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Chapter 28

Fourier analysis

For the last chapter of this volume, I attempt a brief account of one of the most important topics in
analysis. This is a bold enterprise, and I cannot hope to satisfy the reasonable demands of anyone who
knows and loves the subject as it deserves. But I also cannot pass it by without being false to my own
subject, since problems contributed by the study of Fourier series and transforms have led measure theory
throughout its history. What I will try to do, therefore, is to give versions of those results which everyone
ought to know in language unifying them with the rest of this treatise, aiming to open up a channel for
the transfer of intuitions and techniques between the abstract general study of measure spaces, which is the
centre of our work, and this particular family of applications of the theory of integration.

I have divided the material of this chapter, conventionally enough, into three parts: Fourier series, Fourier
transforms and the characteristic functions of probability theory. While it will be obvious that many ideas
are common to all three, I do not think it useful, at this stage, to try to formulate an explicit generalization
to unify them; that belongs to a more general theory of harmonic analysis on groups, which must wait until
Volume 4. I begin however with a section on the Stone-Weierstrass theorem (§281), which is one of the
basic tools of functional analysis, as well as being useful for this chapter. The final section (§286), a proof
of Carleson’s theorem, is at a rather different level from the rest.

Version of 4.12.12

281 The Stone-Weierstrass theorem

Before we begin work on the real subject of this chapter, it will be helpful to have a reasonably general
statement of a fundamental theorem on the approximation of continuous functions. In fact I give a variety
of forms (281A, 281E, 281F and 281G, together with 281Ya, 281Yd and 281Yg), all of which are sometimes
useful. I end the section with a version of Weyl’s Equidistribution Theorem (281M-281N).

281A Stone-Weierstrass theorem: first form Let X be a topological space and K a compact subset
of X. Write Cb(X) for the space of all bounded continuous real-valued functions on X, so that Cb(X) is a
linear space over R. Let A ⊆ Cb(X) be such that

A is a linear subspace of Cb(X);

|f | ∈ A for every f ∈ A;

χX ∈ A;

whenever x, y are distinct points of K there is an f ∈ A such that f(x) 6= f(y).

Then for every continuous h : K → R and ǫ > 0 there is an f ∈ A such that

|f(x)− h(x)| ≤ ǫ for every x ∈ K,

if K 6= ∅, infx∈X f(x) ≥ infx∈K h(x) and supx∈X f(x) ≤ supx∈K h(x).

281B Lemma Let X be any set. Write ℓ∞(X) for the set of bounded functions from X to R. For
f ∈ ℓ∞(X), set

‖f‖∞ = supx∈X |f(x)|,
counting the supremum as 0 if X is empty. Then

(a) ℓ∞(X) is a normed space.
(b) Let A ⊆ ℓ∞(X) be a subset and A its closure.
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2 Fourier analysis 281B

(i) If A is a linear subspace of ℓ∞(X), so is A.

(ii) If f × g ∈ A whenever f , g ∈ A, then f × g ∈ A whenever f , g ∈ A.

(iii) If |f | ∈ A whenever f ∈ A, then |f | ∈ A whenever f ∈ A.

281C Lemma There is a sequence 〈pn〉n∈N of real polynomials such that limn→∞ pn(x) = |x| uniformly
for x ∈ [−1, 1].

281D Corollary Let X be a set, and A a norm-closed linear subspace of ℓ∞(X) containing χX and such
that f × g ∈ A whenever f , g ∈ A. Then |f | ∈ A for every f ∈ A.

281E Stone-Weierstrass theorem: second form Let X be a topological space and K a compact
subset ofX. Write Cb(X) for the space of all bounded continuous real-valued functions onX. Let A ⊆ Cb(X)
be such that

A is a linear subspace of Cb(X);

f × g ∈ A for every f , g ∈ A;

χX ∈ A;

whenever x, y are distinct points of K there is an f ∈ A such that f(x) 6= f(y).

Then for every continuous h : K → R and ǫ > 0 there is an f ∈ A such that

|f(x)− h(x)| ≤ ǫ for every x ∈ K,

if K 6= ∅, infx∈X f(x) ≥ infx∈K h(x) and supx∈X f(x) ≤ supx∈K h(x).

281F Corollary: Weierstrass’ theorem Let K be any closed bounded subset of R. Then every
continuous h : K → R can be uniformly approximated on K by polynomials.

281G Stone-Weierstrass theorem: third form Let X be a topological space and K a compact
subset of X. Write Cb(X;C) for the space of all bounded continuous complex-valued functions on X, so
that Cb(X;C) is a linear space over C. Let A ⊆ Cb(X;C) be such that

A is a linear subspace of Cb(X;C);

f × g ∈ A for every f , g ∈ A;

χX ∈ A;

the complex conjugate f̄ of f belongs to A for every f ∈ A;

whenever x, y are distinct points of K there is an f ∈ A such that f(x) 6= f(y).

Then for every continuous h : K → C and ǫ > 0 there is an f ∈ A such that

|f(x)− h(x)| ≤ ǫ for every x ∈ K,

if K 6= ∅, supx∈X |f(x)| ≤ supx∈K |h(x)|.

281H Corollary Let [a, b] ⊆ R be a non-empty bounded closed interval and h : [a, b] → C a continuous
function. Then for any ǫ > 0 there are y0, . . . , yn ∈ R and c0, . . . , cn ∈ C such that

|h(x)−∑n
k=0 cke

iykx| ≤ ǫ for every x ∈ [a, b],

supx∈R |∑n
k=0 cke

iykx| ≤ supx∈[a,b] |h(x)|.

281I Corollary Let S1 be the unit circle {z : |z| = 1} ⊆ C. Then for any continuous function h : S1 → C

and ǫ > 0, there are n ∈ N and c−n, c−n+1, . . . , c0, . . . , cn ∈ C such that |h(z)−∑n
k=−n ckz

k| ≤ ǫ for every

z ∈ S1.

281J Corollary Let h : [−π, π] → C be a continuous function such that h(π) = h(−π). Then for any
ǫ > 0 there are n ∈ N, c−n, . . . , cn ∈ C such that |h(x)−∑n

k=−n cke
ikx| ≤ ǫ for every x ∈ [−π, π].

Measure Theory (abridged version)



282Ad Fourier series 3

281K Corollary Suppose that r ≥ 1 and thatK ⊆ Rr is a non-empty closed bounded set. Let h : K → C

be a continuous function, and ǫ > 0. Then there are y0, . . . , yn ∈ Qr and c0, . . . , cn ∈ C such that

|h(x)−∑n
k=0 cke

iyk .x| ≤ ǫ for every x ∈ K,

supx∈Rr |
∑n

k=0 cke
iyk .x| ≤ supx∈K |h(x)|,

writing y .x =
∑r

j=1 ηjξj when y = (η1, . . . , ηr) and x = (ξ1, . . . , ξr) belong to Rr.

281L Corollary Suppose that r ≥ 1 and that K ⊆ Rr is a non-empty closed bounded set. Let h : K → R

be a continuous function, and ǫ > 0. Then there are y0, . . . , yn ∈ Rr and c0, . . . , cn ∈ C such that, writing
g(x) =

∑n
k=0 cke

iyk .x, g is real-valued and

|h(x)− g(x)| ≤ ǫ for every x ∈ K,

infy∈K h(y) ≤ g(x) ≤ supy∈K h(y) for every x ∈ Rr.

281M Weyl’s Equidistribution Theorem For any real number x, write <x> for that number in [0, 1[
such that x−<x> is an integer.

281N Theorem Let η1, . . . , ηr be real numbers such that 1, η1, . . . , ηr are linearly independent over Q.
Then whenever 0 ≤ αj ≤ βj ≤ 1 for each j ≤ r,

limn→∞
1

n+1
#({m : m ≤ n, <mηj> ∈ [αj , βj ] for every j ≤ r}) = ∏r

j=1(βj − αj).

Version of 24.9.09

282 Fourier series

Out of the enormous theory of Fourier series, I extract a few results which may at least provide a basis for
further study. I give the definitions of Fourier and Fejér sums (282A), with five of the most important results
concerning their convergence (282G, 282H, 282J, 282L, 282O). On the way I include the Riemann-Lebesgue
lemma (282E). I end by mentioning convolutions (282Q).

282A Definition Let f be an integrable complex-valued function defined almost everywhere in ]−π, π].

(a) The Fourier coefficients of f are the complex numbers

ck =
1

2π

∫ π

−π

f(x)e−ikxdx

for k ∈ Z.

(b) The Fourier sums of f are the functions

sn(x) =

n
∑

k=−n

cke
ikx

for x ∈ ]−π, π], n ∈ N.

(c) The Fourier series of f is the series
∑∞

k=−∞ cke
ikx, or the series c0 +

∑∞
k=1(cke

ikx + c−ke
−ikx).

(d) The Fejér sums of f are the functions

σm =
1

m+1

m
∑

n=0

sn

for m ∈ N.

c© 1996 D. H. Fremlin
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4 Fourier analysis 282Ae

(e) If f is any function with dom f ⊆ ]−π, π], its periodic extension is the function f̃ , with domain
⋃

k∈Z
(dom f + 2kπ), such that f̃(x) = f(x− 2kπ) whenever k ∈ Z and x ∈ dom f + 2kπ.

282C The problems (a) Under what conditions, and in what senses, do the Fourier and Fejér sums sn
and σm of a function f converge to f?

(b) How do the properties of the double-ended sequence 〈ck〉k∈Z reflect the properties of f , and vice
versa?

282D Lemma Let f be a complex-valued function which is integrable over ]−π, π], and
ck = 1

2π

∫ π

−π
f(x)e−ikxdx, sn(x) =

∑n
k=−n cke

ikx, σm(x) = 1
m+1

∑m
n=0 sn(x)

its Fourier coefficients, Fourier sums and Fejér sums. Write f̃ for the periodic extension of f . For m ∈ N,
write

ψm(t) =
1−cos(m+1)t

2π(m+1)(1−cos t)

for 0 < |t| ≤ π.
(a) For each n ∈ N, x ∈ ]−π, π],

sn(x) =
1

2π

∫ π

−π

f(t)
sin(n+ 1

2
)(x−t)

sin 1

2
(x−t)

dt

=
1

2π

∫ π

−π

f̃(x+ t)
sin(n+ 1

2
)t

sin 1

2
t
dt

=
1

2π

∫ π

−π

f(x−2π t)
sin(n+ 1

2
)t

sin 1

2
t
dt,

writing x−2π t for whichever of x− t, x− t− 2π, x− t+ 2π belongs to ]−π, π].
(b) For each m ∈ N, x ∈ ]−π, π],

σm(x) =

∫ π

−π

f̃(x+ t)ψm(t)dt

=

∫ π

0

(f̃(x+ t) + f̃(x− t))ψm(t)dt

=

∫ π

−π

f(x−2π t)ψm(t)dt.

(c) For any n ∈ N,

1

2π

∫ 0

−π

sin(n+ 1

2
)t

sin 1

2
t
dt =

1

2π

∫ π

0

sin(n+ 1

2
)t

sin 1

2
t
dt =

1

2
,

1

2π

∫ π

−π

sin(n+ 1

2
)t

sin 1

2
t
dt = 1.

(d) For any m ∈ N,

(i) 0 ≤ ψm(t) ≤ m+1

2π
for every t;

(ii) for any δ > 0, limm→∞ ψm(t) = 0 uniformly on {t : δ ≤ |t| ≤ π};
(iii)

∫ 0

−π
ψm =

∫ π

0
ψm =

1

2
,

∫ π

−π
ψm = 1.

282E The Riemann-Lebesgue lemma Let f be a complex-valued function which is integrable over
R. Then

limy→∞
∫

f(x)e−iyxdx = limy→−∞
∫

f(x)e−iyxdx = 0.

Measure Theory (abridged version)



282K Fourier series 5

282F Corollary (a) Let f be a complex-valued function which is integrable over ]−π, π], and 〈ck〉k∈Z

its sequence of Fourier coefficients. Then limk→∞ ck = limk→−∞ ck = 0.
(b) Let f be a complex-valued function which is integrable over R. Then limy→∞

∫

f(x) sin yx dx = 0.

282G Theorem Let f : ]−π, π] → C be a continuous function such that limt↓−π f(t) = f(π). Then its
sequence 〈σm〉m∈N of Fejér sums converges uniformly to f on ]−π, π].

282H Theorem Let f be a complex-valued function which is integrable over ]−π, π], and 〈σm〉m∈N its
sequence of Fejér sums. Suppose that x ∈ ]−π, π] and c ∈ C are such that

lim
δ↓0

1

δ

∫ δ

0

|f̃(x+ t) + f̃(x− t)− 2c|dt = 0,

writing f̃ for the periodic extension of f ; then limm→∞ σm(x) = c.

282I Corollary Let f be a complex-valued function which is integrable over ]−π, π], and 〈σm〉m∈N its
sequence of Fejér sums.

(a) f(x) = limm→∞ σm(x) for almost every x ∈ ]−π, π].
(b) limm→∞

∫ π

−π
|f − σm| = 0.

(c) If g is another integrable function with the same Fourier coefficients, then f =a.e. g.
(d) If x ∈ ]−π, π[ is such that a = limt∈dom f,t↑x f(t) and b = limt∈dom f,t↓x f(t) are both defined in C,

then

limm→∞ σm(x) =
1

2
(a+ b).

(e) If a = limt∈dom f,t↑π f(t) and b = limt∈dom f,t↓−π f(t) are both defined in C, then

limm→∞ σm(π) =
1

2
(a+ b).

(f) If f is defined and continuous at x ∈ ]−π, π[, then
limm→∞ σm(x) = f(x).

(g) If f̃ , the periodic extension of f , is defined and continuous at π, then

limm→∞ σm(π) = f(π).

282J Theorem Let f be a complex-valued function which is square-integrable over ]−π, π]. Let 〈ck〉k∈Z

be its Fourier coefficients and 〈sn〉n∈N its Fourier sums. Then

(i)
∑∞

k=−∞ |ck|2 =
1

2π

∫ π

−π
|f |2,

(ii) limn→∞
∫ π

−π
|f − sn|2 = 0.

282K Corollary Let L2
C
be the Hilbert space of equivalence classes of square-integrable complex-valued

functions on ]−π, π], with the inner product

(f•|g•) =

∫ π

−π

f × ḡ

and norm

‖f•‖2 =
(

∫ π

−π

|f |2
)1/2

,

writing f• ∈ L2
C
for the equivalence class of a square-integrable function f . Let ℓ2

C
(Z) be the Hilbert space

of square-summable double-ended complex sequences, with the inner product

D.H.Fremlin



6 Fourier analysis 282K

(ccc|ddd) =
∞
∑

k=−∞
ckd̄k

and norm

‖ccc‖2 =
(

∞
∑

k=−∞
|ck|2

)1/2

for ccc = 〈ck〉k∈Z, ddd = 〈dk〉k∈Z in ℓ2
C
(Z). Then we have an inner-product-space isomorphism S : L2

C
→ ℓ2

C
(Z)

defined by saying that

S(f•)(k) =
1√
2π

∫ π

−π
f(x)e−ikxdx

for every square-integrable function f and every k ∈ Z.

282L Theorem Let f be a complex-valued function which is integrable over ]−π, π], and 〈sn〉n∈N its
sequence of Fourier sums.

(i) If f is differentiable at x ∈ ]−π, π[, then f(x) = limn→∞ sn(x).

(ii) If the periodic extension f̃ of f is differentiable at π, then f(π) = limn→∞ sn(π).

282M Lemma Suppose that f is a complex-valued function, defined almost everywhere and of bounded
variation on ]−π, π]. Then supk∈Z |kck| <∞, where ck is the kth Fourier coefficient of f , as in 282A.

282N Lemma Let 〈dk〉k∈N be a complex sequence, and set tn =
∑n

k=0 dk, τm = 1
m+1

∑m
n=0 tn for n,

m ∈ N. Suppose that supk∈N |kdk| =M <∞. Then for any j ≥ 1 and any c ∈ C,

|tn − c| ≤ M

j
+ (2j + 3) supm≥n−n/j |τm − c|

for every n ≥ j2.

282O Theorem Let f be a complex-valued function of bounded variation, defined almost everywhere in
]−π, π], and let 〈sn〉n∈N be its sequence of Fourier sums.

(i) If x ∈ ]−π, π[, then

limn→∞ sn(x) =
1

2
(limt∈dom f,t↑x f(t) + limt∈dom f,t↓x f(t)).

(ii) limn→∞ sn(π) =
1

2
(limt∈dom f,t↑π f(t) + limt∈dom f,t↓−π f(t)).

(iii) If f is defined throughout ]−π, π], is continuous, and limt↓−π f(t) = f(π), then sn(x) → f(x)
uniformly on ]−π, π].

282P Corollary Let f be a complex-valued function which is integrable over ]−π, π], and 〈sn〉n∈N its
sequence of Fourier sums.

(i) Suppose that x ∈ ]−π, π[ is such that f is of bounded variation on some neighbourhood of x. Then

limn→∞ sn(x) =
1

2
(limt∈dom f,t↑x f(t) + limt∈dom f,t↓x f(t)).

(ii) If there is a δ > 0 such that f is of bounded variation on both ]−π,−π + δ] and [π − δ, π], then

limn→∞ sn(π) =
1

2
(limt∈dom f,t↑π f(t) + limt∈dom f,t↓−π f(t)).

282Q Theorem Let f and g be complex-valued functions which are integrable over ]−π, π], and 〈ck〉k∈N,
〈dk〉k∈N their Fourier coefficients. Let f ∗ g be their convolution, defined by the formula

Measure Theory (abridged version)



283C Fourier transforms I 7

(f ∗ g)(x) =
∫ π

−π

f(x−2π t)g(t)dt =

∫ π

−π

f̃(x− t)g(t)dt,

writing f̃ for the periodic extension of f . Then the Fourier coefficients of f ∗ g are 〈2πckdk〉k∈Z.

*282R Proposition (a) Let f : [−π, π] → C be an absolutely continuous function such that f(−π) =
f(π), and 〈ck〉k∈Z its sequence of Fourier coefficients. Then the Fourier coefficients of f ′ are 〈ikck〉k∈Z.

(b) Let f : R → C be a differentiable function such that f ′ is absolutely continuous on [−π, π], and
f(π) = f(−π). If 〈ck〉k∈Z are the Fourier coefficients of f↾ ]−π, π], then ∑∞

k=−∞ |ck| is finite.

Version of 31.3.13

283 Fourier transforms I

I turn now to the theory of Fourier transforms on R. In the first of two sections on the subject, I present
those parts of the elementary theory which can be dealt with using the methods of the previous section
on Fourier series. I find no way of making sense of the theory, however, without introducing a fragment of
L.Schwartz’ theory of distributions, which I present in §284. As in §282, of course, this treatment also is
nothing but a start in the topic.

The whole theory can also be done in Rr. I leave this extension to the exercises, however, since there are
few new ideas, the formulae are significantly more complicated, and I shall not, in this volume at least, have
any use for the multidimensional versions of these particular theorems, though some of the same ideas will
appear, in multidimensional form, in §285.

283A Definitions Let f be a complex-valued function which is integrable over R.

(a) The Fourier transform of f is the function
∧

f : R → C defined by setting

∧

f(y) =
1√
2π

∫∞
−∞ e−iyxf(x)dx

for every y ∈ R.

(b) The inverse Fourier transform of f is the function
∨

f : R → C defined by setting

∨

f(y) =
1√
2π

∫∞
−∞ eiyxf(x)dx

for every y ∈ R.

283C Proposition Let f and g be complex-valued functions which are integrable over R.

(a) (f + g)∧ =
∧

f +
∧

g.

(b) (cf)∧ = c
∧

f for every c ∈ C.

(c) If c ∈ R and h(x) = f(x+ c) whenever this is defined, then
∧

h(y) = eicy
∧

f(y) for every y ∈ R.

(d) If c ∈ R and h(x) = eicxf(x) for every x ∈ dom f , then
∧

h(y) =
∧

f(y − c) for every y ∈ R.

(e) If c > 0 and h(x) = f(cx) whenever this is defined, then
∧

h(y) =
1

c

∧

f(
y

c
) for every y ∈ R.

(f)
∧

f : R → C is continuous.

(g) limy→∞
∧

f(y) = limy→−∞
∧

f(y) = 0.

(h) If
∫∞
−∞ |xf(x)|dx <∞, then

∧

f is differentiable, and its derivative is

∧

f ′(y) = − i√
2π

∫∞
−∞ e−iyxxf(x)dx

for every y ∈ R.

(i) If f is absolutely continuous on every bounded interval and f ′ is integrable, then (f ′)∧(y) = iy
∧

f(y)
for every y ∈ R.

c© 1994 D. H. Fremlin
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8 Fourier analysis 283D

283D Lemma (a) lima→∞
∫ a

0
sin x
x dx = π

2 , lima→∞
∫ a

−a
sin x
x dx = π.

(b) There is a K <∞ such that |
∫ b

a
sin cx

x dx| ≤ K whenever a ≤ b and c ∈ R.

283E Lemma Whenever c < d in R,

lim
a→∞

∫ a

−a

e−iyx eidy−eicy

y
dy = 2πi if c < x < d,

= πi if x = c or x = d,

= 0 if x < c or x > d.

283F Theorem Let f be a complex-valued function which is integrable over R, and
∧

f its Fourier
transform. Then whenever c ≤ d in R,

∫ d

c

f =
i√
2π

lim
a→∞

∫ a

−a

eicy−eidy

y

∧

f(y)dy.

283G Corollary If f and g are complex-valued functions which are integrable over R, then
∧

f =
∧

g iff
f =a.e. g.

283H Lemma Let f be a complex-valued function which is integrable over R, and
∧

f its Fourier transform.
Then

1√
2π

∫ a

−a
eixy

∧

f(y)dy =
1

π

∫∞
−∞

sin a(x−t)

x−t
f(t)dt =

1

π

∫∞
−∞

sin at

t
f(x− t)dt

whenever a > 0 and x ∈ R.

283I Theorem Let f be a complex-valued function which is integrable over R, and suppose that f is
differentiable at x ∈ R. Then

f(x) =
1√
2π

lima→∞
∫ a

−a
eixy

∧

f(y)dy =
1√
2π

lima→∞
∫ a

−a
e−ixy

∨

f(y)dy.

283J Corollary Let f : R → C be an integrable function such that f is differentiable and
∧

f is integrable.

Then f = (
∧

f)∨ = (
∨

f)∧.

283K Proposition Suppose that f is a twice-differentiable function from R to C such that f , f ′ and f ′′

are all integrable. Then
∧

f is integrable.

283L Theorem Let f be a complex-valued function which is integrable over R, with Fourier transform
∧

f and inverse Fourier transform
∨

f , and suppose that f is of bounded variation on some neighbourhood of
x ∈ R. Set a = limt∈dom f,t↑x f(t), b = limt∈dom f,t↓x f(t). Then

1√
2π

limγ→∞
∫ γ

−γ
eixy

∧

f(y)dy =
1√
2π

limγ→∞
∫ γ

−γ
e−ixy

∨

f(y)dy =
1

2
(a+ b).

283M Theorem Let f and g be complex-valued functions which are integrable over R, and f ∗ g their
convolution product, defined by setting

(f ∗ g)(x) =
∫∞
−∞ f(t)g(x− t)dt

whenever this is defined. Then

(f ∗ g)∧(y) =
√
2π

∧

f(y)
∧

g(y), (f ∗ g)∨(y) =
√
2π

∨

f(y)
∨

g(y)

for every y ∈ R.

Measure Theory (abridged version)
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283N Lemma For σ > 0, set ψσ(x) =
1

σ
√
2π
e−x2/2σ2

for x ∈ R. Then its Fourier transform and inverse

Fourier transform are
∧

ψσ =
∨

ψσ =
1

σ
ψ1/σ.

In particular,
∧

ψ1 = ψ1.

283O Proposition Let f and g be two complex-valued functions which are integrable over R. Then
∫∞
−∞ f × ∧

g =
∫∞
−∞

∧

f × g and
∫∞
−∞ f × ∨

g =
∫∞
−∞

∨

f × g.

Version of 30.8.13

284 Fourier transforms II

The basic paradox of Fourier transforms is the fact that while for certain functions (see 283J-283K)

we have (
∧

f)∨ = f , ‘ordinary’ integrable functions f (for instance, the indicator functions of non-trivial

intervals) give rise to non-integrable Fourier transforms
∧

f for which there is no direct definition available

for
∧

f
∨

, making it a puzzle to decide in what sense the formula f =
∧

f
∨

might be true. What now seems
by far the most natural resolution of the problem lies in declaring the Fourier transform to be an operation
on distributions rather than on functions. I shall not attempt to describe this theory properly (almost any
book on ‘Distributions’ will cover the ground better than I can possibly do here), but will try to convey the
fundamental ideas, so far as they are relevant to the questions dealt with here, in language which will make
the transition to a fuller treatment straightforward. At the same time, these methods make it easy to prove
strong versions of the ‘classical’ theorems concerning Fourier transforms.

284A Test functions: Definition Throughout this section, a rapidly decreasing test function or
Schwartz function will be a function h : R → C such that h is smooth, that is, differentiable everywhere
any finite number of times, and moreover

supx∈R |x|k|h(m)(x)| <∞
for all k, m ∈ N, writing h(m) for the mth derivative of h.

284B Lemma (a) If g and h are rapidly decreasing test functions, so are g + h and ch, for any c ∈ C.
(b) If h is a rapidly decreasing test function and y ∈ R, then x 7→ h(y − x) is a rapidly decreasing test

function.
(c) If h is any rapidly decreasing test function, then h and h2 are integrable.
(d) If h is a rapidly decreasing test function, so is its derivative h′.
(e) If h is a rapidly decreasing test function, so is the function x 7→ xh(x).

(f) For any ǫ > 0, the function x 7→ e−ǫx2

is a rapidly decreasing test function.

284C Proposition Let h : R → C be a rapidly decreasing test function. Then
∧

h : R → C and
∨

h : R → C

are rapidly decreasing test functions, and
∧

h
∨

=
∨

h
∧

= h.

284D Definition I will use the phrase tempered function on R to mean a measurable complex-valued
function f , defined almost everywhere in R, such that

∫∞
−∞

1

1+|x|k |f(x)|dx <∞

for some k ∈ N.

284E Lemma (a) If f and g are tempered functions, so are |f |, f + g and cf , for any c ∈ C.
(b) If f is a tempered function then it is integrable over any bounded interval.
(c) If f is a tempered function and x ∈ R, then t 7→ f(x+t) and t 7→ f(x−t) are both tempered functions.

D.H.Fremlin



10 Fourier analysis 284F

284F Lemma Let f be a tempered function on R and h a rapidly decreasing test function. Then f × h
is integrable.

284G Lemma Suppose that f1 and f2 are tempered functions and that
∫

f1 × h =
∫

f2 × h for every
rapidly decreasing test function h. Then f1 =a.e. f2.

284H Definition Let f and g be tempered functions. Then I will say that g represents the Fourier
transform of f if

∫∞
−∞ g × h =

∫∞
−∞ f ×

∧

h

for every rapidly decreasing test function h.

284I Remarks (a) If f is an integrable complex-valued function on R and
∧

f is its Fourier transform,

then
∧

f ‘represents the Fourier transform of f ’.

(b) Note also that if g1, g2 are two tempered functions both representing the Fourier transform of f ,
then g1 =a.e. g2

(c) It is I suppose obvious that if f1, f2, g1 and g2 are tempered functions and gi represents the Fourier
transform of fi for both i, then cg1 + g2 represents the Fourier transform of cf1 + f2 for every c ∈ C.

(e) g represents the inverse Fourier transform of f when
∫

f × h =
∫

g ×
∧

h for every rapidly
decreasing test function h.

(f) If f , g are tempered functions and we write
↔

g (x) = g(−x) whenever this is defined, then
g represents the Fourier transform of f

⇐⇒ ↔

g represents the inverse Fourier transform of f .

284J Lemma Let f be any tempered function and h a rapidly decreasing test function. Then f ∗ h,
defined by the formula

(f ∗ h)(y) =
∫∞
−∞ f(t)h(y − t)dt,

is defined everywhere.

284K Proposition Let f and g be tempered functions such that g represents the Fourier transform of
f , and h a rapidly decreasing test function.

(a) The Fourier transform of the integrable function f × h is 1√
2π
g ∗

∧

h.

(b) The Fourier transform of the continuous function f ∗ h is represented by the product
√
2πg ×

∧

h.

284L Proposition Let f be a tempered function. Writing ψσ(x) =
1

σ
√
2π
e−x2/2σ2

for x ∈ R and σ > 0,

then

limσ↓0(f ∗ ψσ)(x) = c

whenever x ∈ R and c ∈ C are such that

limδ↓0
1

δ

∫ δ

0
|f(x+ t) + f(x− t)− 2c|dt = 0.

284M Theorem Let f and g be tempered functions such that g represents the Fourier transform of f .
Then

(a)(i) g(y) = limǫ↓0
1√
2π

∫∞
−∞ e−iyxe−ǫx2

f(x)dx for almost every y ∈ R.

(ii) If y ∈ R is such that a = limt∈dom g,t↑y g(t) and b = limt∈dom g,t↓y g(t) are both defined in C, then

Measure Theory (abridged version)
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limǫ↓0
1√
2π

∫∞
−∞ e−iyxe−ǫx2

f(x)dx =
1

2
(a+ b).

(b)(i) f(x) = limǫ↓0
1√
2π

∫∞
−∞ eixye−ǫy2

g(y)dy for almost every x ∈ R.

(ii) If x ∈ R is such that a = limt∈dom f,t↑x f(t) and b = limt∈dom f,t↓x f(t) are both defined in C, then

limǫ↓0
1√
2π

∫∞
−∞ eixye−ǫy2

g(y)dy =
1

2
(a+ b).

284N L2 spaces: Lemma Let L2
C
be the space of square-integrable complex-valued functions on R, and

S the space of rapidly decreasing test functions. Then for every f ∈ L
2
C
and ǫ > 0 there is an h ∈ S such

that ‖f − h‖2 ≤ ǫ.

284O Theorem (a) Let f be any complex-valued function which is square-integrable over R. Then f is
a tempered function and its Fourier transform is represented by another square-integrable function g, and
‖g‖2 = ‖f‖2.

(b) If f1 and f2 are complex-valued functions, square-integrable over R, with Fourier transforms repre-
sented by functions g1, g2, then

∫∞
−∞ f1 × f̄2 =

∫∞
−∞ g1 × ḡ2.

(c) If f1 and f2 are complex-valued functions, square-integrable over R, with Fourier transforms repre-
sented by functions g1, g2, then the integrable function f1 × f2 has Fourier transform 1√

2π
g1 ∗ g2.

(d) If f1 and f2 are complex-valued functions, square-integrable over R, with Fourier transforms repre-

sented by functions g1, g2, then
√
2πg1 × g2 represents the Fourier transform of the continuous function

f1 ∗ f2.

284P Corollary Writing L2
C
for the Hilbert space of equivalence classes of square-integrable complex-

valued functions on R, we have a linear isometry T : L2
C
→ L2

C
given by saying that T (f•) = g• whenever f ,

g ∈ L
2
C
and g represents the Fourier transform of f .

Version of 18.9.14

285 Characteristic functions

I come now to one of the most effective applications of Fourier transforms, the use of ‘characteristic func-
tions’ to analyse probability distributions. It turns out not only that the Fourier transform of a probability
distribution determines the distribution (285M) but that many of the things we want to know about a
distribution are easily calculated from its transform. Even more strikingly, pointwise convergence of Fourier
transforms corresponds (for sequences) to convergence for the vague topology in the space of distributions,
so they provide a new and extremely powerful method for proving such results as the Central Limit Theorem
and Poisson’s theorem (285Q).

As the applications of the ideas here mostly belong to probability theory, I return to probabilists’ ter-
minology, as in Chapter 27. There will nevertheless be many points at which it is appropriate to speak of
integrals, and there will often be more than one measure in play; so I should say directly that an integral
∫

f(x)dx will be with respect to Lebesgue measure (usually, but not always, one-dimensional), as in the
rest of this chapter, while integrals with respect to other measures will be expressed in the forms

∫

fdν or
∫

f(x)ν(dx).

285A Definition (a) Let ν be a Radon probability measure on Rr. Then the characteristic function
of ν is the function ϕν : Rr → C given by the formula

ϕν(y) =
∫

eiy .xν(dx)

for every y ∈ Rr, writing y .x = η1ξ1 + . . .+ ηrξr if y = (η1, . . . , ηr) and x = (ξ1, . . . , ξr).

D.H.Fremlin



12 Fourier analysis 285Ab

(b) Let X1, . . . , Xr be real-valued random variables on the same probability space. The characteristic
function ofXXX = (X1, . . . , Xr) is the characteristic function ϕXXX = ϕνXXX of their joint probability distribution
νXXX as defined in 271C.

285C Proposition Let X1, . . . , Xr be real-valued random variables on the same probability space, and
νXXX their joint distribution. Then their characteristic function ϕνXXX is given by

ϕνXXX (y) = E(eiy .XXX) = E(eiη1X1eiη2X2 . . . eiηrXr )

for every y = (η1, . . . , ηr) ∈ Rr.

285D Proposition Let ν be a Radon probability measure on R. Write

∧

ν(y) =
1√
2π

∫∞
−∞ e−iyxν(dx)

for every y ∈ R, and ϕν for the characteristic function of ν.

(a)
∧

ν(y) =
1√
2π
ϕν(−y) for every y ∈ R.

(b) For any Lebesgue integrable complex-valued function h defined almost everywhere in R,
∫∞
−∞

∧

ν(y)h(y)dy =
∫∞
−∞

∧

h(x)ν(dx).

(c) For any rapidly decreasing test function h on R,
∫∞
−∞ h(x)ν(dx) =

∫∞
−∞

∨

h(y)
∧

ν(y)dy.

(d) If ν is an indefinite-integral measure over Lebesgue measure, with Radon-Nikodým derivative f , then
∧

ν is the Fourier transform of f .

285E Lemma Let X be a normal random variable with expectation a and variance σ2, where σ > 0.
Then the characteristic function of X is given by the formula

ϕ(y) = eiyae−σ2y2/2.

285F Proposition Let ν be a Radon probability measure on Rr, and ϕ its characteristic function.
(a) ϕ(0) = 1.
(b) ϕ : Rr → C is uniformly continuous.

(c) ϕ(−y) = ϕ(y), |ϕ(y)| ≤ 1 for every y ∈ Rr.
(d) If r = 1 and

∫

|x|ν(dx) <∞, then ϕ′(y) exists and is equal to i
∫

xeixyν(dx) for every y ∈ R.
(e) If r = 1 and

∫

x2ν(dx) <∞, then ϕ′′(y) exists and is equal to −
∫

x2eixyν(dx) for every y ∈ R.

285G Corollary (a) Let X be a real-valued random variable with finite expectation, and ϕ its charac-
teristic function. Then ϕ′(0) = iE(X).

(b) Let X be a real-valued random variable with finite variance, and ϕ its characteristic function. Then
ϕ′′(0) = −E(X2).

285I Proposition Let X1, . . . , Xn be independent real-valued random variables, with characteristic
functions ϕ1, . . . , ϕn. Let ϕ be the characteristic function of their sum X = X1 + . . .+Xn. Then

ϕ(y) =
∏n

j=1 ϕj(y)

for every y ∈ R.

285J Lemma Let ν be a Radon probability measure on Rr, and ϕ its characteristic function. Then for
1 ≤ j ≤ r and a > 0,

ν{x : |ξj | ≥ a} ≤ 7a
∫ 1/a

0
(1−Reϕ(tej))dt,

where ej ∈ Rr is the jth unit vector.

Measure Theory (abridged version)
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285L Theorem Let ν, 〈νn〉n∈N be Radon probability measures on Rr, with characteristic functions ϕ,
〈ϕn〉n∈N. Then the following are equiveridical:

(i) ν = limn→∞ νn for the vague topology;
(ii)

∫

h dν = limn→∞
∫

h dνn for every bounded continuous h : Rr → R;
(iii) limn→∞ ϕn(y) = ϕ(y) for every y ∈ Rr.

285M Corollary (a) Let ν, ν ′ be two Radon probability measures on Rr with the same characteristic
functions. Then they are equal.

(b) Let (X1, . . . , Xr) and (Y1, . . . , Yr) be two families of real-valued random variables. If

E(eiη1X1+...+iηrXr ) = E(eiη1Y1+...+iηrYr )

for all η1, . . . , ηr ∈ R, then (X1, . . . , Xr) has the same joint distribution as (Y1, . . . , Yr).

285O Lemma Let c0, . . . , cn, d0, . . . , dn be complex numbers of modulus at most 1. Then

|∏n
k=0 ck −∏n

k=0 dk| ≤
∑n

k=0 |ck − dk|.

285P Lemma Suppose that M ≥ 0 and ǫ > 0. Then there are η > 0 and y0, . . . , yn ∈ R such that
whenever X, Z are two real-valued random variables with E(|X|) ≤M , E(|Z|) ≤M and |ϕX(yj)−ϕZ(yj)| ≤
η for every j ≤ n, then FX(a) ≤ FZ(a + ǫ) + ǫ for every a ∈ R, where I write ϕX for the characteristic
function of X and FX for the distribution function of X.

285Q Law of Rare Events: Theorem For any M ≥ 0 and ǫ > 0 there is a δ > 0 such that whenever
X0, . . . , Xn are independent {0, 1}-valued random variables with Pr(Xk = 1) = pk ≤ δ for every k ≤ n and
∑n

k=0 pk = λ ≤M , and X = X0 + . . .+Xn, then

|Pr(X = m)− λm

m!
e−λ| ≤ ǫ

for every m ∈ N.

285R Convolutions If ν, ν̃ are Radon probability measures on Rr then ϕν∗ν̃(y) = ϕν(y)ϕν̃(y) for every
y ∈ Rr.

285V Proposition Let ν be a Radon probability measure on Rr such that ν ∗ ν = ν. Then ν is the
Dirac measure δ0 concentrated at 0.

285S The vague topology and pointwise convergence of characteristic functions Write

ρ′y(ν, ν
′) = |

∫

eiy .xν(dx)−
∫

eiy .xν ′(dx)|
for Radon probability measures ν, ν ′ on Rr and y ∈ Rr. Write T for the vague topology and S for the
topology defined by {ρ′y : y ∈ Rr}

285T Proposition Suppose that y0, . . . , yn ∈ R and η > 0. Then there are infinitely many m ∈ N such
that |1− eiykm| ≤ η for every k ≤ n.

285U Corollary The topologies S and T on the space of Radon probability measures on R, as described
in 285S, are different.

Version of 30.3.16

286 Carleson’s theorem

c© 2000 D. H. Fremlin

D.H.Fremlin



14 Fourier analysis §286 intro.

Carleson’s theorem (Carleson 66) was the (unexpected) solution to a long-standing problem. Remark-
ably, it can be proved by ‘elementary’ methods. The hardest part of the work below, in 286J-286L, demands
only the laborious verification of inequalities. How the inequalities were chosen is a different matter; for
once, some of the ideas of the proof are embodied in the statements of the lemmas. The argument here is a
greatly expanded version of Lacey & Thiele 00.

The Hardy-Littlewood Maximal Theorem (286A) is important, and worth learning even if you leave the
rest of the section as an unexamined monument. I bring 286B-286D forward to the beginning of the section,
even though they are little more than worked exercises, because they also have potential uses in other
contexts.

In this section all integrals are with respect to Lebesgue measure µ on R unless otherwise stated.

286A The Maximal Theorem Suppose that 1 < p <∞ and that f ∈ L
p
C
(µ). Set

f∗(x) = sup{ 1

b−a

∫ b

a
|f | : a ≤ x ≤ b, a < b}

for x ∈ R. Then ‖f∗‖p ≤ 21/pp

p−1
‖f‖p.

286B Lemma Let g : R → [0,∞[ be a function which is non-decreasing on ]−∞, α], non-increasing on
[β,∞[ and constant on [α, β], where α ≤ β. Then for any measurable function f : R → [0,∞],

∫∞
−∞ f × g ≤

∫∞
−∞ g · supa≤α,b≥β,a<b

1

b−a

∫ b

a
f .

286C Shift, modulation and dilation For any function f with domain included in R, and α ∈ R, we
can define

(Sαf)(x) = f(x+ α), (Mαf)(x) = eiαxf(x), (Dαf)(x) = f(αx)

whenever the right-hand sides are defined.

(a) S−αSαf = f , D1/αDαf = f if α 6= 0.

(b) Sα(f × g) = Sαf × Sαg, Dα(f × g) = Dαf ×Dαg.

(c) Dα|f | = |Dαf |.

(d) If f is integrable, then

(Mαf)
∧ = S−α

∧

f , (Sαf)
∧ =Mα

∧

f , (Sαf)
∨ =M−α

∨

f ;

if moreover α > 0, then

α(Dαf)
∧ = D1/α

∧

f , α(Dαf)
∨ = D1/α

∨

f .

(e) If f belongs to L
1
C
= L

1
C
(µ), so do Sαf , Mαf and (if α 6= 0) Dαf , and in this case

‖Sαf‖1 = ‖Mαf‖1 = ‖f‖1, ‖Dαf‖1 =
1

|α|‖f‖1.

(f) If f belongs to L
2
C
so do Sαf , Mαf and (if α 6= 0) Dαf , and in this case

‖Sαf‖2 = ‖Mαf‖2 = ‖f‖2, ‖Dαf‖2 =
1√
|α|‖f‖2.

(g) If h is a rapidly decreasing test function, so are Mαh and Sαh and (if α 6= 0) Dαh.

286D Lemma Suppose that g : R → [0,∞] is a measurable function such that, for some constant C ≥ 0,
∫

E
g ≤ C

√
µE whenever µE <∞. Then g is finite almost everywhere and

∫∞
−∞

1

1+|x|g(x)dx is finite.

Measure Theory (abridged version)



286G Carleson’s theorem 15

286E The Lacey-Thiele construction (a) Let I be the family of all dyadic intervals of the form
[

2kn, 2k(n+ 1)
[

where k, n ∈ Z. The essential geometric property of I is that if I, J ∈ I then either I ⊆ J

or J ⊆ I or I ∩ J = ∅. Let Q be the set of all pairs σ = (Iσ, Jσ) ∈ I2 such that µIσ · µJσ = 1. For σ ∈ Q,
let kσ ∈ Z be such that µJσ = 2kσ and µIσ = 2−kσ ; let xσ be the midpoint of Iσ, yσ the midpoint of Jσ,
J l
σ ∈ I the left-hand half-interval of Jσ, J

r
σ ∈ I the right-hand half-interval of Jσ, and y

l
σ the lower quartile

of Jσ.

(b) There is a rapidly decreasing test function φ such that
∧

φ is real-valued and χ[− 1
6 ,

1
6 ] ≤

∧

φ ≤ χ[− 1
5 ,

1
5 ].

For σ ∈ Q, set

φσ(x) =
√
µJσe

iyl
σxφ((x− xσ)µJσ).

φσ is a rapidly decreasing test function.
∧

φσ(y) =
√
µIσe

−ixσ(y−yl
σ)

∧

φ((y − ylσ)µIσ),

which is zero unless y ∈ J l
σ.

(i) ‖φσ‖2 = ‖φ‖2 for every σ ∈ Q.

(ii) ‖
∧

φσ‖1 =
√
µJσ‖

∧

φ‖1 for every σ ∈ Q.
(iii) If σ, τ ∈ Q and J l

σ ∩ J l
τ = ∅ then

(φσ|φτ ) = (
∧

φσ|
∧

φτ ) = 0.

(For f , g ∈ L
2
C
, I write (f |g) for

∫∞
−∞ f × ḡ.)

(iv) If σ, τ ∈ Q and Jσ 6= Jτ and Jr
σ ∩ Jr

τ is non-empty, then (φσ|φτ ) = 0.

(c) Set w(x) =
1

(1+|x|)3 for x ∈ R. For σ ∈ Q, set

wσ(x) = w((x− xσ)µJσ)µJσ ≤ µJσ = 2kσ

for every x. Note that wσ = wτ whenever Iσ = Iτ .

286F A partial order (a) For σ, τ ∈ Q say that τ ≤ σ if Jτ ⊆ Jσ and Iσ ⊆ Iτ . Then ≤ is a partial
order on Q.

(i) If τ ≤ σ, then kτ ≤ kσ.
(ii) If σ and τ are incomparable, then (Iσ × Jσ) ∩ (Iτ × Jτ ) is empty.
(iii) If σ, σ′ are incomparable and both greater than or equal to τ , then Iσ ∩ Iσ′ = ∅.
(iv) If τ ≤ σ and kτ ≤ k ≤ kσ, then there is a (unique) υ such that τ ≤ υ ≤ σ and kυ = k.

(b) If R ⊆ Q, say that

R+ =
⋃

τ∈R{σ : τ ≤ σ ∈ Q}.

(c) For τ ∈ Q set

Tτ = {σ : σ ∈ Q, τ ≤ σ, Jr
τ ⊆ Jr

σ}.
Note that if σ, σ′ ∈ Tτ and kσ 6= kσ′ then (φσ|φσ′) = 0.

286G Lemma (a)
∫∞
−∞ wσ =

∫∞
−∞ w = 1 for every σ ∈ Q.

(b) For any m ∈ N,
∑∞

n=m w(n+ 1
2 ) ≤

1

2(1+m)2
.

(c) Suppose that σ ∈ Q and that I is an interval not containing xσ in its interior. Then
∫

I
wσ ≥ wσ(x)µI,

where x is the midpoint of I.
(d) For any x ∈ R,

∑∞
n=−∞ w(x− n) ≤ 2.

(e) There is a constant C1 ≥ 0 such that |φ(x)| ≤ C1 min(w(3), w(x)2) for every x ∈ R and

|φσ(x)| ≤ C1

√
µIσwσ(x)min(1, wσ(x)µIσ)

for every x ∈ R and σ ∈ Q.

D.H.Fremlin
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(f) There is a constant C2 ≥ 0 such that
∫∞
−∞ w(x)w(αx + β)dx ≤ C2w(β) whenever 0 ≤ α ≤ 1 and

β ∈ R.
(g) There is a constant C3 ≥ 0 such that |(φσ|φτ )| ≤ C3

√
µIσ

√
µJτ

∫

Iτ
wσ whenever σ, τ ∈ Q and

kσ ≤ kτ .
(h) There is a constant C4 ≥ 0 such that

∑

σ∈Q,σ≥τ,kσ=k

∫

R\Iτ
wσ ≤ C4

whenever τ ∈ Q and k ∈ Z.

286H ‘Mass’ and ‘energy’ If P is a subset of Q, E ⊆ R is measurable, g : R → R is measurable, and
f ∈ L

2
C
, set

massEg(P ) = supσ∈P,τ∈Q,τ≤σ

∫

E∩g−1[Jτ ]
wτ ≤ supτ∈Q

∫∞
−∞ wτ = 1,

∆f (P ) =
∑

σ∈P |(f |φσ)|2,

energyf (P ) = supτ∈Q

√
µJτ

√

∆f (P ∩ Tτ ).
If P ′ ⊆ P then massEg(P

′) ≤ massEg(P ) and energyf (P
′) ≤ energyf (P ). energyf ({σ}) =

√
µJσ|(f |φσ)|

for any σ ∈ Q.

286I Lemma If P ⊆ Q is finite and f ∈ L
2
C
, then

(a) ∆f (P ) ≤ ‖∑σ∈P (f |φσ)φσ‖2‖f‖2,
(b)

∑

σ,τ∈P,Jσ=Jτ

∣

∣(f |φσ)(φσ|φτ )(φτ |f)
∣

∣ ≤ C3∆f (P ).

286J Lemma Set C5 = 212. If P ⊆ Q is finite, E ⊆ R is measurable, g : R → R is measurable, and
γ ≥ massEg(P ), then we can find R ⊆ Q such that γ

∑

τ∈R µIτ ≤ C5µE and massEg(P \R+) ≤ 1
4γ.

286K Lemma Set C6 = 4(C3 + 4C3

√
2C4). Suppose that P ⊆ Q is a finite set, f ∈ L

2
C
, ‖f‖2 = 1 and

γ ≥ energyf (P ). Then we can find R ⊆ Q such that γ2
∑

τ∈R µIτ ≤ C6 and energyf (P \R+) ≤ 1
2γ.

286L Lemma Set

C7 = C1

(7

2
+

8

7
+

28

w(3/2)
+

4
√
14C3

w(3/2)

)

.

Suppose that P is a finite subset of Q with a lower bound τ in Q for the ordering ≤, E ⊆ R is measurable,
g : R → R is measurable and f ∈ L

2
C
. Then

∑

σ∈P |(f |φσ)
∫

E∩g−1[Jr
σ]
φσ| ≤ C7 energyf (P )massEg(P )µIτ .

286M The Lacey-Thiele lemma Set C8 = 3C7(C5 + C6). Then
∑

σ∈Q |(f |φσ)
∫

E∩g−1[Jr
σ]
φσ| ≤ C8

whenever f ∈ L
2
C
, ‖f‖2 = 1, µE ≤ 1 and g : R → R is measurable.

286N Lemma Set C9 = C8

√
2. Suppose that f ∈ L

2
C
, g : R → R is measurable and µF <∞. Then

∑

σ∈Q |(f |φσ)
∫

F∩g−1[Jr
σ]
φσ| ≤ C9‖f‖2

√
µF .

286O Lemma (a) For z ∈ R, define θz : R → [0, 1] by setting

θz(y) =
∧

φ(2−k(y − ŷ))2

Measure Theory (abridged version)



286T Carleson’s theorem 17

whenever there is a dyadic interval J ∈ I of length 2k such that z belongs to the right-hand half of J and
y belongs to the left-hand half of J and ŷ is the lower quartile of J , and zero if there is no such J . Then
(y, z) 7→ θz(y) is Borel measurable, 0 ≤ θz(y) ≤ 1 for all y, z ∈ R, and θz(y) = 0 if y ≥ z.

(b) For k ∈ Z, set Qk = {σ : σ ∈ Q, kσ = k}. Let [Q]<ω be the set of finite subsets of Q, [Z]<ω the set of
finite subsets of Z and L the set of subsets L of Q such that L ∩Qk is finite for every k. If K ∈ [Z]<ω and
L ∈ L, set

PKL = {P : P ∈ [Q]<ω, P ∩Qk ⊇ L ∩Qk whenever k ∈ Z

and either k ∈ K or P ∩Qk 6= ∅};
set

F = {P : P ⊆ [Q]<ω and there are K ∈ [Z]<ω, L ∈ L such that P ⊇ PKL}.
Then F is a filter on [Q]<ω and

2π
∫

F
(
∧

h× θz)
∨ = limP→F

∑

σ∈P,z∈Jr
σ
(h|φσ)

∫

F
φσ

for every z ∈ R and rapidly decreasing test function h and measurable set F ⊆ R of finite measure.

286P Lemma Suppose that h is a rapidly decreasing test function. For x ∈ R, set

Ah(x) = supz∈R |2π(
∧

h× θz)
∨(x)|.

Then Ah : R → [0,∞] is Borel measurable, and
∫

F
Ah ≤ 4C9‖h‖2

√
µF whenever µF <∞.

286Q Lemma For α > 0 and y, z, β ∈ R, set θ′zαβ(y) = θαz+β(αy + β). Then

(a) the function (α, β, y, z) 7→ θ′zαβ(y) : ]0,∞[× R3 → [0, 1] is Borel measurable;

(b) θ′zαβ(y) = 0 whenever y ≥ z;

(c) for any rapidly decreasing test function h, and any z ∈ R,

2π|(
∧

h× θ′zαβ)
∨| ≤ D1/αAMβDαh

at every point.

286R Lemma For any y, z ∈ R,

θ̃z(y) =
∫ 2

1

1

α

(

limn→∞
1

n

∫ n

0
θ′zαβ(y)dβ

)

dα

is defined, and

θ̃z(y) = θ̃1(0) > 0 if y < z,

= 0 if y ≥ z.

286S Lemma Suppose that h is a rapidly decreasing test function.
(a) For every x ∈ R,

(Ãh)(x) = lim infn→∞
1

n

∫ 2

1

1

α

∫ n

0
(D1/αAMβDαh)(x)dβdα

is defined in [0,∞], and Ãh : R → [0,∞] is Borel measurable.

(b)
∫

F
Ãh ≤ 3C9‖h‖2

√
µF whenever µF <∞.

(c) If z ∈ R, 2π|(
∧

h× θ̃z)
∨| ≤ Ãh at every point.

286T Lemma Set C10 = 3C9/πθ̃1(0). For f ∈ L
2
C
, define Âf : R → [0,∞] by setting

(Âf)(y) = supa≤b
1√
2π

|
∫ b

a
e−ixyf(x)dx|

for each y ∈ R. Then
∫

F
Âf ≤ C10‖f‖2

√
µF whenever µF <∞.

D.H.Fremlin



18 Fourier analysis 286U

286U Theorem If f ∈ L
2
C
then

g(y) = lima→−∞,b→∞
1√
2π

∫ b

a
e−ixyf(x)dx

is defined in C for almost every y ∈ R, and g represents the Fourier transform of f .

286V Theorem For any square-integrable complex-valued function on ]−π, π], its sequence of Fourier
sums converges to it almost everywhere.

Measure Theory (abridged version)
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Version of 6.1.10

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

285Xm Cauchy distribution The exercise introducing the Cauchy distribution, referred to in the 2002,
2004 and 2012 printings of Volume 3, is now 285Xp.

285Xo Poisson distribution The exercise naming the Poisson distribution, referred to in the 2003,
2006 and 2013 printings of Volume 4, is now 285Xr.

285Xr Bochner’s theorem The exercise on a special case of Bochner’s theorem, referred to in the 2003,
2006 and 2013 printings of Volume 4, is now 285Xu.

286U Carleson’s theorem The sequential form, referred to in Bogachev 07, is now in 286V.
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