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Chapter 25

Product Measures

I come now to another chapter on ‘pure’ measure theory, discussing a fundamental construction – or,
as you may prefer to consider it, two constructions, since the problems involved in forming the product
of two arbitrary measure spaces (§251) are rather different from those arising in the product of arbitrarily
many probability spaces (§254). This work is going to stretch our technique to the utmost, for while the
fundamental theorems to which we are moving are natural aims, the proofs are lengthy and there are many
pitfalls beside the true paths.

The central idea is that of ‘repeated integration’. You have probably already seen formulae of the type
‘
∫∫

f(x, y)dxdy’ used to calculate the integral of a function of two real variables over a region in the plane.
One of the basic techniques of advanced calculus is reversing the order of integration; for instance, we expect∫ 1

0
(
∫ 1

y
f(x, y)dx)dy to be equal to

∫ 1

0
(
∫ x

0
f(x, y)dy)dx. As I have developed the subject, we already have a

third calculation to compare with these two:
∫
D
f , where D = {(x, y) : 0 ≤ y ≤ x ≤ 1} and the integral

is taken with respect to Lebesgue measure on the plane. The first two sections of this chapter are devoted
to an analysis of the relationship between one- and two-dimensional Lebesgue measure which makes these
operations valid – some of the time; part of the work has to be devoted to a careful description of the exact
conditions which must be imposed on f and D if we are to be safe.

Repeated integration, in one form or another, appears everywhere in measure theory, and it is therefore
necessary sooner or later to develop the most general possible expression of the idea. The standard method
is through the theory of products of general measure spaces. Given measure spaces (X,Σ, µ) and (Y,T, ν),
the aim is to find a measure λ on X ×Y which will, at least, give the right measure µE · νF to a ‘rectangle’
E × F where E ∈ Σ and F ∈ T. It turns out that there are already difficulties in deciding what ‘the’
product measure is, and to do the job properly I find I need, even at this stage, to describe two related
but distinguishable constructions. These constructions and their elementary properties take up the whole
of §251. In §252 I turn to integration over the product, with Fubini’s and Tonelli’s theorems relating∫
fdλ with

∫∫
f(x, y)µ(dx)ν(dy). Because the construction of λ is symmetric between the two factors, this

automatically provides theorems relating
∫∫

f(x, y)µ(dx)ν(dy) with
∫∫

f(x, y)ν(dy)µ(dx). §253 looks at the
space L1(λ) and its relationship with L1(µ) and L1(ν).

For general measure spaces, there are obstacles in the way of forming an infinite product; to start with,
if 〈(Xn, µn)〉n∈N is a sequence of measure spaces, then a product measure λ on X =

∏
n∈N

Xn ought to set

λX =
∏∞

n=0 µnXn, and there is no guarantee that the product will converge, or behave well when it does.
But for probability spaces, when µnXn = 1 for every n, this problem at least evaporates. It is possible to
define the product of any family of probability spaces; this is the burden of §254.

I end the chapter with three sections which are a preparation for Chapters 27 and 28, but are also
important in their own right as an investigation of the way in which the group structure of Rr interacts with
Lebesgue and other measures. §255 deals with the ‘convolution’ f ∗ g of two functions, where (f ∗ g)(x) =∫
f(y)g(x− y)dy (the integration being with respect to Lebesgue measure). In §257 I show that some of the

same ideas, suitably transformed, can be used to describe a convolution ν1 ∗ ν2 of two measures on R
r; in

preparation for this I include a section on Radon measures on R
r (§256).

Version of 10.11.06

251 Finite products

The first construction to set up is the product of a pair of measure spaces. It turns out that there are
already substantial technical difficulties in the way of finding a canonical universally applicable method. I
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2 Product measures §251 intro.

find myself therefore describing two related, but distinct, constructions, the ‘primitive’ and ‘c.l.d.’ product
measures (251C, 251F). After listing the fundamental properties of the c.l.d product measure (251I-251J), I
work through the identification of the product of Lebesgue measure with itself (251N) and a fairly thorough
discussion of subspaces (251O-251S).

251A Definition Let (X,Σ, µ) and (Y,T, ν) be two measure spaces. For A ⊆ X × Y set

θA = inf{
∑∞

n=0 µEn · νFn : En ∈ Σ, Fn ∈ T ∀ n ∈ N, A ⊆
⋃

n∈N
En × Fn}.

251B Lemma In the context of 251A, θ is an outer measure on X × Y .

251C Definition Let (X,Σ, µ) and (Y,T, ν) be measure spaces. By the primitive product measure
on X ×Y I shall mean the measure λ0 derived by Carathéodory’s method from the outer measure θ defined
in 251A.

251D Definition If X and Y are sets with σ-algebras Σ ⊆ PX and T ⊆ PY , I will write Σ⊗̂T for the
σ-algebra of subsets of X × Y generated by {E × F : E ∈ Σ, F ∈ T}.

251E Proposition Let (X,Σ, µ) and (Y,T, ν) be measure spaces; let λ0 be the primitive product measure
on X × Y , and Λ its domain. Then Σ⊗̂T ⊆ Λ and λ0(E × F ) = µE · νF for all E ∈ Σ and F ∈ T.

251F Definition Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and λ0 the primitive product measure.
By the c.l.d. product measure on X×Y I shall mean the function λ : domλ0 → [0,∞] defined by setting

λW = sup{λ0(W ∩ (E × F )) : E ∈ Σ, F ∈ T, µE < ∞, νF < ∞}

for W ∈ domλ0.

251G Remark λ is a measure.

251H Lemma Let (X,Σ, µ) and (Y,T, ν) be two measure spaces; let λ0 be the primitive product measure
on X × Y , and Λ its domain. If H ⊆ X × Y and H ∩ (E × F ) ∈ Λ whenever µE < ∞ and νF < ∞, then
H ∈ Λ.

251I Theorem Let (X,Σ, µ) and (Y,T, ν) be measure spaces; let λ be the c.l.d. product measure on
X × Y , and Λ its domain. Then

(a) Σ⊗̂T ⊆ Λ and λ(E × F ) = µE · νF whenever E ∈ Σ, F ∈ T and µE · νF < ∞;
(b) for every W ∈ Λ there is a V ∈ Σ⊗̂T such that V ⊆ W and λV = λW ;
(c) (X × Y,Λ, λ) is complete and locally determined, and in fact is the c.l.d. version of (X × Y,Λ, λ0); in

particular, λW = λ0W whenever λ0W < ∞;
(d) ifW ∈ Λ and λW > 0 then there are E ∈ Σ, F ∈ T such that µE < ∞, νF < ∞ and λ(W∩(E×F )) >

0;
(e) if W ∈ Λ and λW < ∞, then for every ǫ > 0 there are E0, . . . , En ∈ Σ, F0, . . . , Fn ∈ T, all of finite

measure, such that λ(W△
⋃

i≤n(Ei × Fi)) ≤ ǫ.

251J Proposition If (X,Σ, µ) and (Y,T, ν) are semi-finite measure spaces and λ is the c.l.d. product
measure on X × Y , then λ(E × F ) = µE · νF for all E ∈ Σ, F ∈ T.

251K σ-finite spaces: Proposition Let (X,Σ, µ) and (Y,T, ν) be σ-finite measure spaces. Then the
c.l.d. product measure on X × Y is equal to the primitive product measure, and is the completion of its
restriction to Σ⊗̂T; moreover, this common product measure is σ-finite.

*251L Proposition Let (X1,Σ1, µ1), (X2,Σ2, µ2), (Y1,T1, ν1) and (Y2,T2, ν2) be σ-finite measure
spaces; let λ1, λ2 be the product measures on X1×Y1, X2×Y2 respectively. Suppose that f : X1 → X2 and
g : Y1 → Y2 are inverse-measure-preserving functions, and that h(x, y) = (f(x), g(y)) for x ∈ X1, y ∈ Y1.
Then h is inverse-measure-preserving.
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251Wa Finite products 3

251M Proposition Let r, s ≥ 1 be integers. Then we have a natural bijection φ : Rr × R
s → R

r+s,
defined by setting

φ((ξ1, . . . , ξr), (η1, . . . , ηs)) = (ξ1, . . . , ξr, η1, . . . , ηs)

for ξ1, . . . , ξr, η1, . . . , ηs ∈ R. If we write Br, Bs and Br+s for the Borel σ-algebras of Rr, Rs and R
r+s

respectively, then φ identifies Br+s with Br⊗̂Bs.

251N Theorem Let r, s ≥ 1 be integers. Then the bijection φ : Rr × R
s → R

r+s described in 251M
identifies Lebesgue measure on R

r+s with the c.l.d. product λ of Lebesgue measure on R
r and Lebesgue

measure on R
s.

251O Proposition Let (X,Σ, µ) and (Y,T, ν) be strictly localizable measure spaces. Then the c.l.d.
product measure on X × Y is strictly localizable; moreover, if 〈Xi〉i∈I and 〈Yj〉j∈J are decompositions of X
and Y respectively, 〈Xi × Yj〉(i,j)∈I×J is a decomposition of X × Y .

251P Lemma Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and λ the c.l.d. product measure on X×Y .
Let λ∗ be the corresponding outer measure. Then

λ∗C = sup{θ(C ∩ (E × F )) : E ∈ Σ, F ∈ T, µE < ∞, νF < ∞}

for every C ⊆ X × Y , where θ is the outer measure of 251A.

251Q Proposition Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and A ⊆ X, B ⊆ Y subsets; write
µA, νB for the subspace measures on A, B respectively. Let λ be the c.l.d. product measure on X × Y , and
λ# the subspace measure it induces on A×B. Let λ̃ be the c.l.d. product measure of µA and νB on A×B.
Then

(i) λ̃ extends λ#.
(ii) If

either (α) A ∈ Σ and B ∈ T

or (β) A and B can both be covered by sequences of sets of finite measure

or (γ) µ and ν are both strictly localizable,

then λ̃ = λ#.

251R Corollary Let r, s ≥ 1 be integers, and φ : Rr ×R
s → R

r+s the natural bijection. If A ⊆ R
r and

B ⊆ R
s, then the restriction of φ to A× B identifies the product of Lebesgue measure on A and Lebesgue

measure on B with Lebesgue measure on φ[A×B] ⊆ R
r+s.

251S Corollary Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and λ the c.l.d. product measure onX×Y .
If A ⊆ X and B ⊆ Y can be covered by sequences of sets of finite measure, then λ∗(A×B) = µ∗A · ν∗B.

251T Proposition Let (X,Σ, µ) and (Y,T, ν) be measure spaces. Write (X, Σ̂, µ̂) and (X, Σ̃, µ̃) for the

completion and c.l.d. version of (X,Σ, µ). Let λ, λ̂ and λ̃ be the three c.l.d. product measures on X × Y

obtained from the pairs (µ, ν), (µ̂, ν) and (µ̃, ν) of factor measures. Then λ = λ̂ = λ̃.

251U Proposition Let (X,Σ, µ) be an atomless measure space, and let λ be the c.l.d. measure on X×X.
Then ∆ = {(x, x) : x ∈ X} is λ-negligible.

*251W Products of more than two spaces Let 〈(Xi,Σi, µi)〉i∈I be a finite family of measure spaces,

and set X =
∏

i∈I Xi. Write Σf
i = {E : E ∈ Σi, µiE < ∞} for each i ∈ I.

(a) For A ⊆ X set

θA = inf{
∞∑

n=0

∏

i∈I

µiEni : Eni ∈ Σi ∀ i ∈ I, n ∈ N, A ⊆
⋃

n∈N

∏

i∈I

Eni}.

Then θ is an outer measure on X. Let λ0 be the measure on X derived by Carathéodory’s method from θ,
and Λ its domain.

D.H.Fremlin



4 Product measures 251Wb

(b) If 〈Xi〉i∈I is a finite family of sets and Σi is a σ-algebra of subsets of Xi for each i ∈ I, then
⊗̂

i∈IΣi

is the σ-algebra of subsets of X =
∏

i∈I Xi generated by {
∏

i∈I Ei : Ei ∈ Σi for every i ∈ I}.

(c) λ0(
∏

i∈I Ei) is defined and equal to
∏

i∈I µiEi whenever Ei ∈ Σi for each i ∈ I.

(d) The c.l.d. product measure on X is the measure λ defined by setting

λW = sup{λ0(W ∩
∏

i∈I Ei) : Ei ∈ Σf
i for each i ∈ I}

for W ∈ Λ. If I is empty, set λX = 1.

(e) If H ⊆ X, then H ∈ Λ iff H ∩
∏

i∈I Ei ∈ Λ whenever Ei ∈ Σf
i for each i ∈ I.

(f)(i)
⊗̂

i∈IΣi ⊆ Λ and λ(
∏

i∈I Ei) =
∏

i∈I µiEi whenever Ei ∈ Σf
i for each i.

(ii) For every W ∈ Λ there is a V ∈
⊗̂

i∈IΣi such that V ⊆ W and λV = λW .
(iii) λ is complete and locally determined, and is the c.l.d. version of λ0.

(iv) If W ∈ Λ and λW > 0 then there are Ei ∈ Σf
i , for i ∈ I, such that λ(W ∩

∏
i∈I Ei) > 0.

(v) If W ∈ Λ and λW < ∞, then for every ǫ > 0 there are n ∈ N and E0i, . . . , Eni ∈ Σf
i , for each i ∈ I,

such that λ(W△
⋃

k≤n

∏
i∈I Eki) ≤ ǫ.

(g) If each µi is σ-finite, so is λ, and λ = λ0 is the completion of its restriction to
⊗̂

i∈IΣi.

(h) If 〈Ij〉j∈J is any partition of I, then λ can be identified with the c.l.d. product of 〈λj〉j∈J , where λj

is the c.l.d. product of 〈µi〉i∈Ij .

(i) If I = {1, . . . , n} and each µi is Lebesgue measure on R, then λ can be identified with Lebesgue
measure on R

n.

(j) If, for each i ∈ I, we have a decomposition 〈Xij〉j∈Ji
of Xi, then 〈

∏
i∈I Xi,f(i)〉f∈

∏
i∈I

Ji
is a decom-

position of X.

(k) For any C ⊆ X,

λ∗C = sup{θ(C ∩
∏

i∈I Ei) : Ei ∈ Σf
i for every i ∈ I}.

(l) Suppose that Ai ⊆ Xi for each i ∈ I. Write λ# for the subspace measure on A =
∏

i∈I Ai, and λ̃ for

the c.l.d. product of the subspace measures on the Ai. Then λ̃ extends λ#, and if
either Ai ∈ Σi for every i

or every Ai can be covered by a sequence of sets of finite measure
or every µi is strictly localizable,

then λ̃ = λ#.

(m) If Ai ⊆ Xi can be covered by a sequence of sets of finite measure for each i ∈ I, then λ∗(
∏

i∈I Ai) =∏
i∈I µ

∗
iAi.

(n) Writing µ̂i, µ̃i for the completion and c.l.d. version of each µi, λ is the c.l.d. product of 〈µ̂i〉i∈I and
also of 〈µ̃i〉i∈I .

(o) If all the (Xi,Σi, µi) are the same atomless measure space (X,Σ, µ), then {x : x ∈ X, i 7→ x(i) is
injective} is λ-conegligible.

(p) Now suppose that we have another family 〈(Yi,Ti, νi)〉i∈I of measure spaces, with product (Y,Λ′, λ′),
and inverse-measure-preserving functions fi : Xi → Yi for each i; define f : X → Y by saying that
f(x)(i) = fi(x(i)) for x ∈ X and i ∈ I. If all the νi are σ-finite, then f is inverse-measure-preserving for λ
and λ′.

Measure Theory (abridged version)



252H Fubini’s theorem 5

Version of 6.12.07

252 Fubini’s theorem

Perhaps the most important feature of the concept of ‘product measure’ is the fact that we can use
it to discuss repeated integrals. In this section I give versions of Fubini’s theorem and Tonelli’s theorem
(252B, 252G) with a variety of corollaries, the most useful ones being versions for σ-finite spaces (252C,
252H). As applications I describe the relationship between integration and measuring ordinate sets (252N)
and calculate the r-dimensional volume of a ball in R

r (252Q). I mention counter-examples showing the
difficulties which can arise with non-σ-finite measures and non-integrable functions (252K-252L).

252A Repeated integrals Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and f a real-valued function
defined on a set dom f ⊆ X × Y . We can seek to form the repeated integral∫∫

f(x, y)ν(dy)µ(dx) =
∫ (∫

f(x, y)ν(dy)
)
µ(dx),

which should be interpreted as follows: set

D = {x : x ∈ X,
∫
f(x, y)ν(dy) is defined in [−∞,∞]},

g(x) =
∫
f(x, y)ν(dy) for x ∈ D,

and then write
∫∫

f(x, y)ν(dy)µ(dx) =
∫
g(x)µ(dx) if this is defined.

252B Theorem Let (X,Σ, µ) and (Y,T, ν) be measure spaces, with c.l.d. product (X×Y,Λ, λ). Suppose
that ν is σ-finite and that µ is either strictly localizable or complete and locally determined. Let f be a
[−∞,∞]-valued function such that

∫
fdλ is defined in [−∞,∞]. Then

∫∫
f(x, y)ν(dy)µ(dx) is defined and

is equal to
∫
fdλ.

252C Corollary Let (X,Σ, µ) and (Y,T, ν) be two σ-finite measure spaces, and λ the c.l.d. product
measure on X × Y . If f is λ-integrable, then

∫∫
f(x, y)ν(dy)µ(dx) and

∫∫
f(x, y)µ(dx)ν(dy) are defined,

finite and equal.

252D Corollary Let (X,Σ, µ) and (Y,T, ν) be measure spaces and λ the c.l.d. product measure onX×Y .
Suppose that ν is σ-finite and that µ is either strictly localizable or complete and locally determined.

(i) If W ∈ domλ, then
∫
ν∗W [{x}]µ(dx) is defined in [0,∞] and equal to λW .

(ii) If ν is complete, we can write
∫
νW [{x}]µ(dx) in place of

∫
ν∗W [{x}]µ(dx).

252E Corollary Let (X,Σ, µ) and (Y,T, ν) be measure spaces, with c.l.d. product (X×Y,Λ, λ). Suppose
that ν is σ-finite and that µ has locally determined negligible sets. Then if f is a Λ-measurable real-valued
function defined on a subset of X × Y , y 7→ f(x, y) is ν-virtually measurable for µ-almost every x ∈ X.

252F Corollary Let (X,Σ, µ) and (Y,T, ν) be two measure spaces, λ the c.l.d. product measure on
X × Y , and Λ its domain. Let W ∈ Λ be such that the vertical section W [{x}] is ν-negligible for µ-almost
every x ∈ X. Then λW = 0.

252G Tonelli’s theorem Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and (X × Y,Λ, λ) their c.l.d.
product. Let f be a Λ-measurable [−∞,∞]-valued function defined on a member of Λ, and suppose that
either

∫∫
|f(x, y)|µ(dx)ν(dy) or

∫∫
|f(x, y)|ν(dy)µ(dx) exists in R. Then f is λ-integrable.

252H Corollary Let (X,Σ, µ) and (Y,T, ν) be σ-finite measure spaces, λ the c.l.d. product measure on
X × Y , and Λ its domain.

(a) Let f be a Λ-measurable [−∞,∞]-valued function defined on a member of Λ. Then if one of∫
X×Y

|f(x, y)|λ(d(x, y)),
∫
Y

∫
X
|f(x, y)|µ(dx)ν(dy),

∫
X

∫
Y
|f(x, y)|ν(dy)µ(dx)

exists in R, so do the other two, and in this case

D.H.Fremlin



6 Product measures 252H

∫
X×Y

f(x, y)λ(d(x, y)) =
∫
Y

∫
X
f(x, y)µ(dx)ν(dy) =

∫
X

∫
Y
f(x, y)ν(dy)µ(dx).

(b) Let f be a Λ-measurable [0,∞]-valued function defined on a member of Λ. Then∫
X×Y

f(x, y)λ(d(x, y)) =
∫
Y

∫
X
f(x, y)µ(dx)ν(dy) =

∫
X

∫
Y
f(x, y)ν(dy)µ(dx)

in the sense that if one of the integrals is defined in [0,∞] so are the other two, and all three are then equal.

252I Corollary Let (X,Σ, µ) and (Y,T, ν) be measure spaces, λ the c.l.d. product measure on X × Y ,
and Λ its domain. Take W ∈ Λ. If either of the integrals∫

µ∗W−1[{y}]ν(dy),
∫
ν∗W [{x}]µ(dx)

exists and is finite, then λW < ∞.

252K Example Let (X,Σ, µ) be [0, 1] with Lebesgue measure, and let (Y,T, ν) be [0, 1] with counting
measure. Consider the set

W = {(t, t) : t ∈ [0, 1]} ⊆ X × Y .

∫∫
χW (x, y)µ(dx)ν(dy) = 0,

∫∫
χW (x, y)ν(dy)µ(dx) = 1,

so the two repeated integrals differ.

252N Integration through ordinate sets I: Proposition Let (X,Σ, µ) be a complete locally deter-
mined measure space, and λ the c.l.d. product measure on X×R, where R is given Lebesgue measure; write
Λ for the domain of λ. For any [0,∞]-valued function f defined on a conegligible subset of X, write Ωf , Ω

′
f

for the ordinate sets

Ωf = {(x, a) : x ∈ dom f, 0 ≤ a ≤ f(x)} ⊆ X × R,

Ω′
f = {(x, a) : x ∈ dom f, 0 ≤ a < f(x)} ⊆ X × R.

Then

λΩf = λΩ′
f =

∫
fdµ

in the sense that if one of these is defined in [0,∞], so are the other two, and they are equal.

252O Integration through ordinate sets II: Proposition Let (X,Σ, µ) be a measure space, and f

a non-negative µ-virtually measurable function defined on a conegligible subset of X. Then∫
fdµ =

∫∞

0
µ∗{x : x ∈ dom f, f(x) ≥ t}dt =

∫∞

0
µ∗{x : x ∈ dom f, f(x) > t}dt

in [0,∞], where the integrals
∫
. . . dt are taken with respect to Lebesgue measure.

*252P Proposition Let (X,Σ, µ) be a measure space, and (Y,T, ν) a σ-finite measure space. Then for
any Σ⊗̂T-measurable function f : X × Y → [0,∞], x 7→

∫
f(x, y)ν(dy) : X → [0,∞] is Σ-measurable. If µ

is semi-finite,
∫∫

f(x, y)ν(dy)µ(dx) =
∫
fdλ, where λ is the c.l.d. product measure on X × Y .

252Q The volume of a ball The Lebesgue measure of the unit ball in R
r is

βr =
1

k!
πk if r = 2k is even,

=
22k+1

k!

(2k+1)!
πk if r = 2k + 1 is odd.

Measure Theory (abridged version)



253C Tensor products 7

252R Complex-valued functions (a) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and λ the c.l.d.
product measure on X × Y . Suppose that ν is σ-finite and that µ is either strictly localizable or complete
and locally determined. Let f be a λ-integrable complex-valued function. Then

∫∫
f(x, y)ν(dy)µ(dx) is

defined and equal to
∫
fdλ.

(b) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, λ the c.l.d. product measure on X × Y , and Λ its
domain. Let f be a Λ-measurable complex-valued function defined on a member of Λ, and suppose that
either

∫∫
|f(x, y)|µ(dx)ν(dy) or

∫∫
|f(x, y)|ν(dy)µ(dx) is defined and finite. Then f is λ-integrable.

(c) Let (X,Σ, µ) and (Y,T, ν) be σ-finite measure spaces, λ the c.l.d. product measure on X × Y , and Λ
its domain. Let f be a Λ-measurable complex-valued function defined on a member of Λ. Then if one of∫

X×Y
|f(x, y)|λ(d(x, y)),

∫
Y

∫
X
|f(x, y)|µ(dx)ν(dy),

∫
X

∫
Y
|f(x, y)|ν(dy)µ(dx)

exists in R, so do the other two, and in this case∫
X×Y

f(x, y)λ(d(x, y)) =
∫
Y

∫
X
f(x, y)µ(dx)ν(dy) =

∫
X

∫
Y
f(x, y)ν(dy)µ(dx).

Version of 18.4.08

253 Tensor products

The theorems of the last section show that the integrable functions on a product of two measure spaces
can be effectively studied in terms of integration on each factor space separately. In this section I present a
very striking relationship between the L1 space of a product measure and the L1 spaces of its factors, which
actually determines the product L1 up to isomorphism as Banach lattice. I start with a brief note on bilinear
operators (253A) and a description of the canonical bilinear operator from L1(µ)×L1(ν) to L1(µ×ν) (253B-
253E). The main theorem of the section is 253F, showing that this canonical map is universal for continuous
bilinear operators from L1(µ)×L1(ν) to Banach spaces; it also determines the ordering of L1(µ×ν) (253G).
I end with a description of a fundamental type of conditional expectation operator (253H) and notes on
products of indefinite-integral measures (253I) and upper integrals of special kinds of function (253J, 253K).

253A Bilinear operators (a) Let U , V and W be linear spaces over R. A map φ : U × V → W is
bilinear if it is linear in each variable separately, that is,

φ(u1 + u2, v) = φ(u1, v) + φ(u2, v),

φ(u, v1 + v2) = φ(u, v1) + φ(u, v2),

φ(αu, v) = αφ(u, v) = φ(u, αv)

for all u, u1, u2 ∈ U , v, v1, v2 ∈ V and scalars α. Observe that such a φ gives rise to, and in turn can be
defined by, a linear operator T : U → L(V ;W ), where

(Tu)(v) = φ(u, v)

for all u ∈ U , v ∈ V . φ(0, v) = φ(u, 0) = 0 whenever u ∈ U and v ∈ V .
If W ′ is another linear space and S : W → W ′ is a linear operator, then Sφ : U × V → W ′ is bilinear.

(b) Now suppose that U , V and W are normed spaces, and φ : U × V → W a bilinear operator. φ is
bounded if sup{‖φ(u, v)‖ : ‖u‖ ≤ 1, ‖v‖ ≤ 1} is finite, and in this case we call this supremum the norm
‖φ‖ of φ. ‖φ(u, v)‖ ≤ ‖φ‖‖u‖‖v‖ for all u ∈ U , v ∈ V .

If W ′ is another normed space and S : W → W ′ is a bounded linear operator, then Sφ : U × V → W ′ is
a bounded bilinear operator, and ‖Sφ‖ ≤ ‖S‖‖φ‖.

253B Definition Let f and g be real-valued functions. I will write f ⊗ g for the function (x, y) 7→
f(x)g(y) : dom f × dom g → R.

D.H.Fremlin



8 Product measures 253C

253C Proposition (a) Let X and Y be sets, and Σ, T σ-algebras of subsets of X, Y respectively. If f is
a Σ-measurable real-valued function defined on a subset of X, and g is a T-measurable real-valued function
defined on a subset of Y , then f ⊗ g is Σ⊗̂T-measurable.

(b) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and λ the c.l.d. product measure on X×Y . If f ∈ L
0(µ)

and g ∈ L
0(ν), then f ⊗ g ∈ L

0(λ).

253D Proposition Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and write λ for the c.l.d. product
measure on X × Y . If f ∈ L

1(µ) and g ∈ L
1(ν), then f ⊗ g ∈ L

1(λ) and
∫
f ⊗ g dλ =

∫
f dµ

∫
g dν.

253E The canonical map L1 × L1 → L1 We may define u⊗ v ∈ L1(λ), for u ∈ L1(µ) and v ∈ L1(ν),
by saying that u⊗ v = (f ⊗ g)• whenever u = f• and v = g•. The map (u, v) 7→ u⊗ v is bilinear.

‖u⊗ v‖1 = ‖u‖1‖v‖1

for all u ∈ L1(µ), v ∈ L1(ν). In particular, the bilinear operator ⊗ is bounded, with norm 1 (except in the
trivial case in which one of L1(µ), L1(ν) is 0-dimensional).

253F Theorem Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and let λ be the c.l.d. product measure
on X × Y . Let W be any Banach space and φ : L1(µ) × L1(ν) → W a bounded bilinear operator. Then
there is a unique bounded linear operator T : L1(λ) → W such that T (u ⊗ v) = φ(u, v) for all u ∈ L1(µ)
and v ∈ L1(ν), and ‖T‖ = ‖φ‖.

253G The order structure of L1: Proposition Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and λ

the c.l.d. product measure on X × Y . Then
(a) u⊗ v ≥ 0 in L1(λ) whenever u ≥ 0 in L1(µ) and v ≥ 0 in L1(ν).
(b) The positive cone {w : w ≥ 0} of L1(λ) is precisely the closed convex hull C of {u⊗ v : u ≥ 0, v ≥ 0}

in L1(λ).
*(c) Let W be any Banach lattice, and T : L1(λ) → W a bounded linear operator. Then the following

are equiveridical:
(i) Tw ≥ 0 in W whenever w ≥ 0 in L1(λ);
(ii) T (u⊗ v) ≥ 0 in W whenever u ≥ 0 in L1(µ) and v ≥ 0 in L1(ν).

253H Conditional expectations: Theorem Let (X,Σ, µ) and (Y,T, ν) be complete probability spaces,
with c.l.d. product (X × Y,Λ, λ). Set Λ1 = {E × Y : E ∈ Σ}. Then Λ1 is a σ-subalgebra of Λ. Given a
λ-integrable real-valued function f , set

g(x, y) =
∫
f(x, z)ν(dz)

whenever x ∈ X, y ∈ Y and the integral is defined in R. Then g is a conditional expectation of f on Λ1.

253I Proposition Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and f ∈ L
0(µ), g ∈ L

0(ν) non-negative
functions. Let µ′, ν ′ be the corresponding indefinite-integral measures. Let λ be the c.l.d. product of µ and
ν, and λ′ the indefinite-integral measure defined from λ and f ⊗ g ∈ L

0(λ). Then λ′ is the c.l.d. product of
µ′ and ν ′.

*253J Upper integrals: Proposition Let (X,Σ, µ) and (Y,T, ν) be σ-finite measure spaces, with c.l.d.
product measure λ. Then for any functions f and g, defined on conegligible subsets of X and Y respectively,
and taking values in [0,∞],

∫
f ⊗ g dλ =

∫
fdµ ·

∫
g dν.

*253K Proposition Let (X,Σ, µ) and (Y,T, ν) be probability spaces, with c.l.d. product measure λ.
Then for any real-valued functions f , g defined on conegligible subsets of X, Y respectively,

∫
f(x) + g(y)λ(d(x, y)) =

∫
f(x)µ(dx) +

∫
g(y)ν(dy),

at least when the right-hand side is defined in [−∞,∞].

Measure Theory (abridged version)
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253L Complex spaces As usual, the ideas apply essentially unchanged to complex L1 spaces. Writing
L1
C
(µ), etc., for the complex L1 spaces involved, we have the following. Throughout, let (X,Σ, µ) and

(Y,T, ν) be measure spaces, and λ the c.l.d. product measure on X × Y .

(a) If f ∈ L
0
C
(µ) and g ∈ L

0
C
(ν) then f ⊗g, defined by the formula (f ⊗g)(x, y) = f(x)g(y) for x ∈ dom f

and y ∈ dom g, belongs to L
0
C
(λ).

(b) If f ∈ L
1
C
(µ) and g ∈ L

1
C
(ν) then f ⊗ g ∈ L

1
C
(λ) and

∫
f ⊗ g dλ =

∫
fdµ

∫
g dν.

(c)We have a bilinear operator (u, v) 7→ u⊗v : L1
C
(µ)×L1

C
(ν) → L1

C
(λ) defined by writing f•⊗g• = (f⊗g)•

for all f ∈ L
1
C
(µ), g ∈ L

1
C
(ν).

(d) If W is any complex Banach space and φ : L1
C
(µ) × L1

C
(ν) → W is any bounded bilinear operator,

then there is a unique bounded linear operator T : L1
C
(λ) → W such that T (u ⊗ v) = φ(u, v) for every

u ∈ L1
C
(µ) and v ∈ L1

C
(ν), and ‖T‖ = ‖φ‖.

(e) If µ and ν are complete probability measures, and Λ1 = {E × Y : E ∈ Σ}, then for any f ∈ L
1
C
(λ)

we have a conditional expectation g of f on Λ1 given by setting g(x, y) =
∫
f(x, z)ν(dz) whenever this is

defined.

Version of 23.2.16

254 Infinite products

I come now to the second basic idea of this chapter: the description of a product measure on the product
of a (possibly large) family of probability spaces. The section begins with a construction on similar lines to
that of §251 (254A-254F) and its defining property in terms of inverse-measure-preserving functions (254G).
I discuss the usual measure on {0, 1}I (254J-254K), subspace measures (254L) and various properties of
subproducts (254M-254T), including a study of the associated conditional expectation operators (254R-
254T).

254A Definitions (a) Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces. Set X =
∏

i∈I Xi, the
family of functions x with domain I such that x(i) ∈ Xi for every i ∈ I. In this context, I will say that a
measurable cylinder is a subset of X expressible in the form

C =
∏

i∈I Ci,

where Ci ∈ Σi for every i ∈ I and {i : Ci 6= Xi} is finite. Note that for a non-empty C ⊆ X this expression
is unique.

(b) We can therefore define a functional θ0 : C → [0, 1], where C is the set of measurable cylinders, by
setting

θ0C =
∏

i∈I µiCi

whenever Ci ∈ Σi for every i ∈ I and {i : Ci 6= Xi} is finite.

(c) Now define θ : PX → [0, 1] by setting

θA = inf{
∑∞

n=0 θ0Cn : Cn ∈ C for every n ∈ N, A ⊆
⋃

n∈N
Cn}.

254B Lemma The functional θ defined in 254Ac is always an outer measure on X.

254C Definition Let 〈(Xi,Σi, µi)〉i∈I be any indexed family of probability spaces, and X the Cartesian
product

∏
i∈I Xi. The product measure on X is the measure defined by Carathéodory’s method from the

outer measure θ defined in 254A.

c© 2002 D. H. Fremlin
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10 Product measures 254E

254E Definition Let 〈Xi〉i∈I be any family of sets, and X =
∏

i∈I Xi. If Σi is a σ-subalgebra of subsets

of Xi for each i ∈ I, I write
⊗̂

i∈IΣi for the σ-algebra of subsets of X generated by

{{x : x ∈ X, x(i) ∈ E} : i ∈ I, E ∈ Σi}.

254F Theorem Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces, and let λ be the product measure
on X =

∏
i∈I Xi; let Λ be its domain.

(a) λX = 1.
(b) If Ei ∈ Σi for every i ∈ I, and {i : Ei 6= Xi} is countable, then

∏
i∈I Ei ∈ Λ, and λ(

∏
i∈I Ei) =∏

i∈I µiEi. In particular, λC = θ0C for every measurable cylinder C, and if j ∈ I then x 7→ x(j) : X → Xj

is inverse-measure-preserving.

(c)
⊗̂

i∈IΣi ⊆ Λ.
(d) λ is complete.
(e) For every W ∈ Λ and ǫ > 0 there is a finite family C0, . . . , Cn of measurable cylinders such that

λ(W△
⋃

k≤n Ck) ≤ ǫ.

(f) For every W ∈ Λ there are W1, W2 ∈
⊗̂

i∈IΣi such that W1 ⊆ W ⊆ W2 and λ(W2 \W1) = 0.

254G Theorem Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces with product (X,Λ, λ). Let
(Y,T, ν) be a complete probability space and φ : Y → X a function. Suppose that ν∗φ−1[C] ≤ λC for every
measurable cylinder C ⊆ X. Then φ is inverse-measure-preserving. In particular, φ is inverse-measure-
preserving iff φ−1[C] ∈ T and νφ−1[C] = λC for every measurable cylinder C ⊆ X.

254H Corollary Let 〈(Xi,Σi, µi)〉i∈I and 〈(Yi,Ti, νi)〉i∈I be two families of probability spaces, with
products (X,Λ, λ) and (Y,Λ′, λ′). Suppose that for each i ∈ I we are given an inverse-measure-preserving
function φi : Xi → Yi. Set φ(x) = 〈φi(x(i))〉i∈I for x ∈ X. Then φ : X → Y is inverse-measure-preserving.

254I Proposition Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces, λ the product measure on
X =

∏
i∈I Xi, and Λ its domain. Then λ is also the product of the completions µ̂i of the µi.

254J The product measure on {0, 1}I (a) Perhaps the most important of all examples of infinite
product measures is the case in which each factor Xi is just {0, 1} and each µi is the ‘fair-coin’ probability
measure, setting

µi{0} = µi{1} =
1

2
.

In this case, the product X = {0, 1}I has a family 〈Ei〉i∈I of measurable sets such that, writing λ for the
product measure on X,

λ(
⋂

i∈J Ei) = 2−#(J) if J ⊆ I is finite.

I will call this λ the usual measure on {0, 1}I . Observe that if I is finite then λ{x} = 2−#(I) for each
x ∈ X. On the other hand, if I is infinite, then λ{x} = 0 for every x ∈ X.

(b) There is a natural bijection between {0, 1}I and PI, matching x ∈ {0, 1}I with {i : i ∈ I, x(i) = 1}.

So we get a standard measure λ̃ on PI, which I will call the usual measure on PI. Note that for any
finite b ⊆ I and any c ⊆ b we have

λ̃{a : a ∩ b = c} = λ{x : x(i) = 1 for i ∈ c, x(i) = 0 for i ∈ b \ c} = 2−#(b).

(c) Of course we can apply 254G to these measures; if (Y,T, ν) is a complete probability space, a function
φ : Y → {0, 1}I is inverse-measure-preserving iff

ν{y : y ∈ Y , φ(y)↾J = z} = 2−#(J)

whenever J ⊆ I is finite and z ∈ {0, 1}J .

Measure Theory (abridged version)
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(d) Define addition on X by setting (x + y)(i) = x(i) +2 y(i) for every i ∈ I, x, y ∈ X, where 0 +2 0 =
1 +2 1 = 0, 0 +2 1 = 1 +2 0 = 1. If y ∈ X, the map x 7→ x+ y : X → X is a measure space automorphism
of (X,λ).

*(e) Just because all the factors (Xi, µi) are the same, we have another class of automorphisms of (X,λ),
corresponding to permutations of I. If π : I → I is any permutation, then we have a corresponding function
x 7→ xπ : X → X. x 7→ xπ is a measure space automorphism.

254K Proposition Let λ be the usual measure on X = {0, 1}N, and let µ be Lebesgue measure on [0, 1];
write Λ for the domain of λ and Σ for the domain of µ.

(i) For x ∈ X set φ(x) =
∑∞

i=0 2
−i−1x(i). Then

φ−1[E] ∈ Λ and λφ−1[E] = µE for every E ∈ Σ;
φ[F ] ∈ Σ and µφ[F ] = λF for every F ∈ Λ.

(ii) There is a bijection φ̃ : X → [0, 1] which is equal to φ at all but countably many points, and any such
bijection is an isomorphism between (X,Λ, λ) and ([0, 1],Σ, µ).

254L Subspaces: Theorem Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces, and (X,Λ, λ) their
product.

(a) For each i ∈ I, let Ai ⊆ Xi be a set of full outer measure, and write µ̃i for the subspace measure on

Ai. Let λ̃ be the product measure on A =
∏

i∈I Ai. Then λ̃ is the subspace measure on A induced by λ.
(b) λ∗(

∏
i∈I Ai) =

∏
i∈I µ

∗
iAi whenever Ai ⊆ Xi for every i.

254M Let 〈Xi〉i∈I be a family of sets, with product X.

(a) For J ⊆ I, write XJ for
∏

i∈J Xi. We have a canonical bijection x 7→ (x↾J, x↾I \J) : X → XI ×XI\J .
Associated with this we have the map x 7→ πJ(x) = x↾J : X → XJ . Now I will say that a set W ⊆ X is
determined by coordinates in J if there is a V ⊆ XJ such that W = π−1

J [V ]; that is, W corresponds to
V ×XI\J ⊆ XJ ×XI\J .

W is determined by coordinates in J

⇐⇒ x′ ∈ W whenever x ∈ W, x′ ∈ X and x′↾J = x↾J

⇐⇒ W = π−1
J [πJ [W ]].

It follows that if W is determined by coordinates in J , and J ⊆ K ⊆ I, W is also determined by coordinates
in K. The family WJ of subsets of X determined by coordinates in J is closed under complementation and
arbitrary unions and intersections.

(b)

W =
⋃
{WJ : J ⊆ I is countable}

is a σ-algebra of subsets of X.

(c) If i ∈ I and E ⊆ Xi then {x : x ∈ X, x(i) ∈ E} is determined by the single coordinate i, so surely

belongs to W; accordingly W must include
⊗̂

i∈IPXi.

254N Theorem Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces and 〈Kj〉j∈J a partition of I.
For each j ∈ J let λj be the product measure on Zj =

∏
i∈Kj

Xi, and write λ for the product measure on

X =
∏

i∈I Xi. Then the natural bijection

x 7→ φ(x) = 〈x↾Kj〉j∈J : X →
∏

j∈J Zj

identifies λ with the product of the family 〈λj〉j∈J .
In particular, if K ⊆ I is any set, then λ can be identified with the c.l.d. product of the product measures

on
∏

i∈K Xi and
∏

i∈I\K Xi.

D.H.Fremlin



12 Product measures 254O

254O Proposition Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces. For each J ⊆ I let λJ be the
product probability measure on XJ =

∏
i∈J Xi, and ΛJ its domain; write X = XI , λ = λI and Λ = ΛI . For

x ∈ X and J ⊆ I set πJ(x) = x↾J ∈ XJ .

(a) For every J ⊆ I, λJ is the image measure λπ−1
J ; in particular, πJ : X → XJ is inverse-measure-

preserving for λ and λJ .
(b) If J ⊆ I and W ∈ Λ is determined by coordinates in J , then λJπJ [W ] is defined and equal to λW .

Consequently there are W1, W2 belonging to the σ-algebra of subsets of X generated by

{{x : x(i) ∈ E} : i ∈ J , E ∈ Σi}

such that W1 ⊆ W ⊆ W2 and λ(W2 \W1) = 0.
(c) For every W ∈ Λ, we can find a countable set J and W1, W2 ∈ Λ, both determined by coordinates in

J , such that W1 ⊆ W ⊆ W2 and λ(W2 \W1) = 0.
(d) For every W ∈ Λ, there is a countable set J ⊆ I such that πJ [W ] ∈ ΛJ and λJπJ [W ] = λW ; so that

W ′ = π−1
J [πJ [W ]] belongs to Λ, and λ(W ′ \W ) = 0.

254P Proposition Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces, and for each J ⊆ I let λJ be
the product probability measure on XJ =

∏
i∈J Xi, and ΛJ its domain; write X = XI , Λ = ΛI and λ = λI .

For x ∈ X and J ⊆ I set πJ(x) = x↾J ∈ XJ .
(a) If J ⊆ I and g is a real-valued function defined on a subset of XJ , then g is ΛJ -measurable iff gπJ is

Λ-measurable.
(b) Whenever f is a Λ-measurable real-valued function defined on a λ-conegligible subset of X, we can

find a countable set J ⊆ I and a ΛJ -measurable function g defined on a λJ -conegligible subset of XJ such
that f extends gπJ .

254Q Proposition Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces, and for each J ⊆ I let λJ

be the product probability measure on XJ =
∏

i∈J Xi; write X = XI , λ = λI . For x ∈ X, J ⊆ I set
πJ(x) = x↾J ∈ XJ .

(a) Let S be the linear subspace of RX spanned by {χC : C ⊆ X is a measurable cylinder}. Then for
every λ-integrable real-valued function f and every ǫ > 0 there is a g ∈ S such that

∫
|f − g|dλ ≤ ǫ.

(b) Whenever J ⊆ I and g is a real-valued function defined on a subset of XJ , then
∫
g dλJ =

∫
gπJdλ

if either integral is defined in [−∞,∞].
(c) Whenever f is a λ-integrable real-valued function, we can find a countable set J ⊆ X and a λJ -

integrable function g such that f extends gπJ .

254R Conditional expectations again: Theorem Let 〈(Xi,Σi, µi)〉i∈I be a family of probability
spaces with product (X,Λ, λ). For J ⊆ I let ΛJ ⊆ Λ be the σ-subalgebra of sets determined by coordinates
in J . Then we may regard L0(λ↾ΛJ) as a subspace of L0(λ). Let PJ : L1(λ) → L1(λ↾ΛJ) ⊆ L1(λ) be the
corresponding conditional expectation operator. Then

(a) for any J , K ⊆ I, PK∩J = PKPJ ;
(b) for any u ∈ L1(λ), there is a countable set J∗ ⊆ I such that PJu = u iff J ⊇ J∗;
(c) for any u ∈ L0(λ), there is a unique smallest set J∗ ⊆ I such that u ∈ L0(λ↾ΛJ∗), and this J∗ is

countable;
(d) for any W ∈ Λ there is a unique smallest set J∗ ⊆ I such that W△W ′ is negligible for some W ′ ∈ ΛJ∗ ,

and this J∗ is countable;
(e) for any Λ-measurable real-valued function f : X → R there is a unique smallest set J∗ ⊆ I such that

f is equal almost everywhere to a Λ∗
J -measurable function, and this J∗ is countable.

254S Proposition Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces, with product (X,Λ, λ).
(a) If A ⊆ X is determined by coordinates in I \ {j} for every j ∈ I, then its outer measure λ∗A must be

either 0 or 1.
(b) If W ∈ Λ and λW > 0, then for every ǫ > 0 there are a W ′ ∈ Λ and a finite set J ⊆ I such that

λW ′ ≥ 1− ǫ and for every x ∈ W ′ there is a y ∈ W such that x↾I \ J = y↾I \ J .

Measure Theory (abridged version)
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254T Remarks (a) Let 〈Xi〉i∈I be a family of sets with Cartesian product X. For each J ⊆ I let WJ

be the set of subsets of X determined by coordinates in J . Then WJ ∩ WK = WJ∩K for all J , K ⊆ I.
Accordingly, for any W ⊆ X, F = {J : W ∈ WJ} is a filter on I (unless W = X or W = ∅, in which case
F = PX).

(b) Set X = {0, 1}N,

W = {x : x ∈ X, limi→∞ x(i) = 0}.

Then for every n ∈ N W is determined by coordinates in Jn = {i : i ≥ n}. But W is not determined by
coordinates in

⋂
n∈N

Jn = ∅.

*254U Example There are a localizable measure space (X,Σ, µ) and a probability space (Y,T, ν) such
that the c.l.d. product measure λ on X × Y is not localizable.

*254V Proposition Let (X,Σ, µ) be an atomless probability space and I a countable set. Let λ be the
product probability measure on XI . Then {x : x ∈ XI , x is injective} is λ-conegligible.

Version of 3.7.08

255 Convolutions of functions

I devote a section to a construction which is of great importance – and will in particular be very useful
in Chapters 27 and 28 – and may also be regarded as a series of exercises on the work so far.

I find it difficult to know how much repetition to indulge in in this section, because the natural unified
expression of the ideas is in the theory of topological groups, and I do not think we are yet ready for the
general theory (I will come to it in Chapter 44 in Volume 4). The groups we need for this volume are

R;
R

r, for r ≥ 2;
S1 = {z : z ∈ C, |z| = 1}, the ‘circle group’;
Z, the group of integers.

All the ideas already appear in the theory of convolutions on R, and I will therefore present this material
in relatively detailed form, before sketching the forms appropriate to the groups Rr and S1 (or ]−π, π]); Z
can I think be safely left to the exercises.

255A Theorem Let µ be Lebesgue measure on R and µ2 Lebesgue measure on R
2; write Σ, Σ2 for their

domains.
(a) For any a ∈ R, the map x 7→ a+ x : R → R is a measure space automorphism of (R,Σ, µ).
(b) The map x 7→ −x : R → R is a measure space automorphism of (R,Σ, µ).
(c) For any a ∈ R, the map x 7→ a− x : R → R is a measure space automorphism of (R,Σ, µ).
(d) The map (x, y) 7→ (x+ y, y) : R2 → R

2 is a measure space automorphism of (R2,Σ2, µ2).
(e) The map (x, y) 7→ (x− y, y) : R2 → R

2 is a measure space automorphism of (R2,Σ2, µ2).

255B Corollary (a) If a ∈ R, then for any complex-valued function f defined on a subset of R∫
f(x)dx =

∫
f(a+ x)dx =

∫
f(−x)dx =

∫
f(a− x)dx

in the sense that if one of the integrals exists so do the others, and they are then all equal.
(b) If f is a complex-valued function defined on a subset of R2, then∫

f(x+ y, y)d(x, y) =
∫
f(x− y, y)d(x, y) =

∫
f(x, y)d(x, y)

in the sense that if one of the integrals exists and is finite so does the other, and they are then equal.

255D Corollary Let f be a complex-valued function defined on a subset of R.
(a) If f is measurable, then the functions (x, y) 7→ f(x+ y), (x, y) 7→ f(x− y) are measurable.
(b) If f is defined almost everywhere in R, then the functions (x, y) 7→ f(x + y), (x, y) 7→ f(x − y) are

defined almost everywhere in R
2.
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255E The basic formula Let f and g be measurable complex-valued functions defined almost every-
where in R. Write f ∗ g for the function defined by the formula

(f ∗ g)(x) =
∫
f(x− y)g(y)dy

whenever the integral exists as a complex number. Then f ∗ g is the convolution of the functions f and g.
dom(|f | ∗ |g|) = dom(f ∗ g), and |f ∗ g| ≤ |f | ∗ |g| everywhere on their common domain, for all f and g.

255F Elementary properties (a) Because integration is linear, we surely have

((f1 + f2) ∗ g)(x) = (f1 ∗ g)(x) + (f2 ∗ g)(x),

(f ∗ (g1 + g2))(x) = (f ∗ g1)(x) + (f ∗ g2)(x),

(cf ∗ g)(x) = (f ∗ cg)(x) = c(f ∗ g)(x)

whenever the right-hand sides of the formulae are defined.

(b) If f and g are measurable complex-valued functions defined almost everywhere in R, then f ∗g = g∗f .

(c) If f1, f2, g1, g2 are measurable complex-valued functions defined almost everywhere in R, f1 =a.e. f2
and g1 =a.e. g2, then f1 ∗ g1 = f2 ∗ g2.

It follows that if u, v ∈ L0
C
, then we have a function θ(u, v) which is equal to f ∗ g whenever f , g ∈ L

0
C

are such that f• = u and g• = u.

255G Theorem Let f , g and h be measurable complex-valued functions defined almost everywhere in
R.

(a) Suppose that
∫
h(x+ y)f(x)g(y)d(x, y) exists in C. Then

∫
h(x)(f ∗ g)(x)dx =

∫
h(x+ y)f(x)g(y)d(x, y)

=

∫∫
h(x+ y)f(x)g(y)dxdy =

∫∫
h(x+ y)f(x)g(y)dydx

provided that in the expression h(x)(f ∗ g)(x) we interpret the product as 0 if h(x) = 0 and (f ∗ g)(x) is
undefined.

(b) If, on a similar interpretation of |h(x)|(|f | ∗ |g|)(x), the integral
∫
|h(x)|(|f | ∗ |g|)(x)dx is finite, then∫

h(x+ y)f(x)g(y)d(x, y) exists in C.

255H Corollary If f , g are complex-valued functions which are integrable over R, then f ∗g is integrable,
with ∫

f ∗ g =
∫
f
∫
g,

∫
|f ∗ g| ≤

∫
|f |
∫
|g|.

255I Corollary For any measurable complex-valued functions f , g defined almost everywhere in R, f ∗g
is measurable and has measurable domain.

255J Theorem Let f , g and h be complex-valued measurable functions, defined almost everywhere in
R, such that f ∗ g and g ∗ h are defined a.e. Suppose that x ∈ R is such that one of (|f | ∗ (|g| ∗ |h|))(x),
((|f | ∗ |g|) ∗ |h|)(x) is defined in R. Then f ∗ (g ∗ h) and (f ∗ g) ∗ h are defined and equal at x.

255K Proposition Suppose that f , g are measurable complex-valued functions defined almost every-
where in R, and that f ∈ L

p
C
, g ∈ L

q
C
where p, q ∈ [1,∞] and 1

p
+ 1

q
= 1. Then f ∗ g is defined everywhere

in R, is uniformly continuous, and

sup
x∈R

|(f ∗ g)(x)| ≤ ‖f‖p‖g‖q if 1 < p < ∞, 1 < q < ∞,

≤ ‖f‖1 ess sup |g| if p = 1, q = ∞,

≤ ess sup |f | · ‖g‖1 if p = ∞, q = 1.
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255L The r-dimensional case I have written 255A-255K out as theorems about Lebesgue measure on
R. However they all apply to Lebesgue measure on R

r for any r ≥ 1.

255M The case of ]−π, π] (a) If we think of S1 as the set {z : z ∈ C, |z| = 1}, then the group operation
is complex multiplication, and in the formulae above x + y must be rendered as xy, while x − y must be
rendered as xy−1. On the interval ]−π, π], the group operation is +2π, where for x, y ∈ ]−π, π] I write
x+2π y for whichever of x+ y, x+ y + 2π, x+ y − 2π belongs to ]−π, π].

(b) As for the measure, the measure to use on ]−π, π] is just Lebesgue measure.
On S1, we need the corresponding measure induced by the canonical bijection between S1 and ]−π, π].

255N Theorem Let µ be Lebesgue measure on ]−π, π] and µ2 Lebesgue measure on ]−π, π] × ]−π, π];
write Σ, Σ2 for their domains.

(a) For any a ∈ ]−π, π], the map x 7→ a +2π x : ]−π, π] → ]−π, π] is a measure space automorphism of
(]−π, π] ,Σ, µ).

(b) The map x 7→ −2πx : ]−π, π] → ]−π, π] is a measure space automorphism of (]−π, π] ,Σ, µ).
(c) For any a ∈ ]−π, π], the map x 7→ a −2π x : ]−π, π] → ]−π, π] is a measure space automorphism of

(]−π, π] ,Σ, µ).

(d) The map (x, y) 7→ (x +2π y, y) : ]−π, π]
2 → ]−π, π]

2
is a measure space automorphism of (]−π, π]

2
,

Σ2, µ2).

(e) The map (x, y) 7→ (x −2π y, y) : ]−π, π]
2 → ]−π, π]

2
is a measure space automorphism of (]−π, π]

2
,

Σ2, µ2).

255O Convolutions on ]−π, π] Write µ for Lebesgue measure on ]−π, π].

(a) Let f and g be measurable complex-valued functions defined almost everywhere in ]−π, π]. Write
f ∗ g for the function defined by the formula

(f ∗ g)(x) =
∫ π

−π
f(x−2π y)g(y)dy

whenever x ∈ ]−π, π] and the integral exists as a complex number. Then f ∗ g is the convolution of the
functions f and g.

(b) If f and g are measurable complex-valued functions defined almost everywhere in ]−π, π], then
f ∗ g = g ∗ f .

(c) Let f , g and h be measurable complex-valued functions defined almost everywhere in ]−π, π]. Then
(i) ∫ π

−π
h(x)(f ∗ g)(x)dx =

∫
]−π,π]2

h(x+2π y)f(x)g(y)d(x, y)

whenever the right-hand side exists and is finite, provided that in the expression h(x)(f ∗ g)(x) we interpret
the product as 0 if h(x) = 0 and (f ∗ g)(x) is undefined.

(ii) If, on the same interpretation of |h(x)|(|f | ∗ |g|)(x), the integral
∫ π

−π
|h(x)|(|f | ∗ |g|)(x)dx is finite,

then
∫
]−π,π]2

h(x+2π y)f(x)g(y)d(x, y) exists in C, so again we shall have
∫ π

−π
h(x)(f ∗ g)(x)dx =

∫
]−π,π]2

h(x+2π y)f(x)g(y)d(x, y).

(d) If f , g are complex-valued functions which are integrable over ]−π, π], then f ∗ g is integrable, with∫ π

−π
f ∗ g =

∫ π

−π
f
∫ π

−π
g,

∫ π

−π
|f ∗ g| ≤

∫ π

−π
|f |
∫ π

−π
|g|.

(e) Let f , g, h be complex-valued measurable functions defined almost everywhere in ]−π, π], such
that f ∗ g and g ∗ h are also defined almost everywhere. Suppose that x ∈ ]−π, π] is such that one of
(|f | ∗ (|g| ∗ |h|))(x), ((|f | ∗ |g|) ∗ |h|)(x) is defined in R. Then f ∗ (g ∗ h) and (f ∗ g) ∗ h are defined and equal
at x.
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16 Product measures 255Of

(f) Suppose that f ∈ L
p
C
(µ), g ∈ L

q
C
(µ) where p, q ∈ [1,∞] and 1

p
+ 1

q
= 1. Then f ∗ g is defined

everywhere in ]−π, π], and supx∈]−π,π] |(f ∗ g)(x)| ≤ ‖f‖p‖g‖q, interpreting ‖ ‖∞ as ess sup | |.

Version of 6.8.15

256 Radon measures on R
r

In the next section, and again in Chapters 27 and 28, we need to consider the principal class of measures
on Euclidean spaces. For a proper discussion of this class, and the interrelationships between the measures
and the topologies involved, we must wait until Volume 4. For the moment, therefore, I present definitions
adapted to the case in hand, warning you that the correct generalizations are not quite obvious. I give the
definition (256A) and a characterization (256C) of Radon measures on Euclidean spaces, and theorems on
the construction of Radon measures as indefinite integrals (256E, 256J), as image measures (256G) and as
product measures (256K). In passing I give a version of Lusin’s theorem concerning measurable functions
on Radon measure spaces (256F).

Throughout this section, r and s will be integers greater than or equal to 1.

256A Definitions Let ν be a measure on R
r and Σ its domain.

(a) ν is a topological measure if every open set belongs to Σ.

(b) ν is locally finite if every bounded set has finite outer measure.

(c) If ν is a topological measure, it is inner regular with respect to the compact sets if

νE = sup{νK : K ⊆ E is compact}

for every E ∈ Σ.

(d) ν is a Radon measure if it is a complete locally finite topological measure which is inner regular
with respect to the compact sets.

256B Lemma Let ν be a Radon measure on R
r, and Σ its domain.

(a) ν is σ-finite.
(b) For any E ∈ Σ and any ǫ > 0 there are a closed set F ⊆ E and an open set G ⊇ E such that

ν(G \ F ) ≤ ǫ.
(c) For every E ∈ Σ there is a set H ⊆ E, expressible as the union of a sequence of compact sets, such

that ν(E \H) = 0.
(d) Every continuous real-valued function on R

r is Σ-measurable.
(e) If h : Rr → R is continuous and has bounded support, then h is ν-integrable.

256C Theorem A measure ν on R
r is a Radon measure iff it is the completion of a locally finite measure

defined on the σ-algebra of Borel subsets of Rr.

256D Proposition If ν and ν ′ are two Radon measures on R
r, the following are equiveridical:

(i) ν = ν ′;
(ii) νK = ν ′K for every compact set K ⊆ R

r;
(iii) νG = ν ′G for every open set G ⊆ R

r;
(iv)

∫
h dν =

∫
h dν ′ for every continuous function h : Rr → R with bounded support.

256E Theorem Let ν be a Radon measure on R
r, with domain Σ, and f a non-negative Σ-measurable

function defined on a ν-conegligible subset of Rr. Suppose that f is locally integrable in the sense that∫
E
fdν < ∞ for every bounded set E. Then the indefinite-integral measure ν ′ on R

r defined by saying that

ν ′E =
∫
E
fdν whenever E ∩ {x : x ∈ dom f, f(x) > 0} ∈ Σ

is a Radon measure on R
r.
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256F Theorem Let ν be a Radon measure on R
r, and Σ its domain. Let f : D → R be a Σ-measurable

function, where D ⊆ R
r. Then for every ǫ > 0 there is a closed set F ⊆ R

r such that ν(Rr \ F ) ≤ ǫ and
f↾F is continuous.

256G Theorem Let ν be a Radon measure on R
r, with domain Σ, and suppose that φ : Rr → R

s is
measurable in the sense that all its coordinates are Σ-measurable. If the image measure ν ′ = νφ−1 is locally
finite, it is a Radon measure.

256H Examples (a) Lebesgue measure on R
r is a Radon measure.

(b) A point-supported measure on R
r is a Radon measure iff it is locally finite.

(c) Recall that the Cantor set C is a closed Lebesgue negligible subset of [0, 1], and that the Cantor
function is a non-decreasing continuous function f : [0, 1] → [0, 1] such that f(0) = 0, f(1) = 1 and f

is constant on each of the intervals composing [0, 1] \ C. It follows that if we set g(x) = 1
2 (x + f(x)) for

x ∈ [0, 1], then g : [0, 1] → [0, 1] is a continuous permutation. Now extend g to a permutation h : R → R by
setting h(x) = x for x ∈ R \ [0, 1].

Let ν1 be the indefinite-integral measure defined from Lebesgue measure µ on R and the function 2χ(h[C]).
ν1 is a Radon measure, and ν1h[C] = ν1R = 1. Let ν be the measure ν1(h

−1)−1, that is, νE = ν1h[E] for
just those E ⊆ R such that h[E] ∈ dom ν1. Then ν is a Radon probability measure on R, and νC = 1,
ν(R \ C) = µC = 0.

256J Absolutely continuous Radon measures: Proposition Let ν be a Radon measure on R
r, and

write µ for Lebesgue measure on R
r. Then the following are equiveridical:

(i) ν is an indefinite-integral measure over µ;
(ii) νE = 0 whenever E is a Borel subset of Rr and µE = 0.

In this case, if g ∈ L
0(µ) and

∫
E
g dµ = νE for every Borel set E ⊆ R

r, then g is a Radon-Nikodým
derivative of ν with respect to µ.

256K Products: Theorem Let ν1, ν2 be Radon measures on R
r and R

s respectively. Let λ be their
c.l.d. product measure on R

r × R
s. Then λ is a Radon measure.

*256M Proposition Let ν be a Radon measure on R
r, and D any subset of Rr. Let Φ be a non-

empty upwards-directed family of non-negative continuous functions from D to R. For x ∈ D set g(x) =
supf∈Φ f(x) in [0,∞]. Then

(a) g : D → [0,∞] is lower semi-continuous, therefore Borel measurable;
(b)

∫
D
g dν = supf∈Φ

∫
D
fdν.

Version of 14.8.13

257 Convolutions of measures

The ideas of this chapter can be brought together in a satisfying way in the theory of convolutions of
Radon measures, which will be useful in §272 and again in §285. I give just the definition (257A) and the
central property (257B) of the convolution of totally finite Radon measures, with a few corollaries and a
note on the relation between convolution of functions and convolution of measures (257F).

257A Definition Let r ≥ 1 be an integer and ν1, ν2 two totally finite Radon measures on R
r. Let λ be

the product measure on R
r × R

r. Define φ : Rr × R
r → R

r by setting φ(x, y) = x + y. The convolution
of ν1 and ν2, ν1 ∗ ν2, is the image measure λφ−1; this is a Radon measure.

Note that if ν1 and ν2 are Radon probability measures, then λ and ν1 ∗ ν2 are also probability measures.

c© 1995 D. H. Fremlin

D.H.Fremlin
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257B Theorem Let r ≥ 1 be an integer, and ν1 and ν2 two totally finite Radon measures on R
r; let

ν = ν1 ∗ ν2 be their convolution, and λ their product on R
r × R

r. Then for any real-valued function h

defined on a subset of Rr, ∫
h(x+ y)λ(d(x, y)) exists =

∫
h(x)ν(dx)

if either integral is defined in [−∞,∞].

257C Corollary Let r ≥ 1 be an integer, and ν1, ν2 two totally finite Radon measures on R
r; let

ν = ν1 ∗ ν2 be their convolution, and λ their product on R
r × R

r; write Λ for the domain of λ. Let h be a
Λ-measurable function defined λ-almost everywhere in R

r. Suppose that any one of the integrals∫∫
|h(x+ y)|ν1(dx)ν2(dy),

∫∫
|h(x+ y)|ν2(dy)ν1(dx),

∫
h(x+ y)λ(d(x, y))

exists and is finite. Then h is ν-integrable and∫
h(x)ν(dx) =

∫∫
h(x+ y)ν1(dx)ν2(dy) =

∫∫
h(x+ y)ν2(dy)ν1(dx).

257D Corollary If ν1 and ν2 are totally finite Radon measures on R
r, then ν1 ∗ ν2 = ν2 ∗ ν1.

257E Corollary If ν1, ν2 and ν3 are totally finite Radon measures on R
r, then (ν1∗ν2)∗ν3 = ν1∗(ν2∗ν3).

257F Theorem Suppose that ν1 and ν2 are totally finite Radon measures on R
r which are indefinite-

integral measures over Lebesgue measure µ. Then ν1 ∗ ν2 also is an indefinite-integral measure over µ; if f1
and f2 are Radon-Nikodým derivatives of ν1, ν2 respectively, then f1 ∗ f2 is a Radon-Nikodým derivative of
ν1 ∗ ν2.

Version of 10.11.06

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

251N Paragraph numbers in the second half of §251, referred to in editions of Volumes 3 and 4 up to
and including 2006, and in Bogachev 07, have been changed, so that 251M-251S are now 251N-251T.

252Yf Exercise This exercise, referred to in the first edition of Volume 1, has been moved to 252Ym.

254Yh Exercise This exercise, referred to in the 2013 edition of Volume 4, has been moved to 254Ye.
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