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Chapter 26

Change of Variable in the Integral

I suppose most courses on basic calculus still devote a substantial amount of time to practice in the tech-
niques of integrating standard functions. Surely the most powerful single technique is that of substitution:
replacing

∫

g(y)dy by
∫

g(φ(x))φ′(x)dx for an appropriate function φ. At this level one usually concentrates
on the skills of guessing at appropriate φ and getting the formulae right. I will not address such questions
here, except for rare special cases; in this book I am concerned rather with validating the process. For
functions of one variable, it can usually be justified by an appeal to the Fundamental Theorem of Calculus,
and for any particular case I would normally go first to §225 in the hope that the results there would cover
it. But for functions of two or more variables some much deeper ideas are necessary.

I have already treated the general problem of integration-by-substitution in abstract measure spaces in
§235. There I described conditions under which

∫

g(y)dy =
∫

g(φ(x))J(x)dx for an appropriate function
J . The context there gave very little scope for suggestions as to how to compute J ; at best, it could be
presented as a Radon-Nikodým derivative (235M). In this chapter I give a form of the fundamental theorem
for the case of Lebesgue measure, in which φ is a more or less differentiable function between Euclidean
spaces, and J is a ‘Jacobian’, the modulus of the determinant of the derivative of φ (263D). This necessarily
depends on a serious investigation of the relationship between Lebesgue measure and geometry. The first
step is to establish a form of Vitali’s theorem for r-dimensional space, together with r-dimensional density
theorems; I do this in §261, following closely the scheme of §§221 and 223 above. We need to know quite a
lot about differentiable functions between Euclidean spaces, and it turns out that the theory is intertwined
with that of ‘Lipschitz’ functions; I treat these in §262.

In the next two sections of the chapter, I turn to a separate problem for which some of the same techniques
turn out to be appropriate: the description of surface measure on (smooth) surfaces in Euclidean space,
like the surface of a cone or sphere. I suppose there is no difficulty in forming a robust intuition as to
what is meant by the ‘area’ of such a surface and of suitably simple regions within it, and there is a very
strong presumption that there ought to be an expression for this intuition in terms of measure theory as
presented in this book; but the details are not I think straightforward. The first point to note is that for
any calculation of the area of a region G in a surface S, one would always turn at once to a parametrization
of the region, that is, a bijection φ : D → G from some subset D of Euclidean space. But obviously one
needs to be sure that the result of the calculation is independent of the parametrization chosen, and while it
would be possible to base the theory on results showing such independence directly, that does not seem to
me to be a true reflection of the underlying intuition, which is that the area of simple surfaces, at least, is
something intrinsic to their geometry. I therefore see no acceptable alternative to a theory of ‘r-dimensional
measure’ which can be described in purely geometric terms. This is the burden of §264, in which I give the
definition and most fundamental properties of Hausdorff r-dimensional measure in Euclidean spaces. With
this established, we find that the techniques of §§261-263 are sufficient to relate it to calculations through
parametrizations, which is what I do in §265.

The chapter ends with a brief account of the Brunn-Minkowski inequality (266C), which is an essential
tool for the geometric measure theory of convex sets.
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2 Change of variable in the integral §261 intro.

The main aim of this section is to give r-dimensional versions of Vitali’s theorem and Lebesgue’s Density
Theorem, following ideas already presented in §§221 and 223. I end with a proof that Lebesgue outer
measure can be defined in terms of coverings by balls instead of by intervals (261F).

261B Vitali’s theorem in R
r Let A ⊆ R

r be any set, and I a family of closed non-trivial balls in R
r

such that every point of A is contained in arbitrarily small members of I. Then there is a countable disjoint
set I0 ⊆ I such that µ(A \⋃ I0) = 0.

261C Density Theorem in R
r: integral form Let D be a subset of Rr, and f a real-valued function

which is integrable over D. Then

f(x) = limδ↓0
1

µB(x,δ)

∫

D∩B(x,δ)
fdµ

for almost every x ∈ D.

261D Corollary (a) If D ⊆ R
r is any set, then

limδ↓0
µ∗(D∩B(x,δ))

µB(x,δ)
= 1

for almost every x ∈ D.
(b) If E ⊆ R

r is a measurable set, then

limδ↓0
µ(E∩B(x,δ))

µB(x,δ)
= χE(x)

for almost every x ∈ R
r.

(c) If D ⊆ R
r and f : D → R is any function, then for almost every x ∈ D,

limδ↓0
µ∗({y:y∈D, |f(y)−f(x)|≤ǫ}∩B(x,δ))

µB(x,δ)
= 1

for every ǫ > 0.
(d) If D ⊆ R

r and f : D → R is measurable, then for almost every x ∈ D,

limδ↓0
µ∗({y:y∈D, |f(y)−f(x)|≥ǫ}∩B(x,δ))

µB(x,δ)
= 0

for every ǫ > 0.

261E Theorem Let f be a locally integrable function defined on a conegligible subset of Rr. Then

limδ↓0
1

µB(x,δ)

∫

B(x,δ)
|f(y)− f(x)|dy = 0

for almost every x ∈ R
r.

Remark The set

{x : x ∈ dom f, limδ↓0
1

µB(x,δ)

∫

B(x,δ)
|f(y)− f(x)|dy = 0}

is sometimes called the Lebesgue set of f .

261F Proposition Let A ⊆ R
r be any set, and ǫ > 0. Then there is a sequence 〈Bn〉n∈N of closed balls

in R
r, all of radius at most ǫ, such that A ⊆ ⋃

n∈N
Bn and

∑∞
n=0 µBn ≤ µ∗A+ǫ. Moreover, we may suppose

that the balls in the sequence whose centres do not lie in A have measures summing to at most ǫ.
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262Ha Lipschitz and differentiable functions 3

In preparation for the main work of this chapter in §263, I devote a section to two important classes of
functions between Euclidean spaces. What we really need is the essentially elementary material down to
262I, together with the technical lemma 262M and its corollaries. Theorem 262Q is not relied on in this
volume, though I believe that it makes the patterns which will develop more natural and comprehensible.

As in §261, r (and here also s) will be a strictly positive integer, and ‘measurable’, ‘negligible’, ‘integrable’
will refer to Lebesgue measure unless otherwise stated.

262A Lipschitz functions Suppose that φ : D → R
s is a function, where D ⊆ R

r. φ is γ-Lipschitz,
where γ ∈ [0,∞[, if

‖φ(x)− φ(y)‖ ≤ γ‖x− y‖
for all x, y ∈ D, writing ‖x‖ =

√

ξ21 + . . .+ ξ2r if x = (ξ1, . . . , ξr) ∈ R
r, ‖z‖ =

√

ζ21 + . . .+ ζ2s if z =
(ζ1, . . . , ζs) ∈ R

s. In this case, γ is a Lipschitz constant for φ.
A Lipschitz function is a function φ which is γ-Lipschitz for some γ ≥ 0. Evidently a Lipschitz

function is (uniformly) continuous.

262B Lemma Let D ⊆ R
r be a set and φ : D → R

s a function.
(a) φ is Lipschitz iff φi : D → R is Lipschitz for every i, writing φ(x) = (φ1(x), . . . , φs(x)) for every

x ∈ D = domφ ⊆ R
r.

(b) In this case, there is a Lipschitz function φ̃ : Rr → R
s extending φ.

(c) If r = s = 1 and D = [a, b] is an interval, then φ is Lipschitz iff it is absolutely continuous and has a
bounded derivative.

262D Proposition If φ : D → R
r is a γ-Lipschitz function, where D ⊆ R

r, then µ∗φ[A] ≤ γrµ∗A for
every A ⊆ D, where µ is Lebesgue measure on R

r. In particular, φ[D ∩ A] is negligible for every negligible
set A ⊆ R

r.

262E Corollary Let φ : D → R
r be an injective Lipschitz function, where D ⊆ R

r, and f a measurable
function from a subset of Rr to R.

(a) If φ−1 is defined almost everywhere in a subset H of Rr and f is defined almost everywhere in R
r,

then fφ−1 is defined almost everywhere in H.
(b) If E ⊆ D is Lebesgue measurable then φ[E] is measurable.
(c) If D is measurable then fφ−1 is measurable.

262F Differentiability: Definitions Suppose that φ is a function from a subset D = domφ of Rr to
R

s.

(a) φ is differentiable at x ∈ D if there is a real s× r matrix T such that

limy→x
‖φ(y)−φ(x)−T (y−x)‖

‖y−x‖
= 0;

in this case we may write T = φ′(x).

(b) I will say that φ is differentiable relative to its domain at x, and that T is a derivative of φ at
x, if x ∈ D and for every ǫ > 0 there is a δ > 0 such that ‖φ(y) − φ(x) − T (y − x)‖ ≤ ǫ‖y − x‖ for every
y ∈ B(x, δ) ∩D.

262H The norm of a matrix Some of the calculations below will rely on the notion of ‘norm’ of a
matrix. The one I will use is the ‘operator norm’, defined by saying

‖T‖ = sup{‖Tx‖ : x ∈ R
r, ‖x‖ ≤ 1}

for any s× r matrix T .

(a) If T = 〈τij〉i≤s,j≤r then ‖T‖ ≤ r
√
smaxi≤s,j≤r |τij |.

D.H.Fremlin



4 Change of variable in the integral 262Hb

(b) |τij | ≤ ‖T‖ for all i, j.

262I Lemma Let φ : D → R
s be a function, where D ⊆ R

r. For i ≤ s let φi : D → R be its ith
coordinate, so that φ(x) = (φ1(x), . . . , φs(x)) for x ∈ D.

(a) If φ is differentiable relative to its domain at x ∈ D, then φ is continuous at x.
(b) If x ∈ D, then φ is differentiable relative to its domain at x iff each φi is differentiable relative to its

domain at x.
(c) If φ is differentiable at x ∈ D, then all the partial derivatives ∂φi

∂ξj
of φ are defined at x, and the

derivative of φ at x is the matrix 〈∂φi

∂ξj
(x)〉i≤s,j≤r.

(d) If all the partial derivatives ∂φi

∂ξj
, for i ≤ s and j ≤ r, are defined in a neighbourhood of x ∈ D and

are continuous at x, then φ is differentiable at x.

262L Lemma Suppose that D ⊆ R
r and x ∈ R

r are such that limδ↓0
µ∗(D∩B(x,δ))

µB(x,δ)
= 1. Then

limz→0

ρ(x+z,D)

‖z‖
= 0, where ρ(x+ z,D) = infy∈D ‖x+ z − y‖.

262M Lemma Let φ be a function from a subset D of Rr to R
s which is differentiable at each point

of its domain. For each x ∈ D let T (x) be a derivative of φ. Let Msr be the set of s × r matrices and
ζ : A → ]0,∞[ a strictly positive function, where A ⊆ Msr is a non-empty set containing T (x) for every
x ∈ D. Then we can find sequences 〈Dn〉n∈N, 〈Tn〉n∈N such that

(i) 〈Dn〉n∈N is a partition of D into sets which are relatively measurable in D;
(ii) Tn ∈ A for every n;
(iii) ‖φ(x)− φ(y)− Tn(x− y)‖ ≤ ζ(Tn)‖x− y‖ for every n ∈ N and x, y ∈ Dn;
(iv) ‖T (x)− Tn‖ ≤ ζ(Tn) for every x ∈ Dn.

262N Corollary Let φ be a function from a subset D of Rr to R
s, and suppose that φ is differentiable

relative to its domain at each point of D. Then D can be expressed as the union of a disjoint sequence
〈Dn〉n∈N of relatively measurable subsets of D such that φ↾Dn is Lipschitz for each n ∈ N.

262O Corollary Suppose that φ is an injective function from a measurable subset D of Rr to R
r, and

that φ is differentiable relative to its domain at every point of D.
(a) If A ⊆ D is negligible, φ[A] is negligible.
(b) If E ⊆ D is measurable, then φ[E] is measurable.
(c) If D is measurable and f is a measurable function defined on a subset of Rr, then fφ−1 is measurable.
(d) If H ⊆ R

r and φ−1 is defined almost everywhere in H, and if f is a function defined almost everywhere
in R

r, then fφ−1 is defined almost everywhere in H.

262P Corollary Let φ be a function from a a subset D of Rr to R
s, and suppose that φ is differentiable

relative to its domain, with a derivative T (x), at each point x ∈ D. Then the function x 7→ T (x) is
measurable in the sense that τij : D → R is measurable for all i ≤ s and j ≤ r, where τij(x) is the (i, j)th
coefficient of the matrix T (x) for all i, j and x.

*262Q Rademacher’s theorem Let φ be a Lipschitz function from a subset of Rr to R
s. Then φ is

differentiable relative to its domain almost everywhere in its domain.

Version of 4.4.13

263 Differentiable transformations in R
r

This section is devoted to the proof of a single major theorem (263D) concerning differentiable transfor-
mations between subsets of Rr. There will be a generalization of this result in §265, and those with some
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*263F Differentiable transformations in R
r 5

familiarity with the topic, or sufficient hardihood, may wish to read §264 before taking this section and §265
together. I end with a few simple corollaries and an extension of the main result which can be made in the
one-dimensional case (263J).

Throughout this section, as in the rest of the chapter, µ will denote Lebesgue measure on R
r.

263A Linear transformations: Theorem Let T be a real r× r matrix; regard T as a linear operator
from R

r to itself. Let J = | detT | be the modulus of its determinant. Then

µT [E] = JµE

for every measurable set E ⊆ R
r. If T is a permutation (that is, if J 6= 0), then

µF = Jµ(T−1[F ])

for every measurable F ⊆ R
r, and

∫

F
g dµ = J

∫

T−1[F ]
gT dµ

for every integrable function g and measurable set F .

263C Lemma Let T be a real r×r matrix; set J = | detT |. Then for any ǫ > 0 there is a ζ = ζ(T, ǫ) > 0
such that

(i) | detS − detT | ≤ ǫ whenever S is an r × r matrix and ‖S − T‖ ≤ ζ;
(ii) whenever D ⊆ R

r is a bounded set and φ : D → R
r is a function such that ‖φ(x)−φ(y)−T (x−y)‖ ≤

ζ‖x− y‖ for all x, y ∈ D, then |µ∗φ[D]− Jµ∗D| ≤ ǫµ∗D.

263D Theorem Let D ⊆ R
r be any set, and φ : D → R

r a function differentiable relative to its domain
at each point of D. For each x ∈ D let T (x) be a derivative of φ relative to D at x, and set J(x) = | detT (x)|.
Then

(i) J : D → [0,∞[ is a measurable function,
(ii) µ∗φ[D] ≤

∫

D
J dµ,

allowing ∞ as the value of the integral. If D is measurable, then
(iii) φ[D] is measurable.

If D is measurable and φ is injective, then
(iv) µφ[D] =

∫

D
J dµ,

(v) for every real-valued function g defined on a subset of φ[D],
∫

φ[D]
g dµ =

∫

D
J × gφ dµ

if either integral is defined in [−∞,∞], provided we interpret J(x)g(φ(x)) as zero when J(x) = 0 and g(φ(x))
is undefined.

*263F Corollary Let D ⊆ R
r be any set and φ : D → R

r a Lipschitz function. Let D1 be the set of
points at which φ has a derivative relative to D, and for each x ∈ D1 let T (x) be such a derivative, with
J(x) = | detT (x)|. Then

(i) D \D1 is negligible;
(ii) J : D1 → [0,∞[ is measurable;
(iii) µ∗φ[D] ≤

∫

D
J(x)dx.

If D is measurable, then
(iv) φ[D] is measurable.

If D is measurable and φ is injective, then
(v) µφ[D] =

∫

D
J dµ,

(vi) for every real-valued function g defined on a subset of φ[D],
∫

φ[D]
g dµ =

∫

D
J × gφ dµ

if either integral is defined in [−∞,∞], provided we interpret J(x)g(φ(x)) as zero when J(x) = 0 and g(φ(x))
is undefined.

D.H.Fremlin



6 Change of variable in the integral 263G

263G Proposition
∫∞

−∞
e−t2/2dt =

√
2π.

263H Corollary If k ∈ N is odd,
∫∞

−∞
xke−x2/2dx = 0;

if k = 2l ∈ N is even, then
∫∞

−∞
xke−x2/2dx =

(2l)!

2ll!

√
2π.

263I Theorem Let D ⊆ R
r be a measurable set, and φ : D → R

r a function differentiable relative to
its domain at each point of D. For each x ∈ D let T (x) be a derivative of φ relative to D at x, and set
J(x) = | detT (x)|.

(a) Let ν be counting measure on R
r. Then

∫

Rr ν(φ
−1[{y}])dy and

∫

D
J dµ are defined in [0,∞] and

equal.
(b) Let g be a real-valued function defined on a subset of φ[D] such that

∫

D
g(φ(x)) detT (x)dx is defined

in R, interpreting g(φ(x)) detT (x) as zero when detT (x) = 0 and g(φ(x)) is undefined. Set

C = {y : y ∈ φ[D], φ−1[{y}] is finite}, R(y) =
∑

x∈φ−1[{y}] sgn detT (x)

for y ∈ C, where sgn(0) = 0 and sgn(α) =
α

|α|
for non-zero α. If we interpret g(y)R(y) as zero when g(y) = 0

and R(y) is undefined, then
∫

φ[D]
g ×Rdµ is defined and equal to

∫

D
g(φ(x)) detT (x)dx.

263J The one-dimensional case: Proposition Let I ⊆ R be an interval with more than one point,
and φ : I → R a function which is absolutely continuous on any closed bounded subinterval of I. Write
u = inf I, u′ = sup I in [−∞,∞], and suppose that v = limx↓u φ(x) and v′ = limx↑u′ φ(x) are defined in
[−∞,∞]. Let g be a real function such that

∫

I
g(φ(x))φ′(x)dx is defined, on the understanding that we

interpret g(φ(x))φ′(x) as 0 when φ′(x) = 0 and g(φ(x)) is undefined. Then
∫ v′

v
g is defined and equal to

∫

I
g(φ(x))φ′(x)dx, where here we interpret

∫ v′

v
g as −

∫ v

v′
g if v′ < v.

Version of 12.5.03

264 Hausdorff measures

The next topic I wish to approach is the question of ‘surface measure’; a useful example to bear in mind
throughout this section and the next is the notion of area for regions on the sphere, but any other smoothly
curved two-dimensional surface in three-dimensional space will serve equally well. It is I think more than
plausible that our intuitive concepts of ‘area’ for such surfaces should correspond to appropriate measures.
But formalizing this intuition is non-trivial, especially if we seek the generality that simple geometric ideas
lead us to; I mean, not contenting ourselves with arguments that depend on the special nature of the sphere,
for instance, to describe spherical surface area. I divide the problem into two parts. In this section I will
describe a construction which enables us to define the r-dimensional measure of an r-dimensional surface –
among other things – in s-dimensional space. In the next section I will set out the basic theorems making
it possible to calculate these measures effectively in the leading cases.

264A Definitions Let s ≥ 1 be an integer, and r > 0. For any A ⊆ R
s, δ > 0 set

θrδA = inf{
∞
∑

n=0

(diamAn)
r : 〈An〉n∈N is a sequence of subsets of Rs covering A,

diamAn ≤ δ for every n ∈ N}.
It is convenient in this context to say that diam ∅ = 0. Now set

θrA = supδ>0 θrδA;

θr is r-dimensional Hausdorff outer measure on R
s.

c© 1994 D. H. Fremlin
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*264J Hausdorff measures 7

264B Lemma θr, as defined in 264A, is always an outer measure.

264C Definition If s ≥ 1 is an integer, and r > 0, then Hausdorff r-dimensional measure on R
s is

the measure µHr on R
s defined by Carathéodory’s method from the outer measure θr of 264A-264B.

264D Remarks (b) In the definitions above I require r > 0. It is sometimes appropriate to take µH0

to be counting measure.

(c) All Hausdorff measures must be complete. For r > 0, they are atomless.

264E Theorem Let s ≥ 1 be an integer, and r ≥ 0; let µHr be Hausdorff r-dimensional measure on R
s,

and ΣHr its domain. Then every Borel subset of Rs belongs to ΣHr.

264F Proposition Let s ≥ 1 be an integer, and r > 0; let θr be r-dimensional Hausdorff outer measure
on R

s, and write µHr for r-dimensional Hausdorff measure on R
s, ΣHr for its domain. Then

(a) for every A ⊆ R
s there is a Borel set E ⊇ A such that µHrE = θrA;

(b) θr = µ∗
Hr, the outer measure defined from µHr;

(c) if E ∈ ΣHr is expressible as a countable union of sets of finite measure, there are Borel sets E′, E′′

such that E′ ⊆ E ⊆ E′′ and µHr(E
′′ \ E′) = 0.

264G Lipschitz functions: Proposition Let m, s ≥ 1 be integers, and φ : D → R
s a γ-Lipschitz

function, where D is a subset of Rm. Then for any A ⊆ D and r ≥ 0,

µ∗
Hr(φ[A]) ≤ γrµ∗

HrA

for every A ⊆ D, writing µHr for r-dimensional Hausdorff outer measure on either Rm or Rs.

264H Theorem Let r ≥ 1 be an integer, and A a bounded subset of Rr; write µr for Lebesgue measure
on R

r and d = diamA. Then

µ∗
r(A) ≤ µrB(0,

d

2
) = 2−rβrd

r,

where B(0, d
2 ) is the ball with centre 0 and diameter d, so that B(0, 1) is the unit ball in R

r, and has
measure

βr =
1

k!
πk if r = 2k is even,

=
22k+1k!

(2k+1)!
πk if r = 2k + 1 is odd.

264I Theorem Let r ≥ 1 be an integer; let µ be Lebesgue measure on R
r, and let µHr be r-dimensional

Hausdorff measure on R
r. Then µ and µHr have the same measurable sets and

µE = 2−rβrµHrE

for every measurable set E ⊆ R
r, where βr = µB(0, 1), so that the normalizing factor is

2−rβr =
1

22kk!
πk if r = 2k is even,

=
k!

(2k+1)!
πk if r = 2k + 1 is odd.

*264J The Cantor set: Proposition Let C be the Cantor set in [0, 1]. Set r = ln 2/ ln 3. Then the
r-dimensional Hausdorff measure of C is 1.

D.H.Fremlin



8 Change of variable in the integral *264K

*264K General metric spaces Let (X, ρ) be a metric space, and r > 0. For any A ⊆ X, δ > 0 set

θrδA = inf{
∞
∑

n=0

(diamAn)
r : 〈An〉n∈N is a sequence of subsets of X covering A,

diamAn ≤ δ for every n ∈ N},

interpreting the diameter of the empty set as 0, and inf ∅ as ∞, so that θrδA = ∞ if A cannot be covered
by a sequence of sets of diameter at most δ. Say that θrA = supδ>0 θrδA is the r-dimensional Hausdorff
outer measure of A, and take the measure µHr defined by Carathéodory’s method from this outer measure
to be r-dimensional Hausdorff measure on X.

Version of 3.9.13

265 Surface measures

In this section I offer a new version of the arguments of §263, this time not with the intention of justifying
integration-by-substitution, but instead to give a practically effective method of computing the Hausdorff
r-dimensional measure of a smooth r-dimensional surface in an s-dimensional space. The basic case to
bear in mind is r = 2, s = 3, though any other combination which you can easily visualize will also be
a valuable aid to intuition. I give a fundamental theorem (265E) providing a formula from which we can
hope to calculate the r-dimensional measure of a surface in s-dimensional space which is parametrized by a
differentiable function, and work through some of the calculations in the case of the r-sphere (265F-265H).

265A Normalized Hausdorff measure In this section I will use normalized Hausdorff measure,
meaning νr = 2−rβrµHr, where µHr is r-dimensional Hausdorff measure and βr = µrB(0, 1) is the Lebesgue
measure of any ball of radius 1 in R

r. This normalization makes νr on R
r agree with Lebesgue measure

µr. ν∗r = 2−rβrµ
∗
Hr.

265B Linear subspaces: Theorem Suppose that r, s are integers with 1 ≤ r ≤ s, and that T is a real

s× r matrix; regard T as a linear operator from R
r to R

s. Set J =
√
detT⊤T , where T⊤ is the transpose of

T . Write νr for normalized r-dimensional Hausdorff measure on R
s, Tr for its domain, and µr for Lebesgue

measure on R
r. Then

νrT [E] = JµrE

for every measurable set E ⊆ R
r. If T is injective (that is, if J 6= 0), then

νrF = JµrT
−1[F ]

whenever F ∈ Tr and F ⊆ T [Rr].

265C Corollary Under the conditions of 265B,

ν∗rT [A] = Jµ∗
rA

for every A ⊆ R
r.

265D Lemma Suppose that 1 ≤ r ≤ s and that T is an s × r matrix; set J =
√
detT⊤T , and suppose

that J 6= 0. Then for any ǫ > 0 there is a ζ = ζ(T, ǫ) > 0 such that

(i) |
√
detS⊤S − J | ≤ ǫ whenever S is an s× r matrix and ‖S − T‖ ≤ ζ;

(ii) whenever D ⊆ R
r is a bounded set and φ : D → R

s is a function such that ‖φ(x)−φ(y)−T (x−y)‖ ≤
ζ‖x− y‖ for all x, y ∈ D, then |ν∗rφ[D]− Jµ∗

rD| ≤ ǫµ∗
rD.

265E Theorem Suppose that 1 ≤ r ≤ s; write µr for Lebesgue measure on R
r, νr for normalized

Hausdorff measure on R
s, and Tr for the domain of νr. Let D ⊆ R

r be any set, and φ : D → R
s a function
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differentiable relative to its domain at each point of D. For each x ∈ D let T (x) be a derivative of φ at x

relative to D, and set J(x) =
√

detT (x)⊤T (x). Set D′ = {x : x ∈ D, J(x) > 0}. Then
(i) J : D → [0,∞[ is a measurable function;
(ii) ν∗rφ[D] ≤

∫

D
J(x)µr(dx),

allowing ∞ as the value of the integral;
(iii) ν∗rφ[D \D′] = 0.

If D is Lebesgue measurable, then
(iv) φ[D] ∈ Tr.

If D is measurable and φ is injective, then
(v) νrφ[D] =

∫

D
J dµr;

(vi) for any set E ⊆ φ[D], E ∈ Tr iff φ−1[E] ∩D′ is Lebesgue measurable, and in this case

νrE =
∫

φ−1[E]
J(x)µr(dx) =

∫

D
J × χ(φ−1[E])dµr;

(vii) for every real-valued function g defined on a subset of φ[D],
∫

φ[D]
g dνr =

∫

D
J × gφ dµr

if either integral is defined in [−∞,∞], provided we interpret J(x)g(φ(x)) as zero when J(x) = 0 and g(φ(x))
is undefined.

265F The surface of a sphere Write Sr for {z : z ∈ R
r+1, ‖z‖ = 1}, the r-sphere. Then the

normalized r-dimensional Hausdorff measure of Sr is 2πβr−1, where βr−1 is the volume of the unit ball of
R

r−1 (interpreting β0 as 1.)

265G Theorem Let µr+1 be Lebesgue measure on R
r+1, and νr normalized r-dimensional Hausdorff

measure on R
r+1. If f is a locally µr+1-integrable real-valued function, y ∈ R

r+1 and δ > 0,
∫

B(y,δ)
fdµr+1 =

∫ δ

0

∫

∂B(y,t)
fdνrdt,

where I write ∂B(y, t) for the sphere {x : ‖x− y‖ = t}.

265H Corollary If νr is normalized r-dimensional Hausdorff measure on R
r+1, then νrSr = (r+1)βr+1.

D.H.Fremlin
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Version of 28.1.09

*266 The Brunn-Minkowski inequality

We now have most of the essential ingredients for a proof of the Brunn-Minkowski inequality (266C) in a
strong form. I do not at present expect to use it in this treatise, but it is one of the basic results of geometric
measure theory and from where we now stand is not difficult, so I include it here. The preliminary results
on arithmetic and geometric means (266A) and essential closures (266B) are of great importance for other
reasons.

266A Arithmetic and geometric means: Proposition If u0, . . . , un, p0, . . . , pn ∈ [0,∞[ and
∑n

i=0 pi =
1, then

∏n
i=0 u

pi

i ≤ ∑n
i=0 piui.

266B Proposition For any set D ⊆ R
r set

cl*D = {x : lim supδ↓0
µ∗(D∩B(x,δ))

µB(x,δ)
> 0},

where µ is Lebesgue measure on R
r.

(a) D \ cl*D is negligible.
(b) cl*D ⊆ D.
(c) cl*D is a Borel set.
(d) µ(cl*D) = µ∗D.
(e) If C ⊆ R then C + cl*D ⊆ cl*(C +D), writing C +D for {x+ y : x ∈ C, y ∈ D}.

266C Theorem Let A, B ⊆ R
r be non-empty sets, where r ≥ 1 is an integer. If µ is Lebesgue measure

on R
r, and A+B = {x+ y : x ∈ A, y ∈ B}, then µ∗(A+B)1/r ≥ (µ∗A)1/r + (µ∗B)1/r.

c© 2004 D. H. Fremlin

Measure Theory (abridged version)


