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Chapter 26
Change of Variable in the Integral

I suppose most courses on basic calculus still devote a substantial amount of time to practice in the tech-
niques of integrating standard functions. Surely the most powerful single technique is that of substitution:
replacing [ g(y)dy by [ g(¢(z))¢(z)dx for an appropriate function ¢. At this level one usually concentrates
on the skills of guessing at appropriate ¢ and getting the formulae right. I will not address such questions
here, except for rare special cases; in this book I am concerned rather with validating the process. For
functions of one variable, it can usually be justified by an appeal to the Fundamental Theorem of Calculus,
and for any particular case I would normally go first to §225 in the hope that the results there would cover
it. But for functions of two or more variables some much deeper ideas are necessary.

I have already treated the general problem of integration-by-substitution in abstract measure spaces in
§235. There I described conditions under which [ g(y)dy = [ g(¢(z))J(z)dx for an appropriate function
J. The context there gave very little scope for suggestions as to how to compute J; at best, it could be
presented as a Radon-Nikodym derivative (235M). In this chapter I give a form of the fundamental theorem
for the case of Lebesgue measure, in which ¢ is a more or less differentiable function between Euclidean
spaces, and J is a ‘Jacobian’, the modulus of the determinant of the derivative of ¢ (263D). This necessarily
depends on a serious investigation of the relationship between Lebesgue measure and geometry. The first
step is to establish a form of Vitali’s theorem for r-dimensional space, together with r-dimensional density
theorems; I do this in §261, following closely the scheme of §6221 and 223 above. We need to know quite a
lot about differentiable functions between Euclidean spaces, and it turns out that the theory is intertwined
with that of ‘Lipschitz’ functions; I treat these in §262.

In the next two sections of the chapter, I turn to a separate problem for which some of the same techniques
turn out to be appropriate: the description of surface measure on (smooth) surfaces in Euclidean space,
like the surface of a cone or sphere. I suppose there is no difficulty in forming a robust intuition as to
what is meant by the ‘area’ of such a surface and of suitably simple regions within it, and there is a very
strong presumption that there ought to be an expression for this intuition in terms of measure theory as
presented in this book; but the details are not I think straightforward. The first point to note is that for
any calculation of the area of a region G in a surface S, one would always turn at once to a parametrization
of the region, that is, a bijection ¢ : D — G from some subset D of Euclidean space. But obviously one
needs to be sure that the result of the calculation is independent of the parametrization chosen, and while it
would be possible to base the theory on results showing such independence directly, that does not seem to
me to be a true reflection of the underlying intuition, which is that the area of simple surfaces, at least, is
something intrinsic to their geometry. I therefore see no acceptable alternative to a theory of ‘r-dimensional
measure’ which can be described in purely geometric terms. This is the burden of §264, in which I give the
definition and most fundamental properties of Hausdorff r-dimensional measure in Euclidean spaces. With
this established, we find that the techniques of §§261-263 are sufficient to relate it to calculations through
parametrizations, which is what I do in §265.

The chapter ends with a brief account of the Brunn-Minkowski inequality (266C), which is an essential
tool for the geometric measure theory of convex sets.
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2 Change of variable in the integral 8261 intro.

The main aim of this section is to give r-dimensional versions of Vitali’s theorem and Lebesgue’s Density
Theorem, following ideas already presented in §§221 and 223. I end with a proof that Lebesgue outer
measure can be defined in terms of coverings by balls instead of by intervals (261F).

261 A Notation For most of this chapter, we shall be dealing with the geometry and measure of Euclidean
space; it will save space to fix some notation.

Throughout this section and the two following, » > 1 will be an integer. I will use Roman letters for
members of R” and Greek letters for their coordinates, so that a = (a1,... ,q;), etc.; if you see any Greek
letter with a subscript you should look first for a nearby vector of which it might be a coordinate. The
measure under consideration will nearly always be Lebesgue measure on R"; so unless otherwise indicated
p should be interpreted as Lebesgue measure, and p* as Lebesgue outer measure. Similarly, [ ...dz will
always be integration with respect to Lebesgue measure (in a dimension determined by the context).

For z = (&,...,&) € R™, write ||[z|| = /& + ... + &2. Recall that ||z +y| < ||z||+ |ly|| (1A2C) and that
laz|| = |e|||z|| for any vectors z, y and scalar «.

I will use the same notation as in §115 for ‘intervals’, so that, in particular,

[a,b] ={z:0q; <& < B Vi<r},
]a,b[:{x:ai<§i<ﬁiVi§r},

[a,b] ={z:0; <& < B Vi<r)

whenever a, b € R".

0= (0,...,0) will be the zero vector in R”, and 1 will be (1,...,1). If z € R” and § > 0, B(z,d) will be
the closed ball with centre x and radius ¢, that is, {y : y € R", |ly—z|| < §}. Note that B(z,d) = =+ B(0,9);
so that by the translation-invariance of Lebesgue measure we have

uB(z,0) = uB(0,0) = 5,07,

where
Br = %wk if r = 2k is even,
- (22};1’;" 7% if 7 = 2k + 1 is odd
(252Q).

261B Vitali’s theorem in R” Let A C R” be any set, and Z a family of closed non-trivial (that is, non-
singleton, or, equivalently, non-negligible) balls in R” such that every point of A is contained in arbitrarily
small members of Z. Then there is a countable disjoint set Zy C Z such that u(A\ JZo) = 0.

proof (a) To begin with (down to the end of (f) below), suppose that ||z|| < M for every x € A, and set
I'={I:1€Z,ICB(0,M)]}.
If there is a finite disjoint set Zg C Z’ such that A C |JZp (including the possibility that A = Zg = 0), we

can stop. So let us suppose henceforth that there is no such Zj.

(b) In this case, if Zy is any finite disjoint subset of Z’, there is a J € Z’ which is disjoint from any
member of Z,. B Take z € A\ |JZy. Because every member of Zj is closed, there is a § > 0 such that
B(z,0) does not meet any member of Zy, and as ||| < M we can suppose that B(z,d) C B(0,M). Let J
be a member of Z, containing z, and of diameter at most §; then J € Z' and JNJZy = 0. Q

(c) We can therefore choose a sequence (v,)nen of real numbers and a disjoint sequence (I,)nen in Z
inductively, as follows. Given (I;) <y, (if n = 0, this is the empty sequence, with no members), with I; € 7/
for each j < n,and I; NI =0 for j <k <mn,set J, ={I:1e€Z', INI; =0 for every j < n}. We know
from (b) that 7, # 0. Set

Yo =sup{diam I : I € J,};
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261C Vitali’s theorem in R” 3

then v, < 2M, because every member of 7, is included in B(0, M). We can therefore find a set I,, € J,
such that diam I,, > %'yn, and this continues the induction.

(e) Because the I, are disjoint measurable subsets of the bounded set B(0, M), we have
S o il < pB(0, M) < o,

and lim, - ul, = 0. Also ul,, > &(i’Yn)T for each n, so lim,, oo 7 = 0.

Now define I/, to be the closed ball with the same centre as I, but five times the diameter, so that it
contains every point within a distance v, of I,. I claim that, for any n, A C U;_,, I; UU;5, ;. P?
Suppose, if possible, otherwise. Take any x € A\ (Uj<n L u UjZn I7). Let 6 > 0 be such that

B(SC,5) c B(07M) \ Uj<nlja
and let J € 7 be such that x € J C B(z,9). Then
limy, 00 Ym = 0 < diam J

(this is where we use the hypothesis that all the balls in Z are non-trivial); let m be the least integer greater
than or equal to n such that ~,, < diamJ. In this case J cannot belong to J,,, so there must be some
k < m such that J N I # (), because certainly J € Z'. By the choice of §, k cannot be less than n, so
n < k < m, and v, > diam J. So the distance from = to the nearest point of Ij is at most diam J < .
But this means that = € I;; which contradicts the choice of z. XQ

(f) It follows that
(AN Uj<n I;) < M(szn IJ/) < Z(;in MI]/‘ < 57’2;17; pd.
As
Y2 nl; < pB(0, M) < oo,
limy, 00 p*(A\ U<, Ij) = 0 and
A\ Ujen15) = p(A\Ujen 1) = 0.

Thus in this case we may set Zp = {I, : n € N} to obtain a countable disjoint family in Z with
(AN UTo) = 0.

(g) This completes the proof if A is bounded. In general, set

Uy={z:zeR", n<|z||<n+1}, A, =ANU,, T.={1:1€Z,1CU,},

for each n € N. Then for each n we see that every point of A,, belongs to arbitrarily small members of 7,
so there is a countable disjoint J;, C 7, such that A, \|JJ,, is negligible. Now (because the U,, are disjoint)
Ty = U,en Ty 1s disjoint, and of course Z is a countable subset of Z; moreover,

ANUZo € (R"\ Upen Un) UUpen(4n \U T3)
is negligible. (To see that R" n =12 ||| € is negligible, note that for any n € N the set
gligible. ( hat R™\ U, Un = {@ : [lz]| € N} is negligible, note that for any n € N th
{z: ||z| =n} € B(0,n)\ B(0,0n)

has measure at most 8,n" — B,(dn)" for every § € [0, 1], so must be negligible.)

261C Just as in §223, we can use the r-dimensional Vitali theorem to prove theorems on the approxi-
mation of functions by their local mean values.

Density Theorem in R": integral form Let D be a subset of R", and f a real-valued function which is
integrable over D. Then

. 1
flz) =limsy0 s fDmB(x,g) fdp

for almost every = € D.

proof (a) To begin with (down to the end of (b)), let us suppose that D = dom f = R".
Take n € N and ¢, ¢ € Q with ¢ < ¢/, and set
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4 Change of variable in the integral 261C

1

— — . 3 /
A= Apgy ={x: [z <n, f(z) < ¢, limsupy, me(m) fdp>dq'}.

? Suppose, if possible, that u*A > 0. Let € > 0 be such that €(1 4 |¢]) < (¢’ — ¢)p* A, and let € ]0, €]
be such that [, |f| < e whenever pE < n (225A). Let G 2 A be an open set of measure at most u*A +1n
(134Fa). Let Z be the set of non-trivial closed balls B C G such that p%B Jg fdi > ¢'. Then every point of
A is contained in (indeed, is the centre of) arbitrarily small members of Z. So there is a countable disjoint

set Zop C Z such that pu(A\ JZy) =0, by 261B; set H = JZo.
Because fI fdu > ¢'ul for each I € Ty, we have
S Fan =31z, [, fdn > 43 ez, nl = ¢ pH > ¢'p A.

Set

E={zr:2eG, f(z) <q}.
Then FE is measurable, and A C E C G} so

PWASpE <puG < prA+n<prAte

Also

p(H\ E) < pG — pkE <,
so by the choice of 7, fH\E f < eand

[r<es [ peeraunne
H HNE

<etqutA+gl(wHNE) = pA) < qu* A+ e(1+1q))
(because p*A = p*(ANH) < u(HNE) < uE)

<qpA S/ f,
H

which is impossible. X
Thus A,y is negligible. This is true for all ¢ < ¢’ and all n, so

*
At = Uq,q’eQ7q<q’ UnEN Anqq’

is negligible. But

. 1
f(z) > limsupg 2B @) fB(z’(;) f
for every x € R" \ A*, that is, for almost all z € R".

(b) Similarly, or applying this result to —f.

1

f(z) <liminfs g mfg(w) f

for almost every x, so

. 1
f(z) = limgo "B@d) fB(m) f
for almost every .

(c) For the (superficially) more general case enunciated in the theorem, let f be a p-integrable function
extending f|D, defined everywhere on R”, and such that [, f = [, f for every measurable F' C R"
(applying 214Eb to f|D). Then

= . 1 s 1
f(z) = f(x) = lims o 1 B(2.9) fB(a:,é) f=limsyo L B(2,0) fDﬂB(z,é) f

for almost every = € D.
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261D Vitali’s theorem in R” 5

261D Corollary (a) If D C R" is any set, then
w*(DNB(z,d)) _

hm(uo ,uB(x,(S) 1
for almost every = € D.
(b) If E C R" is a measurable set, then
limg o LENBESD) _

nB(x,0)

for almost every z € R”.
(¢) If DCR" and f: D — R is any function, then for almost every « € D,

w({yyeD, |f ()= f(@)|<e}nB(=.98)) _ 4
pB(w,0)

limtuo
for every € > 0.
(d) If D CR" and f: D — R is measurable, then for almost every z € D,

w ({yyeD, |f(y)—f(2)|2e)NB(28)) _
pB(z,0)

limg\w
for every € > 0.

proof (a) Apply 261C with f = xB(0,n) to see that, for any n € N,

p(DNB(z,6)) _

limgio 1B (2,0) =1

for almost every = € D with ||z| < n.

(b) Apply (a) to E to see that

1(ENB(z,9))
uB(z,8)

for almost every € R”, and to E/ =R" \ E to see that

w(ENB(z,8) _ 1 . .
o B@o) =1 —liminfs

liminfso > xE(x)

p(E'NB(a.5))

PODED) < - B (@) = XE(a)

lim supg o
for almost every .
(c) For q, ¢’ € Q, set
Dyy ={zr:2x€D,q< f(z) <},

l"*(qu’mB(w’é)) — 1}

qu, = {],‘ Lx e qu'7 limélo MB(J,‘,(S)

now set

C=D\ Uq,q/eQ(qu’ \ Caa')s

so that D\ C is negligible. If z € C' and € > 0, then there are ¢, ¢ € Q such that f(z) —e < ¢ < f(x) <
¢ < f(z)+¢€, and now = € Cyy; accordingly

im i p {y:yeDNB(@,0), |f ()~ f(@)|<} o 1. 1 (DyyB(.3)
liminfs o 1B (2,0) > liminfso A B(20) =1,
S0
limg, o pr{y:y€DNB(z,9), |f(y)—f(z)|<e} _ 1

uB(z,6)

(d) Define C' as in (c¢). We know from (a) that pu(D \ C") = 0, where

" (o : p(DNB(z,8)) _
C' ={x:x € D,lims B 1}.

If x € CNC and € > 0, we know from (c) that

D.H.FREMLIN



6 Change of variable in the integral 261D

p{yyeDNB(z,9), |f(y)~f(2)[<e/2} _ 4
uB(z,6)

lims o
But because f is measurable, we have
pw{y:y €D N B, ), |f(y) — f(x)] = €}
+u*{y 1y € DN B(x,0), |f(y) — [(2)] < 3¢} < p* (DN B(x,0))
for every § > 0. Accordingly

: w{y:yeDNB(z,9), | f(y)—f(x)|>€}
o P

o S (DNB@) o {yyeDNB(ad). |f ()~ f(@)|<e/2) _
S T R 1B(.0) 0,

and

p{yyeDNB(z,0), |f(y)=f(@)|ze} _

hm(u uB(x 5)

for every z € C N (', that is, for almost every x € D.

261E Theorem Let f be a locally integrable function defined on a conegligible subset of R”. Then

hmaw @) fB w5y [ (W) = f(@)ldy =0
for almost every z € R”.
proof (Compare 223D.)
(a) Fix n € N for the moment, and set G = {x : ||z]| < n}. For each ¢ € Q, set g,(x) = |f(x) — ¢ for

x € GNdom f; then g, is integrable over G, and

. 1

lims o WBd) meB(z,a) 9q = 9q(x)
for almost every z € G, by 261C. Setting

. 1
E,={z:x € Gndom f, lims o WIGQB(QMS) dq = 94(2)},

we have G \ E, negligible for every ¢, so G \ E is negligible, where E = .o Eq. Now

q€Q
I ! dy =0
Mg 10 mmeB(wﬁ) |f(y) = f(2)|dy =

for every z € E. PP Take z € E and € > 0. Then there is a ¢ € Q such that |f(z) — ¢| <€, so that

1) = F@)] < [f(y) —al +e=gq(y) + ¢
for every y € GNdom f, and

. 1
lim su / dy < hm su +ed,
S B e [f(y) = f(@)ldy < P uB(x 5 Jornes 94(y) +edy

=e+ gq(x) < 2e.
As € is arbitrary,
thO ) meB(m 5 W) = f(@)ldy = 0,
as required. Q
(b) Because G is open,
limsyo s [ 1FW) = F@ldy = limso s [ 1F(9) = F(@)ldy =0

MEASURE THEORY



261Xc Vitali’s theorem in R” 7

for almost every x € G. As n is arbitrary,

. 1
im0 2o fpges @) = f@)ldy =0
for almost every z € R”.

Remark The set
. 1
{z:z € dom f, limsyo “B@d) fB(M) |f(y) = f(2)|dy = 0}

is sometimes called the Lebesgue set of f.

261F Another very useful consequence of 261B is the following.

Proposition Let A C R” be any set, and € > 0. Then there is a sequence (B, ),en of closed balls in R",
all of radius at most ¢, such that A C |,y Bn and S o 1By < p* A+ €. Moreover, we may suppose that
the balls in the sequence whose centres do not lie in A have measures summing to at most e.

proof (a) The first step is the obvious remark that if z € R”, 6 > 0 then the half-open cube I = [z, z + 1]
is a subset of the ball B(z,d+/r), which has measure v,.0" = ~,.ul, where ~, = Byr"/2. 1t follows that if
G C R” is any open set, then G can be covered by a sequence of balls of total measure at most v,.uG. P If
G is empty, we can take all the balls to be singletons. Otherwise, for each k € N, set

Qr={z:2€Z", [27%z,27%(2+1)[ C G},

Er=U.co, [27Fz,27% (2 + 1]).

Then (Eg)ken is a non-decreasing sequence of sets with union G, and Ej and each of the differences Fyy1\ Fi
is expressible as a disjoint union of half-open cubes. Thus G also is expressible as a disjoint union of a
sequence (I,,)nen of half-open cubes. Each I,, is covered by a ball B,, of measure v, ul,; so that G C UneN B,
and

S oo HBn <ol il = 1rpG. Q

(b) It follows at once that if 4A = 0 then for any € > 0 there is a sequence (B, )nen of balls covering A
of measures summing to at most €, because there is certainly an open set including A with measure at most
€/

(c) Now take any set A, and ¢ > 0. Let G O A be an open set with uG < p*A + %e. Let Z be the family
of non-trivial closed balls included in G, of radius at most € and with centres in A. Then every point of A
belongs to arbitrarily small members of Z, so there is a countable disjoint Zy C Z such that p(A\UZy) = 0.
Let (B])nen be a sequence of balls covering A\ |JZo with Yo7, B, < min(%e, 3.€"); these surely all have
radius at most €. Let (B,)nen be a sequence amalgamating Zo with (B},),en; then A C {J, oy By, every B,
has radius at most € and

1
ZZO:O pBr = 23610 pnB + ZZO:O pB;, < pG + 5€ < pA +e,

while the B,, whose centres do not lie in A must come from the sequence (B ),en, so their measures sum
to at most %e <e

Remark In fact we can (if A is not empty) arrange that the centre of every B, belongs to A. This is an
easy consequence of Besicovitch’s Covering Lemma (see §472 in Volume 4).

261X Basic exercises (a) Show that 261C is valid for any locally integrable real-valued function f; in
particular, for any f € LP(up) for any p > 1, writing up for the subspace measure on D.

(b) Show that 261C, 261Dc, 261Dd and 261E are valid for complex-valued functions f.

>(c) Take three disks in the plane, each touching the other two, so that they enclose an open region R
with three cusps. In R let D be a disk tangent to each of the three original disks, and Ry, R;, R2 the three

D.H.FREMLIN



8 Change of variable in the integral 261Xc

components of R\ D. In each R; let D; be a disk tangent to each of the disks bounding R;, and Rjo, Rj1,
Rjs the three components of R; \ D;. Continue, obtaining 27 regions at the next step, 81 regions at the
next, and so on.

Show that the total area of the residual regions converges to zero as the process continues indefinitely.
(Hint: compare with the process in the proof of 261B.)

261Y Further exercises (a) Formulate an abstract definition of ‘Vitali cover’, meaning a family of sets
satisfying the conclusion of 261B in some sense, and corresponding generalizations of 261C-261E, covering
(at least) (b)-(d) below.

(b) For z € R", k € N let C(x,k) be the half-open cube of the form [27%z,27%(z + 1)[, with z € Z",
containing x. Show that if f is an integrable function on R” then

im0 27 [ F = f(2)

for almost every z € R”.

(c) Let f be a real-valued function which is integrable over R". Show that

. 1
llm5¢057j‘[x,z+51[f = f(2)
for almost every z € R”.

(d) Give X = {0,1}" its usual measure v (254J). For x € X, k € Nset C(z,k) = {y : y € X, y(i) = (i)
for i < k}. Show that if f is any real-valued function which is integrable over X then limy,_, o, 2% fC(I 0 fdv =

f(), limy,_s o 2% fc(x I |f(y) — f(z)|v(dy) = 0 for almost every x € X.

(e) Let f be a real-valued function which is integrable over R”, and z a point in the Lebesgue set
of f. Show that for every € > 0 there is a § > 0 such that |f(z) — [ f(z — y)g(|lyl|)dy| < e whenever
g : [0,00[ — [0,00] is a non-increasing function such that [, g(|lyl|)dy = 1 and fB(O’é)g(HyH)dy >1-6.
(Hint: 223Yg.)

(f) Let T be the family of those measurable sets G C R” such that lims)o %

x € G. Show that ¥ is a topology on R", the density topology of R". Show that a function f: R"™ — R
is measurable iff it is T-continuous at almost every point of R".

= 1 for every

p(y,A)
ly—=|l
(or oo if A is empty). (i) Show that if A is porous at all its points then it is negligible. (ii) Show that in the

construction of 261B the residual set A \ | JZo will be porous at all its points.

(g) Aset A C R is said to be porous at z € R" if limsup, _,,

> 07 Writing p(ya A) = inszA ”y*Z”

(h) Let A C R" be a bounded set and Z a non-empty family of non-trivial closed balls covering A. Show
that for any € > 0 there are disjoint By, ... , B, € Z such that p*A < (3+¢€)" Y_p_, 11B.

(i) Let (X,p) be a metric space and A C X any set, x + 0, : A — [0,00[ any bounded function.
Show that if v > 3 then there is an A" C A such that (i) p(z,y) > 0, + J, for all distinct z, y € A’ (ii)
Usea B(@,62) € Uyear B(w,70,), writing B(z, a) for the closed ball {y : p(y,z) < a}.

(j) (i) Let C be the family of those measurable sets C' C R” such that limsups %

x € C. Show that |JCy € C for every Cy C C. (Hint: 215B(iv).) (ii) Show that any union of non-trivial
closed balls in R" is Lebesgue measurable.

> 0 for every

(k) Suppose that A C R" and that Z is a family of closed subsets of R” such that
for every x € A there is an 7 > 0 such that for every € > 0 there is an I € Z such that z € I and
0 < np(diamI)" < pl <e.
Show that there is a countable disjoint set Zy C Z such that A\ |JZy is negligible.
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8262 intro. Lipschitz and differentiable functions 9

(1) Let ¥’ be the family of measurable sets G C R" such that whenever x € G and € > 0 there is a § > 0
such that u(GNI) > (1 —€)ul whenever I is an interval containing = and included in B(x,d). Show that
%’ is a topology on R” intermediate between the density topology (261Yf) and the Euclidean topology.

261 Notes and comments In the proofs of 261B-261E above, I have done my best to follow the lines of
the one-dimensional case; this section amounts to a series of generalizations of the work of §§221 and 223.

It will be clear that the idea of 261A/261B can be used on other shapes than balls. To make it work in
the form above, we need a family Z such that there is a constant K for which

ul’ < Kul
for every I € Z, where we write
I'={z:inf cr |z — y|| < diam(])}.

Evidently this will be true for many classes Z determined by the shapes of the sets involved; for instance, if
E C R” is any bounded set of strictly positive measure, the family Z = {z 4+ dF : € R", § > 0} will satisfy
the condition.

In 261Ya I challenge you to find an appropriate generalization of the arguments depending on the con-
clusion of 261B.

Another way of using 261B is to say that because sets can be essentially covered by disjoint sequences
of balls, it ought to be possible to use balls, rather than half-open intervals, in the definition of Lebesgue
measure on R”. This is indeed so (261F). The difficulty in using balls in the basic definition comes right
at the start, in proving that if a ball is covered by finitely many balls then the sum of the volumes of
the covering balls is at least the volume of the covered ball. (There is a trick, using the compactness of
closed balls and the openness of open balls, to extend such a proof to infinite covers.) Of course you could
regard this fact as ‘elementary’, on the ground that Archimedes would have noticed if it weren’t true, but
nevertheless it would be something of a challenge to prove it, unless you were willing to wait for a version
of Fubini’s theorem, as some authors do.

I have given the results in 261C-261D for arbitrary subsets D of R" not because I have any applications in
mind in which non-measurable subsets are significant, but because I wish to make it possible to notice when
measurability matters. Of course it is necessary to interpret the integrals [, fdu in the way laid down in
§214. The game is given away in part (c) of the proof of 261C, where I rely on the fact that if f is integrable
over D then there is an integrable f : R™ — R such that fF f= fDmF f for every measurable FF C R". In
effect, for all the questions dealt with here, we can replace f, D by f , R".

The idea of 261C is that, for almost every x, f(z) is approximated by its mean value on small balls
B(z,9), ignoring the missing values on B(x,d) \ (D Ndom f); 261E is a sharper version of the same idea.
The formulae of 261C-261E mostly involve the expression pB(x,d). Of course this is just £,.0". But I think
that leaving it unexpanded is actually more illuminating, as well as avoiding sub- and superscripts, since it
makes it clearer what these density theorems are really about. In §472 of Volume 4 I will revisit this material,
showing that a surprisingly large proportion of the ideas can be applied to arbitrary Radon measures on
R", even though Vitali’s theorem (in the form stated here) is no longer valid.

Version of 11.8.15

262 Lipschitz and differentiable functions

In preparation for the main work of this chapter in §263, I devote a section to two important classes of
functions between Euclidean spaces. What we really need is the essentially elementary material down to
2621, together with the technical lemma 262M and its corollaries. Theorem 262Q is not relied on in this
volume, though I believe that it makes the patterns which will develop more natural and comprehensible.

As in §261, r (and here also s) will be a strictly positive integer, and ‘measurable’, ‘negligible’, ‘integrable’
will refer to Lebesgue measure unless otherwise stated.

(© 1995 D. H. Fremlin
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10 Change of variable in the integral 262A

262A Lipschitz functions Suppose that ¢ : D — R? is a function, where D C R". We say that ¢ is
~-Lipschitz, where v € [0, oo, if

[o(z) = oY)l < Alle -yl
for all z, y € D, writing |jz]| = /& +...+& if x = (&,...,&) € R, ||z = VG + ...+ 2 if 2 =

((1y...,¢s) € R In this case, v is a Lipschitz constant for ¢.

A Lipschitz function is a function ¢ which is y-Lipschitz for some v > 0. Note that in this case ¢ has
a least Lipschitz constant (since if A is the set of Lipschitz constants for ¢, and vy = inf A, then 7 is a
Lipschitz constant for ¢). Evidently a Lipschitz function is (uniformly) continuous.

262B We need the following easy facts.

Lemma Let D C R" be a set and ¢ : D — R*® a function.

(a) ¢ is Lipschitz iff ¢; : D — R is Lipschitz for every i, writing ¢(z) = (¢1(z),... ,ds(x)) for every
r€D=dom¢ CR".

(b) In this case, there is a Lipschitz function ¢ : R™ — R* extending ¢.

(¢) f r=s=1and D = [a,b] is an interval, then ¢ is Lipschitz iff it is absolutely continuous and has a
bounded derivative.

proof (a) For any x, y € D and i < s,
¢i(x) — di(y)| < ll¢(x) — @)l < Vssupj< @5 () — &5(y)],

so any Lipschitz constant for ¢ will be a Lipschitz constant for every ¢;, and if ; is a Lipschitz constant for
¢; for each j, then \/Esupjgs ~; will be a Lipschitz constant for ¢.

(b) By (a), it is enough to consider the case s = 1, for if every ¢; has a Lipschitz extension b;, we can set
o(x) = (d1(x),...,¢s(x)) for every x to obtain a Lipschitz extension of ¢. Taking s = 1, then, note that
the case D = () is trivial; so suppose that D # (). Let v be a Lipschitz constant for ¢, and write

$(2) = sup,ep (y) — lly — =l

for every z € R". If x € D, then, for any z € R” and y € D,

oY) =y = 2ll < o(@) +lly — zl| =y = 2l < ¢(x) + 7]z — =],
so that ¢(z) < ¢(x) +7||z — ||; this shows, in particular, that ¢(z) < co. Also, if z € D, we must have

$(2) =z = 2l < d(2) < ¢(2) +7llz — =],

so that (Z) extends ¢. Finally, if w, z € R" and y € D,

$(y) =y = wll < d(y) = vlly — 2| +vllw — 2| < d(2) +v]lw — 2];
and taking the supremum over y € D,

o(w) < ¢(2) +7llw - |-

As w and z are arbitrary, ¢ is Lipschitz.

(c)(i) Suppose that ¢ is y-Lipschitz. If e >0 and a <a; <by < ... <a, <b, <band > . b —a; <
e/(1+~), then

Dic [0(bi) — (ai)] < 377 b — as| < e
As € is arbitrary, ¢ is absolutely continuous. If x € [a,b] and ¢’ (z) is defined, then

9w 0@

¢/ ()| = limy ., ly—z| =

so ¢’ is bounded.

(ii) Now suppose that ¢ is absolutely continuous and that |¢'(z)| < v for every z € dom ¢, where
~ > 0. Then whenever a < x <y < b,

Y Yy
6(y) — d(@)| = | [ ¢'| < [T1¢'] <Ay — =)
(using 225E for the first equality). As x and y are arbitrary, ¢ is 4-Lipschitz.
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262E Lipschitz and differentiable functions 11

262C Remark The argument for (b) above shows that if ¢ : D — R is a Lipschitz function, where
D C R", then ¢ has an extension to R” with the same Lipschitz constants. In fact it is the case that if
¢ : D — R?® is a Lipschitz function, then ¢ has an extension to (;NS : R™ — R® with the same Lipschitz
constants; this is ‘Kirszbraun’s theorem’ (KIRSZBRAUN 1934, or FEDERER 69, 2.10.43).

262D Proposition If ¢ : D — R" is a y-Lipschitz function, where D C R", then p*¢[A] < 4" u*A for
every A C D, where p is Lebesgue measure on R". In particular, ¢[D N A] is negligible for every negligible
set A C R".

proof Let € > 0. By 261F, there is a sequence (B;,)nen = (B(Zn, 0,))nen of closed balls in R", covering A,
such that > °  uB, < p*A+ € and Ynenmi WBn <€, where K = {n:n €N, x, € A}. Set

L={n:neN\K, B,ND # 0},
and for n € L choose y, € DN B,,. Now set

B':L = B(¢(In)7’}/5n) ifne K,
= B(¢(yn), 2v0n) if n € L,
=0ifneN\(KUL).
Then ¢[B, N D] C By, for every n, so ¢[D N A] C |J,,cy By, and

$p[AND] < ZMB’ =" > By +2"9" Y B,

nekK nelL
<7 (u*A +¢€)+2"7"e
As € is arbitrary, p*¢[AN D] < ~4"u*A, as claimed.

262E Corollary Let ¢ : D — R” be an injective Lipschitz function, where D C R", and f a measurable
function from a subset of R" to R.

(a) If ¢~ is defined almost everywhere in a subset H of R™ and f is defined almost everywhere in R”,
then f¢~! is defined almost everywhere in H.

(b) If E C D is Lebesgue measurable then ¢[FE] is measurable.

(c) If D is measurable then f¢~! is measurable.

proof Set
C = dom(f¢~') = {y :y € 9[DJ, 6 (y) € dom f} = 9D " dom f].
(a) Because f is defined almost everywhere, ¢[D \ dom f] is negligible. But now
= ¢[D]\ ¢[D \ dom f] = dom ¢~ \ ¢[D \ dom f],
o
H\C C (H\dom¢™") Ug[D \ dom f]
is negligible.

(b) Now suppose that F C D and that E is measurable. Let (F,),cn be a sequence of closed bounded
subsets of E such that u(E \ |J,cn Fn) = 0 (134Fb). Because ¢ is Lipschitz, it is continuous, so ¢[F},] is
compact, therefore closed, therefore measurable for every n (2A2E, 115G); also ¢[E\ |, oy Fr] is negligible,
by 262D, therefore measurable. So

SE] = ¢[E\ U, en Fn] UU, e 01F0]
is measurable.
(c) For any a € R, take a measurable set E C R” such that {z : f(z) > a} = ENdom f. Then
{y:yeC, fo~ (y) >a} =Cno[DNE].

But ¢[D N E] is measurable, by (b), so {y : f¢~(y) > a} is relatively measurable in C. As a is arbitrary,
fo~! is measurable.
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12 Change of variable in the integral 262F
262F Differentiability I come now to the class of functions whose properties will take up most of the

rest of the chapter.

Definitions Suppose that ¢ is a function from a subset D = dom ¢ of R" to R*.

(a) ¢ is differentiable at x € D if there is a real s x r matrix T such that

() =) =Tly—2)ll _ .
lly—z|| '

limy
in this case we may write T = ¢'(x).

(b) I will say that ¢ is differentiable relative to its domain at z, and that T is a derivative of ¢ at
x, if x € D and for every € > 0 there is a 6 > 0 such that ||¢(y) — ¢(x) — T'(y — )| < €|ly — z|| for every
y € B(x,6)N D.

262G Remarks (a) The standard definition in 262Fa, involving an all-sided limit ‘lim,_,,’, implicitly
requires ¢ to be defined on some non-trivial ball centered on z, so that we can calculate ¢(y) —¢(x) —T' (y —x)
for all y sufficiently near z. It has the advantage that the derivative T = ¢'(z) is uniquely defined (because

ITi=—Tozl| _ 0 then

if hmzi)o HZ”

(T2 —T%)=||
1]

[T (az)-Ts(az)||
llecz|l

= 1imo¢—>0 =0

for every non-zero z, so 71 — T must be the zero matrix). For our purposes here, there is some advantage in
relaxing this slightly to the form in 262Fb, so that we do not need to pay special attention to the boundary
of dom ¢. In particular we find that if T" is a derivative of ¢ : D — R? relative to its domain at z, and
xz € D' C D, then T is a derivative of ¢[D’, relative to its domain, at x.

(b) If you have not seen this concept of ‘differentiability’ before, but have some familiarity with partial
differentiation, it is necessary to emphasize that the concept of ‘differentiable’ function (at least in the strict
sense demanded by 262Fa) is strictly stronger than the concept of ‘partially differentiable’ function. For
purposes of computation, the most useful method of finding true derivatives is through 262Id below. For
a simple example of a function with a full set of partial derivatives, which is not everywhere differentiable,
consider ¢ : R? — R defined by

¢(§1)€2) = fl_fQQ 1f£%+§§ 7&07
1 2
—0if & =& = 0.

Then ¢ is not even continuous at 0, although both partial derivatives % are defined everywhere.

(c) In the definition above, I speak of a derivative as being a matrix. Properly speaking, the derivative
of a function defined on a subset of R" and taking values in R® should be thought of as a bounded linear
operator from R” to R?®; the formulation in terms of matrices is acceptable just because there is a natural
one-to-one correspondence between s X r real matrices and linear operators from R" to R®, and all these
linear operators are bounded. I use the ‘matrix’ description because it makes certain calculations more
direct; in particular, the relationship between ¢’ and the partial derivatives of ¢ (262Ic), and the notion of
the determinant det ¢'(z), used throughout §§263 and 265.

262H The norm of a matrix Some of the calculations below will rely on the notion of ‘norm’ of a
matrix. The one I will use (in fact, for our purposes here, any norm would do) is the ‘operator norm’,
defined by saying

[T = sup{[|Tz| : v € R", [[zf| < 1}
for any s x r matrix 7. For the basic facts concerning these norms, see 2A4F-2A4G. The following will also

be useful.
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2621 Lipschitz and differentiable functions 13

(a) If all the coefficients of T' are small, so is || T|; in fact, if T' = (7;;)i<s,j<r, and ||| <1, then |{;| <1
for each j, so

s r 1/2 s r 1/2
[Tz|| = (Zi:1(2j:1 Tijfj)2) < (Zi:l(Zj:l |Tij|)2) < ry/smaxi<s j<r 7351,

and ||T|| < ry/smax;<s j<r|7i;|. (This is a singularly crude inequality. A better one is in 262Yb. But it
tells us, in particular, that || 7| is always finite.)

(b) If ||T'|| is small, so are all the coefficients of T’; in fact, writing e; for the jth unit vector of R", then
the ith coordinate of Te; is 75, so || < [|[Te;|| < ||T]-

2621 Lemma Let ¢ : D — R® be a function, where D C R”". For i < s let ¢; : D — R be its ith
coordinate, so that ¢(z) = (¢1(z),... ,¢s(x)) for x € D.

(a) If ¢ is differentiable relative to its domain at = € D, then ¢ is continuous at x.

(b) If x € D, then ¢ is differentiable relative to its domain at z iff each ¢; is differentiable relative to its
domain at z.

(c) If ¢ is differentiable at © € D, then all the partial derivatives

derivative of ¢ at x is the matrix <g¥§?(x)>i<37j<r.
- <s,j<

?}5; of ¢ are defined at z, and the

(d) If all the partial derivatives gg, for i < s and j < r, are defined in a neighbourhood of z € D and
are continuous at x, then ¢ is differentiable at x.

proof (a) Let T be a derivative of ¢ at z. Applying the definition 262Fb with € = 1, we see that there is a
0 > 0 such that

l6(y) — d(x) = T(y —2)|| < lly — |l
whenever y € D and ||y — z| < J. Now
l6(y) = @) < Ty — )| + lly — 2| < A+ Ty — |l
whenever y € D and ||y — z|| < 4, so ¢ is continuous at .

(b) (i) If ¢ is differentiable relative to its domain at € D, let T be a derivative of ¢ at x. For i < s let
T; be the 1 x r matrix consisting of the ith row of T'. Let ¢ > 0. Then we have a § > 0 such that

|0i(y) = ¢i(2) = Tily — 2)| < [|6(y) = o(x) = T(y — )|
<eélly — |
whenever y € D and ||y — z|| < §, so that T; is a derivative of ¢; at x.

(ii) If each ¢; is differentiable relative to its domain at x, with corresponding derivatives T;, let T be
the s x r matrix with rows T71,... ,Ts. Given € > 0, there is for each i < s a §; > 0 such that

0i(y) — ¢i(x) — Toy| < €lly — z[| whenever y € D, [ly — || < d;;
set 0 = min;<,d; > 0; then if y € D and ||y — z|| < §, we shall have
[6(y) — d(x) = T(y — 2)|I* = 3272, |9i(y) — ¢i@) — Tily — o) < se’|ly — z|1?,
so that
[6(y) — ¢(z) = T(y — 2)[| < ev/slly — |-
As € is arbitrary, T is a derivative of ¢ at x.

(c) Set T'= ¢'(x). We have

limy s l¢(w)—¢()-Ty—=)| _ 0:
ly—=ll

fix j <r, and consider y = x + ne;, where e; = (0,...,0,1,0,...,0) is the jth unit vector in R". Then we

must have

[¢atne;)—¢(@)—nT(e)ll _
0 =0.

lim,,_,
" In|

D.H.FREMLIN



14 Change of variable in the integral 2621

Looking at the ith coordinate of ¢(x + ne;) — ¢(x) — nT'(e;), we have
|0i(x +nej) — di(x) = mign| < [lo(z + nej) — d(x) —nT(e;)],
where 7;; is the (¢, j)th coefficient of T’; so that

lim, o |¢i(33+7)61)|:775i(33)*"'iﬂ)| —0.

But this just says that the partial derivative gz (x) exists and is equal to 7;;, as claimed.

(d) Now suppose that the partial derivatives gg; are defined near x and continuous at x. Let € > 0. Let
0 > 0 be such that

olen)
|a?j(y)_7ij‘ <e

whenever |y — z|| < ¢, writing 7,; = g‘g (z). Now suppose that ||y — x| <. Set

y:(7717~-~»77r)7 x:(glv"'vgr)v

Y; = (7717"' 377j7£j+17"' 757“) for 0 S.] S r,
so that yo = z, y» = y and the line segment between y;_; and y; lies wholly within § of z whenever
1 <j<r sinceif z = ((1,...,¢ ) lies on this segment then (; lies between &; and n; for every i. By the
ordinary mean value theorem for differentiable real functions, applied to the function
t— ¢i(n17 v 777j717ta £j+17 oo 757")3

there is for each ¢ < s, j < 7 a point z;; on the line segment between y;_; and y; such that
0¢i
i(y;) = dilyj—1) = (1 — &) G&* (zi5)-
But

elon}
|5 (215) — il <€,

SO
|pi(y;) — bi(yj—1) — Tiz(mj — &) < elny — &5l < elly — ]|

Summing over j,

|6:(y) — dal@) — 2251 i (0 — &) < relly — x|

for each 4. Summing the squares and taking the square root,

o(y) — o(x) = T(y — z)|| < ery/slly — |,

where T' = (7;;)i<s,j<r. And this is true whenever ||y — x| < . As e is arbitrary, ¢'(x) = T is defined.

262J Remark I am not sure if I ought to apologize for the notation 3%, In such formulae as (n; —

fj)%(zij) above, the two appearances of {; clash most violently. But I do not think that any person of good
will is likely to be misled, provided that the labels §; (or whatever symbols are used to represent the variables
involved) are adequately described when the domain of ¢ is first introduced (and always remembering that
in partial differentiation, we are not only moving one variable — a §; in the present context — but holding
fixed some further list of variables, not listed in the notation). I believe that the traditional notation %
has survived for solid reasons, and I should like to offer a welcome to those who are more comfortable with
it than with any of the many alternatives which have been proposed, but have never taken root.

262K The Cantor function revisited It is salutary to re-examine the examples of 134H-134I in the
light of the present considerations. Let f : [0,1] — [0,1] be the Cantor function (134H) and set g(x) =
1(z + f(x)) for x € [0,1]. Then g : [0,1] — [0,1] is a homeomorphism (1341); set ¢ = g~* : [0,1] — [0,1].
We see that if 0 < o <y < 1 then g(y) — g(z) > 3(y — ); equivalently, ¢(y) — ¢(z) < 2(y — =) whenever
0 <z <y<1,sothat ¢ is a Lipschitz function, therefore absolutely continuous (262Bc). If D = {z : ¢'(z)
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262M Lipschitz and differentiable functions 15

is defined}, then [0, 1] \ D is negligible (225Cb), so [0,1] \ ¢[D] = ¢[[0, 1] \ D] is negligible (262Da). I noted
in 1341 that there is a measurable function h : [0,1] — R such that the composition h¢ is not measurable;
now h(¢D) = (h¢)| D cannot be measurable, even though ¢| D is differentiable.

262L It will be convenient to be able to call on the following straightforward result.

w*(DNB(z,0))
pB(z,0)

platzD) _

Lemma Suppose that D C R" and € R" are such that lims o = 1. Then lim,_,q T 0,
z

where p(x + 2z,D) = infyep ||z + 2 — y||.
proof Let e > 0. Let g > 0 be such that

(DN B(,0) > (1= ()" )uB(,0)
whenever 0 < § < d§g. Take any z such that 0 < ||z|| < do/(1+€). 7 Suppose, if possible, that p(x + 2z, D) >
€||lz|l. Then B(x + z,¢€||z]|) € B(z, (1 +€)|z|) \ D, so

p (DN Bz, (1+6)l2])) < pB(x, (1 +e)ll2]) — pB(x + 2, €l/2])

= (1= (5)"uB(x, (1+ €|l

which is impossible, as (14 ¢€)/z|| < dp. X Thus p(z + z, D) < €||z||. As € is arbitrary, this proves the result.

Remark There is a word for this; see 261Yg.

262M 1 come now to the first result connecting Lipschitz functions with differentiable functions. I
approach it through a substantial lemma which will be the foundation of §263.

Lemma Let ¢ be a function from a subset D of R” to R® which is differentiable at each point of its domain.
For each € D let T(x) be a derivative of ¢. Let M, be the set of s x r matrices and ¢ : A — ]0,00[ a
strictly positive function, where A C My, is a non-empty set containing T'(x) for every x € D. Then we can
find sequences (Dp,)nen, (Th)nen such that

(i) (Dn)nen is a partition of D into sets which are relatively measurable in D, that is, are intersections
of D with measurable subsets of R";

(ii) T;, € A for every n;

(iii) [|p(x) = ¢(y) = Tn(z —y)|| < C(Tn)[|lz — || for every n € N and z, y € Dy;

(iv) |T(z) — To|| < ¢(T,) for every z € D,,.

proof (a) The first step is to note that there is a sequence (S, )nen in A such that
A c UneN{T :T e Ms’m HT - Sn” < C(S’ﬂ)}

P (Of course this is a standard result about separable metric spaces.) Write @ for the set of matrices in
My, with rational coefficients; then there is a natural bijection between @ and Q®", so @ and @ x N are
countable. Enumerate Q X N as ((Ry,, kn))nen. For each n € N, choose S,, € A by the rule

— if there is an S € A such that {T: ||T — R,|| < 27%} C{T :||T — S| < ¢(9)}, take such an S for
S

— otherwise, take S, to be any member of A.
I claim that this works. For let S € A. Then ((S) > 0; take k € N such that 27% < ¢(5). Take R* € Q
such that ||R* — S|| < min({(S) —27%,27F); this is possible because ||R — S|| will be small whenever all the
coefficients of R are close enough to the corresponding coeflicients of S (262Ha), and we can find rational
numbers to achieve this. Let n € N be such that R* = R,, and k = k,,. Then

{T:\IT = Roll <27} €{T: |T = S|l < <(9)}

(because ||T'— S| < ||T — Rxn|| + || Rn — S||), so we must have chosen S,, by the first part of the rule above,
and

SEe{T:|IT = Ryl <27%} C{T : |T = Sall < ¢(Sn)}-
As S is arbitrary, this proves the result. Q
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16 Change of variable in the integral 262M

(b) Enumerate Q" x Q" x N as {(qn, ql,, mn))nen. For each n € N, set

Hy ={z:2 € [gn,q] N D, ||¢(y) — ¢(z) = S, (y — 2)|| < (S, ||y — 2]
for every y € [gn.q,] N D}

=[gn,q, )N DN m {z:2eD,
y€lgn,q,]ND

l6(y) = (x) = Sm,, (y — )| < C(Sm,)lly — 2}

Because ¢ is continuous, H, = D N H,,, writing H,, for the closure of H,, so H,, is relatively measurable in
D. Note that if z, y € H,, then y € D N [qn, ¢,], so that

16(y) = d(x) = S, (y — 2)|| < ((Sm,,)lly — |-
Set
H, ={z:xz € Hy, |T(z) — S,

< ((Sm,)}-

(¢) D=U,cnHy,- P Let 2 € D. Then T(z) € A, so there is a k € N such that || T'(x) — Skl < {(Sk).
Let 6 > 0 be such that

[6(y) — ¢(z) — T(@)(z — y)ll < (C(Sk) — 1T (x) — Skl)llz — yll
whenever y € D and ||y — z|| < 4. Then

16(y) = ¢(z) = Sk(z = y)ll < (C(Sk) = T(x) = SklDllx =yl + | (=) = Skllllz - yll
< C(Sk)llz = yll

whenever y € DN B(z,d). Let ¢, ¢ € Q" be such that « € [¢,¢'] C B(x,0). Let n be such that ¢ = ¢y,
¢ =q, and k =m,. Then z € H),. Q

(d) Write

(. . p(HaNB(z,0))
C, ={x:x € Hy, lims)o B(z.) =1}.

Then C,, C H,.

P (i) Take z € C,,, and set T = T'(z) — Sy, . I have to show that | T|| < ¢(S,n, ). Take € > 0. Let y > 0
be such that

16(y) = ¢(z) = T(@)(y — 2)[| < elly — ]|
whenever y € D and ||y — z|| < dp. Since
[6(y) — ¢(x) = S, (y — )| < C(Sm,)lly — |
whenever y € H,,, we have
IT(y =) < (e +¢(Sm))ly — |
whenever y € H,, and ||y — z|| < Jo.
(ii) By 262L, there is a 6; > 0 such that (142¢€)d; < dg and p(x+2z, Hy,) < €||z|| whenever 0 < ||z]| < d;.
So if ||z]| < & there is a y € H, such that ||z + 2z — y|| < 2¢[[z]|. (If 2 = 0 we can take y = x.) Now
[z —yll < (1 + 2€)[|z]| < do, so
ITz) < |IT(y — )|l + 1T (2 + 2 —y)]
< (e+CSm)lly =zl + 1Tz + 2 -y
< (€4 C(Sm )zl + (e + ¢(Sm,) + 17Dz + 2 -yl
< (e +¢(Sm,) + 2¢° +26((Sim,, ) + 2¢[ Tl 2]

And this is true whenever 0 < ||z|| < ;. But multiplying this inequality by suitable positive scalars we see
that
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IT2) < (e +¢(Sm,) + 26 + 2¢¢(Sim,,) + 2¢[|T)) |12l
for all z € R", and
IT]| < €+ ¢(Sm,.) + 26 + 26((Sm, ) + 2¢l| T
As € is arbitrary, |7 < ¢(S,n, ), as claimed. Q
(e) By 261Da, H,, \ C,, is negligible for every n, so H,, \ H), is negligible, and
H;, = D0 (Hy, \ (Hy\ Hy))
is relatively measurable in D. Set
Dy =Hy \Uy<n Hyy T = S,

for each n; these serve.

262N Corollary Let ¢ be a function from a subset D of R” to R®, and suppose that ¢ is differentiable
relative to its domain at each point of D. Then D can be expressed as the union of a disjoint sequence
(Dp)nen of relatively measurable subsets of D such that ¢[D,, is Lipschitz for each n € N.

proof In 262M, take ((T) =1 for every T' € A = M. If z, y € D,, then

[o(z) = oY)l < ll¢(x) = ¢(y) = Tu(z = y) | + [Tn(z = y)l
< lz =yl + I Tullllz = yll;

so ¢[D,, is (1 + ||T]|)-Lipschitz.

2620 Corollary Suppose that ¢ is an injective function from a measurable subset D of R" to R", and
that ¢ is differentiable relative to its domain at every point of D.

(a) If A C D is negligible, ¢[A4] is negligible.

(b) If E C D is measurable, then ¢[E] is measurable.
(c) If D is measurable and f is a measurable function defined on a subset of R”, then f¢~! is measurable.
(d) If H C R" and ¢! is defined almost everywhere in H, and if f is a function defined almost everywhere
in R™, then f¢~! is defined almost everywhere in H.

proof Take a sequence (D, ),en as in 262N, and apply 262E to ¢[D,, for each n.

262P Corollary Let ¢ be a function from a a subset D of R” to R®, and suppose that ¢ is differentiable
relative to its domain, with a derivative T'(z), at each point € D. Then the function z +— T(z) is
measurable in the sense that 7;; : D — R is measurable for all i < s and j < r, where 7;;(x) is the (¢, j)th
coefficient of the matrix T'(x) for all ¢, j and x.

proof For each k € N, apply 262M with ¢(T') = 2% for each T € A = M,,, obtaining sequences (Dg,)nen

of relatively measurable subsets of D and (Tj,)nen in Ms,. Let Ti(f") be the (i, j)th coefficient of T},,. Then
we have functions f;i : D — R defined by setting

f”k(a}‘) = Ti(fn) ifxe D]m.
Because the Dy, are relatively measurable, the f;;;, are measurable functions. For x € Dy,
|73 (x) = fije(z)| < | T(2) = Toll < 27F,
so |7ij(z) — fijr(z)| < 27F for every x € D, and
Tij = limg o0 fijk

is measurable, as claimed.

*262Q This concludes the part of the section which is essential for the rest of the chapter. However
the main results of §263 will I think be better understood if you are aware of the fact that any Lipschitz
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18 Change of variable in the integral *262Q

function is differentiable (relative to its domain) almost everywhere in its domain. I devote the next couple
of pages to a proof of this fact, which apart from its intrinsic interest is a useful exercise.

Rademacher’s theorem Let ¢ be a Lipschitz function from a subset of R” to R®. Then ¢ is differentiable
relative to its domain almost everywhere in its domain.

proof (a) By 262Ba and 262Ib, it will be enough to deal with the case s = 1. By 262Bb, there is a Lipschitz
function é; :R" — R extending ¢; now ¢ is differentiable with respect to its domain at any point of dom ¢
at which ¢ is differentiable, so it will be enough if I can show that ¢ is differentiable almost everywhere. To
make the notation more agreeable to the eye, I will suppose that ¢ itself was defined everywhere in R”. Let
~ be a Lipschitz constant for ¢.

The proof proceeds by induction on r. If » = 1, we have a Lipschitz function ¢ : R — R; now ¢ is
absolutely continuous in any bounded interval (262Bc), therefore differentiable almost everywhere (225Cb).
Thus the induction starts. The rest of the proof is devoted to the inductive step to r > 1.

(b) The first step is to show that all the partial derivatives % are defined almost everywhere and are
Borel measurable. B Take j < r. For ¢ € Q \ {0} set

Ag) = 2 (#(a + ge;) — 9(@)),

writing e; for the jth unit vector of R". Because ¢ is continuous, so is A4, so that A, is a Borel measurable
function for each g. Next, for any z € R",

. 1 .
DF(z) = lim SupPs_s0 g(@b(x +dej) — d(x)) = limy, 00 SUPge,0<|q|<2— " Ay(z),
so that the set on which DT (z) is defined in R is Borel and D is a Borel measurable function. Similarly,
_ e 1
D~ (z) = liminfs_ g(qb(x + dej) — o(x))
is a Borel measurable function with Borel domain. So
E={z: g—g(m) exists in R} = {z: DV (z) = D~ (z) € R}

is a Borel set, and % is a Borel measurable function.
J

On the other hand, if we identify R” with R’ x R, taking J to be {1,...,5 — 1,5+ 1,... 7}, then we
can think of Lebesgue measure ;1 on R" as being the product of Lebesgue measure p; on RY with Lebesgue
measure g7 on R (251N). Now for every y € R’ we have a function ¢y : R — R defined by writing

¢y(0) = ¢(y,0),
and E becomes
{(y,0) : ¢/, (0) is defined},
so that all the sections
{o:(y,0) € E}

are conegligible subsets of R, because every ¢, is Lipschitz, therefore differentiable almost everywhere, as

remarked in part (a) of the proof. Since we know that E is measurable, it must be conegligible, by Fubini’s

theorem (apply 252D or 252F to the complement of E). Thus g—g is defined almost everywhere, as claimed.
J

Q
Write
H={z:2eR", g%(x) exists for every j < r},
so that H is a conegligible Borel set in R".

(c) For the rest of this proof, I fix on the natural identification of R” with R"~! xR, identifying (&1, ... , &)
with ((€1,...,&_1),&). For z € H, let T(z) be the 1 x r matrix (22 (z),... , 22 (x)).

651 ’ 657‘
(d) Set
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[6(+H(0) (@) -T@ @O _ ).

Hy={z:xz € H, lim,_,q i, pr—1 ul

I claim that H; is conegligible in R”. B This is really the same idea as in (b). For € H, © € H; iff
for every € > 0 there is a 6 > 0 such that
[0(x + (u,0)) — d(x) = T(x)(u, 0)] < ef|uf
whenever |lu|| <9,
that is, iff
for every m € N there is an n € N such that
[¢(x + (u,0)) — ¢(x) = T(x)(u, 0)] < 27" ||uf
whenever u € Q"1 and ||ul| < 27".
But for any particular m € N and v € Q"~! the set
{z: oz + (u,0)) = ¢(z) = T(x)(u,0)] <27 [ull}
is measurable, indeed Borel, because all the functions « — ¢(z+ (u,0)),  — ¢(x), x — T(z)(u,0) are Borel
measurable. So H; is of the form
Nimen Unen Nuegr—1, juj<2-» Emnu

where every F,,,, is a measurable set, and H; is therefore measurable.
Now however observe that for any ¢ € R, the function

v (V) = p(v,0) RS R

is Lipschitz, therefore (by the inductive hypothesis) differentiable almost everywhere in R”~!; and that
(v,0) € Hy iff (v,0) € H and ¢, (v) is defined. Consequently {v : (v,0) € H;} is conegligible whenever
{v:(v,0) € H} is, that is, for almost every o € R; so that H;, being measurable, must be conegligible. Q

(e) Now, for ¢, ¢ € Q and n € N, set

F(g,¢,n)={z:2eR", ¢g< w < ¢ whenever 0 < |n| < 27"},

/ _ . ! : ,LL* (F(q,q’,n)ﬁB(a:,é)) —
F.(¢,¢',n)={z:2 € F(q,¢,n), lims)o " B(e.0) =1}.

By 261Da, F(q,q’',n) \ Fi(q,¢’,n) is negligible for all ¢, ¢’, n, so that
Hy = Hi \U, ycqnen(F (¢4, 1) \ Fi(q,q',n))

is conegligible.

(f) T claim that ¢ is differentiable at every point of Hy. P Take © = (u,0) € Hy. Then o = 09 (x) and

..
T = T(x) are defined. Let  be a Lipschitz constant for ¢.

Take € > 0; take ¢, ¢ € Q such that « —¢ < ¢ < a < ¢ < a+ e There must be an n € N
such that ¢ € F(q,q¢',n); consequently x € F.(q,q',n), by the definition of Hy. By 262L, there is a
do > 0 such that p(z + z,F(q,q',n)) < €||z|| whenever ||z|| < do. Next, there is a §; > 0 such that
|p(z + (v,0)) — ¢(x) — T(v,0)| < €||v]| whenever v € R"™1 and |Jv]| < &;. Set

6= min(5o,51,2’")/(1 + 26) > 0.

Suppose that z = (v,7) € R" and that ||z|| < J. Because ||z|| < dp there is an 2’ = (v/,0") € F(q,q¢',n)
such that ||z + z — 2’| < 2¢||z||; set z* = (uv/,0). Now

max(|lu —u'l,|o = o'[) < [lo — 2’| < (14 2¢) 2] < min(dy,27")

and z* = z + (v’ — u,0), so
[¢(z7) — ¢(z) = T(z" — )| < eflu’ —ul| < e(142e)]z].
But also

[6(2") — ¢(z7) = T(2" — 27)| = |p(2') — d(2") — a(o” — 0)| < €|o” — o] < e(1+2€)||z]],
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20 Change of variable in the integral *262Q
because ' € F(q,q',n) and |0 — o] < 27", so that (if 2’ # x*)

a_egqgwgqua_’_e

o—o’
and

s o) o

Finally,
[¢(z + 2) — ¢(2')| < vz + 2 — o' < 2v€] 2],

Tz = T(2" =) < [Tz + 2 — 2| < 2€[|T][2]].
Putting all these together,

|¢(z + 2) — ¢pa — Tz| < [d(z + 2) — ¢(2")| + |T(2" — z) — T2|
+lo(@") — d(a”) = T(@" —2")| + [¢(z") — ¢(2) — T(2" — )|
< 2vel|z]| + 2¢[|T||[[2]| + €(1 + 2€) | z[| + (1 + 2¢)||z]|
=€e(2v + 2||T|| + 2 + 4e) || 2]

And this is true whenever ||z|| < J. As € is arbitrary, ¢ is differentiable at . Q
Thus {x : ¢ is differentiable at z} includes Hy and is conegligible; and the induction continues.

262X Basic exercises (a) Let ¢ and 1 be Lipschitz functions from subsets of R” to R®. Show that
¢ + 1 is a Lipschitz function from dom ¢ N dom ¥ to R*.

(b) Let ¢ be a Lipschitz function from a subset of R” to R®, and ¢ € R. Show that c¢ is a Lipschitz
function.

(c) Suppose ¢ : D — R® and ¥ : E — R? are Lipschitz functions, where D C R" and E C R®. Show
that the composition ¢ : D N ¢~[E] — RY is Lipschitz.

(d) Suppose ¢, 1 are functions from subsets of R” to R*®, and suppose that z € dom ¢ N dom ¢ is such
that each function is differentiable relative to its domain at x, with derivatives S, T' there. Show that ¢ + v
is differentiable relative to its domain at x, and that S + T is a derivative of ¢ + ¢ at x.

(e) Suppose that ¢ is a function from a subset of R” to R®, and is differentiable relative to its domain at
x € dom ¢. Show that c¢ is differentiable relative to its domain at = for every c € R.

>(f) Suppose ¢ : D — R® and 9 : E — R? are functions, where D C R" and E C R?; suppose that ¢ is
differentiable relative to its domain at x € D N ¢~1[E], with an s x 7 matrix T a derivative there, and that
1 is differentiable relative to its domain at ¢(x), with a ¢ X s matrix S a derivative there. Show that the
composition ¥ ¢ is differentiable relative to its domain at z, and that the ¢ x r matrix ST is a derivative of

P at x.

>(g) Let ¢ : R™ — R* be a linear operator, with associated matrix 7. Show that ¢ is differentiable
everywhere, with ¢'(x) =T for every x.

(h) Let G C R" be a convex open set, and ¢ : G — R® a function such that all the partial derivatives

g?? are defined everywhere in G. Show that ¢ is Lipschitz iff all the partial derivatives are bounded on G.
J

(i) Let ¢ : R™ — R* be a function. Show that ¢ is differentiable at = € R iff for every m € N there are
an n € N and an r x s matrix T with rational coefficients such that ||¢p(y) — ¢(x) = T(y — )| < 27™ ||y — z|
whenever ||y — zf| <27

(j) Suppose that f is a real-valued function which is integrable over R", and that g : R” — R is a

bounded differentiable function such that the partial derivative g?g is bounded, where j < r. Let f % g be
J
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99

the convolution of f and g (255E, 255L). Show that %(f * g) is defined everywhere and equal to f 2"

(Hint: 255Xd.)

(k) Let (X, %, u) be a measure space, G C R" an open set, and f : X x G — R a function. Suppose that
(i) for every z € X, t — f(z,t) : G — R is differentiable;
(ii) there is an integrable function g on X such that |%(x, t)| < g(z) whenever x € X, t € G
J
and 5 < r;
(iii) [|f(z,t)|u(dz) exists in R for every ¢ € G.

Show that t — [ f(z,t)u(dz) : G — R is differentiable. (Hint: show first that, for a suitable M, |f(z,t) —
flx, t)] < M|g(x)|||t —t'|| for every ¢, t' € G and = € X.)

(1) Let f: [a,b] — R be an absolutely continuous function, where a < b, and g : f[[a,b]] — R a Lipschitz
function. Show that ¢f is absolutely continuous.

262Y Further exercises (a) Let L be the space of all Lipschitz functions from R” to R*, and for ¢ € L
set
6]l = |¢(0)]| + min{y : v € [0, 00], lg(y) — &(x)[| < ~[ly — x| for every z, y € R"}.
Show that (L, || ||) is a Banach space.

(b) Show that if T' = (7i;)i<s,j<r iS an s X r matrix then the operator norm |||, as defined in 262H, is
at most />0 i TH

(c) Let ¢ : D — R be any function, where D C R". Show that H = {z : € D, ¢ is differentiable relative
to its domain at x} is relatively measurable in D, and that g—g | H is measurable for every j < r.

(d) Let ¢ : D — R be a function, where D C R". (i) Show that if ¢ is measurable then all its partial
derivatives are measurable. (ii) Show that if ¢ is Borel measurable then all its partial derivatives are Borel
measurable.

9...06
0&,;0¢;...0&,
R" and are continuous. Show that if f is integrable over R” and ¢ : R™ — R is smooth and has bounded
support then the convolution f * ¢ is smooth. (Hint: 262Xj, 262Xk.)

(e) A function ¢ : R™ — R is smooth if all its partial derivatives are defined everywhere in

(£) For 6 > 0 set ds(x) = e/ =11V if ||z]| < &, 0if ||| > & set a5 = [ ¢s(x)dz, ¢s(x) = ay*ps(x) for
every z. (i) Show that ¢5 : R” — R is smooth and has bounded support. (ii) Show that if f is integrable
over R” then limso [ |f(z) — (f * ¢s)(z)|dz = 0. (Hint: start with continuous functions f with bounded
support, and use 2420.)

(g) Show that if f is integrable over R” and e > 0 there is a smooth function h with bounded support
such that [ |f — h| <e. (Hint: either reduce to the case in which f has bounded support and use 262Yf or
adapt the method of 242Xi.)

(h) Suppose that f is a real function which is integrable over every bounded subset of R". (i) Show that
f X ¢ is integrable whenever ¢ : R” — R is a smooth function with bounded support. (ii) Show that if
J [ x ¢ =0 for every smooth function with bounded support then f = 0 a.e. (Hint: show that fB(m 5) f=0

for every z € R" and § > 0, and use 261C. Alternatively show that fE f =0 first for E = [b, ¢], then for
open sets F, then for arbitrary measurable sets E.)

(i) Let f be integrable over R", and for § > 0 let ¢s : R” — R be the function of 262Yf. Show that
limso(f * ¢5)(x) = f(x) for every x in the Lebesgue set of f. (Hint: 261Ye.)
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262 Notes and comments The emphasis of this section has turned out to be on the connexions between
the concepts of ‘Lipschitz function’ and ‘differentiable function’. It is the delight of classical real analysis that
such intimate relationships arise between concepts which belong to different categories. ‘Lipschitz functions’
clearly belong to the theory of metric spaces (I will return to this in §264), while ‘differentiable functions’
belong to the theory of differentiable manifolds, which is outside the scope of this volume. I have written
this section out carefully just in case there are readers who have so far missed the theory of differentiable
mappings between multi-dimensional Euclidean spaces; but it also gives me a chance to work through the
notion of ‘function differentiable relative to its domain’, which will make it possible in the next section to
ride smoothly past a variety of problems arising at boundaries. The difficulties I am concerned with arise
in the first place with such functions as the polar-coordinate transformation

(p,0) — (pcos, psin) : {(0,0)} U (]0, 00[ x ]—m,7]) — R2.

In order to make this a bijection we have to do something rather arbitrary, and the domain of the transfor-
mation cannot be an open set. On the definitions I am using, this function is differentiable relative to its
domain at every point of its domain, and we can apply such results as 2620 uninhibitedly. You will observe
that in this case the non-interior points of the domain form a negligible set {(0,0)} U (]0, 00[ x {7}), so we
can expect to be able to ignore them; and for most of the geometrically straightforward transformations
that the theory is applied to, judicious excision of negligible sets will reduce problems to the case of honestly
differentiable functions with open domains. But while open-domain theory will deal with a large propor-
tion of the most important examples, there is a danger that you would be left with real misapprehensions
concerning the scope of these methods.

The essence of differentiability is that a differentiable function ¢ is approximable, near any given point
of its domain, by an affine function. The idea of 262M is to describe a widely effective method of dissecting
D = dom ¢ into countably many pieces on each of which ¢ is well controlled. This will be applied in
§8263 and 265 to investigate the measure of ¢[D]; but we already have several straightforward consequences
(262N-262P).

I have offered a number of results suggesting that (on the definitions I have chosen) a derivative can be
expected to share at least some ‘descriptive’ properties with the original function; see 222Yd, 225J, 225Yg,
262Yc, 262Yd. For partial derivatives, there are complications concerning their domains (419Yd, 431Yd)
which do not arise with full derivatives (225J, 262Yc).

Version of 4.4.13

263 Differentiable transformations in R”

This section is devoted to the proof of a single major theorem (263D) concerning differentiable transfor-
mations between subsets of R”. There will be a generalization of this result in §265, and those with some
familiarity with the topic, or sufficient hardihood, may wish to read §264 before taking this section and §265
together. I end with a few simple corollaries and an extension of the main result which can be made in the
one-dimensional case (263J).

Throughout this section, as in the rest of the chapter, p will denote Lebesgue measure on R".

263A Linear transformations I begin with the special case of linear operators, which is not only the
basis of the proof of 263D, but is also one of its most important applications, and is indeed sufficient for
many very striking results.

Theorem Let T be a real r x r matrix; regard T as a linear operator from R” to itself. Let J = |detT| be
the modulus of its determinant. Then

uT[E] = JuE
for every measurable set £ C R". If T is a permutation (that is, if J # 0), then
pF = Ju(T~HF])

for every measurable F' C R", and

(©) 2000 D. H. Fremlin
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fF gdn= Jfol[F] g1 dp
for every integrable function g and measurable set F.

proof (a) The first step is to show that T'[I] is measurable for every half-open interval I C R”. P Any
non-empty half-open interval I = [a,b] is a countable union of closed intervals I,, = [a,b — 27"1], and each
I,, is compact (2A2F), so that T'[I,] is compact (2A2Eb), therefore closed (2A2Ec), therefore measurable
(115G), and T'[I] = U, ey T'[I5] is measurable. Q

(b) Set J* = uT[[0,1[], where 0 = (0,...,0) and 1 = (1,... ,1); because T[[0,1[] is bounded, J* < oco.
(I will eventually show that J* = J.) It is convenient to deal with the case of singular T first. Recall that
T, regarded as a linear transformation from R" to itself, is either bijective or onto a proper linear subspace.
In the latter case, take any e € R™ \ T[R"]; then the sets

T[[0,1[] + e,

as 7y runs over [0, 1], are disjoint and all of the same measure J*, because p is translation-invariant (134A);
moreover, their union is bounded, so has finite outer measure. As there are infinitely many such ~, the
common measure J* must be zero. Now observe that

TR =U,ez T[10,1[] + Tz,
and
w(T[[0,1[]+T2z)=J*=0

for every z € Z", while Z" is countable, so pT[R"] = 0. At the same time, because T is singular, it has zero
determinant, and J = 0. Accordingly

pIE]=0=JukE
for every measurable £ C R", and we're done.

(¢) Henceforth, therefore, let us assume that 7' is non-singular. Note that it and its inverse are continuous,
so that T is a homeomorphism, and T'[G] is open iff G is open.
If a € R" and k € N, then

pT[[a,a+27F1]] =27+ J*.
P Set J; = puT[[0,27%1[]. Now T[[a,a+27%1[] = T[[0,27%1[] + Ta; because y is translation-invariant,

its measure also is J;. Next, [0,1] is expressible as a disjoint union of 2*" sets of the form [a, a+ 2_’“1[;
consequently, T[[0,1[] is expressible as a disjoint union of 2 sets of the form T'[ [a,a + 27%1[], and

J* = uT[[0,1[] = 27 J;,
that is, J; = 27k J* as claimed. Q
(d) Consequently pT[G] = J*uG for every open set G C R”. P For each k € N, set
Qr=A{z:2€Z", [27%z,27F2 4+ 27*1[ C G},

G = Useq, [2742,274= 4 2741]

Then Gy, is a disjoint union of #(Qy) sets of the form [2_k2,2_kz+2_k1[, so uGp = 27F"4(Qy); also,
T[Gy] is a disjoint union of #(Qy,) sets of the form T'[ [27%2,27%2 4+ 27*1[], so has measure 27*" J*#(Q;) =
J*uGy, using (c).

Observe next that (Gj)ren is a non-decreasing sequence with union G, so that

uT[G] = limg 0o pT[Gi] = limg oo J*uGr = J*uG. Q
(e) It follows that u*T[A] = J*u*A for every A CR". P Given A C R" and € > 0, there are open sets
G, H such that G D A, H D T[A], uG < u*A+ e and uH < p*T[A] + € (134Fa). Set G; = GN T [H];
then G is open because T~1[H] is. Now uT[G1] = J*uG1, so
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pwTIA < pT(Gh] = J*uGy < J'p A+ J7e
< JuGr+ J'e = uT[Gr) + Je < pH + J"e
< WTA] + e+ Je.
As € is arbitrary, p*T[A] = J*u*A. Q
(f) Consequently uT[E] exists and is equal to J*pE for every measurable E C R". P Let E C R" be
measurable, and take any A C R". Set A’ = T~![A]. Then
p(ANTIE]) + p"(A\T[E]) = p*(T[A" N E]) + p*(T[A"\ E)
= J(W(A' N E) + 1 (4'\ E))
— J*,U/*A/ _ /,L*T[Al] — M*A
As A is arbitrary, T[E] is measurable, and now
WT(E] = w*T[E] = J*u*E = J*uE. Q
(g) We are at last ready for the calculation of J*. Recall that the matrix T must be expressible as PDQ,

where P and @ are orthogonal matrices and D is diagonal, with non-negative diagonal entries (2A6C). Now
we must have

T([o,1[] = P[D[Q[[0, 1[]]],
so, using (f),
J* = JpJpdG,
where Jp = pP[[0,1[], etc. Now we find that J; = J5 = 1. P Let B = B(0,1) be the unit ball of
R”. Because B is closed, it is measurable; because it is bounded, uB < oo; and because B includes the

non-empty half-open interval [0,7~/21[, uB > 0. Now P[B] = Q[B] = B, because P and @ are orthogonal
matrices; so we have

pB = pP[B] = JpuB,
and Jp must be 1; similarly, J5, = 1. Q

(h) So we have only to calculate Jj;. Suppose the coefficients of D are d1,...,d, > 0, so that Dz =
(61&1,...,0:&) = d x x. We have been assuming since the beginning of (¢) that T is non-singular, so no J;
can be 0. Accordingly

D[ [0’ 1[] = [0’ d[v
and
T3 = pu[0,d[ = [, & = det D.

Now because P and @ are orthogonal, both have determinant +1, so detT = £det D and J* = +det T}
because J* is surely non-negative, J* = |det T| = J.

(i) Thus uT[E] = JuFE for every Lebesgue measurable E C R". As T is non-singular, we may use the
above argument to show that T—1[F] is measurable for every measurable F', and

WF = uTITF]] = Il F) = [ 7 % (T F]) dy,
identifying J with the constant function with value J. By 235A,
ngdu = fT*l[F] JoT' dp = Jfol[F] 9T dys

for every integrable function g and measurable set F.

263B Remark Perhaps I should have warned you that I should be calling on the results of §235. But if
they were fresh in your mind the formulae of the statement of the theorem will have recalled them, and if
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not then it is perhaps better to turn back to them now rather than before reading the theorem, since they
are used only in the last sentence of the proof.

I have taken the argument above at a leisurely, not to say pedestrian, pace. The point is that while
the translation-invariance of Lebesgue measure, and its behaviour under simple magnification of a single
coordinate, are more or less built into the definition, its behaviour under general rotations is not, since a
rotation takes half-open intervals into skew cuboids. Of course the calculation of the measure of such an
object is not really anything to do with the Lebesgue theory, and it will be clear that much of the argument
would apply equally to any geometrically reasonable notion of r-dimensional volume.

We come now to the central result of the chapter. We have already done some of the detail work in 262M.
The next basic element is the following lemma.

263C Lemma Let T be a real r x r matrix; set J = | det T'|. Then for any € > 0 thereisa ¢ = ((T,€) >0
such that

(1) |det S — det T'| < € whenever S is an r x r matrix and ||S —T| < (;

(ii) whenever D C R" is a bounded set and ¢ : D — R" is a function such that ||¢(z) — ¢(y) —T(x —y)|| <
Cllz —yl| for all x, y € D, then |p*¢[D] — Ju*D| < ep*D.

proof (a) Of course (i) is the easy part. Because det S is a continuous function of the coefficients of S, and
the coefficients of S must be close to those of T if ||S — T'|| is small (262Hb), there is surely a (o > 0 such
that |det S — det T'| < € whenever [|S —T|| < (p.

(b)(i) Write B = B(0,1) for the unit ball of R", and consider T[B]. We know that yT[B] = JuB
(263A). Let G 2 T[B] be an open set such that uG < (J + €)uB (134Fa again). Because B is compact
(2A2F again) so is T[B], so there is a ¢; > 0 such that T[B] + (1B C G (2A2Ed). This means that
W (T[B) + i B) < (J + JuB.

(ii) Now suppose that D C R" is a bounded set, and that ¢ : D — R" is a function such that
lo(x) — éd(y) — T(x —y)|| < Cillx —y|| for all z, y € D. Then if z € D and § > 0,

¢[D N B(x,6)] € ¢(x) + 6T[B] + 0GB,
because if y € DN B(x,0) then T(y — x) € 6T[B] and
o(y) = o(x) + T(y — =) + (¢(y) — ¢(x) = T(y — x))
€ ¢(x) +T[B] + Gilly — 2| B S ¢(z) + 6T[B] + (10B.
Accordingly
p¢[D N B(x,6)] < p* (6T [B] + 60 B) = 6" u* (T[B] + (1 B)
<8 (J+e)uB = (J +e)uB(zx,9).

Let > 0. Then there is a sequence (B, )nen of balls in R” such that D C (J,, oy Bn, Y oneg #Bn < p*D+1
and the sum of the measures of those B,, whose centres do not lie in D is at most 7 (261F). Let K be the
set of those n such that the centre of B, lies in D. Then pu*¢[D N B,] < (J + €)uB,, for every n € K. Also,
of course, ¢ is (||T'|| + ¢1)-Lipschitz, so p*¢[D N By,] < (| 7] + ¢1)" 1By, for n € N\ K (262D). Now

po[D] <> p*é[DN B,

n=0
<N (J+uBu+ > (IT|+G) B,
nek neN\K

ST+ D+n) +n(IT] + )"

As 7 is arbitrary,
polD] < (J + e)u™D.
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(c) If J = 0, we can stop here, setting ¢ = min({p,(1); for then we surely have |det S — detT| < ¢
whenever [|S — T|| < ¢, while if ¢ : D — R” is such that ||¢p(z) — ¢(y) — T'(z — v)|| < ||z — y]| for all z,
y € D, then

4*9[D] — Ju*D| = j6[D] < e*D.
If J # 0, we have more to do. Because T has non-zero determinant, it has an inverse 7-!, and | det T
J~1. Asin (b-i) above, there is a (3 > 0 such that p*(T~[B]+(B) < (J~'+€)uB, where € = ¢/J(J +¢).
Repeating (b), we see that if C C R” is bounded and ¢ : C' — R" is such that |[¢)(u) —(v) =T~ (u—v)|| <
Collu —v|| for all u, v € C, then p*y[C] < (J~1 +€)u*C.
Now suppose that D C R" is bounded and ¢ : D — R” is such that ||¢(z) — ¢(y) — T (z —y)|| < ¢llz —y|
for all z, y € D, where ¢4 = min((a, ||T7Y)/2||T7||? > 0. Then

1T~ (6() — o)) — (@ = )| < 1Tl =yl < 5l =yl

for all z, y € D, so ¢ must be injective; set C = ¢[D] and ¢ = ¢! : C — D. Note that C is bounded,
because

lp(2) = oIl < (TN + G)llx =yl

whenever z, y € D. Also

177w —v) = ((u) — @) < ITHIGI (W) — (o)l < %Hw(u) — ()|
for all u, v € C. But this means that
[¥(w) = )| = [T~ Hllu — vl < %II%(U) — ()|l
and [[1(u) — ¥(v)|| < 2| T~ Y|||u — v for all u, v € C, so that

l9h(w) = ¥ (v) = T7Hu = v)| < 2T H*[lu —v]| < Gllu—v]

for all u, v € C.
It follows that

WD = ry[C] < (J7 + NrC = (T + )i,
and
Jp*D < (14 J€)u*¢[D].
(d) So if we set ¢ = min({p,(1,¢5) > 0, and if D C R", ¢ : D — R” are such that D is bounded and
lo(z) — ¢(y) — T(z —y)|| < (llz -y for all z, y € D, we shall have
W 6lD) < (J + D,

w*@[D] > Jp*D — Je'u*¢[D] > Ju*D — J'(J + €)u*D = Ju*D — ep* D,
so we get the required formula

W ¢[D] — Ju*D| < ep*D.

263D We are ready for the theorem.

Theorem Let D C R” be any set, and ¢ : D — R" a function differentiable relative to its domain at each
point of D. For each z € D let T'(x) be a derivative of ¢ relative to D at z, and set J(x) = | det T'(x)|. Then
(i) J : D — [0, 00[ is a measurable function,
(i) 1 o[D] < [, J di,
allowing oo as the value of the integral. If D is measurable, then
(iii) ¢[D] is measurable.
If D is measurable and ¢ is injective, then
(iv) pg[D] =[5, J dp,
(v) for every real-valued function g defined on a subset of ¢[D],
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263D Differentiable transformations in R” 27

Jopy 9= [, 7 % godu

if either integral is defined in [—o0, 00|, provided we interpret J(x)g(¢(z)) as zero when J(x) = 0 and g(¢(z))
is undefined.

proof (a) To see that J is measurable, use 262P; the function T' — |det T| is a continuous function of the
coefficients of T', and the coefficients of T'(x) are measurable functions of z, by 262P, so z — |det T'(z)] is
measurable (121K). We also know that if D is measurable, ¢[D] will be measurable, by 2620b. Thus (i)
and (iii) are done.

(b) For the moment, assume that D is bounded, and fix € > 0. For r x r matrices T, take ((T,¢) > 0
as in 263C. Take (Dy)nen, (Tn)nen as in 262M, so that (D, ),en is a disjoint cover of D by sets which are
relatively measurable in D, and each T}, is an r X r matrix such that

IT(z) — T|| < ¢(T},€) whenever & € D,,,

[6(x) = ¢(y) = Tz — )| < ((Th, )|z —y| for all 7, y € Dy,.
Then, setting J,, = | det T, |, we have
|J(x) — Jn| < € for every x € D,,

|U*¢[Dn] - JnN*Dn| < ep* Dy,
by the choice of ((T,,€). So we have
fD Jdp <30 o Jupt* Dy +ep*D < fD J dp + 2ep* D;

I am using here the fact that all the D,, are relatively measurable in D, so that, in particular, p*D =
oo o WDy Next,

pr¢[D] < 32070 1 d[Dn] < Z:O:O I Dy + €™ D.
Putting these together,
wro[D] < fD Jdp 4+ 2ep*D.

If D is measurable and ¢ is injective, then all the D,, are measurable subsets of R", so all the ¢[D,,] are
measurable, and they are also disjoint. Accordingly

S Jdi < 320 TnnDy + epD < 3702 ((1¢[Dn] + enDy) + enD = pg[D] + 261D,
Since € is arbitrary, we get
w D] < [, Jdu,
and if D is measurable and ¢ is injective,
[ 7 dp < ug[DJ;
thus we have (ii) and (iv), on the assumption that D is bounded.
(c) For a general set D, set B = B(0, k); then
W @[D] = limy,_s o0 p*¢[D N By < limg 00 fDan Jdp= [ Jdu,
with equality if ¢ is injective and D is measurable.

(d) For part (v), I seek to show that the hypotheses of 235J are satisfied, taking X = D and Y = ¢[D].
P Set G={z:2€ D, J(z) > 0}.

() If F C ¢[D] is measurable, then there are Borel sets Fy, Fy such that F; C F C Fy and u(F>\ Fy) =
0. Set E; = ¢~ [F}] for each j, so that E; C ¢~ [F] C Es, and both the sets E; are measurable, because ¢
and dom ¢ are measurable. Now, applying (iv) to ¢[ E;

S, 7 dn = wé[E;] = u(F; N 9[D)) = puF
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for both j, so sz\El Jdy =0and J =0 a.e. on By \ Ey. Accordingly J x x (¢ '[F]) =a.. J X xE1, and
J T x x(¢7'[F])dp exists and is equal to [ Jdu = pF. At the same time, (¢~ '[F] N G)A(E1 N G) is
negligible, so ¢~ ![F] N G is measurable.

(B) If F C ¢[D] and G N ¢~ 1[F] is measurable, then we know that u¢[D \ G| = fD\G J =0 (by (iv)

applied to ¢ D \ G), so F \ ¢[G] must be negligible; while F' N ¢[G] = ¢[G N ¢~ [F]] also is measurable, by
(iii). Accordingly F is measurable whenever G'N ¢~ ![F] is measurable.

Thus all the hypotheses of 235J are satisfied. Q Now (v) can be read off from the conclusion of 235J.

263E Remarks (a) This is a version of the classical result on change of variable in a many-dimensional
integral. What I here call J(z) is the Jacobian of ¢ at x; it describes the change in volumes of objects
near x, following the rule already established in 263A for functions with constant derivative. The idea of
the proof is also the classical one: to break the set D up into small enough pieces D,, for us to be able
to approximate ¢ by affine operators y — ¢(z) + Tp,(y — x) on each. The potential irregularity of the set
D, which in this theorem may be any set, is compensated for by a corresponding freedom in choosing the
sets D,,. In fact there is a further decomposition of the sets D,, hidden in part (b-ii) of the proof of 263C;
each D,, is essentially covered by a disjoint family of balls, the measures of whose images we can estimate
with an adequate accuracy. There is always a danger of a negligible exceptional set, and we need the crude
inequalities of the proof of 262D to deal with it.

(b) Throughout the work of this chapter, from 261B to 263D, I have chosen balls B(z,d) as the basic
shapes to work with. I think it should be clear that in fact any reasonable shapes would do just as well. In
particular, the ‘balls’

Bl(JC,(S) = {y : 22:1 |77i - §Z| < 6}’ BOO(J?,(S) = {y : |77i - §z| < 5VZ}
would serve perfectly. There are many alternatives. We could use sets of the form C(z, k), for z € R™ and
k € N, defined to be the half-open cube of the form [2_’%, 27k(z +1) [ with z € Z" containing x, instead; or
even C'(z,0) =[x,z + d1[. In all such cases we have versions of the density theorems (261Yb-261Yc) which
support the remaining theory.

(c) I have presented 263D as a theorem about differentiable functions, because that is the normal form
in which one uses it in elementary applications. However, the proof depends essentially on the fact that a
differentiable function is a countable union of Lipschitz functions, and 263D would follow at once from the
same theorem proved for Lipschitz functions only. Now the fact is that the theorem applies to any countable
union of Lipschitz functions, because a Lipschitz function is differentiable almost everywhere. For more
advanced work (see FEDERER 69 or EVANS & GARIEPY 92, or Chapter 47 in Volume 4) it seems clear that
Lipschitz functions are the vital ones, so I spell out the result.

*263F Corollary Let D C R” be any set and ¢ : D — R" a Lipschitz function. Let D; be the set of
points at which ¢ has a derivative relative to D, and for each x € D; let T(z) be such a derivative, with
J(x) = |det T(x)|. Then

(i) D\ D is negligible;
(i) J : D1 — [0, 00[ is measurable;
(i) 1 0[D] < [, J(x)d.
If D is measurable, then
(iv) ¢[D] is measurable.
If D is measurable and ¢ is injective, then
(v) 1u6[D] = [, J dp,
(vi) for every real-valued function g defined on a subset of ¢[D],

Jopygdi= [, % godu

if either integral is defined in [—o0, 00|, provided we interpret J(x)g(¢(z)) as zero when J(x) = 0 and g(¢(x))
is undefined.

proof This is now just a matter of putting 262Q and 263D together, with a little help from 262D. Use
262Q to show that D\ Dy is negligible, 262D to show that ¢[D \ D;] is negligible, and apply 263D to ¢[D;.
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263G Polar coordinates in the plane I offer an elementary example with a useful consequence. Define

. 2 2 g _ . g 9 , _ (cosf —psinf
¢ : R* — R? by setting ¢(p,0) = (pcosb, psinf) for p, § € R%. Then ¢'(p,0) = snf  peosd )

J(p,0) = |p| for all p, . Of course ¢ is not injective, but if we restrict it to the domain D = {(0,0)}U{(p, ) :
p>0, —m <0 <7} then ¢ D is a bijection between D and R2, and

[ gdérdés = [ 9(6(p,6))pdpdd

for every real-valued function g which is integrable over R2.
Suppose, in particular, that we set

o(z) = eal?/2 = o~€2/2-€3/2
for x = (&1,&2) € R. Then
[ 9(z)dz = fefﬁ/zdflf e~ /2de,,

as in 253D. Setting [ = fe’t2/2dt, we have [g = I?. (To see that I is well-defined in R, note that the
integrand is continuous, therefore measurable, and that

[hetra <o,
f:olo et 2qt = floo et 2qt < floo e~t2dt = limy_ oo fla e t2dt = %6_1/2

are both finite.) Now looking at the alternative expression we have

/ da:—/ g(pcos, psin®)pd(p, )

/ - /2pd (p,0) / / pe P /2d9dp

(ignoring the point (0, 0), which has zero measure)

27Tp€_p2/2d,0 =27 lim pe_pz/zdp

0 a—r 00 0

=27 lim (e~ /2 +1) = 2r.

a— o0
Consequently
[7 e tdt =1 = Vo,

which is one of the many facts every mathematician should know, and in particular is vital for Chapter 27
below.

263H Corollary If k € N is odd,
ffooo ake=2"/2dy = 0;
if £ = 2] € N is even, then

f—oooo ko—a2/24, — (2 )'\/ﬂ.

20!
proof (a) To see that all the integrals are well-defined and finite, observe that lim,_, 1, ahev/4 = 0, so
that My = sup,cp |zke="/4| is finite, and

foo |xke*$2/2|dm < Mkf_oooo e/ dy < .

(b) If k is odd, then substituting y = —x we get
f_ozo ake=2"2dy = —fjooo ykeny/Qdy,
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so that both integrals must be zero.

(¢) For even k, proceed by induction. Set I} = ffo 2le="/2dy. Iy =271 = 200,\/ 27 by 263G. For the
inductive step to [ + 1 > 1, integrate by parts to see that

fi‘a 220+1 '$8_$2/2dl‘ _ _a2l+1e—a2/2 + (_a)2l+1e—a2/2 + ffa(% + 1)x2le_$2/2dx
for every a > 0. Letting a — oo,
Dy =20+ 1)1

Because

LD 94 1) 20 for

2l+1 (1+1)! 201!

the induction proceeds.

2631 The following is a version of 263D for non-injective transformations.

Theorem Let D C R” be a measurable set, and ¢ : D — R" a function differentiable relative to its domain
at each point of D. For each x € D let T'(z) be a derivative of ¢ relative to D at x, and set J(x) = |det T'(x)|.
(a) Let v be counting measure on R". Then [;, v(¢~'[{y}])dy and [}, Jdp are defined in [0, c0] and
equal.
(b) Let g be a real-valued function defined on a subset of ¢[D] such that [;, g(¢(x)) det T'(x)dz is defined
in R, interpreting g(¢(x)) det T(x) as zero when det T'(z) = 0 and g(¢p(x)) is undefined. Set

C={y:yeolD], 6 [{y}] is finite}, R(y) = Yyepms(qyy sendet T(x)

for y € C, where sgn(0) = 0 and sgn(a) = — for non-zero «. If we interpret g(y)R(y) as zero when g(y) =0

| Ja
and R(y) is undefined, then f¢[D] g X Rdyu is defined and equal to [, g(¢(x)) det T'(x)dz.

proof (a) By 263D(i), J is measurable, so [}, J dp is defined in [0,00] and Dy = {x : # € D, J(z) = 0} is

measurable. Applying 263D(ii) to ¢[ Dy, we see that ¢[Dy] is negligible.

Applying 262M to ¢[D \ Dy, the set A of non-singular r x r-matrices and {(S) = m for S € A, we
have a partition (F,)nen of D\ Dy into measurable sets and a sequence (T},)nen in A such that

1 1

I6(e)  6(0) ~ Tue — ) < gl — ol I7G) ~ Tl < 5

whenever n € N and «, y € E,,. In this case, for z, y € E,,

_ 1
¢(x) =¢(y) = o —yll < IT7ITn(z - ) < llz —yll = 2=y,

so ¢| B, is injective, for each n. Consequently #(¢~1[{y}]) = #({n : y € ¢[E,]}) for y € ¢[D] \ ¢[Dy], and

v(p™! dy = ))dy = D
/¢ T /¢ ey M = Zu 1\ 6Do))

(applying 263D(iii) to ¢[ E,, we know that ¢[F,] is measurable for each n)

=§u¢[En1=§/EnJ

D\ Dy D

each sum or integral being defined in [0, oo] because the next one is.
(b)(i) Setting D’ = ¢~![dom g], we see that D \ (Do U D’) is negligible, so (using 263D(ii) again)
¢[D]\ dom g = ¢[D]\ ¢[D'] € ¢[Do] U G[D \ (Do U D')]

(applying 263D(iv) to ¢ E,,)
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is negligible. Next, if we set C' = C' U g~ 1[{0}], ¢[D] \ C’ is negligible. P For each m € N, set F,,, = {y :
y € domyg, [g(y)| = 27™}. Then
6~ [Fu] \ Do = {z - € D, J(x) £ 0, g(6(x)) is defined and |g(p(x))] > 27"}
is measurable (because J x g¢ is measurable) and (applying (a) to ¢[¢L[F},])
Jo, v @ WDy = [, Tdp <2 [ |J><g( )| dps

is finite. But this means that v(¢~![{y}]) must be finite for almost every y € F,, that is, that F,, \ C is
negligible. As m is arbitrary, dom g\ C’ and ¢[D] \ C’ are negligible. Q

(ii) Taking (E,)nen and (T, ) nen asin (a), set €, = sgndet T;, € {—1,1} for each n. Then sgndet T'(z) =
€, whenever n € N and z € E,,. P For any « € [0, 1],

1

(0T (@) + (1 = )T,) = Tull < IT@) ~ Tl < gt

so (using 2A4Fd) ||(aT(x)+(1—a)Ty,) — L. || < , where I,. is the r x r identity matrix, and oT'(z)+ (1—a)T),

is non-singular (since if (o7 (z)+(1—a)T))z = O, then ||z|| < 1|z||). Thus det(aT'(z)+(1—a)T},) is non-zero
for 0 < a < 1. But as a +— det(aT'(z) + (1 — @)T,) is continuous, €, = sgndet T,, = sgndet T'(z). Q

(iii) Now

/ g(o(z)) det T(x) de = / g(o(z)) det T'(x) dzx
D

D\ Dy

—Z/ )) det T'(x) da

(in this series of formulae, each sum and integral is well-defined because the preceding ones are)

D3y R CCINEIEED oy

F[En]

fZen/ mClgda?fZen/ng ) dx

n=0 n=0

(using 131Fa, if you like, for the last step). Since we also have
00 > [}, 9(6(x)) det T(x)| dx = 202 [, lg] * x(@[En]) da

(going through the same stages with the absolute values of integrands), we have

| s(@)aet 1o dxfzen/gxx D de
=[x Senots

:/ ngenx dgc—/ gx Rdu
C\¢[Do] n=0 C\¢[Do]

(because if y € C"\ ¢[Dy), either g(y) = 0 or R(y) is defined and equal to > 7, enx(¢[En])(y))

- / g% Rdp,
¢[D]

as claimed.
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263J The one-dimensional case The restriction to injective functions ¢ in 263D(v) is unavoidable in
the context of the result there. But in the substitutions of elementary calculus it is not always essential. In
the hope of clarifying the position I give a result here which covers many of the standard tricks.

Proposition Let I C R be an interval with more than one point, and ¢ : I — R a function which is
absolutely continuous on any closed bounded subinterval of I. Write u = inf I, ' = sup I in [—o0, 00|, and
suppose that v = lim,, ¢(x) and v' = limg4, ¢(z) are defined in [—oo, 00]. Let g be a real function such
that [, g(¢(x))¢'(x)dx is defined, on the understanding that we interpret g(¢(z))¢’ () as 0 when ¢/(2) = 0

and g(¢(x)) is undefined. Then fvv/ g is defined and equal to [, g(¢(z))¢’(x)dx, where here we interpret
[V gas—[)gifv <w.

proof (a) ¢ is differentiable almost everywhere on I and ¢[A] is negligible for every negligible A C I. 1> We
can express I as the union of a sequence (I,)nen of closed bounded intervals such that ¢, is absolutely
continuous for every n. By 225Cb and 225G, ¢, is differentiable almost everywhere on I,, and ¢[A4] is
negligible for every negligible A C I,,, for each n. So ¢ is differentiable almost everywhere on |J, -y In =1
and @[A] = U,y ¢[A N I,] is negligible for every negligible A C I. Q

Because ¢[J is continuous for every closed interval J C I, ¢ is continuous. By the Intermediate Value
Theorem, ¢[I] is an interval including Jmin(v,v’), max(v, v)][.

neN

(b) Let D C I be the domain of ¢'. For x € D, we can think of ¢'(z) as a 1 x 1 matrix with determinant
¢'(x). As I'\ D is negligible, ¢[I]\ ¢[D] C ¢[I\ D] is negligible. Now [, g(¢(x))¢'(x)dx = [; g(d(x))¢' (x)dzx.
Applying 2631 to ¢[D and g|¢[D], we see that f¢[D]g X R is defined and equal to [, g¢ x ¢, where

R(y) = > eprop-1[{yy 580 @' () whenever y € ¢[D] and D N »~1[{y}] is finite.
(c) (The key.) Set Dy = {z: x € D, ¢'(x) = 0}. By 263D(ii), applied to ¢[ Do, ¢[Do] is negligible. Set
C={y:ye¢Djndomg\ (¢[Do] U{v,v'}), ¢ [{y}] is finite, g(y) # 0}.
If y € C and K = ¢~ '[{y}], then
R(y) = Z sgng’(z) =1ifv <y <,

zeK
=-1lifv <y <w,

= 0 otherwise.

P If J C I\ K is an interval, ¢(z) # y for z € J; since ¢ is continuous, the Intermediate Value Theorem
tells us that sgn(é(z) — y) is constant on J. Also ¢'(x) # 0 for every x € K, because y ¢ ¢[Do]. A
simple induction on # (K N]—oo, z[) shows that sgn(¢(z) —y) =sgn(v —y) +23° k... sen¢’(z) for every
z € I\ K; taking the limit as z T v/, 3 . sgn¢/(z) = (sgn(v' — y) — sgn(v — y)). (Here we may have to
interpret sgn(+o00) as £1 in the obvious way.) This turns out to be just what we need to know. Q

/g¢x¢’:/g¢x¢':/ g% R
I D ¢[D]
:/ ngxXC’:/ ngC:/ g
¢[D] v v

because ¢[D] \ (C U g~*[{0}]) is negligible.

(d) So now we have

263X Basic exercises (a) Let (X, Y, 1) be any measure space, f € £%u) and p € [1,00[. Show that
fe LP(p) iff

v = pfooo P Ly {z:z € dom f, |f(z)| > a}da

is finite, and in this case | f||, = /7. (Hint: [|f|P = I w{x  |f(@)|P > B}dB, by 2520; now substitute
B=ar.)
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(b) Let f be an integrable function defined almost everywhere in R”. Show that if & < r — 1 then
>opeyn®| f(nx)| is finite for almost every x € R”. (Hint: estimate Y.~ n® [5|f(nz)|dz for balls B
centered at the origin.)

(c) Let A C]0,1] be a set such that u*A = p*([0,1] \ A) = 1, where p is Lebesgue measure on R. Set
D=AU{-z:2¢€]0,1[\ A} C [-1,1], and set ¢(x) = |z| for z € D. Show that ¢ is injective, that ¢ is
differentiable relative to its domain everywhere in D, and that p*¢[D] < [, |[¢'(x)|dz.

(d) Let ¢ : D — R" be a function differentiable relative to D at each point of D C R", and suppose that
for each x € D there is a non-singular derivative 7'(z) of ¢ at z. Show that D is expressible as (J;, cy Dk
where D, = DN Dy, and ¢| Dy, is injective for each k.

>(e)(i) Show that for any Lebesgue measurable £ C R and t € R\ {0}, [, ‘—ildu = /s ﬁdu. (ii)
For t € R, u € R\ {0} set ¢(t,u) = (£,u). Show that f¢>[E] ﬁd(t,u) = [ ﬁd(t,u) for any Lebesgue
measurable £ C R2.

> (f) Define ¢ : R? — R3 by setting
?(p,0,a) = (psinfsina, pcosfsin a, p cos a).

Show that det ¢/(p, 0, o) = p? sin c.

(g) Show that if k = 2/ + 1 is odd, then [~ ake=7"/2dy = 2U1. (Compare 252Xi.)

263Y Further exercises (a) Define a measure v on R by setting vE = [ 5 ﬁdm for Lebesgue measurable
sets E C R. For f, g € L'(v) set (f = g)(z) = [ f(£)g(t)v(dt) whenever this is defined in R. (i) Show

that fxg = g* f € L (v). (ii) Show that [h(z)(f * g)(z)v(dz) = [ h(zy)f(z)f(y)v(dz)v(dy) for every
h € £2°(v). (iii) Show that f * (g h) = (f * g) * h for every h € L1 (v). (Hint: 263Xe.)

(b) Let E C R? be a measurable set such that limsup,_,., —zp2(E N B(0,)) > 0, writing p» for
Lebesgue measure on R?. Show that there is some § € ]—m, 7] such that p3Ey = oo, where Ey = {p :
p >0, (pcost,psinb) € E}. (Hint: show that pz(E N B(0,a)) < o [" p1Ep)d.) Generalize to higher
dimensions and to functions other than yE.

(c) Let E C R" be a measurable set, and ¢ : E — R" a function differentiable relative to its domain,
with a derivative T'(z), at each point = of E; set J(z) = |det T'(x)|. Show that for any integrable function
g defined on ¢[F],

J 9w # {y)dy = [, J(@)g(d(x))da.

(d) Find a proof of 263J based on the ideas of §225. (Hint: 225Xe.)

(e) Let f : [a,b] — R be a function of bounded variation, where a < b in R, with Lebesgue decomposition
f = fp+ fes + fac as in 226Cd; let ;1 be Lebesgue measure on R. Show that the following are equiveridical:
(i) fes is constant; (ii) pf[[e,d]] < fcd |f'|dp whenever a < ¢ < d < b; (iii) p*f[A] < [, |f'|dp for every
A C [a,b]; (iv) f[A] is negligible for every negligible set A C [a,b]. (Hint: for (iv)=-(i) put 226Yd and
263D(ii) together to show that |f(d) — f(c)| < fcd |f'|dp + Var q) fp, whenever a < ¢ < d < b, and therefore
that Vary, ;) f < Vary, s fp + Vary s fac:)

(f) Suppose that r = 2 and that ¢ : R? — R? is continuously differentiable with non-singular derivative
T at 0. (i) Show that there is an € > 0 such that whenever I' is a small circle with centre 0 and radius
at most € then ¢[I" is a homeomorphism between I" and a simple closed curve around 0. (ii) Show that if
det T > 0, then for such circles ¢(x) runs anticlockwise around ¢[I'] as x runs anticlockwise around T'. (iii)
What happens if det T' < 07
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263 Notes and comments Yet again, approaching 263D, I find myself having to choose between giving
an accessible, relatively weak result and making the extra effort to set out a theorem which is somewhere
near the natural boundary of what is achievable within the concepts being developed in this volume; and,
as usual, I go for the more powerful form. There are three basic sources of difficulty: (i) the fact that we
are dealing with more than one dimension; (ii) the fact that we are dealing with irregular domains; (iii) the
fact that we are dealing with arbitrary integrable functions. I do not think I need to apologise for (iii) in
a book on measure theory. Concerning (ii), it is quite true that the principal applications of these results
are to cases in which the transformation ¢ is differentiable everywhere, with continuous derivative, and the
set D has negligible boundary; and in these cases there are substantial simplifications available — mostly
because the sets D, of the proof of 263D can be taken to be cubes. Nevertheless, I think any form of the
result which makes such assumptions is deeply unsatisfactory at this level, being an awkward compromise
between ideas natural to the Riemann integral and those natural to the Lebesgue integral. Concerning (i),
it might even have been right to lay out the whole argument for the case r = 1 before proceeding to the
general case, as I did in §§114-115, because the one-dimensional case is already important and interesting;
and if you find the work above difficult — which it is — and your immediate interests are in one-dimensional
integration by substitution, then I think you might find it worth your time to reproduce the r = 1 argument
yourself, up to a proof of 263J. In fact the biggest difference is in 263A, which becomes nearly trivial; the
work of 262M and 263C becomes more readable, because all the matrices turn into scalars and we can drop
the word ‘determinant’, but I do not think we can dispense with any of the ideas, at least if we wish to
obtain 263D as stated. (But see 263Yd.)

I found myself insisting, in the last paragraph, that a distinction can be made between ‘ideas natural
to the Riemann integral and those natural to the Lebesgue integral’. We are approaching deep questions
here, like ‘what are books on measure theory for?’, which I do not think can be answered without some —
possibly unconscious — reference to the question ‘what is mathematics for?’. I do of course want to present
here some of the wonderful general theorems which arise in the Lebesgue theory. But more important than
any specific theorem is a general idea of what can be proved by these methods. It is the essence of modern
measure theory that continuity does not matter, or, if you prefer, that measurable functions are in some
sense so nearly continuous that we do not have to add hypotheses of continuity in our theorems. Now this
is in a sense a great liberation, and the Lebesgue integral is now the standard one. But you must not regard
the Riemann integral as outdated. The intuitions on which it is founded — for instance, that the surface of
a solid body has zero volume — remain of great value in their proper context, which certainly includes the
study of differentiable functions with continuous derivatives. What I am saying here is that I believe we
can use these intuitions best if we maintain a division, a flexible and permeable one, of course, between the
ideas of the two theories; and that when transferring a theorem from one side of the boundary to the other
we should do so whole-heartedly, seeking to express the full power of the methods we are using.

I have already said that the essential difference between the one-dimensional and multi-dimensional
cases lies in 263A, where the Jacobian J = |detT| enters the argument. Shorn of the technical devices
necessary to deal with arbitrary Lebesgue measurable sets, this amounts to a calculation of the volume of
the parallelepiped T'[I] where I is the interval [0,1[. I have dealt with this by a little bit of algebra, saying
that the result is essentially obvious if 7' is diagonal, whereas if T is an isometry it follows from the fact
that the unit ball is left invariant; and the algebra comes in to express an arbitrary matrix as a product
of diagonal and orthogonal matrices. It is also plain from 261F that Lebesgue measure must be rotation-
invariant as well as translation-invariant; that is to say, it is invariant under all isometries. Another way of
looking at this will appear in the next section.

I feel myself that the centre of the argument for 263D is in the lemma 263C. This is where we turn the
exact result for linear operators into an approximate result for almost-linear functions; and the whole point
of differentiability is that a differentiable function is well approximated, near any point of its domain, by a
linear operator. The lemma involves two rather different ideas. To show that p*¢[D] < (J +€)u* D, we look
first at balls and then use Vitali’s theorem to see that D is economically covered by balls, so that an upper
bound for p*¢[D] in terms of a sum > p 7 p*@[D N B] is adequate. To obtain a lower bound, we need to
reverse the argument by looking at 1) = ¢!, which involves checking first that ¢ is invertible, and then that
® is appropriately linked to 7~ !. T have written out exact formulae for ¢, ¢, and so on, but this is only in
case you do not trust your intuition; the fact that |[¢=*(u) — ¢~ 1(v) — T~ (u — v)| is small compared with
||lu — v]| is pretty clearly a consequence of the hypothesis that ||¢(x) — ¢(y) — T'(x — y)|| is small compared
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with ||z —y||.
The argument of 263D itself is now a matter of breaking the set D up into appropriate pieces on each of
which ¢ is sufficiently nearly linear for 263C to apply, so that

pro[D] < 3o wFG[Dim] < 300 o(Jm + € Dy

With a little care (taken in 263C, with its condition (i)), we can also ensure that the Jacobian J is well
approximated by .J,, almost everywhere in Dy, so that > 0°_ Jyp* Dy, = [, J(2)dz.
These ideas, joined with the results of §262, bring us to the point

[ J dp = polE]

when ¢ is injective and E C D is measurable. We need a final trick, involving Borel sets, to translate this
into

Jomrpm I A= nF

whenever F' C ¢[D] is measurable, which is what is needed for the application of 235J.

I hope that you long ago saw, and were delighted by, the device in 263G. Once again, this is not really
Lebesgue integration; but I include it just to show that the machinery of this chapter can be turned to deal
with the classical results, and that indeed we have a tiny profit from our labour, in that no apology need
be made for the boundary of the set D into which the polar coordinate system maps the plane. I have
already given the actual result as an exercise in 252Xi. That involved (if you chase through the references) a
one-dimensional substitution (performed in 225Xh), Fubini’s theorem and an application of the formulae of
§235; that is to say, very much the same elements as those used above, though in a different order. I could
present this with no mention of differentiation in higher dimensions because the first change of variable was
in one dimension, and the second (involving the function = — ||z||, in 252Xi(i)) was of a particularly simple
type, so that a different method could be used to find the function J.

The function R(y) = >_,c4-1((yy sendet T(z) of 263Ib belongs to rather deeper notions in differential
geometry than I wish to enlarge on here. In the one-dimensional context it simply counts up- and down-
crossings of y (see part (c) of the proof of 263J), because we can think of each T'(z) as a scalar which
is either positive or negative. (It is relevant that in this case we can assume that T'(z) is non-singular
whenever ¢(z) = y.) In higher dimensions, I suppose the first thing to look for is a geometric interpretation
of sgndet T'(x). (See 263Ye.) A geometric interpretation of the sum is something else again. But it is worth
noting that (subject to a natural interpretation of ‘Oxundefined’) we can relate fD go x det ¢’ to f¢[D] gxX R
where R is definable from ¢ without reference to g; it counts folds in the graph of ¢.

The abstract ideas to which this treatise is devoted do not, indeed, lead us to many particular examples
on which to practise the ideas of this section. The ones which do arise tend to be very straightforward, as
in 263G, 263Xa-263Xb and 263Xe. I mention the last because it provides a formula needed to discuss a
new type of convolution (263Ya). In effect, this depends on the multiplicative group R\ {0} in place of the
additive group R treated in §255. The formula % in the definition of v is of course the derivative of Inx,
and In is an isomorphism between (]0, o[, -, ) and (R, +, Lebesgue measure).

Version of 12.5.03

264 Hausdorff measures

The next topic I wish to approach is the question of ‘surface measure’; a useful example to bear in mind
throughout this section and the next is the notion of area for regions on the sphere, but any other smoothly
curved two-dimensional surface in three-dimensional space will serve equally well. It is I think more than
plausible that our intuitive concepts of ‘area’ for such surfaces should correspond to appropriate measures.
But formalizing this intuition is non-trivial, especially if we seek the generality that simple geometric ideas
lead us to; I mean, not contenting ourselves with arguments that depend on the special nature of the sphere,
for instance, to describe spherical surface area. I divide the problem into two parts. In this section I will
describe a construction which enables us to define the r-dimensional measure of an r-dimensional surface —

(©) 1994 D. H. Fremlin
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among other things — in s-dimensional space. In the next section I will set out the basic theorems making
it possible to calculate these measures effectively in the leading cases.

264 A Definitions Let s > 1 be an integer, and r > 0. (I am primarily concerned with integral r, but
will not insist on this until it becomes necessary, since there are some very interesting ideas which involve
non-integral ‘dimension’ r.) For any A C R*, § > 0 set

(o]
0,sA = inf{Z(diam An)"  {An)nen is a sequence of subsets of R® covering A,
n=0

diam A,, < ¢ for every n € N}.
It is convenient in this context to say that diam @ = 0. Now set
0, A = sups<q 0r54;

0, is r-dimensional Hausdorff outer measure on R*®.

264B Of course we must immediately check the following:
Lemma 0,., as defined in 264A, is always an outer measure.

proof You should be used to these arguments by now, but there is an extra step in this one, so I spell out
the details.

(a) Interpreting the diameter of the empty set as 0, we have 6,50 = 0 for every § > 0, so 6,0 = 0.

(b) If A C B C R?, then every sequence covering B also covers A, so 0,54 < 0,5B for every § and
0.A<6,.B.

(c) Let (An)nen be a sequence of subsets of R® with union A, and take any a < 6,A. Then there is a
§ > 0 such that a < 6,54. Now 0,54 < >~ ,0,5(A,). P Let € > 0, and for each n € N choose a sequence
(Apm)men of sets, covering A,,, with diam A,,,, < § for every m and Y °_ (diam A,,,,,)" < 0,54, + 27 ".
Then (Anm)m.nen is a cover of A by countably many sets of diameter at most J, so

B5A < 3220 0 30 (diam App)™ < 322 0r5 Ay + 27 = 26+ 30 0,54,

As € is arbitrary, we have the result. Q
Accordingly

a S 0r5A é ZZO:O 07“6An S Zflo:o GrAn
As a is arbitrary,
GT‘A < ZZOZO erAn§

as (Ap)nen is arbitrary, 0, is an outer measure.

264C Definition If s > 1 is an integer, and r > 0, then Hausdorff r-dimensional measure on R? is
the measure pp, on R® defined by Carathéodory’s method from the outer measure 6, of 264A-264B.

264D Remarks (a) It is important to note that the sets used in the definition of the 6,5 need not be
balls; even in R? not every set A can be covered by a ball of the same diameter as A.

(b) In the definitions above I require » > 0. It is sometimes appropriate to take upgo to be counting
measure. This is nearly the result of applying the formulae above with 7 = 0, but there can be difficulties
if we interpret them over-literally.

(c) All Hausdorff measures must be complete, because they are defined by Carathéodory’s method (2124).
For r > 0, they are atomless (264Yg). In terms of the other criteria of §211, however, they are very ill-
behaved; for instance, if r, s are integers and 1 < r < s, then pg, on R* is not semi-finite. (I will give a
proof of this in 439H in Volume 4.) Nevertheless, they do have some striking properties which make them
reasonably tractable.
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(d) In 264A, note that 6,54 < 0,5 A when 0 < §’ < §; consequently, for instance, 6, A = lim,, o 0, 5-n A.
I have allowed arbitrary sets A, in the covers, but it makes no difference if we restrict our attention to
covers consisting of open sets or of closed sets (264Xc).

264E Theorem Let s > 1 be an integer, and r > 0; let pg, be Hausdorff r-dimensional measure on R*,
and Xy, its domain. Then every Borel subset of R® belongs to X,

proof This is trivial if » = 0; so suppose henceforth that r > 0.

(a) The first step is to note that if A, B are subsets of R® and n > 0 is such that ||z — y|| > n for all
x € A y € B, then 0,.(AUB) = 0,A+0,.B, where 0, is r-dimensional Hausdorff outer measure on R*. I Of
course 0,.(AU B) < 0, A+ 0, B, because 0, is an outer measure. For the reverse inequality, we may suppose
that 6,.(AU B) < oo, so that 6, A and 6,.B are both finite. Let € > 0 and let 41, 2 > 0 be such that

0,A+0,.B<0,.5 A+ 0,58 +e.

Set § = min(dy, da, %n) > 0 and let {A,)nen be a sequence of sets of diameter at most d, covering A U B,
and such that Y.~ ((diam A,)" < 6,5(AU B) + €. Set
K={n:A,NnA#0}, L={n:A,NB+#0}.
Because
|z —yll > n > diam 4,
whenever x € A,y € Band n € N, KN L = ; and of course A C | A, BCU

A,,. Consequently

nekK nelL

0,A+0,.B<e+0.5A+0.5DB
<e+ Z (diam A,,)" + Z(diamAn)T

nekK nelL
<e+ ) (diam Ap)" < 2+ 0,5(AUB) < 2+ 0,(AUB).
n=0
As e is arbitrary, 6,.(AU B) > 6,,A + 0, B, as required. Q

(b) It follows that 6,A = 6,(ANG) + 0,.(A\ G) whenever A C R® and G is open. P As usual, it is
enough to consider the case 6, A < oo and to show that in this case 6,(ANG) + 0, (A\ G) < 6, A. Set

Ap={z:z €A, ||z —y|| >27" for every y € A\ G},

.B():AQ7 Bn:An\An,1 for n > 1.

Observe that A, C A, for every n and UneN A, = UneN B,, = ANG. The point is that if m, n € N and
n>m+2, and if z € By, and y € B, then there is a z € A\ G such that ||y — z|| < 277" <2771 while
|z — z|| must be at least 2=™, so ||z — y|| > ||z — 2| — |ly — 2| > 27™~L. It follows that for any k& > 0

S0 05 Bom = 0,(Upei Bam) < 0:(ANG) < o0,

m=0

Zﬁz:O erB2m+1 - GT(UmSk B2m+1) S HT‘(A M G) < o,

(inducing on k, using (a) above for the inductive step). Consequently Y 6, B, < cc.
But now, given € > 0, there is an m such that .07 0,.B,, < ¢, so that

n=m

0.(ANG) +0,(A\G) < 0 A+ 3 0B, +0,(A\ G)
<e+60,4,+0,.(A\G) =€+ 0,(4,, U(A\G))
(by (a) again, since ||z —y|| > 2 ™ forz € A, y € A\ G)
<e+0,.A.
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As e is arbitrary, 6,(ANG) +0,(A\ G) < 6,A, as required. Q

(c) Part (b) shows exactly that open sets belong to Xp,.. It follows at once that the Borel o-algebra of
R? is included in X g, as claimed.

264F Proposition Let s > 1 be an integer, and r > 0; let 6,. be r-dimensional Hausdorff outer measure
on R? and write g, for r-dimensional Hausdorff measure on R*, ¥y, for its domain. Then

(a) for every A C R* there is a Borel set F O A such that pug,.E = 6,.A;

(b) 6, = w3, the outer measure defined from p g, ;

(c) if E € Xy, is expressible as a countable union of sets of finite measure, there are Borel sets E', E”
such that £/ C E C E” and pg,(E" \ E') =0.

proof (a) If 0, A = oo this is trivial — take E = R*®. Otherwise, for each n € N choose a sequence (A, )men
of sets of diameter at most 27", covering A, and such that > °_ (diam A,,)" < 60,.9-nA + 27", Set
Frm = Anm: E = Npen Umen Fams then E is a Borel set in R®. Of course

AC nneN UmeN Amn € mneN UmeN Fom = E.
For any n € N,

diam F,,,, = diam A,,,,, < 27" for every m € N,

S o(diam Fpp)” = >0 (diam Ay,pp)" < 0, 0-n A +277,
S0
Oro-nE < 0p0-nA+27"
Letting n — oo,
0,F =1limy, o0 0y 0-nE <limy 00 0y 0-nA+27" =0, A;

of course it follows that 0,4 = 6,.F, because A C E. Now by 264E we know that F € ¥g,., so we can write
wir-E in place of 6, F.

(b) This follows at once, because we have
Wi, A=inf{pp,E:E€Xy,, ACE} =inf{0,E: E€Xy,, ACE} >6,A

for every A C R%. On the other hand, if A C R® we have a Borel set E O A such that 6,4 = ug.FE, so
that pj;, A < pprE =6, A.

(c)(i) Suppose first that pg,.E < co. By (a), there are Borel sets E” D E, H 2 E” \ E such that
MHTEN = 91"E7

i H = 0,(E"\ E) = pgr(E"\ B) = pgre E" — gt E = pupr E" — 6,E = 0.
So setting E/ = E’ \ H, we obtain a Borel set included in F, and
it (B \ B') < iz, H = 0.

(ii) For the general case, express E as |J,, oy En where pp, E, < oo for each n; take Borel sets E;,, E
such that E], C E, C E]] and pug,(E] \ E;) = 0 for each n; and set E' = J,,cn Ery E” = U, en Err-

264G Lipschitz functions The definition of Hausdorff measure is exactly adapted to the following
result, corresponding to 262D.

Proposition Let m, s > 1 be integers, and ¢ : D — R* a y-Lipschitz function, where D is a subset of R™.
Then for any A C D and r > 0,

i (G[A]) <V pj, A
for every A C D, writing pp, for r-dimensional Hausdorff outer measure on either R™ or R*.
proof (a) The case r = 0 is trivial, since then v" = 1 and pj;,.A = pugoA = #(A) if A is finite, co otherwise,
while #(8[4]) < #(A).
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(b) If r > 0, then take any 6 > 0. Set n = §/(1 + ) and consider 6,, : PR™ — [0, 00|, defined as in
264A. We know from 264Fb that

i A= 0,4>0,)A,
so there is a sequence (Ay)nen of sets, all of diameter at most 7, covering A, with > (diam A,)" <
Wi A+ 0. Now ¢[A] C U, ey ¢[An N D] and
diam ¢[A, N D] < ydiam A, <ynp <§
for every n. Consequently
Ors($[A]) < 2207 o(diam @[An])" < 3572 oo (diam Ap)" < " (ufy, A+ 0),
and
Wi, (0[A]) = lims o 0,5 (S[A]) < 7" 13y, A,

as claimed.

264H The next step is to relate r-dimensional Hausdorff measure on R" to Lebesgue measure on R”.
The basic fact we need is the following, which is even more important for the idea in its proof than for the
result.

Theorem Let r > 1 be an integer, and A a bounded subset of R"; write u, for Lebesgue measure on R"
and d = diam A. Then

d
3)

ui(A) < 1, B0,

— 2778, d,

where B(0, g) is the ball with centre 0 and diameter d, so that B(0,1) is the unit ball in R", and has
measure

1 . .
B = Ewk if r = 2k is even,

2k+1
= G i 7 =2k + Lis odd.

proof (a) For the calculation of 5,., see 252Q) or 252Xi.

(b) The case r = 1 is elementary, for in this case A is included in an interval of length diam A, so that
uiA < diam A. So henceforth let us suppose that r > 2.

(c)Forl <i<rletsS;:R" — R" be reflection in the ith coordinate, so that S;z = (&1,... ,&—1, =&, &it1,

&) for every x = (&1,...,&-) € R". Let us say that a set C C R" is symmetric in coordinates in
J, where J C {1,...,r}, if S;[C] = C for i € J. Now the centre of the argument is the following fact: if
C C R is a bounded set which is symmetric in coordinates in J, where J is a proper subset of {1,... ,r}, and
je{1,...,r}\ J, then there is a set D, symmetric in coordinates in J U {j}, such that diam D < diam C
and prC < prD.

P (i) Because Lebesgue measure is invariant under permutation of coordinates, it is enough to deal with

the case j = r. Start by writing F' = C, so that diam F' = diam C and p,.F > pC. Note that because S; is
a homeomorphism for every i,

Si[F] = 8[C]=8[C]=C=F
for i € J, and F' is symmetric in coordinates in J.
Fory = (n1,...,m—1) € R"71 set

Fy:{é-:(nlw"7"77‘7176)6}7}’ f(y):,ule7

where pp is Lebesgue measure on R. Set

D={(y&):y R g < (W)} SR".
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(ii) If H C R" is measurable and H O D, then, writing y,_; for Lebesgue measure on R" ™1, we have

prH = /u1{§ H(y:€) € Hipra(dy)
(using 251N and 252D)

> /m{f 2 (y,€) € Dhpr—1(dy) = /f(y)ur_l(dy)
= /m{if 2y, 8) € Flur—1(dy) = pe F > py.C.

As H is arbitrary, uiD > uiC.

(iii) The next step is to check that diam D < diam C. If z, 2’ € D, express them as (y,&,) and (y',&.).
Because F is a bounded closed set in R", F,, and F), are bounded closed subsets of R. Also both f(y) and
f(y") must be greater than 0, so that Fy, F,, are both non-empty. Consequently

a=infF,, f=supF,, o =infF,, [ =supF,
are all defined in R, and «, 8 € F,, while o’ and ' belong to F,,. We have

1 1
& — €l < Il + Il < Lfw) + L 1)
1 1
= §(N1Fy + Nle’) < 5(6 —a+ ﬂ/ - O/) < max(ﬂ' —a,fB - o/).
So taking (&,£’) to be one of (a, ') or (B,¢), we can find ¢ € F,, ¢ € Fy such that [ —&'| > |, — .
Now z = (y,£), 2’ = (v/,&’) both belong to F, so
e —2'|* =y —y'II° +1& — &1 < ly = y'II” + € = €' = ]2 = 2/||* < (diam F)?,
and ||z — 2'|| < diam F. As z and 2’ are arbitrary, diam D < diam F = diam C, as claimed.
(iv) Evidently S,.[D] = D. Moreover, if i € J, then (interpreting S; as an operator on R"~1)
Fs,(y) = F, for every y € R"™ 1,
so f(Si(y)) = f(y) and, for { € R, y € R,
.8 €D = [El<3fly) <= [l<3f(Siy) <= (Si(y).§) €D,
so that S;[D] = D. Thus D is symmetric in coordinates in J U {r}. Q

(d) The rest is easy. Starting from any bounded A C R", set Ag = A and construct inductively Ay, ..., A,
such that

d = diam A = diam Ay > diam A; > ... > diam A4,
prA=prAg <. < prAy,

A; is symmetric in coordinates in {1,...,j} for every j <.
At the end, we have A, symmetric in coordinates in {1,... ,r}. But this means that if z € A, then
—r=.515...5x€A,,
so that
o = 2z — (—a)]| < ; diam A, < 2.
Thus A, C B(0, %), and

d
ILL:A < NJ:AT < NTB(Oa 5)’
as claimed.
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2641 Theorem Let r > 1 be an integer; let 1 be Lebesgue measure on R”, and let pzr, be r-dimensional
Hausdorff measure on R”. Then p and pg, have the same measurable sets and

pE =27"prpur E

for every measurable set £ C R", where 3, = uB(0,1), so that the normalizing factor is

1

2776, = 22kk!7rk if r = 2k is even,
k! k- .
= (2k+1)!7T if r =2k +1is odd.

proof (a) Of course if B = B(z,a) is any ball of radius «,
27" B (diam B)" = B,a" = uB.

(b) The point is that p* = 2775, u%,.. T Let A CR".

(i) Let 6, € > 0. By 261F, there is a sequence (B, ),cn of balls, all of diameter at most §, such that
A C U, ey Bn and S0 o uBn < p*A+ e. Now, defining 6,5 as in 264A,

277 8,8, (A) < 277, 3°°0  (diam B,,)" = 32 uB, < prA+e.
Letting 6 J 0,
27" B, A< WA+ e
As e is arbitrary, 2778, u3, A < p*A.

(ii) Let € > 0. Then there is a sequence (A, )nen of sets of diameter at most 1 such that A C |J,, oy An
and > 7 ((diam A,,)" < 6,14 + €, so that
WAL oA, <300 27 Br(diam A,,)" < 2778, (01 A +€) <2778 (uh, A+ €)
by 264H. As € is arbitrary, p*A < 27"B,uj, A Q

(c) Because p, pp, are the measures defined from their respective outer measures by Carathéodory’s
method, it follows at once that u = 27", g, in the strict sense required.

*264J The Cantor set I remarked in 264A that fractional ‘dimensions’ r were of interest. I have no
space for these here, and they are off the main lines of this volume, but I will give one result for its intrinsic
interest.

Proposition Let C' be the Cantor set in [0, 1]. Set r = In2/1In 3. Then the r-dimensional Hausdorft measure
of C'is 1.

proof (a) Recall that C' =,y Cn, where each C,, consists of 2" closed intervals of length 37", and Cy, 11
is obtained from C,, by deleting the middle (open) third of each interval of C,,. (See 134G.) Because C is
closed, pg,-C' is defined (264E). Note that 3" = 2.

(b) If § > 0, take n such that 3=™ < §; then C can be covered by 2" intervals of diameter 37", so
0,5C < 2"(37")" = 1.
Consequently
parC = py, C = lims 0 0,sC < 1.

(c) We need the following elementary fact: if a, 8, v > 0 and max(a,y) < 8, then a" ++" < (a+58+7)".
P Because 0 <r <1,

Em (E+m) =& =r [1(E+¢) ¢

is non-increasing for every n > 0. Consequently
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(@+B+7)" —a" =" >2(B+B+7y)" =B ="

B+B+B) =B =B =p"(3"—-2)=0,

>
>

as required. Q

(d) Now suppose that I C R is any interval, and m € N; write j,,(I) for the number of the intervals
composing Cy, which are included in I. Then 275, (I) < (diamI)". ¥ If I does not meet Cp,, this is
trivial. Otherwise, induce on

I = min{i : I meets only one of the intervals composing Cy,_;}.

If [ = 0, so that I meets only one of the intervals composing C,,, then j,,(I) < 1, and if j,,,(I) = 1 then
diam I > 37™ so (diam I)" > 27™; thus the induction starts. For the inductive step to [ > 1, let J be the
interval of C,,_; which meets I, and J’, J” the two intervals of C,,_;11 included in J, so that I meets both
J' and J”, and
Jm(I) = jim(INJ) = (I NT) + i (I N JT7).

By the inductive hypothesis,

(diam(I N J"))" + (diam(INJ")" > 275, I NJ")+ 25, (INJ")=2""4,,(I).
On the other hand, by (c),

(diam(I N J"))" + (diam(I N J"))" < (diam(I N J") + 371 - diam(I N J"))"
= (diam(I N J))" < (diam I)"

because J’, J” both have diameter at most 3~ (™~/+1  the length of the interval between them. Thus the
induction continues. Q

(e) Now suppose that € > 0. Then there is a sequence (A, )nen of sets, covering C, such that
> omeo(diam A,,)" < pp,C 4 €.

Take 7, > 0 such that Y - (diam A, + n,)" < pu,C + €, and for each n take an open interval I,, O A,
of length at most diam A,, + 7, and with neither endpoint belonging to C; this is possible because C does
not include any non-trivial interval. Now C C J, oy In; because C' is compact, there is a k € N such
that C' C J,,<; In- Next, there is an m € N such that no endpoint of any I,,, for n < k, belongs to Cp,.
Consequently each of the intervals composing C, must be included in some I,,, and (in the terminology of
(d) above) ZZ:O Jm(In) > 2™. Accordingly

1< 27 (L) < Sk (diam 1,,)" < 3200 (diam A, 4+ 1,)" < g, C + €.
As € is arbitrary, pg,C > 1, as required.

*264K General metric spaces While this chapter deals exclusively with Euclidean spaces, readers
familiar with the general theory of metric spaces may find the nature of the theory clearer if they use the
language of metric spaces in the basic definitions and results. I therefore repeat the definition here, and
spell out the corresponding results in the exercises 264Yb-264Y]1.

Let (X, p) be a metric space, and r > 0. For any A C X, § > 0 set

0,sA = inf{Z(diam An)" i {An)nen is a sequence of subsets of X covering A,
n=0

diam A,, < ¢ for every n € N},

interpreting the diameter of the empty set as 0, and inf () as oo, so that 6,54 = oo if A cannot be covered
by a sequence of sets of diameter at most §. Say that 0,4 = sups( 054 is the r-dimensional Hausdorff
outer measure of A, and take the measure g, defined by Carathéodory’s method from this outer measure
to be r-dimensional Hausdorff measure on X.
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264X Basic exercises >(a) Show that all the functions 6,5 of 264A are outer measures. Show that in
that context, 6,5(A) =0 iff §,,(4) =0, for any 6 > 0 and any A C R”.

(b) Let s > 1 be an integer, and 6 an outer measure on R® such that (AU B) = A+ 6B whenever A, B
are non-empty subsets of R® and infrea yep [z — yl| > 0. Show that every Borel subset of R® is measured
by the measure defined from 6 by Carathéodory’s method.

>(c) Let s > 1 be an integer and r > 0; define 6,.s as in 264A. Show that for any A C R*®, § > 0,

0,.5A = inf{Z(diam F,)" : (Fu)nen is a sequence of closed subsets of X

n=0

covering A,diam F;,, < ¢ for every n € N}
= inf{Z(diam Gr)" : (Gp)nen is a sequence of open subsets of X
n=0

covering A,diam G,, < § for every n € N}.

>(d) Let s > 1 be an integer and r > 0; let pp, be r-dimensional Hausdorff measure on R*. Show that
for every A C R® there is a G4 set (that is, a set expressible as the intersection of a sequence of open sets)
H D A such that py,H = pj,.A. (Hint: use 264Xc.)

>(e) Let s > 1 be an integer, and 0 < r < /. Show that if A C R® and the r-dimensional Hausdorff
outer measure pj;, A of A is finite, then p};,, A must be zero.

(f)(i) Suppose that f : [a,b] — R has graph I'y C R?, where a < b in R. Show that the outer measure
Wiy (T¢) of T for one-dimensional Hausdorff measure on R? is at most b — a + Var(, ) (f). (Hint: if f has
finite variation, show that diam(I'fj; ;) < u —t + Vary ,((f); then use 224E.) (ii) Let f : [0,1] — [0, 1] be
the Cantor function (134H). Show that pp:1(I'y) = 2. (Hint: 264G.)

(g) In 264A, show that

0,sA = inf{Z(diam An)" : {An)nen is a sequence of convex sets covering A,
n=0
diam A,, < ¢ for every n € N}
for any A C R*®.

264Y Further exercises (a) Let 617 be the outer measure on R? defined in 264A, with » = § = 1, and
w11 the measure derived from ;7 by Carathéodory’s method, 317 its domain. Show that any set in 317 is
either negligible or conegligible.

(b) Let (X, p) be a metric space and r > 0. Show that if A C X and p};,.A < 0o, then A is separable.

(c) Let (X, p) be a metric space, and 6 an outer measure on X such that (AUB) = 0 A+ 0B whenever A,
B are non-empty subsets of X and infye,yep p(z,y) > 0. (Such an outer measure is called a metric outer
measure.) Show that every open subset of X is measured by the measure defined from 6 by Carathéodory’s
method.

(d) Let (X, p) be a metric space and r > 0; define 6,5 as in 264K. Show that for any A C X,

Wi A = sup inf{Z(diam F,)" : (F,)nen is a sequence of closed subsets of X
>0 =

covering A, diam F,, < § for every n € N}

o0
= sup inf{Z(diam Gn)" : (Gp)nen is a sequence of open subsets of X
5>0 0

covering A, diam G,, < ¢ for every n € N}.
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(e) Let (X, p) be a metric space and r > 0; let pp, be r-dimensional Hausdorff measure on X. Show
that for every A C X there is a G5 set H 2O A such that pg,.H = pj, A is the r-dimensional Hausdorff
outer measure of A.

(f) Let (X, p) be a metric space and r > 0; let Y be any subset of X, and give Y its induced metric
py. (i) Show that the r-dimensional Hausdorff outer measure ,ug?* on Y is just the restriction to PY of
the outer measure uj;, on X. (ii) Show that if either u§;,Y < 0o or py, measures Y then r-dimensional

Hausdorff measure ,ugr) on Y is just the subspace measure on Y induced by the measure pg, on X.

(g) Let (X, p) be a metric space and r > 0. Show that r-dimensional Hausdor{f measure on X is atomless.
(Hint: Let E € dom pg,. (i) If E is not separable, there is an open set G such that EN G and E \ G are
both non-separable, therefore both non-negligible. (ii) If there is an x € E such that pg..(E N B(x,48)) > 0
for every § > 0, then one of these sets has non-negligible complement in E. (iii) Otherwise, pg.E = 0.)

(h) Let (X, p) be a metric space and r > 0; let pp, be r-dimensional Hausdorff measure on X. Show
that if pg,.E < oo then pg,.E = sup{un,F : F C E is closed and totally bounded}. (Hint: given ¢ > 0,
use 264Yd to find a closed totally bounded set F' such that pp,(F\ E) =0 and pp,(E\ F) <€, and now
apply 264Ye to F'\ E.)

(i) Let (X, p) be a complete metric space and r > 0; let g, be r-dimensional Hausdorff measure on X.
Show that if ug,E < oo then pg,E = sup{ug,F : F C E is compact}.

(j) Let (X, p) and (Y, o) be metric spaces. If D C X and ¢ : D — Y is a function, then ¢ is y-Lipschitz
if o(¢(z), p(2')) < yp(x, ') for every z, ' € D. (i) Show that in this case, if r > 0, uj;,.(¢[4]) <y pj, A
for every A C D, writing p3;,. for r-dimensional Hausdorff outer measure on either X or Y. (ii) Show that
if X is complete and pp,F is defined and finite, then pg,(¢[E]) is defined. (Hint: 264Yi.)

(k) Let (X, p) be a metric space, and for r > 0 let pp, be Hausdorff r-dimensional measure on X. Show
that there is a unique A = A(X) € [0, 00| such that pg,X = oo if r € [0,A[, 0if r € ]A, 00].

(1) Let (X, p) be a metric space and ¢ : I — X a continuous function, where I C R is an interval. Write
w1 for one-dimensional Hausdorff measure on X. Show that

/’LHI((Z)[ID S Sup{ZZL:1 p(¢(tl)7¢(tz—l)) : t07 o atn S I) tO S cee S tn}7
the length of the curve ¢, with equality if ¢ is injective.

(m) Set r =1n2/1In3, as in 264J, and write p g, for r-dimensional Hausdorff measure on the Cantor set
C. Let A be the usual measure on {0, 1} (254J). Define ¢ : {0, 1} — C by setting ¢(z) = 2 3> ;37 "2(n)
for x € {0,1}". Show that ¢ is an isomorphism between ({0,1},)\) and (C, py.), so that up, is the
subspace measure on C induced by ‘Cantor measure’ as defined in 256Hc.

(n) Set r = In2/In3 and write pp, for r-dimensional Hausdorff measure on the Cantor set C. Let
f:10,1] — [0, 1] be the Cantor function and let u be Lebesgue measure on R. Show that pf[E] = pg,E for
every E € dom pg, and pug,(C N f7L[F]) = uF for every Lebesgue measurable set F C [0, 1].

(o) Let (X, p) be a metric space and h : [0,00[ — [0, 00| a non-decreasing function. For A C X set

0pA = sup inf{z h(diam A,,) : (A, )nen is a sequence of subsets of X
6>0 =0

covering A, diam A,, < ¢ for every n € N},

interpreting diam @) as 0, inf ) as oo as usual. Show that 6, is an outer measure on X. State and prove
theorems corresponding to 264E and 264F. Look through 264X and 264Y for further results which might
be generalizable, perhaps on the assumption that A is continuous on the right.
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(p) Let (X, p) be a metric space. Let us say that if a < bin R and f : [a,b] — X is a function, then f
is absolutely continuous if for every € > 0 there is a § > 0 such that ., p(f(a;), f(b;)) < € whenever
a<ay<by<...<a, <b, <band Z?:o b; — a; < 4. Show that f : [a,b] — X is absolutely continuous
iff it is continuous and of bounded variation (in the sense of 224Ye) and g1 f[A] = 0 whenever A C [a,b] is
Lebesgue negligible, where pug is 1-dimensional Hausdorff measure on X. (Compare 225M.) Show that in
this case pp1 f[la,b]] < oo.

(q) Let s > 1 be an integer, and r € [1,00[. For x, y € R® set p(z,y) = ||z — y|*/". (i) Show that p
is a metric on R? inducing the Euclidean topology. (ii) Let pg, be the associated r-dimensional Hausdorff
measure. Show that pg,B(0,1) = 2°.

264 Notes and comments In this section we have come to the next step in ‘geometric measure theory’.
I am taking this very slowly, because there are real difficulties in the subject, and for the purposes of this
volume we do not need to master very much of it. The idea here is to find a definition of r-dimensional
Lebesgue measure which will be ‘geometric’ in the strict sense, that is, dependent only on the metric
structure of R”, and therefore applicable to sets which have a metric structure but no linear structure. As
has happened before, the definition of Hausdorff measure from an outer measure gives no problems — the
only new idea in 264A-264C is that of using a supremum 6, = supgs 05 of outer measures — and the difficult
part is proving that our new measure has any useful properties. Concerning the properties of Hausdorff
measure, there are two essential objectives; first, to check that these measures, in general, share a reasonable
proportion of the properties of Lebesgue measure; and second, to justify the term ‘r-dimensional measure’
by relating Hausdorff r-dimensional measure on R"” to Lebesgue measure on R”.

As for the properties of general Hausdorff measures, we have to go rather carefully. I do not give counter-
examples here because they involve concepts which belong to Volumes 4 and 5 rather than this volume,
but I must warn you to expect the worst. However, we do at least have open sets measurable, so that all
Borel sets are measurable (264E). The outer measure of a set A can be defined in terms of the Borel sets
including A (264Fa), though not in general in terms of the open sets including A; but the measure of a
measurable set E is not necessarily the supremum of the measures of the Borel sets included in F, unless
E has finite measure (264Fc). We do find that the outer measure 6, defined in 264A is the outer measure
defined from ppr, (264FDb), so that the phrase ‘r-dimensional Hausdorff outer measure’ is unambiguous. A
crucial property of Lebesgue measure is the fact that the measure of a measurable set F is the supremum of
the measures of the compact subsets of F; this is not generally shared by Hausdorff measures, but is valid for
sets F of finite measure in complete spaces (264Yi). Concerning subspaces, there are no problems with the
outer measures, and for sets of finite measure the subspace measures are also consistent (264YT). Because
Hausdorff measure is defined in metric terms, it behaves regularly for Lipschitz maps (264G); one of the
most natural classes of functions to consider when studying metric spaces is that of 1-Lipschitz functions,
so that (in the language of 264G) pj;,¢[A] < pjy, A for every A.

The second essential feature of Hausdorff measure, its relation with Lebesgue measure in the appropri-
ate dimension, is Theorem 2641. Because both Hausdorff measure and Lebesgue measure are translation-
invariant, this can be proved by relatively elementary means, except for the evaluation of the normalizing
constant; all we need to know is that 4 [0,1[" = 1 and pug,[0,1[" are both finite and non-zero, and this is
straightforward. (The arguments of part (a) of the proof of 261F are relevant.) For the purposes of this
chapter, we do not I think have to know the value of the constant; but I cannot leave it unsettled, and
therefore give Theorem 264H, the isodiametric inequality, to show that it is just the Lebesgue measure
of an r-dimensional ball of diameter 1, as one would hope and expect. The critical step in the argument
of 264H is in part (c) of the proof. This is called ‘Steiner symmetrization’; the idea is that given a set A,
we transform A through a series of steps, at each stage lowering, or at least not increasing, its diameter,
and raising, or at least not decreasing, its outer measure, progressively making A more symmetric, until
at the end we have a set which is sufficiently constrained to be amenable. The particular symmetrization
operation used in this proof is important enough; but the idea of progressive regularization of an object is
one of the most powerful methods in measure theory, and you should give all your attention to mastering
any example you encounter. In my experience, the idea is principally useful when seeking an inequality
involving disparate quantities — in the present example, the diameter and volume of a set.
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Of course it is awkward having two measures on R”, differing by a constant multiple, and for the purposes
of the next section it would actually have been a little more convenient to follow FEDERER 69 in using
‘normalized Hausdorff measure’ 27", 1y, (For non-integral r, we could take 8, = n'/2/I(1 + %), as
suggested in 252Xi.) However, I believe this to be a minority position, and the striking example of Hausdorff
measure on the Cantor set (264J, 264Ym-264Yn) looks much better in the non-normalized version.

Hausdorff (In2/1n 3)-dimensional measure on the Cantor set is of course but one, perhaps the easiest,
of a large class of examples. Because the Hausdorff r-dimensional outer measure of a set A, regarded as
a function of r, behaves dramatically (falling from oo to 0) at a certain critical value A(A) (see 264Xe,
264Yk), it gives us a metric space invariant of A; A(A) is the Hausdorff dimension of A. Evidently the

Hausdorff dimension of C is In2/1n 3, while that of r-dimensional Euclidean space is 7.

Version of 3.9.13

265 Surface measures

In this section I offer a new version of the arguments of §263, this time not with the intention of justifying
integration-by-substitution, but instead to give a practically effective method of computing the Hausdorff
r-dimensional measure of a smooth r-dimensional surface in an s-dimensional space. The basic case to
bear in mind is r = 2, s = 3, though any other combination which you can easily visualize will also be
a valuable aid to intuition. I give a fundamental theorem (265E) providing a formula from which we can
hope to calculate the r-dimensional measure of a surface in s-dimensional space which is parametrized by a
differentiable function, and work through some of the calculations in the case of the r-sphere (265F-265H).

265A Normalized Hausdorff measure As I remarked at the end of the last section, Hausdorff measure,
as defined in 264A-264C, is not quite the most appropriate measure for our work here; so in this section I
will use normalized Hausdorff measure, meaning v,, = 2773, pugy-, where g, is r-dimensional Hausdorff
measure (interpreted in whichever space is under consideration) and 3, = u,-B(0, 1) is the Lebesgue measure
of any ball of radius 1 in R". It will be convenient to take By = 1. As shown in 264H-264I, this normalization
makes v, on R” agree with Lebesgue measure p,.. Observe that of course v} = 2778, u%;,. (264Fb).

265B Linear subspaces Just as in §263, the first step is to deal with linear operators.

Theorem Suppose that r, s are integers with 1 < r <'s, and that T is a real s X r matrix; regard T as a
linear operator from R to R®. Set J = v/det T T, where T'T is the transpose of T'. Write v, for normalized
r-dimensional Hausdorff measure on R?, T, for its domain, and u, for Lebesgue measure on R”. Then

v, T[El = JuE
for every measurable set E C R". If T is injective (that is, if J # 0), then
v F = Ju, T71[F)
whenever F' € T, and F' C T[R"].

proof The formula for J assumes that det 7''7T is non-negative, which is a fact not in evidence; but the
argument below will establish it adequately soon.

(a) Let V be the linear subspace of R® consisting of vectors y = (11, ... ,7s) such that 7; = 0 whenever
r <1 <s. Let R be the r x s matrix <Pij>i§r,j§57 where p;; = 1if ¢ = j < r, 0 otherwise; then the s x r
matrix R' may be regarded as a bijection from R” to V. Let W be an r-dimensional linear subspace of R*
including T[R"], and let P be an orthogonal s X s matrix such that P[W] =V. Then S = RPT isanr x r
matrix. We have RTRy =y for y € V, so RTRPT = PT and

STS=T"P'"RTRPT =T"P'"PT =T'T;
accordingly
det TTT =det STS = (det S)2 >0

(©) 2000 D. H. Fremlin
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and J = |det S|. At the same time,
P'R'S=P'R'TRPT=P'PT =T.
Observe that J = 0 iff S is not injective, that is, T is not injective.

(b) If we consider the s x r matrix PTRT as a map from R" to R*, we see that ¢ = PTR" is an isometry

between R™ and W, with inverse ¢—! = RP[W. It follows that ¢ is an isomorphism between the measure
() (r)

spaces (R", py;.) and (W, ugiw), where py;). is r-dimensional Hausdorff measure on R” and Nglw is the
subspace measure on W induced by r-dimensional Hausdorff measure ,ug)T on R®.
PHITACR and A CW,
oy (BLA]) < )" (4), )" (97A) < )" (4),
using 264G twice. Thus uS?f(qS[A]) = ,ug)r*(A) for every A C R".

)

(ii) Now because W is closed, therefore in the domain of UE‘—;r (s)

(264E), the subspace measure fiy;,, is
just the measure induced by u;)r* | W by Carathéodory’s method (214H(b-ii)). Because ¢ is an isomorphism
between (R",,ug)r*) and (W, MS)T* [W), it is an isomorphism between (R",,ug)r) and (W, Ug)rw)' Q

(c) It follows that ¢ is also an isomorphism between the normalized versions (R",u,) and (W, v.w),
writing v,y for the subspace measure on W induced by v;..
Now if E C R" is Lebesgue measurable, we have u,.S[E] = Ju, E, by 263A; so that

v T[E) = v, (PTRTS|E])) = vy ($[S(E])) = - S|E] = Ju E.
If T is injective, then S = ¢~'T must also be injective, so that J # 0 and

v F = pr (¢ [F]) = T (S™Ho 7 [F]) = Tu, T F]
whenever F' € T, and FF C W = T[R"].

265C Corollary Under the conditions of 265B,
VIT[A] = JurA
for every A CR".
proof (a) If E is Lebesgue measurable and A C F, then T[A] C T[E], so
vy T[A] < v, T[E] = Jp, E;
as E is arbitrary, vT[A] < Ju*A.
(b) If J =0 we can stop. If J # 0 then T is injective, so if F' € T, and T[A] C F we shall have
JupA < Jp, THENTR) = v (FNTR") < v, F;
as F is arbitrary, Ju*A < v} T[A].

265D I now proceed to the lemma corresponding to 263C.

Lemma Suppose that 1 < r < s and that T is an s x r matrix; set J = v/det T'TT, and suppose that J # 0.
Then for any € > 0 there is a ¢ = (T, €) > 0 such that

(i) |[Vdet STS — J| < € whenever S is an s x 7 matrix and ||S — T'|| < ¢, defining the norm of a matrix as
in 262H;

(i) whenever D C R" is a bounded set and ¢ : D — R*® is a function such that ||¢(x) — @(y) — T(x—y)|| <
C|lz —y| for all z, y € D, then |v}¢[D] — Ju:D| < eu’D.

proof (a) Because det STS is a continuous function of the coefficients of S, 262Hb tells us that there must
be a (o > 0 such that |J — Vdet STS| < € whenever ||S — T < (o.

(b) Because J # 0, T is injective, and there is an r X s matrix T* such that T*T is the identity r x r
matrix. Take ¢ > 0 such that ¢ < (o, ¢||T*|| <1, J(A +¢||T*|)" < J +eand 1 — Jte < (1 —¢||T*|)".
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Let ¢ : D — R*® be such that ||¢(z) — ¢(y) — T'(z — y)|| < (||l — y|| whenever z, y € D. Set b = ¢T*, so
that ¢ =¢T. Then
[(u) =)l < A+ T Dlw—vll,  llu—vll <@ =T I (w) — )]
whenever u, v € T[D]. P Take z, y € D such that u = Tz, v = Ty; of course x = T*u, y = T*v. Then

[¥(u) = ()| = [|o(T7u) — o(T"0)|| = llg(z) — o (y)]|
<T@z =yl +<llz =yl
= llu =l + ¢l T u = T < fu = f|(1 + C[[T).
Next,

lu —o| = ITz = Ty|| < [lé(z) = oY)l + Cllz =yl
= [[¥(u) = )] + [T u = T™0||
< () = ()| + T |[fw = oll;
so that (1= ¢ ]u—v]| < [lf(w) = ()] and u —v] < 1 = IT*[) 7 v (uw) = d(0)]. Q
(c) Now from 264G and 265C we see that
vr¢[D] = i [T[D]] < (L + ([T [)" vy TID) = (L + ([T [)" Tup D < (J + €)p D,
and (provided € < J)

(J = urD = (1= J e TID] < (1= T e)(1 = ¢ T") v [T[D]]
(applying 264G to ¢! : ¢[T[D]] — T[D])
<y P[T[D]] = vy o[D].

T

(Of course, if € > J, then surely (J — €)u:D < v} ¢[D].) Thus
(J —eu;D < vyg[D] < (J + €)u; D

as required, and we have an appropriate .

265E Theorem Suppose that 1 < r < s; write pu, for Lebesgue measure on R”, v, for normalized
Hausdorff measure on R?, and T, for the domain of v,.. Let D C R" be any set, and ¢ : D — R*® a function
differentiable relative to its domain at each point of D. For each z € D let T'(z) be a derivative of ¢ at x

relative to D, and set J(z) = \/det T(z) "T(z). Set D' = {z : z € D, J(z) > 0}. Then
(i ) J:D —[0,00] i 1s a meaburable functlon

(i1) v70[D] < [, J(@)pur(d),

allowing co as the value of the mtegral;
(iii) v¥¢|D \ D'] = 0.

If D is Lebesgue measurable, then
(iv) ¢[D] € T,.

If Dis measurable and ¢ is injective, then

(v) vr¢[D fD Jdpi;
(vi) for any set E C ¢[D], E € T, iff p~'[E] N D’ is Lebesgue measurable, and in this case

VTE = f¢—l[E] )MT dx fD J X X ¢ [ Ddﬂr;
(vii) for every real-valued function g defined on a subset of ¢[D],
f[D]ngT fDJng)dp”r‘

if either integral is defined in [—o0, c¢], provided we interpret J(x)g(¢(z)) as zero when J(z) = 0 and g(¢(x))
is undefined.

proof I seek to follow the line laid out in the proof of 263D.
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(a) Just as in 263D, we know that J : D — R is measurable, since J(z) is a continuous function of
the coefficients of T'(x), all of which are measurable, by 262P. If D is Lebesgue measurable, then there is a
sequence (Fy,)nen of compact subsets of D such that D\ J,, ¢y Fr is pr-negligible. Now ¢[F,] is compact,
therefore belongs to T,., for each n € N. As for ¢[D\ |J,,cy Fr], this must be v,-negligible by 264G, because
¢ is a countable union of Lipschitz functions (262N). So

¢[D] = Upen ¢[Fn] U G[D\ U e Ful € T
This deals with (i) and (iv).

(b) For the moment, assume that D is bounded and that J(z) > 0 for every z € D, and fix € > 0. Let
M. be the set of s x r matrices T such that det TTT # 0, that is, the corresponding map 7 : R” — R* is
injective. For T' € M}, take ((T,¢) > 0 as in 265D.

Take (Dy,)nen, (Th)nen as in 262M, with A = M., so that (D, )nen is a partition of D into sets which

ST
are relatively measurable in D, and each T;, is an s X r matrix such that

IT(x) — T || < (T, €) whenever x € D,

[6(2) = &(y) = Tnlz = y)l| < (T, )|z = yl| for all z, y € D,

Then, setting J,, = \/m, we have
|J(z) — J,| < € for every a € D,

[V ¢[Dn] — Jnpy Dyl < epy Dy,
by the choice of {(T,,,¢€). So

vig[D] <> vi¢[Dy)
n=0
(because ¢[D] = |, #[Dn])

< i Ity Dy + €piy Dy < €pipD + i Ity D,

n=0 n=0
(because the D,, are disjoint and relatively measurable in D)
=eu'D+ / > JuxDadp
D =0
< eurD —|—/ J(x) + epr(dx) = 2eurD —|—/ Jdp,.
D D

If D is measurable and ¢ is injective, then all the D,, are Lebesgue measurable subsets of R", so all the
@[ D] are measured by v,., and they are also disjoint. Accordingly

/ Jdp < Jnpir Dy + €D
D n=0

00
< Z(V7¢[Dn] + 6“7'Dn) +eprD = VT'(Z)[D} + 2ep,D.
n=0

Since € is arbitrary, we get

violDl < [ J dp,
and if D is measurable and ¢ is injective,

[, T dur < 29[ DJ;

thus we have (ii) and (v), on the assumption that D is bounded and J > 0 everywhere on D.
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(c) Just as in the proof of 263D, we can now relax the assumption that D is bounded by considering
By, = B(0,k) CR"; provided J > 0 everywhere on D, we get
ﬁ¢W}:mmﬁmﬁﬂDﬂBﬂgmm%mﬁmmjmwzjbjmm
with equality if D is measurable and ¢ is injective.
(d) Now we find that v ¢[D \ D] = 0.

P(a) Let  €]0,1]. Define ¢, : D — R*"" by setting 1, (z) = (¢(z), nz), identifying R**" with R® x R".
1y, is differentiable relative to its domain at each point of D, with derivative T}, (z), being the (s +7) x r
matrix in which the top s rows consist of the s x r matrix T(x), and the bottom r rows are nl,., writing I,
for the r x r identity matrix. (Use 262Ib.) Now of course T}, (z), regarded as a map from R” to R**", is

injective, so
Jy(z) = \/det T, (x) T, (x) = \/det(T(z) TT(z) + n2I) > 0.

We have lim, o J,(z) = J(z) = 0 for 2 € D\ D"
{7ij

(B) Express T'(x) as
Co ={z:xzeD, |z <m, |rj(x)]| <mforalli<s, j<r}

(2))i<s,j<r for each x € D. Set

for each m > 1. For x € C),, all the coefficients of T,,(a;) have moduli at most m; consequently (giving
the crudest and most immediately available inequalities) all the coefficients of Tn(x)TTn(x) have moduli at
most (1 + s)m? and j,,(m) < /rl(s+r)"m". Consequently we can use Lebesgue’s Dominated Convergence
Theorem to see that

lim,, o fcm\D’ jnd‘ur =0.
(7) Let 7 be normalized Hausdorff r-dimensional measure on R*". Applying (b) of this proof to
Uy Cr \ D, we see that
O\ D1 < [, Ty

Now we have a natural map P : R*T" — R® given by setting P(&1,...,&+r) = (§1,...,&), and P is
1-Lipschitz, so by 264G once more we have (allowing for the normalizing constants 277 3,.)

ViP[A] < 7 A
for every A C R**". In particular,
vi¢[Cm \ D') = i Py [Con \ D)) < 570 [Cn \ D' < [,y Tyt =0
as 1 | 0. But this means that v¢[Cy, \ D'] = 0. As D =J,,5, O, v)¢[D \ D'] =0, as claimed. Q

(e) This proves (iii) of the theorem. But of course this is enough to give (ii) and (v), because (applying
(b)-(c) to ¢ D') we must have

vigIDl = violD') < [, Jdp, = [T dp,

with equality if D (and therefore also D’) is measurable and ¢ is injective.
(f) So let us turn to part (vi). Assume that D is measurable and that ¢ is injective.
(a) Suppose that E C ¢[D] belongs to T,. Let
Hy={z:zeD,|z| <k, J(z) <k}
for each k; then each Hy is Lebesgue measurable, so (applying (iii) to ¢| Hy) ¢[Hx] € T,, and
vp¢[Hy] < kppHy, < 00.

Thus ¢[D] can be covered by a sequence of sets of finite measure for v, which of course are of finite

measure for r-dimensional Hausdorff measure on R*®. By 264Fc, there are Borel sets F1, Fo C R?® such that
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E;1 CEC FEyand v,.(Ey \ E1) = 0. Now Fy = ¢~ Y[E1], Fo = ¢ ![Es] are Lebesgue measurable subsets of
D, and
fFQ\Fl Jdp, = v ¢[Fo \ 1] = v (¢[D] N Ez \ Ep) = 0.
Accordingly (D' N (Fy \ F1)) = 0. But as
D'NF, CD'N¢ E]C DN Fy,
it follows that D’ N ¢~1[E] is measurable, and that

[ gaw= T = [ gd,
o~ 1[E] D’'N¢—1[E] D/'NFy

= / Jdu, =v.9[DNF| =v.Ey = v, E.
DNFy

Moreover, J x x(¢ 71 [E]) = J x x(D' N ¢~ [E]) is measurable, so we can write [ J x x(¢~'[E]) in place of
Jomriy 7
(B) If E C ¢[D] and D’ N ¢~1[E] is measurable, then of course
E= oD 0o (B Ug[(D\ D) ¢~ [E] € T,,
because ¢[G] € T, for every measurable G C D and ¢[D \ D’] is v,-negligible.

(g) Finally, (vii) follows at once from (vi), applying 235J to u, and the subspace measure induced by v,
on ¢[D].

265F The surface of a sphere To show how these ideas can be applied to one of the basic cases, T
give the details of a method of describing spherical surface measure in s-dimensional space. Take r > 1 and
s =171+ 1. Write S, for {z : z € R™"! ||z|| = 1}, the r-sphere. Then we have a parametrization ¢, of S,
given by setting

sin&; sinés sinés .. .siné,.
& cos&ysinéssinés ... siné,
& coségsinés. . .sin&,
o | | = e
T cos&r_osin&,._1siné,
cos &1 siné,
cos &,

&
I choose this formulation because I wish to use an inductive argument based on the fact that
8 z\ _ (sing¢,(x)
¢ cos&
for x € R", £ € R. Every ¢, is differentiable, by 262Id. If we set

DT:{x:gl E]—ﬂ',ﬂ']7£2,... 7£r € [0771']7
if ¢ € {0, 7} then & = 0 for i < j},

then it is easy to check that D,. is a Borel subset of R” and that ¢,.[ D, is a bijection between D, and .S,..
Now let T;.(x) be the (r + 1) x r matrix ¢.(z). Then

T x\ _ [(sin€T,.(x) cos&¢q(x)
e )T 0 —sin¢ )

So

T T\ T AN sin? ¢ Ty () T T () sin & cos € Ty () T, ()
(T 3 ) T ¢) \cosésin€ o, (x) Tr(z) cos?Epy(x) p(x) +sin?€ ) -
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But of course ¢,(x) ¢, (2) = ||

-(z) = )|I? = 1 for every x, and (differentiating with respect to each coordinate
of z, if you wish) T} (z) "¢, ()

r(z
0, ¢.(z) 'T-(x) = 0. So we get

m( M( )_ (sin%Tr(Ox)TTr(x) t1)>

and writing J,.(z) = /det T,.(x)

ot (§ ) — |sin” €7, (x).

At this point we induce on r to see that
Jr(z) = | sin" "1 ¢, sin" "2 ¢, .. .sin &

(since of course the induction starts with the case r = 1,

é1(z) = <Si”), Tl(:z:):< cos ) Ty () Ti(w) =1, Ji(x)=1).

COoST —SsSmx

To find the surface measure of S,., we need to calculate

/ erﬂr:/ / / sin" "€, sin&d€rdEs .. . dE,
D, —7
—271'1_[/ sin®~ 1tdt—27rH/ cos® t dt
/2

(substituting § — ¢ for ¢). But in the language of 252Q, this is just

ZWHk 1 I, = 27751“ 1,
where 3,_1 is the volume of the unit ball of R"~! (interpreting 3q as 1, if you like).

265G The surface area of a sphere can also be calculated through the following result.

Theorem Let p,41 be Lebesgue measure on R7*!, and v, normalized r-dimensional Hausdorff measure on
R™L, If f is a locally p,1-integrable real-valued function, y € R"*! and § > 0,

5
fB(M) Fapria = fo faB(y,t) fvdt,

where I write 0B(y, t) for the sphere {z : |z — y|| = ¢} and the integral [ ...d¢ is to be taken with respect
to Lebesgue measure on R.

proof Take any differentiable function ¢ : R"™ — S,. with a Borel set F' C R” such that ¢[F is a bijection
between F and S,; such a pair (¢, F') is described in 265F. Define ¢ : R” x R — R"*! by setting ¢(z,t) = y+
to(z); then ¢ is differentiable and ¢ [ F x]0, 4] is a bijection between F x ]0,d] and B(y,d)\{y}. For t € ]0, 4],
z € R" set ¢4(z) = ¥(z,t); then ¢; [ F is a bijection between F' and the sphere {z : ||x — y|| =t} = 0B(y, t).

The derivative of ¢ at z is an (r + 1) X r matrix T3(z) say, and the derivative T;(z) of ¢, at z is just
tT1(z); also the derivative of ¥ at (z,t) is the the (r + 1) x (r + 1) matrix T'(z,t) = (tT1(z) ¢(2)), where
¢(2) is interpreted as a column vector. If we set

Ji(2) = /det Ty (2) Ty (2), J(z,t) = |detT(z,1t)],

then

J(2,0)2 = det T(z, ) TT(=, ) = det (tTl(i))TT) (Ti(z) (=)

— det (t2T1(2) 1(2) 0) — J(2)?,
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because when we come to calculate the (i,7 + 1)-coefficient of T'(z,t) TT(2,t), for 1 <i <r, it is

T 8 ' le] r 2
S 5 (2)65(2) = e (XiE 04(2)%) =0,

where ¢; is the jth coordinate of ¢; while the (r+1, r+1)-coefficient of T(z,t) "T(z,t) is just ZTH i(2)? =1
So in fact J(z,t) = Ji(z) for all z € R", t > 0.
Now, given f € £L1(j,41), we can calculate

/ Fdpiysr = / Fpty s
B(y,0) B(y,0)\{y}

= [ I D)
Fx]0,6]

)
- / / F () Te(2) e (d2)
0 F

(where p, is Lebesgue measure on R", by Fubini’s theorem, 252B)

)
= / / fdv,.dt
0 JOB(y,t)

(by 263D)

by 265E(vii).

265H Corollary If v, is normalized 7-dimensional Hausdorff measure on R" ™1, then 1.5, = (r+1)3,41.

proof In 265G, take y =0, 0 = 1, and f = xB(0,1); then

Brs1 = [ fdpria :f v (0B(0,1))dt = f vy Sydt = —vp Sy,

this time applying 264G to the maps = — tx, z %az from R"*! to itself to see that v,.(0B(0,t)) = t"1,.S,
for t > 0.

265X Basic exercises (a) Let 7 > 1, and let S,.(a) = {z : 2 € R"!, ||2]| = a} be the r-sphere of radius
a. Show that v,.5,.(a) = 278,—1a" = (r + 1)B,41a" for every a > 0.

>(b) Let r > 1,and fora € [-1,1] set C, = {z: 2 € R™L ||2|| = 1, {1 > a}, writing 2 = ((1, -+, Crg1)
as usual. (i) Show that
v, Cy = rﬁrfarccosa in"~'tdt.

(ii) Compute the integral in the cases r = 2, r = 4.

>(c) Again write C, = {z: 2 € S,, (,41 > a}, where S, C R"™*! is the unit sphere. Show that, for any

T‘ST T
a€1]0,1], v,.C, < 2(:+1) (Hint: calculate ) " o fs &1y (d).)

>(d) Let ¢ :]0,1] — R" be an injective differentiable function. Show that the ‘length’ or one-dimensional
Hausdorff measure of ¢[]0,1[] is just fo I’ ()] d.

(e)(i) Show that if I is the identity r x r matrix and z € R", then det(I + 2z ") = 1+ ||z|?. (Hint: induce
on r.) (ii) Write U,_; for the open unit ball in R"~!, where r > 2. Define ¢ : U,_; x R — S,. by setting

()= (s

where 0(z) = y/1 — ||z||2. Show that
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T I+ 2T o
- )

so that J (2) =1 for all z € U,_1, £ € R. (iii) Hence show that the normalized r-dimensional Hausdorff
measure of {y : y € S, Z:;ll n? < 1} is just 2wB,_1, where 8,_; is the Lebesgue measure of U,_;. (iv)
By considering ¢z = g for z € S,_o, or otherwise, show that the normalized r-dimensional Hausdorff
measure of S, is 27rﬁr,ol. (v) This time setting C, = {z : 2 € R™™! ||z| = 1, {4 > a}, show that

v.Cp = 2mpr_1{x :x € R"71 ||z £ 1, & > a} for every a € [—1,1].

(f) Suppose that » > 2. Identifying R” with R"~! x R, let C,. be the cylinder B,_; x [~1,1] 2 B,, and
9C, = (Br—1 x {—=1,1}) U (Sy—2 x [—1,1]) its boundary. Show that

By _ Vr_15r_1

IJ‘TCT‘ Vrfl(acw“) ’

(The case r = 3 is due to Archimedes.)

265Y Further exercises (a) Take a < b in R. (i) Show that ¢ : [a,b] — R" is absolutely continuous
in the sense of 264Yp iff all its coordinates ¢; : [a,b] — R, for i < r, are absolutely continuous in the sense
of §225. (ii) Let ¢ : [a,b] — R” be a continuous function, and set F = {x : « € |a,b[, ¢ is differentiable
at x}. Show that ¢ is absolutely continuous iff [, ||¢/(z)|dz is finite and v1(¢[[a,b] \ F]) = 0, where vy is
(normalized) Hausdorff one-dimensional measure on R". (Hint: 225K.) (iii) Show that if ¢ : [a,b] — R" is
absolutely continuous then v} (¢[D]) < [}, |¢/(z)|dx for every D C [a,b], with equality if D is measurable
and ¢[D is injective.

(b) Suppose that ¢ < b in R, and that f : [a,b] — R is a continuous function of bounded variation with
graph I'y. Show that the one-dimensional Hausdorff measure of I'y is Var, 3 (f) + ff(\/l + (2= 1fD)-

265 Notes and comments The proof of 265B seems to call on most of the second half of the alphabet. The
idea is supposed to be straightforward enough. Because T[R"] has dimension at most r, it can be rotated
by an orthogonal transformation P into a subspace of the canonical r-dimensional subspace V', which is a
natural copy of R”; the matrix R represents the copying process from V to R", and ¢ or PTR" is a copy
of R” onto a subspace including T[R"]. All this copying back and forth is designed to turn 7" into a linear
operator S : R™ — R" to which we can apply 263A, and part (b) of the proof is the check that we are
copying the measures as well as the linear structures.

In 265D-265E I have tried to follow 263C-263D as closely as possible. In fact only one new idea is needed.
When s = r, we have a special argument available to show that p*¢[D] < JukD + eu*D (in the language
of 263C) which applies whether or not J = 0. When s > r, this approach fails, because we can no longer
approximate v, T[B] by v,.G where G D T[B] is open. (See part (b-i) of the proof of 263C.) I therefore turn
to a different argument, valid only when J > 0, and accordingly have to find a separate method to show
that {¢(z) : x € D, J(x) = 0} is v,-negligible. Since we are working without restrictions on the dimensions
7, s except that r < s, we can use the trick of approximating ¢ : D — R* by v, : D — R*"", as in part (d)
of the proof of 265E.

I give three methods by which the area of the r-sphere can be calculated; a bare-hands approach (265F),
the surrounding-cylinder method (265Xe) and an important repeated-integral theorem (265G). The first two
provide formulae for the area of a cap (265Xb, 265Xe(v)). The surrounding-cylinder method is attractive
because the Jacobian comes out to be 1, that is, we have an inverse-measure-preserving function. I note that
despite having developed a technique which allows irregular domains, I am still forced by the singularity
in the function # of 265Xe to take the sphere in two bites. Theorem 265G is a special case of the Coarea
Theorem (Evans & GARIEPY 92, §3.4; FEDERER 69, 3.2.12).

For the next steps in the geometric theory of measures on Euclidean space, see Chapter 47 in Volume 4.
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Version of 28.1.09
*266 The Brunn-Minkowski inequality

We now have most of the essential ingredients for a proof of the Brunn-Minkowski inequality (266C) in a
strong form. I do not at present expect to use it in this treatise, but it is one of the basic results of geometric
measure theory and from where we now stand is not difficult, so I include it here. The preliminary results
on arithmetic and geometric means (266A) and essential closures (266B) are of great importance for other
reasons.

266A Arithmetic and geometric means We shall need the following standard result.
Proposition If ug, ... ,un,po,... ,pn € [0,00[ and Y. (p; = 1, then [ jul” < 3% piu,.
proof Induce on n. For n = 0, pg = 1 the result is trivial. If n = 1, then if u; = 0 the result is trivial (even
if, as is standard in this book, we interpret 0° as 1). Otherwise, set t = ?; then
1
P < pot + 1 —po = pot + p1
(as in part (a) of the proof of 244E), so

up’uyt = tPouy < potuy + prur = pouo + prus.
For the inductive step ton > 2,if pg = ... = p,—1 = 0 the result is trivial. Otherwise, set ¢ = po+...+pp—1 =
1 — py,; then
n n—1 n—1
[Tt = (T /"yt < (3 By
i=0 i=0 i=0

(by the inductive hypothesis)
n—1
< Q(z% %U,) + Pnln
1=

(by the two-term case just examined)
n
= Zpiui,
=0

and the induction continues.

266B Proposition For any set D C R" set

cl*D = {x : limsups, % > 0},

where p is Lebesgue measure on R”.
(a) D\ cI*D is negligible.
(b) cI*D C D.
(c) cI*D is a Borel set.
(d) p(cl*D) = u*D.
(e) If C C R then C + c1*D C cl*(C + D), writing C + D for {z +y:x € C, y € D}.

proof (a) 261Da.
(b) If z € R™\ D then D N B(xz,§) = () for all small §.

(c) The point is just that (z,d) — pu*(D N B(x,0)) is continuous. I For any z, y € R” and 4, n > 0 we
have

(©) 2004 D. H. Fremlin
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56 Change of variable in the integral 266B

™ (DN B(y,m) — p* (DN B(x,96))| < w(B(y,n)AB(z,6))
2u(B(z,6) U B(y,m)) — uB(x,0) — nB(y,n)
Br(2(max(6,n) + ||z —y[)" — 6" —n")

IN

(where 8, = uB(0,1))

1

as (y,m) — (x,9). Q So
. “(DNB(z,8 . 1,
r +— lim sup(;w M?ﬂ:,(;))) = 1nfa€Q7a>0 Supﬁe(@70<ﬁ§a M,& (D N B(l’7 B))

is Borel measurable, and

w (DNB(x.5))

*7) — :lims
cl*D = {z: lim Sups o wB(x,0)

> 0}
is a Borel set.

(d) By (c), p(cl*D) is defined; by (a), p(cl*D) > p*D. On the other hand, let E be a measurable
envelope of D (132Ee); then 261Db tells us that

p (DNB(x,6))
uB(z,0)

n(ENB(z,0))

uB(xd) 0

lim supy < limsupg

for almost every z € R" \ E, so cI*D \ F is negligible and
w(cl*D) < uE = p*D.

(e) If z € C and y € cI*D, set

1 (DNB(y,9))
1B (y,9)

For any n > 0, there is a § € ]0,7] such that u*(D N B(y,d)) > 2yuB(x,d). Let §; € [0, be such that

d" — 87 < ~6". Then there is an 2’ € C such that ||z — 2'|] < § — d1. In this case,

v = % lim supg o > 0.

p*((C+ D) N B(x +y,6)) (" +D)nB(x' +y,61)) = p* (DN B(y,o1))
(DN B(y,0)) — pB(y,d) + uB(y,01)

2B,70" — Br0" + B0 > Bryd".

>
>
>

As 7 is arbitrary,

# ((C+D)NB(z+y,9)) ~
uB(y,5) -

and x +y € cI*(C + D); as  and y are arbitrary, C + cI*D C cI*(C + D).

lim supy 10

Remark In this context, cl*D is called the essential closure of D.

266C Theorem Let A, B C R” be non-empty sets, where > 1 is an integer. If y is Lebesgue measure
onR”, and A+ B={zx+y:x €A, yec B}, then u*(A+ B)" > (u* A" + (u*B)'/".

proof (a) Consider first the case in which A = [a,d/[ and B = [b,b/[ are half-open intervals. In this case
A+ B=[a+b,a + V[ writing a = (e, ... ,q,), etc., as in §115, set

06,;—011' v = /8;_61
B —ai—f; t B —ai— B

U; =
for each 7. Then we have
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266C The Brunn-Minkowski inequality 57

(AT + (uB)" = H(a — ) 1/T+H Bl — B)YT

=0

= (A + B)V"( H +H )

=1

(A + B (L Z F1370)
=1 =1

(266A)
= u(A+ B)Y".

(b) Now I show by induction on m + n that if A = (J;L, A; and B = Uj_, B, where (4;);<m and

(B;)j<n are both disjoint families of non-empty half-open intervals, then u(A + B)Y/" > (uA)Y" + (uB)/".
P The induction starts with the case m = n = 0, dealt with in (a). For the inductive step tom+n =1>1,
one of m, n is non-zero; the argument is the same in both cases; suppose the former. Since Ag N A; = (),
there must be some j < r and a € R such that Ay and A; are separated by the hyperplane {z : §; = a}.
Set A/ ={z:2€A § <a}land A" ={z:2 € A, { > a}; then both A" and A” are non-empty and can

be expressed as the union of at most m — 1 disjoint half-open intervals. Set v = % €10,1[. The function

B p{x:x € B, & < [} is continuous, so there is a 5 € R such that pB’ = yuB, where B' = {z : 2 € B,
& < B};set B” = B\ B. Then B’ and B” can be expressed as unions of at most n half-open intervals. By
the inductive hypothesis,

WA+ BT 3 AN+ BT, (A7 + BT > (AT 4 (uB)r
Now A’ + B' C{z:§ <a+p}, while A” + B”" C{z: & > a+ S}. So
WA+ B) > u(A" + B') + u(A” + B”)
(LA™ 4 (uB YY)+ (nA)Y™ + (uB")H7)"
(DY + (ruB)Y7)" 4 (L =AY + (L =y)uB)7)"
= ()" + (uB)M7)".
Taking rth roots, (A + B)'/" > (nA)'/" + (uB)/" and the induction proceeds. Q

v

(c) Now suppose that A and B are compact non-empty subsets of R”. Then u(A + B)Y/" > (uA)Y/" +
(uB)Y/". P A+ B is compact (because Ax B C R” xR" is compact, being closed and bounded, and addition
is continuous, so we can use 2A2Eb). Let € > 0. Let G O A+ B be an open set such that G < pu(A+ B)+¢
(134Fa); then there is a § > 0 such that B(x,20) C G for every x € A+ B (2A2Ed). Let n € N be such
that 27"\/r < §, and let A; be the union of all the half-open intervals of the form [27 72,27 "z 4 27 "¢]
which meet A, where z € Z" and e = (1,1,...,1). Then A is a finite disjoint union of half-open intervals,
A C A; and every point of A; is within a distance § of some point of A. Similarly, we can find a set By, a
finite disjoint union of half-open intervals, including B and such that every point of Bj is within § of some
point of B. But this means that every point of A; 4+ By is within a distance 20 of some point of A+ B, and
belongs to G. Accordingly

(W(A+ B)+ )" > (uG)"'" > p(Ay + By > (uA)Y" + (uBy)'/"

(by (b))
> (pA)'" + (uB)!".

As € is arbitrary, u(A + B)Y" > (uA)Y" + (uB)'/". Q
(d) Next suppose that A, B C R" are Lebesgue measurable. Then
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58 Change of variable in the integral 266C

(LAY + (uB)Y" = sup{(uK)Y" + (uL)*/" : K C A and L C B are compact}
(134Fb)
< sup{u(K + L)Y/ : K C A and L C B are compact}
(by (c))
< p*(A+ B)Yr.

(e) For the penultimate step, suppose that A, B C R" have non-zero outer Lebesgue measure. Consider
cl*A, cI*B and cl*(A+ B) as defined in 266B. Then cl*A and cl*B are non-empty and their sum is included
in cI*(A+ B), by 266Bb and 266Be. So we have

(A" + (BT = p(cl* AT 4 (el BT
(266Bd)
< ¥ (cl*A + cl*B)Y/"
(by (d) here)
< p(el*(A+ B)Y" =y (A+ B)".

(f) Finally, for arbitrary non-empty sets A, B C R", note that if (for instance) A is negligible then we
can take any = € A and see that

p(A+ BT > pt (@ + B)YT = (uB)V = (wr A)YT 4 (wB)YT

and the result is similarly trivial if B is negligible. So all cases are covered.

266X Basic exercises (a) Let D, D’ be subsets of R". Show that (i) cI*(D U D’) = cI*D U cl*D’ (ii)
cl*D = cl*D’ iff D and D’ have a common measurable envelope (iii) cI*D \ cI*(R" \ D’) C cI*(D N D’) (iv)
D is Lebesgue measurable iff cI*DNcl*(R™\ D) is Lebesgue negligible (v) DUcl*D is a measurable envelope
of D (vi) cI*(cl*D) = cI*D.

(b) Show that, for a measurable set E C R, clI*E is just the set of real numbers which are not density
points of R\ E.

(c) In 266C, show that if A and B are similar convex sets in the same orientation then A+ B is a convex
set similar to both and (A 4+ B)Y" = (uA)Y" + (uB)'/".

(d) Show that if r > 1, p is Lebesgue measure on R” and Ay, ... , A, are non-empty subsets of R, then
(Ao o AT > T (AT

(e) In 266C, show that if p € [0, 1] then (subject to an appropriate interpretation of oo®) u*(pA + (1 —
p)B) = (* AP B) P,

266 Notes and comments The proof of 266C is taken from FEDERER 69. There is a slightly specious
generality in the form given here. If the sets A and B are at all irregular, then pu*(A + B)l/ " is likely to
be much greater than (pu*A)'/" 4 (u*B)'/". The critical case, in which A and B are similar convex sets, is
much easier (266Xc). The theorem is therefore most useful when A and B are non-similar convex sets and
we get a non-trivial estimate which may be hard to establish by other means. For this case we do not need
266B. Theorem 266C is an instructive example of the way in which the dimension r enters formulae when
we seek results applying to general Euclidean spaces. There will be many more when I return to geometric
measure theory in Chapter 47 of Volume 4.
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