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Chapter 24

Function spaces

The extraordinary power of Lebesgue’s theory of integration is perhaps best demonstrated by its ability
to provide structures relevant to questions quite different from those to which it was at first addressed.
In this chapter I give the constructions, and elementary properties, of some of the fundamental spaces of
functional analysis.

I do not feel called on here to justify the study of normed spaces; if you have not met them before, I
hope that the introduction here will show at least that they offer a basis for a remarkable fusion of algebra
and analysis. The fragments of the theory of metric spaces, normed spaces and general topology which
we shall need are sketched in §§2A2-2A5. The principal ‘function spaces’ described in this chapter in fact
combine three structural elements: they are (infinite-dimensional) linear spaces, they are metric spaces, with
associated concepts of continuity and convergence, and they are ordered spaces, with corresponding notions
of supremum and infimum. The interactions between these three types of structure provide an inexhaustible
wealth of ideas. Furthermore, many of these ideas are directly applicable to a wide variety of problems in
more or less applied mathematics, particularly in differential and integral equations, but more generally in
any system with infinitely many degrees of freedom.

I have laid out the chapter with sections on L0 (the space of equivalence classes of all real-valued mea-
surable functions, in which all the other spaces of the chapter are embedded), L1 (equivalence classes of
integrable functions), L∞ (equivalence classes of bounded measurable functions) and Lp (equivalence classes
of pth-power-integrable functions). While ordinary functional analysis gives much more attention to the
Banach spaces Lp for 1 ≤ p ≤ ∞ than to L0, from the special point of view of this book the space L0 is at
least as important and interesting as any of the others. Following these four sections, I return to a study
of the standard topology on L0, the topology of ‘convergence in measure’ (§245), and then to two linked
sections on uniform integrability and weak compactness in L1 (§§246-247).

There is a technical point here which must never be lost sight of. While it is customary and natural to call
L1, L2 and the others ‘function spaces’, their elements are not in fact functions, but equivalence classes of
functions. As you see from the language of the preceding paragraph, my practice is to scrupulously maintain
the distinction; I give my reasons in the notes to §241.

Version of 6.11.03

241 L
0 and L0

The chief aim of this chapter is to discuss the spaces L1, L∞ and Lp of the following three sections.
However it will be convenient to regard all these as subspaces of a larger space L0 of equivalence classes of
(virtually) measurable functions, and I have collected in this section the basic facts concerning the ordered
linear space L0.

It is almost the first principle of measure theory that sets of measure zero can often be ignored; the
phrase ‘negligible set’ itself asserts this principle. Accordingly, two functions which agree almost everywhere
may often (not always!) be treated as identical. A suitable expression of this idea is to form the space
of equivalence classes of functions, saying that two functions are equivalent if they agree on a conegligible
set. This is the basis of all the constructions of this chapter. It is a remarkable fact that the spaces
of equivalence classes so constructed are actually better adapted to certain problems than the spaces of
functions from which they are derived, so that once the technique has been mastered it is easier to do one’s
thinking in the more abstract spaces.
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2 Function spaces 241A

241A The space L
0: Definition Let (X,Σ, µ) be a measure space. I write L0, or L0(µ), for the space

of real-valued functions f defined on conegligible subsets of X which are virtually measurable.

241B Basic properties(a) A constant real-valued function defined almost everywhere in X belongs to
L

0.

(b) f + g ∈ L
0 for all f , g ∈ L

0.

(c) cf ∈ L
0 for all f ∈ L

0, c ∈ R.

(d) f × g ∈ L
0 for all f , g ∈ L

0.

(e) If f ∈ L
0 and h : R → R is Borel measurable, then hf ∈ L

0.

(f) If 〈fn〉n∈N is a sequence in L
0 and f = limn→∞ fn is defined almost everywhere in X, then f ∈ L

0.

(g) If 〈fn〉n∈N is a sequence in L
0 and f = supn∈N fn is defined almost everywhere in X, then f ∈ L

0.

(h) If 〈fn〉n∈N is a sequence in L
0 and f = infn∈N fn is defined almost everywhere in X, then f ∈ L

0.

(i) If 〈fn〉n∈N is a sequence in L
0 and f = lim supn→∞ fn is defined almost everywhere in X, then f ∈ L

0.

(j) If 〈fn〉n∈N is a sequence in L
0 and f = lim infn→∞ fn is defined almost everywhere in X, then f ∈ L

0.

(k) L0 is just the set of real-valued functions, defined on subsets of X, which are equal almost everywhere
to some Σ-measurable function from X to R.

241C The space L0: Definition Let (X,Σ, µ) be any measure space. Then =a.e. is an equivalence
relation on L

0. Write L0, or L0(µ), for the set of equivalence classes in L
0 under =a.e.. For f ∈ L

0, write
f• for its equivalence class in L0.

241D The linear structure of L0 Let (X,Σ, µ) be any measure space, and set L0 = L
0(µ), L0 = L0(µ).

(a) If f1, f2, g1, g2 ∈ L
0, f1 =a.e. f2 and g1 =a.e. g2 then f1+ g1 =a.e. f2+ g2. Accordingly we may define

addition on L0 by setting f• + g• = (f + g)• for all f , g ∈ L
0.

(b) If f1, f2 ∈ L
0 and f1 =a.e. f2, then cf1 =a.e. cf2 for every c ∈ R. Accordingly we may define scalar

multiplication on L0 by setting c · f• = (cf)• for all f ∈ L
0 and c ∈ R.

(c) L0 is a linear space over R, with zero 0•, where 0 is the function with domain X and constant value
0, and negatives −(f•) = (−f)•.

241E The order structure of L0 Let (X,Σ, µ) be any measure space and set L0 = L
0(µ), L0 = L0(µ).

(a) If f1, f2, g1, g2 ∈ L
0, f1 =a.e. f2, g1 =a.e. g2 and f1 ≤a.e. g1, then f2 ≤a.e. g2. Accordingly we may

define a relation ≤ on L0 by saying that f• ≤ g• iff f ≤a.e. g.

(b) ≤ is a partial order on L0.

(c) L0, with ≤, is a partially ordered linear space, that is, a (real) linear space with a partial order
≤ such that

if u ≤ v then u+ w ≤ v + w for every w,
if 0 ≤ u then 0 ≤ cu for every c ≥ 0.

(d) L0 is a Riesz space or vector lattice, that is, a partially ordered linear space such that u ∨ v =
sup{u, v} and u ∧ v = inf{u, v} are defined for all u, v ∈ L0.
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(e) In particular, for any u ∈ L0 we can speak of |u| = u ∨ (−u); if f ∈ L
0 then |f•| = |f |•.

If c ∈ R then

|cu| = |c||u|, u ∨ v =
1

2
(u+ v + |u− v|),

u ∧ v =
1

2
(u+ v − |u− v|), |u+ v| ≤ |u|+ |v|

for all u, v ∈ L0.

(f) If f is a real-valued function, set f+(x) = max(f(x), 0), f−(x) = max(−f(x), 0) for x ∈ dom f , so
that

f = f+ − f−, |f | = f+ + f− = f+ ∨ f−,

all these functions being defined on dom f . In L0, the corresponding operations are u+ = u∨0, u− = (−u)∨0,
and we have

u = u+ − u−, |u| = u+ + u− = u+ ∨ u−, u+ ∧ u− = 0.

(g) If u ≥ 0 in L0, then there is an f ≥ 0 in L
0 such that f• = u.

241F Riesz spaces (a) A Riesz space U is Archimedean if whenever u ∈ U , u > 0 and v ∈ U , there
is an n ∈ N such that nu 6≤ v.

(b) A Riesz space U is Dedekind σ-complete if every non-empty countable set A ⊆ U which is bounded
above has a least upper bound in U .

(c) A Riesz space U is Dedekind complete (or order complete, or complete) if every non-empty
set A ⊆ U which is bounded above in U has a least upper bound in U .

241G Theorem Let (X,Σ, µ) be a measure space. Set L0 = L0(µ).
(a) L0 is Archimedean and Dedekind σ-complete.
(b) If (X,Σ, µ) is semi-finite, then L0 is Dedekind complete iff (X,Σ, µ) is localizable.

241H The multiplicative structure of L0 Let (X,Σ, µ) be any measure space; write L0 = L0(µ),
L

0 = L
0(µ).

(a) If f1, f2, g1, g2 ∈ L
0, f1 =a.e. f2 and g1 =a.e. g2 then f1× g1 =a.e. f2× g2. Accordingly we may define

multiplication on L0 by setting f• × g• = (f × g)• for all f , g ∈ L
0.

(b) For all u, v, w ∈ L0 and c ∈ R,
u× (v × w) = (u× v)× w,
u× e = e× u = u,

where e = χX• is the equivalence class of the function with constant value 1,
c(u× v) = cu× v = u× cv,
u× (v + w) = (u× v) + (u× w),
(u+ v)× w = (u× w) + (v × w),
u× v = v × u,
|u× v| = |u| × |v|,
u× v = 0 iff |u| ∧ |v| = 0,
|u| ≤ |v| iff there is a w such that |w| ≤ e and u = v × w.

241I The action of Borel functions on L0 Let (X,Σ, µ) be a measure space and h : R → R a Borel
measurable function. Then we have a function h̄ : L0 → L0 defined by setting h̄(f•) = (hf)• for every
f ∈ L

0.
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4 Function spaces 241J

241J Complex L0 Let (X,Σ, µ) be a measure space.

(a)Wemay write L0
C
= L

0
C
(µ) for the space of complex-valued functions f such that dom f is a conegligible

subset of X and there is a conegligible subset E ⊆ X such that f↾E is measurable; that is, such that the
real and imaginary parts of f both belong to L

0(µ). L0
C
= L0

C
(µ) will be the space of equivalence classes

in L
0
C
under the equivalence relation =a.e..

(b) Using just the same formulae as in 241D, it is easy to describe addition and scalar multiplication
rendering L0

C
a linear space over C. We can identify a ‘real part’, being

{f• : f ∈ L
0
C
is real a.e.},

identifiable with the real linear space L0, and corresponding maps u 7→ Re(u), u 7→ Im(u) : L0
C
→ L0 such

that u = Re(u) + i Im(u) for every u. Moreover, we have a notion of ‘modulus’, writing

|f•| = |f |• ∈ L0 for every f ∈ L
0
C
,

satisfying the basic relations |cu| = |c||u|, |u + v| ≤ |u| + |v| for u, v ∈ L0
C
and c ∈ C. We do still have a

multiplication on L0
C
, for which all the formulae in 241H are still valid.

(c) For any u ∈ L0
C
, |u| is the supremum in L0 of {Re(ζu) : ζ ∈ C, |ζ| = 1}.

Version of 19.11.03

242 L1

While the space L0 treated in the previous section is of very great intrinsic interest, its chief use in
the elementary theory is as a space in which some of the most important spaces of functional analysis are
embedded. In the next few sections I introduce these one at a time.

The first is the space L1 of equivalence classes of integrable functions. The importance of this space is not
only that it offers a language in which to express those many theorems about integrable functions which do
not depend on the differences between two functions which are equal almost everywhere. It can also appear
as the natural space in which to seek solutions to a wide variety of integral equations, and as the completion
of a space of continuous functions.

242A The space L1 Let (X,Σ, µ) be any measure space.

(a) Let L1 = L
1(µ) be the set of real-valued functions, defined on subsets of X, which are integrable over

X. Then L
1 ⊆ L

0 = L
0(µ), and, for f ∈ L

0, we have f ∈ L
1 iff there is a g ∈ L

1 such that |f | ≤a.e. g; if
f ∈ L

1, g ∈ L
0 and f =a.e. g, then g ∈ L

1.

(b) Let L1 = L1(µ) ⊆ L0 = L0(µ) be the set of equivalence classes of members of L1. If f , g ∈ L
1 and

f =a.e. g then
∫
f =

∫
g. Accordingly we may define a functional

∫
on L1 by writing

∫
f• =

∫
f for every

f ∈ L
1.

(c)
∫
A
u for u ∈ L1, A ⊆ X is defined by saying that

∫
A
f• =

∫
A
f for every f ∈ L

1.

If E ∈ Σ and u ∈ L1 then
∫
E
u =

∫
u× (χE)•.

(d) If u ∈ L1, there is a Σ-measurable, µ-integrable function f : X → R such that f• = u.

242B Theorem Let (X,Σ, µ) be any measure space. Then L1(µ) is a linear subspace of L0(µ) and∫
: L1 → R is a linear functional.

242C The order structure of L1 Let (X,Σ, µ) be any measure space.

c© 1997 D. H. Fremlin
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(a) L1 = L1(µ) has an order structure derived from that of L0 = L0(µ). L1 is a partially ordered linear
space.

If u, v ∈ L1 and u ≤ v then
∫
u ≤

∫
v.

(b) If u ∈ L0, v ∈ L1 and |u| ≤ |v| then u ∈ L1.

(c) In particular, |u| ∈ L1 whenever u ∈ L1, and

|
∫
u| = max(

∫
u,
∫
(−u)) ≤

∫
|u|.

(d) L1 is a Riesz space.

(e) Note that if u ∈ L1, then u ≥ 0 iff
∫
E
u ≥ 0 for every E ∈ Σ. If u, v ∈ L1 and

∫
E
u ≤

∫
E
v for every

E ∈ Σ, then u ≤ v. If u, v ∈ L1 and
∫
E
u =

∫
E
v for every E ∈ Σ, then u = v.

(f) If u ≥ 0 in L1, there is a non-negative f ∈ L
1 such that f• = u.

242D The norm of L1 Let (X,Σ, µ) be any measure space.

(a) For f ∈ L
1 = L

1(µ) I write ‖f‖1 =
∫
|f | ∈ [0,∞[. For u ∈ L1 = L1(µ) set ‖u‖1 =

∫
|u|, so that

‖f•‖1 = ‖f‖1 for every f ∈ L
1. Then ‖ ‖1 is a norm on L1.

(b) L1, with ‖ ‖1, is a normed space and
∫
: L1 → R is a linear operator; ‖

∫
‖ ≤ 1.

(c) If u, v ∈ L1 and |u| ≤ |v|, then

‖u‖1 =
∫
|u| ≤

∫
|v| = ‖v‖1.

In particular, ‖u‖1 = ‖|u|‖1 for every u ∈ L1.

(d) If u, v ∈ L1 and u, v ≥ 0, then

‖u+ v‖1 = ‖u‖1 + ‖v‖1.

(e) The set (L1)+ = {u : u ≥ 0} is closed in L1.

242E Lemma Let (X,Σ, µ) be a measure space and 〈fn〉n∈N a sequence of µ-integrable real-valued
functions such that

∑∞

n=0

∫
|fn| < ∞. Then f =

∑∞

n=0 fn is integrable and
∫
f =

∑∞

n=0

∫
fn,

∫
|f | ≤

∑∞

n=0

∫
|fn|.

242F Theorem For any measure space (X,Σ, µ), L1(µ) is complete under its norm ‖ ‖1.

242G Definition A Banach lattice is a Riesz space U together with a norm ‖ ‖ on U such that (i)
‖u‖ ≤ ‖v‖ whenever u, v ∈ U and |u| ≤ |v| (ii) U is complete under ‖ ‖.

242H L1 as a Riesz space: Theorem Let (X,Σ, µ) be any measure space. Then L1 = L1(µ) is
Dedekind complete.

242I The Radon-Nikodým Theorem Let (X,Σ, µ) be a measure space. Then there is a canonical
bijection between L1 = L1(µ) and the set of truly continuous additive functionals ν : Σ → R, given by the
formula

νF =
∫
F
u for F ∈ Σ, u ∈ L1.

D.H.Fremlin



6 Function spaces 242J

242J Conditional expectations revisited(a) Let (X,Σ, µ) be a measure space, and T a σ-subalgebra
of Σ. Then (X,T, µ↾T) is a measure space, and L

0(µ↾T) ⊆ L
0(µ); if f , g ∈ L

0(µ↾T), then f = g (µ↾T)-a.e.
iff f = g µ-a.e.

Accordingly we have a canonical map S : L0(µ↾T) → L0(µ) defined by saying that if u ∈ L0(µ↾T) is the
equivalence class of f ∈ L

0(µ↾T), then Su is the equivalence class of f in L0(µ). S is linear, injective and
order-preserving, and |Su| = S|u|, S(u ∨ v) = Su ∨ Sv and S(u× v) = Su× Sv for u, v ∈ L0(µ↾T).

(b) Next, if f ∈ L
1(µ↾T), then f ∈ L

1(µ) and
∫
fdµ =

∫
fd(µ↾T); so Su ∈ L1(µ) and ‖Su‖1 = ‖u‖1 for

every u ∈ L1(µ↾T).
Observe also that every member of L1(µ) ∩ S[L0(µ↾T)] is actually in S[L1(µ↾T)].
This means that S : L1(µ↾T) → L1(µ) ∩ S[L0(µ↾T)] is a bijection.

(c) Now suppose that µX = 1, so that (X,Σ, µ) is a probability space. If g is a conditional expectation
of f and f1 = f µ-a.e. then g is a conditional expectation of f1; and if g, g1 are conditional expectations of
f on T then g = g1 µ↾T-a.e.

(d) This means that we have an operator P : L1(µ) → L1(µ↾T) defined by saying that P (f•) = g•

whenever g ∈ L
1(µ↾T) is a conditional expectation of f ∈ L

1(µ) on T.

(e) P is linear and order-preserving. Consequently

|Pu| = Pu ∨ (−Pu) = Pu ∨ P (−u) ≤ P |u|

for every u ∈ L1(µ). Finally, P is a bounded linear operator, with norm 1.

(f) We may legitimately regard Pu ∈ L1(µ↾T) as ‘the’ conditional expectation of u ∈ L1(µ) on T; P is
the conditional expectation operator.

(g) If u ∈ L1(µ↾T), then Su ∈ L1(µ), as in (b); now PSu = u. Consequently SPSP = SP : L1(µ) →
L1(µ).

242K Theorem Let (X,Σ, µ) be a probability space and T a σ-subalgebra of Σ. Let φ : R → R be a
convex function and φ̄ : L0(µ) → L0(µ) the corresponding operator defined by setting φ̄(f•) = (φf)•. If
P : L1(µ) → L1(µ↾T) is the conditional expectation operator, then φ̄(Pu) ≤ P (φ̄u) whenever u ∈ L1(µ) is
such that φ̄(u) ∈ L1(µ).

242L Proposition Let (X,Σ, µ) be a probability space, and T a σ-subalgebra of Σ. Let P : L1(µ) →
L1(µ↾T) be the corresponding conditional expectation operator. If u ∈ L1 = L1(µ) and v ∈ L0(µ↾T), then
u× v ∈ L1 iff P |u| × v ∈ L1, and in this case P (u× v) = Pu× v; in particular,

∫
u× v =

∫
Pu× v.

242M L1 as a completion:Proposition Let (X,Σ, µ) be any measure space, and write S for the space
of µ-simple functions on X. Then

(a) whenever f is a µ-integrable real-valued function and ǫ > 0, there is an h ∈ S such that
∫
|f − h| ≤ ǫ;

(b) S = {f• : f ∈ S} is a dense linear subspace of L1 = L1(µ).

242N Definition If f is a real- or complex-valued function defined on a subset of Rr, say that the
support of f is {x : x ∈ dom f, f(x) 6= 0}.

242O Theorem Let X be any subset of Rr, where r ≥ 1, and let µ be Lebesgue measure on X. Write
Ck for the space of bounded continuous functions f : Rr → R which have bounded support, and S0 for the
space of linear combinations of functions of the form χI where I ⊆ R

r is a bounded half-open interval. Then
(a) whenever f ∈ L

1 = L
1(µ) and ǫ > 0, there are g ∈ Ck, h ∈ S0 such that

∫
X
|f − g| ≤ ǫ and∫

X
|f − h| ≤ ǫ;

(b) {(g↾X)• : g ∈ Ck} and {(h↾X)• : h ∈ S0} are dense linear subspaces of L1 = L1(µ).
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242P Complex L1(a) For f ∈ L
0
C
,

f ∈ L
1
C

⇐⇒ |f | ∈ L
1 ⇐⇒ Re(f), Im(f) ∈ L

1.

Consequently, for u ∈ L0
C
,

u ∈ L1
C

⇐⇒ |u| ∈ L1 ⇐⇒ Re(u), Im(u) ∈ L1.

(b) L1
C
is complete under ‖ ‖1.

Version of 30.4.04

243 L∞

The second of the classical Banach spaces of measure theory which I treat is the space L∞. As will appear
below, L∞ is the polar companion of L1, the linked opposite; for ‘ordinary’ measure spaces it is actually the
dual of L1 (243F-243G).

243A Definitions Let (X,Σ, µ) be any measure space. Let L
∞ = L

∞(µ) be the set of functions
f ∈ L

0 = L
0(µ) which are essentially bounded, that is, such that there is some M ≥ 0 such that

{x : x ∈ dom f, |f(x)| ≤ M} is conegligible, and write

L∞ = L∞(µ) = {f• : f ∈ L
∞(µ)} ⊆ L0(µ).

Note that L∞ = {f : f ∈ L
0, f• ∈ L∞}.

243B Theorem Let (X,Σ, µ) be any measure space. Then
(a) L∞ = L∞(µ) is a linear subspace of L0 = L0(µ).
(b) If u ∈ L∞, v ∈ L0 and |v| ≤ |u| then v ∈ L∞. Consequently |u|, u ∨ v, u ∧ v, u+ and u− belong to

L∞ for all u, v ∈ L∞.
(c) Writing e = χX•, the equivalence class in L0 of the constant function with value 1, then an element

u of L0 belongs to L∞ iff there is an M ≥ 0 such that |u| ≤ Me.
(d) If u, v ∈ L∞ then u× v ∈ L∞.
(e) If u ∈ L∞ and v ∈ L1 = L1(µ) then u× v ∈ L1.

243C The order structure of L∞ Let (X,Σ, µ) be any measure space. Then L∞ = L∞(µ), being
a linear subspace of L0 = L0(µ), inherits a partial order which renders it a partially ordered linear space.
Because |u| ∈ L∞ whenever u ∈ L∞, u ∧ v and u ∨ v belong to L∞ whenever u, v ∈ L∞, and L∞ is a Riesz
space.

L∞ has an order unit e with the property that

for every u ∈ L∞ there is an M ≥ 0 such that |u| ≤ Me.

243D The norm of L∞ Let (X,Σ, µ) be any measure space.

(a) For f ∈ L
∞ = L

∞(µ), the essential supremum of |f | is

ess sup |f | = inf{M : M ≥ 0, {x : x ∈ dom f, |f(x)| ≤ M} is conegligible}.

Then |f | ≤ ess sup |f | a.e.

(b) If f , g ∈ L
∞ and f =a.e. g, then ess sup |f | = ess sup |g|. Accordingly we may define a functional

‖ ‖∞ on L∞ = L∞(µ) by setting ‖u‖∞ = ess sup |f | whenever u = f•.

(c) For any u ∈ L∞, ‖u‖∞ = min{γ : |u| ≤ γe}, where e = χX• ∈ L∞. ‖ ‖∞ is a norm on L∞.

(d) Note also that if u ∈ L0, v ∈ L∞ and |u| ≤ |v| then |u| ≤ ‖v‖∞e so u ∈ L∞ and ‖u‖∞ ≤ ‖v‖∞;
similarly,

‖u× v‖∞ ≤ ‖u‖∞‖v‖∞, ‖u ∨ v‖∞ ≤ max(‖u‖∞, ‖v‖∞)

for all u, v ∈ L∞. L∞ is a commutative Banach algebra.

D.H.Fremlin



8 Function spaces 243De

(e)

|
∫
u× v| ≤

∫
|u× v| = ‖u× v‖1 ≤ ‖u‖1‖v‖∞

whenever u ∈ L1 and v ∈ L∞.

(f) Observe that if u, v are non-negative members of L∞ then

‖u ∨ v‖∞ = max(‖u‖∞, ‖v‖∞).

243E Theorem For any measure space (X,Σ, µ), L∞ = L∞(µ) is a Banach lattice under ‖ ‖∞.

243F The duality between L∞ and L1 Let (X,Σ, µ) be any measure space.

(b) We have a bounded linear operator T from L∞ to the normed space dual (L1)∗ of L1, given by
writing

(Tv)(u) =
∫
u× v for all u ∈ L1, v ∈ L∞.

(c) We have a linear operator T ′ : L1 → (L∞)∗, given by writing

(T ′u)(v) =
∫
u× v for all u ∈ L1, v ∈ L∞,

and ‖T ′‖ also is at most 1.

243G Theorem Let (X,Σ, µ) be a measure space, and T : L∞(µ) → (L1(µ))∗ the canonical map
described in 243F. Then

(a) T is injective iff (X,Σ, µ) is semi-finite, and in this case is norm-preserving;
(b) T is bijective iff (X,Σ, µ) is localizable, and in this case is a normed space isomorphism.

243H Theorem Let (X,Σ, µ) be a measure space.
(a) L∞(µ) is Dedekind σ-complete.
(b) If µ is localizable, L∞(µ) is Dedekind complete.

243I A dense subspace of L∞: Proposition Let (X,Σ, µ) be a measure space.
(a) Write S for the space of ‘Σ-simple’ functions on X, that is, the space of functions from X to R

expressible as
∑n

k=0 akχEk where ak ∈ R and Ek ∈ Σ for every k ≤ n. Then for every f ∈ L
∞ = L

∞(µ)
and every ǫ > 0, there is a g ∈ S such that ess sup |f − g| ≤ ǫ.

(b) S = {f• : f ∈ S} is a ‖ ‖∞-dense linear subspace of L∞ = L∞(µ).
(c) If (X,Σ, µ) is totally finite, then S is the space of µ-simple functions, so S becomes just the space of

equivalence classes of simple functions.

243J Conditional expectations(a) If (X,Σ, µ) is any measure space, and T is a σ-subalgebra of
Σ, then the canonical embedding S : L0(µ↾T) → L0(µ) embeds L∞(µ↾T) as a subspace of L∞(µ), and
‖Su‖∞ = ‖u‖∞ for every u ∈ L∞(µ↾T). We can identify L∞(µ↾T) with its image in L∞(µ).

(b) Now suppose that µX = 1, and let P : L1(µ) → L1(µ↾T) be the conditional expectation operator.
Then L∞(µ) is a linear subspace of L1(µ). Setting e = χX• ∈ L∞(µ),

Pe = χX• ∈ L∞(µ↾T).

P ↾L∞(µ) : L∞(µ) → L∞(µ↾T) is an operator of norm 1.
If u ∈ L∞(µ↾T), then Pu = u; so P [L∞] is the whole of L∞(µ↾T).

243K Complex L∞ Let L∞
C

be

{f : f ∈ L
0
C
, ess sup |f | < ∞} = {f : Re(f) ∈ L

∞, Im(f) ∈ L
∞}.

Then

Measure Theory (abridged version)
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L∞
C

= {f• : f ∈ L
∞
C
} = {u : u ∈ L0

C
, Re(u) ∈ L∞, Im(u) ∈ L∞}.

Setting

‖u‖∞ = ‖|u|‖∞,

we have a norm on L∞
C

rendering it a Banach space. u × v ∈ L∞
C

and ‖u × v‖∞ ≤ ‖u‖∞‖v‖∞ for all u,
v ∈ L∞

C
.

We now have a duality between L1
C
and L∞

C
giving rise to a linear operator T : L∞

C
→ (L1

C
)∗ of norm at

most 1, defined by the formula

(Tv)(u) =
∫
u× v for every u ∈ L1, v ∈ L∞.

T is injective iff the underlying measure space is semi-finite, and is a bijection iff the underlying measure
space is localizable. T is norm-preserving when it is injective.

Version of 6.3.09

244 Lp

Continuing with our tour of the classical Banach spaces, we come to the Lp spaces for 1 < p < ∞. The
case p = 2 is more important than all the others put together, and it would be reasonable, perhaps even
advisable, to read this section first with this case alone in mind. But the other spaces provide instructive
examples and remain a basic part of the education of any functional analyst.

244A Definitions Let (X,Σ, µ) be any measure space, and p ∈ ]1,∞[. Write L
p = L

p(µ) for the set of
functions f ∈ L

0 = L
0(µ) such that |f |p is integrable, and Lp = Lp(µ) for {f• : f ∈ L

p} ⊆ L0 = L0(µ).
L

p = {f : f ∈ L
0, f• ∈ Lp}.

244B Theorem Let (X,Σ, µ) be any measure space, and p ∈ [1,∞].
(a) Lp = Lp(µ) is a linear subspace of L0 = L0(µ).
(b) If u ∈ Lp, v ∈ L0 and |v| ≤ |u|, then v ∈ Lp. Consequently |u|, u∨ v and u∧ v belong to Lp for all u,

v ∈ Lp.

244C The order structure of Lp Let (X,Σ, µ) be any measure space, and p ∈ [1,∞]. Then the partial
order inherited from L0(µ) makes Lp(µ) a Riesz space.

244D The norm of Lp Let (X,Σ, µ) be a measure space, and p ∈ ]1,∞[.

(a) For f ∈ L
p = L

p(µ), set ‖f‖p = (
∫
|f |p)1/p. If f , g ∈ L

p and f =a.e. g then |f |p =a.e. |g|p so
‖f‖p = ‖g‖p. Accordingly we may define ‖ ‖p : Lp = Lp(µ) → [0,∞[ by writing ‖f•‖p = ‖f‖p for every
f ∈ L

p.

(b) ‖cu‖p = |c|‖u‖p for all u ∈ Lp and c ∈ R, and if ‖u‖p = 0 then u = 0.

(c) If |u| ≤ |v| in Lp then ‖u‖p ≤ ‖v‖p.

244E Lemma Suppose (X,Σ, µ) is a measure space, and that p, q ∈ ]1,∞[ are such that 1
p + 1

q = 1.

(a) ab ≤ 1
pa

p + 1
q b

q for all real a, b ≥ 0.

(b)(i) f × g is integrable and

|
∫
f × g| ≤

∫
|f × g| ≤ ‖f‖p‖g‖q

for all f ∈ L
p = L

p(µ), g ∈ L
q = L

q(µ);
(ii) u× v ∈ L1 = L1(µ) and

|
∫
u× v| ≤ ‖u× v‖1 ≤ ‖u‖p‖v‖q

for all u ∈ Lp = Lp(µ), v ∈ Lq = Lq(µ).

c© 1995 D. H. Fremlin
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10 Function spaces 244F

244F Proposition Let (X,Σ, µ) be a measure space and p ∈ ]1,∞[. Set q = p/(p−1), so that 1
p +

1
q = 1.

(a) For every u ∈ Lp = Lp(µ), ‖u‖p = max{
∫
u× v : v ∈ Lq(µ), ‖v‖q ≤ 1}.

(b) ‖ ‖p is a norm on Lp.

244G Theorem Let (X,Σ, µ) be any measure space, and p ∈ [1,∞]. Then Lp = Lp(µ) is a Banach
lattice under its norm ‖ ‖p.

244H Proposition (a) Let (X,Σ, µ) be any measure space, and p ∈ [1,∞[. Then the space S of
equivalence classes of µ-simple functions is a dense linear subspace of Lp = Lp(µ).

(b) Let X be any subset of Rr, where r ≥ 1, and let µ be the subspace measure on X induced by Lebesgue
measure on R

r. Write Ck for the set of (bounded) continuous functions g : Rr → R such that {x : g(x) 6= 0}
is bounded, and S0 for the space of linear combinations of functions of the form χI, where I ⊆ R

r is a
bounded half-open interval. Then {(g↾X)• : g ∈ Ck} and {(h↾X)• : h ∈ S0} are dense in Lp(µ).

*244I Corollary In the context of 244Hb, Lp(µ) is separable.

244J Duality in Lp spaces Let (X,Σ, µ) be any measure space, and p ∈ ]1,∞[. Set q = p/(p−1). Now
u × v ∈ L1(µ) and ‖u × v‖1 ≤ ‖u‖p‖v‖q whenever u ∈ Lp = Lp(µ) and v ∈ Lq = Lq(µ). Consequently we
have a bounded linear operator T from Lq to the normed space dual (Lp)∗ of Lp, given by writing

(Tv)(u) =
∫
u× v

for all u ∈ Lp and v ∈ Lq.

244K Theorem Let (X,Σ, µ) be a measure space, and p ∈ ]1,∞[; set q = p/(p− 1). Then the canonical
map T : Lq(µ) → Lp(µ)∗ is a normed space isomorphism.

244L Theorem Let (X,Σ, µ) be any measure space, and p ∈ [1,∞[. Then Lp = Lp(µ) is Dedekind
complete.

244M Theorem Let (X,Σ, µ) be a probability space, and T a σ-subalgebra of Σ. Take p ∈ [1,∞]. Regard
L0(µ↾T) as a subspace of L0 = L0(µ), so that Lp(µ↾T) becomes Lp(µ)∩L0(µ↾T). Let P : L1(µ) → L1(µ↾T)
be the conditional expectation operator. Then whenever u ∈ Lp = Lp(µ), |Pu|p ≤ P (|u|p), so Pu ∈ Lp(µ↾T)
and ‖Pu‖p ≤ ‖u‖p. Moreover, P [Lp] = Lp(µ↾T).

244N The space L2 (a) L2 has the special property of being an inner product space; if (X,Σ, µ) is any
measure space and u, v ∈ L2 = L2(µ) then u × v ∈ L1(µ), and we may write (u|v) =

∫
u × v. This makes

L2 a real inner product space and its norm ‖ ‖2 is the associated norm. L2 is a real Hilbert space.
I will use the phrase ‘square-integrable’ to describe functions in L

2(µ).

(b) Let (X,Σ, µ) be a probability space, T a σ-subalgebra of Σ, and P : L1 = L1(µ) → L1(µ↾T) ⊆ L1

the corresponding conditional expectation operator. Then P [L2] ⊆ L2, where L2 = L2(µ), so we have
an operator P2 = P ↾L2 from L2 to itself. Now P2 is an orthogonal projection and its kernel is {u : u ∈
L2,

∫
F
u = 0 for every F ∈ T}.

*244O Theorem Suppose that p ∈ ]1,∞[ and (X,Σ, µ) is a measure space. Then Lp = Lp(µ) is
uniformly convex.

244P Complex Lp Let (X,Σ, µ) be any measure space.

(a) For any p ∈ ]1,∞[, set

L
p
C
= L

p
C
(µ) = {f : f ∈ L

0
C
(µ), |f |p is integrable},

Lp
C
= Lp

C
(µ) = {f• : f ∈ L

p
C
}

= {u : u ∈ L0
C(µ), Re(u) ∈ Lp(µ) and Im(u) ∈ Lp(µ)}

= {u : u ∈ L0
C(µ), |u| ∈ Lp(µ)}.

Then Lp
C
is a linear subspace of L0

C
(µ). Set ‖u‖p = ‖|u|‖p = (

∫
|u|p)1/p for u ∈ Lp

C
.
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(b) The proof of 244E(b-i) applies unchanged to complex-valued functions, so taking q = p/(p − 1) we
get

‖u× v‖1 ≤ ‖u‖p‖v‖q

for all u ∈ Lp
C
, v ∈ Lq

C
. 244Fa becomes

for every u ∈ Lp
C
there is a v ∈ Lq

C
such that ‖v‖q ≤ 1 and

∫
u× v = |

∫
u× v| = ‖u‖p.

‖ ‖p is a norm. Lp
C
is complete. The space SC of equivalence classes of ‘complex-valued simple functions’

is dense in Lp
C
. If X is a subset of Rr and µ is Lebesgue measure on X, then the space of equivalence classes

of continuous complex-valued functions on X with bounded support is dense in Lp
C
.

(c) The canonical map T : Lq
C

→ (Lp
C
)∗, defined by writing (Tv)(u) =

∫
u × v, is surjective and an

isometry. Thus we can still identify Lq
C
with (Lp

C
)∗.

(d) If (X,Σ, µ) is a probability space, T is a σ-subalgebra of Σ and P : L1
C
(µ) → L1

C
(µ↾T) is the

corresponding conditional expectation operator, then for any u ∈ Lp
C
‖Pu‖p ≤ ‖u‖p.

(e) We now have to define

(u|v) =
∫
u× v̄

for u, v ∈ L2
C
; (v|u) is the complex conjugate of (u|v).

Version of 25.3.06

245 Convergence in measure

I come now to an important and interesting topology on the spaces L0 and L0. I start with the definition
(245A) and with properties which echo those of the Lp spaces for p ≥ 1 (245D-245E). In 245G-245J I
describe the most useful relationships between this topology and the norm topologies of the Lp spaces. For
σ-finite spaces, it is metrizable (245Eb) and sequential convergence can be described in terms of pointwise
convergence of sequences of functions (245K-245L).

245A Definitions Let (X,Σ, µ) be a measure space.

(a) For any measurable set F ⊆ X of finite measure, we have a functional τF on L
0 = L

0(µ) defined by
setting

τF (f) =
∫
|f | ∧ χF

for every f ∈ L
0. Now τF (f + g) ≤ τF (f) + τF (g) whenever f , g ∈ L

0. Consequently, setting
ρF (f, g) = τF (f − g), ρF is a pseudometric on L

0.

(b) The family

{ρF : F ∈ Σ, µF < ∞}

now defines a topology on L
0; I will call it the topology of convergence in measure on L

0.

(c) If f , g ∈ L
0 and f =a.e. g, then τF (f) = τF (g), for every set F of finite measure. Consequently we

have functionals τ̄F on L0 = L0(µ) defined by writing

τ̄F (f
•) = τF (f)

whenever f ∈ L
0, F ∈ Σ and µF < ∞. Corresponding to these we have pseudometrics ρ̄F defined by either

of the formulae

ρ̄F (u, v) = τ̄F (u− v), ρ̄F (f
•, g•) = ρF (f, g)

for u, v ∈ L0, f , g ∈ L
0 and F of finite measure. The family of these pseudometrics defines the topology

of convergence in measure on L0.

D.H.Fremlin



12 Function spaces 245Ad

(d) I shall allow myself to say that a sequence (in L
0 or L0) converges in measure if it converges for

the topology of convergence in measure.

245C Pointwise convergence Let (X,Σ, µ) be a measure space, and write L
0 = L

0(µ), L0 = L0(µ).

(a) If 〈fn〉n∈N is a sequence in L
0 converging almost everywhere to f ∈ L

0, then 〈fn〉n∈N → f in measure.

(b) For f , fn ∈ L
0, 〈f•

n〉n∈N is order*-convergent, or order*-converges, to f• iff f =a.e. limn→∞ fn.
In L0, a sequence 〈un〉n∈N which order*-converges to u ∈ L0 also converges to u in measure.

(c) Take µ to be Lebesgue measure on [0, 1], and set fn(x) = 2m if x ∈ [2−mk, 2−m(k + 1)], 0 otherwise,
where k = k(n) ∈ N, m = m(n) ∈ N are defined by saying that n + 1 = 2m + k and 0 ≤ k < 2m. Then
〈fn〉n∈N → 0 for the topology of convergence in measure, though 〈fn〉n∈N is not convergent to 0 almost
everywhere.

245D Proposition Let (X,Σ, µ) be any measure space.
(a) The topology of convergence in measure is a linear space topology on L0 = L0(µ).
(b) The maps ∨, ∧ : L0 × L0 → L0, and u 7→ |u|, u 7→ u+, u 7→ u− : L0 → L0 are all continuous.
(c) The map × : L0 × L0 → L0 is continuous.
(d) For any continuous function h : R → R, the corresponding function h̄ : L0 → L0 is continuous.

245E Theorem Let (X,Σ, µ) be a measure space. Let T be the topology of convergence in measure on
L0 = L0(µ).

(a) (X,Σ, µ) is semi-finite iff T is Hausdorff.
(b) (X,Σ, µ) is σ-finite iff T is metrizable.
(c) (X,Σ, µ) is localizable iff T is Hausdorff and L0 is complete under T.

245F Alternative description of the topology of convergence in measure Let us return to
arbitrary measure spaces (X,Σ, µ).

(a) For any F ∈ Σ of finite measure and ǫ > 0 define τFǫ : L
0 → [0,∞[ by

τFǫ(f) = µ∗{x : x ∈ F ∩ dom f, |f(x)| > ǫ}

for f ∈ L
0. If f , g ∈ L

0 and f =a.e. g, then τFǫ(f) = τFǫ(g); accordingly we have a functional from L0 to
[0,∞[, given by

τ̄Fǫ(u) = τFǫ(f)

whenever f ∈ L
0 and u = f• ∈ L0.

(b) G ⊆ L
0 is open for the topology of convergence in measure iff for every f ∈ G we can find a set F of

finite measure and ǫ > 0 such that

τFǫ(g − f) ≤ ǫ =⇒ g ∈ G.

G ⊆ L0 is open for the topology of convergence in measure on L0 iff for every u ∈ G we can find a set F of
finite measure and ǫ > 0 such that

τ̄Fǫ(v − u) ≤ ǫ =⇒ v ∈ G.

(c) It follows at once that a sequence 〈fn〉n∈N in L
0 = L

0(µ) converges in measure to f ∈ L
0 iff

limn→∞ µ∗{x : x ∈ F ∩ dom f ∩ dom fn, |fn(x)− f(x)| > ǫ} = 0

whenever F ∈ Σ, µF < ∞ and ǫ > 0. Similarly, a sequence 〈un〉n∈N in L0 converges in measure to u iff
limn→∞ τ̄Fǫ(u− un) = 0 whenever µF < ∞ and ǫ > 0.

(d) In particular, if (X,Σ, µ) is totally finite, 〈fn〉n∈N → f in L
0 iff

Measure Theory (abridged version)
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limn→∞ µ∗{x : x ∈ dom f ∩ dom fn, |f(x)− fn(x)| > ǫ} = 0

for every ǫ > 0, and 〈un〉n∈N → u in L0 iff

limn→∞ τ̄Xǫ(u− un) = 0

for every ǫ > 0.

245G Embedding Lp in L0: Proposition Let (X,Σ, µ) be any measure space. Then for any p ∈ [1,∞],
the embedding of Lp = Lp(µ) in L0 = L0(µ) is continuous for the norm topology of Lp and the topology of
convergence in measure on L0.

245H Proposition Let (X,Σ, µ) be a measure space.
(a)(i) If f ∈ L

1 = L
1(µ) and ǫ > 0, there are a δ > 0 and a set F ∈ Σ of finite measure such that∫

|f − g| ≤ ǫ whenever g ∈ L
1,

∫
|g| ≤

∫
|f |+ δ and ρF (f, g) ≤ δ.

(ii) For any sequence 〈fn〉n∈N in L
1 and any f ∈ L

1, limn→∞

∫
|f − fn| = 0 iff 〈fn〉n∈N → f in measure

and lim supn→∞

∫
|fn| ≤

∫
|f |.

(b)(i) If u ∈ L1 = L1(µ) and ǫ > 0, there are a δ > 0 and a set F ∈ Σ of finite measure such that
‖u− v‖1 ≤ ǫ whenever v ∈ L1, ‖v‖1 ≤ ‖u‖1 + δ and ρ̄F (u, v) ≤ δ.

(ii) For any sequence 〈un〉n∈N in L1 and any u ∈ L1, 〈un〉n∈N → u for ‖ ‖1 iff 〈un〉n∈N → u in measure
and lim supn→∞ ‖un‖1 ≤ ‖u‖1.

245J Proposition Let (X,Σ, µ) be a semi-finite measure space. Write L
0 = L

0(µ), etc.
(a)(i) For any a ≥ 0, the set {f : f ∈ L

1,
∫
|f | ≤ a} is closed in L

0 for the topology of convergence in
measure.

(ii) If 〈fn〉n∈N is a sequence in L
1 which is convergent in measure to f ∈ L

0, and lim infn→∞

∫
|fn| < ∞,

then f is integrable and
∫
|f | ≤ lim infn→∞

∫
|fn|.

(b)(i) For any a ≥ 0, the set {u : u ∈ L1, ‖u‖1 ≤ a} is closed in L0 for the topology of convergence in
measure.

(ii) If 〈un〉n∈N is a sequence in L1 which is convergent in measure to u ∈ L0, and lim infn→∞ ‖un‖1 < ∞,
then u ∈ L1 and ‖u‖1 ≤ lim infn→∞ ‖un‖1.

245K Proposition Let (X,Σ, µ) be a σ-finite measure space. Then
(a) a sequence 〈fn〉n∈N in L

0 converges in measure to f ∈ L
0 iff every subsequence of 〈fn〉n∈N has a

sub-subsequence converging to f almost everywhere;
(b) a sequence 〈un〉n∈N in L0 converges in measure to u ∈ L0 iff every subsequence of 〈un〉n∈N has a

sub-subsequence which order*-converges to u.

245L Corollary Let (X,Σ, µ) be a σ-finite measure space.
(a) A subset A of L0 = L

0(µ) is closed for the topology of convergence in measure iff f ∈ A whenever
f ∈ L

0 and there is a sequence 〈fn〉n∈N in A such that f =a.e. limn→∞ fn.
(b) A subset A of L0 = L0(µ) is closed for the topology of convergence in measure iff u ∈ A whenever

u ∈ L0 and there is a sequence 〈un〉n∈N in A order*-converging to u.

245M Complex L0 In 241J I briefly discussed the adaptations needed to construct the complex linear
space L0

C
. The formulae of 245A may be used unchanged to define topologies of convergence in measure on

L
0
C
and L0

C
. I think that every word of 245B-245L still applies if we replace each L0 or L0 with L0

C
or L0

C
.

Version of 17.11.06

246 Uniform integrability

The next topic is a fairly specialized one, but it is of great importance, for different reasons, in both
probability theory and functional analysis, and it therefore seems worth while giving a proper treatment
straight away.

D.H.Fremlin
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246A Definition Let (X,Σ, µ) be a measure space.

(a) A set A ⊆ L
1(µ) is uniformly integrable if for every ǫ > 0 we can find a set E ∈ Σ, of finite

measure, and an M ≥ 0 such that
∫
(|f | −MχE)+ ≤ ǫ for every f ∈ A.

(b) A set A ⊆ L1(µ) is uniformly integrable if for every ǫ > 0 we can find a set E ∈ Σ, of finite
measure, and an M ≥ 0 such that

∫
(|u| −MχE•)+ ≤ ǫ for every u ∈ A.

246B Remarks (c) A ⊆ L
1 is uniformly integrable iff {f• : f ∈ A} ⊆ L1 is uniformly integrable.

(d) If µX < ∞ a set A ⊆ L1(µ) is uniformly integrable iff

infM≥0 supu∈A

∫
(|u| −Me)+ = 0

iff

limM→∞ supu∈A

∫
(|u| −Me)+ = 0,

writing e = χX• ∈ L1(µ). A ⊆ L
1(µ) is uniformly integrable iff

limM→∞ supf∈A

∫
(|f | −MχX)+ = 0

iff

infM≥0 supf∈A

∫
(|f | −MχX)+ = 0.

246C Proposition Let (X,Σ, µ) be a measure space and A a uniformly integrable subset of L1(µ).
(a) A is bounded for the norm ‖ ‖1.
(b) Any subset of A is uniformly integrable.
(c) For any a ∈ R, aA = {au : u ∈ A} is uniformly integrable.
(d) There is a uniformly integrable C ⊇ A such that C is convex and ‖ ‖1-closed and v ∈ C whenever

u ∈ C and |v| ≤ |u|.
(e) If B is another uniformly integrable subset of L1, then A ∪ B and A + B = {u + v : u ∈ A, v ∈ B}

are uniformly integrable.

246D Proposition Let (X,Σ, µ) be a probability space and A ⊆ L1(µ) a uniformly integrable set. Then
there is a convex, ‖ ‖1-closed uniformly integrable set C ⊆ L1 such that A ⊆ C, w ∈ C whenever v ∈ C
and |w| ≤ |v|, and Pv ∈ C whenever v ∈ C and P is the conditional expectation operator associated with a
σ-subalgebra of Σ.

246F Lemma Let (X,Σ, µ) be a measure space. Then for any u ∈ L1(µ),

‖u‖1 ≤ 2 supE∈Σ |
∫
E
u|.

246G Theorem Let (X,Σ, µ) be any measure space and A a non-empty subset of L1(µ). Then the
following are equiveridical:

(i) A is uniformly integrable;
(ii) supu∈A |

∫
F
u| < ∞ for every µ-atom F ∈ Σ, and for every ǫ > 0 there are E ∈ Σ, δ > 0 such that

µE < ∞ and |
∫
F
u| ≤ ǫ whenever u ∈ A, F ∈ Σ and µ(F ∩ E) ≤ δ;

(iii) supu∈A |
∫
F
u| < ∞ for every µ-atom F ∈ Σ, and limn→∞ supu∈A |

∫
Fn

u| = 0 whenever 〈Fn〉n∈N is

a disjoint sequence in Σ;
(iv) supu∈A |

∫
F
u| < ∞ for every µ-atom F ∈ Σ, and limn→∞ supu∈A |

∫
Fn

u| = 0 whenever 〈Fn〉n∈N is
a non-increasing sequence in Σ with empty intersection.

Measure Theory (abridged version)
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246I Corollary Let (X,Σ, µ) be a probability space. For f ∈ L
0(µ), M ≥ 0 set F (f,M) = {x : x ∈

dom f, |f(x)| ≥ M}. Then a non-empty set A ⊆ L
1(µ) is uniformly integrable iff

limM→∞ supf∈A

∫
F (f,M)

|f | = 0.

246J Theorem Let (X,Σ, µ) be a measure space.
(a) If 〈fn〉n∈N is a uniformly integrable sequence of real-valued functions on X, and f(x) = limn→∞ fn(x)

for almost every x ∈ X, then f is integrable and limn→∞

∫
|fn − f | = 0; consequently

∫
f = limn→∞

∫
fn.

(b) If A ⊆ L1 = L1(µ) is uniformly integrable, then the norm topology of L1 and the topology of
convergence in measure of L0 = L0(µ) agree on A.

(c) For any u ∈ L1 and any sequence 〈un〉n∈N in L1, the following are equiveridical:
(i) u = limn→∞ un for ‖ ‖1;
(ii) {un : n ∈ N} is uniformly integrable and 〈un〉n∈N converges to u in measure.

(d) If (X,Σ, µ) is semi-finite, and A ⊆ L1 is uniformly integrable, then the closure A of A in L0 for the
topology of convergence in measure is still a uniformly integrable subset of L1.

246K Complex L
1 and L1 For u ∈ L1

C
(µ), ‖u‖1 ≤ 4 supF∈Σ |

∫
F
u|.

Version of 26.8.13

247 Weak compactness in L1

I now come to the most striking feature of uniform integrability: it provides a description of the relatively
weakly compact subsets of L1 (247C). I have put this into a separate section because it demands some
knowledge of functional analysis – in particular, of course, of weak topologies on Banach spaces. I will try
to give an account in terms which are accessible to novices in the theory of normed spaces because the result
is essentially measure-theoretic, as well as being of vital importance to applications in probability theory. I
have written out the essential definitions in §§2A3-2A5.

247A Lemma Let (X,Σ, µ) be a measure space, and G any member of Σ. Let µG be the subspace
measure on G. Set

U = {u : u ∈ L1(µ), u× χG• = u} ⊆ L1(µ).

Then we have an isomorphism S between the ordered normed spaces U and L1(µG), given by writing

S(f•) = (f↾G)•

for every f ∈ L
1(µ) such that f• ∈ U .

247B Corollary Let (X,Σ, µ) be any measure space, and let G ∈ Σ be a measurable set expressible as
a countable union of sets of finite measure. Define U as in 247A, and let h : L1(µ) → R be any continuous
linear functional. Then there is a v ∈ L∞(µ) such that h(u) =

∫
u× v dµ for every u ∈ U .

247C Theorem Let (X,Σ, µ) be any measure space and A a subset of L1 = L1(µ). Then A is uniformly
integrable iff it is relatively compact in L1 for the weak topology of L1.

247D Corollary Let (X,Σ, µ) and (Y,T, ν) be any two measure spaces, and T : L1(µ) → L1(ν) a
continuous linear operator. Then T [A] is a uniformly integrable subset of L1(ν) whenever A is a uniformly
integrable subset of L1(µ).

D.H.Fremlin


