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Chapter 27

Probability theory

Lebesgue created his theory of integration in response to a number of problems in real analysis, and
all his life seems to have thought of it as a tool for use in geometry and calculus (Lebesgue 72, vols. 1
and 2). Remarkably, it turned out, when suitably adapted, to provide a solid foundation for probability
theory. The development of this approach is generally associated with the name of Kolmogorov. It has so
come to dominate modern abstract probability theory that many authors ignore all other methods. I do not
propose to commit myself to any view on whether σ-additive measures are the only way to give a rigorous
foundation to probability theory, or whether they are adequate to deal with all probabilistic ideas; there are
some serious philosophical questions here, since probability theory, at least in its applied aspects, seeks to
help us to understand the material world outside mathematics. But from my position as a measure theorist,
it is incontrovertible that probability theory is among the central applications of the concepts and theorems
of measure theory, and is one of the most vital sources of new ideas; and that every measure theorist must
be alert to the intuitions which probabilistic methods can provide.

I have written the preceding paragraph in terms suggesting that ‘probability theory’ is somehow distin-
guishable from the rest of measure theory; this is another point on which I should prefer not to put forward
any opinion as definitive. But undoubtedly there is a distinction, rather deeper than the elementary point
that probability deals (almost) exclusively with spaces of measure 1. M.Loève argues persuasively (Loève
77, §10.2) that the essence of probability theory is the artificial nature of the probability spaces themselves.
In measure theory, when we wish to integrate a function, we usually feel that we have a proper function
with a domain and values. In probability theory, when we take the expectation of a random variable, the
variable is an ‘observable’ or ‘the result of an experiment’; we are generally uncertain, or ignorant, or indif-
ferent concerning the factors underlying the variable. Let me give an example from the theorems below. In
the proof of the Central Limit Theorem (274F), I find that I need an auxiliary list Z0, . . . , Zn of random
variables, independent of each other and of the original sequence X0, . . . , Xn. I create such a sequence
by taking a product space Ω × Ω′, and writing X ′

i(ω, ω
′) = Xi(ω), while the Zi are functions of ω′. Now

the difference between the Xi and the X ′
i is of a type which a well-trained analyst would ordinarily take

seriously. We do not think that the function x 7→ x2 : [0, 1] → [0, 1] is the same thing as the function
(x1, x2) 7→ x21 : [0, 1]2 → [0, 1]. But a probabilist is likely to feel that it is positively pedantic to start writing
X ′

i instead of Xi. He did not believe in the space Ω in the first place, and if it turns out to be inadequate
for his intuition he enlarges it without a qualm. Loève calls probability spaces ‘fictions’, ‘inventions of the
imagination’ in Larousse’s words; they are necessary in the models Kolmogorov has taught us to use, but
we have a vast amount of freedom in choosing them, and in their essence they are nothing so definite as a
set with points.

A probability space, therefore, is somehow a more shadowy entity in probability theory than it is in
measure theory. The important objects in probability theory are random variables and distributions, partic-
ularly joint distributions. In this volume I shall deal exclusively with random variables which can be thought
of as taking values in some power of R; but this is not the central point. What is vital is that somehow
the codomain, the potential set of values, of a random variable, is much better defined than its domain.
Consequently our attention is focused not on any features of the artificial space which it is convenient to
use as the underlying probability space – I write ‘underlying’, though it is the most superficial and easily
changed aspect of the model – but on the distribution on the codomain induced by the random variable.
Thus the Central Limit Theorem, which speaks only of distributions, is actually more important in applied
probability than the Strong Law of Large Numbers, which claims to tell us what a long-term average will
almost certainly be.
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2 Probability theory Chap. 27 intro.

W.Feller (Feller 66) goes even farther than Loève, and as far as possible works entirely with distri-
butions, setting up machinery which enables him to go for long stretches without mentioning probability
spaces at all. I make no attempt to emulate him. But the approach is instructive and faithful to the essence
of the subject.

Probability theory includes more mathematics than can easily be encompassed in a lifetime, and I have
selected for this introductory chapter the two limit theorems I have already mentioned, the Strong Law of
Large Numbers and the Central Limit Theorem, together with some material on martingales (§§275-276).
They illustrate not only the special character of probability theory – so that you will be able to form your
own judgement on the remarks above – but also some of its chief contributions to ‘pure’ measure theory,
the concepts of ‘independence’ and ‘conditional expectation’.

Version of 11.12.08

271 Distributions

I start this chapter with a discussion of ‘probability distributions’, the probability measures on R
n defined

by families (X1, . . . , Xn) of random variables. I give the basic results describing the circumstances under
which two distributions are equal (271G), integration with respect to a distribution (271E), and probability
density functions (271H-271K).

271A Notation (a) Let (Ω,Σ, µ) be a probability space. A real-valued random variable on Ω will
be a member of L0(µ).

(b) If X is a real-valued random variable on a probability space (Ω,Σ, µ), write E(X) =
∫

X dµ if this is
defined in [−∞,∞]. In this case I will call E(X) the mean or expectation of X. Thus we may say that
‘X has a finite expectation’ in place of ‘X is integrable’.

(c) If X is a real-valued random variable with finite expectation, the variance of X is

Var(X) = E(X − E(X))2 = E(X2 − 2E(X)X + E(X)2) = E(X2)− (E(X))2.

(d) I shall allow myself to use such formulae as

Pr(X > a), Pr(X − ǫ ≤ Y ≤ X + δ),

where X and Y are random variables on the same probability space (Ω,Σ, µ), to mean respectively

µ̂{ω : ω ∈ domX, X(ω) > a},

µ̂{ω : ω ∈ domX ∩ domY, X(ω)− ǫ ≤ Y (ω) ≤ X(ω) + δ},

writing µ̂ for the completion of µ. I will use this notation only for predicates corresponding to Borel

measurable sets; that is to say, I shall write

Pr(ψ(X1, . . . , Xn)) = µ̂{ω : ω ∈
⋂

i≤n domXi, ψ(X1(ω), . . . , Xn(ω))}

only when the set

{(α1, . . . , αn) : ψ(α1, . . . , αn)}

is a Borel set in R
n.

271B Theorem Let (Ω,Σ, µ) be a probability space, and X1, . . . , Xn real-valued random variables on
Ω. Set XXX(ω) = (X1(ω), . . . , Xn(ω)) for ω ∈

⋂

i≤n domXi.

(a) There is a unique Radon measure ν on R
n such that

ν ]−∞, a] = Pr(Xi ≤ αi for every i ≤ n)

whenever a = (α1, . . . , αn) ∈ R
n;

(b) νRn = 1 and νE = µ̂(XXX−1[E]) whenever νE is defined, where µ̂ is the completion of µ; in particular,
νE = Pr((X1, . . . , Xn) ∈ E) for every Borel set E ⊆ R

n.

c© 1995 D. H. Fremlin
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271H Distributions 3

271C Definition Let (Ω,Σ, µ) be a probability space and X1, . . . , Xn real-valued random variables on Ω.
By the (joint) distribution or law νXXX of the family XXX = (X1, . . . , Xn) I shall mean the Radon probability
measure ν of 271B.

271D Remarks (e) If XXX = (X1, . . . , Xn) and YYY = (Y1, . . . , Yn) are such that Xi =a.e. Yi for each i,
then νXXX = νYYY .

271E Measurable functions of random variables: Proposition Let XXX = (X1, . . . , Xn) be a family
of random variables ; write TXXX for the domain of the distribution νXXX , and let h be a TXXX -measurable real-
valued function defined νXXX -a.e. on R

n. Then we have a random variable Y = h(X1, . . . , Xn) defined by
setting

h(X1, . . . , Xn)(ω) = h(X1(ω), . . . , Xn(ω)) for every ω ∈XXX−1[domh].

The distribution νY of Y is the measure on R defined by the formula

νY F = νXXXh
−1[F ]

for just those sets F ⊆ R such that h−1[F ] ∈ TXXX . Also

E(Y ) =
∫

h dνXXX

in the sense that if one of these exists in [−∞,∞], so does the other, and they are then equal.

271F Corollary If X is a single random variable with distribution νX , then

E(X) =
∫∞

−∞
x νX(dx)

if either is defined in [−∞,∞]. Similarly

E(X2) =
∫∞

−∞
x2 νX(dx)

(whatever X may be). If X, Y are two random variables then we have

E(X × Y ) =
∫

xy ν(X,Y )d(x, y)

if either side is defined in [−∞,∞].

Remark If ν is the distribution of a real-valued random variable, that is, a Radon probability measure on
R, I will say that the expectation E(ν) of ν is

∫∞

−∞
x ν(dx) if this is defined; if ν has finite expectation,

then its variance Var(ν) will be
∫

x2 ν(dx) − (E(ν))2. Thus if X is a real-valued random variable with
distribution νX , E(X) = E(νX) and Var(X) = Var(νX) whenever these are defined.

271G Distribution functions (a) If X is a real-valued random variable, its distribution function is
the function FX : R → [0, 1] defined by setting

FX(a) = Pr(X ≤ a) = νX ]−∞, a]

for every a ∈ R. (Warning! some authors prefer FX(a) = Pr(X < a).) X and Y have the same
distribution iff FX = FY .

(b) If X1, . . . , Xn are real-valued random variables on the same probability space, their (joint) distri-
bution function is the function FXXX : Rn → [0, 1] defined by writing

FXXX(a) = Pr(Xi ≤ αi ∀ i ≤ n)

whenever a = (α1, . . . , αn) ∈ R
n. If XXX and YYY have the same distribution function, they have the same

distribution.

271H Densities Let XXX = (X1, . . . , Xn) be a family of random variables, all defined on the same
probability space. A density function for (X1, . . . , Xn) is a Radon-Nikodým derivative, with respect to
Lebesgue measure, for the distribution νXXX .

D.H.Fremlin



4 Probability theory 271I

271I Proposition Let XXX = (X1, . . . , Xn) be a family of random variables, all defined on the same
probability space. Write µL for Lebesgue measure on R

n.
(a) There is a density function for XXX iff Pr(XXX ∈ E) = 0 for every Borel set E such that µLE = 0.
(b) A non-negative Lebesgue integrable function f is a density function for XXX iff

∫

]−∞,a]
fdµL = Pr(XXX ∈

]−∞, a]) for every a ∈ R
n.

(c) Suppose that f is a density function for XXX, and G = {x : f(x) > 0}. Then if h is a Lebesgue
measurable real-valued function defined almost everywhere in G,

E(h(XXX)) =
∫

h dνXXX =
∫

h× fdµL

if any of the three integrals is defined in [−∞,∞], interpreting (h× f)(x) as 0 if f(x) = 0 and x /∈ domh.

271J Theorem Let XXX = (X1, . . . , Xn) be a family of random variables, and D ⊆ R
n a Borel set such

that Pr(XXX ∈ D) = 1. Let φ : D → R
n be a function which is differentiable relative to its domain everywhere

in D; for x ∈ D, let T (x) be a derivative of φ at x, and set J(x) = | detT (x)|. Suppose that J(x) 6= 0 for
each x ∈ D, and that XXX has a density function f ; and suppose moreover that 〈Dk〉k∈N is a disjoint sequence
of Borel sets, with union D, such that φk = φ↾Dk is injective for every k. Then φ(XXX) has a density function
g =

∑∞

k=0 gk where

gk(y) =
f(φ−1

k (y))

J(φ−1

k (y))
for y ∈ φ[Dk ∩ dom f ],

= 0 for y ∈ R
n \ φ[Dk].

271K Proposition Let X, Y be two random variables with a joint density function f . Then X ×Y has
a density function h, where

h(u) =
∫∞

−∞

1

|v|f(
u
v , v)dv

whenever this is defined in R.

*271L Proposition Let 〈Xn〉n∈N be a sequence of real-valued random variables converging in measure
to a random variable X. Writing FXn

, FX for the distribution functions of Xn, X respectively,

FX(a) = infb>a lim infn→∞ FXn
(b) = infb>a lim supn→∞ FXn

(b)

for every a ∈ R.

Version of 3.4.09

272 Independence

I introduce the concept of ‘independence’ for families of events, σ-algebras and random variables. The
first part of the section, down to 272G, amounts to an analysis of the elementary relationships between
the three manifestations of the idea. In 272G I give the fundamental result that the joint distribution of a
(finite) independent family of random variables is just the product of the individual distributions. Further
expressions of the connexion between independence and product measures are in 272J, 272M and 272N. I
give a version of the zero-one law (272O), and I end the section with a group of basic results from probability
theory concerning sums and products of independent random variables (272R-272W).

272A Definitions Let (Ω,Σ, µ) be a probability space.

(a) A family 〈Ei〉i∈I in Σ is (stochastically) independent if

µ(Ei1 ∩ Ei2 ∩ . . . ∩ Ein) =
∏n

j=1 µEij

whenever i1, . . . , in are distinct members of I.

c© 2000 D. H. Fremlin
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272I Independence 5

(b) A family 〈Σi〉i∈I of σ-subalgebras of Σ is (stochastically) independent if

µ(E1 ∩ E2 ∩ . . . ∩ En) =
∏n

j=1 µEj

whenever i1, . . . , in are distinct members of I and Ej ∈ Σij for every j ≤ n.

(c) A family 〈Xi〉i∈I of real-valued random variables on Ω is (stochastically) independent if

Pr(Xij ≤ αj for every j ≤ n) =
∏n

j=1 Pr(Xij ≤ αj)

whenever i1, . . . , in are distinct members of I and α1, . . . , αn ∈ R.

272C The σ-subalgebra defined by a random variable Let (Ω,Σ, µ) be a probability space and X
a real-valued random variable defined on Ω. Write B for the σ-algebra of Borel subsets of R, and ΣX for

{X−1[F ] : F ∈ B} ∪ {(Ω \ domX) ∪X−1[F ] : F ∈ B}.

Then ΣX is a σ-algebra of subsets of Ω.
ΣX is the smallest σ-algebra of subsets of Ω, containing domX, for which X is measurable. ΣX is a

subalgebra of Σ̂, where Σ̂ is the domain of the completion of µ.

272D Proposition Let (Ω,Σ, µ) be a probability space and 〈Xi〉i∈I a family of real-valued random
variables on Ω. For each i ∈ I, let Σi be the σ-algebra defined by Xi. Then the following are equiveridical:

(i) 〈Xi〉i∈I is independent;
(ii) whenever i1, . . . , in are distinct members of I and F1, . . . , Fn are Borel subsets of R, then

Pr(Xij ∈ Fj for every j ≤ n) =
∏n

j=1 Pr(Xij ∈ Fj);

(iii) whenever 〈Fi〉i∈I is a family of Borel subsets of R, and {i : Fi 6= R} is finite, then

µ̂
(
⋂

i∈I(X
−1
i [Fi] ∪ (Ω \ domXi))

)

=
∏

i∈I Pr(Xi ∈ Fi),

where µ̂ is the completion of µ;
(iv) 〈Σi〉i∈I is independent with respect to µ̂.

272E Corollary Let 〈Xi〉i∈I be an independent family of real-valued random variables, and 〈hi〉i∈I any
family of Borel measurable functions from R to R. Then 〈hi(Xi)〉i∈I is independent.

272F Proposition Let (Ω,Σ, µ) be a probability space, and 〈Ei〉i∈I a family in Σ. Set Σi = {∅, Ei,Ω \
Ei,Ω}, the (σ-)algebra of subsets of Ω generated by Ei, and Xi = χEi, the indicator function of Ei. Then
the following are equiveridical:

(i) 〈Ei〉i∈I is independent;
(ii) 〈Σi〉i∈I is independent;
(iii) 〈Xi〉i∈I is independent.

272G Distributions of independent random variables: Theorem LetXXX = (X1, . . . , Xn) be a finite
family of real-valued random variables on a probability space. Let νXXX be the corresponding distribution on
R

n. Then the following are equiveridical:
(i) X1, . . . , Xn are independent;
(ii) νXXX can be expressed as a product of n probability measures ν1, . . . , νn, one for each factor R of Rn;
(iii) νXXX is the product measure of νX1

, . . . , νXn
, writing νXi

for the distribution of the random variable
Xi.

272H Corollary Suppose that 〈Xi〉i∈I is an independent family of real-valued random variables on a
probability space (Ω,Σ, µ), and that for each i ∈ I we are given another real-valued random variable Yi on
Ω such that Yi =a.e. Xi. Then 〈Yi〉i∈I is independent.

272I Corollary Suppose that X1, . . . , Xn are independent real-valued random variables with density
functions f1, . . . , fn. Then XXX = (X1, . . . , Xn) has a density function f given by setting f(x) =

∏n
i=1 fi(ξi)

whenever x = (ξ1, . . . , ξn) ∈
∏

i≤n dom(fi) ⊆ R
n.

D.H.Fremlin



6 Probability theory 272J

272J Proposition Let (Ω,Σ, µ) be a complete probability space, and 〈Σi〉i∈I a family of σ-subalgebras
of Σ. For each i ∈ I let µi be the restriction of µ to Σi, and let (ΩI ,Λ, λ) be the product probability space
of the family 〈(Ω,Σi, µi)〉i∈I . Define φ : Ω → ΩI by setting φ(ω)(i) = ω whenever ω ∈ Ω and i ∈ I. Then φ
is inverse-measure-preserving iff 〈Σi〉i∈I is independent.

272K Proposition Let (Ω,Σ, µ) be a probability space and 〈Σi〉i∈I an independent family of σ-subalgebras

of Σ. Let 〈J(s)〉s∈S be a disjoint family of subsets of I, and for each s ∈ S let Σ̃s be the σ-algebra of subsets

of Ω generated by
⋃

i∈J(s) Σi. Then 〈Σ̃s〉s∈S is independent.

272L Corollary Let X,X1, . . . , Xn be independent real-valued random variables and h : Rn → R a
Borel measurable function. Then X and h(X1, . . . , Xn) are independent.

272M Products of probability spaces and independent families of random variables: Propo-
sition Let 〈(Ωi,Σi, µi)〉i∈I be a family of probability spaces, and (Ω,Σ, µ) their product.

(a) For each i ∈ I write Σ̃i = {π−1
i [E] : E ∈ Σi}, where πi : Ω → Ωi is the coordinate map. Then 〈Σ̃i〉i∈I

is an independent family of σ-subalgebras of Σ.
(b) For each i ∈ I let 〈Xij〉j∈J(i) be an independent family of real-valued random variables on Ωi, and

for i ∈ I, j ∈ J(i) write X̃ij(ω) = Xij(ω(i)) for those ω ∈ Ω such that ω(i) ∈ domXij . Then 〈X̃ij〉i∈I,j∈J(i)

is an independent family of random variables, and each X̃ij has the same distribution as the corresponding
Xij .

272N Proposition Let (Ω,Σ, µ) be a complete probability space, and 〈Ei〉i∈I an independent family in
Σ such that µEi =

1
2 for every i ∈ I. Define φ : Ω → {0, 1}I by setting φ(ω)(i) = 1 if ω ∈ Ei, 0 if ω ∈ Ω\Ei.

Then φ is inverse-measure-preserving for the usual measure λ on {0, 1}I .

272O Tail σ-algebras and the zero-one law: Proposition Let (Ω,Σ, µ) be a probability space and
〈Σn〉n∈N an independent sequence of σ-subalgebras of Σ. Let Σ∗

n be the σ-algebra generated by
⋃

m≥n Σm

for each n, and set Σ∗
∞ =

⋂

n∈N
Σ∗

n. Then µE is either 0 or 1 for every E ∈ Σ∗
∞.

272P Corollary Let (Ω,Σ, µ) be a probability space, and 〈Xn〉n∈N an independent sequence of real-
valued random variables on Ω. Then

lim supn→∞

1

n+1
(X0 + . . .+Xn)

is almost everywhere constant.

*272Q Theorem Let (Ω,Σ, µ) be a probability space, and 〈Σi〉i∈I an independent family of σ-subalgebras
of Σ. Let E ⊆ Σ be a family of measurable sets, and T the σ-algebra generated by E . Then there
is a set J ⊆ I such that #(I \ J) ≤ max(ω,#(E)) and T, 〈Σj〉j∈J are independent, in the sense that
µ(F ∩

⋂

r≤nEr) = µF ·
∏n

r=1 µEr whenever F ∈ T, j1, . . . , jr are distinct members of J and Er ∈ Σjr for
each r ≤ n.

272R Proposition Let X, Y be independent real-valued random variables with finite expectation. Then
E(X × Y ) exists and is equal to E(X)E(Y ).

272S Bienaymé’s Equality Let X1, . . . , Xn be independent real-valued random variables. Then
Var(X1 + . . .+Xn) = Var(X1) + . . .+Var(Xn).

272T The distribution of a sum of independent random variables: Theorem Let X, Y be
independent real-valued random variables on a probability space (Ω,Σ, µ), with distributions νX , νY . Then
the distribution of X + Y is the convolution νX ∗ νY .

Measure Theory (abridged version)



273E The strong law of large numbers 7

272U Corollary Suppose that X and Y are independent real-valued random variables, and that they
have densities f and g. Then the convolution f ∗ g is a density function for X + Y .

272V Etemadi’s lemma Let X0, . . . , Xn be independent real-valued random variables. For m ≤ n, set
Sm =

∑m
i=0Xi. Then

Pr(supm≤n |Sm| ≥ 3γ) ≤ 3maxm≤n Pr(|Sm| ≥ γ)

for every γ > 0.

*272W Theorem Let X0, . . . , Xn be independent real-valued random variables such that 0 ≤ Xi ≤ 1
a.e. for every i. Set S = 1

n+1

∑n
i=0Xi and a = E(S). Then

Pr(S − a ≥ c) ≤ exp(−2(n+ 1)c2)

for every c ≥ 0.

Version of 2.12.09

273 The strong law of large numbers

I come now to the first of the three main theorems of this chapter. Perhaps I should call it a ‘principle’,
rather than a ‘theorem’, as I shall not attempt to enunciate any fully general form, but will give three
theorems (273D, 273H, 273I), with a variety of corollaries, each setting out conditions under which the
averages of a sequence of independent random variables will almost surely converge. At the end of the
section (273N) I add a result on norm-convergence of averages.

273A Lemma Let 〈En〉n∈N be a sequence of measurable sets in a measure space (Ω,Σ, µ), and suppose
that

∑∞

n=0 µEn <∞. Then {n : ω ∈ En} is finite for almost every ω ∈ Ω.

273B Lemma Let 〈Xn〉n∈N be an independent sequence of real-valued random variables, and set Sn =
∑n

i=0Xi for each n ∈ N.
(a) If 〈Sn〉n∈N is convergent in measure, then it is convergent almost everywhere.
(b) In particular, if E(Xn) = 0 for every n and

∑∞

n=0 E(X
2
n) < ∞, then

∑∞

n=0Xn is defined, and finite,
almost everywhere.

273C Lemma (a) If limn→∞ xn = x, then limn→∞
1

n+1

∑n
i=0 xi = x.

(b) Let 〈xn〉n∈N be such that
∑∞

i=0 xi is defined in R, and 〈bn〉n∈N a non-decreasing sequence in [0,∞[

diverging to ∞. Then limn→∞
1

bn

∑n
k=0 bkxk = 0.

273D The strong law of large numbers: first form Let 〈Xn〉n∈N be an independent sequence of
real-valued random variables, and suppose that 〈bn〉n∈N is a non-decreasing sequence in ]0,∞[, diverging to

∞, such that
∑∞

n=0
1

b2n
Var(Xn) <∞. Then

limn→∞
1

bn

∑n
i=0(Xi − E(Xi)) = 0

almost everywhere.

273E Corollary Let 〈Xn〉n∈N be an independent sequence of random variables such that E(Xn) = 0 for
every n and supn∈N E(X2

n) <∞. Then

limn→∞
1

bn
(X0 + . . .+Xn) = 0

D.H.Fremlin



8 Probability theory 273E

almost everywhere whenever 〈bn〉n∈N is a non-decreasing sequence of strictly positive numbers and
∑∞

n=0
1

b2n
is finite. In particular,

limn→∞
1

n+1
(X0 + . . .+Xn) = 0

almost everywhere.

273F Corollary Let 〈En〉n∈N be an independent sequence of measurable sets in a probability space
(Ω,Σ, µ). and suppose that

limn→∞
1

n+1

∑n
i=0 µEi = c.

Then

limn→∞
1

n+1
#({i : i ≤ n, ω ∈ Ei}) = c

for almost every ω ∈ Ω.

273G Corollary Let µ be the usual measure on PN. Then for µ-almost every set a ⊆ N,

limn→∞
1

n+1
#(a ∩ {0, . . . , n}) = 1

2 .

273H Strong law of large numbers: second form Let 〈Xn〉n∈N be an independent sequence of
real-valued random variables, and suppose that supn∈N E(|Xn|

1+δ) <∞ for some δ > 0. Then

limn→∞
1

n+1

∑n
i=0(Xi − E(Xi)) = 0

almost everywhere.

273I Strong law of large numbers: third form Let 〈Xn〉n∈N be an independent sequence of real-
valued random variables with finite expectation, and suppose that they are identically distributed, that
is, all have the same distribution. Then

limn→∞
1

n+1

∑n
i=0(Xi − E(Xi)) = 0

almost everywhere.

273J Corollary Let (Ω,Σ, µ) be a probability space. If f is a real-valued function such that
∫

fdµ is
defined in [−∞,∞], then

limn→∞
1

n+1

∑n
i=0 f(ωi) =

∫

fdµ

for λ-almost every ωωω = 〈ωn〉n∈N ∈ ΩN, where λ is the product measure on ΩN.

273K Borel-Cantelli lemma Let (Ω,Σ, µ) be a probability space and 〈En〉n∈N a sequence of measurable
subsets of Ω such that

∑∞

n=0 µEn = ∞ and µ(Em ∩En) ≤ µEm · µEn whenever m 6= n. Then almost every
point of Ω belongs to infinitely many of the En.

273L Example There is an independent sequence 〈Xn〉n∈N of non-negative random variables such that
limn→∞ E(Xn) = 0 but

lim supn→∞

1

n+1

∑∞

i=0Xi − E(Xi) = ∞,

lim infn→∞
1

n+1

∑∞

i=0Xi − E(Xi) = 0

almost everywhere.
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274C The central limit theorem 9

*273M Lemma For any p ∈ ]1,∞[ and ǫ > 0, there is a δ > 0 such that ‖S+X‖p ≤ 1+ǫ‖X‖p whenever
S and X are independent random variables, ‖S‖p = 1, ‖X‖p ≤ δ and E(X) = 0.

273N Theorem Let 〈Xn〉n∈N be an independent sequence of real-valued random variables with zero
expectation, and set Yn = 1

n+1 (X0 + . . .+Xn) for each n ∈ N.

(a) If 〈Xn〉n∈N is uniformly integrable, then limn→∞ ‖Yn‖1 = 0.
*(b) If p ∈ ]1,∞[ and supn∈N ‖Xn‖p <∞, then limn→∞ ‖Yn‖p = 0.

Version of 13.4.10

274 The central limit theorem

The second of the great theorems to which this chapter is devoted is of a new type. It is a limit theorem,
but the limit involved is a limit of distributions, not of functions (as in the strong limit theorem above or the
martingale theorem below), nor of equivalence classes of functions (as in Chapter 24). I give three forms of
the theorem, in 274I-274K, all drawn as corollaries of Theorem 274G; the proof is spread over 274C-274G.
In 274A-274B and 274M I give the most elementary properties of the normal distribution.

274A The normal distribution (a) If we set

µGE =
1√
2π

∫

E
e−x2/2dx

for every Lebesgue measurable set E, µG is a Radon probability measure; we call it the standard normal
distribution. The corresponding distribution function is

Φ(a) =
1√
2π

∫ a

−∞
e−x2/2dx

for a ∈ R; for the rest of this section I will reserve the symbol Φ for this function.

(b) A random variable X is standard normal if its distribution is µG.

(c) If X is a standard normal random variable, then

E(X) =
1√
2π

∫∞

−∞
xe−x2/2dx = 0,

Var(X) =
1√
2π

∫∞

−∞
x2e−x2/2dx = 1.

(d) More generally, a random variable X is normal if there are a ∈ R and σ > 0 such that Z = (X−a)/σ

is standard normal. In this case E(X) = a, Var(X) = σ2. x 7→
1

σ
√
2π
e−(x−a)2/2σ2

is a density function for

X. Conversely, a random variable with such a density function is normal, with expectation a and variance
σ2. The normal distributions are the distributions with these density functions.

(e) If X is normal, so is a+ bX for any a ∈ R and b ∈ R \ {0}.

274B Proposition Let X1, . . . , Xn be independent normal random variables. Then Y = X1 + . . .+Xn

is normal, with E(Y ) = E(X1) + . . .+ E(Xn) and Var(Y ) = Var(X1) + . . .+Var(Xn).

274C Lemma Let U0, . . . , Un, V0, . . . , Vn be independent real-valued random variables and h : R → R

a bounded Borel measurable function. Then

|E
(

h(
∑n

i=0 Ui)− h(
∑n

i=0 Vi)
)

| ≤
∑n

i=0 supt∈R |E
(

h(t+ Ui)− h(t+ Vi)
)

|.

c© 1995 D. H. Fremlin
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274D Lemma Let h : R → R be a bounded three-times-differentiable function such that M2 =
supx∈R |h′′(x)|, M3 = supx∈R |h′′′(x)| are both finite. Let ǫ > 0.

(a) Let U be a real-valued random variable with zero expectation and finite variance σ2. Then for any
t ∈ R we have

|E(h(t+ U))− h(t)−
σ2

2
h′′(t)| ≤

1

6
ǫM3σ

2 +M2E(ψǫ(U))

where ψǫ(x) = 0 if |x| ≤ ǫ, x2 if |x| > ǫ.
(b) Let U0, . . . , Un, V0, . . . , Vn be independent random variables with finite variances, and suppose that

E(Ui) = E(Vi) = 0 and Var(Ui) = Var(Vi) = σ2
i for every i ≤ n. Then

|E
(

h(

n
∑

i=0

Ui)− h(

n
∑

i=0

Vi)
)

|

≤
1

3
ǫM3

n
∑

i=0

σ2
i +M2

n
∑

i=0

E
(

ψǫ(Ui)
)

+M2

n
∑

i=0

E
(

ψǫ(Vi)
)

.

274E Lemma For any ǫ > 0, there is a three-times-differentiable function h : R → [0, 1], with continuous
third derivative, such that h(x) = 1 for x ≤ −ǫ and h(x) = 0 for x ≥ ǫ.

274F Lindeberg’s theorem Let ǫ > 0. Then there is a δ > 0 such that whenever X0, . . . , Xn are
independent real-valued random variables such that

E(Xi) = 0 for every i ≤ n,

∑n
i=0 Var(Xi) = 1,

∑n
i=0 E(ψδ(Xi)) ≤ δ

(writing ψδ(x) = 0 if |x| ≤ δ, x2 if |x| > δ), then
∣

∣Pr(
∑n

i=0Xi ≤ a)− Φ(a)
∣

∣ ≤ ǫ

for every a ∈ R.

274G Central Limit Theorem Let 〈Xn〉n∈N be an independent sequence of random variables, all with

zero expectation and finite variance; write sn =
√

∑n
i=0 Var(Xi) for each n. Suppose that

limn→∞
1

s2n

∑n
i=0 E(ψδsn(Xi)) = 0 for every δ > 0,

writing ψδ(x) = 0 if |x| ≤ δ, x2 if |x| > δ. Set

Sn =
1

sn
(X0 + . . .+Xn)

for each n ∈ N such that sn > 0. Then

limn→∞ Pr(Sn ≤ a) = Φ(a)

uniformly for a ∈ R.

274H Remarks (a) The condition

limn→∞
1

s2n

∑n
i=0 E(ψǫsn(Xi)) = 0 for every ǫ > 0

is called Lindeberg’s condition.

(b) Lindeberg’s condition is necessary as well as sufficient, in the following sense. Suppose that 〈Xn〉n∈N

is an independent sequence of real-valued random variables with zero expectation and finite variance; write

Measure Theory (abridged version)



*274M The central limit theorem 11

σn =
√

Var(Xn), sn =
√

∑n
i=0 Var(Xi) for each n. Suppose that limn→∞ sn = ∞, limn→∞

σn

sn
= 0 and that

limn→∞ Pr(Sn ≤ a) = Φ(a) for each a ∈ R, where Sn =
1

sn
(X0 + . . .+Xn). Then

limn→∞
1

s2n

∑n
i=0 E(ψǫsn(Xi)) = 0

for every ǫ > 0.

274I Corollary Let 〈Xn〉n∈N be an independent sequence of real-valued random variables, all with the
same distribution, and suppose that their common expectation is 0 and their common variance is finite and
not zero. Write σ for the common value of

√

Var(Xn), and set

Sn =
1

σ
√
n+1

(X0 + . . .+Xn)

for each n ∈ N. Then

limn→∞ Pr(Sn ≤ a) = Φ(a)

uniformly for a ∈ R.

274J Corollary Let 〈Xn〉n∈N be an independent sequence of real-valued random variables with zero
expectation, and suppose that {X2

n : n ∈ N} is uniformly integrable and that

lim infn→∞
1

n+1

∑n
i=0 Var(Xi) > 0.

Set

sn =
√

∑n
i=0 Var(Xi), Sn =

1

sn
(X0 + . . .+Xn)

for large n ∈ N. Then

limn→∞ Pr(Sn ≤ a) = Φ(a)

uniformly for a ∈ R.

274K Corollary Let 〈Xn〉n∈N be an independent sequence of real-valued random variables with zero
expectation, and suppose that

(i) there is some δ > 0 such that supn∈N E(|Xn|
2+δ) <∞,

(ii) lim infn→∞
1

n+1

∑n
i=0 Var(Xi) > 0.

Set sn =
√

∑n
i=0 Var(Xi) and

Sn =
1

sn
(X0 + . . .+Xn)

for large n ∈ N. Then

limn→∞ Pr(Sn ≤ a) = Φ(a)

uniformly for a ∈ R.

*274M Lemma (a)
∫∞

x
e−t2/2dt ≤

1

x
e−x2/2 for every x > 0.

(b)
∫∞

x
e−t2/2dt ≥

1

2x
e−x2/2 for every x ≥ 1.

D.H.Fremlin
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Version of 3.12.12

275 Martingales

This chapter so far has been dominated by independent sequences of random variables. I now turn to
another of the remarkable concepts to which probabilistic intuitions have led us. Here we study evolving
systems, in which we gain progressively more information as time progresses. I give the basic theorems
on pointwise convergence of martingales (275F-275H, 275K) and a very brief account of ‘stopping times’
(275L-275P).

275A Definition Let (Ω,Σ, µ) be a probability space with completion (Ω, Σ̂, µ̂), and 〈Σn〉n∈N a non-

decreasing sequence of σ-subalgebras of Σ̂. A martingale adapted to 〈Σn〉n∈N is a sequence 〈Xn〉n∈N of
integrable real-valued random variables on Ω such that (i) domXn ∈ Σn and Xn is Σn-measurable for each
n ∈ N (ii) whenever m ≤ n ∈ N and E ∈ Σm then

∫

E
Xn =

∫

E
Xm.

275B Examples (a) Let (Ω,Σ, µ) be a probability space and 〈Σn〉n∈N a non-decreasing sequence of
σ-subalgebras of Σ. Let X be any real-valued random variable on Ω with finite expectation, and for each
n ∈ N let Xn be a conditional expectation of X on Σn. Subject to the conditions that domXn ∈ Σn and
Xn is actually Σn-measurable for each n, 〈Xn〉n∈N will be a martingale adapted to 〈Σn〉n∈N.

(b) Let (Ω,Σ, µ) be a probability space and 〈Xn〉n∈N an independent sequence of random variables all

with zero expectation. For each n ∈ N let Σ̃n be the σ-algebra generated by
⋃

i≤n ΣXi
, writing ΣXi

for the

σ-algebra defined by Xi, and set Sn = X0 + . . .+Xn. Then 〈Sn〉n∈N is a martingale adapted to Σ̃n.

(c) Let (Ω,Σ, µ) be a probability space and 〈Xn〉n∈N an independent sequence of random variables all

with expectation 1. For each n ∈ N let Σ̃n be the σ-algebra generated by
⋃

i≤n ΣXi
, writing ΣXi

for the

σ-algebra defined by Xi, and set Wn = X0 × . . .×Xn. Then 〈Wn〉n∈N is a martingale adapted to 〈Σ̃n〉n∈N.

275C Remarks (c) The concept of ‘martingale’ can readily be extended to other index sets than N;
indeed, if I is any partially ordered set, we can say that 〈Xi〉i∈I is a martingale on (Ω,Σ, µ) adapted to

〈Σi〉i∈I if (i) each Σi is a σ-subalgebra of Σ̂ (ii) each Xi is an integrable real-valued Σi-measurable random
variable such that domXi ∈ Σi (iii) whenever i ≤ j in I, then Σi ⊆ Σj and

∫

E
Xi =

∫

E
Xj for every E ∈ Σi.

(d) Given just a sequence 〈Xn〉n∈N of integrable real-valued random variables on a probability space
(Ω,Σ, µ), we can say simply that 〈Xn〉n∈N is a martingale on (Ω,Σ, µ) if there is some non-decreasing

sequence 〈Σn〉n∈N of σ-subalgebras of Σ̂ such that 〈Xn〉n∈N is a martingale adapted to 〈Σn〉n∈N. If we write

Σ̃n for the σ-algebra generated by
⋃

i≤n ΣXi
, where ΣXi

is the σ-algebra defined by Xi, then 〈Xn〉n∈N is a

martingale iff it is a martingale adapted to 〈Σ̃n〉n∈N.

(e) Continuing from (d), if 〈Xn〉n∈N is a martingale on (Ω,Σ, µ), and X ′
n =a.e. Xn for every n, then

〈X ′
n〉n∈N is a martingale on (Ω,Σ, µ). Consequently we have a concept of ‘martingale’ as a sequence in

L1(µ), saying that a sequence 〈X•

n〉n∈N in L1(µ) is a martingale iff 〈Xn〉n∈N is a martingale.

275D Lemma Let (Ω,Σ, µ) be a probability space, and 〈Xn〉n∈N a martingale on Ω. Fix n ∈ N and set
X∗ = max(X0, . . . , Xn). Then for any ǫ > 0,

Pr(X∗ ≥ ǫ) ≤
1

ǫ
E(X+

n ),

writing X+
n = max(0, Xn).

275E Up-crossings Let x0, . . . , xn be any list of real numbers, and a < b in R. The number of up-
crossings from a to b in the list x0, . . . , xn is the number of pairs (j, k) such that 0 ≤ j < k ≤ n, xj ≤ a,
xk ≥ b and a < xi < b for j < i < k.

c© 2001 D. H. Fremlin
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275F Lemma Let (Ω,Σ, µ) be a probability space and 〈Xn〉n∈N a martingale on Ω. Suppose that n ∈ N

and that a < b in R. For each ω ∈
⋂

i≤n domXi, let U(ω) be the number of up-crossings from a to b in the

list X0(ω), . . . , Xn(ω). Then

E(U) ≤
1

b−a
E((Xn −X0)

+),

writing (Xn −X0)
+(ω) = max(0, Xn(ω)−X0(ω)) for ω ∈ domXn ∩ domX0.

275G Doob’s Martingale Convergence Theorem Let 〈Xn〉n∈N be a martingale on a probability
space (Ω,Σ, µ), and suppose that supn∈N E(|Xn|) < ∞. Then limn→∞Xn(ω) is defined in R for almost
every ω in Ω.

275H Theorem Let (Ω,Σ, µ) be a probability space, and 〈Σn〉n∈N a non-decreasing sequence of σ-
subalgebras of Σ. Let 〈Xn〉n∈N be a martingale adapted to 〈Σn〉n∈N. Then the following are equiveridical:

(i) there is a random variable X, of finite expectation, such that Xn is a conditional expectation of X
on Σn for every n;

(ii) {Xn : n ∈ N} is uniformly integrable;
(iii) X∞(ω) = limn→∞Xn(ω) is defined in R for almost every ω, and E(|X∞|) = limn→∞ E(|Xn|) <∞.

275I Theorem Let (Ω,Σ, µ) be a probability space, and 〈Σn〉n∈N a non-decreasing sequence of σ-
subalgebras of Σ; write Σ∞ for the σ-algebra generated by

⋃

n∈N
Σn. Let X be any real-valued random

variable on Ω with finite expectation, and for each n ∈ N let Xn be a conditional expectation of X on
Σn. Then X∞(ω) = limn→∞Xn(ω) is defined almost everywhere; limn→∞ E(|X∞ −Xn|) = 0, and X∞ is a
conditional expectation of X on Σ∞.

*275J Proposition Let 〈(Ωn,Σn, µn)〉n∈N be a sequence of probability spaces with product (Ω,Σ, µ).
Let X be a real-valued random variable on Ω with finite expectation. For each n ∈ N define Xn by setting

Xn(ωωω) =
∫

X(ω0, . . . , ωn, ξn+1, . . . )d(ξn+1, . . . )

wherever this is defined, where I write ‘
∫

. . . d(ξn+1, . . . )’ to mean integration with respect to the product
measure λ′n on

∏

i≥n+1 Ωi. Then X(ωωω) = limn→∞Xn(ωωω) for almost every ωωω = (ω0, ω1, . . . ) in Ω, and

limn→∞ E(|X −Xn|) = 0.

275K Reverse martingales: Theorem Let (Ω,Σ, µ) be a probability space, and 〈Σn〉n∈N a non-
increasing sequence of σ-subalgebras of Σ, with intersection Σ∞. Let X be any real-valued random variable
with finite expectation, and for each n ∈ N let Xn be a conditional expectation of X on Σn. Then
X∞ = limn→∞Xn is defined almost everywhere and is a conditional expectation of X on Σ∞.

275L Stopping times: Definition Let (Ω,Σ, µ) be a probability space, with completion (Ω, Σ̂, µ̂), and

〈Σn〉n∈N a non-decreasing sequence of σ-subalgebras of Σ̂. A stopping time adapted to 〈Σn〉n∈N is a
function τ from Ω to N ∪ {∞} such that {ω : τ(ω) ≤ n} ∈ Σn for every n ∈ N.

275M Examples (a) If 〈Xn〉n∈N is a martingale adapted to a sequence 〈Σn〉n∈N of σ-algebras, and Hn

is a Borel subset of Rn+1 for each n, then we have a stopping time τ adapted to 〈Σn〉n∈N defined by the
formula

τ(ω) = inf{n : ω ∈
⋂

i≤n domXi, (X0(ω), . . . , Xn(ω)) ∈ Hn},

setting inf ∅ = ∞. In particular, the formulae

inf{n : Xn(ω) ≥ a}, inf{n : |Xn(ω)| > a}

define stopping times.

(b) Any constant function τ : Ω → N ∪ {∞} is a stopping time. If τ , τ ′ are two stopping times adapted
to the same sequence 〈Σn〉n∈N of σ-algebras, then τ ∧ τ ′ is a stopping time adapted to 〈Σn〉n∈N, setting
(τ ∧ τ ′)(ω) = min(τ(ω), τ ′(ω)) for ω ∈ Ω.

D.H.Fremlin
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275N Lemma Let (Ω,Σ, µ) be a complete probability space, and 〈Σn〉n∈N a non-decreasing sequence of
σ-subalgebras of Σ. Suppose that τ and τ ′ are stopping times on Ω, and 〈Xn〉n∈N a martingale, all adapted
to 〈Σn〉n∈N.

(a) The family

Σ̃τ = {E : E ∈ Σ, E ∩ {ω : τ(ω) ≤ n} ∈ Σn for every n ∈ N}

is a σ-subalgebra of Σ.
(b) If τ(ω) ≤ τ ′(ω) for every ω, then Σ̃τ ⊆ Σ̃τ ′ .
(c) Now suppose that τ is finite almost everywhere. Set

X̃τ (ω) = Xτ(ω)(ω)

whenever τ(ω) <∞ and ω ∈ domXτ(ω). Then dom X̃τ ∈ Σ̃τ and X̃τ is Σ̃τ -measurable.
(d) If τ is essentially bounded, that is, there is some m ∈ N such that τ ≤ m almost everywhere, then

E(X̃τ ) exists and is equal to E(X0).

(e) If τ ≤ τ ′ almost everywhere, and τ ′ is essentially bounded, then X̃τ is a conditional expectation of

X̃τ ′ on Σ̃τ .

275O Proposition Let 〈Xn〉n∈N be a martingale and τ a stopping time, both adapted to the same
sequence 〈Σn〉n∈N of σ-algebras. For each n, set (τ ∧ n)(ω) = min(τ(ω), n) for ω ∈ Ω; then τ ∧ n is a

stopping time, and 〈X̃τ∧n〉n∈N is a martingale adapted to 〈Σ̃τ∧n〉n∈N, defining X̃τ∧n and Σ̃τ∧n as in 275N.

275P Corollary Suppose that (Ω,Σ, µ) is a probability space and 〈Xn〉n∈N is a martingale on Ω such
that W = supn∈N |Xn+1−Xn| is finite almost everywhere and has finite expectation. Then for almost every
ω ∈ Ω, either limn→∞Xn(ω) exists in R or supn∈NXn(ω) = ∞ and infn∈NXn(ω) = −∞.

Version of 16.4.13

276 Martingale difference sequences

Hand in hand with the concept of ‘martingale’ is that of ‘martingale difference sequence’ (276A), a direct
generalization of the notion of ‘independent sequence’. In this section I collect results which can be naturally
expressed in terms of difference sequences, including yet another strong law of large numbers (276C). I end
the section with a proof of Komlós’s theorem (276H).

276A Martingale difference sequences (a) Let us say that if (Ω,Σ, µ) is a probability space, with

completion (Ω, Σ̂, µ̂), and 〈Σn〉n∈N is a non-decreasing sequence of σ-subalgebras of Σ̂, then a martingale
difference sequence adapted to 〈Σn〉n∈N is a sequence 〈Xn〉n∈N of real-valued random variables on
Ω, all with finite expectation, such that (i) domXn ∈ Σn and Xn is Σn-measurable, for each n ∈ N (ii)
∫

E
Xn+1 = 0 whenever n ∈ N and E ∈ Σn.

(b) 〈Xn〉n∈N is a martingale difference sequence adapted to 〈Σn〉n∈N iff 〈
∑n

i=0Xi〉n∈N is a martingale
adapted to 〈Σn〉n∈N.

(c) Just as in 275Cd, we can say that a sequence 〈Xn〉n∈N is in itself a martingale difference sequence
if 〈

∑n
i=0Xi〉n∈N is a martingale.

(d) If 〈Xn〉n∈N is a martingale difference sequence then 〈anXn〉n∈N is a martingale difference sequence
for any real an.

(e) If 〈Xn〉n∈N is a martingale difference sequence and X ′
n =a.e. Xn for every n, then 〈X ′

n〉n∈N is a
martingale difference sequence.

c© 2000 D. H. Fremlin
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276B Proposition Let 〈Xn〉n∈N be a martingale difference sequence such that
∑∞

n=0 E(X
2
n) <∞. Then

∑∞

n=0Xn is defined, and finite, almost everywhere.

276C The strong law of large numbers: fourth form Let 〈Xn〉n∈N be a martingale difference
sequence, and suppose that 〈bn〉n∈N is a non-decreasing sequence in ]0,∞[, diverging to ∞, such that
∑∞

n=0
1

b2n
Var(Xn) <∞. Then

limn→∞
1

bn

∑n
i=0Xi = 0

almost everywhere.

276D Corollary Let 〈Xn〉n∈N be a martingale such that bn = E(X2
n) is finite for each n.

(a) If supn∈N bn is infinite, then limn→∞
1
bn
Xn = 0 a.e.

(b) If supn≥1
1
nbn <∞, then limn→∞

1
nXn = 0 a.e.

276E ‘Impossibility of systems’ (b) If 〈Wn〉n∈N is a martingale difference sequence adapted to
〈Σn〉n∈N, and 〈Zn〉n≥1 is a sequence of random variables such that (i) Zn is Σn−1-measurable (ii) Zn ×Wn

has finite expectation for each n ≥ 1, then W0, Z1 ×W1, Z2 ×W2, . . . is a martingale difference sequence
adapted to 〈Σn〉n∈N.

*276F Lemma Let (Ω,Σ, µ) be a probability space, and 〈Σn〉n∈N a non-decreasing sequence of σ-
subalgebras of Σ. Suppose that 〈Xn〉n∈N is a sequence of random variables on Ω such that (i) Xn is Σn-

measurable for each n (ii)
∑∞

n=0
1

(n+1)2
E(X2

n) is finite (iii) limn→∞X ′
n = 0 a.e., where X ′

n is a conditional

expectation of Xn on Σn−1 for each n ≥ 1. Then limn→∞
1

n+1

∑n
k=0Xk = 0 a.e.

*276G Lemma Let (Ω,Σ, µ) be a probability space, and 〈Xn〉n∈N a sequence of random variables on Ω
such that supn∈N E(|Xn|) is finite. For k ∈ N and x ∈ R set Fk(x) = x if |x| ≤ k, 0 otherwise. Let F be an
ultrafilter on N.

(a) For each k ∈ N there is a measurable function Yk : Ω → [−k, k] such that limn→F

∫

E
Fk(Xn) =

∫

E
Yk

for every E ∈ Σ.
(b) limn→F E((Fk(Xn)− Yk)

2) ≤ limn→F E(Fk(Xn)
2) for each k.

(c) Y = limk→∞ Yk is defined a.e. and limk→∞ E(|Y − Yk|) = 0.

*276H Komlós’s theorem Let (Ω,Σ, µ) be any measure space, and 〈Xn〉n∈N a sequence of integrable
real-valued functions on Ω such that supn∈N

∫

|Xn| is finite. Then there are a subsequence 〈X ′
n〉n∈N of

〈Xn〉n∈N and an integrable function Y such that Y =a.e. limn→∞
1

n+1

∑n
i=0X

′′
i whenever 〈X ′′

n〉n∈N is a

subsequence of 〈X ′
n〉n∈N.

Version of 8.4.09

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

272S Distribution of a sum of independent random variables This result, referred to in the 2002
and 2004 editions of Volume 3, and the 2003 and 2006 editions of Volume 4, is now 272T.
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272U Etemadi’s lemma This result, referred to in the 2003 and 2006 editions of Volume 4, is now
272V.

272Yd This exercise, referred to in the 2002 and 2004 editions of Volume 3, is now 272Ye.

273Xh This exercise, referred to in the 2006 edition of Volume 4, is now 273Xi.

276Xe This exercise, referred to in the 2003 and 2006 editions of Volume 4, is now 276Xg.
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