mean a
subring of A containing its multiplicative identity.

312B Proposition Let A be a Boolean algebra, andB a subset of A. Then the following are equiveridical,
that is, if one is true so are the others:

(i) B is a subalgebra of A;
(ii) 0 ∈ B, a ∪ b ∈ B for all a, b ∈ B, and 1 \ a ∈ B for all a ∈ B;
(iii) B 6= ∅, a ∩ b ∈ B for all a, b ∈ B, and 1 \ a ∈ B for all a ∈ B.

312C Ideals in Boolean algebras: Proposition If A is a Boolean algebra, a set I ⊆ A is an ideal of
A iff 0 ∈ I, a ∪ b ∈ I for all a, b ∈ I, and a ∈ I whenever b ∈ I and a ⊆ b.

312E Proposition Let A be a Boolean algebra, and a any element of A. Then the principal ideal Aa of
A generated by a is just {b : b ∈ A, b ⊆ a}, and (with the inherited operations ∩ ↾Aa × Aa, △ ↾Aa × Aa) is
a Boolean algebra in its own right, with multiplicative identity a.

312F Boolean homomorphisms Now suppose that A and B are two Boolean algebras. I will use the
phrase Boolean homomorphism to mean a function π : A → B which is a ring homomorphism and is
uniferent, that is, π(1A) = 1B.

312G Proposition Let A, B and C be Boolean algebras.
(a) If π : A → B is a Boolean homomorphism, then π[A] is a subalgebra of B.
(b) If π : A → B and θ : B → C are Boolean homomorphisms, then θπ : A → C is a Boolean

homomorphism.
(c) If π : A → B is a bijective Boolean homomorphism, then π−1 : B → A is a Boolean homomorphism.

312H Proposition Let A and B be Boolean algebras, and π : A → B a function. Then the following
are equiveridical:

(i) π is a Boolean homomorphism;
(ii) π(a ∩ b) = πa ∩ πb and π(1A \ a) = 1B \ πa for all a, b ∈ A;
(iii) π(a ∪ b) = πa ∪ πb and π(1A \ a) = 1B \ πa for all a, b ∈ A;
(iv) π(a ∪ b) = πa ∪ πb and πa ∩ πb = 0B whenever a, b ∈ A and a ∩ b = 0A, and π(1A) = 1B.

c© 1994 D. H. Fremlin
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6 Boolean algebras 312I

312I Proposition If A, B are Boolean algebras and π : A → B is a Boolean homomorphism, then
πa ⊆ πb whenever a ⊆ b in A.

312J Proposition Let A be a Boolean algebra, and a any member of A. Then the map b 7→ a ∩ b is a
surjective Boolean homomorphism from A onto the principal ideal Aa generated by a.

*312K Fixed-point subalgebras If A is a Boolean algebra and π : A → A is a Boolean homomorphism,
then {a : a ∈ A, πa = a} is a subalgebra of A; I will call it the fixed-point subalgebra of π.

312L Quotient algebras: Proposition Let A be a Boolean algebra and I an ideal of A. Then
the quotient ring A/I is a Boolean algebra, and the canonical map a 7→ a• : A → A/I is a Boolean
homomorphism, so that

(a△ b)• = a• △ b•, (a ∪ b)• = a• ∪ b•, (a ∩ b)• = a• ∩ b•, (a \ b)• = a• \ b•

for all a, b ∈ A.
(b) The order relation on A/I is defined by the formula

a• ⊆ b• ⇐⇒ a \ b ∈ I.

For any a ∈ A,

{u : u ⊆ a•} = {b• : b ⊆ a}.

312M Proposition If A and B are Boolean algebras and π : A → B is a bijection such that πa ⊆ πb
whenever a ⊆ b, then π is a Boolean algebra isomorphism.

312N Lemma Let A be a Boolean algebra, and A0 a subalgebra of A; let c be any member of A. Then

A1 = {(a ∩ c) ∪ (b \ c) : a, b ∈ A0}

is a subalgebra of A; it is the subalgebra of A generated by A0 ∪ {c}.

312O Lemma Let A and B be Boolean algebras, A0 a subalgebra of A, π : A0 → B a Boolean
homomorphism, and c ∈ A. If v ∈ B is such that πa ⊆ v ⊆ πb whenever a, b ∈ A0 and a ⊆ c ⊆ b, then there
is a unique Boolean homomorphism π1 from the subalgebra A1 of A generated by A0 ∪ {c} such that π1
extends π and π1c = v.

312P Homomorphisms and Stone spaces: Proposition Let A be a Boolean algebra, and Z its
Stone space; write â ⊆ Z for the open-and-closed set corresponding to a ∈ A. Then there is a one-to-one
correspondence between ideals I of A and open sets G ⊆ Z, given by the formulae

G =
⋃

a∈I â, I = {a : â ⊆ G}.

312Q Theorem Let A, B be Boolean algebras, with Stone spaces Z, W ; write â ⊆ Z, b̂ ⊆ W for the
open-and-closed sets corresponding to a ∈ A, b ∈ B. Then we have a one-to-one correspondence between
Boolean homomorphisms π : A → B and continuous functions φ :W → Z, given by the formula

πa = b ⇐⇒ φ−1[â] = b̂,

that is, φ−1[â] = π̂a.

312R Theorem Let A, B, C be Boolean algebras, with Stone spaces Z, W and V . Let π : A → B

and θ : B → C be Boolean homomorphisms, with corresponding continuous functions φ : W → Z and
ψ : V → W . Then the Boolean homomorphism θπ : A → C corresponds to the continuous function
φψ : V → Z.

Measure Theory (abridged version)
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312S Proposition Let A and B be Boolean algebras, with Stone spaces Z and W , and π : A → B a
Boolean homomorphism, with associated continuous function φ :W → Z. Then

(a) π is injective iff φ is surjective;
(b) π is surjective iff φ is injective.

312T Principal ideals If A is a Boolean algebra and a ∈ A, we have a natural surjective Boolean
homomorphism b 7→ b ∩ a : A → Aa, the principal ideal generated by a. Writing Z for the Stone space of A
and Za for the Stone space of Aa, this homomorphism must correspond to an injective continuous function
φ : Za → Z. φ must be a homeomorphism between Za and its image φ[Za] ⊆ Z. φ[Za] = â.

Version of 8.6.11

313 Order-continuous homomorphisms

Because a Boolean algebra has a natural partial order, we have corresponding notions of upper bounds,
lower bounds, suprema and infima. These are particularly important in the Boolean algebras arising in
measure theory, and the infinitary operations ‘sup’ and ‘inf’ require rather more care than the basic binary
operations ‘ ∪ ’, ‘ ∩ ’, because intuitions from elementary set theory are sometimes misleading. I there-
fore take a section to work through the most important properties of these operations, together with the
homomorphisms which preserve them.

313A Relative complementation: Proposition Let A be a Boolean algebra, e a member of A, and
A a non-empty subset of A.

(a) If supA is defined in A, then inf{e \ a : a ∈ A} is defined and equal to e \ supA.
(b) If inf A is defined in A, then sup{e \ a : a ∈ A} is defined and equal to e \ inf A.

313B General distributive laws: Proposition Let A be a Boolean algebra.
(a) If e ∈ A and A ⊆ A is a non-empty set such that supA is defined in A, then sup{e ∩ a : a ∈ A} is

defined and equal to e ∩ supA.
(b) If e ∈ A and A ⊆ A is a non-empty set such that inf A is defined in A, then inf{e ∪ a : a ∈ A} is

defined and equal to e ∪ inf A.
(c) Suppose that A, B ⊆ A are non-empty and supA, supB are defined in A. Then sup{a ∩ b : a ∈ A, b ∈

B} is defined and is equal to supA ∩ supB.
(d) Suppose that A, B ⊆ A are non-empty and inf A, inf B are defined in A. Then inf{a ∪ b : a ∈ A, b ∈ B}

is defined and is equal to inf A ∪ inf B.

313C Proposition Let A be a Boolean algebra, and Z its Stone space; for a ∈ A write â for the
corresponding open-and-closed subset of Z.

(a) If A ⊆ A and a0 ∈ A then a0 = supA in A iff â0 =
⋃

a∈A â.
(b) If A ⊆ A is non-empty and a0 ∈ A then a0 = inf A in A iff â0 = int

⋂
a∈A â.

(c) If A ⊆ A is non-empty then inf A = 0 in A iff
⋂

a∈A â is nowhere dense in Z.

313D Definitions Let P be a partially ordered set and C a subset of P .

(a) C is order-closed if supA ∈ C whenever A is a non-empty upwards-directed subset of C such that
supA is defined in P , and inf A ∈ C whenever A is a non-empty downwards-directed subset of C such that
inf A is defined in P .

(b) C is sequentially order-closed if supn∈N pn ∈ C whenever 〈pn〉n∈N is a non-decreasing sequence
in C such that supn∈N pn is defined in P , and infn∈N pn ∈ C whenever 〈pn〉n∈N is a non-increasing sequence
in C such that infn∈N pn is defined in P .

c© 1995 D. H. Fremlin
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8 Boolean algebras 313E

313E Order-closed subalgebras and ideals(a) Let B be a subalgebra of a Boolean algebra A.

(i) The following are equiveridical:
(α) B is order-closed in A;
(β) supB ∈ B whenever B ⊆ B and supB is defined in A;
(β′) inf B ∈ B whenever B ⊆ B and inf B is defined in A;
(γ) supB ∈ B whenever B ⊆ B is non-empty and upwards-directed and supB is defined in A;
(γ′) inf B ∈ B whenever B ⊆ B is non-empty and downwards-directed and inf B is defined in A.

(ii) The following are equiveridical:
(α) B is sequentially order-closed in A;
(β) supn∈N bn ∈ B whenever 〈bn〉n∈N is a sequence in B and supn∈N bn is defined in A;
(β′) infn∈N bn ∈ B whenever 〈bn〉n∈N is a sequence in B and infn∈N bn is defined in A;
(γ) supn∈N bn ∈ B whenever 〈bn〉n∈N is a non-decreasing sequence in B and supn∈N bn is defined in

A;
(γ′) infn∈N bn ∈ B whenever 〈bn〉n∈N is a non-increasing sequence in B and infn∈N bn is defined in

A.

(b) Now suppose that I is an ideal of A. Then

I is order-closed iff supA ∈ I whenever A ⊆ I is non-empty, upwards-directed and has a
supremum in A;

I is sequentially order-closed iff supn∈N an ∈ I whenever 〈an〉n∈N is a non-decreasing sequence
in I with a supremum in A.

I is order-closed iff supA ∈ I whenever A ⊆ I has a supremum in A;

I is sequentially order-closed iff supn∈N an ∈ I whenever 〈an〉n∈N is a sequence in I with a
supremum in A.

(c) I will normally use the phrases σ-subalgebra, σ-ideal for sequentially order-closed subalgebras and
ideals of Boolean algebras.

313F Order-closures and generated sets (a)(i) If S is any non-empty family of subalgebras of a
Boolean algebra A, then

⋂
S is a subalgebra of A;

(ii) if F is any non-empty family of order-closed subsets of a partially ordered set P , then
⋂
F is an

order-closed subset of P ;
(iii) if F is any non-empty family of sequentially order-closed subsets of a partially ordered set P , then⋂
F is a sequentially order-closed subset of P .

(b) Consequently, given any Boolean algebra A and a subset B of A, we have a smallest subalgebra B of
A including B, being the intersection of all the subalgebras of A which include B; a smallest σ-subalgebra
Bσ of A including B, being the intersection of all the σ-subalgebras of A which include B; and a smallest
order-closed subalgebra Bτ of A including B, being the intersection of all the order-closed subalgebras of
A which include B. We call B, Bσ and Bτ the subalgebra, σ-subalgebra and order-closed subalgebra
generated by B.

(c) If A is a Boolean algebra and B any subalgebra of A, then the smallest order-closed subset B of A
which includes B is again a subalgebra of A (so is the order-closed subalgebra of A generated by B).

313G Lemma Let A be a Boolean algebra.
(a) Suppose that 1 ∈ I ⊆ A ⊆ A and that

a ∩ b ∈ I for all a, b ∈ I,

b \ a ∈ A whenever a, b ∈ A and a ⊆ b.

Then A includes the subalgebra of A generated by I.
(b) If moreover supn∈N an ∈ A for every non-decreasing sequence 〈an〉n∈N in A with a supremum in A,

then A includes the σ-subalgebra of A generated by I.
(c) And if supC ∈ A whenever C ⊆ A is an upwards-directed set with a supremum in A, then A includes

the order-closed subalgebra of A generated by I.

Measure Theory (abridged version)



313N Order-continuous homomorphisms 9

313H Definitions Let P and Q be two partially ordered sets, and φ : P → Q an order-preserving
function, that is, a function such that φ(p) ≤ φ(q) in Q whenever p ≤ q in P .

(a) I say that φ is order-continuous if (i) φ(supA) = supp∈A φ(p) whenever A is a non-empty upwards-
directed subset of P and supA is defined in P (ii) φ(inf A) = infp∈A φ(p) whenever A is a non-empty
downwards-directed subset of P and inf A is defined in P .

(b) I say that φ is sequentially order-continuous or σ-order-continuous if (i) φ(p) = supn∈N φ(pn)
whenever 〈pn〉n∈N is a non-decreasing sequence in P and p = supn∈N pn in P (ii) φ(p) = infn∈N φ(pn)
whenever 〈pn〉n∈N is a non-increasing sequence in P and p = infn∈N pn in P .

313I Proposition Let P , Q and R be partially ordered sets, and φ : P → Q, ψ : Q→ R order-preserving
functions.

(a) ψφ : P → R is order-preserving.
(b) If φ and ψ are order-continuous, so is ψφ.
(c) If φ and ψ are sequentially order-continuous, so is ψφ.
(d) φ is order-continuous iff φ−1[B] is order-closed for every order-closed B ⊆ Q.

313J Definition Let A be a Boolean algebra. A set D ⊆ A is order-dense if for every non-zero a ∈ A

there is a non-zero d ∈ D such that d ⊆ a.

313K Lemma If A is a Boolean algebra and D ⊆ A is order-dense, then for any a ∈ A there is a disjoint
C ⊆ D such that supC = a; in particular, a = sup{d : d ∈ D, d ⊆ a} and there is a partition of unity
C ⊆ D.

313L Proposition Let A and B be Boolean algebras and π : A → B a Boolean homomorphism.
(a) π is order-preserving.
(b) The following are equiveridical:
(i) π is order-continuous;
(ii) whenever A ⊆ A is non-empty and downwards-directed and inf A = 0 in A, then inf π[A] = 0 in B;
(iii) whenever A ⊆ A is non-empty and upwards-directed and supA = 1 in A, then supπ[A] = 1 in B;
(iv) whenever A ⊆ A and supA is defined in A, then π(supA) = supπ[A] in B;
(v) whenever A ⊆ A and inf A is defined in A, then π(inf A) = inf π[A] in B;
(vi) whenever C ⊆ A is a partition of unity, then π[C] is a partition of unity in B.

(c) The following are equiveridical:
(i) π is sequentially order-continuous;
(ii) whenever 〈an〉n∈N is a non-increasing sequence in A and infn∈N an = 0 in A, then infn∈N πan = 0

in B;
(iii) whenever A ⊆ A is countable and supA is defined in A, then π(supA) = supπ[A] in B;
(iv) whenever A ⊆ A is countable and inf A is defined in A, then π(inf A) = inf π[A] in B;
(v) whenever C ⊆ A is a countable partition of unity, then π[C] is a partition of unity in B.

(d) If π is bijective, it is order-continuous.

313M Lemma Let A and B be Boolean algebras and π : A → B an order-continuous Boolean homo-
morphism.

(a) If D is an order-closed subalgebra of B, then π−1[D] is an order-closed subalgebra of A.
(b) If C is the order-closed subalgebra of A generated by C ⊆ A, then the order-closed subalgebra D of

B generated by π[C] includes π[C].
(c) Now suppose that π is surjective and that C ⊆ A is such that the order-closed subalgebra of A

generated by C is A itself. Then the order-closed subalgebra of B generated by π[C] is B.

313N Definition The phrase regular embedding is sometimes used to mean an injective order-
continuous Boolean homomorphism; a subalgebra B of a Boolean algebra A is said to be regularly em-
bedded in A if the identity map from B to A is order-continuous. .

D.H.Fremlin
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It will be useful to be able to say ‘B can be regularly embedded in A’ to mean that there is an injective
order-continuous Boolean homomorphism fromB to A; that is, thatB is isomorphic to a regularly embedded
subalgebra of A. In this form it is obvious that if C can be regularly embedded in B, and B can be regularly
embedded in A, then C can be regularly embedded in A.

313O Proposition Let A be a Boolean algebra and B an order-dense subalgebra of A. Then B is
regularly embedded in A. In particular, if B ⊆ B and c ∈ B then c = supB in B iff c = supB in A.

313P Theorem Let A and B be Boolean algebras and π : A → B a Boolean homomorphism with kernel
I.

(a)(i) If π is order-continuous then I is order-closed.

(ii) If π[A] is regularly embedded in B and I is order-closed then π is order-continuous.

(b)(i) If π is sequentially order-continuous then I is a σ-ideal.

(ii) If π[A] is regularly embedded in B and I is a σ-ideal then π is sequentially order-continuous.

313Q Corollary Let A be a Boolean algebra and I an ideal of A; write π for the canonical map from A

to A/I.

(a) π is order-continuous iff I is order-closed.

(b) π is sequentially order-continuous iff I is a σ-ideal.

313R Proposition Let A and B be Boolean algebras, and π : A → B a Boolean homomorphism. Let
Z and W be their Stone spaces, and φ :W → Z the corresponding continuous function. Then the following
are equiveridical:

(i) π is order-continuous;

(ii) φ−1[M ] is nowhere dense in W for every nowhere dense set M ⊆ Z;

(iii) intφ[H] 6= ∅ for every non-empty open set H ⊆W .

313S Upper envelopes(a) Let A be a Boolean algebra, and C a subalgebra of A. For a ∈ A, the upper
envelope of a in C is

upr(a,C) = inf{c : c ∈ C, a ⊆ c}

if the infimum is defined in C.

(b) If A ⊆ A is such that upr(a,C) is defined for every a ∈ A, a0 = supA is defined in A and c0 =
supa∈A upr(a,C) is defined in C, then c0 = upr(a0,C). upr(a ∪ a′,C) = upr(a,C) ∪ upr(a′,C) whenever the
right-hand side is defined.

(c) If a ∈ A is such that upr(a,C) is defined, then upr(a ∩ c,C) = c ∩ upr(a,C) for every c ∈ C.

Version of 26.7.07

314 Order-completeness

The results of §313 are valid in all Boolean algebras, but of course are of most value when many suprema
and infima exist. I now set out the most useful definitions which guarantee the existence of suprema and
infima (314A) and work through their elementary relationships with the concepts introduced so far (314C-
314J). I then embark on the principal theorems concerning order-complete Boolean algebras: the extension
theorem for homomorphisms to a Dedekind complete algebra (314K), the Loomis-Sikorski representation of
a Dedekind σ-complete algebra as a quotient of a σ-algebra of sets (314M), the characterization of Dedekind
complete algebras in terms of their Stone spaces (314S), and the idea of ‘Dedekind completion’ of a Boolean
algebra (314T-314U). On the way I describe ‘regular open algebras’ (314O-314Q).

Measure Theory (abridged version)
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314A Definitions Let P be a partially ordered set.

(a) P is Dedekind complete if every non-empty subset of P with an upper bound has a least upper
bound.

(b) P is Dedekind σ-complete if (i) every countable non-empty subset of P with an upper bound has
a least upper bound (ii) every countable non-empty subset of P with a lower bound has a greatest lower
bound.

314C Proposition Let A be a Dedekind σ-complete Boolean algebra and I a σ-ideal of A. Then the
quotient Boolean algebra A/I is Dedekind σ-complete.

314D Corollary Let X be a set, Σ a σ-algebra of subsets of X, and I a σ-ideal of subsets of X. Then
Σ ∩ I is a σ-ideal of the Boolean algebra Σ, and Σ/Σ ∩ I is Dedekind σ-complete.

314E Proposition Let A be a Boolean algebra.
(a) If A is Dedekind complete, then all its order-closed subalgebras and principal ideals are Dedekind

complete.
(b) If A is Dedekind σ-complete, then all its σ-subalgebras and principal ideals are Dedekind σ-complete.

314F Proposition Let A and B be Boolean algebras and π : A → B a Boolean homomorphism.
(a)(i) If A is Dedekind complete and π is order-continuous, then π[A] is order-closed in B.
(ii) If B is Dedekind complete and π is injective and π[A] is order-closed then π is order-continuous.

(b)(i) If A is Dedekind σ-complete and π is sequentially order-continuous, then π[A] is a σ-subalgebra of
B.

(ii) If B is Dedekind σ-complete and π is injective and π[A] is a σ-subalgebra of B then π is sequentially
order-continuous.

314G Corollary Let A be a Boolean algebra and B a subalgebra of A.
(a) If A is Dedekind complete, then B is order-closed iff it is Dedekind complete in itself and is regularly

embedded in A.
(b) If A is Dedekind σ-complete, then B is a σ-subalgebra iff it is Dedekind σ-complete in itself and the

identity map from B to A is sequentially order-continuous.

314H Corollary Let A be a Dedekind complete Boolean algebra, B a Boolean algebra and π : A → B

an order-continuous Boolean homomorphism. If C ⊆ A and C is the order-closed subalgebra of A generated
by C, then π[C] is the order-closed subalgebra of B generated by π[C].

314I Corollary (a) If A is a Dedekind complete Boolean algebra, B is a Boolean algebra, π : A → B is
an injective Boolean homomorphism and π[A] is order-dense in B, then π is an isomorphism.

(b) If A is a Boolean algebra and B is an order-dense subalgebra of A which is Dedekind complete in
itself, then B = A.

314J Lemma Let A be a Boolean algebra and A0 a subalgebra of A. Take any c ∈ A, and set

A1 = {(a ∩ c) ∪ (b \ c) : a, b ∈ A0},

the subalgebra of A generated by A0 ∪ {c}.
(a) Suppose that A is Dedekind complete. If A0 is order-closed in A, so is A1.
(b) Suppose that A is Dedekind σ-complete. If A0 is a σ-subalgebra of A, so is A1.

314K Extension of homomorphisms: Theorem Let A be a Boolean algebra and B a Dedekind
complete Boolean algebra. Let A0 be a Boolean subalgebra of A and π0 : A0 → B a Boolean homomorphism.
Then there is a Boolean homomorphism π1 : A → B extending π0.

D.H.Fremlin
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314L Lemma Let X be any topological space, and write M for the family of meager subsets of X. Then
M is a σ-ideal of subsets of X.

314M Theorem Let A be a Dedekind σ-complete Boolean algebra, and Z its Stone space. Let E be the
algebra of open-and-closed subsets of Z, and M the σ-ideal of meager subsets of Z. Then Σ = {E△A : E ∈
E , A ∈ M} is a σ-algebra of subsets of Z, M is a σ-ideal of Σ, and A is isomorphic, as Boolean algebra, to
Σ/M.

314N Corollary A Boolean algebra A is Dedekind σ-complete iff it is isomorphic to a quotient Σ/I
where Σ is a σ-algebra of sets and I is a σ-ideal of Σ.

314O Regular open algebras: Definition Let X be a topological space. A regular open set in X
is an open set G ⊆ X such that G = intG.

Note that if F ⊆ X is any closed set, then G = intF is a regular open set.

314P Theorem Let X be any topological space, and write RO(X) for the set of regular open sets in X.
Then RO(X) is a Dedekind complete Boolean algebra, with 1RO(X) = X and 0RO(X) = ∅, and with Boolean
operations given by

G∩RO H = G ∩H, G△RO H = intG△H,

G∪RO H = intG ∪H, G\RO H = G \H,

with Boolean ordering given by

G ⊆RO H ⇐⇒ G ⊆ H,

and with suprema and infima given by

supH = int
⋃
H, infH = int

⋂
H = int

⋂
H

for all non-empty H ⊆ RO(X).

314Q Remark RO(X) is called the regular open algebra of the topological space X.

*314R Lemma (a) Let X and Y be topological spaces, and f : X → Y a continuous function such
that f−1[M ] is nowhere dense in X for every nowhere dense M ⊆ Y . Then we have an order-continuous
Boolean homomorphism π from the regular open algebra RO(Y ) of Y to the regular open algebra RO(X)

of X defined by setting πH = int f−1[H] for every H ∈ RO(Y ).
(b) Let X be a topological space.
(i) If U ⊆ X is open, then G 7→ G ∩ U is a surjective order-continuous Boolean homomorphism from

RO(X) onto RO(U).
(ii) If U ∈ RO(X) then RO(U) is the principal ideal of RO(X) generated by U .

314S Theorem Let A be a Boolean algebra, and Z its Stone space; write E for the algebra of open-and-
closed subsets of Z, and RO(Z) for the regular open algebra of Z. Then the following are equiveridical:

(i) A is Dedekind complete;
(ii) Z is extremally disconnected;
(iii) E = RO(Z).

314T Theorem Let A be a Boolean algebra, with Stone space Z; for a ∈ A let â be the corresponding

open-and-closed subset of Z. Let Â be the regular open algebra of Z.
(a) The map a 7→ â is an injective order-continuous Boolean homomorphism from A onto an order-dense

subalgebra of Â.
(b) If B is any Dedekind complete Boolean algebra and π : A → B is an order-continuous Boolean

homomorphism, there is a unique order-continuous Boolean homomorphism π1 : Â → B such that π1â = πa
for every a ∈ A.

Measure Theory (abridged version)
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314U The Dedekind completion of a Boolean algebra (a) For any Boolean algebra A, I will say

that the Boolean algebra Â constructed in 314T is the Dedekind completion of A.

(b) If C is a Dedekind complete Boolean algebra and A is an order-dense subalgebra of C, then the

embedding A ⊂→ C induces an isomorphism from Â to C.

(c) Suppose that Z is a zero-dimensional compact Hausdorff space, and E is the algebra of open-and-
closed subsets of Z. Then E is order-dense in the regular open algebra RO(Z), so the Dedekind completion
of E can be identified with RO(Z).

Version of 13.11.12

315 Products and free products

I describe here two algebraic constructions of fundamental importance. They are very different in char-
acter, indeed may be regarded as opposites, despite the common use of the word ‘product’. The first part
of the section (315A-315H) deals with the easier construction, the ‘simple product’; the second part (315I-
315Q) with the ‘free product’. These constructions lead to descriptions of projective and inductive limits
(315R-315S).

315A Products of Boolean algebras (a) Let 〈Ai〉i∈I be any family of Boolean algebras. Set A =∏
i∈I Ai, with the natural ring structure

a△ b = 〈a(i)△ b(i)〉i∈I ,

a ∩ b = 〈a(i) ∩ b(i)〉i∈I

for a, b ∈ A. Then A is a Boolean algebra. I will call A the simple product of the family 〈Ai〉i∈I .

(b) The Boolean operations on A are now defined by the formulae

a ∪ b = 〈a(i) ∪ b(i)〉i∈I , a \ b = 〈a(i) \ b(i)〉i∈I

for all a, b ∈ A.

315B Theorem Let 〈Ai〉i∈I be a family of Boolean algebras, and A their simple product.
(a) The maps a 7→ πi(a) = a(i) : A → Ai are all Boolean homomorphisms.
(b) IfB is any other Boolean algebra, then a map φ : B → A is a Boolean homomorphism iff πiφ : B → Ai

is a Boolean homomorphism for every i ∈ I.

315C Products of partially ordered sets (a) If 〈Pi〉i∈I is any family of partially ordered sets, its
product is the set P =

∏
i∈I Pi ordered by saying that p ≤ q iff p(i) ≤ q(i) for every i ∈ I.

(b) The point is that if A is the simple product of a family 〈Ai〉i∈I of Boolean algebras, then the ordering
of A is just the product partial order:

a ⊆ b ⇐⇒ a(i) ⊆ b(i) ∀ i ∈ I.

315D Proposition Let 〈Pi〉i∈I be a family of non-empty partially ordered sets with product P .
(a) For any non-empty set A ⊆ P and q ∈ P ,
(i) supA = q in P iff supp∈A p(i) = q(i) in Pi for every i ∈ I,
(ii) inf A = q in P iff infp∈A p(i) = q(i) in Pi for every i ∈ I.

(b) The coordinate maps p 7→ πi(p) = p(i) : P → Pi are all order-preserving and order-continuous.
(c) For any partially ordered set Q and function φ : Q→ P , φ is order-preserving iff πiφ is order-preserving

for every i ∈ I.
(d) For any partially ordered set Q and order-preserving function φ : Q→ P ,

c© 1994 D. H. Fremlin
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14 Boolean algebras 315D

(i) φ is order-continuous iff πiφ is order-continuous for every i,
(ii) φ is sequentially order-continuous iff πiφ is sequentially order-continuous for every i.

(e)(i) P is Dedekind complete iff every Pi is Dedekind complete.
(ii) P is Dedekind σ-complete iff every Pi is Dedekind σ-complete.

315E Factor algebras as principal ideals If 〈Ai〉i∈I is a family of Boolean algebras with simple
product A, define θi : Ai → A by setting (θia)(i) = a, (θia)(j) = 0Aj

if i ∈ I, a ∈ Ai and j ∈ I \ {i}. Each θi
is a ring homomorphism, and is a Boolean isomorphism between Ai and the principal ideal of A generated
by θi(1Ai

). The family 〈θi(1Ai
)〉i∈I is a partition of unity in A.

315F Proposition Let A be a Boolean algebra and 〈ei〉i∈I a partition of unity in A. Suppose
either (i) that I is finite
or (ii) that I is countable and A is Dedekind σ-complete
or (iii) that A is Dedekind complete.

Then the map a 7→ 〈a ∩ ei〉i∈I is a Boolean isomorphism between A and
∏

i∈I Aei , writing Aei for the
principal ideal of A generated by ei for each i.

315G Algebras of sets and their quotients: Proposition Let 〈Xi〉i∈I be a family of sets, and Σi

an algebra of subsets of Xi for each i.
(a) The simple product

∏
i∈I Σi may be identified with the algebra

Σ = {E : E ⊆ X, {x : (x, i) ∈ E} ∈ Σi for every i ∈ I}

of subsets of X = {(x, i) : i ∈ I, x ∈ Xi}, with the canonical homomorphisms πi : Σ → Σi being given by

πiE = {x : (x, i) ∈ E}

for each E ∈ Σ.
(b) Now suppose that Ji is an ideal of Σi for each i. Then

∏
i∈I Σi/Ji may be identified with Σ/J , where

J = {E : E ∈ Σ, {x : (x, i) ∈ E} ∈ Ji for every i ∈ I},

and the canonical homomorphisms π̃i : Σ/J → Σi/Ji are given by the formula π̃i(E
•) = (πiE)• for every

E ∈ Σ.

*315H Proposition Let X be a topological space, and U a disjoint family of open subsets of X with
union dense in X. Then the regular open algebra RO(X) is isomorphic to the simple product

∏
U∈U RO(U).

315I Free products (a) Definition Let 〈Ai〉i∈I be a family of Boolean algebras. For each i ∈ I, let Zi

be the Stone space of Ai. Set Z =
∏

i∈I Zi, with the product topology. Then the free product of 〈Ai〉i∈I

is the algebra A of open-and-closed sets in Z; I will denote it by
⊗

i∈I Ai.

(b) For i ∈ I and a ∈ Ai, the set εi(a) = {z : z(i) ∈ â} belongs to A. In this context I will call
εi : Ai → A the canonical map.

(c) The topological space Z may be identified with the Stone space of the Boolean algebra A.

315J Theorem Let 〈Ai〉i∈I be a family of Boolean algebras, with free product A.
(a) The canonical map εi : Ai → A is a Boolean homomorphism for every i ∈ I.
(b) For any Boolean algebra B and any family 〈φi〉i∈I such that φi is a Boolean homomorphism from Ai

to B for every i, there is a unique Boolean homomorphism φ : A → B such that φi = φεi for each i.

315K Proposition Let 〈Ai〉i∈I be a family of Boolean algebras, and A their free product; write εi :
Ai → A for the canonical homomorphisms.

(a) A is the subalgebra of itself generated by
⋃

i∈I εi[Ai].
(b) Write C for the set of those members of A expressible in the form infj∈J εj(aj), where J ⊆ I is finite

and aj ∈ Aj for every j. Then every member of A is expressible as the supremum of a disjoint finite subset
of C. In particular, C is order-dense in A.

Measure Theory (abridged version)
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(c) Every εi is order-continuous.
(d) A = {0A} iff there is some i ∈ I such that Ai = {0Ai

}.
(e) Now suppose that Ai 6= {0Ai

} for every i ∈ I.
(i) εi is injective for every i ∈ I.
(ii) If J ⊆ I is finite and aj is a non-zero member of Aj for each j ∈ J , then infj∈J εj(aj) 6= 0.
(iii) If i, j are distinct members of I, a ∈ Ai and b ∈ Aj , then εi(a) = εj(b) iff either a = 0Ai

and
b = 0Aj

or a = 1Ai
and b = 1Aj

.

315L Proposition Let 〈Ai〉i∈I be any family of Boolean algebras, and 〈Jk〉k∈K any partition of I. Then
the free product A of 〈Ai〉i∈I is isomorphic to the free product B of 〈Bk〉k∈K , where each Bk is the free
product of 〈Ai〉i∈Jk

.

315M Algebras of sets and their quotients: Proposition Let 〈Xi〉i∈I be a family of sets, and Σi

an algebra of subsets of Xi for each i.
(a) The free product

⊗
i∈I Σi may be identified with the algebra Σ of subsets of X =

∏
i∈I Xi generated

by the set {εi(E) : i ∈ I, E ∈ Σi}, where εi(E) = {x : x ∈ X, x(i) ∈ E}.
(b) Now suppose that Ji is an ideal of Σi for each i. Then

⊗
i∈I Σi/Ji may be identified with Σ/J , where

J is the ideal of Σ generated by {εi(E) : i ∈ I, E ∈ Ji}; the corresponding canonical maps ε̃i : Σi/Ji → Σ/J
being defined by the formula ε̃i(E

•) = (εi(E))• for i ∈ I, E ∈ Σi.

315N Notation If A and B are two Boolean algebras, I write A ⊗ B for their free product, and for
a ∈ A, b ∈ B I write a ⊗ b for ε1(a) ∩ ε2(b), where ε1 : A → A ⊗ B, ε2 : B → A ⊗ B are the canonical
maps. Observe that (a1 ⊗ b1) ∩ (a2 ⊗ b2) = (a1 ∩ a2)⊗ (b1 ∩ b2), and that the maps a 7→ a⊗ b0, b 7→ a0 ⊗ b
are always ring homomorphisms. Now a⊗ b = 0 only when one of a, b is 0. In the context of 315M, we can
identify E ⊗ F with E × F for E ∈ Σ1 and F ∈ Σ2, and E

• ⊗ F • with (E × F )•.

315O Lemma Let A, B be Boolean algebras.
(a) Any element of A⊗B is expressible as supi∈I ai ⊗ bi where 〈ai〉i∈I is a finite partition of unity in A.
(b) If c ∈ A⊗B is non-zero there are non-zero a ∈ A, b ∈ B such that a⊗ b ⊆ c.

315P Example A = PN⊗ PN is not Dedekind σ-complete.

315Q Example Now let A be any non-trivial atomless Boolean algebra, and B the free product A⊗A.
Then the identity homomorphism from A to itself induces a homomorphism φ : B → A given by setting
φ(a⊗ b) = a ∩ b for every a, b ∈ A. φ is not order-continuous.

Thus the free product does not respect order-continuity.

*315R Projective and inductive limits: Proposition Let 〈Ai〉i∈I be a family of Boolean algebras,
and R a subset of I × I; suppose that πji : Ai → Aj is a Boolean homomorphism for each (i, j) ∈ R.

(a) There are a Boolean algebra C and a family 〈πi〉i∈I such that

πi : C → Ai is a Boolean homomorphism for each i ∈ I,
πj = πjiπi whenever (i, j) ∈ R,

and whenever B, 〈φi〉i∈I are such that

B is a Boolean algebra,
φi : B → Ai is a Boolean homomorphism for each i ∈ I,
φj = πjiφi whenever (i, j) ∈ R,

then there is a unique Boolean homomorphism φ : B → C such that πiφ = φi for every i ∈ I.
(b) There are a Boolean algebra C and a family 〈πi〉i∈I such that

πi : Ai → C is a Boolean homomorphism for each i ∈ I,
πi = πjπji whenever (i, j) ∈ R,

and whenever B, 〈φi〉i∈I are such that

B is a Boolean algebra,
φi : Ai → B is a Boolean homomorphism for each i ∈ I,
φi = φjπji whenever (i, j) ∈ R,

then there is a unique Boolean homomorphism φ : C → B such that φπi = φi for every i ∈ I.

D.H.Fremlin



16 Boolean algebras *315S

*315S Definitions In 315Ra, we call A, together with 〈πi〉i∈I , ‘the’ projective limit of (〈Ai〉i∈I , 〈πji〉(i,j)∈R);
in 315Rb, we call A, together with 〈πi〉i∈I , ‘the’ inductive limit of (〈Ai〉i∈I , 〈πji〉(i,j)∈R).

Version of 26.1.09

316 Further topics

I introduce three special properties of Boolean algebras which will be of great importance in the rest of this
volume: the countable chain condition (316A-316F), weak (σ,∞)-distributivity (316G-316J) and homogene-
ity (316N-316Q). I add some brief notes on atoms in Boolean algebras (316K-316L), with a characterization
of the algebra of open-and-closed subsets of {0, 1}N (316M).

316A Definitions (a) A Boolean algebra A is ccc, or satisfies the countable chain condition, if every
disjoint subset of A is countable.

(b) A topological space X is ccc, or satisfies the countable chain condition, or has Souslin’s prop-
erty, if every disjoint collection of open sets in X is countable.

316B Theorem A Boolean algebra A is ccc iff its Stone space Z is ccc.

316C Proposition Let A be a Dedekind σ-complete Boolean algebra and I a σ-ideal of A. Then the
quotient algebra B = A/I is ccc iff every disjoint family in A \ I is countable.

316D Corollary Let X be a set, Σ a σ-algebra of subsets of X, and I a σ-ideal of Σ. Then the quotient
algebra Σ/I is ccc iff every disjoint family in Σ \ I is countable.

316E Proposition Let A be a ccc Boolean algebra. Then for any A ⊆ A there is a countable B ⊆ A
such that B has the same upper and lower bounds as A.

316F Corollary Let A be a ccc Boolean algebra.
(a) If A is Dedekind σ-complete it is Dedekind complete.
(b) If A ⊆ A is sequentially order-closed it is order-closed.
(c) If Q is any partially ordered set and φ : A → Q is a sequentially order-continuous order-preserving

function, it is order-continuous.
(d) If B is another Boolean algebra and π : A → B is a sequentially order-continuous Boolean homomor-

phism, it is order-continuous.

316G Definition Let A be a Boolean algebra. I will say that A is weakly (σ,∞)-distributive if
whenever 〈An〉n∈N is a sequence of downwards-directed subsets of A and inf An = 0 for every n, then
inf B = 0, where

B = {b : b ∈ A, for every n ∈ N there is an a ∈ An such that b ⊇ a}.

316H Proposition Let A be a Boolean algebra. Then the following are equiveridical:
(i) A is weakly (σ,∞)-distributive;
(ii) whenever 〈An〉n∈N is a sequence of partitions of unity in A, there is a partition of unity B in A such

that {a : a ∈ An, a ∩ b 6= 0} is finite for every n ∈ N and b ∈ B;
(iii) whenever 〈An〉n∈N is a sequence of upwards-directed subsets of A, each with a supremum cn = supAn,

and

B = {b : b ∈ A, for every n ∈ N there is an a ∈ An such that b ⊆ a},

then inf{cn \ b : n ∈ N, b ∈ B} = 0;
(iv) whenever 〈An〉n∈N is a sequence of upwards-directed subsets of A, each with a supremum cn = supAn,

and infn∈N cn = c is defined, then c = supB, where

B = {b : b ∈ A, for every n ∈ N there is an a ∈ An such that b ⊆ a}.
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316I Theorem Let A be a Boolean algebra, and Z its Stone space. Then A is weakly (σ,∞)-distributive
iff every meager set in Z is nowhere dense.

316J The regular open algebra of R: Proposition The algebra RO(R) of regular open subsets of R
is not weakly (σ,∞)-distributive.

316K Atoms in Boolean algebras (a) If A is a Boolean algebra, an atom in A is a non-zero a ∈ A

such that the only elements included in a are 0 and a.

(b) A Boolean algebra is atomless if it has no atoms.

(c) A Boolean algebra is purely atomic if every non-zero element includes an atom.

316L Proposition Let A be a Boolean algebra, with Stone space Z.
(a) There is a one-to-one correspondence between atoms a of A and isolated points z ∈ Z, given by the

formula â = {z}.
(b) A is atomless iff Z has no isolated points.
(c) A is purely atomic iff the isolated points of Z form a dense subset of Z.

316M Proposition Let B be the algebra of open-and-closed subsets of {0, 1}N. Then a Boolean algebra
A is isomorphic to B iff it is atomless, countable and not {0}.

316N Definition A Boolean algebra A is homogeneous if every non-trivial principal ideal of A is
isomorphic to A.

*316O Lemma Let A be a Dedekind complete Boolean algebra such that

D = {d : d ∈ A, A is isomorphic to the principal ideal Ad}

is order-dense in A. Then A is homogeneous.

*316P Proposition Let A be a homogeneous Boolean algebra. Then its Dedekind completion is homo-
geneous.

*316Q Proposition The free product of any family of homogeneous Boolean algebras is homogeneous.

*316R Proposition Let A be a Boolean algebra, and B a subalgebra of A which is regularly embedded
in A.

(a) Every atom of A is included in an atom of B.
(b) If B is atomless, so is A.
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