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Chapter 24

Function spaces

The extraordinary power of Lebesgue’s theory of integration is perhaps best demonstrated by its ability
to provide structures relevant to questions quite different from those to which it was at first addressed.
In this chapter I give the constructions, and elementary properties, of some of the fundamental spaces of
functional analysis.

I do not feel called on here to justify the study of normed spaces; if you have not met them before, I
hope that the introduction here will show at least that they offer a basis for a remarkable fusion of algebra
and analysis. The fragments of the theory of metric spaces, normed spaces and general topology which
we shall need are sketched in §§2A2-2A5. The principal ‘function spaces’ described in this chapter in fact
combine three structural elements: they are (infinite-dimensional) linear spaces, they are metric spaces, with
associated concepts of continuity and convergence, and they are ordered spaces, with corresponding notions
of supremum and infimum. The interactions between these three types of structure provide an inexhaustible
wealth of ideas. Furthermore, many of these ideas are directly applicable to a wide variety of problems in
more or less applied mathematics, particularly in differential and integral equations, but more generally in
any system with infinitely many degrees of freedom.

I have laid out the chapter with sections on L0 (the space of equivalence classes of all real-valued mea-
surable functions, in which all the other spaces of the chapter are embedded), L1 (equivalence classes of
integrable functions), L∞ (equivalence classes of bounded measurable functions) and Lp (equivalence classes
of pth-power-integrable functions). While ordinary functional analysis gives much more attention to the
Banach spaces Lp for 1 ≤ p ≤ ∞ than to L0, from the special point of view of this book the space L0 is at
least as important and interesting as any of the others. Following these four sections, I return to a study
of the standard topology on L0, the topology of ‘convergence in measure’ (§245), and then to two linked
sections on uniform integrability and weak compactness in L1 (§§246-247).

There is a technical point here which must never be lost sight of. While it is customary and natural to call
L1, L2 and the others ‘function spaces’, their elements are not in fact functions, but equivalence classes of
functions. As you see from the language of the preceding paragraph, my practice is to scrupulously maintain
the distinction; I give my reasons in the notes to §241.

Version of 6.11.03

241 L
0 and L0

The chief aim of this chapter is to discuss the spaces L1, L∞ and Lp of the following three sections.
However it will be convenient to regard all these as subspaces of a larger space L0 of equivalence classes of
(virtually) measurable functions, and I have collected in this section the basic facts concerning the ordered
linear space L0.

It is almost the first principle of measure theory that sets of measure zero can often be ignored; the
phrase ‘negligible set’ itself asserts this principle. Accordingly, two functions which agree almost everywhere
may often (not always!) be treated as identical. A suitable expression of this idea is to form the space
of equivalence classes of functions, saying that two functions are equivalent if they agree on a conegligible
set. This is the basis of all the constructions of this chapter. It is a remarkable fact that the spaces
of equivalence classes so constructed are actually better adapted to certain problems than the spaces of
functions from which they are derived, so that once the technique has been mastered it is easier to do one’s
thinking in the more abstract spaces.
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2 Function spaces 241A

241A The space L
0: Definition It is time to give a name to a set of functions which has already been

used more than once. Let (X,Σ, µ) be a measure space. I write L
0, or L

0(µ), for the space of real-valued
functions f defined on conegligible subsets of X which are virtually measurable, that is, such that f↾E is
measurable for some conegligible set E ⊆ X. Recall that f is µ-virtually measurable iff it is Σ̂-measurable,
where Σ̂ is the completion of Σ (212Fa).

241B Basic properties If (X,Σ, µ) is any measure space, then we have the following facts, corresponding
to the fundamental properties of measurable functions listed in §121 of Volume 1. I work through them in
order, so that if you have Volume 1 to hand you can see what has to be missed out.

(a) A constant real-valued function defined almost everywhere in X belongs to L
0 (121Ea).

(b) f+g ∈ L
0 for all f , g ∈ L

0 (for if f↾F and g↾G are measurable, then (f+g)↾(F ∩G) = (f↾F )+(g↾G)
is measurable)(121Eb).

(c) cf ∈ L
0 for all f ∈ L

0, c ∈ R (121Ec).

(d) f × g ∈ L
0 for all f , g ∈ L

0 (121Ed).

(e) If f ∈ L
0 and h : R → R is Borel measurable, then hf ∈ L

0 (121Eg).

(f) If 〈fn〉n∈N is a sequence in L
0 and f = limn→∞ fn is defined (as a real-valued function) almost

everywhere in X, then f ∈ L
0 (121Fa).

(g) If 〈fn〉n∈N is a sequence in L
0 and f = supn∈N fn is defined (as a real-valued function) almost

everywhere in X, then f ∈ L
0 (121Fb).

(h) If 〈fn〉n∈N is a sequence in L
0 and f = infn∈N fn is defined (as a real-valued function) almost

everywhere in X, then f ∈ L
0 (121Fc).

(i) If 〈fn〉n∈N is a sequence in L
0 and f = lim supn→∞ fn is defined (as a real-valued function) almost

everywhere in X, then f ∈ L
0 (121Fd).

(j) If 〈fn〉n∈N is a sequence in L
0 and f = lim infn→∞ fn is defined (as a real-valued function) almost

everywhere in X, then f ∈ L
0 (121Fe).

(k) L0 is just the set of real-valued functions, defined on subsets of X, which are equal almost everywhere
to some Σ-measurable function from X to R. PPP (i) If g : X → R is Σ-measurable and f =a.e. g, then
F = {x : x ∈ dom f, f(x) = g(x)} is conegligible and f↾F = g↾F is measurable (121Eh), so f ∈ L

0. (ii) If
f ∈ L

0, let E ⊆ X be a conegligible set such that f↾E is measurable. Then D = E ∩ dom f is conegligible
and f↾D is measurable, so there is a measurable h : X → R agreeing with f on D (121I); and h =a.e. f . QQQ

241C The space L0: Definition Let (X,Σ, µ) be any measure space. Then =a.e. is an equivalence
relation on L

0. Write L0, or L0(µ), for the set of equivalence classes in L
0 under =a.e.. For f ∈ L

0, write
f• for its equivalence class in L0.

241D The linear structure of L0 Let (X,Σ, µ) be any measure space, and set L0 = L
0(µ), L0 = L0(µ).

(a) If f1, f2, g1, g2 ∈ L
0, f1 =a.e. f2 and g1 =a.e. g2 then f1+ g1 =a.e. f2+ g2. Accordingly we may define

addition on L0 by setting f• + g• = (f + g)• for all f , g ∈ L
0.

(b) If f1, f2 ∈ L
0 and f1 =a.e. f2, then cf1 =a.e. cf2 for every c ∈ R. Accordingly we may define scalar

multiplication on L0 by setting c · f• = (cf)• for all f ∈ L
0 and c ∈ R.

(c) Now L0 is a linear space over R, with zero 0•, where 0 is the function with domain X and constant
value 0, and negatives −(f•) = (−f)•. PPP (i)

f + (g + h) = (f + g) + h for all f , g, h ∈ L
0,
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241Ec L0 and L0 3

so

u+ (v + w) = (u+ v) + w for all u, v, w ∈ L0.

(ii)

f + 0 = 0+ f = f for every f ∈ L
0,

so

u+ 0• = 0• + u = u for every u ∈ L0.

(iii)

f + (−f) =a.e. 0 for every f ∈ L
0,

so

f• + (−f)• = 0• for every f ∈ L
0.

(iv)

f + g = g + f for all f , g ∈ L
0,

so

u+ v = v + u for all u, v ∈ L0.

(v)

c(f + g) = cf + cg for all f , g ∈ L
0 and c ∈ R,

so

c(u+ v) = cu+ cv for all u, v ∈ L0 and c ∈ R.

(vi)

(a+ b)f = af + bf for all f ∈ L
0 and a, b ∈ R,

so

(a+ b)u = au+ bu for all u ∈ L0 and a, b ∈ R.

(vii)

(ab)f = a(bf) for all f ∈ L
0 and a, b ∈ R,

so

(ab)u = a(bu) for all u ∈ L0 and a, b ∈ R.

(viii)

1f = f for all f ∈ L
0,

so

1u = u for all u ∈ L0. QQQ

241E The order structure of L0 Let (X,Σ, µ) be any measure space and set L0 = L
0(µ), L0 = L0(µ).

(a) If f1, f2, g1, g2 ∈ L
0, f1 =a.e. f2, g1 =a.e. g2 and f1 ≤a.e. g1, then f2 ≤a.e. g2. Accordingly we may

define a relation ≤ on L0 by saying that f• ≤ g• iff f ≤a.e. g.

(b) Now ≤ is a partial order on L0. PPP (i) If f , g, h ∈ L
0 and f ≤a.e. g and g ≤a.e. h, then f ≤a.e. h.

Accordingly u ≤ w whenever u, v, w ∈ L0, u ≤ v and v ≤ w. (ii) If f ∈ L
0 then f ≤a.e. f ; so u ≤ u for

every u ∈ L0. (iii) If f , g ∈ L
0 and f ≤a.e. g and g ≤a.e. f , then f =a.e. g, so if u ≤ v and v ≤ u then u = v.

QQQ

(c) In fact L0, with ≤, is a partially ordered linear space, that is, a (real) linear space with a partial
order ≤ such that

D.H.Fremlin



4 Function spaces 241Ec

if u ≤ v then u+ w ≤ v + w for every w,
if 0 ≤ u then 0 ≤ cu for every c ≥ 0.

PPP (i) If f , g, h ∈ L
0 and f ≤a.e. g, then f + h ≤a.e. g+ h. (ii) If f ∈ L

0 and f ≥ 0 a.e., then cf ≥ 0 a.e. for
every c ≥ 0. QQQ

(d) More: L0 is a Riesz space or vector lattice, that is, a partially ordered linear space such that
u ∨ v = sup{u, v} and u ∧ v = inf{u, v} are defined for all u, v ∈ L0. PPP Take f , g ∈ L

0 such that f• = u
and g• = v. Then f ∨ g, f ∧ g ∈ L

0, writing

(f ∨ g)(x) = max(f(x), g(x)), (f ∧ g)(x) = min(f(x), g(x))

for x ∈ dom f ∩ dom g. (Compare 241Bg-h.) Now, for any h ∈ L
0, we have

f ∨ g ≤a.e. h ⇐⇒ f ≤a.e. h and g ≤a.e. h,

h ≤a.e. f ∧ g ⇐⇒ h ≤a.e. f and h ≤a.e. g,

so for any w ∈ L0 we have

(f ∨ g)• ≤ w ⇐⇒ u ≤ w and v ≤ w,

w ≤ (f ∧ g)• ⇐⇒ w ≤ u and w ≤ v.

Thus we have

(f ∨ g)• = sup{u, v} = u ∨ v, (f ∧ g)• = inf{u, v} = u ∧ v

in L0. QQQ

(e) In particular, for any u ∈ L0 we can speak of |u| = u ∨ (−u); if f ∈ L
0 then |f•| = |f |•.

If f , g ∈ L
0, c ∈ R then

|cf | = |c||f |, f ∨ g =
1

2
(f + g + |f − g|),

f ∧ g =
1

2
(f + g − |f − g|), |f + g| ≤a.e. |f |+ |g|,

so

|cu| = |c||u|, u ∨ v =
1

2
(u+ v + |u− v|),

u ∧ v =
1

2
(u+ v − |u− v|), |u+ v| ≤ |u|+ |v|

for all u, v ∈ L0.

(f) A special notation is often useful. If f is a real-valued function, set f+(x) = max(f(x), 0), f−(x) =
max(−f(x), 0) for x ∈ dom f , so that

f = f+ − f−, |f | = f+ + f− = f+ ∨ f−,

all these functions being defined on dom f . In L0, the corresponding operations are u+ = u∨0, u− = (−u)∨0,
and we have

u = u+ − u−, |u| = u+ + u− = u+ ∨ u−, u+ ∧ u− = 0.

(g) It is perhaps obvious, but I say it anyway: if u ≥ 0 in L0, then there is an f ≥ 0 in L
0 such that

f• = u. PPP Take any g ∈ L
0 such that u = g•, and set f = g ∨ 0. QQQ

241F Riesz spaces There is an extensive abstract theory of Riesz spaces, which I think it best to leave
aside for the moment; a general account may be found in Luxemburg & Zaanen 71 and Zaanen 83;
my own book Fremlin 74 covers the elementary material, and Chapter 35 in the next volume repeats the
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241G L0 and L0 5

most essential ideas. For our purposes here we need only a few definitions and some simple results which
are most easily proved for the special cases in which we need them, without reference to the general theory.

(a) A Riesz space U is Archimedean if whenever u ∈ U , u > 0 (that is, u ≥ 0 and u 6= 0), and v ∈ U ,
there is an n ∈ N such that nu 6≤ v.

(b) A Riesz space U is Dedekind σ-complete (or σ-order-complete, or σ-complete) if every non-
empty countable set A ⊆ U which is bounded above has a least upper bound in U .

(c) A Riesz space U is Dedekind complete (or order complete, or complete) if every non-empty
set A ⊆ U which is bounded above in U has a least upper bound in U .

241G Now we have the following important properties of L0.

Theorem Let (X,Σ, µ) be a measure space. Set L0 = L0(µ).
(a) L0 is Archimedean and Dedekind σ-complete.
(b) If (X,Σ, µ) is semi-finite, then L0 is Dedekind complete iff (X,Σ, µ) is localizable.

proof Set L0 = L
0(µ).

(a)(i) If u, v ∈ L0 and u > 0, express u as f• and v as g• where f , g ∈ L
0. Then E = {x : x ∈

dom f, f(x) > 0} is not negligible. So there is an n ∈ N such that

En = {x : x ∈ dom f ∩ dom g, nf(x) > g(x)}

is not negligible, since E∩dom g ⊆
⋃

n∈NEn. But now nu 6≤ v. As u and v are arbitrary, L0 is Archimedean.

(ii) Now let A ⊆ L0 be a non-empty countable set with an upper bound w in L0. Express A as
{f•

n : n ∈ N} where 〈fn〉n∈N is a sequence in L
0, and w as h• where h ∈ L

0. Set f = supn∈N fn. Then we
have f(x) defined in R at any point x ∈ domh∩

⋂

n∈N dom fn such that fn(x) ≤ h(x) for every n ∈ N, that

is, for almost every x ∈ X; so f ∈ L
0 (241Bg). Set u = f• ∈ L0. If v ∈ L0, say v = g• where g ∈ L

0, then

un ≤ v for every n ∈ N

⇐⇒ for every n ∈ N, fn ≤a.e. g

⇐⇒ for almost every x ∈ X, fn(x) ≤ g(x) for every n ∈ N

⇐⇒ f ≤a.e. g ⇐⇒ u ≤ v.

Thus u = supn∈N un in L0. As A is arbitrary, L0 is Dedekind σ-complete.

(b)(i) Suppose that (X,Σ, µ) is localizable. Let A ⊆ L0 be any non-empty set with an upper bound
w0 ∈ L0. Set

A = {f : f is a measurable function from X to R, f• ∈ A};

then every member of A is of the form f• for some f ∈ A (241Bk). For each q ∈ Q, let Eq be the family
of subsets of X expressible in the form {x : f(x) ≥ q} for some f ∈ A; then Eq ⊆ Σ. Because (X,Σ, µ) is
localizable, there is a set Fq ∈ Σ which is an essential supremum for Eq. For x ∈ X, set

g∗(x) = sup{q : q ∈ Q, x ∈ Fq},

allowing ∞ as the supremum of a set which is not bounded above, and −∞ as sup ∅. Then

{x : g∗(x) > a} =
⋃

q∈Q,q>a Fq ∈ Σ

for every a ∈ R.
If f ∈ A, then f ≤a.e. g

∗. PPP For each q ∈ Q, set

Eq = {x : f(x) ≥ q} ∈ Eq;

then Eq \ Fq is negligible. Set H =
⋃

q∈Q(Eq \ Fq). If x ∈ X \H, then

f(x) ≥ q =⇒ g∗(x) ≥ q,

so f(x) ≤ g∗(x); thus f ≤a.e. g
∗. QQQ

D.H.Fremlin



6 Function spaces 241G

If h : X → R is measurable and u ≤ h• for every u ∈ A, then g∗ ≤a.e. h. PPP Set Gq = {x : h(x) ≥ q}
for each q ∈ Q. If E ∈ Eq, there is an f ∈ A such that E = {x : f(x) ≥ q}; now f ≤a.e. h, so
E \Gq ⊆ {x : f(x) > h(x)} is negligible. Because Fq is an essential supremum for Eq, Fq \Gq is negligible;
and this is true for every q ∈ Q. Consequently

{x : h(x) < g∗(x)} ⊆
⋃

q∈Q Fq \Gq

is negligible, and g∗ ≤a.e. h. QQQ
Now recall that we are assuming that A 6= ∅ and that A has an upper bound w0 ∈ L0. Take any f0 ∈ A

and a measurable h0 : X → R such that h•

0 = w0; then f ≤a.e. h0 for every f ∈ A, so f0 ≤a.e. g
∗ ≤a.e. h0,

and g∗ must be finite a.e. Setting g(x) = g∗(x) when g∗(x) ∈ R, we have g ∈ L
0 and g =a.e. g

∗, so that

f ≤a.e. g ≤a.e. h

whenever f , h are measurable functions from X to R, f• ∈ A and h• is an upper bound for A; that is,

u ≤ g• ≤ w

whenever u ∈ A and w is an upper bound for A. But this means that g• is a least upper bound for A in L0.
As A is arbitrary, L0 is Dedekind complete.

(ii) Suppose that L0 is Dedekind complete. We are assuming that (X,Σ, µ) is semi-finite. Let E be any
subset of Σ. Set

A = {0} ∪ {(χE)• : E ∈ E} ⊆ L0.

Then A is bounded above by (χX)• so has a least upper bound w ∈ L0. Express w as h• where h : X → R

is measurable, and set F = {x : h(x) > 0}. Then F is an essential supremum for E in Σ. PPP (α) If E ∈ E ,
then (χE)• ≤ w so χE ≤a.e. h, that is, h(x) ≥ 1 for almost every x ∈ E, and E \F ⊆ {x : x ∈ E, h(x) < 1}
is negligible. (β) If G ∈ Σ and E \G is negligible for every E ∈ E , then χE ≤a.e. χG for every E ∈ E , that is,
(χE)• ≤ (χG)• for every E ∈ E ; so w ≤ (χG)•, that is, h ≤a.e. χG. Accordingly F\G ⊆ {x : h(x) > (χG)(x)}
is negligible. QQQ

As E is arbitrary, (X,Σ, µ) is localizable.

241H The multiplicative structure of L0 Let (X,Σ, µ) be any measure space; write L0 = L0(µ),
L

0 = L
0(µ).

(a) If f1, f2, g1, g2 ∈ L
0, f1 =a.e. f2 and g1 =a.e. g2 then f1× g1 =a.e. f2× g2. Accordingly we may define

multiplication on L0 by setting f• × g• = (f × g)• for all f , g ∈ L
0.

(b) It is now easy to check that, for all u, v, w ∈ L0 and c ∈ R,
u× (v × w) = (u× v)× w,
u× e = e× u = u,

where e = χX• is the equivalence class of the function with constant value 1,
c(u× v) = cu× v = u× cv,
u× (v + w) = (u× v) + (u× w),
(u+ v)× w = (u× w) + (v × w),
u× v = v × u,
|u× v| = |u| × |v|,
u× v = 0 iff |u| ∧ |v| = 0,
|u| ≤ |v| iff there is a w such that |w| ≤ e and u = v × w.

241I The action of Borel functions on L0 Let (X,Σ, µ) be a measure space and h : R → R a Borel
measurable function. Then hf ∈ L

0 = L
0(µ) for every f ∈ L

0 (241Be) and hf =a.e. hg whenever f =a.e. g.
So we have a function h̄ : L0 → L0 defined by setting h̄(f•) = (hf)• for every f ∈ L

0. For instance, if
u ∈ L0 and p ≥ 1, we can consider |u|p = h̄(u) where h(x) = |x|p for x ∈ R.

241J Complex L0 The ideas of this chapter, like those of Chapters 22-23, are often applied to spaces
based on complex-valued functions instead of real-valued functions. Let (X,Σ, µ) be a measure space.

Measure Theory



241Xh L0 and L0 7

(a)Wemay write L0
C = L

0
C(µ) for the space of complex-valued functions f such that dom f is a conegligible

subset of X and there is a conegligible subset E ⊆ X such that f↾E is measurable; that is, such that the
real and imaginary parts of f both belong to L

0(µ). Next, L0
C = L0

C(µ) will be the space of equivalence
classes in L

0
C under the equivalence relation =a.e..

(b) Using just the same formulae as in 241D, it is easy to describe addition and scalar multiplication
rendering L0

C a linear space over C. We no longer have quite the same kind of order structure, but we can
identify a ‘real part’, being

{f• : f ∈ L
0
C is real a.e.},

obviously identifiable with the real linear space L0, and corresponding maps u 7→ Re(u), u 7→ Im(u) : L0
C →

L0 such that u = Re(u) + i Im(u) for every u. Moreover, we have a notion of ‘modulus’, writing

|f•| = |f |• ∈ L0 for every f ∈ L
0
C,

satisfying the basic relations |cu| = |c||u|, |u+ v| ≤ |u|+ |v| for u, v ∈ L0
C and c ∈ C, as in 241Ef. We do of

course still have a multiplication on L0
C, for which all the formulae in 241H are still valid.

(c) The following fact is useful. For any u ∈ L0
C, |u| is the supremum in L0 of {Re(ζu) : ζ ∈ C, |ζ| = 1}.

PPP (i) If |ζ| = 1, then Re(ζu) ≤ |ζu| = |u|. So |u| is an upper bound of {Re(ζu) : |ζ| = 1}. (ii) If v ∈ L0 and
Re(ζu) ≤ v whenever |ζ| = 1, then express u, v as f•, g• where f : X → C and g : X → R are measurable.
For any q ∈ Q, x ∈ X set fq(x) = Re(eiqxf(x)). Then fq ≤a.e. g. Accordingly H = {x : fq(x) ≤ g(x) for
every q ∈ Q} is conegligible. But of course H = {x : |f(x)| ≤ g(x)}, so |f | ≤a.e. g and |u| ≤ v. As v is
arbitrary, |u| is the least upper bound of {Re(ζu) : |ζ| = 1}. QQQ

241X Basic exercises >>>(a) Let X be a set, and let µ be counting measure on X (112Bd). Show that
L0(µ) can be identified with L

0(µ) = RX .

>>>(b) Let (X,Σ, µ) be a measure space and µ̂ the completion of µ. Show that L
0(µ) = L

0(µ̂) and
L0(µ) = L0(µ̂).

(c) Let (X,Σ, µ) be a measure space. (i) Show that for every u ∈ L0(µ) we may define an outer measure
θu : PR → [0,∞] by writing θu(A) = µ∗f−1[A] whenever A ⊆ R and f ∈ L

0(µ) is such that f• = u. (ii)
Show that the measure defined from θu by Carathéodory’s method measures every Borel subset of R.

(d) Let 〈(Xi,Σi, µi)〉i∈I be a family of measure spaces, with direct sum (X,Σ, µ) (214L). (i) Writing
φi : Xi → X for the canonical maps (in the construction of 214L, φi(x) = (x, i) for x ∈ Xi), show that
f 7→ 〈fφi〉i∈I is a bijection between L

0(µ) and
∏

i∈I L
0(µi). (ii) Show that this corresponds to a bijection

between L0(µ) and
∏

i∈I L
0(µi).

(e) Let U be a Dedekind σ-complete Riesz space and A ⊆ U a non-empty countable set which is bounded
below in U . Show that inf A is defined in U .

(f) Let U be a Dedekind complete Riesz space and A ⊆ U a non-empty set which is bounded below in
U . Show that inf A is defined in U .

(g) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and φ : X → Y an inverse-measure-preserving function.
(i) Show that we have a map T : L0(ν) → L0(µ) defined by setting Tg• = (gφ)• for every g ∈ L

0(ν). (ii)
Show that T is linear, that T (v ×w) = Tv × Tw for all v, w ∈ L0(ν), and that T (supn∈N vn) = supn∈N Tvn
whenever 〈vn〉n∈N is a sequence in L0(ν) with an upper bound in L0(ν).

>>>(h) Let (X,Σ, µ) be a measure space. Suppose that r ≥ 1 and that h : Rr → R is a Borel measurable
function. Show that there is a function h̄ : L0(µ)r → L0(µ) defined by writing

h̄(f•

1 , . . . , f
•

r ) = (h(f1, . . . , fr))
•

for f1, . . . , fr ∈ L
0(µ).

D.H.Fremlin
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(i) Let (X,Σ, µ) be a measure space and g, h, 〈gn〉n∈N Borel measurable functions from R to itself; write
ḡ, h̄, ḡn for the corresponding functions from L0 = L0(µ) to itself (241I). (i) Show that

ḡ(u) + h̄(u) = g + h(u), ḡ(u)× h̄(u) = g × h(u), ḡ(h̄(u)) = gh(u)

for every u ∈ L0. (ii) Show that if g(t) ≤ h(t) for every t ∈ R, then ḡ(u) ≤ h̄(u) for every u ∈ L0. (iii) Show
that if g is non-decreasing, then ḡ(u) ≤ ḡ(v) whenever u ≤ v in L0. (iv) Show that if h(t) = supn∈N gn(t)
for every t ∈ R, then h̄(u) = supn∈N ḡn(u) in L

0 for every u ∈ L0.

241Y Further exercises (a) Let U be any Riesz space. For u ∈ U write |u| = u ∨ (−u), u+ = u ∨ 0,
u− = (−u) ∨ 0. Show that, for any u, v ∈ U ,

u = u+ − u−, |u| = u+ + u− = u+ ∨ u−, u+ ∧ u− = 0,

u ∨ v =
1

2
(u+ v + |u− v|) = u+ (v − u)+,

u ∧ v =
1

2
(u+ v − |u− v|) = u− (u− v)+,

|u+ v| ≤ |u|+ |v|.

(b) Let U be a partially ordered linear space and N a linear subspace of U such that whenever u, u′ ∈ N
and u′ ≤ v ≤ u then v ∈ N . (i) Show that the linear space quotient U/N is a partially ordered linear space
if we say that u• ≤ v• in U/N iff there is a w ∈ N such that u ≤ v + w in U . (ii) Show that in this case
U/N is a Riesz space if U is a Riesz space and |u| ∈ N for every u ∈ N .

(c) Let (X,Σ, µ) be a measure space. Write L
0
Σ for the space of all measurable functions from X to R,

and N for the subspace of L0
Σ consisting of measurable functions which are zero almost everywhere. (i) Show

that L
0
Σ is a Dedekind σ-complete Riesz space. (ii) Show that L0(µ) can be identified, as ordered linear

space, with the quotient L0
Σ/N as defined in 241Yb above.

(d) Show that any Dedekind σ-complete Riesz space is Archimedean.

(e) A Riesz space U is said to have the countable sup property if for every A ⊆ U with a least upper
bound in U , there is a countable B ⊆ A such that supB = supA. Show that if (X,Σ, µ) is a semi-finite
measure space, then it is σ-finite iff L0(µ) has the countable sup property.

(f) Let (X,Σ, µ) be a measure space and µ̃ the c.l.d. version of µ (213E). (i) Show that L0(µ) ⊆ L
0(µ̃).

(ii) Show that this inclusion defines a linear operator T : L0(µ) → L0(µ̃) such that T (u×v) = Tu×Tv for all
u, v ∈ L0(µ). (iii) Show that whenever v > 0 in L0(µ̃) there is a u ≥ 0 in L0(µ) such that 0 < Tu ≤ v. (iv)
Show that T (supA) = supT [A] whenever A ⊆ L0(µ) is a non-empty set with a least upper bound in L0(µ).
(v) Show that T is injective iff µ is semi-finite. (vi) Show that if µ is localizable, then T is an isomorphism
for the linear and order structures of L0(µ) and L0(µ̃). (Hint : 213Hb.)

(g) Let (X,Σ, µ) be a measure space and Y any subset of X; let µY be the subspace measure on Y . (i)
Show that L0(µY ) = {f↾Y : f ∈ L

0(µ)}. (ii) Show that there is a canonical surjection T : L0(µ) → L0(µY )
defined by setting T (f•) = (f↾Y )• for every f ∈ L

0(µ), which is linear and multiplicative and preserves
finite suprema and infima, so that (in particular) T (|u|) = |Tu| for every u ∈ L0(µ). (iii) Show that T is
injective iff Y has full outer measure.

(h) Suppose, in 241Yg, that Y ∈ Σ. Explain how L0(µY ) may be identified (as ordered linear space)
with the subspace {u : u× χ(X \ Y )• = 0} of L0(µ).

(i) Let (X,Σ, µ) be a measure space, and h : R → R a non-decreasing function which is continuous on the
left. Show that if A ⊆ L0 = L0(µ) is a non-empty set with a supremum v ∈ L0, then h̄(v) = supu∈A h̄(u),
where h̄ : L0 → L0 is the function described in 241I.
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241 Notes and comments As hinted in 241Ya and 241Yd, the elementary properties of the space L0

which take up most of this section are strongly interdependent; it is not difficult to develop a theory of
‘Riesz algebras’ to incorporate the ideas of 241H into the rest. (Indeed, I sketch such a theory in §§352-353
in the next volume, under the name ‘f -algebra’.)

If we write L0
Σ for the space of measurable functions from X to R, then L

0
Σ is also a Dedekind σ-complete

Riesz space, and L0 can be identified with the quotient L0
Σ/N, writing N for the set of functions in L

0
Σ which

are zero almost everywhere. (To do this properly, we need a theory of quotients of ordered linear spaces;
see 241Yb-241Yc above.) Of course L

0, as I define it, is not quite a linear space. I choose the slightly more
awkward description of L0 as a space of equivalence classes in L

0 rather than in L
0
Σ because it frequently

happens in practice that a member of L0 arises from a member of L0 which is either not defined at every
point of the underlying space, or not quite measurable; and to adjust such a function so that it becomes a
member of L0

Σ, while trivial, is an arbitrary process which to my mind is liable to distort the true nature
of such a construction. Of course the same argument could be used in favour of a slightly larger space, the
space L

0
∞ of µ-virtually measurable [−∞,∞]-valued functions defined and finite almost everywhere, relying

on 135E rather than on 121E-121F. But I maintain that the operation of restricting a function in L
0
∞ to the

set on which it is finite is not arbitrary, but canonical and entirely natural.

Reading the exposition above – or, for that matter, scanning the rest of this chapter – you are sure to
notice a plethora of •s, adding a distinctive character to the pages which, I expect you will feel, is disagreeable
to the eye and daunting, or at any rate wearisome, to the spirit. Many, perhaps most, authors prefer to
simplify the typography by using the same symbol for a function in L

0 or L0
Σ and for its equivalence class

in L0; and indeed it is common to use syntax which does not distinguish between them either, so that
an object which has been defined as a member of L0 will suddenly become a function with actual values
at points of the underlying measure space. I prefer to maintain a rigid distinction; you must choose for
yourself whether to follow me. Since I have chosen the more cumbersome form, I suppose the burden of
proof is on me, to justify my decision. (i) Anyone would agree that there is at least a formal difference
between a function and a set of functions. This by itself does not justify insisting on the difference in every
sentence; mathematical exposition would be impossible if we always insisted on consistency in such questions
as whether (for instance) the number 3 belonging to the set N of natural numbers is exactly the same object
as the number 3 belonging to the set C of complex numbers, or the ordinal 3. But the difference between
an object and a set to which it belongs is a sufficient difference in kind to make any confusion extremely
dangerous, and while I agree that you can study this topic without using different symbols for f and f•, I
do not think you can ever safely escape a mental distinction for more than a few lines of argument. (ii) As a
teacher, I have to say that quite a few students, encountering this material for the first time, are misled by
any failure to make the distinction between f and f• into believing that no distinction need be made; and –
as a teacher – I always insist on a student convincing me, by correctly writing out the more pedantic forms
of the arguments for a few weeks, that he understands the manipulations necessary, before I allow him to
go his own way. (iii) The reason why it is possible to evade the distinction in certain types of argument
is just that the Dedekind σ-complete Riesz space L

0
Σ parallels the Dedekind σ-complete Riesz space L0 so

closely that any proposition involving only countably many members of these spaces is likely to be valid in
one if and only if it is valid in the other. In my view, the implications of this correspondence are at the
very heart of measure theory. I prefer therefore to keep it constantly conspicuous, reminding myself through
symbolism that every theorem has a Siamese twin, and rising to each challenge to express the twin theorem
in an appropriate language. (iv) There are ways in which L

0
Σ and L0 are actually very different, and many

interesting ideas can be expressed only in a language which keeps them clearly separated.

For more than half my life now I have felt that these points between them are sufficient reason for being
consistent in maintaining the formal distinction between f and f•. You may feel that in (iii) and (iv) of
the last paragraph I am trying to have things both ways; I am arguing that both the similarities and the
differences between L0 and L

0 support my case. Indeed that is exactly my position. If they were totally
different, using the same language for both would not give rise to confusion; if they were essentially the
same, it would not matter if we were sometimes unclear which we were talking about.

D.H.Fremlin
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Version of 19.11.03

242 L1

While the space L0 treated in the previous section is of very great intrinsic interest, its chief use in
the elementary theory is as a space in which some of the most important spaces of functional analysis are
embedded. In the next few sections I introduce these one at a time.

The first is the space L1 of equivalence classes of integrable functions. The importance of this space is not
only that it offers a language in which to express those many theorems about integrable functions which do
not depend on the differences between two functions which are equal almost everywhere. It can also appear
as the natural space in which to seek solutions to a wide variety of integral equations, and as the completion
of a space of continuous functions.

242A The space L1 Let (X,Σ, µ) be any measure space.

(a) Let L1 = L
1(µ) be the set of real-valued functions, defined on subsets of X, which are integrable over

X. Then L
1 ⊆ L

0 = L
0(µ), as defined in §241, and, for f ∈ L

0, we have f ∈ L
1 iff there is a g ∈ L

1 such
that |f | ≤a.e. g; if f ∈ L

1, g ∈ L
0 and f =a.e. g, then g ∈ L

1. (See 122P-122R.)

(b) Let L1 = L1(µ) ⊆ L0 = L0(µ) be the set of equivalence classes of members of L1. If f , g ∈ L
1 and

f =a.e. g then
∫

f =
∫

g (122Rb). Accordingly we may define a functional
∫

on L1 by writing
∫

f• =
∫

f
for every f ∈ L

1.

(c) It will be convenient to be able to write
∫

A
u for u ∈ L1, A ⊆ X; this may be defined by saying that

∫

A
f• =

∫

A
f for every f ∈ L

1, where the integral is defined in 214D. PPP I have only to check that if f =a.e. g

then
∫

A
f =

∫

A
g; and this is because f↾A = g↾A almost everywhere in A. QQQ

If E ∈ Σ and u ∈ L1 then
∫

E
u =

∫

u × (χE)•; this is because
∫

E
f =

∫

f × χE for every integrable
function f (131Fa).

(d) If u ∈ L1, there is a Σ-measurable, µ-integrable function f : X → R such that f• = u. PPP As noted
in 241Bk, there is a measurable f : X → R such that f• = u; but of course f is integrable because it is
equal almost everywhere to some integrable function. QQQ

242B Theorem Let (X,Σ, µ) be any measure space. Then L1(µ) is a linear subspace of L0(µ) and
∫

: L1 → R is a linear functional.

proof If u, v ∈ L1 = L1(µ) and c ∈ R let f , g be integrable functions such that u = f• and v = g•; then
f + g and cf are integrable, so u+ v = (f + g)• and cu = (cf)• belong to L1. Also

∫

u+ v =
∫

f + g =
∫

f +
∫

g =
∫

u+
∫

v

and
∫

cu =
∫

cf = c
∫

f = c
∫

u.

242C The order structure of L1 Let (X,Σ, µ) be any measure space.

(a) L1 = L1(µ) has an order structure derived from that of L0 = L0(µ) (241E); that is, f• ≤ g• iff f ≤ g
a.e. Being a linear subspace of L0, L1 must be a partially ordered linear space; the two conditions of 241Ec
are obviously inherited by linear subspaces.

Note also that if u, v ∈ L1 and u ≤ v then
∫

u ≤
∫

v, because if f , g are integrable functions and f ≤a.e. g
then

∫

f ≤
∫

g (122Od).

(b) If u ∈ L0, v ∈ L1 and |u| ≤ |v| then u ∈ L1. PPP Let f ∈ L
0 = L

0(µ), g ∈ L
1 = L

1(µ) be such that
u = f• and v = g•; then g is integrable and |f | ≤a.e. |g|, so f is integrable and u ∈ L1. QQQ

c© 1997 D. H. Fremlin

Measure Theory



242De L1 11

(c) In particular, |u| ∈ L1 whenever u ∈ L1, and

|
∫

u| = max(
∫

u,
∫

(−u)) ≤
∫

|u|,

because u, −u ≤ |u|.

(d) Because |u| ∈ L1 for every u ∈ L1,

u ∨ v =
1

2
(u+ v + |u− v|), u ∧ v =

1

2
(u+ v − |u− v|)

belong to L1 for all u, v ∈ L1. But if w ∈ L1 we surely have

w ≤ u & w ≤ v ⇐⇒ w ≤ u ∧ v,

w ≥ u & w ≥ v ⇐⇒ w ≥ u ∨ v

because these are true for all w ∈ L0, so u∨ v = sup{u, v} and u∧ v = inf{u, v} in L1. Thus L1 is, in itself,
a Riesz space.

(e) Note that if u ∈ L1, then u ≥ 0 iff
∫

E
u ≥ 0 for every E ∈ Σ; this is because if f is an integrable

function on X and
∫

E
f ≥ 0 for every E ∈ Σ, then f ≥ 0 a.e. (131Fb). More generally, if u, v ∈ L1 and

∫

E
u ≤

∫

E
v for every E ∈ Σ, then u ≤ v. It follows at once that if u, v ∈ L1 and

∫

E
u =

∫

E
v for every

E ∈ Σ, then u = v (cf. 131Fc).

(f) If u ≥ 0 in L1, there is a non-negative f ∈ L
1 such that f• = u (compare 241Eg).

242D The norm of L1 Let (X,Σ, µ) be any measure space.

(a) For f ∈ L
1 = L

1(µ) I write ‖f‖1 =
∫

|f | ∈ [0,∞[. For u ∈ L1 = L1(µ) set ‖u‖1 =
∫

|u|, so that
‖f•‖1 = ‖f‖1 for every f ∈ L

1. Then ‖ ‖1 is a norm on L1. PPP (i) If u, v ∈ L1 then |u + v| ≤ |u| + |v|, by
241Ee, so

‖u+ v‖1 =
∫

|u+ v| ≤
∫

|u|+ |v| =
∫

|u|+
∫

|v| = ‖u‖1 + ‖v‖1.

(ii) If u ∈ L1 and c ∈ R then

‖cu‖1 =
∫

|cu| =
∫

|c||u| = |c|
∫

|u| = |c|‖u‖1.

(iii) If u ∈ L1 and ‖u‖1 = 0, express u as f•, where f ∈ L
1; then

∫

|f | =
∫

|u| = 0. Because |f | is
non-negative, it must be zero almost everywhere (122Rc), so f = 0 a.e. and u = 0 in L1. QQQ

(b) Thus L1, with ‖ ‖1, is a normed space and
∫

: L1 → R is a linear operator; observe that ‖
∫

‖ ≤ 1,
because

|
∫

u| ≤
∫

|u| = ‖u‖1

for every u ∈ L1.

(c) If u, v ∈ L1 and |u| ≤ |v|, then

‖u‖1 =
∫

|u| ≤
∫

|v| = ‖v‖1.

In particular, ‖u‖1 = ‖|u|‖1 for every u ∈ L1.

(d) Note the following property of the normed Riesz space L1: if u, v ∈ L1 and u, v ≥ 0, then

‖u+ v‖1 =
∫

u+ v =
∫

u+
∫

v = ‖u‖1 + ‖v‖1.

(e) The set (L1)+ = {u : u ≥ 0} is closed in L1. PPP If v ∈ L1, u ∈ (L1)+ then ‖u− v‖1 ≥ ‖v ∧ 0‖1; this is
because if f , g ∈ L

1 and f ≥ 0 a.e., |f(x)− g(x)| ≥ |min(g(x), 0)| whenever f(x) and g(x) are both defined
and f(x) ≥ 0, which is almost everywhere, so

‖u− v‖1 =
∫

|f − g| ≥
∫

|g ∧ 0| = ‖v ∧ 0‖1.

Now this means that if v ∈ L1 and v 6≥ 0, the ball {w : ‖w − v‖1 < δ} does not meet (L1)+, where
δ = ‖v ∧ 0‖1 > 0 because v ∧ 0 6= 0. Thus L1 \ (L1)+ is open and (L1)+ is closed. QQQ
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242E For the next result we need a variant of B.Levi’s theorem.

Lemma Let (X,Σ, µ) be a measure space and 〈fn〉n∈N a sequence of µ-integrable real-valued functions such
that

∑∞
n=0

∫

|fn| <∞. Then f =
∑∞

n=0 fn is integrable and
∫

f =
∑∞

n=0

∫

fn,
∫

|f | ≤
∑∞

n=0

∫

|fn|.

proof (a) Suppose first that every fn is non-negative. Set gn =
∑n

k=0 fk for each n; then 〈gn〉n∈N is
increasing a.e. and

limn→∞

∫

gn =
∑∞

k=0

∫

fk

is finite, so by B.Levi’s theorem (123A) f = limn→∞ gn is integrable and
∫

f = limn→∞

∫

gn =
∑∞

k=0

∫

fk.

In this case, of course,
∫

|f | =
∫

f =
∑∞

n=0

∫

fn =
∑∞

n=0

∫

|fn|.

(b) For the general case, set f+n = 1
2 (|fn| + fn), f

−
n = 1

2 (|fn| − fn), as in 241Ef; then f+n and f−n are
non-negative integrable functions, and

∑∞
n=0

∫

f+n +
∑∞

n=0

∫

f−n =
∑∞

n=0

∫

|fn| <∞.

So h1 =
∑∞

n=0 f
+
n and h2 =

∑∞
n=0 f

−
n are both integrable. Now f =a.e. h1 − h2, so

∫

f =
∫

h1 −
∫

h2 =
∑∞

n=0

∫

f+n −
∑∞

n=0

∫

f−n =
∑∞

n=0

∫

fn.

Finally
∫

|f | ≤
∫

|h1|+
∫

|h2| =
∑∞

n=0

∫

f+n +
∑∞

n=0

∫

f−n =
∑∞

n=0

∫

|fn|.

242F Theorem For any measure space (X,Σ, µ), L1(µ) is complete under its norm ‖ ‖1.

proof Let 〈un〉n∈N be a sequence in L1 such that ‖un+1 − un‖1 ≤ 4−n for every n ∈ N. Choose integrable
functions fn such that f•

0 = u0, f
•

n+1 = un+1 − un for each n ∈ N. Then
∑∞

n=0

∫

|fn| = ‖u0‖1 +
∑∞

n=0 ‖un+1 − un‖1 <∞.

So f =
∑∞

n=0 fn is integrable, by 242E, and u = f• ∈ L1. Set gn =
∑n

j=0 fj for each n; then g•

n = un, so

‖u− un‖1 =
∫

|f − gn| ≤
∫

∑∞
j=n+1 |fj | ≤

∑∞
j=n+1 4

−j = 4−n/3

for each n. Thus u = limn→∞ un in L1. As 〈un〉n∈N is arbitrary, L1 is complete (2A4E).

242G Definition It will be convenient, for later reference, to introduce the following phrase. A Banach
lattice is a Riesz space U together with a norm ‖ ‖ on U such that (i) ‖u‖ ≤ ‖v‖ whenever u, v ∈ U and
|u| ≤ |v|, writing |u| for u ∨ (−u), as in 241Ee (ii) U is complete under ‖ ‖. Thus 242Dc and 242F amount
to saying that the normed Riesz space (L1, ‖ ‖1) is a Banach lattice.

242H L1 as a Riesz space We can discuss the ordered linear space L1 in the language already used in
241E-241G for L0.

Theorem Let (X,Σ, µ) be any measure space. Then L1 = L1(µ) is Dedekind complete.

proof (a) Let A ⊆ L1 be any non-empty set which is bounded above in L1. Set

A′ = {u0 ∨ . . . ∨ un : u0, . . . , un ∈ A}.

Then A ⊆ A′, A′ has the same upper bounds as A and u ∨ v ∈ A′ for all u, v ∈ A′. Taking w0 to be any
upper bound of A and A′, we have

∫

u ≤
∫

w0 for every u ∈ A′, so γ = supu∈A′

∫

u is defined in R. For each
n ∈ N, choose un ∈ A′ such that

∫

un ≥ γ − 2−n. Because L0 = L0(µ) is Dedekind σ-complete (241Ga),
u∗ = supn∈N un is defined in L0, and u0 ≤ u∗ ≤ w0 in L0. Consequently

Measure Theory
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0 ≤ u∗ − u0 ≤ w0 − u0

in L0. But w0 − u0 ∈ L1, so u∗ − u0 ∈ L1 (242Cb) and u∗ ∈ L1.

(b) The point is that u∗ is an upper bound for A. PPP If u ∈ A, then u ∨ un ∈ A′ for every n, so

‖u− u ∧ u∗‖1 =

∫

u− u ∧ u∗ ≤

∫

u− u ∧ un

(because u ∧ un ≤ un ≤ u∗, so u ∧ un ≤ u ∧ u∗)

=

∫

u ∨ un − un

(because u ∨ un + u ∧ un = u+ un – see the formulae in 242Cd)

=

∫

u ∨ un −

∫

un ≤ γ − (γ − 2−n) = 2−n

for every n; so ‖u− u ∧ u∗‖1 = 0. But this means that u = u ∧ u∗, that is, that u ≤ u∗. As u is arbitrary,
u∗ is an upper bound for A. QQQ

(c) On the other hand, any upper bound for A is surely an upper bound for {un : n ∈ N}, so is greater
than or equal to u∗. Thus u∗ = supA in L1. As A is arbitrary, L1 is Dedekind complete.

Remark Note that the order-completeness of L1, unlike that of L0, does not depend on any particular
property of the measure space (X,Σ, µ).

242I The Radon-Nikodým theorem I think it is worth re-writing the Radon-Nikodým theorem (232E)
in the language of this chapter.

Theorem Let (X,Σ, µ) be a measure space. Then there is a canonical bijection between L1 = L1(µ) and
the set of truly continuous additive functionals ν : Σ → R, given by the formula

νF =
∫

F
u for F ∈ Σ, u ∈ L1.

Remark Recall that if µ is σ-finite, then the truly continuous additive functionals are just the absolutely
continuous countably additive functionals; and that if µ is totally finite, then all absolutely continuous
(finitely) additive functionals are truly continuous (232Bd).

proof For u ∈ L1, F ∈ Σ set νuF =
∫

F
u. If u ∈ L1, there is an integrable function f such that f• = u, in

which case

F 7→ νuF =
∫

F
f : Σ → R

is additive and truly continuous, by 232D. If ν : Σ → R is additive and truly continuous, then by 232E there
is an integrable function f such that νF =

∫

F
f for every F ∈ Σ; setting u = f• in L1, ν = νu. Finally, if

u, v are distinct members of L1, there is an F ∈ Σ such that
∫

F
u 6=

∫

F
v (242Ce), so that νu 6= νv; thus

u 7→ νu is injective as well as surjective.

242J Conditional expectations revisited We now have the machinery necessary for a new interpre-
tation of some of the ideas of §233.

(a) Let (X,Σ, µ) be a measure space, and T a σ-subalgebra of Σ, as in 233A. Then (X,T, µ↾T) is a
measure space, and L

0(µ↾T) ⊆ L
0(µ); moreover, if f , g ∈ L

0(µ↾T), then f = g (µ↾T)-a.e. iff f = g µ-a.e.
PPP There are µ↾T-conegligible sets F , G ∈ T such that f↾F and g↾G are T-measurable; set

E = {x : x ∈ F ∩G, f(x) 6= g(x)} ∈ T;

then

f = g (µ↾T)-a.e. ⇐⇒ (µ↾T)(E) = 0 ⇐⇒ µE = 0 ⇐⇒ f = g µ-a.e. QQQ

Accordingly we have a canonical map S : L0(µ↾T) → L0(µ) defined by saying that if u ∈ L0(µ↾T) is the
equivalence class of f ∈ L

0(µ↾T), then Su is the equivalence class of f in L0(µ). It is easy to check, working
through the operations described in 241D, 241E and 241H, that S is linear, injective and order-preserving,
and that |Su| = S|u|, S(u ∨ v) = Su ∨ Sv and S(u× v) = Su× Sv for u, v ∈ L0(µ↾T).
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(b) Next, if f ∈ L
1(µ↾T), then f ∈ L

1(µ) and
∫

fdµ =
∫

fd(µ↾T) (233B); so Su ∈ L1(µ) and ‖Su‖1 =
‖u‖1 for every u ∈ L1(µ↾T).

Observe also that every member of L1(µ) ∩ S[L0(µ↾T)] is actually in S[L1(µ↾T)]. PPP Take u ∈ L1(µ) ∩
S[L0(µ↾T)]. Then u is expressible both as f• where f ∈ L

1(µ), and as g• where g ∈ L
0(µ↾T). So g =a.e. f ,

and g is µ-integrable, therefore (µ↾T)-integrable (233B again). QQQ
This means that S : L1(µ↾T) → L1(µ) ∩ S[L0(µ↾T)] is a bijection.

(c) Now suppose that µX = 1, so that (X,Σ, µ) is a probability space. Recall that g is a conditional
expectation of f on T if g is µ↾T-integrable, f is µ-integrable and

∫

F
g =

∫

F
f for every F ∈ T; and that

every µ-integrable function has such a conditional expectation (233D). If g is a conditional expectation of
f and f1 = f µ-a.e. then g is a conditional expectation of f1, because

∫

F
f1 =

∫

F
f for every F ; and I have

already remarked in 233Dc that if g, g1 are conditional expectations of f on T then g = g1 µ↾T-a.e.

(d) This means that we have an operator P : L1(µ) → L1(µ↾T) defined by saying that P (f•) = g•

whenever g ∈ L
1(µ↾T) is a conditional expectation of f ∈ L

1(µ) on T; that is, that
∫

F
Pu =

∫

F
u whenever

u ∈ L1(µ) and F ∈ T. If we identify L1(µ), L1(µ↾T) with the sets of absolutely continuous additive
functionals defined on Σ and T, as in 242I, then P corresponds to the operation ν 7→ ν↾T.

(e) Because Pu is uniquely defined in L1(µ↾T) by the requirement
∫

F
Pu =

∫

F
u for every F ∈ T (242Ce),

we see that P must be linear. PPP If u, v ∈ L1(µ) and c ∈ R, then
∫

F
Pu+ Pv =

∫

F
Pu+

∫

F
Pv =

∫

F
u+

∫

F
v =

∫

F
u+ v =

∫

F
P (u+ v),

∫

F
P (cu) =

∫

F
cu = c

∫

F
u = c

∫

F
Pu =

∫

F
cPu

for every F ∈ T. QQQ Also, if u ≥ 0, then
∫

F
Pu =

∫

F
u ≥ 0 for every F ∈ T, so Pu ≥ 0 (242Ce again).

It follows at once that P is order-preserving, that is, that Pu ≤ Pv whenever u ≤ v. Consequently

|Pu| = Pu ∨ (−Pu) = Pu ∨ P (−u) ≤ P |u|

for every u ∈ L1(µ), because u ≤ |u| and −u ≤ |u|. Finally, P is a bounded linear operator, with norm 1.
PPP The last formula tells us that

‖Pu‖1 ≤ ‖P |u|‖1 =
∫

P |u| =
∫

|u| = ‖u‖1

for every u ∈ L1(µ), so ‖P‖ ≤ 1. On the other hand, P (χX•) = χX• 6= 0, so ‖P‖ = 1. QQQ

(f) We may legitimately regard Pu ∈ L1(µ↾T) as ‘the’ conditional expectation of u ∈ L1(µ) on T; P is
the conditional expectation operator.

(g) If u ∈ L1(µ↾T), then we have a corresponding Su ∈ L1(µ), as in (b); now PSu = u. PPP
∫

F
PSu =

∫

F
Su =

∫

F
u for every F ∈ T. QQQ Consequently SPSP = SP : L1(µ) → L1(µ).

(h) The distinction drawn above between u = f• ∈ L0(µ↾T) and Su = f• ∈ L0(µ) is of course pedantic.
I believe it is necessary to be aware of such distinctions, even though for nearly all purposes it is safe as well
as convenient to regard L0(µ↾T) as actually a subset of L0(µ). If we do so, then (b) tells us that we can
identify L1(µ↾T) with L1(µ) ∩ L0(µ↾T), while (g) becomes ‘P 2 = P ’.

242K The language just introduced allows the following re-formulations of 233J-233K.

Theorem Let (X,Σ, µ) be a probability space and T a σ-subalgebra of Σ. Let φ : R → R be a convex
function and φ̄ : L0(µ) → L0(µ) the corresponding operator defined by setting φ̄(f•) = (φf)• (241I). If
P : L1(µ) → L1(µ↾T) is the conditional expectation operator, then φ̄(Pu) ≤ P (φ̄u) whenever u ∈ L1(µ) is
such that φ̄(u) ∈ L1(µ).

proof This is just a restatement of 233J.

242L Proposition Let (X,Σ, µ) be a probability space, and T a σ-subalgebra of Σ. Let P : L1(µ) →
L1(µ↾T) be the corresponding conditional expectation operator. If u ∈ L1 = L1(µ) and v ∈ L0(µ↾T), then
u× v ∈ L1 iff P |u| × v ∈ L1, and in this case P (u× v) = Pu× v; in particular,

∫

u× v =
∫

Pu× v.
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proof (I am here using the identification of L0(µ↾T) as a subspace of L0(µ), as suggested in 242Jh.)
Express u as f• and v as h•, where f ∈ L

1 = L
1(µ) and h ∈ L

0(µ↾T). Let g, g0 ∈ L
1(µ↾T) be conditional

expectations of f , |f | respectively, so that Pu = g• and P |u| = g•

0. Then, using 233K,

u× v ∈ L1 ⇐⇒ f × h ∈ L
1 ⇐⇒ g0 × h ∈ L

1 ⇐⇒ P |u| × v ∈ L1,

and in this case g × h is a conditional expectation of f × h, that is, Pu× v = P (u× v).

242M L1 as a completion I mentioned in the introduction to this section that L1 appears in functional
analysis as a completion of some important spaces; put another way, some dense subspaces of L1 are
significant. The first is elementary.

Proposition Let (X,Σ, µ) be any measure space, and write S for the space of µ-simple functions on X.
Then

(a) whenever f is a µ-integrable real-valued function and ǫ > 0, there is an h ∈ S such that
∫

|f − h| ≤ ǫ;
(b) S = {f• : f ∈ S} is a dense linear subspace of L1 = L1(µ).

proof (a)(i) If f is non-negative, then there is a simple function h such that h ≤a.e. f and
∫

h ≥
∫

f − 1
2ǫ

(122K), in which case

∫

|f − h| =
∫

f − h =
∫

f −
∫

h ≤
1

2
ǫ.

(ii) In the general case, f is expressible as a difference f1 − f2 of non-negative integrable functions. Now
there are h1, h2 ∈ S such that

∫

|fj − hj | ≤
1
2ǫ for both j and

∫

|f − h| ≤
∫

|f1 − h1|+
∫

|f2 − h2| ≤ ǫ.

(b) Because S is a linear subspace of RX included in L
1 = L

1(µ), S is a linear subspace of L1. If u ∈ L1

and ǫ > 0, there are an f ∈ L
1 such that f• = u and an h ∈ S such that

∫

|f − h| ≤ ǫ; now v = h• ∈ S and

‖u− v‖1 =
∫

|f − h| ≤ ǫ.

As u and ǫ are arbitrary, S is dense in L1.

242N As always, Lebesgue measure on Rr and its subsets is by far the most important example; and
in this case we have further classes of dense subspace of L1. If you have reached this point without yet
troubling to master multi-dimensional Lebesgue measure, just take r = 1. If you feel uncomfortable with
general subspace measures, take X to be Rr or [0, 1] ⊆ R or some other particular subset which you find
interesting. The following term will be useful.

Definition If f is a real- or complex-valued function defined on a subset of Rr, say that the support of f
is {x : x ∈ dom f, f(x) 6= 0}.

242O Theorem Let X be any subset of Rr, where r ≥ 1, and let µ be Lebesgue measure on X, that
is, the subspace measure on X induced by Lebesgue measure on Rr. Write Ck for the space of bounded
continuous functions f : Rr → R which have bounded support, and S0 for the space of linear combinations
of functions of the form χI where I ⊆ Rr is a bounded half-open interval. Then

(a) whenever f ∈ L
1 = L

1(µ) and ǫ > 0, there are g ∈ Ck, h ∈ S0 such that
∫

X
|f − g| ≤ ǫ and

∫

X
|f − h| ≤ ǫ;

(b) {(g↾X)• : g ∈ Ck} and {(h↾X)• : h ∈ S0} are dense linear subspaces of L1 = L1(µ).

Remark Of course there is a redundant ‘bounded’ in the description of Ck; see 242Xh.

proof (a) I argue in turn that the result is valid for each of an increasing number of members f of L1 = L
1(µ).

Write µr for Lebesgue measure on Rr, so that µ is the subspace measure (µr)X .

(i) Suppose first that f = χI↾X where I ⊆ Rr is a bounded half-open interval. Of course χI is already
in S0, so I have only to show that it is approximated by members of Ck. If I = ∅ the result is trivial; we
can take g = 0. Otherwise, express I as [a− b, a+ b[ where a = (α1, . . . , αr), b = (β1, . . . , βr) and βj > 0
for each j. Let δ > 0 be such that
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2r
∏r

j=1(βj + δ) ≤ ǫ+ 2r
∏r

j=1 βj .

For ξ ∈ R set

gj(ξ) = 1 if |ξ − αj | ≤ βj ,

= (βj + δ − |ξ − αj |)/δ if βj ≤ |ξ − αj | ≤ βj + δ,

= 0 if |ξ − αj | ≥ βj + δ.

α j

βj δ

1

The function gj

For x = (ξ1, . . . , ξr) ∈ Rr set

g(x) =
∏r

j=1 gj(ξj).

Then g ∈ Ck and χI ≤ g ≤ χJ , where J = [a− b− δ1, a+ b+ δ1] (writing 1 = (1, . . . , 1)), so that (by the
choice of δ) µrJ ≤ µrI + ǫ, and

∫

X

|g − f | ≤

∫

(χ(J ∩X)− χ(I ∩X))dµ = µ((J \ I) ∩X)

≤ µr(J \ I) = µrJ − µrI ≤ ǫ,

as required.

(ii) Now suppose that f = χ(X ∩E) where E ⊆ Rr is a set of finite measure. Then there is a disjoint
family I0, . . . , In of half-open intervals such that µr(E△

⋃

j≤n Ij) ≤ 1
2ǫ. PPP There is an open set G ⊇ E

such that µr(G \ E) ≤ 1
4ǫ (134Fa). For each m ∈ N, let Im be the family of half-open intervals in Rr of

the form [a, b[ where a = (2−mk1, . . . , 2
−mkr), k1, . . . , kr being integers, and b = a + 2−m1; then Im is a

disjoint family. Set Hm =
⋃

{I : I ∈ Im, I ⊆ G}; then 〈Hm〉m∈N is a non-decreasing family with union G,
so that there is an m such that µr(G \Hm) ≤ 1

4ǫ and µr(E△Hm) ≤ 1
2ǫ. But now Hm is expressible as a

disjoint union
⋃

j≤n Ij where I0, . . . , In enumerate the members of Im included in Hm. (The last sentence

derails if Hm is empty. But if Hm = ∅ then we can take n = 0, I0 = ∅.) QQQ
Accordingly h =

∑n
j=0 χIj ∈ S0 and

∫

X
|f − h| = µ(X ∩ (E△

⋃

j≤n Ij)) ≤
1

2
ǫ.

As for Ck, (i) tells us that there is for each j ≤ n a gj ∈ Ck such that
∫

X
|gj − χIj | ≤ ǫ/2(n + 1), so that

g =
∑n

j=0 gj ∈ Ck and

∫

X
|f − g| ≤

∫

X
|f − h|+

∫

X
|h− g| ≤

ǫ

2
+

∑n
j=0

∫

X
|gj − χIj | ≤ ǫ.

(iii) If f is a simple function, express f as
∑n

k=0 akχEk where each Ek is of finite measure for µ. Each
Ek is expressible as X ∩ Fk where µrFk = µEk (214Ca). By (ii), we can find gk ∈ Ck, hk ∈ S0 such that

|ak|
∫

X
|gk − χFk| ≤

ǫ

n+1
, |ak|

∫

X
|hk − χFk| ≤

ǫ

n+1

for each k. Set g =
∑n

k=0 akgk and h =
∑n

k=0 akhk; then g ∈ Ck, h ∈ S0 and
∫

X
|f − g| ≤

∫

X

∑n
k=0 |ak||χFk − gk| =

∑n
k=0 |ak|

∫

X
|χFk − gk| ≤ ǫ,
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∫

X
|f − h| ≤

∑n
k=0 |ak|

∫

X
|χFk − hk| ≤ ǫ,

as required.

(iv) If f is any integrable function on X, then by 242Ma we can find a simple function f0 such that
∫

|f − f0| ≤
1
2ǫ, and now by (iii) there are g ∈ Ck, h ∈ S0 such that

∫

X
|f0 − g| ≤ 1

2ǫ,
∫

X
|f0 − h| ≤ 1

2ǫ; so
that

∫

X
|f − g| ≤

∫

X
|f − f0|+

∫

X
|f0 − g| ≤ ǫ,

∫

X
|f − h| ≤

∫

X
|f − f0|+

∫

X
|f0 − h| ≤ ǫ.

(b)(i) We must check first that if g ∈ Ck then g↾X is actually µ-integrable. The point here is that if
g ∈ Ck and a ∈ R then

{x : x ∈ X, g(x) > a}

is the intersection of X with an open subset of Rr, and is therefore measured by µ, because all open sets
are measured by µr (115G). Next, g is bounded and the set E = {x : x ∈ X, g(x) 6= 0} is bounded in
Rr, therefore of finite outer measure for µr and of finite measure for µ. Thus there is an M ≥ 0 such that
|g| ≤MχE, which is µ-integrable. Accordingly g is µ-integrable.

Of course h↾X is µ-integrable for every h ∈ S0 because (by the definition of subspace measure) µ(I ∩X)
is defined and finite for every bounded half-open interval I.

(ii) Now the rest follows by just the same arguments as in 242Mb. Because {g↾X : g ∈ Ck} and

{h↾X : h ∈ S0} are linear subspaces of RX included in L
1(µ), their images C#

k and S#
0 are linear subspaces

of L1. If u ∈ L1 and ǫ > 0, there are an f ∈ L
1 such that f• = u, and g ∈ Ck, h ∈ S0 such that

∫

X
|f − g|,

∫

X
|f − h| ≤ ǫ; now v = (g↾X)• ∈ C#

k and w = (h↾X)• ∈ S#
0 and

‖u− v‖1 =
∫

X
|f − g| ≤ ǫ, ‖u− w‖1 =

∫

X
|f − h| ≤ ǫ.

As u and ǫ are arbitrary, C#
k and S#

0 are dense in L1.

242P Complex L1 As you would, I hope, expect, we can repeat the work above with L
1
C, the space of

complex-valued integrable functions, in place of L1, to construct a complex Banach space L1
C. The required

changes, based on the ideas of 241J, are minor.

(a) In 242Aa, it is perhaps helpful to remark that, for f ∈ L
0
C,

f ∈ L
1
C ⇐⇒ |f | ∈ L

1 ⇐⇒ Re(f), Im(f) ∈ L
1.

Consequently, for u ∈ L0
C,

u ∈ L1
C ⇐⇒ |u| ∈ L1 ⇐⇒ Re(u), Im(u) ∈ L1.

(b) To prove a complex version of 242E, observe that if 〈fn〉n∈N is a sequence in L
1
C such that

∑∞
n=0

∫

|fn| <
∞, then

∑∞
n=0

∫

|Re(fn)| and
∑∞

n=0

∫

| Im(fn)| are both finite, so we may apply 242E twice and see that
∫

(
∑∞

n=0 fn) =
∫

(
∑∞

n=0 Re(fn)) +
∫

(
∑∞

n=0 Im(fn)) =
∑∞

n=0

∫

fn.

Accordingly we can prove that L1
C is complete under ‖ ‖1 by the argument of 242F.

(c) Similarly, little change is needed to adapt 242J to give a description of a conditional expectation
operator P : L1

C(µ) → L1
C(µ↾T) when (X,Σ, µ) is a probability space and T is a σ-subalgebra of Σ. In the

formula

|Pu| ≤ P |u|

of 242Je, we need to know that

|Pu| = sup|ζ|=1 Re(ζPu)

in L0(µ↾T) (241Jc), while
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Re(ζPu) = Re(P (ζu)) = P (Re(ζu)) ≤ P |u|

whenever |ζ| = 1.

(d) In 242M, we need to replace S by SC, the space of ‘complex-valued simple functions’ of the form
∑n

k=0 akχEk where each ak is a complex number and each Ek is a measurable set of finite measure; then
we get a dense linear subspace SC = {f• : f ∈ SC} of L1

C. In 242O, we must replace Ck by Ck(R
r;C), the

space of bounded continuous complex-valued functions of bounded support, and S0 by the linear span over
C of {χI : I is a bounded half-open interval}.

242X Basic exercises >>>(a) Let X be a set, and let µ be counting measure on X. Show that L1(µ)
can be identified with the space ℓ1(X) of absolutely summable real-valued functions on X (see 226A). In
particular, the space ℓ1 = ℓ1(N) of absolutely summable real-valued sequences is an L1 space. Write out
proofs of 242F adapted to these special cases.

>>>(b) Let (X,Σ, µ) be any measure space, and µ̂ the completion of µ. Show that L
1(µ̂) = L

1(µ) and
L1(µ̂) = L1(µ) (cf. 241Xb).

(c) Let 〈(Xi,Σi, µi)〉i∈I be a family of measure spaces, and (X,Σ, µ) their direct sum. Show that the
isomorphism between L0(µ) and

∏

i∈I L
0(µi) (241Xd) induces an identification between L1(µ) and

{u : u ∈
∏

i∈I L
1(µi), ‖u‖ =

∑

i∈I ‖u(i)‖1 <∞} ⊆
∏

i∈I L
1(µi).

(d) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and φ : X → Y an inverse-measure-preserving function.
Show that g 7→ gφ : L

1(ν) → L
1(µ) (235G) induces a linear operator T : L1(ν) → L1(µ) such that

‖Tv‖1 = ‖v‖1 for every v ∈ L1(ν).

(e) Let U be a Riesz space (definition: 241Ed). A Riesz norm on U is a norm ‖ ‖ such that ‖u‖ ≤ ‖v‖
whenever |u| ≤ |v|. Show that if U is given its norm topology (2A4Bb) for such a norm, then (i) u 7→ |u| :
U → U , (u, v) 7→ u ∨ v : U × U → U are continuous (ii) {u : u ≥ 0} is closed.

(f) Show that any Banach lattice must be an Archimedean Riesz space (241Fa).

(g) Let (X,Σ, µ) be a probability space, and T a σ-subalgebra of Σ, Υ a σ-subalgebra of T. Let
P1 : L1(µ) → L1(µ↾T), P2 : L1(µ↾T) → L1(µ↾Υ) and P : L1(µ) → L1(µ↾Υ) be the corresponding
conditional expectation operators. Show that P = P2P1.

(h) Show that if g : Rr → R is continuous and has bounded support it is bounded and attains its bounds.
(Hint : 2A2F-2A2G.)

(i) Let µ be Lebesgue measure on R. (i) Take δ > 0. Show that if φδ(x) = exp(−
1

δ2−x2
) for |x| < δ, 0

for |x| ≥ δ then φ is smooth, that is, differentiable arbitrarily often. (ii) Show that if Fδ(x) =
∫ x

−∞ φδdµ

for x ∈ R then Fδ is smooth. (iii) Show that if a < b < c < d in R there is a smooth function h such that
χ[b, c] ≤ h ≤ χ[a, d]. (iv) Write D for the space of smooth functions h : R → R such that {x : h(x) 6= 0} is
bounded. Show that {h• : h ∈ D} is dense in L1(µ). (v) Let f be a real-valued function which is integrable
over every bounded subset of R. Show that f × h is integrable for every h ∈ D, and that if

∫

f × h = 0 for
every h ∈ D then f = 0 a.e. (Hint : 222D.)

(j) Let (X,Σ, µ) be a probability space, T a σ-subalgebra of Σ and P : L1(µ) → L1(µ↾T) ⊆ L1(µ) the
corresponding conditional expectation operator. Show that if u, v ∈ L1(µ) are such that P |u|×P |v| ∈ L1(µ),
then

∫

Pu× v =
∫

Pu× Pv =
∫

u× Pv.

242Y Further exercises (a) Let (X,Σ, µ) be a measure space. Let A ⊆ L1 = L1(µ) be a non-
empty downwards-directed set, and suppose that inf A = 0 in L1. (i) Show that infu∈A ‖u‖1 = 0. (Hint : set
γ = infu∈A ‖u‖1; find a non-increasing sequence 〈un〉n∈N in A such that limn→∞ ‖un‖1 = γ; set v = infn∈N un
and show that u ∧ v = v for every u ∈ A, so that v = 0.) (ii) Show that if U is any open set containing 0,
there is a u ∈ A such that v ∈ U whenever 0 ≤ v ≤ u.
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(b) Let (X,Σ, µ) be a measure space and Y any subset of X; let µY be the subspace measure on Y and
T : L0(µ) → L0(µY ) the canonical map described in 241Yg. (i) Show that Tu ∈ L1(µY ) and ‖Tu‖1 ≤ ‖u‖1
for every u ∈ L1(µ). (ii) Show that if u ∈ L1(µ) then ‖Tu‖1 = ‖u‖1 iff

∫

E
u =

∫

Y ∩E
Tu for every E ∈ Σ.

(iii) Show that T is surjective and that ‖v‖1 = min{‖u‖1 : u ∈ L1(µ), Tu = v} for every v ∈ L1(µY ). (Hint :
214Eb.) (See also 244Yd below.)

(c) Let (X,Σ, µ) be a measure space. Write L1
Σ for the space of all integrable Σ-measurable functions from

X to R, and N for the subspace of L1
Σ consisting of measurable functions which are zero almost everywhere.

(i) Show that L1
Σ is a Dedekind σ-complete Riesz space. (ii) Show that L1(µ) can be identified, as ordered

linear space, with the quotient L
1
Σ/N as defined in 241Yb. (iii) Show that ‖ ‖1 is a seminorm on L

1
Σ. (iv)

Show that f 7→ |f | : L1
Σ → L

1
Σ is continuous if L1

Σ is given the topology defined from ‖ ‖1. (v) Show that
{f : f = 0 a.e.} is closed in L

1
Σ, but that {f : f ≥ 0} need not be.

(d) Let (X,Σ, µ) be a measure space, and µ̃ the c.l.d. version of µ (213E). Show that the inclusion
L

1(µ) ⊆ L
1(µ̃) induces an isomorphism, as ordered normed linear spaces, between L1(µ̃) and L1(µ).

(e) Let (X,Σ, µ) be a measure space and u0, . . . , un ∈ L1(µ). (i) Suppose k0, . . . , kn ∈ Z are such that
∑n

i=0 ki = 1. Show that
∑n

i=0

∑n
j=0 kikj‖ui − uj‖1 ≤ 0. (Hint :

∑n
i=0

∑n
j=0 kikj |αi − αj | ≤ 0 for all

α0, . . . , αn ∈ R.) (ii) Suppose γ0, . . . , γn ∈ R are such that
∑n

i=0 γi = 0. Show that
∑n

i=0

∑n
j=0 γiγj‖ui −

uj‖1 ≤ 0.

(f) Let (X,Σ, µ) be a measure space, and A ⊆ L1 = L1(µ) a non-empty upwards-directed set. Suppose
that A is bounded for the norm ‖ ‖1. (i) Show that there is a non-decreasing sequence 〈un〉n∈N in A such
that limn→∞

∫

un = supu∈A

∫

u, and that 〈un〉n∈N is Cauchy. (ii) Show that w = supA is defined in L1 and
belongs to the norm-closure of A in L1, so that, in particular, ‖w‖1 ≤ supu∈A ‖u‖1.

(g) A Riesz norm (definition: 242Xe) on a Riesz space U is order-continuous if infu∈A ‖u‖ = 0 whenever
A ⊆ U is a non-empty downwards-directed set with infimum 0. (Thus 242Ya tells us that the norms ‖ ‖1 are
all order-continuous.) Show that in this case (i) any non-decreasing sequence in U which has an upper bound
in U must be Cauchy (ii) if U is a Banach lattice, it is U is Dedekind complete. (Hint for (i): if 〈un〉n∈N is
a non-decreasing sequence with an upper bound in U , let B be the set of upper bounds of {un : n ∈ N} and
show that A = {v − un : v ∈ B, n ∈ N} has infimum 0 because U is Archimedean.)

(h) Let (X,Σ, µ) be any measure space. Show that L1(µ) has the countable sup property (241Ye).

(i) More generally, show that any Riesz space with an order-continuous Riesz norm has the countable
sup property.

(j) Let (X,Σ, µ) and (Y,T, ν) be measure spaces and U ⊆ L0(µ) a linear subspace. Let T : U → L0(ν)
be a linear operator such that Tu ≥ 0 in L0(ν) whenever u ∈ U and u ≥ 0 in L0(µ). Suppose that w ∈ U
is such that w ≥ 0 and Tw = (χY )•. Show that whenever φ : R → R is a convex function and u ∈ L0(µ) is
such that w × u and w × φ̄(u) ∈ U , defining φ̄ : L0(µ) → L0(µ) as in 241I, then φ̄T (w × u) ≤ T (w × φ̄u).
Explain how this result may be regarded as a common generalization of Jensen’s inequality, as stated in
233I, and 242K above. See also 244M below.

(k)(i) A function φ : C → R is convex if φ(ab + (1 − a)c) ≤ aφ(b) + (1 − a)φ(c) for all b, c ∈ C and
a ∈ [0, 1]. (ii) Show that such a function must be bounded on any bounded subset of C. (iii) If φ : C → R is
convex and c ∈ C, show that there is a b ∈ C such that φ(x) ≥ φ(c) +Re(b(x− c)) for every x ∈ C. (iv) If
〈bc〉c∈C is such that φ(x) ≥ φc(x) = φ(c) +Re(bc(x− c)) for all x, c ∈ C, show that {bc : c ∈ I} is bounded
for any bounded I ⊆ C. (v) Show that if D ⊆ C is any dense set, φ(x) = supc∈D φc(x) for every x ∈ C.

(l) Let (X,Σ, µ) be a probability space and T a σ-subalgebra of Σ. Let P : L1
C(µ) → L1

C(µ↾T) be
the conditional expectation operator. Show that if φ : C → R is any convex function, and we define
φ̄(f•) = (φf)• for every f ∈ L

0
C(µ), then φ̄(Pu) ≤ P (φ̄(u)) whenever u ∈ L1

C(µ) is such that φ̄(u) ∈ L1(µ).
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242 Notes and comments Of course L1-spaces compose one of the most important classes of Riesz space,
and accordingly their properties have great prominence in the general theory; 242Xe, 242Xf, 242Ya and
242Yf-242Yi outline some of the interrelations between these properties. I will return to these questions in
Chapter 35 in the next volume. I have mentioned in passing (242Dd) the additivity of the norm of L1 on the
positive elements. This elementary fact actually characterizes L1 spaces among Banach lattices; see 369E
in the next volume.

Just as L0(µ) can be regarded as a quotient of a linear space L
0
Σ, so can L1(µ) be regarded as a quotient

of a linear space L
1
Σ (242Yc). I have discussed this question in the notes to §241; all I try to do here is to

be consistent.
We now have a language in which we can speak of ‘the’ conditional expectation of a function f , the

equivalence class in L1(µ↾T) consisting precisely of all the conditional expections of f on T. If we think
of L1(µ↾T) as identified with its image in L1(µ), then the conditional expectation operator P : L1(µ) →
L1(µ↾T) becomes a projection (242Jh). We therefore have re-statements of 233J-233K, as in 242K, 242L
and 242Yj.

I give 242O in a fairly general form; but its importance already appears if we take X to be [0, 1] with one-
dimensional Lebesgue measure. In this case, we have a natural norm on C([0, 1]), the space of all continuous
real-valued functions on [0, 1], given by setting

‖f‖1 =
∫ 1

0
|f(x)|dx

for every f ∈ C([0, 1]). The integral here can, of course, be taken to be the Riemann integral; we do not
need the Lebesgue theory to show that ‖ ‖1 is a norm on C([0, 1]). It is easy to check that C([0, 1]) is not
complete for this norm (if we set fn(x) = min(1, 2nxn) for x ∈ [0, 1], then 〈fn〉n∈N is a ‖ ‖1-Cauchy sequence
with no ‖ ‖1-limit in C([0, 1])). We can use the abstract theory of normed spaces to construct a completion
of C([0, 1]); but it is much more satisfactory if this completion can be given a relatively concrete form, and
this is what the identification of L1 with the completion of C([0, 1]) can do. (Note that the remark that
‖ ‖1 is a norm on C([0, 1]), that is, that ‖f‖1 6= 0 for every non-zero f ∈ C([0, 1]), means just that the map
f 7→ f• : C([0, 1]) → L1 is injective, so that C([0, 1]) can be identified, as ordered normed space, with its
image in L1.) It would be even better if we could find a realization of the completion of C([0, 1]) as a space
of functions on some set Z, rather than as a space of equivalence classes of functions on [0, 1]. Unfortunately
this is not practical; such realizations do exist, but necessarily involve either a thoroughly unfamiliar base
set Z, or an intolerably arbitrary embedding map from C([0, 1]) into RZ .

You can get an idea of the obstacle to realizing the completion of C([0, 1]) as a space of functions on
[0, 1] itself by considering fn(x) =

1
nx

n for n ≥ 1. An easy calculation shows that
∑∞

n=1 ‖fn‖1 <∞, so that
∑∞

n=1 fn must exist in the completion of C([0, 1]); but there is no natural value to assign to it at the point
1. Adaptations of this idea can give rise to indefinitely complicated phenomena – indeed, 242O shows that
every integrable function is associated with some appropriate sequence from C([0, 1]). In §245 I shall have
more to say about what ‖ ‖1-convergent sequences look like.

From the point of view of measure theory, narrowly conceived, most of the interesting ideas appear most
clearly with real functions and real linearspaces. But some of the most important applications of measure
theory – important not only as mathematics in general, but also for the measure-theoretic questions they
inspire – deal with complex functions and complex linear spaces. I therefore continue to offer sketches of
the complex theory, as in 242P. I note that at irregular intervals we need ideas not already spelt out in the
real theory, as in 242Pb and 242Yl.

Version of 30.4.04

243 L∞

The second of the classical Banach spaces of measure theory which I treat is the space L∞. As will appear
below, L∞ is the polar companion of L1, the linked opposite; for ‘ordinary’ measure spaces it is actually the
dual of L1 (243F-243G).

243A Definitions Let (X,Σ, µ) be any measure space. Let L
∞ = L

∞(µ) be the set of functions
f ∈ L

0 = L
0(µ) which are essentially bounded, that is, such that there is some M ≥ 0 such that

{x : x ∈ dom f, |f(x)| ≤M} is conegligible, and write
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L∞ = L∞(µ) = {f• : f ∈ L
∞(µ)} ⊆ L0(µ).

Note that if f ∈ L
∞, g ∈ L

0 and g =a.e. f , then g ∈ L
∞; thus L∞ = {f : f ∈ L

0, f• ∈ L∞}.

243B Theorem Let (X,Σ, µ) be any measure space. Then
(a) L∞ = L∞(µ) is a linear subspace of L0 = L0(µ).
(b) If u ∈ L∞, v ∈ L0 and |v| ≤ |u| then v ∈ L∞. Consequently |u|, u ∨ v, u ∧ v, u+ = u ∨ 0 and

u− = (−u) ∨ 0 belong to L∞ for all u, v ∈ L∞.
(c) Writing e = χX•, the equivalence class in L0 of the constant function with value 1, then an element

u of L0 belongs to L∞ iff there is an M ≥ 0 such that |u| ≤Me.
(d) If u, v ∈ L∞ then u× v ∈ L∞.
(e) If u ∈ L∞ and v ∈ L1 = L1(µ) then u× v ∈ L1.

proof (a) If f , g ∈ L
∞ = L

∞(µ) and c ∈ R, then f + g, cf ∈ L
∞. PPP We have M1, M2 ≥ 0 such that

|f | ≤M1 a.e. and |g| ≤M2 a.e. Now

|f + g| ≤ |f |+ |g| ≤M1 +M2 a.e., |cf | ≤ |c||M1| a.e.,

so f + g, cf ∈ L
∞. QQQ It follows at once that u+ v, cu ∈ L∞ whenever u, v ∈ L∞ and c ∈ R.

(b)(i) Take f ∈ L
∞, g ∈ L

0 = L
0(µ) such that u = f• and v = g•. Then |g| ≤a.e. |f |. Let M ≥ 0 be

such that |f | ≤M a.e.; then |g| ≤M a.e., so g ∈ L
∞ and v ∈ L∞.

(ii) Now | |u| | = |u| so |u| ∈ L∞ whenever u ∈ L∞. Also u∨v = 1
2 (u+v+|u−v|), u∧v = 1

2 (u+v−|u−v|)
belong to L∞ for all u, v ∈ L∞.

(c)(i) If u ∈ L∞, take f ∈ L
∞ such that f• = u. Then there is an M ≥ 0 such that |f | ≤ M a.e., so

that |f | ≤a.e. MχX and |u| ≤ Me. (ii) Of course χX ∈ L
∞, so e ∈ L∞, and if u ∈ L0 and |u| ≤ Me then

u ∈ L∞ by (b).

(d) f × g ∈ L
∞ whenever f , g ∈ L

∞. PPP If |f | ≤M1 a.e. and |g| ≤M2 a.e., then

|f × g| = |f | × |g| ≤M1M2 a.e. QQQ

So u× v ∈ L∞ for all u, v ∈ L∞.

(e) If f ∈ L
∞ and g ∈ L

1 = L
1(µ), then there is an M ≥ 0 such that |f | ≤M a.e., so |f × g| ≤a.e. M |g|;

because M |g| is integrable and f × g is virtually measurable, f × g is integrable and u× v ∈ L1.

243C The order structure of L∞ Let (X,Σ, µ) be any measure space. Then L∞ = L∞(µ), being
a linear subspace of L0 = L0(µ), inherits a partial order which renders it a partially ordered linear space
(compare 242Ca). Because |u| ∈ L∞ whenever u ∈ L∞ (243Bb), u ∧ v and u ∨ v belong to L∞ whenever u,
v ∈ L∞, and L∞ is a Riesz space (compare 242Cd).

The behaviour of L∞ as a Riesz space is dominated by the fact that it has an order unit e with the
property that

for every u ∈ L∞ there is an M ≥ 0 such that |u| ≤Me

(243Bc).

243D The norm of L∞ Let (X,Σ, µ) be any measure space.

(a) For f ∈ L
∞ = L

∞(µ), say that the essential supremum of |f | is

ess sup |f | = inf{M :M ≥ 0, {x : x ∈ dom f, |f(x)| ≤M} is conegligible}.

Then |f | ≤ ess sup |f | a.e. PPP Set M = ess sup |f |. For each n ∈ N, there is an Mn ≤ M + 2−n such that
|f | ≤Mn a.e. Now

{x : |f(x)| ≤M} =
⋂

n∈N{x : |f(x)| ≤Mn}

is conegligible, so |f | ≤M a.e. QQQ
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(b) If f , g ∈ L
∞ and f =a.e. g, then ess sup |f | = ess sup |g|. Accordingly we may define a functional

‖ ‖∞ on L∞ = L∞(µ) by setting ‖u‖∞ = ess sup |f | whenever u = f•.

(c) From (a), we see that, for any u ∈ L∞, ‖u‖∞ = min{γ : |u| ≤ γe}, where, as before, e = χX• ∈ L∞.
Consequently ‖ ‖∞ is a norm on L∞. PPP(i) If u, v ∈ L∞ then

|u+ v| ≤ |u|+ |v| ≤ (‖u‖∞ + ‖v‖∞)e

so ‖u+ v‖∞ ≤ ‖u‖∞ + ‖v‖∞. (ii) If u ∈ L∞ and c ∈ R then

|cu| = |c||u| ≤ |c|‖u‖∞e,

so ‖cu‖∞ ≤ |c|‖u‖∞. (iii) If ‖u‖∞ = 0, there is an f ∈ L
∞ such that f• = u and |f | ≤ ‖u‖∞ a.e.; now

f = 0 a.e. so u = 0. QQQ

(d) Note also that if u ∈ L0, v ∈ L∞ and |u| ≤ |v| then |u| ≤ ‖v‖∞e so u ∈ L∞ and ‖u‖∞ ≤ ‖v‖∞;
similarly,

‖u× v‖∞ ≤ ‖u‖∞‖v‖∞, ‖u ∨ v‖∞ ≤ max(‖u‖∞, ‖v‖∞)

for all u, v ∈ L∞. Thus L∞ is a commutative Banach algebra (2A4J).

(e) Moreover,

|
∫

u× v| ≤
∫

|u× v| = ‖u× v‖1 ≤ ‖u‖1‖v‖∞

whenever u ∈ L1 and v ∈ L∞, because

|u× v| = |u| × |v| ≤ |u| × ‖v‖∞e = ‖v‖∞|u|.

(f) Observe that if u, v are non-negative members of L∞ then

‖u ∨ v‖∞ = max(‖u‖∞, ‖v‖∞);

this is because, for any γ ≥ 0,

u ∨ v ≤ γe ⇐⇒ u ≤ γe and v ≤ γe.

243E Theorem For any measure space (X,Σ, µ), L∞ = L∞(µ) is a Banach lattice under ‖ ‖∞.

proof (a) We already know that ‖u‖∞ ≤ ‖v‖∞ whenever |u| ≤ |v| (243Dd); so we have just to check
that L∞ is complete under ‖ ‖∞. Let 〈un〉n∈N be a Cauchy sequence in L∞. For each n ∈ N choose
fn ∈ L

∞ = L
∞(µ) such that f•

n = un in L∞. For all m, n ∈ N, (fm − fn)
• = um − un. Consequently

Emn = {x : |fm(x)− fn(x)| > ‖um − un‖∞}

is negligible, by 243Da. This means that

E =
⋂

n∈N{x : x ∈ dom fn, |fn(x)| ≤ ‖un‖∞} \
⋃

m,n∈NEmn

is conegligible. But for every x ∈ E, |fm(x)− fn(x)| ≤ ‖um − un‖∞ for all m, n ∈ N, so that 〈fn(x)〉n∈N is
a Cauchy sequence, with a limit in R. Thus f = limn→∞ fn is defined almost everywhere. Also, at least for
x ∈ E,

|f(x)| ≤ supn∈N ‖un‖∞ <∞,

so f ∈ L
∞ and u = f• ∈ L∞. If m ∈ N, then, for every x ∈ E,

|f(x)− fm(x)| ≤ supn≥m |fn(x)− fm(x)| ≤ supn≥m ‖un − um‖∞,

so

‖u− um‖∞ ≤ supn≥m ‖un − um‖∞ → 0

as m→ ∞, and u = limm→∞ um in L∞. As 〈un〉n∈N is arbitrary, L∞ is complete.
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243F The duality between L∞ and L1 Let (X,Σ, µ) be any measure space.

(a) I have already remarked that if u ∈ L1 = L1(µ) and v ∈ L∞ = L∞(µ), then u × v ∈ L1 and
|
∫

u× v| ≤ ‖u‖1‖v‖∞ (243Bd, 243De).

(b) Consequently we have a bounded linear operator T from L∞ to the normed space dual (L1)∗ of L1,
given by writing

(Tv)(u) =
∫

u× v for all u ∈ L1, v ∈ L∞.

PPP (i) By (a), (Tv)(u) is well-defined for u ∈ L1, v ∈ L∞. (ii) If v ∈ L∞, u, u1, u2 ∈ L1 and c ∈ R, then

(Tv)(u1 + u2) =

∫

(u1 + u2)× v =

∫

(u1 × v) + (u2 × v)

=

∫

u1 × v +

∫

u2 × v = (Tv)(u1) + (Tv)(u2),

(Tv)(cu) =
∫

cu× v =
∫

c(u× v) = c
∫

u× v = c(Tv)(u).

This shows that Tv : L1 → R is a linear functional for each v ∈ L∞. (iii) Next, for any u ∈ L1 and v ∈ L∞,

|(Tv)(u)| = |
∫

u× v| ≤ ‖u× v‖1 ≤ ‖u‖1‖v‖∞,

as remarked in (a). This means that Tv ∈ (L1)∗ and ‖Tv‖ ≤ ‖v‖∞ for every v ∈ L∞. (iv) If v, v1, v2 ∈ L∞,
u ∈ L1 and c ∈ R, then

T (v1 + v2)(u) =

∫

(v1 + v2)× u =

∫

(v1 × u) + (v2 × u)

=

∫

v1 × u+

∫

v2 × u = (Tv1)(u) + (Tv2)(u)

= (Tv1 + Tv2)(u),

T (cv)(u) =
∫

cv × u = c
∫

v × u = c(Tv)(u) = (cTv)(u).

As u is arbitrary, T (v1 + v2) = Tv1 + Tv2 and T (cv) = c(Tv); thus T : L∞ → (L1)∗ is linear. (v) Recalling
from (iii) that ‖Tv‖ ≤ ‖v‖∞ for every v ∈ L∞, we see that ‖T‖ ≤ 1. QQQ

(c) Exactly the same arguments show that we have a linear operator T ′ : L1 → (L∞)∗, given by writing

(T ′u)(v) =
∫

u× v for all u ∈ L1, v ∈ L∞,

and that ‖T ′‖ also is at most 1.

243G Theorem Let (X,Σ, µ) be a measure space, and T : L∞(µ) → (L1(µ))∗ the canonical map
described in 243F. Then

(a) T is injective iff (X,Σ, µ) is semi-finite, and in this case is norm-preserving;
(b) T is bijective iff (X,Σ, µ) is localizable, and in this case is a normed space isomorphism.

proof (a)(i) Suppose that T is injective, and that E ∈ Σ has µE = ∞. Then χE is not equal almost
everywhere to 0, so (χE)• 6= 0 in L∞, and T (χE)• 6= 0; let u ∈ L1 be such that T (χE)•(u) 6= 0, that is,
∫

u × (χE)• 6= 0. Express u as f• where f is integrable; then
∫

E
f 6= 0 so

∫

E
|f | 6= 0. Let g be a simple

function such that 0 ≤ g ≤a.e. |f | and
∫

g >
∫

|f | −
∫

E
|f |; then

∫

E
g 6= 0. Express g as

∑n
i=0 aiχEi where

µEi < ∞ for each i; then 0 6=
∑n

i=0 aiµ(Ei ∩ E), so there is an i ≤ n such that µ(E ∩ Ei) 6= 0, and now
E ∩ Ei is a measurable subset of E of non-zero finite measure.

As E is arbitrary, this shows that (X,Σ, µ) must be semi-finite if T is injective.

(ii) Now suppose that (X,Σ, µ) is semi-finite, and that v ∈ L∞ is non-zero. Express v as g• where
g : X → R is measurable; then g ∈ L

∞. Take any a ∈ ]0, ‖v‖∞[; then E = {x : |g(x)| ≥ a} has non-zero
measure. Let F ⊆ E be a measurable set of non-zero finite measure, and set f(x) = |g(x)|/g(x) if x ∈ F , 0
otherwise; then f ∈ L

1 and (f × g)(x) ≥ a for x ∈ F , so, setting u = f• ∈ L1, we have
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(Tv)(u) =
∫

u× v =
∫

f × g ≥ aµF = a
∫

|f | = a‖u‖1 > 0.

This shows that ‖Tv‖ ≥ a; as a is arbitrary, ‖Tv‖ ≥ ‖v‖∞. We know already from 243F that ‖Tv‖ ≤ ‖v‖∞,
so ‖Tv‖ = ‖v‖∞ for every non-zero v ∈ L∞; the same is surely true for v = 0, so T is norm-preserving and
injective.

(b)(i) Using (a) and the definition of ‘localizable’, we see that under either of the conditions proposed
(X,Σ, µ) is semi-finite and T is injective and norm-preserving. I therefore have to show just that it is
surjective iff (X,Σ, µ) is localizable.

(ii) Suppose that T is surjective and that E ⊆ Σ. Let F be the family of finite unions of members of
E , counting ∅ as the union of no members of E , so that F is closed under finite unions and, for any G ∈ Σ,
E \G is negligible for every E ∈ E iff E \G is negligible for every E ∈ F .

If u ∈ L1, then h(u) = limE∈F,E↑

∫

E
u exists in R. PPP If u is non-negative, then

h(u) = sup{
∫

E
u : E ∈ F} ≤

∫

u <∞.

For other u, we can express u as u1 − u2, where u1 and u2 are non-negative, and now h(u) = h(u1)− h(u2).
QQQ

Evidently h : L1 → R is linear, being a limit of the linear functionals u 7→
∫

E
u, and also

|h(u)| ≤ supE∈F |
∫

E
u| ≤

∫

|u|

for every u, so h ∈ (L1)∗. Since we are supposing that T is surjective, there is a v ∈ L∞ such that Tv = h.
Express v as g• where g : X → R is measurable and essentially bounded. Set G = {x : g(x) > 0} ∈ Σ.

If F ∈ Σ and µF <∞, then
∫

F
g =

∫

(χF )• × g• = (Tv)(χF )• = h(χF )• = supE∈F µ(E ∩ F ).

??? If E ∈ E and E \G is not negligible, then there is a set F ⊆ E \G such that 0 < µF <∞; now

µF = µ(E ∩ F ) ≤
∫

F
g ≤ 0,

as g(x) ≤ 0 for x ∈ F . XXX Thus E \G is negligible for every E ∈ E .
Let H ∈ Σ be such that E \H is negligible for every E ∈ E . ??? If G \H is not negligible, there is a set

F ⊆ G \H of non-zero finite measure. Now

µ(E ∩ F ) ≤ µ(H ∩ F ) = 0

for every E ∈ E , so µ(E ∩ F ) = 0 for every E ∈ F , and
∫

F
g = 0; but g(x) > 0 for every x ∈ F , so µF = 0,

which is impossible. XXX Thus G \H is negligible.
Accordingly G is an essential supremum of E in Σ. As E is arbitrary, (X,Σ, µ) is localizable.

(iii) For the rest of this proof, I will suppose that (X,Σ, µ) is localizable and seek to show that T is
surjective.

Take h ∈ (L1)∗ such that ‖h‖ = 1. Write Σf = {F : F ∈ Σ, µF <∞}, and for F ∈ Σf define νF : Σ → R

by setting

νFE = h(χ(E ∩ F )•)

for every E ∈ Σ. Then νF ∅ = h(0) = 0, and if E, E′ ∈ Σ are disjoint

νFE + νFE
′ = h(χ(E ∩ F )•) + h(χ(E′ ∩ F )•) = h((χ(E ∩ F ) + χ(E′ ∩ F ))•)

= h(χ((E ∪ E′) ∩ F )•) = νF (E ∪ E′).

Thus νF is additive. Also

|νFE| ≤ ‖χ(E ∩ F )•‖1 = µ(E ∩ F )

for every E ∈ Σ, so νF is truly continuous in the sense of 232Ab. By the Radon-Nikodým theorem (232E),
there is an integrable function gF such that

∫

E
gF = νFE for every E ∈ Σ; we may take it that gF is

measurable and has domain X (232He).

(iv) It is worth noting that |gF | ≤ 1 a.e. PPP If G = {x : gF (x) > 1}, then
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∫

G
gF = νFG ≤ µ(F ∩G) ≤ µG;

but this is possible only if µG = 0. Similarly, if G′ = {x : gF (x) < −1}, then
∫

G′
gF = νFG

′ ≥ −µG′,

so again µG′ = 0. QQQ

(v) If F , F ′ ∈ Σf , then gF = gF ′ almost everywhere in F ∩ F ′. PPP If E ∈ Σ and E ⊆ F ∩ F ′, then
∫

E
gF = h(χ(E ∩ F )•) = h(χ(E ∩ F ′)•) =

∫

E
gF ′ .

So 131Hb gives the result. QQQ 213N (applied to {gF ↾F : F ∈ Σf}) now tells us that, because µ is localizable,
there is a measurable function g : X → R such that g = gF almost everywhere in F , for every F ∈ Σf .

(vi) For any F ∈ Σf , the set

{x : x ∈ F, |g(x)| > 1} ⊆ {x : |gF (x)| > 1} ∪ {x : x ∈ F, g(x) 6= gF (x)}

is negligible; because µ is semi-finite, {x : |g(x)| > 1} is negligible, and g ∈ L
∞, with ess sup |g| ≤ 1.

Accordingly v = g• ∈ L∞, and we may speak of Tv ∈ (L1)∗.

(vii) If F ∈ Σf , then
∫

F
g =

∫

F
gF = νFX = h(χF •).

It follows at once that

(Tv)(f•) =
∫

f × g = h(f•)

for every simple function f : X → R. Consequently Tv = h, because both Tv and h are continuous and the
equivalence classes of simple functions form a dense subset of L1 (242Mb, 2A3Uc). Thus h = Tv is a value
of T .

(viii) The argument as written above has assumed that ‖h‖ = 1. But of course any non-zero member
of (L1)∗ is a scalar multiple of an element of norm 1, so is a value of T . So T : L∞ → (L1)∗ is indeed
surjective, and is therefore an isometric isomorphism, as claimed.

243H Recall that L0 is always Dedekind σ-complete and sometimes Dedekind complete (241G), while
L1 is always Dedekind complete (242H). In this respect L∞ follows L0.

Theorem Let (X,Σ, µ) be a measure space.
(a) L∞(µ) is Dedekind σ-complete.
(b) If µ is localizable, L∞(µ) is Dedekind complete.

proof These are both consequences of 241G. If A ⊆ L∞ = L∞(µ) is bounded above in L∞, fix u0 ∈ A and
an upper bound w0 of A in L∞. If B is the set of upper bounds for A in L0 = L0(µ), then B ∩ L∞ is the
set of upper bounds for A in L∞. Moreover, if B has a least member v0, then we must have u0 ≤ v0 ≤ w0,
so that

0 ≤ v0 − u0 ≤ w0 − u0 ∈ L∞

and v0 − u0, v0 belong to L∞. (Compare part (a) of the proof of 242H.) Thus v0 = supA in L∞.
Now we know that L0 is Dedekind σ-complete; if A ⊆ L∞ is a non-empty countable set which is bounded

above in L∞, it is surely bounded above in L0, so has a supremum in L0 which is also its supremum in L∞.
As A is arbitrary, L∞ is Dedekind σ-complete. While if µ is localizable, we can argue in the same way with
arbitrary non-empty subsets of L∞ to see that L∞ is Dedekind complete because L0 is.

243I A dense subspace of L∞ In 242M and 242O I described a couple of important dense linear
subspaces of L1 spaces. The position concerning L∞ is a little different. However I can describe one
important dense subspace.

Proposition Let (X,Σ, µ) be a measure space.

D.H.Fremlin



26 Function spaces 243I

(a) Write S for the space of ‘Σ-simple’ functions on X, that is, the space of functions from X to R

expressible as
∑n

k=0 akχEk where ak ∈ R and Ek ∈ Σ for every k ≤ n. Then for every f ∈ L
∞ = L

∞(µ)
and every ǫ > 0, there is a g ∈ S such that ess sup |f − g| ≤ ǫ.

(b) S = {f• : f ∈ S} is a ‖ ‖∞-dense linear subspace of L∞ = L∞(µ).
(c) If (X,Σ, µ) is totally finite, then S is the space of µ-simple functions, so S becomes just the space of

equivalence classes of simple functions, as in 242Mb.

proof (a) Let f̃ : X → R be a bounded measurable function such that f =a.e. f̃ . Let n ∈ N be such that
|f(x)| ≤ nǫ for every x ∈ X. For −n ≤ k ≤ n set

Ek = {x : kǫ ≤ f̃(x) < k + 1)ǫ.

Set

g =
∑n

k=−n kǫχEk ∈ S;

then 0 ≤ f̃(x)− g(x) ≤ ǫ for every x ∈ X, so

ess sup |f − g| = ess sup |f̃ − g| ≤ ǫ.

(b) This follows immediately, as in 242Mb.

(c) also is elementary.

243J Conditional expectations Conditional expectations are so important that it is worth considering
their interaction with every new concept.

(a) If (X,Σ, µ) is any measure space, and T is a σ-subalgebra of Σ, then the canonical embedding
S : L0(µ↾T) → L0(µ) (242Ja) embeds L∞(µ↾T) as a subspace of L∞(µ), and ‖Su‖∞ = ‖u‖∞ for every
u ∈ L∞(µ↾T). As in 242Jb, we can identify L∞(µ↾T) with its image in L∞(µ).

(b) Now suppose that µX = 1, and let P : L1(µ) → L1(µ↾T) be the conditional expectation operator
(242Jd). Then L∞(µ) is actually a linear subspace of L1(µ). Setting e = χX• ∈ L∞(µ), we see that
∫

F
e = (µ↾T)(F ) for every F ∈ T, so

Pe = χX• ∈ L∞(µ↾T).

If u ∈ L∞(µ), then setting M = ‖u‖∞ we have −Me ≤ u ≤ Me, so −MPe ≤ Pu ≤ MPe, because P is
order-preserving (242Je); accordingly ‖Pu‖∞ ≤ M = ‖u‖∞. Thus P ↾L∞(µ) : L∞(µ) → L∞(µ↾T) is an
operator of norm 1.

If u ∈ L∞(µ↾T), then Pu = u; so P [L∞] is the whole of L∞(µ↾T).

243K Complex L∞ All the ideas needed to adapt the work above to complex L∞ spaces have already
appeared in 241J and 242P. Let L∞

C be

{f : f ∈ L
0
C, ess sup |f | <∞} = {f : Re(f) ∈ L

∞, Im(f) ∈ L
∞}.

Then

L∞
C = {f• : f ∈ L

∞
C } = {u : u ∈ L0

C, Re(u) ∈ L∞, Im(u) ∈ L∞}.

Setting

‖u‖∞ = ‖|u|‖∞= ess sup |f | whenever f• = u,

we have a norm on L∞
C rendering it a Banach space. We still have u× v ∈ L∞

C and ‖u× v‖∞ ≤ ‖u‖∞‖v‖∞
for all u, v ∈ L∞

C .
We now have a duality between L1

C and L∞
C giving rise to a linear operator T : L∞

C → (L1
C)

∗ of norm at
most 1, defined by the formula

(Tv)(u) =
∫

u× v for every u ∈ L1, v ∈ L∞.

T is injective iff the underlying measure space is semi-finite, and is a bijection iff the underlying measure
space is localizable. (This can of course be proved by re-working the arguments of 243G; but it is perhaps
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easier to note that T (Re(v)) = Re(Tv), T (Im(v)) = Im(Tv) for every v, so that the result for complex
spaces can be deduced from the result for real spaces.) To check that T is norm-preserving when it is
injective, the quickest route seems to be to imitate the argument of (a-ii) of the proof of 243G.

243X Basic exercises (a) Let (X,Σ, µ) be any measure space, and µ̂ the completion of µ (212C, 241Xb).
Show that L∞(µ̂) = L

∞(µ) and L∞(µ̂) = L∞(µ).

>>>(b) Let (X,Σ, µ) be a non-empty measure space. Write L
∞
Σ for the space of bounded Σ-measurable

real-valued functions with domain X. (i) Show that L∞(µ) = {f• : f ∈ L
∞
Σ } ⊆ L0 = L0(µ). (ii) Show that

L
∞
Σ is a Dedekind σ-complete Banach lattice if we give it the norm

‖f‖∞ = supx∈X |f(x)| for every f ∈ L
∞
Σ .

(iii) Show that for every u ∈ L∞ = L∞(µ), ‖u‖∞ = min{‖f‖∞ : f ∈ L
∞
Σ , f

• = u}.

>>>(c) Let (X,Σ, µ) be any measure space, and A a subset of L∞(µ). Show that A is bounded for the
norm ‖ ‖∞ iff it is bounded above and below for the ordering of L∞.

(d) Let (X,Σ, µ) be any measure space, and A ⊆ L∞(µ) a non-empty set with a least upper bound w in
L∞(µ). Show that ‖w‖∞ ≤ supu∈A ‖u‖∞.

(e) Let 〈(Xi,Σi, µi)〉i∈I be a family of measure spaces, and (X,Σ, µ) their direct sum (214L). Show that
the canonical isomorphism between L0(µ) and

∏

i∈I L
0(µi) (241Xd) induces an isomorphism between L∞(µ)

and the subspace

{u : u ∈
∏

i∈I L
∞(µi), ‖u‖ = supi∈I ‖u(i)‖∞ <∞}

of
∏

i∈I L
∞(µi).

(f) Let (X,Σ, µ) be any measure space, and u ∈ L1(µ). Show that there is a v ∈ L∞(µ) such that
‖v‖∞ ≤ 1 and

∫

u× v = ‖u‖1.

(g) Let (X,Σ, µ) be a semi-finite measure space and v ∈ L∞(µ). Show that

‖v‖∞ = sup{
∫

u× v : u ∈ L1, ‖u‖1 ≤ 1} = sup{‖u× v‖1 : u ∈ L1, ‖u‖1 ≤ 1}.

(h) Give an example of a probability space (X,Σ, µ) and a v ∈ L∞(µ) such that ‖u × v‖1 < ‖v‖∞
whenever u ∈ L1(µ) and ‖u‖1 ≤ 1.

(i) Write out proofs of 243G adapted to the special cases (i) µX = 1 (ii) (X,Σ, µ) is σ-finite.

(j) Let (X,Σ, µ) be any measure space. Show that L0(µ) is Dedekind complete iff L∞(µ) is Dedekind
complete.

(k) Let (X,Σ, µ) be a totally finite measure space and ν : Σ → R a functional. Show that the following
are equiveridical: (i) there is a continuous linear functional h : L1(µ) → R such that h((χE)•) = νE for
every E ∈ Σ (ii) ν is additive and there is an M ≥ 0 such that |νE| ≤MµE for every E ∈ Σ.

>>>(l) Let X be any set, and let µ be counting measure on X. In this case it is customary to write ℓ∞(X)
for L

∞(µ), and to identify it with L∞(µ). Write out statements and proofs of the results of this chapter
adapted to this special case – if you like, with X = N. In particular, write out a direct proof that (ℓ1)∗ can
be identified with ℓ∞. What happens when X has just two members? or three?

(m) Show that if (X,Σ, µ) is any measure space and u ∈ L∞
C (µ), then

‖u‖∞ = sup{‖Re(ζu)‖∞ : ζ ∈ C, |ζ| = 1}.

(n) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and φ : X → Y an inverse-measure-preserving function.
Show that gφ ∈ L

∞(µ) for every g ∈ L
∞(ν), and that the map g 7→ gφ induces a linear operator T : L∞(ν) →

L∞(µ) defined by setting T (g•) = (gφ)• for every g ∈ L
∞(ν). (Compare 241Xg.) Show that ‖Tv‖∞ = ‖v‖∞

for every v ∈ L∞(ν).
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(o) For f , g ∈ C = C([0, 1]), the space of continuous real-valued functions on the unit interval [0, 1], say

f ≤ g iff f(x) ≤ g(x) for every x ∈ [0, 1],

‖f‖∞ = supx∈[0,1] |f(x)|.

Show that C is a Banach lattice, and that moreover

‖f ∨ g‖∞ = max(‖f‖∞, ‖g‖∞) whenever f , g ≥ 0,

‖f × g‖∞ ≤ ‖f‖∞‖g‖∞ for all f , g ∈ C,

‖f‖∞ = min{γ : |f | ≤ γχX} for every f ∈ C.

243Y Further exercises (a) Let (X,Σ, µ) be a measure space, and Y a subset of X; write µY for the
subspace measure on Y . Show that the canonical map from L0(µ) onto L0(µY ) (241Yg) induces a canonical
map from L∞(µ) onto L∞(µY ), which is norm-preserving iff it is injective iff Y has full outer measure.

243 Notes and comments I mention the formula

‖u ∨ v‖∞ = max(‖u‖∞, ‖v‖∞) for u, v ≥ 0

(243Df) because while it does not characterize L∞ spaces among Banach lattices (see 243Xo), it is in a sense
dual to the characteristic property

‖u+ v‖1 = ‖u‖1 + ‖v‖1 for u, v ≥ 0

of the norm of L1. (I will return to this in Chapter 35 in the next volume.)
The particular set L

∞ I have chosen (243A) is somewhat arbitrary. The space L∞ can very well be
described entirely as a subspace of L0, without going back to functions at all; see 243Bc, 243Dc. Just as
with L

0 and L
1, there are occasions when it would be simpler to work with the linear space of essentially

bounded measurable functions from X to R; and we now have a third obvious candidate, the linear space
L

∞
Σ of measurable functions from X to R which are literally, rather than essentially, bounded, which is itself

a Banach lattice (243Xb).
I suppose the most important theorem of this section is 243G, identifying L∞ with (L1)∗. This identifi-

cation is the chief reason for setting ‘localizable’ measure spaces apart. The proof of 243Gb is long because
it depends on two separate ideas. The Radon-Nikodým theorem deals, in effect, with the totally finite case,
and then in parts (b-v) and (b-vi) of the proof localizability is used to link the partial solutions gF together.
Exercise 243Xi is supposed to help you to distinguish the two operations. The map T ′ : L1 → (L∞)∗ (243Fc)
is also very interesting in its way, but I shall leave it for Chapter 36.

243G gives another way of looking at conditional expectation operators. If (X,Σ, µ) is a probability
space and T is a σ-subalgebra of Σ, of course both µ and µ↾T are localizable, so L∞(µ) can be identified
with (L1(µ))∗ and L∞(µ↾T) can be identified with (L1(µ↾T))∗. Now we have the canonical embedding
S : L1(µ↾T) → L1(µ) (242Jb) which is a norm-preserving linear operator, so gives rise to an adjoint
operator S′ : L1(µ)∗ → L1(µ↾T)∗ defined by the formula

(S′h)(v) = h(Sv) for all v ∈ L1(µ↾T), h ∈ L1(µ)∗.

Writing Tµ : L∞(µ) → L1(µ)∗ and Tµ↾T : L∞(µ↾T) → L1(µ↾T)∗ for the canonical maps, we get a map

Q = T−1
µ↾TS

′Tµ : L∞(µ) → L∞(µ↾T), defined by saying that
∫

Qu× v = (Tµ↾TQu)(v) = (S′Tµu)(v) = (Tµv)(Su) =
∫

Su× v =
∫

u× v

whenever v ∈ L1(µ↾T) and u ∈ L∞(µ). But this agrees with the formula of 242L: we have
∫

Qu× v =
∫

u× v =
∫

P (u× v) =
∫

Pu× v.

Because v is arbitrary, we must have Qu = Pu for every u ∈ L∞(µ). Thus a conditional expectation
operator is, in a sense, the adjoint of the appropriate embedding operator.

The discussion in the last paragraph applies, of course, only to the restriction P ↾L∞(µ) of the conditional
expectation operator to the L∞ space. Because µ is totally finite, L∞(µ) is a subspace of L1(µ), and the
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real qualities of the operator P are related to its behaviour on the whole space L1. P : L1(µ) → L1(µ↾T)
can also be expressed as an adjoint operator, but the expression needs more of the theory of Riesz spaces
than I have space for here. I will return to this topic in Chapter 36.

Version of 6.3.09

244 Lp

Continuing with our tour of the classical Banach spaces, we come to the Lp spaces for 1 < p < ∞. The
case p = 2 is more important than all the others put together, and it would be reasonable, perhaps even
advisable, to read this section first with this case alone in mind. But the other spaces provide instructive
examples and remain a basic part of the education of any functional analyst.

244A Definitions Let (X,Σ, µ) be any measure space, and p ∈ ]1,∞[. Write L
p = L

p(µ) for the set of
functions f ∈ L

0 = L
0(µ) such that |f |p is integrable, and Lp = Lp(µ) for {f• : f ∈ L

p} ⊆ L0 = L0(µ).
Note that if f ∈ L

p, g ∈ L
0 and f =a.e. g, then |f |p =a.e. |g|

p so |g|p is integrable and g ∈ L
p; thus

L
p = {f : f ∈ L

0, f• ∈ Lp}.
Alternatively, we can define up whenever u ∈ L0, u ≥ 0 by writing (f•)p = (fp)• for every f ∈ L

0 such
that f(x) ≥ 0 for every x ∈ dom f (compare 241I), and say that Lp = {u : u ∈ L0, |u|p ∈ L1(µ)}.

244B Theorem Let (X,Σ, µ) be any measure space, and p ∈ [1,∞].
(a) Lp = Lp(µ) is a linear subspace of L0 = L0(µ).
(b) If u ∈ Lp, v ∈ L0 and |v| ≤ |u|, then v ∈ Lp. Consequently |u|, u∨ v and u∧ v belong to Lp for all u,

v ∈ Lp.

proof The cases p = 1, p = ∞ are covered by 242B, 242C and 243B; so I suppose that 1 < p <∞.

(a)(i) Suppose that f , g ∈ L
p = L

p(µ). If a, b ∈ R then |a + b|p ≤ 2p max(|a|p, |b|p), so |f + g|p ≤a.e.

2p(|f |p∨ |g|p); now |f + g|p ∈ L
0 and 2p(|f |p∨ |g|p) ∈ L

1 so |f + g|p ∈ L
1. Thus f + g ∈ L

p for all f , g ∈ L
p;

it follows at once that u+ v ∈ Lp for all u, v ∈ Lp.

(ii) If f ∈ L
p and c ∈ R then |cf |p = |c|p|f |p ∈ L

1, so cf ∈ L
p. Accordingly cu ∈ Lp whenever u ∈ Lp

and c ∈ R.

(b)(i) Express u as f• and v as g•, where f ∈ L
p and g ∈ L

0. Then |g| ≤a.e. |f |, so |g|p ≤a.e. |f |
p and

|g|p is integrable; accordingly g ∈ L
p and v ∈ Lp.

(ii) Now | |u| | = |u| so |u| ∈ Lp whenever u ∈ Lp. Finally u ∨ v = 1
2 (u + v + |u − v|) and u ∧ v =

1
2 (u+ v − |u− v|) belong to Lp for all u, v ∈ Lp.

244C The order structure of Lp Let (X,Σ, µ) be any measure space, and p ∈ [1,∞]. Then 244B is
enough to ensure that the partial order inherited from L0(µ) makes Lp(µ) a Riesz space (compare 242C,
243C).

244D The norm of Lp Let (X,Σ, µ) be a measure space, and p ∈ ]1,∞[.

(a) For f ∈ L
p = L

p(µ), set ‖f‖p = (
∫

|f |p)1/p. If f , g ∈ L
p and f =a.e. g then |f |p =a.e. |g|p so

‖f‖p = ‖g‖p. Accordingly we may define ‖ ‖p : Lp = Lp(µ) → [0,∞[ by writing ‖f•‖p = ‖f‖p for every
f ∈ L

p.
Alternatively, we can say just that ‖u‖p = (

∫

|u|p)1/p for every u ∈ Lp = Lp(µ).

(b) The notation ‖ ‖p carries a promise that it is a norm on Lp; this is indeed so, but I hold the proof
over to 244F below. For the moment, however, let us note just that ‖cu‖p = |c|‖u‖p for all u ∈ Lp and
c ∈ R, and that if ‖u‖p = 0 then

∫

|u|p = 0 so |u|p = 0 and u = 0.

c© 1995 D. H. Fremlin
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(c) If |u| ≤ |v| in Lp then ‖u‖p ≤ ‖v‖p; this is because |u|p ≤ |v|p.

244E I now work through the lemmas required to show that ‖ ‖p is a norm on Lp and, eventually, that
the normed space dual of Lp may be identified with a suitable Lq.

Lemma Suppose (X,Σ, µ) is a measure space, and that p, q ∈ ]1,∞[ are such that 1
p + 1

q = 1.

(a) ab ≤ 1
pa

p + 1
q b

q for all real a, b ≥ 0.

(b)(i) f × g is integrable and

|
∫

f × g| ≤
∫

|f × g| ≤ ‖f‖p‖g‖q

for all f ∈ L
p = L

p(µ), g ∈ L
q = L

q(µ);
(ii) u× v ∈ L1 = L1(µ) and

|
∫

u× v| ≤ ‖u× v‖1 ≤ ‖u‖p‖v‖q

for all u ∈ Lp = Lp(µ), v ∈ Lq = Lq(µ).

proof (a) If either a or b is 0, this is trivial. If both are non-zero, we may argue as follows. The function
x 7→ x1/p : [0,∞[ → R is concave, with second derivative strictly less than 0, so lies entirely below any of its
tangents; in particular, below its tangent at the point (1, 1), which has equation y = 1+ 1

p (x− 1). Thus we

have

x1/p ≤
1

p
x+ 1−

1

p
=

1

p
x+

1

q

for every x ∈ [0,∞[. So if c, d > 0, then

(
c

d
)1/p ≤

1

p

c

d
+

1

q
;

multiplying both sides by d,

c1/pd1/q ≤
1

p
c+

1

q
d;

setting c = ap and d = bq, we get

ab ≤
1

p
ap +

1

q
bq,

as claimed.

(b)(i)(α) Suppose first that ‖f‖p = ‖g‖q = 1. For every x ∈ dom f ∩ dom g we have

|f(x)g(x)| ≤
1

p
|f(x)|p +

1

q
|g(x)|q

by (a). So

|f × g| ≤a.e.
1

p
|f |p +

1

q
|g|q ∈ L

1(µ)

and f × g is integrable; also
∫

|f × g| ≤
1

p

∫

|f |p +
1

q

∫

|g|q =
1

p
‖f‖pp +

1

q
‖g‖qq =

1

p
+

1

q
= 1.

(β) If ‖f‖p = 0, then
∫

|f |p = 0 so |f |p =a.e. 0, f =a.e. 0, f × g =a.e. 0 and
∫

|f × g| = 0 = ‖f‖p‖g‖q.

Similarly, if ‖g‖q = 0, then g =a.e. 0 and again
∫

|f × g| = 0 = ‖f‖p‖g‖q.

(γ) Finally, for general f ∈ L
p, g ∈ L

q such that c = ‖f‖p and d = ‖g‖q are both non-zero, we have
‖ 1
cf‖p = ‖ 1

dg‖q = 1 so

f × g = cd(
1

c
f ×

1

d
g)
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is integrable, and
∫

|f × g| = cd
∫

|
1

c
f ×

1

d
g| ≤ cd,

as required.

(ii) Now if u ∈ Lp, v ∈ Lq take f ∈ L
p, g ∈ L

q such that u = f• and v = g•; f × g is integrable, so
u× v ∈ L1, and

|
∫

u× v| ≤ ‖u× v‖1 =
∫

|f × g| ≤ ‖f‖p‖g‖q = ‖u‖p‖v‖q.

Remark Part (b) is ‘Hölder’s inequality’. In the case p = q = 2 it is ‘Cauchy’s inequality’.

244F Proposition Let (X,Σ, µ) be a measure space and p ∈ ]1,∞[. Set q = p/(p−1), so that 1
p +

1
q = 1.

(a) For every u ∈ Lp = Lp(µ), ‖u‖p = max{
∫

u× v : v ∈ Lq(µ), ‖v‖q ≤ 1}.
(b) ‖ ‖p is a norm on Lp.

proof (a) For u ∈ Lp, set

τ(u) = sup{
∫

u× v : v ∈ Lq(µ), ‖v‖q ≤ 1}.

By 244E(b-ii), ‖u‖p ≥ τ(u). If ‖u‖p = 0 then surely

0 = ‖u‖p = τ(u) = max{
∫

u× v : v ∈ Lq(µ), ‖v‖q ≤ 1}.

If ‖u‖p = c > 0, consider

v = c−p/q sgnu× |u|p/q,

where for a ∈ R I write sgn a = |a|/a if a 6= 0, 0 if a = 0, so that sgn : R → R is a Borel measurable
function; for f ∈ L

0 I write (sgn f)(x) = sgn(f(x)) for x ∈ dom f , so that sgn f ∈ L
0; and for f ∈ L

0 I write
sgn(f•) = (sgn f)• to define a function sgn : L0 → L0 (cf. 241I). Then v ∈ Lq = Lq(µ) and

‖v‖q = (
∫

|v|q)1/q = c−p/q(
∫

|u|p)1/q = c−p/qcp/q = 1.

So

τ(u) ≥

∫

u× v = c−p/q

∫

sgnu× |u| × sgnu× |u|p/q

= c−p/q

∫

|u|1+
p
q = c−p/q

∫

|u|p = cp−
p
q = c,

recalling that 1 + p
q = p, p− p

q = 1. Thus τ(u) ≥ ‖u‖p and

τ(u) = ‖u‖p =
∫

u× v.

(b) In view of the remarks in 244Db, I have only to check that ‖u+ v‖p ≤ ‖u‖p + ‖v‖p for all u, v ∈ Lp.
But given u and v, let w ∈ Lq be such that ‖w‖q = 1 and

∫

(u+ v)× w = ‖u+ v‖p. Then

‖u+ v‖p =
∫

(u+ v)× w =
∫

u× w +
∫

v × w ≤ ‖u‖p + ‖v‖p,

as required.

Remark The triangle inequality ‘‖u+ v‖p ≤ ‖u‖p + ‖v‖p’ is Minkowski’s inequality.

244G Theorem Let (X,Σ, µ) be any measure space, and p ∈ [1,∞]. Then Lp = Lp(µ) is a Banach
lattice under its norm ‖ ‖p.

proof The cases p = 1, p = ∞ are covered by 242F and 243E, so let us suppose that 1 < p <∞. We know
already that ‖u‖p ≤ ‖v‖p whenever |u| ≤ |v|, so it remains only to show that Lp is complete.

Let 〈un〉n∈N be a sequence in Lp such that ‖un+1 − un‖p ≤ 4−n for every n ∈ N. Note that

‖un‖p ≤ ‖u0‖p +
∑n−1

k=0 ‖uk+1 − uk‖p ≤ ‖u0‖p +
∑∞

k=0 4
−k ≤ ‖u0‖p + 2
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for every n. For each n ∈ N, choose fn ∈ L
p such that f•

0 = u0, f
•

n = un − un−1 for n ≥ 1; do this in such a
way that dom fn = X and fn is Σ-measurable (241Bk). Then ‖fn‖p ≤ 4−n+1 for n ≥ 1.

For m, n ∈ N, set

Emn = {x : |fm(x)| ≥ 2−n} ∈ Σ.

Then |fm(x)|p ≥ 2−np for x ∈ Emn, so

2−npµEmn ≤
∫

|fm|p <∞

and µEmn <∞. So χEmn ∈ L
q = L

q(µ) and
∫

Emn

|fk| =
∫

|fk| × χEmn ≤ ‖fk‖p‖χEmn‖q

for each k, by 244E(b-i). Accordingly
∑∞

k=0

∫

Emn

|fk| ≤ ‖χEmn‖q
∑∞

k=0 ‖fk‖p <∞,

and
∑∞

k=0 fk(x) exists for almost every x ∈ Emn, by 242E. This is true for all m, n ∈ N. But if x ∈
X \

⋃

m,n∈NEmn, fn(x) = 0 for every n, so
∑∞

k=0 fk(x) certainly exists. Thus g(x) =
∑∞

k=0 fk(x) is defined
in R for almost every x ∈ X.

Set gn =
∑n

k=0 fk; then g
•

n = un ∈ Lp for each n, and g(x) = limn→∞ gn(x) is defined for almost every
x. Now consider |g|p =a.e. limn→∞ |gn|

p. We know that

lim infn→∞

∫

|gn|
p = lim infn→∞ ‖un‖

p
p ≤ (2 + ‖u0‖p)

p <∞,

so by Fatou’s Lemma
∫

|g|p ≤ lim infk→∞

∫

|gk|
p <∞.

Thus u = g• ∈ Lp. Moreover, for any m ∈ N,

∫

|g − gm|p ≤ lim inf
n→∞

∫

|gn − gm|p = lim inf
n→∞

‖un − um‖pp

≤ lim inf
n→∞

n−1
∑

k=m

4−kp =
∞
∑

k=m

4−kp = 4−mp/(1− 4−p).

So

‖u− um‖p = (
∫

|g − gm|p)1/p ≤ 4−m/(1− 4−p)1/p → 0

as m→ ∞. Thus u = limm→∞ um in Lp. As 〈un〉n∈N is arbitrary, Lp is complete.

244H Following 242M and 242O, I note that Lp behaves like L1 in respect of certain dense subspaces.

Proposition (a) Let (X,Σ, µ) be any measure space, and p ∈ [1,∞[. Then the space S of equivalence
classes of µ-simple functions is a dense linear subspace of Lp = Lp(µ).

(b) Let X be any subset of Rr, where r ≥ 1, and let µ be the subspace measure on X induced by Lebesgue
measure on Rr. Write Ck for the set of (bounded) continuous functions g : Rr → R such that {x : g(x) 6= 0}
is bounded, and S0 for the space of linear combinations of functions of the form χI, where I ⊆ Rr is a
bounded half-open interval. Then {(g↾X)• : g ∈ Ck} and {(h↾X)• : h ∈ S0} are dense in Lp(µ).

proof (a) I repeat the argument of 242M with a tiny modification.

(i) Suppose that u ∈ Lp(µ), u ≥ 0 and ǫ > 0. Express u as f• where f : X → [0,∞[ is a measurable
function. Let g : X → R be a simple function such that 0 ≤ g ≤ fp and

∫

g ≥
∫

fp − ǫp. Set h = g1/p.
Then h is a simple function and h ≤ f . Because p > 1, (f − h)p + hp ≤ fp and

∫

(f − h)p ≤
∫

fp − g ≤ ǫp,

so

‖u− h•‖p = (
∫

|f − h|p)1/p ≤ ǫ,

while h• ∈ S.
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(ii) For general u ∈ Lp, ǫ > 0, u can be expressed as u+ − u− where u+ = u∨ 0, u− = (−u)∨ 0 belong
to Lp and are non-negative. By (i), we can find v1, v2 ∈ S such that ‖u+ − v1‖p ≤ 1

2ǫ and ‖u− − v2‖p ≤ 1
2ǫ,

so that v = v1 − v2 ∈ S and ‖u− v‖p ≤ ǫ. As u and ǫ are arbitrary, S is dense.

(b) Again, all the ideas are to be found in 242O; the changes needed are in the formulae, not in the
method. They will go more easily if I note at the outset that whenever f1, f2 ∈ L

p(µ) and
∫

|f1|
p ≤ ǫp,

∫

|f2|
p ≤ δp (where ǫ, δ ≥ 0), then

∫

|f1+f2|
p ≤ (ǫ+δ)p; this is just the triangle inequality for ‖ ‖p (244Fb).

Also I will regularly express the target relationships in the form ‘
∫

X
|f − g|p ≤ ǫp’, ‘

∫

X
|f − g|p ≤ ǫp’. Now

let me run through the argument of 242Oa, rather more briskly than before.

(i) Suppose first that f = χI↾X where I ⊆ Rr is a bounded half-open interval. As before, we can set
h = χI and get

∫

X
|f − h|p = 0. This time, use the same construction to find an interval J and a function

g ∈ Ck such that χI ≤ g ≤ χJ and µr(J \ I) ≤ ǫp; this will ensure that
∫

X
|f − g|p ≤ ǫp.

(ii) Now suppose that f = χ(X∩E) where E ⊆ Rr is a set of finite measure. Then, for the same reasons
as before, there is a disjoint family I0, . . . , In of half-open intervals such that µr(E△

⋃

j≤n Ij) ≤ ( 12ǫ)
p.

Accordingly h =
∑n

j=0 χIj ∈ S0 and
∫

X
|f − h|p ≤ ( 12ǫ)

p. And (i) tells us that there is for each j ≤ n a

gj ∈ Ck such that
∫

X
|gj − χIj |

p ≤ (ǫ/2(n+ 1))p, so that g =
∑n

j=0 gj ∈ Ck and
∫

X
|f − g|p ≤ ǫp.

(iii) The move to simple functions, and thence to arbitrary members of Lp(µ), is just as before, but
using ‖f‖p in place of

∫

X
|f |. Finally, the translation from L

p to Lp is again direct – remembering, as before,
to check that g↾X, h↾X belong to L

p(µ) whenever g ∈ Ck and h ∈ S0.

*244I Corollary In the context of 244Hb, Lp(µ) is separable.

proof Let A be the set

{(
∑n

j=0 qjχ([aj , bj [ ∩X))• : n ∈ N, q0, . . . , qn ∈ Q, a0, . . . , an, b0, . . . , bn ∈ Qr}.

Then A is a countable subset of Lp(µ), and its closure must contain (
∑n

j=0 cjχ([aj , bj [ ∩ X))• whenever

c0, . . . , cn ∈ R and a0, . . . , an, b0, . . . , bn ∈ Rr; that is, A is a closed set including {(h↾X)• : h ∈ S0}, and is
the whole of Lp(µ), by 244Hb.

244J Duality in Lp spaces Let (X,Σ, µ) be any measure space, and p ∈ ]1,∞[. Set q = p/(p − 1);
note that 1

p + 1
q = 1 and that p = q/(q − 1); the relation between p and q is symmetric. Now u× v ∈ L1(µ)

and ‖u × v‖1 ≤ ‖u‖p‖v‖q whenever u ∈ Lp = Lp(µ) and v ∈ Lq = Lq(µ) (244E). Consequently we have a
bounded linear operator T from Lq to the normed space dual (Lp)∗ of Lp, given by writing

(Tv)(u) =
∫

u× v

for all u ∈ Lp and v ∈ Lq, exactly as in 243F.

244K Theorem Let (X,Σ, µ) be a measure space, and p ∈ ]1,∞[; set q = p/(p− 1). Then the canonical
map T : Lq(µ) → Lp(µ)∗, described in 244J, is a normed space isomorphism.

Remark I should perhaps remind anyone who is reading this section to learn about L2 that the basic
theory of Hilbert spaces yields this theorem in the case p = q = 2 without any need for the more generally
applicable argument given below (see 244N, 244Yk).

proof We know that T is a bounded linear operator of norm at most 1; I need to show (i) that T is actually
an isometry (that is, that ‖Tv‖ = ‖v‖q for every v ∈ Lq), which will show incidentally that T is injective
(ii) that T is surjective, which is the really substantial part of the theorem.

(a) If v ∈ Lq, then by 244Fa (recalling that p = q/(q − 1)) there is a u ∈ Lp such that ‖u‖p ≤ 1 and
∫

u× v = ‖v‖q; thus ‖Tv‖ ≥ (Tv)(u) = ‖v‖q. As we know already that ‖Tv‖ ≤ ‖v‖q, we have ‖Tv‖ = ‖v‖q
for every v, and T is an isometry.

(b) The rest of the proof, therefore, will be devoted to showing that T : Lq → (Lp)∗ is surjective. Fix
h ∈ (Lp)∗ with ‖h‖ = 1.
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I need to show that h ‘lives on’ a countable union of sets of finite measure in X, in the following sense:
there is a non-decreasing sequence 〈En〉n∈N of sets of finite measure such that h(f•) = 0 whenever f ∈ L

p

and f(x) = 0 for x ∈
⋃

n∈NEn. PPP Choose a sequence 〈un〉n∈N in Lp such that ‖un‖p ≤ 1 for every n and
limn→∞ h(un) = ‖h‖ = 1. For each n, express un as f•

n, where fn : X → R is a measurable function. Set

En = {x :
∑n

k=0 |fk(x)|
p ≥ 2−n}

for n ∈ N; because |fk|
p is measurable and integrable and has domain X for every k, En ∈ Σ and µEn <∞

for each n.

Now suppose that f ∈ L
p(X) and that f(x) = 0 for x ∈

⋃

n∈NEn; set u = f• ∈ Lp. ??? Suppose, if
possible, that h(u) 6= 0, and consider h(cu), where

sgn c = sgnh(u), 0 < |c| < (p |h(u)| ‖u‖−p
p )1/(p−1).

(Of course ‖u‖p 6= 0 if h(u) 6= 0.) For each n, we have

{x : fn(x) 6= 0} ⊆
⋃

m∈NEm ⊆ {x : f(x) = 0},

so |fn + cf |p = |fn|
p + |cf |p and

h(un + cu) ≤ ‖un + cu‖p = (‖un‖
p
p + ‖cu‖pp)

1/p ≤ (1 + |c|p‖u‖pp)
1/p.

Letting n→ ∞,

1 + ch(u) ≤ (1 + |c|p‖u‖pp)
1/p.

Because sgn c = sgnh(u), ch(u) = |c||h(u)| and we have

1 + p|c||h(u)| ≤ (1 + ch(u))p ≤ 1 + |c|p‖u‖pp,

so that

p|h(u)| ≤ |c|p−1‖u‖pp < p|h(u)|

by the choice of c; which is impossible. XXX

This means that h(f•) = 0 whenever f : X → R is measurable, belongs to L
q, and is zero on

⋃

n∈NEn.
QQQ

(c) Set Hn = En \
⋃

k<nEk for each n ∈ N; then 〈Hn〉n∈N is a disjoint sequence of sets of finite measure.

Now h(u) =
∑∞

n=0 h(u× (χHn)
•) for every u ∈ Lp. PPP Express u as f•, where f : X → R is measurable. Set

fn = f × χHn for each n, g = f × χ(X \
⋃

n∈NHn); then h(g
•) = 0, by (a), because

⋃

n∈NHn =
⋃

n∈NEn.
Consider

gn = g +
∑n

k=0 fk ∈ L
p

for each n. Then limn→∞ f − gn = 0, and

|f − gn|
p ≤ |f |p ∈ L

1

for every n, so by either Fatou’s Lemma or Lebesgue’s Dominated Convergence Theorem

limn→∞

∫

|f − gn|
p = 0,

and

lim
n→∞

‖u− g• −
n
∑

k=0

u× (χHk)
•‖p = lim

n→∞
‖u− g•

n‖p

= lim
n→∞

(

∫

|f − gn|
p
)1/p

= 0,

that is,

u = g• +
∑∞

k=0 u× χH•

k

in Lp. Because h : Lp → R is linear and continuous, it follows that

h(u) = h(g•) +
∑∞

k=0 h(u× χH•

k) =
∑∞

k=0 h(u× χH•

k),
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as claimed. QQQ

(d) For each n ∈ N, define νn : Σ → R by setting

νnF = h(χ(F ∩Hn)
•)

for every F ∈ Σ. (Note that νnF is always defined because µ(F ∩Hn) <∞, so that

‖χ(F ∩Hn)‖p = µ(F ∩Hn)
1/p <∞.)

Then νn∅ = h(0) = 0, and if 〈Fk〉k∈N is a disjoint sequence in Σ,

‖χ(
⋃

k∈NHn ∩ Fk)−
∑m

k=0 χ(Hn ∩ Fk)‖p = µ(Hn ∩
⋃∞

k=m+1 Fk)
1/p → 0

as m→ ∞, so

νn(
⋃

k∈N Fk) =
∑∞

k=0 νnFk.

So νn is countably additive. Further, |νnF | ≤ µ(Hn ∩ F )1/p for every F ∈ Σ, so νn is truly continuous in
the sense of 232Ab.

There is therefore an integrable function gn such that νnF =
∫

F
gn for every F ∈ Σ; let us suppose that

gn is measurable and defined on the whole of X. Set g(x) = gn(x) whenever n ∈ N and x ∈ Hn, g(x) = 0
for x ∈ X \

⋃

n∈NHn.

(e) g =
∑∞

n=0 gn × χHn is measurable and has the property that
∫

F
g = h(χF •) whenever n ∈ N and F

is a measurable subset of Hn; consequently
∫

F
g = h(χF •) whenever n ∈ N and F is a measurable subset of

En =
⋃

k≤nHk. Set G = {x : g(x) > 0} ⊆
⋃

n∈NEn. If F ⊆ G and µF <∞, then

limn→∞

∫

g × χ(F ∩ En) ≤ supn∈N h(χ(F ∩ En)
•) ≤ supn∈N ‖χ(F ∩ En)‖p = (µF )1/p,

so by B.Levi’s theorem
∫

F
g =

∫

g × χF = limn→∞

∫

g × χ(F ∩ En)

exists. Similarly,
∫

F
g exists if F ⊆ {x : g(x) < 0} has finite measure; while obviously

∫

F
g exists if

F ⊆ {x : g(x) = 0}. Accordingly
∫

F
g exists for every set F of finite measure. Moreover, by Lebesgue’s

Dominated Convergence Theorem,
∫

F
g = limn→∞

∫

F∩En

g = limn→∞ h(χ(F ∩ En)
•) =

∑∞
n=0 h(χ(F ∩Hn)

•) = h(χF •)

for such F , by (c) above. It follows at once that
∫

g × f = h(f•)

for every simple function f : X → R.

(f) Now g ∈ Lq. PPP (i) We already know that |g|q : X → R is measurable, because g is measurable and
a 7→ |a|q is continuous. (ii) Suppose that f is a non-negative simple function and f ≤a.e. |g|

q. Then f1/p is
a simple function, and sgn g is measurable and takes only the values 0, 1 and −1, so f1 = f1/p × sgn g is
simple. We see that

∫

|f1|
p =

∫

f , so ‖f1‖p = (
∫

f)1/p. Accordingly

(

∫

f)1/p ≥ h(f•

1 ) =

∫

g × f1 =

∫

|g × f1/p|

≥

∫

f1/q × f1/p

(because 0 ≤ f1/q ≤a.e. |g|)

=

∫

f,

and we must have
∫

f ≤ 1. (iii) Thus

sup{
∫

f : f is a non-negative simple function, f ≤a.e. |g|
q} ≤ 1 <∞.

But now observe that if ǫ > 0 then
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{x : |g(x)|q ≥ ǫ} =
⋃

n∈N{x : x ∈ En, |g(x)|
q ≥ ǫ},

and for each n ∈ N

µ{x : x ∈ En, |g(x)|
q ≥ ǫ} ≤ 1

ǫ ,

because f = ǫχ{x : x ∈ En, |g(x)|
q ≥ ǫ} is a simple function less than or equal to |g|q, so has integral at

most 1. Accordingly

µ{x : |g(x)|q ≥ ǫ} = supn∈N µ{x : x ∈ En, |g(x)|
q ≥ ǫ} ≤ 1

ǫ <∞.

Thus |g|q is integrable, by the criterion in 122Ja. QQQ

(g) We may therefore speak of h1 = T (g•) ∈ (Lp)∗, and we know that it agrees with h on members of Lp

of the form f• where f is a simple function. But these form a dense subset of Lp, by 244Ha, and both h and
h1 are continuous, so h = h1, by 2A3Uc, and h is a value of T . The argument as written so far has assumed
that ‖h‖ = 1. But of course any non-zero member of (Lp)∗ is a scalar multiple of an element of norm 1, so is
a value of T . So T : Lq → (Lp)∗ is indeed surjective, and is therefore an isometric isomorphism, as claimed.

244L Continuing with the same topics as in §§242 and 243, I turn to the order-completeness of Lp.

Theorem Let (X,Σ, µ) be any measure space, and p ∈ [1,∞[. Then Lp = Lp(µ) is Dedekind complete.

proof I use 242H. Let A ⊆ Lp be a non-empty set which is bounded above in Lp. Fix u0 ∈ A and set

A′ = {u0 ∨ u : u ∈ A},

so that A′ has the same upper bounds as A and is bounded below by u0. Fixing an upper bound w0 of A
in Lp, then u0 ≤ u ≤ w0 for every u ∈ A′. Set

B = {(u− u0)
p : u ∈ A′}.

Then

0 ≤ v ≤ (w0 − u0)
p ∈ L1 = L1(µ)

for every v ∈ B, so B is a non-empty subset of L1 which is bounded above in L1, and therefore has a

least upper bound v1 in L1. Now v
1/p
1 ∈ Lp; consider w1 = u0 + v

1/p
1 . If u ∈ A′ then (u − u0)

p ≤ v1 so

u − u0 ≤ v
1/p
1 and u ≤ w1; thus w1 is an upper bound for A′. If w ∈ Lp is an upper bound for A′, then

u − u0 ≤ w − u0 and (u − u0)
p ≤ (w − u0)

p for every u ∈ A′, so (w − u0)
p is an upper bound for B and

v1 ≤ (w − u0)
p, v

1/p
1 ≤ w − u0 and w1 ≤ w. Thus w = supA′ = supA in Lp. As A is arbitrary, Lp is

Dedekind complete.

244M As in the last two sections, the theory of conditional expectations is worth revisiting.

Theorem Let (X,Σ, µ) be a probability space, and T a σ-subalgebra of Σ. Take p ∈ [1,∞]. Regard
L0(µ↾T) as a subspace of L0 = L0(µ), as in 242Jh, so that Lp(µ↾T) becomes Lp(µ) ∩ L0(µ↾T). Let
P : L1(µ) → L1(µ↾T) be the conditional expectation operator, as described in 242Jd. Then whenever
u ∈ Lp = Lp(µ), |Pu|p ≤ P (|u|p), so Pu ∈ Lp(µ↾T) and ‖Pu‖p ≤ ‖u‖p. Moreover, P [Lp] = Lp(µ↾T).

proof For p = ∞, this is 243Jb, so I assume henceforth that p < ∞. Concerning the identification of
Lp(µ↾T) with Lp ∩ L0(µ↾T), if S : L0(µ↾T) → L0 is the canonical embedding described in 242J, we have
|Su|p = S(|u|p) for every u ∈ L0(µ↾T), so that Su ∈ Lp iff |u|p ∈ L1(µ↾T) iff u ∈ Lp(µ↾T).

Set φ(t) = |t|p for t ∈ R; then φ is a convex function (because it is absolutely continuous on any bounded
interval, and its derivative is non-decreasing), and |u|p = φ̄(u) for every u ∈ L0 = L0(µ), where φ̄ is defined
as in 241I. Now if u ∈ Lp = Lp(µ), we surely have u ∈ L1 (because |u| ≤ |u|p ∨ (χX)•, or otherwise); so
242K tells us that |Pu|p ≤ P |u|p. But this means that Pu ∈ Lp ∩ L1(µ↾T) = Lp(µ↾T), and

‖Pu‖p = (
∫

|Pu|p)1/p ≤ (
∫

P |u|p)1/p = (
∫

|u|p)1/p = ‖u‖p,

as claimed. If u ∈ Lp(µ↾T), then Pu = u, so P [Lp] is the whole of Lp(µ↾T).

244N The space L2 (a) As I have already remarked, the really important function spaces are L0, L1,
L2 and L∞. L2 has the special property of being an inner product space; if (X,Σ, µ) is any measure space
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and u, v ∈ L2 = L2(µ) then u× v ∈ L1(µ), by 244Eb, and we may write (u|v) =
∫

u× v. This makes L2 a
real inner product space (because

(u1 + u2|v) = (u1|v) + (u2|v), (cu|v) = c(u|v), (u|v) = (v|u),

(u|u) ≥ 0, u = 0 whenever (u|u) = 0

for all u, u1, u2, v ∈ L2 and c ∈ R) and its norm ‖ ‖2 is the associated norm (because ‖u‖2 =
√

(u|u)
whenever u ∈ L2). Because L2 is complete (244G), it is a real Hilbert space. The fact that it may be
identified with its own dual (244K) can of course be deduced from this.

I will use the phrase ‘square-integrable’ to describe functions in L
2(µ).

(b) Conditional expectations take a special form in the case of L2. Let (X,Σ, µ) be a probability space,
T a σ-subalgebra of Σ, and P : L1 = L1(µ) → L1(µ↾T) ⊆ L1 the corresponding conditional expectation
operator. Then P [L2] ⊆ L2, where L2 = L2(µ) (244M), so we have an operator P2 = P ↾L2 from L2 to itself.
Now P2 is an orthogonal projection and its kernel is {u : u ∈ L2,

∫

F
u = 0 for every F ∈ T}. PPP (i) If u ∈ L1

then Pu = 0 iff
∫

F
u = 0 for every F ∈ T (cf. 242Je); so surely the kernel of P2 is the set described. (ii)

Since P 2 = P , P2 also is a projection; because P2 has norm at most 1 (244M), and is therefore continuous,

U = P2[L
2] = L2(µ↾T) = {u : u ∈ L2, P2u = u}, V = {u : P2u = 0}

are closed linear subspaces of L2 such that U ⊕ V = L2. (iii) Now suppose that u ∈ U and v ∈ V . Then
P |v| ∈ L2, so u× P |v| ∈ L1 and P (u× v) = u× Pv, by 242L. Accordingly

(u|v) =
∫

u× v =
∫

P (u× v) =
∫

u× Pv = 0.

Thus U and V are orthogonal subspaces of L2, which is what we mean by saying that P2 is an orthogonal
projection. (Some readers will know that every projection of norm at most 1 on an inner product space is
orthogonal.) QQQ

*244O This is not the place for a detailed discussion of the geometry of Lp spaces. However there is a
particularly important fact about the shape of the unit ball which is accessible by the methods available to
us here.

Theorem (Clarkson 1936) Suppose that p ∈ ]1,∞[ and (X,Σ, µ) is a measure space. Then Lp = Lp(µ)
is uniformly convex (definition: 2A4K).

proof (Hanner 56, Naor 04)

(a)(i) For 0 < t ≤ 1 and a, b ∈ R, set

φ0(t) = (1 + t)p−1 + (1− t)p−1,

φ1(t) =
(1+t)p−1−(1−t)p−1

tp−1
= (

1

t
+ 1)p−1 − (

1

t
− 1)p−1,

ψab(t) = |a|pφ0(t) + |b|pφ1(t),

φ2(b) = (1 + b)p + |1− b|p.

(ii) We have

φ′0(t) = (p− 1)((1 + t)p−2 − (1− t)p−2), which has the same sign as p− 2,

(of course it is zero if p = 2),

φ′1(t) = −
p−1

t2
((

1

t
− 1)p−2 − (

1

t
− 1)p−2)

= −
p−1

tp
((1 + t)p−2 − (1− t)p−2) = −

1

tp
φ′0(t)

for every t ∈ ]0, 1[. Accordingly φ′0 − φ′1 has the same sign as p− 2 everywhere on ]0, 1[. Also
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φ0(1) = 2p−1 = φ1(1),

so φ0 − φ1 has the same sign as 2− p everywhere on ]0, 1].

(iii) φ2 is strictly increasing on [0,∞[. PPP For b > 0,

φ′2(b) = p((1 + b)p−1 − (1− b)p−1) > 0 if b ≤ 1,

= p((1 + b)p−1 + (b− 1)p−1) > 0 if b ≥ 1. QQQ

(iv) If 0 < b ≤ a, then

ψab(
b

a
) = apφ0(

b

a
) + bpφ1(

b

a
)

= ap(1 +
b

a
)p−1 + ap(1−

b

a
)p−1 + bp(

a

b
+ 1)p−1 − bp(

a

b
− 1)p−1

= a(a+ b)p−1 + a(a− b)p−1 + b(a+ b)p−1 − b(a− b)p−1

= (a+ b)p + (a− b)p = (a+ b)p + |a− b|p. (†)

Also ψ′
ab(t) = (ap−

bp

tp
)φ′0(t) has the sign of 2−p if 0 < t <

b

a
and the sign of p− 2 if

b

a
< t < 1. Accordingly

—– if 1 < p ≤ 2, ψab(t) ≤ ψab(
b

a
) = (a+ b)p + |a− b|p for every t ∈ ]0, 1],

—– if p ≥ 2, ψab(t) ≥ ψab(
b

a
) = (a+ b)p + |a− b|p for every t ∈ ]0, 1].

(v) Now consider the case 0 < a ≤ b. If 1 < p ≤ 2,

ψab(t) = apφ0(t) + bpφ1(t) ≤ apφ0(t) + bpφ1(t) + (bp − ap)(φ0(t)− φ1(t))

(by (ii))

= bpφ0(t) + apφ1(t) ≤ (b+ a)p + (b− a)p = (a+ b)p + |a− b|p

for every t ∈ ]0, 1]. If p ≥ 2, on the other hand,

ψab(t) = apφ0(t) + bpφ1(t) ≥ apφ0(t) + bpφ1(t) + (bp − ap)(φ0(t)− φ1(t))

= bpφ0(t) + apφ1(t) ≥ (a+ b)p + |a− b|p

for every t.

(vi) Thus we have the inequalities

ψab(t) ≤ |a+ b|p + |a− b|p if p ∈ ]1, 2] ,

≥ |a+ b|p + |a− b|p if p ∈ [2,∞[
(∗)

whenever t ∈ ]0, 1] and a, b ∈ ]0,∞[. Since (a, b) 7→ ψab(t) is continuous for every t, the same inequalities
are valid for all a, b ∈ [0,∞[. And since

ψab(t) = ψ|a|,|b|(t), |a+ b|p + |a− b|p =
∣

∣|a|+ |b|
∣

∣

p
+
∣

∣|a| − |b|
∣

∣

p

for all a, b ∈ R and t ∈ ]0, 1], the inequalities (*) are valid for all a, b ∈ R and t ∈ ]0, 1].

(b) Suppose that p ≥ 2.

(i)

‖u+ v‖pp + ‖u− v‖pp ≤ (‖u‖p + ‖v‖p)
p + |‖u‖p − ‖v‖p|

p
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for all u, v ∈ Lp. PPP First consider the case 0 < ‖v‖p ≤ ‖u‖p. Let f , g : X → R be Σ-measurable functions
such that f• = u and g• = v. Then for any t ∈ ]0, 1],

‖u+ v‖pp + ‖u− v‖pp =

∫

|f(x) + g(x)|p + |f(x)− g(x)|pµ(dx)

≤

∫

ψf(x),g(x)(t)µ(dx)

(by the second inequality in (*))

=

∫

|f(x)|pφ0(t) + |g(x)|pφ1(t)µ(dx) = ‖u‖ppφ0(t) + ‖v‖ppφ1(t).

In particular, taking t = ‖v‖p/‖u‖p, and applying (†) from (a-iv),

‖u+ v‖pp + ‖u− v‖pp ≤ (‖u‖p + ‖v‖p)
p + |‖u‖p − ‖v‖p|

p.

Of course the result will also be true if 0 < ‖u‖p ≤ ‖v‖p, and the case in which either u or v is zero is trivial.
QQQ

(ii) Let ǫ ∈ ]0, 2]. Set δ = 2− (2p − ǫp)1/p > 0. If u, v ∈ Lp, ‖u‖p = ‖v‖p = 1 and ‖u− v‖p ≥ ǫ, then

‖u+ v‖pp + ǫp ≤ ‖u+ v‖pp + ‖u− v‖pp ≤ (‖u‖p + ‖v‖p)
p + |‖u‖p − ‖v‖p|

p = 2p,

so ‖u+ v‖p ≤ (2p − ǫp)1/p = 2− δ. As u, v and ǫ are arbitrary, Lp is uniformly convex.

(c) Next suppose that p ∈ ]1, 2].

(i)

(‖u‖p + ‖v‖p)
p + |‖u‖p − ‖v‖p|

p ≤ ‖u+ v‖pp + ‖u− v‖pp

for all u, v ∈ Lp. PPP We can repeat all the ideas, and most of the formulae, of (b-i). As before, start with
the case 0 < ‖v‖p ≤ ‖u‖p. Let f , g : X → R be Σ-measurable functions such that f• = u and g• = v.
Taking t = ‖v‖p/‖u‖p,

‖u+ v‖pp + ‖u− v‖pp =

∫

|f(x) + g(x)|p + |f(x)− g(x)|pµ(dx)

≥

∫

ψf(x),g(x)(t)µ(dx)

(by the first inequality in (*))

= ‖u‖ppφ0(t) + ‖v‖ppφ1(t) = (‖u‖p + ‖v‖p)
p + |‖u‖p − ‖v‖p|

p.

Similarly if 0 < ‖u‖p ≤ ‖v‖p, and the case in which either u or v is zero is trivial. QQQ

(ii) Let ǫ > 0. Set γ = φ2(
ǫ
2 ) > 2 (see (a-iii) above) and δ = 2

(

1 − (
2

γ
)1/p

)

> 0. Now suppose that

‖u‖p = ‖v‖p = 1 and ‖u − v‖p ≥ ǫ. Then ‖u + v‖p ≤ 2 − δ. PPP If u + v = 0 this is trivial. Otherwise, set
a = ‖u+ v‖p and b = ‖u− v‖p. Then a ≤ 2 and b ≥ ǫ, so

apγ = apφ2(
ǫ

2
) ≤ apφ2(

b

a
)

(by (a-iii) again)

= (a+ b)p + |a− b|p = (‖u+ v‖p + ‖u− v‖p)
p + |‖u+ v‖p − ‖u− v‖p|

p

≤ ‖2u‖pp + ‖2v‖pp

(by (i) here)

= 2p+1

and a ≤ 2
(2

γ

)1/p
= 2− δ. QQQ As u, v and ǫ are arbitrary, Lp is uniformly convex.

Remark The inequalities in (b-i) and (c-i) of the proof are called Hanner’s inequalities.
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244P Complex Lp Let (X,Σ, µ) be any measure space.

(a) For any p ∈ ]1,∞[, set

L
p
C = L

p
C(µ) = {f : f ∈ L

0
C(µ), |f |

p is integrable},

Lp
C = Lp

C(µ) = {f• : f ∈ L
p
C}

= {u : u ∈ L0
C(µ), Re(u) ∈ Lp(µ) and Im(u) ∈ Lp(µ)}

= {u : u ∈ L0
C(µ), |u| ∈ Lp(µ)}.

Then Lp
C is a linear subspace of L0

C(µ). Set ‖u‖p = ‖|u|‖p = (
∫

|u|p)1/p for u ∈ Lp
C.

(b) The proof of 244E(b-i) applies unchanged to complex-valued functions, so taking q = p/(p − 1) we
get

‖u× v‖1 ≤ ‖u‖p‖v‖q

for all u ∈ Lp
C, v ∈ Lq

C. 244Fa becomes

for every u ∈ Lp
C there is a v ∈ Lq

C such that ‖v‖q ≤ 1 and
∫

u× v = |
∫

u× v| = ‖u‖p;

the same proof works, if you omit all mention of the functional τ , and allow me to write sgn a = |a|/a for
all non-zero complex numbers – it would perhaps be more natural to write sgna in place of sgn a. So, just
as before, we find that ‖ ‖p is a norm. We can use the argument of 244G to show that Lp

C is complete.
(Alternatively, note that a sequence 〈un〉n∈N in L0

C is Cauchy, or convergent, iff its real and imaginary parts
are.) The space SC of equivalence classes of ‘complex-valued simple functions’ is dense in Lp

C. If X is a subset
of Rr and µ is Lebesgue measure on X, then the space of equivalence classes of continuous complex-valued
functions on X with bounded support is dense in Lp

C.

(c) The canonical map T : Lq
C → (Lp

C)
∗, defined by writing (Tv)(u) =

∫

u × v, is surjective because
T ↾Lq : Lq → (Lp)∗ is surjective; and it is an isometry by the remarks in (b) just above. Thus we can still
identify Lq

C with (Lp
C)

∗.

(d) When we come to the complex form of Jensen’s inequality, it seems that a new idea is needed. I
have relegated this to 242Yk-242Yl. But for the complex form of 244M a simpler argument will suffice. If
(X,Σ, µ) is a probability space, T is a σ-subalgebra of Σ and P : L1

C(µ) → L1
C(µ↾T) is the corresponding

conditional expectation operator, then for any u ∈ Lp
C we shall have

|Pu|p ≤ (P |u|)p ≤ P (|u|p),

applying 242Pc and 244M. So ‖Pu‖p ≤ ‖u‖p, as before.

(e) There is a special point arising with L2
C. We now have to define

(u|v) =
∫

u× v̄

for u, v ∈ L2
C, so that (u|u) =

∫

|u|2 = ‖u‖22 for every u; this means that (v|u) is the complex conjugate of
(u|v).

244X Basic exercises >>>(a) Let (X,Σ, µ) be a measure space, and (X, Σ̂, µ̂) its completion. Show that
L

p(µ̂) = L
p(µ) and Lp(µ̂) = Lp(µ) for every p ∈ [1,∞].

(b) Let (X,Σ, µ) be a measure space, and 1 ≤ p ≤ q ≤ r ≤ ∞. Show that Lp(µ) ∩ Lr(µ) ⊆ Lq(µ) ⊆
Lp(µ) + Lr(µ) ⊆ L0(µ). (See also 244Yh.)

(c) Let (X,Σ, µ) be a measure space. Suppose that p, q, r ∈ [1,∞] and that 1
p + 1

q = 1
r , setting

1
∞ = 0

as usual. Show that u× v ∈ Lr(µ) and ‖u× v‖r ≤ ‖u‖p‖v‖q whenever u ∈ Lp(µ) and v ∈ Lq(µ). (Hint : if

r <∞ apply Hölder’s inequality to |u|r ∈ Lp/r, |v|r ∈ Lq/r.)
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>>>(d)(i) Let (X,Σ, µ) be a probability space. Show that if 1 ≤ p ≤ r ≤ ∞ then ‖f‖p ≤ ‖f‖r for every
f ∈ L

r(µ). (Hint : use Hölder’s inequality to show that
∫

|f |p ≤ ‖|f |p‖r/p.) In particular, Lp(µ) ⊇ L
r(µ).

(ii) Let (X,Σ, µ) be a measure space such that µE ≥ 1 whenever E ∈ Σ and µE > 0. (This happens,
for instance, when µ is ‘counting measure’ on X.) Show that if 1 ≤ p ≤ r ≤ ∞ then Lp(µ) ⊆ Lr(µ) and
‖u‖p ≥ ‖u‖r for every u ∈ Lp(µ). (Hint : look first at the case ‖u‖p = 1.)

>>>(e) Let (X,Σ, µ) be a semi-finite measure space, and p, q ∈ [1,∞] such that 1
p + 1

q = 1. Show that if

u ∈ L0(µ) \ Lp(µ) then there is a v ∈ Lq(µ) such that u × v /∈ L1(µ). (Hint : reduce to the case u ≥ 0.
Show that in this case there is for each n ∈ N a un ≤ u such that 4n ≤ ‖un‖p <∞; take vn ∈ Lq such that
‖vn‖q ≤ 2−n and

∫

un × vn ≥ 2n, and set v =
∑∞

n=0 vn.)

(f) Let 〈(Xi,Σi, µi)〉i∈I be a family of measure spaces, and (X,Σ, µ) their direct sum (214L). Take any
p ∈ [1,∞[. Show that the canonical isomorphism between L0(µ) and

∏

i∈I L
0(µi) (241Xd) induces an

isomorphism between Lp(µ) and the subspace

{u : u ∈
∏

i∈I L
p(µi), ‖u‖ =

(
∑

i∈I ‖u(i)‖
p
p)

1/p <∞}

of
∏

i∈I L
p(µi).

(g) Let (X,Σ, µ) be a measure space. Set M∞,1 = L1(µ)∩L∞(µ). Show that for u ∈M∞,1 the function
p 7→ ‖u‖p : [1,∞[ → [0,∞[ is continuous, and that ‖u‖∞ = limp→∞ ‖u‖p. (Hint : consider first the case in
which u is the equivalence class of a simple function.)

(h) Let µ be counting measure on X = {1, 2}, so that L0(µ) = R2 and Lp(µ) = L0(µ) can be identified
with R2 for every p ∈ [1,∞]. Sketch the unit balls {u : ‖u‖p ≤ 1} in R2 for p = 1, 3

2 , 2, 3 and ∞.

(i) Let µ be counting measure on X = {1, 2, 3}, so that L0(µ) = R3 and Lp(µ) = L0(µ) can be identified
with R3 for every p ∈ [1,∞]. Describe the unit balls {u : ‖u‖p ≤ 1} in R3 for p = 1, 2 and ∞.

(j) At which points does the argument of 244Hb break down if we try to apply it to L∞ with ‖ ‖∞?

(k) Let p ∈ [1,∞[. (i) Show that |ap − bp| ≥ |a− b|p for all a, b ≥ 0. (Hint : for a > b, differentiate both
sides with respect to a.) (ii) Let (X,Σ, µ) be a measure space and U a linear subspace of L0(µ) such that
(α) |u| ∈ U for every u ∈ U (β) u1/p ∈ U for every u ∈ U (γ) U ∩ L1 is dense in L1 = L1(µ). Show that
U ∩ Lp is dense in Lp = Lp(µ). (Hint : check first that {u : u ∈ U ∩ L1, u ≥ 0} is dense in {u : u ∈ L1,
u ≥ 0}.) (iii) Use this to prove 244H from 242M and 242O.

(l) For any measure space (X,Σ, µ) writeM1,∞ =M1,∞(µ) for {v+w : v ∈ L1(µ), w ∈ L∞(µ)} ⊆ L0(µ).
Show that M1,∞ is a linear subspace of L0 including Lp for every p ∈ [1,∞], and that if u ∈ L0, v ∈M1,∞

and |u| ≤ |v| then u ∈M1,∞. (Hint : u = v × w where |w| ≤ χX•.)

(m) Let (X,Σ, µ) and (Y,T, ν) be two measure spaces, and let T + be the set of linear operators T :
M1,∞(µ) →M1,∞(ν) such that (α) Tu ≥ 0 whenever u ≥ 0 in M1,∞(µ) (β) Tu ∈ L1(ν) and ‖Tu‖1 ≤ ‖u‖1
whenever u ∈ L1(µ) (γ) Tu ∈ L∞(ν) and ‖Tu‖∞ ≤ ‖u‖∞ whenever u ∈ L∞(µ). (i) Show that if φ : R → R

is a convex function such that φ(0) = 0, and u ∈ M1,∞(µ) is such that φ̄(u) ∈ M1,∞(µ) (interpreting
φ̄ : L0(µ) → L0(µ) as in 241I), then φ̄(Tu) ∈ M1,∞(ν) and φ̄(Tu) ≤ T (φ̄(u)) for every T ∈ T +. (ii) Hence
show that if p ∈ [1,∞] and u ∈ Lp(µ), Tu ∈ Lp(ν) and ‖Tu‖p ≤ ‖u‖p for every T ∈ T +.

>>>(n) Let X be any set, and let µ be counting measure on X. In this case it is customary to write ℓp(X)
for L

p(µ), and to identify it with Lp(µ). In particular, L2(µ) becomes identified with ℓ2(X), the space of
square-summable functions on X. Write out statements and proofs of the results of this section adapted to
this special case.

(o) Let (X,Σ, µ) and (Y,T, ν) be measure spaces and φ : X → Y an inverse-measure-preserving function.
Show that the map g 7→ gφ : L0(ν) → L

0(µ) (241Xg) induces a norm-preserving map from Lp(ν) to Lp(µ)
for every p ∈ [1,∞], and also a map from M1,∞(ν) to M1,∞(µ) which belongs to the class T + of 244Xm.
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244Y Further exercises (a) Let (X,Σ, µ) be a measure space, and (X, Σ̃, µ̃) its c.l.d. version. Show
that L

p(µ) ⊆ L
p(µ̃) and that this embedding induces a Banach lattice isomorphism between Lp(µ) and

Lp(µ̃), for every p ∈ [1,∞[.

(b) Let (X,Σ, µ) be any measure space, and p ∈ [1,∞[. Show that Lp(µ) has the countable sup property
in the sense of 241Ye. (Hint : 242Yh.)

(c) Suppose that (X,Σ, µ) is a measure space, and that p ∈ ]0, 1[, q < 0 are such that 1
p + 1

q = 1. (i)

Show that ab ≥ 1
pa

p + 1
q b

q for all real a ≥ 0, b > 0. (Hint : set p′ = 1
p , q

′ = p′

p′−1 , c = (ab)p, d = b−p and

apply 244Ea.) (ii) Show that if f , g ∈ L
0(µ) are non-negative and E = {x : x ∈ dom g, g(x) > 0}, then

(
∫

E
fp)1/p(

∫

E
gq)1/q ≤

∫

f × g.

(iii) Show that if f , g ∈ L
0(µ) are non-negative, then

(
∫

fp)1/p + (
∫

gp)1/p ≤ (
∫

(f + g)p)1/p.

(d) Let (X,Σ, µ) be a measure space, and Y a subset of X; write µY for the subspace measure on Y .
Show that the canonical map T from L0(µ) onto L0(µY ) (241Yg) includes a surjection from Lp(µ) onto
Lp(µY ) for every p ∈ [1,∞], and also a map from M1,∞(µ) to M1,∞(µY ) which belongs to the class T +

of 244Xm. Show that the following are equiveridical: (i) there is some p ∈ [1,∞[ such that T ↾Lp(µ) is
injective; (ii) T : Lp(µ) → Lp(µY ) is norm-preserving for every p ∈ [1,∞[; (iii) F ∩ Y 6= ∅ whenever F ∈ Σ
and 0 < µF <∞.

(e) Let (X,Σ, µ) be any measure space, and p ∈ [1,∞[. Show that the norm ‖ ‖p on Lp(µ) is order-
continuous in the sense of 242Yg.

(f) Let (X,Σ, µ) be any measure space, and p ∈ [1,∞]. Show that if A ⊆ Lp(µ) is upwards-directed and
norm-bounded, then it is bounded above. (Hint : 242Yf.)

(g) Let (X,Σ, µ) be any measure space, and p ∈ [1,∞]. Show that if a non-empty set A ⊆ Lp(µ) is
upwards-directed and has a supremum in Lp(µ), then ‖ supA‖p ≤ supu∈A ‖u‖p. (Hint : consider first the
case 0 ∈ A.)

(h) Let (X,Σ, µ) be a measure space and u ∈ L0(µ). (i) Show that I = {p : p ∈ [1,∞[ , u ∈ Lp(µ)} is
an interval. Give examples to show that it may be open, closed or half-open. (ii) Show that p 7→ p ln ‖u‖p :

I → R is convex. (Hint : if p < q and t ∈ ]0, 1[, observe that
∫

|u|tp+(1−t)q ≤ ‖|u|pt‖1/t‖|u|
q(1−t)‖1/(1−t).)

(iii) Show that if p ≤ q ≤ r in I, then ‖u‖q ≤ max(‖u‖p, ‖u‖r).

(i) Let [a, b] be a non-trivial closed interval in R and F : [a, b] → R a function; take p ∈ ]1,∞[. Show
that the following are equiveridical: (i) F is absolutely continuous and its derivative F ′ belongs to L

p(µ),
where µ is Lebesgue measure on [a, b] (ii)

c = sup{
∑n

i=1
|F (ai)−F (ai−1)|p

(ai−ai−1)p−1
: a ≤ a0 < a1 < . . . < an ≤ b}

is finite, and that in this case c = ‖F ′‖p. (Hint : (i) if F is absolutely continuous and F ′ ∈ L
p, use Hölder’s

inequality to show that |F (b′)− F (a′)|p ≤ (b′ − a′)p−1
∫ b′

a′
|F ′|p whenever a ≤ a′ ≤ b′ ≤ b. (ii) If F satisfies

the condition, show that (
∑n

i=0 |F (bi)−F (ai)|)
p ≤ c(

∑n
i=0(bi − ai))

p−1 whenever a ≤ a0 ≤ b0 ≤ a1 ≤ . . . ≤
bn ≤ b, so that F is absolutely continuous. Take a sequence 〈Fn〉n∈N of polygonal functions approximating
F ; use 223Xj to show that F ′

n → F ′ a.e., so that
∫

|F ′|p ≤ supn∈N

∫

|F ′
n|

p ≤ cp.)

(j) Let G be an open set in Rr and write µ for Lebesgue measure on G. Let Ck(G) be the set of continuous
functions f : G→ R such that inf{‖x− y‖ : x ∈ G, f(x) 6= 0, y ∈ Rr \G} > 0 (counting inf ∅ as ∞). Show
that for any p ∈ [1,∞[ the set {f• : f ∈ Ck(G)} is a dense linear subspace of Lp(µ).

(k) Let U be any Hilbert space. (i) Show that if C ⊆ U is convex (that is, tu + (1 − t)v ∈ C whenever
u, v ∈ C and t ∈ [0, 1]; see 233Xd), closed and not empty, and u ∈ U , then there is a unique v ∈ C such
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that ‖u− v‖ = infw∈C ‖u− w‖, and (u− v|v − w) ≥ 0 for every w ∈ C. (ii) Show that if h ∈ U∗ there is a
unique v ∈ U such that h(w) = (w|v) for every w ∈ U . (Hint : apply (i) with C = {w : h(w) = 1}, u = 0.)
(iii) Show that if V ⊆ U is a closed linear subspace then there is a unique linear projection P on U such
that P [U ] = V and (u− Pu|v) = 0 for all u ∈ U , v ∈ V (P is ‘orthogonal’). (Hint : take Pu to be the point
of V nearest to u.)

(l) Let (X,Σ, µ) be a probability space, and T a σ-subalgebra of Σ. Use part (iii) of 244Yk to show
that there is an orthogonal projection P : L2(µ) → L2(µ↾T) such that

∫

F
Pu =

∫

F
u for every u ∈ L2(µ)

and F ∈ T. Show that Pu ≥ 0 whenever u ≥ 0 and that
∫

Pu =
∫

u for every u, so that P has a unique
extension to a continuous operator from L1(µ) onto L1(µ↾T). Use this to develop the theory of conditional
expectations without using the Radon-Nikodým theorem.

(m) (Roselli & Willem 02) (i) Set C = [0,∞[
2 ⊆ R2. Let φ : C → R be a continuous function such

that φ(tz) = tφ(z) for all z ∈ C. Show that φ is convex (definition: 233Xd) iff t 7→ φ(1, t) : [0,∞[ → R is
convex. (ii) Show that if p ∈ ]1,∞[ and q = p

p−1 then (s, t) 7→ −s1/pt1/q, (s, t) 7→ −(s1/p + t1/p)p : C → R

are convex. (iii) Show that if p ∈ [1, 2] then (s, t) 7→ |s1/p + t1/p|p + |s1/p − t1/p|p is convex. (iv) Show that
if p ∈ [2,∞[ then (s, t) 7→ −|s1/p + t1/p|p − |s1/p − t1/p|p is convex. (v) Use (ii) and 233Yj to prove Hölder’s
and Minkowski’s inequalities. (vi) Use (iii) and (iv) to prove Hanner’s inequalities. (vii) Adapt the method
to answer (ii) and (iii) of 244Yc.

(n)(i) Show that any inner product space is uniformly convex. (ii) Let U be a uniformly convex Banach
space, C ⊆ U a non-empty closed convex set, and u ∈ U . Show that there is a unique v0 ∈ C such that
‖u−v0‖ = infv∈C ‖u−v‖. (iii) Let U be a uniformly convex Banach space, and A ⊆ U a non-empty bounded
set. Set δ0 = inf{δ : there is some u ∈ U such that A ⊆ B(u, δ) = {v : ‖v − u‖ ≤ δ}}. Show that there is a
unique u0 ∈ U such that A ⊆ B(u0, δ0).

(o) Let (X,Σ, µ) be a measure space, and u ∈ L0(µ). Suppose that 〈pn〉n∈N is a sequence in [1,∞] with
limit p ∈ [1,∞]. Show that if lim supn→∞ ‖u‖pn

is finite then limn→∞ ‖u‖pn
is defined and is equal to ‖u‖p.

244 Notes and comments At this point I feel we must leave the investigation of further function spaces.
The next stage would have to be a systematic abstract analysis of general Banach lattices. The Lp spaces
give a solid foundation for such an analysis, since they introduce the basic themes of norm-completeness,
order-completeness and identification of dual spaces. I have tried in the exercises to suggest the importance
of the next layer of concepts: order-continuity of norms and the relationship between norm-boundedness and
order-boundedness. What I have not had space to discuss is the subject of order-preserving linear operators
between Riesz spaces, which is the key to understanding the order structure of the dual spaces here. (But
you can make a start by re-reading the theory of conditional expectation operators in 242J-242L, 243J and
244M.) All these topics are treated in Fremlin 74 and in Chapters 35 and 36 of the next volume.

I remember that one of my early teachers of analysis said that the Lp spaces (for p 6= 1, 2, ∞) had
somehow got into the syllabus and had never been got out again. I would myself call them classics, in the
sense that they have been part of the common experience of all functional analysts since functional analysis
began; and while you are at liberty to dislike them, you can no more ignore them than you can ignore Milton
if you are studying English poetry. Hölder’s inequality, in particular, has a wealth of applications; not only
244F and 244K, but also 244Xc-244Xd and 244Yh-244Yi, for instance.

The Lp spaces, for 1 ≤ p ≤ ∞, form a kind of continuum. In terms of the concepts dealt with here, there is
no distinction to be drawn between different Lp spaces for 1 < p <∞ except the observation that the norm
of L2 is an inner product norm, corresponding to a Euclidean geometry on its finite-dimensional subspaces.
To discriminate between the other Lp spaces we need much more refined concepts in the geometry of normed
spaces.

In terms of the theorems given here, L1 seems closer to the middle range of Lp for 1 < p < ∞ than
L∞ does; thus, for all 1 ≤ p < ∞, we have Lp Dedekind complete (independent of the measure space
involved), the space S of equivalence classes of simple functions is dense in Lp (again, for every measure
space), and the dual (Lp)∗ is (almost) identifiable as another function space. All of these should be regarded
as consequences in one way or another of the order-continuity of the norm of Lp for p < ∞. The chief
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obstacle to the universal identification of (L1)∗ with L∞ is that for non-σ-finite measure spaces the space
L∞ can be inadequate, rather than any pathology in the L1 space itself. (This point, at least, I mean to
return to in Volume 3.) There is also the point that for a non-semi-finite measure space the purely infinite
sets can contribute to L∞ without any corresponding contribution to L1. For 1 < p < ∞, neither of these
problems can arise. Any member of any such Lp is supported entirely by a σ-finite part of the measure
space, and the same applies to the dual – see part (c) of the proof of 244K.

Of course L1 does have a markedly different geometry from the other Lp spaces. The first sign of this
is that it is not reflexive as a Banach space (except when it is finite-dimensional), whereas for 1 < p < ∞
the identifications of (Lp)∗ with Lq and of (Lq)∗ with Lp, where q = p/(p − 1), show that the canonical
embedding of Lp in (Lp)∗∗ is surjective, that is, that Lp is reflexive. But even when L1 is finite-dimensional
the unit balls of L1 and L∞ are clearly different in kind from the unit balls of Lp for 1 < p < ∞; they
have corners instead of being smoothly rounded (244Xh-244Xi). A direct expression of the difference is in
244O. As usual, the case p = 2 is both much more important than the general case and enormously easier
(244Yn(i)); and note how Hanner’s inequalities reverse at p = 2. (See 244Yc for the reversal of Hölder’s and
Minkowski’s inequalities at p = 1.) There are occasions on which it is useful to know that ‖ ‖1 and ‖ ‖∞ can
be approximated, in an exactly describable way, by uniformly convex norms (244Yo). I have written out a
proof of 244O based on ingenuity and advanced calculus, like that of 244E. With a bit more about convex
sets and functions, sketched in 233Yf-233Yj, there is a striking alternative proof (244Ym). Of course the
proof of 244Ea also uses convexity, upside down.

The proof of 244K, identifying (Lp)∗, is a fairly long haul, and it is natural to ask whether we really have
to work so hard, especially since in the case of L2 we have a much easier argument (244Yk). Of course
we can go faster if we know a bit more about Banach lattices (§369 in Volume 3 has the relevant facts),
though this route uses some theorems quite as hard as 244K as given. There are alternative routes using
the geometry of the Lp spaces, following the ideas of 244Yk, but I do not think they are any easier, and the
argument I have presented here at least has the virtue of using some of the same ideas as the identification
of (L1)∗ in 243G. The difference is that whereas in 243G we may have to piece together a large family of
functions gF (part (b-v) of the proof), in 244K there are only countably many gn; consequently we can make
the argument work for arbitrary measure spaces, not just localizable ones.

The geometry of Hilbert space gives us an approach to conditional expectations which does not depend
on the Radon-Nikodým theorem (244Yl). To turn these ideas into a proof of the Radon-Nikodým theorem
itself, however, requires qualities of determination and ingenuity which can be better employed elsewhere.

The convexity arguments of 233J/242K can be used on many operators besides conditional expectations
(see 244Xm). The class ‘T +’ described there is not in fact the largest for which these arguments work; I
take the ideas farther in Chapter 37. There is also a great deal more to be said if you put an arbitrary pair
of Lp spaces in place of L1 and L∞ in 244Xl. 244Yh is a start, but for the real thing (the ‘Riesz convexity
theorem’) I refer you to Zygmund 59, XII.1.11 or Dunford & Schwartz 57, VI.10.11.

Version of 25.3.06

245 Convergence in measure

I come now to an important and interesting topology on the spaces L0 and L0. I start with the definition
(245A) and with properties which echo those of the Lp spaces for p ≥ 1 (245D-245E). In 245G-245J I
describe the most useful relationships between this topology and the norm topologies of the Lp spaces. For
σ-finite spaces, it is metrizable (245Eb) and sequential convergence can be described in terms of pointwise
convergence of sequences of functions (245K-245L).

245A Definitions Let (X,Σ, µ) be a measure space.

(a) For any measurable set F ⊆ X of finite measure, we have a functional τF on L
0 = L

0(µ) defined by
setting

τF (f) =
∫

|f | ∧ χF

for every f ∈ L
0. (The integral exists in R because |f |∧χF belongs to L

0 and is dominated by the integrable
function χF ). Now τF (f + g) ≤ τF (f) + τF (g) whenever f , g ∈ L

0. PPP We need only observe that
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min(|(f + g)(x)|, χF (x)) ≤ min(|f(x)|, χF (x)) + min(|g(x)|, χF (x))

for every x ∈ dom f ∩ dom g, which is almost every x ∈ X. QQQ Consequently, setting ρF (f, g) = τF (f − g),
we have

ρF (f, h) = τF ((f − g) + (g − h)) ≤ τF (f − g) + τF (g − h) = ρF (f, g) + ρF (g, h),

ρF (f, g) = τF (f − g) ≥ 0,

ρF (f, g) = τF (f − g) = τF (g − f) = ρF (g, f)

for all f , g, h ∈ L
0; that is, ρF is a pseudometric on L

0.

(b) The family

{ρF : F ∈ Σ, µF <∞}

now defines a topology on L
0 (2A3F); I will call it the topology of convergence in measure on L

0.

(c) If f , g ∈ L
0 and f =a.e. g, then |f | ∧ χF =a.e. |g| ∧ χF and τF (f) = τF (g), for every set F of finite

measure. Consequently we have functionals τ̄F on L0 = L0(µ) defined by writing

τ̄F (f
•) = τF (f)

whenever f ∈ L
0, F ∈ Σ and µF <∞. Corresponding to these we have pseudometrics ρ̄F defined by either

of the formulae

ρ̄F (u, v) = τ̄F (u− v), ρ̄F (f
•, g•) = ρF (f, g)

for u, v ∈ L0, f , g ∈ L
0 and F of finite measure. The family of these pseudometrics defines the topology

of convergence in measure on L0.

(d) I shall allow myself to say that a sequence (in L
0 or L0) converges in measure if it converges for

the topology of convergence in measure (in the sense of 2A3M).

245B Remarks (a) Of course the topologies of L0, L0 are about as closely related as it is possible for
them to be. Not only is the topology of L0 the quotient of the topology on L

0 (that is, a set G ⊆ L0 is open
iff {f : f• ∈ G} is open in L

0), but every open set in L
0 is the inverse image under the quotient map of an

open set in L0.

(b) It is convenient to note that if F0, . . . , Fn are measurable sets of finite measure with union F , then,
in the notation of 245A, τFi

≤ τF for every i; this means that a set G ⊆ L
0 is open for the topology of

convergence in measure iff for every f ∈ G we can find a single set F of finite measure and a δ > 0 such that

ρF (g, f) ≤ δ =⇒ g ∈ G.

Similarly, a set G ⊆ L0 is open for the topology of convergence in measure iff for every u ∈ G we can find a
set F of finite measure and a δ > 0 such that

ρ̄F (v, u) ≤ δ =⇒ v ∈ G.

(c) The phrase ‘topology of convergence in measure’ agrees well enough with standard usage when
(X,Σ, µ) is totally finite. But a warning! the phrase ‘topology of convergence in measure’ is also used
for the topology defined by the metric of 245Ye below, even when µX = ∞. I have seen the phrase local
convergence in measure used for the topology of 245A. Most authors ignore non-σ-finite spaces in this
context. However I hold that 245D-245E below are of sufficient interest to make the extension worth while.

245C Pointwise convergence The topology of convergence in measure is almost definable in terms
of ‘pointwise convergence’, which is one of the roots of measure theory. The correspondence is closest in
σ-finite measure spaces (see 245K), but there is still a very important relationship in the general case, as
follows. Let (X,Σ, µ) be a measure space, and write L

0 = L
0(µ), L0 = L0(µ).
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(a) If 〈fn〉n∈N is a sequence in L
0 converging almost everywhere to f ∈ L

0, then 〈fn〉n∈N → f in measure.
PPP By 2A3Mc, I have only to show that limn→∞ ρF (fn, f) = 0 whenever µF < ∞. But 〈|fn − f | ∧ χF 〉n∈N

converges to 0 a.e. and is dominated by the integrable function χF , so by Lebesgue’s Dominated Convergence
Theorem

limn→∞ ρF (fn, f) = limn→∞

∫

|fn − f | ∧ χF = 0. QQQ

(b) To formulate a corresponding result applicable to L0, we need the following concept. If 〈fn〉n∈N,
〈gn〉n∈N are sequences in L

0 such that f•

n = g•

n for every n, and f , g ∈ L
0 are such that f• = g•, and

〈fn〉n∈N → f a.e., then 〈gn〉n∈N → g a.e., because

{x : x ∈ dom f ∩ dom g ∩
⋂

n∈N

dom fn ∩
⋂

n∈N

gn,

g(x) = f(x) = lim
n→∞

fn(x), fn(x) = gn(x) ∀ n ∈ N}

is conegligible. Consequently we have a definition applicable to sequences in L0; we can say that, for f ,
fn ∈ L

0, 〈f•

n〉n∈N is order*-convergent, or order*-converges, to f• iff f =a.e. limn→∞ fn. In this case,
of course, 〈fn〉n∈N → f in measure. Thus, in L0, a sequence 〈un〉n∈N which order*-converges to u ∈ L0 also
converges to u in measure.

Remark I suggest alternative descriptions of order-convergence in 245Xc; the conditions (iii)-(vi) there are
in forms adapted to more general structures.

(c) For a typical example of a sequence which is convergent in measure without being order-convergent,
consider the following. Take µ to be Lebesgue measure on [0, 1], and set fn(x) = 2m if x ∈ [2−mk, 2−m(k+1)],
0 otherwise, where k = k(n) ∈ N, m = m(n) ∈ N are defined by saying that n + 1 = 2m + k and
0 ≤ k < 2m. Then 〈fn〉n∈N → 0 for the topology of convergence in measure (since ρF (fn, 0) ≤ 2−m if
F ⊆ [0, 1] is measurable and 2m− 1 ≤ n), though 〈fn〉n∈N is not convergent to 0 almost everywhere (indeed,
lim supn→∞ fn = ∞ everywhere).

245D Proposition Let (X,Σ, µ) be any measure space.
(a) The topology of convergence in measure is a linear space topology on L0 = L0(µ).
(b) The maps ∨, ∧ : L0 × L0 → L0, and u 7→ |u|, u 7→ u+, u 7→ u− : L0 → L0 are all continuous.
(c) The map × : L0 × L0 → L0 is continuous.
(d) For any continuous function h : R → R, the corresponding function h̄ : L0 → L0 (241I) is continuous.

proof (a) The point is that the functionals τ̄F , as defined in 245Ac, are F-seminorms in the sense of 2A5B.
PPP Fix a set F ∈ Σ of finite measure. I noted in 245Aa that

τF (f + g) ≤ τF (f) + τF (g) for all f , g ∈ L
0,

so

τ̄F (u+ v) ≤ τ̄F (u) + τ̄F (v) for all u, v ∈ L0.

Next,

τ̄F (cu) ≤ τ̄F (u) whenever u ∈ L0 and |c| ≤ 1 (*)

because |cf | ∧ χF ≤a.e. |f | ∧ χF whenever f ∈ L
0 and |c| ≤ 1. Finally, given u ∈ L0 and ǫ > 0, let f ∈ L

0

be such that f• = u. Then

limn→∞ |2−nf | ∧ χF = 0 a.e.,

so by Lebesgue’s Dominated Convergence Theorem

limn→∞ τ̄F (2
−nu) = limn→∞

∫

|2−nf | ∧ χF = 0,

and there is an n such that τ̄F (2
−nu) ≤ ǫ. It follows (by (*) just above) that τ̄F (cu) ≤ ǫ whenever |c| ≤ 2−n.

As ǫ is arbitrary, limc→0 τ̄F (u) = 0 for every u ∈ L0; which is the third condition in 2A5B. QQQ
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Now 2A5B tells us that the topology defined by the τ̄F is a linear space topology.

(b) For any u, v ∈ L0, ||u| − |v|| ≤ |u− v|, so ρ̄F (|u|, |v|) ≤ ρ̄F (u, v) for every set F of finite measure. By
2A3H, | | : L0 → L0 is continuous. Now

u ∨ v =
1

2
(u+ v + |u− v|), u ∧ v =

1

2
(u+ v − |u− v|),

u+ = u ∧ 0, u− = (−u) ∧ 0.

As addition and subtraction are continuous, so are ∨, ∧, + and −.

(c) Take u0, v0 ∈ L0, F ∈ Σ a set of finite measure and ǫ > 0. Represent u0 and v0 as f•

0 , g
•

0 respectively,
where f0, g0 : X → R are Σ-measurable (241Bk). If we set

Fm = {x : x ∈ F, |f0(x)|+ |g0(x)| ≤ m},

then 〈Fm〉m∈N is a non-decreasing sequence of sets with union F , so there is an m ∈ N such that µ(F \Fm) ≤
1
2ǫ. Let δ > 0 be such that (2m+ µF )δ2 + 2δ ≤ 1

2ǫ.

Now suppose that u, v ∈ L0 are such that ρ̄F (u, u0) ≤ δ2 and ρ̄F (v, v0) ≤ δ2. Let f , g : X → R be
measurable functions such that f• = u and v• = v. Then

µ{x : x ∈ F, |f(x)− f0(x)| ≥ δ} ≤ δ, µ{x : x ∈ F, |g(x)− g0(x)| ≥ δ} ≤ δ,

so that

µ{x : x ∈ F, |f(x)− f0(x)||g(x)− g0(x)| ≥ δ2} ≤ 2δ

and
∫

F
min(1, |f − f0| × |g − g0|) ≤ δ2µF + 2δ.

Also

|f × g − f0 × g0| ≤ |f − f0| × |g − g0|+ |f0| × |g − g0|+ |f − f0| × |g0|,

so that

ρ̄F (u× v, u0 × v0) =

∫

F

min(1, |f × g − f0 × g0|)

≤
1

2
ǫ+

∫

Fm

min(1, |f × g − f0 × g0|)

≤
1

2
ǫ+

∫

Fm

min(1, |f − f0| × |g − g0|+m|g − g0|+m|f − f0|)

≤
1

2
ǫ+

∫

F

min(1, |f − f0| × |g − g0|)

+m

∫

F

min(1, |g − g0|) +m

∫

F

min(1, |f − f0|)

≤
1

2
ǫ+ δ2µF + 2δ + 2mδ2 ≤ ǫ.

As F and ǫ are arbitrary, × is continuous at (u0, v0); as u0 and v0 are arbitrary, × is continuous.

(d) Take u ∈ L0, F ∈ Σ of finite measure and ǫ > 0. Then there is a δ > 0 such that ρF (h̄(v), h̄(u)) ≤ ǫ
whenever ρF (v, u) ≤ δ. PPP??? Otherwise, we can find, for each n ∈ N, a vn such that ρ̄F (vn, u) ≤ 4−n but
ρ̄F (h̄(vn), h̄(u)) > ǫ. Express u as f• and vn as g•

n where f , gn : X → R are measurable. Set

En = {x : x ∈ F, |gn(x)− f(x)| ≥ 2−n}

for each n. Then ρ̄F (vn, u) ≥ 2−nµEn, so µEn ≤ 2−n for each n, and E =
⋂

n∈N

⋃

m≥nEm is negligible.

But limn→∞ gn(x) = f(x) for every x ∈ F \E, so (because h is continuous) limn→∞ h(gn(x)) = h(f(x)) for
every x ∈ F \ E. Consequently (by Lebesgue’s Dominated Convergence Theorem, as always)
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limn→∞ ρ̄F (h̄(vn), h̄(u)) = limn→∞

∫

F
min(1, |h(gn(x))− h(f(x))|µ(dx) = 0,

which is impossible. XXXQQQ
By 2A3H, h̄ is continuous.

Remark I cannot say that the topology of convergence in measure on L
0 is a linear space topology solely

because (on the definitions I have chosen) L0 is not in general a linear space.

245E I turn now to the principal theorem relating the properties of the topological linear space L0(µ)
to the classification of measure spaces in Chapter 21.

Theorem Let (X,Σ, µ) be a measure space. Let T be the topology of convergence in measure on L0 = L0(µ),
as described in 245A.

(a) (X,Σ, µ) is semi-finite iff T is Hausdorff.
(b) (X,Σ, µ) is σ-finite iff T is metrizable.
(c) (X,Σ, µ) is localizable iff T is Hausdorff and L0 is complete under T.

proof I use the pseudometrics ρF on L
0 = L

0(µ), ρ̄F on L0 described in 245A.

(a)(i) Suppose that (X,Σ, µ) is semi-finite and that u, v are distinct members of L0. Express them as
f• and g• where f and g are measurable functions from X to R. Then µ{x : f(x) 6= g(x)} > 0 so, because
(X,Σ, µ) is semi-finite, there is a set F ∈ Σ of finite measure such that µ{x : x ∈ F, f(x) 6= g(x)} > 0. Now

ρ̄F (u, v) =
∫

F
min(|f(x)− g(x)|, 1)dx > 0

(see 122Rc). As u and v are arbitrary, T is Hausdorff (2A3L).

(ii) Suppose that T is Hausdorff and that E ∈ Σ, µE > 0. Then u = χE• 6= 0 so there is an F ∈ Σ
such that µF < ∞ and ρ̄F (u, 0) 6= 0, that is, µ(E ∩ F ) > 0. Now E ∩ F is a non-negligible set of finite
measure included in E. As E is arbitrary, (X,Σ, µ) is semi-finite.

(b)(i) Suppose that (X,Σ, µ) is σ-finite. Let 〈En〉n∈N be a non-decreasing sequence of sets of finite
measure covering X. Set

ρ̄(u, v) =
∞
∑

n=0

ρ̄En
(u, v)

1 + 2nµEn

for u, v ∈ L0. Then ρ̄ is a metric on L0. PPP Because every ρ̄En
is a pseudometric, so is ρ̄. If ρ̄(u, v) = 0,

express u as f•, v as g• where f , g ∈ L
0(µ); then

∫

|f − g| ∧ χEn = ρ̄En
(u, v) = 0,

so f = g almost everywhere in En, for every n. Because X =
⋃

n∈NEn, f =a.e. g and u = v. QQQ

If F ∈ Σ and µF < ∞ and ǫ > 0, take n such that µ(F \ En) ≤ 1
2ǫ. If u, v ∈ L0 and ρ̄(u, v) ≤

ǫ/2(1 + 2nµEn), then ρ̄F (u, v) ≤ ǫ. PPP Express u as f•, v = g• where f , g ∈ L
0. Then

∫

|u− v| ∧ χEn = ρ̄En
(u, v) ≤ (1 + 2nµEn)ρ̄(u, v) ≤

ǫ

2
,

while
∫

|f − g| ∧ χ(F \ En) ≤ µ(F \ En) ≤
ǫ

2
,

so

ρ̄F (u, v) =
∫

|f − g| ∧ χF ≤
∫

|f − g| ∧ χEn +
∫

|f − g| ∧ χ(F \ En) ≤
ǫ

2
+

ǫ

2
= ǫ. QQQ

In the other direction, given ǫ > 0, take n ∈ N such that 2−n ≤ 1
2ǫ; then ρ̄(u, v) ≤ ǫ whenever ρ̄En

(u, v) ≤
ǫ/2(n+ 1).

These show that ρ̄ defines the same topology as the ρ̄F (2A3Ib), so that T, the topology defined by the
ρ̄F , is metrizable.
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(ii) Suppose that T is metrizable. Let ρ̄ be a metric defining T. For each n ∈ N there must be a
measurable set Fn of finite measure and a δn > 0 such that

ρ̄Fn
(u, 0) ≤ δn =⇒ ρ̄(u, 0) ≤ 2−n.

Set E = X \
⋃

n∈N Fn. ??? If E is not negligible, then u = χE• 6= 0; because ρ̄ is a metric, there is an n ∈ N

such that ρ̄(u, 0) > 2−n; now

µ(E ∩ Fn) = ρ̄Fn
(u, 0) > δn.

But E ∩ Fn = ∅. XXX
So µE = 0 <∞. Now X = E ∪

⋃

n∈N Fn is a countable union of sets of finite measure, so µ is σ-finite.

(c) By (a), either hypothesis ensures that µ is semi-finite and that T is Hausdorff.

(i) Suppose that (X,Σ, µ) is localizable. Let F be a Cauchy filter on L0 (2A5F). For each measurable
set F of finite measure, choose a sequence 〈An(F )〉n∈N of members of F such that ρ̄F (u, v) ≤ 4−n for every
u, v ∈ An(F ) and every n (2A5G). Choose uFn ∈

⋂

k≤nAn(F ) for each n; then ρ̄F (uF,n+1, uFn) ≤ 2−n for
each n. Express each uFn as f•

Fn where fFn is a measurable function from X to R. Then

µ{x : x ∈ F, |fF,n+1(x)− fFn(x)| ≥ 2−n} ≤ 2nρ̄F (uF,n+1, uFn) ≤ 2−n

for each n. It follows that 〈fFn〉n∈N must converge almost everywhere in F . PPP Set

Hn = {x : x ∈ F, |fF,n+1(x)− fFn(x)| ≥ 2−n}.

Then µHn ≤ 2−n for each n, so

µ(
⋂

n∈N

⋃

m≥nHm) ≤ infn∈N

∑∞
m=n 2

−m = 0.

If x ∈ F \
⋂

n∈N

⋃

m≥nHm, then there is some k such that x ∈ F \
⋃

m≥kHm, so that |fF,m+1(x)−fFm(x)| ≤

2−m for every m ≥ k, and 〈fFn(x)〉n∈N is Cauchy, therefore convergent. QQQ
Set fF (x) = limn→∞ fFn(x) for every x ∈ F such that the limit is defined in R, so that fF is measurable

and defined almost everywhere in F .
If E, F are two sets of finite measure and E ⊆ F , then ρ̄E(uEn, uFn) ≤ 2 · 4−n for each n. PPP An(E) and

An(F ) both belong to F , so must have a point w in common; now

ρ̄E(uEn, uFn) ≤ ρ̄E(uEn, w) + ρ̄E(w, uFn)

≤ ρ̄E(uEn, w) + ρ̄F (w, uFn) ≤ 4−n + 4−n. QQQ

Consequently

µ{x : x ∈ E, |fFn(x)− fEn(x)| ≥ 2−n} ≤ 2nρ̄E(uFn, uEn) ≤ 2−n+1

for each n, and limn→∞ fFn − fEn = 0 almost everywhere in E; so that fE = fF a.e. on E.
Consequently, if E and F are any two sets of finite measure, fE = fF a.e. on E ∩ F , because both are

equal almost everywhere on E ∩ F to fE∪F .
Because µ is localizable, it follows that there is an f ∈ L

0 such that f = fE a.e. on E for every measurable
set E of finite measure (213N). Consider u = f• ∈ L0. For any set E of finite measure,

ρ̄E(u, uEn) =
∫

E
min(1, |f(x)− fEn(x)|)dx =

∫

E
min(1, |fE(x)− fEn(x)|)dx→ 0

as n→ ∞, using Lebesgue’s Dominated Convergence Theorem. Now

inf
A∈F

sup
v∈A

ρ̄E(v, u) ≤ inf
n∈N

sup
v∈AEn

ρ̄E(v, u)

≤ inf
n∈N

sup
v∈AEn

(ρ̄E(v, uEn) + ρ̄E(u, uEn))

≤ inf
n∈N

(4−n + ρ̄E(u, uEn)) = 0.

As E is arbitrary, F → u. As F is arbitrary, L0 is complete under T.

(ii) Now suppose that L0 is complete under T and let E be any family of sets in Σ. Let E ′ be

{
⋃

E0 : E0 is a finite subset of E}.
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Then the union of any two members of E ′ belongs to E ′. Let F be the set

{A : A ⊆ L0, A ⊇ AE for some E ∈ E ′},

where for E ∈ E ′ I write

AE = {χF • : F ∈ E ′, F ⊇ E}.

Then F is a filter on L0, because AE ∩AF = AE∪F for all E, F ∈ E ′.
In fact F is a Cauchy filter. PPP Let H be any set of finite measure and ǫ > 0. Set γ = supE∈E′ µ(H ∩E)

and take E ∈ E ′ such that µ(H ∩ E) ≥ γ − ǫ. Consider AE ∈ F . If F , G ∈ E ′ and F ⊇ E, G ⊇ E then

ρ̄H(χF •, χG•) = µ(H ∩ (F△G)) = µ(H ∩ (F ∪G))− µ(H ∩ F ∩G)

≤ γ − µ(H ∩ E) ≤ ǫ.

Thus ρ̄H(u, v) ≤ ǫ for all u, v ∈ AE . As H and ǫ are arbitrary, F is Cauchy. QQQ
Because L0 is complete under T, F has a limit w say. Express w as h•, where h : X → R is measurable,

and consider G = {x : h(x) > 1
2}.

??? If E ∈ E and µ(E\G) > 0, let F ⊆ E\G be a set of non-zero finite measure. Then {u : ρ̄F (u,w) <
1
2µF}

belongs to F , so meets AE ; let H ∈ E ′ be such that E ⊆ H and ρ̄F (χH
•, w) < 1

2µF . Then

∫

F
min(1, |1− h(x)|) = ρ̄F (χH

•, w) <
1

2
µF ;

but because F ∩G = ∅, 1− h(x) ≥ 1
2 for every x ∈ F , so this is impossible. XXX

Thus E \G is negligible for every E ∈ E .
Now suppose that H ∈ Σ and µ(G \H) > 0. Then there is an E ∈ E such that µ(E \H) > 0. PPP Let

F ⊆ G \H be a set of non-zero finite measure. Let u ∈ A∅ be such that ρ̄F (u,w) <
1
2µF . Then u is of the

form χC• for some C ∈ E ′, and
∫

F
min(1, |χC(x)− h(x)|) <

1

2
µF .

As h(x) ≥ 1
2 for every x ∈ F , µ(C ∩ F ) > 0. But C is a finite union of members of E , so there is an E ∈ E

such that µ(E ∩ F ) > 0, and now µ(E \H) > 0. QQQ
As H is arbitrary, G is an essential supremum of E in Σ. As E is arbitrary, (X,Σ, µ) is localizable.

245F Alternative description of the topology of convergence in measure Let us return to
arbitrary measure spaces (X,Σ, µ).

(a) For any F ∈ Σ of finite measure and ǫ > 0 define τFǫ : L
0 → [0,∞[ by

τFǫ(f) = µ∗{x : x ∈ F ∩ dom f, |f(x)| > ǫ}

for f ∈ L
0, taking µ∗ to be the outer measure defined from µ (132B). If f , g ∈ L

0 and f =a.e. g, then

{x : x ∈ F ∩ dom f, |f(x)| > ǫ}△{x : x ∈ F ∩ dom g, |g(x)| > ǫ}

is negligible, so τFǫ(f) = τFǫ(g); accordingly we have a functional from L0 to [0,∞[, given by

τ̄Fǫ(u) = τFǫ(f)

whenever f ∈ L
0 and u = f• ∈ L0.

(b) Now τFǫ is not (except in trivial cases) subadditive, so does not define a pseudometric on L
0 or L0.

But we can say that, for f ∈ L
0,

τF (f) ≤ ǫmin(1, ǫ) =⇒ τFǫ(f) ≤ ǫ =⇒ τF (f) ≤ ǫ(1 + µF ).

(The point is that if E ⊆ dom f is a measurable conegligible set such that f↾E is measurable, then

τF (f) =
∫

E∩F
min(f(x), 1)dx, τFǫ(f) = µ{x : x ∈ E ∩ F, f(x) > ǫ}.)

This means that a set G ⊆ L
0 is open for the topology of convergence in measure iff for every f ∈ G we

can find a set F of finite measure and ǫ, δ > 0 such that
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τFǫ(g − f) ≤ δ =⇒ g ∈ G.

Of course τFδ(f) ≥ τFǫ(f) whenever δ ≤ ǫ, so we can equally say: G ⊆ L
0 is open for the topology of

convergence in measure iff for every f ∈ G we can find a set F of finite measure and ǫ > 0 such that

τFǫ(g − f) ≤ ǫ =⇒ g ∈ G.

Similarly, G ⊆ L0 is open for the topology of convergence in measure on L0 iff for every u ∈ G we can find
a set F of finite measure and ǫ > 0 such that

τ̄Fǫ(v − u) ≤ ǫ =⇒ v ∈ G.

(c) It follows at once that a sequence 〈fn〉n∈N in L
0 = L

0(µ) converges in measure to f ∈ L
0 iff

limn→∞ µ∗{x : x ∈ F ∩ dom f ∩ dom fn, |fn(x)− f(x)| > ǫ} = 0

whenever F ∈ Σ, µF < ∞ and ǫ > 0. Similarly, a sequence 〈un〉n∈N in L0 converges in measure to u iff
limn→∞ τ̄Fǫ(u− un) = 0 whenever µF <∞ and ǫ > 0.

(d) In particular, if (X,Σ, µ) is totally finite, 〈fn〉n∈N → f in L
0 iff

limn→∞ µ∗{x : x ∈ dom f ∩ dom fn, |f(x)− fn(x)| > ǫ} = 0

for every ǫ > 0, and 〈un〉n∈N → u in L0 iff

limn→∞ τ̄Xǫ(u− un) = 0

for every ǫ > 0.

245G Embedding Lp in L0: Proposition Let (X,Σ, µ) be any measure space. Then for any p ∈ [1,∞],
the embedding of Lp = Lp(µ) in L0 = L0(µ) is continuous for the norm topology of Lp and the topology of
convergence in measure on L0.

proof Suppose that u, v ∈ Lp and that µF < ∞. Then (χF )• belongs to Lq, where q = p/(p− 1) (taking
q = 1 if p = ∞, q = ∞ if p = 1 as usual), and

ρ̄F (u, v) ≤
∫

|u− v| × (χF )• ≤ ‖u− v‖p‖χF
•‖q

(244Eb). By 2A3H, this is enough to ensure that the embedding Lp ⊂→ L0 is continuous.

245H The case of L1 is so important that I go farther with it.

Proposition Let (X,Σ, µ) be a measure space.
(a)(i) If f ∈ L

1 = L
1(µ) and ǫ > 0, there are a δ > 0 and a set F ∈ Σ of finite measure such that

∫

|f − g| ≤ ǫ whenever g ∈ L
1,

∫

|g| ≤
∫

|f |+ δ and ρF (f, g) ≤ δ.
(ii) For any sequence 〈fn〉n∈N in L

1 and any f ∈ L
1, limn→∞

∫

|f − fn| = 0 iff 〈fn〉n∈N → f in measure
and lim supn→∞

∫

|fn| ≤
∫

|f |.
(b)(i) If u ∈ L1 = L1(µ) and ǫ > 0, there are a δ > 0 and a set F ∈ Σ of finite measure such that

‖u− v‖1 ≤ ǫ whenever v ∈ L1, ‖v‖1 ≤ ‖u‖1 + δ and ρ̄F (u, v) ≤ δ.
(ii) For any sequence 〈un〉n∈N in L1 and any u ∈ L1, 〈un〉n∈N → u for ‖ ‖1 iff 〈un〉n∈N → u in measure

and lim supn→∞ ‖un‖1 ≤ ‖u‖1.

proof (a)(i) We know that there are a set F of finite measure and an η > 0 such that
∫

E
|f | ≤ 1

5ǫ whenever

µ(E ∩ F ) ≤ η (225A). Take δ > 0 such that δ(ǫ + 5µF ) ≤ ǫη and δ ≤ 1
5ǫ. Then if

∫

|g| ≤
∫

|f | + δ and
ρF (f, g) ≤ δ, let G ⊆ dom f ∩ dom g be a conegligible measurable set such that f↾G and g↾G are both
measurable. Set

E = {x : x ∈ F ∩G, |f(x)− g(x)| ≥
ǫ

ǫ+5µF
};

then

δ ≥ ρF (f, g) ≥
ǫ

ǫ+5µF
µE,
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so µE ≤ η. Set H = F \ E, so that µ(F \H) ≤ η and
∫

X\H |f | ≤ 1
5ǫ. On the other hand, for almost every

x ∈ H, |f(x)− g(x)| ≤ ǫ
ǫ+5µF , so

∫

H
|f − g| ≤ 1

5ǫ and

∫

H
|g| ≥

∫

H
|f | −

1

5
ǫ ≥

∫

|f | −
∫

X\H
|f | −

1

5
ǫ ≥

∫

|f | −
2

5
ǫ.

Since
∫

|g| ≤
∫

|f |+ 1
5ǫ,

∫

X\H |g| ≤ 3
5ǫ. Now this means that

∫

|g − f | ≤
∫

X\H
|g|+

∫

X\H
|f |+

∫

H
|g − f | ≤

3

5
ǫ+

1

5
ǫ+

1

5
ǫ = ǫ,

as required.

(ii) If limn→∞

∫

|f−fn| = 0, that is, limn→∞ f•

n = f• in L1, then by 245G we must have 〈f•

n〉n∈N → f•

in L0, that is, 〈fn〉n∈N → f for the topology of convergence in measure. Also, of course, limn→∞

∫

|fn| =
∫

|f |.
In the other direction, if lim supn→∞

∫

|fn| ≤
∫

|f | and 〈fn〉n∈N → f for the topology of convergence
in measure, then whenever δ > 0 and µF < ∞ there must be an m ∈ N such that

∫

|fn| ≤
∫

|f | + δ,
ρF (f, fn) ≤ δ for every n ≥ m; so (i) tells us that limn→∞

∫

|fn − f | = 0.

(b) This now follows immediately if we express u as f•, v as g• and un as f•

n.

245I Remarks (a) I think the phenomenon here is so important that it is worth looking at some
elementary examples.

(i) If µ is counting measure on N, and we set fn(n) = 1, fn(i) = 0 for i 6= n, then 〈fn〉n∈N → 0 in measure,
while

∫

|fn| = 1 for every n.
(ii) If µ is Lebesgue measure on [0, 1], and we set fn(x) = 2n for 0 < x ≤ 2−n, 0 for other x, then again

〈fn〉n∈N → 0 in measure, while
∫

|fn| = 1 for every n.
(iii) In 245Cc we have another sequence 〈fn〉n∈N converging to 0 in measure, while

∫

|fn| = 1 for every n.
In all these cases (as required by Fatou’s Lemma, at least in (i) and (ii)) we have

∫

|f | ≤ lim infn→∞

∫

|fn|.
(The next proposition shows that this applies to any sequence which is convergent in measure.)

The common feature of these examples is the way in which somehow the fn escape to infinity, either
laterally (in (i)) or vertically (in (iii)) or both (in (ii)). Note that in all three examples we can set f ′n = 2nfn
to obtain a sequence still converging to 0 in measure, but with limn→∞

∫

|f ′n| = ∞.

(b) In 245H, I have used the explicit formulations ‘limn→∞

∫

|fn − f | = 0’ (for sequences of functions),
‘〈un〉n∈N → u for ‖ ‖1’ (for sequences in L

1). These are often expressed by saying that 〈fn〉n∈N, 〈un〉n∈N are
convergent in mean to f , u respectively.

245J For semi-finite spaces we have a further relationship.

Proposition Let (X,Σ, µ) be a semi-finite measure space. Write L
0 = L

0(µ), etc.
(a)(i) For any a ≥ 0, the set {f : f ∈ L

1,
∫

|f | ≤ a} is closed in L
0 for the topology of convergence in

measure.
(ii) If 〈fn〉n∈N is a sequence in L

1 which is convergent in measure to f ∈ L
0, and lim infn→∞

∫

|fn| <∞,
then f is integrable and

∫

|f | ≤ lim infn→∞

∫

|fn|.
(b)(i) For any a ≥ 0, the set {u : u ∈ L1, ‖u‖1 ≤ a} is closed in L0 for the topology of convergence in

measure.
(ii) If 〈un〉n∈N is a sequence in L1 which is convergent in measure to u ∈ L0, and lim infn→∞ ‖un‖1 <∞,

then u ∈ L1 and ‖u‖1 ≤ lim infn→∞ ‖un‖1.

proof (a)(i) Set A = {f : f ∈ L
1,

∫

|f | ≤ a}, and let g be any member of the closure of A in L
0.

Let h be any simple function such that 0 ≤ h ≤a.e. |g|, and ǫ > 0. If h = 0 then of course
∫

h ≤ a.
Otherwise, setting F = {x : h(x) > 0} and M = supx∈X h(x), there is an f ∈ A such that µ∗{x : x ∈
F ∩ dom f ∩ dom g, |f(x) − g(x)| ≥ ǫ} ≤ ǫ (245F); let E ⊇ {x : x ∈ F ∩ dom f ∩ dom g, |f(x) − g(x)| ≥ ǫ}
be a measurable set of measure at most ǫ. Then h ≤a.e. |f |+ ǫχF +MχE, so

∫

h ≤ a+ ǫ(M + µF ). As ǫ is
arbitrary,

∫

h ≤ a. But we are supposing that µ is semi-finite, so this is enough to ensure that g is integrable
and that

∫

|g| ≤ a (213B), that is, that g ∈ A. As g is arbitrary, A is closed.
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(ii) Now if 〈fn〉n∈N is convergent in measure to f , and lim infn→∞

∫

|fn| = a, then for any ǫ > 0 there
is a subsequence 〈fn(k)〉k∈N such that

∫

|fn(k)| ≤ a+ ǫ for every k; since 〈fn(k)〉k∈N still converges in measure

to f ,
∫

|f | ≤ a+ ǫ. As ǫ is arbitrary,
∫

|f | ≤ a.

(b) As in 245H, this is just a translation of part (a) into the language of L1 and L0.

245K For σ-finite measure spaces, the topology of convergence in measure on L0 is metrizable, so can be
described effectively in terms of convergent sequences; it is therefore important that we have, in this case,
a sharp characterization of sequential convergence in measure.

Proposition Let (X,Σ, µ) be a σ-finite measure space. Then
(a) a sequence 〈fn〉n∈N in L

0 converges in measure to f ∈ L
0 iff every subsequence of 〈fn〉n∈N has a

sub-subsequence converging to f almost everywhere;
(b) a sequence 〈un〉n∈N in L0 converges in measure to u ∈ L0 iff every subsequence of 〈un〉n∈N has a

sub-subsequence which order*-converges to u.

proof (a)(i) Suppose that 〈fn〉n∈N → f , that is, that limn→∞

∫

|f − fn| ∧ χF = 0 for every set F of
finite measure. Let 〈Ek〉n∈N be a non-decreasing sequence of sets of finite measure covering X, and let
〈n(k)〉k∈N be a strictly increasing sequence in N such that

∫

|f − fn(k)| ∧ χEk ≤ 4−k for every k ∈ N.

Then
∑∞

k=0 |f − fn(k)| ∧ χEk is finite almost everywhere (242E); but limk→∞ fn(k)(x) = f(x) whenever
∑∞

k=0 min(1, |f(x)− fn(k)(x)|) <∞, so 〈fn(k)〉k∈N → f a.e.

(ii) The same applies to every subsequence of 〈fn〉n∈N, so that every subsequence of 〈fn〉n∈N has a
sub-subsequence converging to f almost everywhere.

(iii) Now suppose that 〈fn〉n∈N does not converge to f . Then there is an open set U containing f such
that {n : fn /∈ U} is infinite, that is, 〈fn〉n∈N has a subsequence 〈f ′n〉n∈N with f ′n /∈ U for every n. But now
no sub-subsequence of 〈f ′n〉n∈N converges to f in measure, so no such sub-subsequence can converge almost
everywhere, by 245Ca.

(b) This follows immediately from (a) if we express u as f•, un as f•

n.

245L Corollary Let (X,Σ, µ) be a σ-finite measure space.
(a) A subset A of L0 = L

0(µ) is closed for the topology of convergence in measure iff f ∈ A whenever
f ∈ L

0 and there is a sequence 〈fn〉n∈N in A such that f =a.e. limn→∞ fn.
(b) A subset A of L0 = L0(µ) is closed for the topology of convergence in measure iff u ∈ A whenever

u ∈ L0 and there is a sequence 〈un〉n∈N in A order*-converging to u.

proof (a)(i) If A is closed for the topology of convergence in measure, and 〈fn〉n∈N is a sequence in
A converging to f almost everywhere, then 〈fn〉n∈N converges to f in measure, so surely f ∈ A (since
otherwise all but finitely many of the fn would have to belong to the open set L0 \A).

(ii) If A is not closed, there is an f ∈ A \ A. The topology can be defined by a metric ρ (245Eb),
and we can choose a sequence 〈fn〉n∈N in A such that ρ(fn, f) ≤ 2−n for every n, so that 〈fn〉n∈N → f in
measure. By 245K, 〈fn〉n∈N has a subsequence 〈f ′n〉n∈N converging a.e. to f , and this witnesses that A fails
to satisfy the condition.

(b) This follows immediately, because A ⊆ L0 is closed iff {f : f• ∈ A} is closed in L
0.

245M Complex L0 In 241J I briefly discussed the adaptations needed to construct the complex linear
space L0

C. The formulae of 245A may be used unchanged to define topologies of convergence in measure on
L

0
C and L0

C. I think that every word of 245B-245L still applies if we replace each L0 or L0 with L0
C or L0

C.
Alternatively, to relate the ‘real’ and ‘complex’ forms of 245E, for instance, we can observe that because

max(ρF (Re(u),Re(v)), ρF (Im(u), Im(v))) ≤ ρF (u, v)

≤ ρF (Re(u),Re(v)) + ρF (Im(u), Im(v))

for all u, v ∈ L0 and all sets F of finite measure, L0
C can be identified, as uniform space, with L0 ×L0, so is

Hausdorff, or metrizable, or complete iff L0 is.
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245X Basic exercises >>>(a) Let X be any set, and µ counting measure on X. Show that the topology
of convergence in measure on L

0(µ) = RX is just the product topology on RX regarded as a product of
copies of R.

>>>(b) Let (X,Σ, µ) be any measure space, and (X, Σ̂, µ̂) its completion. Show that the topologies of
convergence in measure on L

0(µ) = L
0(µ̂) (241Xb), corresponding to the families {ρF : F ∈ Σ, µF < ∞},

{ρF : F ∈ Σ̂, µ̂F <∞} are the same.

>>>(c) Let (X,Σ, µ) be any measure space; set L0 = L0(µ). Let u, un ∈ L0 for n ∈ N. Show that the
following are equiveridical:

(i) 〈un〉n∈N order*-converges to u in the sense of 245C;
(ii) there are measurable functions f , fn : X → R such that f• = u, f•

n = un for every n ∈ N, and
f(x) = limn→∞ fn(x) for every x ∈ X;

(iii) u = infn∈N supm≥n um = supn∈N infm≥n um, the infima and suprema being taken in L0;

(iv) infn∈N supm≥n |u− um| = 0 in L0;

(v) there is a non-increasing sequence 〈vn〉n∈N in L0 such that infn∈N vn = 0 in L0 and u− vn ≤ un ≤
u+ vn for every n ∈ N;

(vi) there are sequences 〈vn〉n∈N, 〈wn〉n∈N in L0 such that 〈vn〉n∈N is non-decreasing, 〈wn〉n∈N is non-
increasing, supn∈N vn = u = infn∈N wn and vn ≤ un ≤ wn for every n ∈ N.

(d) Let (X,Σ, µ) be a semi-finite measure space. Show that a sequence 〈un〉n∈N in L0 = L0(µ) is order*-
convergent to u ∈ L0 iff {|un| : n ∈ N} is bounded above in L0 and 〈supm≥n |um − u|〉n∈N → 0 for the
topology of convergence in measure.

(e) Write out proofs that L0(µ) is complete (as linear topological space) adapted to the special cases (i)
µX = 1 (ii) µ is σ-finite, taking advantage of any simplifications you can find.

(f) Let (X,Σ, µ) be a measure space and r ≥ 1; let h : Rr → R be a continuous function. (i) Suppose
that for 1 ≤ k ≤ r we are given a sequence 〈fkn〉n∈N in L

0 = L
0(µ) converging in measure to fk ∈ L

0. Show
that 〈h(f1n, . . . , fkn)〉n∈N converges in measure to h(f1, . . . , fk). (ii) Generally, show that (f1, . . . , fr) 7→
h(f1, . . . , fr) : (L0)r → L

0 is continuous for the topology of convergence in measure. (iii) Show that the
corresponding function h̄ : (L0)r → L0 (241Xh) is continuous for the topology of convergence in measure.

(g) Let (X,Σ, µ) be a measure space and u ∈ L1(µ). Show that v 7→
∫

u× v : L∞ → R is continuous for
the topology of convergence in measure on the unit ball of L∞, but not, as a rule, on the whole of L∞.

(h) Let (X,Σ, µ) be a measure space and v a non-negative member of L1 = L1(µ). Show that on the
set A = {u : u ∈ L1, |u| ≤ v} the subspace topologies (2A3C) induced by the norm topology of L1 and the
topology of convergence in measure are the same. (Hint : given ǫ > 0, take F ∈ Σ of finite measure and
M ≥ 0 such that

∫

(|v| −MχF •)+ ≤ ǫ. Show that ‖u− u′‖1 ≤ ǫ+Mρ̄F (u, u
′) for all u, u′ ∈ A.)

(i) Let (X,Σ, µ) be a measure space and F a filter on L1 = L1(µ) which is convergent, for the topology of
convergence in measure, to u ∈ L1. Show that F → u for the norm topology of L1 iff infA∈F supv∈A ‖v‖1 ≤
‖u‖1.

(j) Let (X,Σ, µ) be a measure space and p ∈ [1,∞[. Suppose that 〈un〉n∈N is a sequence in Lp(µ) which
converges for ‖ ‖p to u ∈ Lp(µ). Show that 〈|un|

p〉n∈N → |u|p for ‖ ‖1. (Hint : 245G, 245Dd, 245H.)

>>>(k) Let (X,Σ, µ) be a semi-finite measure space and p ∈ [1,∞], a ≥ 0. Show that {u : u ∈ Lp(µ), ‖u‖p ≤
a} is closed in L0(µ) for the topology of convergence in measure.

(l) Let (X,Σ, µ) be a measure space, and 〈un〉n∈N a sequence in Lp = Lp(µ), where 1 ≤ p < ∞. Let
u ∈ Lp. Show that the following are equiveridical: (i) u = limn→∞ un for the norm topology of Lp (ii)
〈un〉n∈N → u for the topology of convergence in measure and limn→∞ ‖un‖p = ‖u‖p (iii) 〈un〉n∈N → u for
the topology of convergence in measure and lim supn→∞ ‖un‖p ≤ ‖u‖p.
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(m) Let X be a set and µ, ν two measures on X with the same measurable sets and the same negligible
sets. (i) Show that L0(µ) = L

0(ν) and L0(µ) = L0(ν). (ii) Show that if both µ and ν are semi-finite, then
they define the same topology of convergence in measure on L

0 and L0. (Hint : use 215A to show that if
µE <∞ then µE = sup{µF : F ⊆ E, νF <∞}.)

245Y Further exercises (a) Let (X,Σ, µ) be a measure space and give Σ the topology of convergence
in measure (232Ya). Show that χ : Σ → L

0(µ) is a homeomorphism between Σ and its image χ[Σ] in L
0, if

L
0 is given the topology of convergence in measure and χ[Σ] the subspace topology.

(b) Let (X,Σ, µ) be a measure space and Y any subset of X; let µY be the subspace measure on Y . Let
T : L0(µ) → L0(µY ) be the canonical map defined by setting T (f•) = (f↾Y )• for every f ∈ L

0(µ) (241Yg).
Show that T is continuous for the topologies of convergence in measure on L0(µ) and L0(µY ).

(c) Let (X,Σ, µ) be a measure space, and µ̃ the c.l.d. version of µ. Show that the map T : L0(µ) → L0(µ̃)
induced by the inclusion L

0(µ) ⊆ L
0(µ̃) (241Yf) is continuous for the topologies of convergence in measure.

(d) Let (X,Σ, µ) be a measure space, and give L0 = L0(µ) the topology of convergence in measure. Let
A ⊆ L0 be a non-empty downwards-directed set, and suppose that inf A = 0 in L0. (i) Let F ∈ Σ be any
set of finite measure, and define τ̄F as in 245A; show that infu∈A τ̄F (u) = 0. (Hint : set γ = infu∈A τ̄F (u);
find a non-increasing sequence 〈un〉n∈N in A such that limn→∞ τ̄F (un) = γ; set v = (χF )• ∧ infn∈N un and
show that u ∧ v = v for every u ∈ A, so that v = 0.) (ii) Show that if U is any open set containing 0, there
is a u ∈ A such that v ∈ U whenever 0 ≤ v ≤ u.

(e) Let (X,Σ, µ) be a measure space. (i) Show that for u ∈ L0 = L0(µ) we may define ψa(u), for a ≥ 0,
by setting ψa(u) = µ{x : |f(x)| ≥ a} whenever f : X → R is a measurable function and f• = u. (ii) Define
ρ : L0 × L0 → [0, 1] by setting ρ(u, v) = min({1} ∪ {a : a ≥ 0, ψa(u − v) ≤ a}. Show that ρ is a metric on
L0, that L0 is complete under ρ, and that +, −, ∧, ∨ : L0 × L0 → L0 are continuous for ρ. (iii) Show that
c 7→ cu : R → L0 is continuous for every u ∈ L0 iff (X,Σ, µ) is totally finite, and that in this case ρ defines
the topology of convergence in measure on L0.

(f) Let (X,Σ, µ) be a localizable measure space and A ⊆ L0 = L0(µ) a non-empty upwards-directed set
which is bounded in the linear topological space sense (i.e., such that for every neighbourhood U of 0 in L0

there is a k ∈ N such that A ⊆ kU). Show that A is bounded above in L0, and that its supremum belongs
to its closure.

(g) Let (X,Σ, µ) be a measure space, p ∈ [1,∞[ and v a non-negative member of Lp = Lp(µ). Show that
on the set A = {u : u ∈ Lp, |u| ≤ v} the subspace topologies induced by the norm topology of Lp and the
topology of convergence in measure are the same.

(h) Let S be the set of all sequences s : N → N such that limn→∞ s(n) = ∞. For every s ∈ S, let
(Xs,Σs, µs) be [0, 1] with Lebesgue measure, and let (X,Σ, µ) be the direct sum of 〈(Xs,Σs, µs)〉s∈S (214L).
For s ∈ S, t ∈ [0, 1], n ∈ N set hn(s, t) = fs(n)(t), where 〈fn〉n∈N is the sequence of 245Cc. Show that

〈hn〉n∈N → 0 for the topology of convergence in measure on L
0(µ), but that 〈hn〉n∈N has no subsequence

which is convergent to 0 almost everywhere.

(i) Let X be a set, and suppose we are given a relation ⇀ between sequences in X and members of X
such that (α) if xn = x for every n then 〈xn〉n∈N ⇀ x (β) 〈x′n〉n∈N ⇀ x whenever 〈xn〉n∈N ⇀ x and 〈x′n〉n∈N

is a subsequence of 〈xn〉n∈N. Show that we have a topology T on X defined by saying that a subset G
of X belongs to T iff whenever 〈xn〉n∈N is a sequence in X and 〈xn〉n∈N ⇀ x ∈ G then some xn belongs
to G. Show that a sequence 〈xn〉n∈N in X is T-convergent to x iff every subsequence of 〈xn〉n∈N has a
sub-subsequence 〈x′′n〉n∈N such that 〈x′′n〉n∈N ⇀ x.

(j) Let µ be Lebesgue measure on Rr. Show that L0(µ) is separable for the topology of convergence in
measure. (Hint : 244I.)
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245 Notes and comments In this section I am inviting you to regard the topology of (local) convergence
in measure as the standard topology on L0, just as the norms define the standard topologies on Lp spaces
for p ≥ 1. The definition I have chosen is designed to make addition and scalar multiplication and the
operations ∨, ∧ and × continuous (245D); see also 245Xf. From the point of view of functional analysis
these properties are more important than metrizability or even completeness.

Just as the algebraic and order structure of L0 can be described in terms of the general theory of Riesz
spaces, the more advanced results 241G and 245E also have interpretations in the general theory. It is not
an accident that (for semi-finite measure spaces) L0 is Dedekind complete iff it is complete as uniform space;
you may find the relevant generalizations in 23K and 24E of Fremlin 74. Of course it is exactly because the
two kinds of completeness are interrelated that I feel it necessary to use the phrase ‘Dedekind completeness’
to distinguish this particular kind of order-completeness from the more familiar uniformity-completeness
described in 2A5F.

The usefulness of the topology of convergence in measure derives in large part from 245G-245J and the
Lp versions 245Xk and 245Xl. Some of the ideas here can be related to a question arising out of the basic
convergence theorems. If 〈fn〉n∈N is a sequence of integrable functions converging (pointwise) to a function f ,
in what ways can

∫

f fail to be limn→∞

∫

fn? In the language of this section, this translates into: if we have
a sequence (or filter) in L1 converging for the topology of convergence in measure, in what ways can it fail
to converge for the norm topology of L1? The first answer is Lebesgue’s Dominated Convergence Theorem:
this cannot happen if the sequence is dominated, that is, lies within some set of the form {u : |u| ≤ v}
where v ∈ L1. (See 245Xh and 245Yg.) I will return to this in the next section. For the moment, though,
245H tells us that if 〈un〉n∈N converges in measure to u ∈ L1, but not for the topology of L1, it is because
lim supn→∞ ‖un‖1 is too big; some of its weight is being lost at infinity, as in the examples of 245I. If 〈un〉n∈N

actually order*-converges to u, then Fatou’s Lemma tells us that lim infn→∞ ‖un‖1 ≥ ‖u‖1, that is, that
the limit cannot have greater weight (as measured by ‖ ‖1) than the sequence provides. 245J and 245Xk are
generalizations of this to convergence in measure. If you want a generalization of B.Levi’s theorem, then
242Yf remains the best expression in the language of this chapter; but 245Yf is a version in terms of the
concepts of the present section.

In the case of σ-finite spaces, we have an alternative description of the topology of convergence in measure
(245L) which makes no use of any of the functionals or pseudo-metrics in 245A. This can be expressed, at
least in the context of L0, in terms of a standard result from general topology (245Yi). You will see that that
result gives a recipe for a topology on L0 which could be applied in any measure space. What is remarkable
is that for σ-finite spaces we get a linear space topology.

Version of 17.11.06

246 Uniform integrability

The next topic is a fairly specialized one, but it is of great importance, for different reasons, in both
probability theory and functional analysis, and it therefore seems worth while giving a proper treatment
straight away.

246A Definition Let (X,Σ, µ) be a measure space.

(a) A set A ⊆ L
1(µ) is uniformly integrable if for every ǫ > 0 we can find a set E ∈ Σ, of finite

measure, and an M ≥ 0 such that
∫

(|f | −MχE)+ ≤ ǫ for every f ∈ A.

(b) A set A ⊆ L1(µ) is uniformly integrable if for every ǫ > 0 we can find a set E ∈ Σ, of finite
measure, and an M ≥ 0 such that

∫

(|u| −MχE•)+ ≤ ǫ for every u ∈ A.

246B Remarks (a) Recall the formulae from 241Ef: u+ = u ∨ 0, so (u− v)+ = u− u ∧ v.
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(b) The phrase ‘uniformly integrable’ is not particularly helpful. But of course we can observe that for
any particular integrable function f , there are simple functions approximating f for ‖ ‖1 (242M), and such
functions will be bounded (in modulus) by functions of the formMχE, with µE <∞; thus singleton subsets
of L1 and L1 are uniformly integrable. A general uniformly integrable set of functions is one in which M
and E can be chosen uniformly over the set.

(c) It will I hope be clear from the definitions that A ⊆ L
1 is uniformly integrable iff {f• : f ∈ A} ⊆ L1

is uniformly integrable.

(d) There is a useful simplification in the definition if µX <∞ (in particular, if (X,Σ, µ) is a probability
space). In this case a set A ⊆ L1(µ) is uniformly integrable iff

infM≥0 supu∈A

∫

(|u| −Me)+ = 0

iff

limM→∞ supu∈A

∫

(|u| −Me)+ = 0,

writing e = χX• ∈ L1(µ). (For if supu∈A

∫

(|u| −MχE•)+ ≤ ǫ, then
∫

(|u| −M ′e)+ ≤ ǫ for every M ′ ≥M .)
Similarly, A ⊆ L

1(µ) is uniformly integrable iff

limM→∞ supf∈A

∫

(|f | −MχX)+ = 0

iff

infM≥0 supf∈A

∫

(|f | −MχX)+ = 0.

Warning! Some authors use the phrase ‘uniformly integrable’ for sets satisfying the conditions in (d) even
when µ is not totally finite.

246C We have the following wide-ranging stability properties of the class of uniformly integrable sets in
L1 or L1.

Proposition Let (X,Σ, µ) be a measure space and A a uniformly integrable subset of L1(µ).
(a) A is bounded for the norm ‖ ‖1.
(b) Any subset of A is uniformly integrable.
(c) For any a ∈ R, aA = {au : u ∈ A} is uniformly integrable.
(d) There is a uniformly integrable C ⊇ A such that C is convex and ‖ ‖1-closed and v ∈ C whenever

u ∈ C and |v| ≤ |u|.
(e) If B is another uniformly integrable subset of L1, then A ∪ B and A + B = {u + v : u ∈ A, v ∈ B}

are uniformly integrable.

proof Write Σf for {E : E ∈ Σ, µE <∞}.

(a) There must be E ∈ Σf , M ≥ 0 such that
∫

(|u| −MχE•)+ ≤ 1 for every u ∈ A; now

‖u‖1 ≤
∫

(|u| −MχE•)+ +
∫

MχE• ≤ 1 +MµE

for every u ∈ A, so A is bounded.

(b) This is immediate from the definition 246Ab.

(c) Given ǫ > 0, we can find E ∈ Σf , M ≥ 0 such that |a|
∫

E
(|u| −MχE•)+ ≤ ǫ for every u ∈ A; now

∫

E
(|v| − |a|MχE•)+ ≤ ǫ for every v ∈ aA.

(d) If A is empty, take C = A. Otherwise, try

C = {v : v ∈ L1,
∫

(|v| − w)+ ≤ supu∈A

∫

(|u| − w)+ for every w ∈ L1(µ)}.

Evidently A ⊆ C, and C satisfies the definition 246Ab because A does, considering w of the form MχE•

where E ∈ Σf and M ≥ 0. The functionals

v 7→
∫

(|v| − w)+ : L1(µ) → R
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are all continuous for ‖ ‖1 (because the operators v 7→ |v|, v 7→ v − w, v 7→ v+, v 7→
∫

v are continuous), so
C is closed. If |v′| ≤ |v| and v ∈ C, then

∫

(|v′| − w)+ ≤
∫

(|v| − w)+ ≤ supu∈A

∫

(|u| − w)+

for every w, and v′ ∈ C. If v = av1 + bv2 where v1, v2 ∈ C, a ∈ [0, 1] and b = 1− a, then |v| ≤ a|v1|+ b|v2|,
so

|v| − w ≤ (a|v1| − aw) + (b|v2| − bw) ≤ (a|v1| − aw)+ + (b|v2| − bw)+

and

(|v| − w)+ ≤ a(|v1| − w)+ + b(|v2| − w)+

for every w; accordingly

∫

(|v| − w)+ ≤ a

∫

(|v1| − w)+ + b

∫

(|v2| − w)+

≤ (a+ b) sup
u∈A

∫

(|u| − w)+ = sup
u∈A

∫

(|u| − w)+

for every w, and v ∈ C.

Thus C has all the required properties.

(e) I show first that A ∪B is uniformly integrable. PPP Given ǫ > 0, let M1, M2 ≥ 0 and E1, E2 ∈ Σf be
such that

∫

(|u| −M1χE
•

1)
+ ≤ ǫ for every u ∈ A,

∫

(|u| −M2χE
•

2)
+ ≤ ǫ for every u ∈ B.

Set M = max(M1,M2), E = E1 ∪ E2; then µE <∞ and
∫

(|u| −MχE•)+ ≤ ǫ for every u ∈ A ∪B.

As ǫ is arbitrary, A ∪B is uniformly integrable. QQQ

Now (d) tells us that there is a convex uniformly integrable set C including A ∪ B, and in this case
A+B ⊆ 2C, so A+B is also uniformly integrable, using (b) and (c).

246D Proposition Let (X,Σ, µ) be a probability space and A ⊆ L1(µ) a uniformly integrable set. Then
there is a convex, ‖ ‖1-closed uniformly integrable set C ⊆ L1 such that A ⊆ C, w ∈ C whenever v ∈ C
and |w| ≤ |v|, and Pv ∈ C whenever v ∈ C and P is the conditional expectation operator associated with a
σ-subalgebra of Σ.

proof Set

C = {v : v ∈ L1(µ),
∫

(|v| −Me)+ ≤ supu∈A

∫

(|u| −Me)+ for every M ≥ 0},

writing e = χX• as usual. The arguments in the proof of 246Cd make it plain that C ⊇ A is uniformly
integrable, convex and closed, and that w ∈ C whenever v ∈ C and |w| ≤ |v|. As for the conditional
expectation operators, if v ∈ C, T is a σ-subalgebra of Σ, P is the associated conditional expectation
operator, and M ≥ 0, then

|Pv| ≤ P |v| = P ((|v| ∧Me) + (|v| −Me)+) ≤Me+ P ((|v| −Me)+),

so

(|Pv| −Me)+ ≤ P ((|v| −Me)+)

and
∫

(|Pv| −Me)+ ≤
∫

P (|v| −Me)+ =
∫

(|v| −Me)+ ≤ supu∈A

∫

(|u| −Me)+;

as M is arbitrary, Pv ∈ C.
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246E Remarks (a) Of course 246D has an expression in terms of L1 rather than L1: if (X,Σ, µ) is a
probability space and A ⊆ L

1(µ) is uniformly integrable, then there is a uniformly integrable set C ⊇ A
such that (i) af + (1 − a)g ∈ C whenever f , g ∈ C and a ∈ [0, 1] (ii) g ∈ C whenever f ∈ C, g ∈ L

0(µ)
and |g| ≤a.e. |f | (iii) f ∈ C whenever there is a sequence 〈fn〉n∈N in C such that limn→∞

∫

|f − fn| = 0
(iv) g ∈ C whenever there is an f ∈ C such that g is a conditional expectation of f with respect to some
σ-subalgebra of Σ.

(b) In fact, there are obvious extensions of 246D; the proof there already shows that T [C] ⊆ C whenever
T : L1(µ) → L1(µ) is an order-preserving linear operator such that ‖Tu‖1 ≤ ‖u‖1 for every u ∈ L1(µ) and
‖Tu‖∞ ≤ ‖u‖∞ for every u ∈ L1(µ)∩L∞(µ) (246Yc). If we had done a bit more of the theory of operators
on Riesz spaces I should be able to take you a good deal farther along this road; for instance, it is not in
fact necessary to assume that the operators T of the last sentence are order-preserving. I will return to this
in Chapter 37 in the next volume.

(c) Moreover, the main theorem of the next section will show that for any measure spaces (X,Σ, µ),
(Y,T, ν), T [A] will be uniformly integrable in L1(ν) whenever A ⊆ L1(µ) is uniformly integrable and
T : L1(µ) → L1(ν) is a continuous linear operator (247D).

246F We shall need an elementary lemma which I have not so far spelt out.

Lemma Let (X,Σ, µ) be a measure space. Then for any u ∈ L1(µ),

‖u‖1 ≤ 2 supE∈Σ |
∫

E
u|.

proof Express u as f• where f : X → R is measurable. Set F = {x : f(x) ≥ 0}. Then

‖u‖1 =
∫

|f | = |
∫

F
f |+ |

∫

X\F
f | ≤ 2 supE∈Σ |

∫

E
f | = 2 supE∈Σ |

∫

E
u|.

246G Now we come to some of the remarkable alternative descriptions of uniform integrability.

Theorem Let (X,Σ, µ) be any measure space and A a non-empty subset of L1(µ). Then the following are
equiveridical:

(i) A is uniformly integrable;
(ii) supu∈A |

∫

F
u| < ∞ for every µ-atom F ∈ Σ, and for every ǫ > 0 there are E ∈ Σ, δ > 0 such that

µE <∞ and |
∫

F
u| ≤ ǫ whenever u ∈ A, F ∈ Σ and µ(F ∩ E) ≤ δ;

(iii) supu∈A |
∫

F
u| <∞ for every µ-atom F ∈ Σ, and limn→∞ supu∈A |

∫

Fn
u| = 0 whenever 〈Fn〉n∈N is

a disjoint sequence in Σ;
(iv) supu∈A |

∫

F
u| <∞ for every µ-atom F ∈ Σ, and limn→∞ supu∈A |

∫

Fn
u| = 0 whenever 〈Fn〉n∈N is

a non-increasing sequence in Σ with empty intersection.

Remark I use the phrase ‘µ-atom’ to emphasize that I mean an atom in the measure space sense (211I).

proof (a)(i)⇒(iv) Suppose that A is uniformly integrable. Then surely if F ∈ Σ is a µ-atom,

supu∈A |
∫

F
u| ≤ supu∈A ‖u‖1 <∞,

by 246Ca. Now suppose that 〈Fn〉n∈N is a non-increasing sequence in Σ with empty intersection, and that
ǫ > 0. Take E ∈ Σ, M ≥ 0 such that µE < ∞ and

∫

(|u| −MχE•)+ ≤ 1
2ǫ whenever u ∈ A. Then for all n

large enough, Mµ(Fn ∩ E) ≤ 1
2ǫ, so that

|
∫

Fn

u| ≤
∫

Fn

|u| ≤
∫

(|u| −MχE•)+ +
∫

Fn

MχE• ≤
ǫ

2
+Mµ(Fn ∩ E) ≤ ǫ

for every u ∈ A. As ǫ is arbitrary, limn→∞ supu∈A |
∫

Fn
u| = 0, and (iv) is true.

(b)(iv)⇒(iii) Suppose that (iv) is true. Then of course supu∈A |
∫

F
u| < ∞ for every µ-atom F ∈ Σ. ???

Suppose, if possible, that 〈Fn〉n∈N is a disjoint sequence in Σ such that

ǫ = lim supn→∞ supu∈A min(1, 13 |
∫

Fn

u|) > 0.
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Set Hn =
⋃

i≥n Fi for each n, so that 〈Hn〉n∈N is non-increasing and has empty intersection, and
∫

Hn
u→ 0

as n → ∞ for every u ∈ L1(µ). Choose 〈ni〉i∈N, 〈mi〉i∈N, 〈ui〉i∈N inductively, as follows. n0 = 0. Given
ni ∈ N, take mi ≥ ni, ui ∈ A such that |

∫

Fmi

ui| ≥ 2ǫ. Take ni+1 > mi such that
∫

Hni+1
|ui| ≤ ǫ. Continue.

Set Gk =
⋃

i≥k Fmi
for each k. Then 〈Gk〉k∈N is a non-increasing sequence in Σ with empty intersection.

But Fmi
⊆ Gi ⊆ Fmi

∪Hni+1
, so

|
∫

Gi

ui| ≥ |
∫

Fmi

ui| − |
∫

Gi\Fmi

ui| ≥ 2ǫ−
∫

Hni+1

|ui| ≥ ǫ

for every i, contradicting the hypothesis (iv). XXX

This means that limn→∞ supu∈A |
∫

Fn
u| must be zero, and (iii) is true.

(c)(iii)⇒(ii) We still have supu∈A |
∫

F
u| <∞ for every µ-atom F . ??? Suppose, if possible, that there is

an ǫ > 0 such that for every measurable set E of finite measure and every δ > 0 there are u ∈ A, F ∈ Σ such
that µ(F ∩E) ≤ δ and |

∫

F
u| ≥ ǫ. Choose a sequence 〈En〉n∈N of sets of finite measure, a sequence 〈Gn〉n∈N

in Σ, a sequence 〈δn〉n∈N of strictly positive real numbers and a sequence 〈un〉n∈N in A as follows. Given uk,
Ek, δk for k < n, choose un ∈ A and Gn ∈ Σ such that µ(Gn ∩

⋃

k<nEk) ≤ 2−n min({1}∪{δk : k < n}) and

|
∫

Gn
un| ≥ ǫ; then choose a set En of finite measure and a δn > 0 such that

∫

F
|un| ≤

1
2ǫ whenever F ∈ Σ

and µ(F ∩ En) ≤ δn (see 225A). Continue.

On completing the induction, set Fn = En∩Gn \
⋃

k>nGk for each n; then 〈Fn〉n∈N is a disjoint sequence
in Σ. By the choice of Gk,

µ(En ∩
⋃

k>nGk) ≤
∑∞

k=n+1 2
−kδn ≤ δn,

so µ(En ∩ (Gn \ Fn)) ≤ δn and
∫

Gn\Fn
|un| ≤

1
2ǫ. This means that |

∫

Fn
un| ≥ |

∫

Gn
un| −

1
2ǫ ≥

1
2ǫ. But this

is contrary to the hypothesis (iii). XXX

(d)(ii)⇒(i)(ααα) Assume (ii). Let ǫ > 0. Then there are E ∈ Σ, δ > 0 such that µE < ∞ and
|
∫

F
u| ≤ ǫ whenever u ∈ A, F ∈ Σ and µ(F ∩ E) ≤ δ. Now supu∈A

∫

E
|u| < ∞. PPP Write I for the

family of those F ∈ Σ such that F ⊆ E and supu∈A

∫

F
|u| is finite. If F ⊆ E is an atom for µ, then

supu∈A

∫

F
|u| = supu∈A |

∫

F
u| < ∞, so F ∈ I. (The point is that if f : X → R is a measurable function

such that f• = u, then one of F ′ = {x : x ∈ F, f(x) ≥ 0}, F ′′ = {x : x ∈ F, f(x) < 0} must be negligible,
so that

∫

F
|u| is either

∫

F ′
u =

∫

F
u or −

∫

F ′′
u = −

∫

F
u.) If F ∈ Σ, F ⊆ E and µF ≤ δ then

supu∈A

∫

F
|u| ≤ 2 supu∈A,G∈Σ,G⊆F |

∫

G
u| ≤ 2ǫ

(by 246F), so F ∈ I. Next, if F , G ∈ I then supu∈A

∫

F∪G
|u| ≤ supu∈A

∫

F
|u| + supu∈A

∫

G
|u| is finite, so

F ∪ G ∈ I. Finally, if 〈Fn〉n∈N is any sequence in I, and F =
⋃

n∈N Fn, there is some n ∈ N such that
µ(F \

⋃

i≤n Fi) ≤ δ; now
⋃

i≤n Fi and F \
⋃

i≤n Fi both belong to I, so F ∈ I.

By 215Ab, there is an F ∈ I such that H \F is negligible for every H ∈ I. Now observe that E \F cannot
include any non-negligible member of I; in particular, cannot include either an atom or a non-negligible
set of measure less than δ. But this means that the subspace measure on E \ F is atomless, totally finite
and has no non-negligible measurable sets of measure less than δ; by 215D, µ(E \ F ) = 0 and E \ F and E
belong to I, as required. QQQ

Since
∫

X\E |u| ≤ δ for every u ∈ A, γ = supu∈A

∫

|u| is finite.

(βββ) Set M = γ/δ. If u ∈ A, express u as f•, where f : X → R is measurable, and consider

F = {x : f(x) ≥MχE(x)}.

Then

Mµ(F ∩ E) ≤
∫

F
f =

∫

F
u ≤ γ,

so µ(F ∩ E) ≤ γ/M = δ. Accordingly
∫

F
u ≤ ǫ. Similarly,

∫

F ′
(−u) ≤ ǫ, writing F ′ = {x : −f(x) ≥

MχE(x)}. But this means that
∫

(|u| −MχE•)+ =
∫

(|f | −MχE)+ ≤
∫

F∪F ′
|f | =

∫

F∪F ′
|u| ≤ 2ǫ

for every u ∈ A. As ǫ is arbitrary, A is uniformly integrable.
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246H Remarks (a) Of course conditions (ii)-(iv) of this theorem, like (i), have direct translations in
terms of members of L1. Thus a non-empty set A ⊆ L

1 is uniformly integrable iff supf∈A |
∫

F
f | is finite for

every atom F ∈ Σ and

either for every ǫ > 0 we can find E ∈ Σ, δ > 0 such that µE < ∞ and |
∫

F
f | ≤ ǫ whenever

f ∈ A, F ∈ Σ and µ(F ∩ E) ≤ δ

or limn→∞ supf∈A |
∫

Fn
f | = 0 for every disjoint sequence 〈Fn〉n∈N in Σ

or limn→∞ supf∈A |
∫

Fn
f | = 0 for every non-increasing sequence 〈Fn〉n∈N in Σ with empty

intersection.

(b) There are innumerable further equivalent expressions characterizing uniform integrability; every
author has his own favourite. Many of them are variants on (i)-(iv) of this theorem, as in 246I and 246Yd-
246Yf. For a condition of a quite different kind, see Theorem 247C.

246I Corollary Let (X,Σ, µ) be a probability space. For f ∈ L
0(µ), M ≥ 0 set F (f,M) = {x : x ∈

dom f, |f(x)| ≥M}. Then a non-empty set A ⊆ L
1(µ) is uniformly integrable iff

limM→∞ supf∈A

∫

F (f,M)
|f | = 0.

proof (a) If A satisfies the condition, then

infM≥0 supf∈A

∫

(|f | −MχX)+ ≤ infM≥0 supf∈A

∫

F (f,M)
|f | = 0,

so A is uniformly integrable.

(b) If A is uniformly integrable, and ǫ > 0, there is an M0 ≥ 0 such that
∫

(|f | −M0χX)+ ≤ ǫ for every
f ∈ A; also, γ = supf∈A

∫

|f | is finite (246Ca). Take any M ≥M0 max(1, (1 + γ)/ǫ). If f ∈ A, then

|f | × χF (f,M) ≤ (|f | −M0χX)+ +M0χF (f,M) ≤ (|f | −M0χX)+ +
ǫ

γ+1
|f |

everywhere on dom f , so
∫

F (f,M)
|f | ≤

∫

(|f | −M0χX)+ +
ǫ

γ+1

∫

|f | ≤ 2ǫ.

As ǫ is arbitrary, limM→∞ supf∈A

∫

F (f,M)
|f | = 0.

246J The next step is to set out some remarkable connexions between uniform integrability and the
topology of convergence in measure discussed in the last section.

Theorem Let (X,Σ, µ) be a measure space.
(a) If 〈fn〉n∈N is a uniformly integrable sequence of real-valued functions on X, and f(x) = limn→∞ fn(x)

for almost every x ∈ X, then f is integrable and limn→∞

∫

|fn − f | = 0; consequently
∫

f = limn→∞

∫

fn.

(b) If A ⊆ L1 = L1(µ) is uniformly integrable, then the norm topology of L1 and the topology of
convergence in measure of L0 = L0(µ) agree on A.

(c) For any u ∈ L1 and any sequence 〈un〉n∈N in L1, the following are equiveridical:
(i) u = limn→∞ un for ‖ ‖1;
(ii) {un : n ∈ N} is uniformly integrable and 〈un〉n∈N converges to u in measure.

(d) If (X,Σ, µ) is semi-finite, and A ⊆ L1 is uniformly integrable, then the closure A of A in L0 for the
topology of convergence in measure is still a uniformly integrable subset of L1.

proof (a) Note first that because supn∈N

∫

|fn| < ∞ (246Ca) and |f | = lim infn→∞ |fn|, Fatou’s Lemma
assures us that |f | is integrable, with

∫

|f | ≤ lim supn→∞

∫

|fn|. It follows immediately that {fn−f : n ∈ N}
is uniformly integrable, being the sum of two uniformly integrable sets (246Cc, 246Ce).

Given ǫ > 0, there are M ≥ 0, E ∈ Σ such that µE < ∞ and
∫

(|fn − f | −MχE)+ ≤ ǫ for every n ∈ N.
Also |fn − f | ∧MχE → 0 a.e., so
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lim sup
n→∞

∫

|fn − f | ≤ lim sup
n→∞

∫

(|fn − f | −MχE)+

+ lim sup
n→∞

∫

|fn − f | ∧MχE

≤ ǫ,

by Lebesgue’s Dominated Convergence Theorem. As ǫ is arbitrary, limn→∞

∫

|fn−f | = 0 and limn→∞

∫

fn−
f = 0.

(b) Let TA, SA be the topologies on A induced by the norm topology of L1 and the topology of
convergence in measure on L0 respectively.

(i) Given ǫ > 0, let F ∈ Σ, M ≥ 0 be such that µF < ∞ and
∫

(|v| −MχF •)+ ≤ ǫ for every v ∈ A,
and consider ρ̄F , defined as in 245A. Then for any f , g ∈ L

0,

|f − g| ≤ (|f | −MχF )+ + (|g| −MχF )+ +M(|f − g| ∧ χF )

everywhere on dom f ∩ dom g, so

|u− v| ≤ (|u| −MχF •)+ + (|v| −MχF •)+ +M(|u− v| ∧ χF •)

for all u, v ∈ L0. Consequently

‖u− v‖1 ≤ 2ǫ+Mρ̄F (u, v)

for all u, v ∈ A.
This means that, given ǫ > 0, we can find F , M such that, for u, v ∈ A,

ρ̄F (u, v) ≤
ǫ

1+M
=⇒ ‖u− v‖1 ≤ 3ǫ.

It follows that every subset of A which is open for TA is open for SA (2A3Ib).

(ii) In the other direction, we have ρ̄F (u, v) ≤ ‖u − v‖1 for every u ∈ L1 and every set F of finite
measure, so every subset of A which is open for SA is open for TA.

(c) If 〈un〉n∈N → u for ‖ ‖1, A = {un : n ∈ N} is uniformly integrable. PPP Given ǫ > 0, let m be such that
‖un − u‖1 ≤ ǫ whenever n ≥ m. Set v = |u| +

∑

i≤m |ui| ∈ L1, and let M ≥ 0, E ∈ Σ be such that µE is

finite and
∫

E
(v −MχE•)+ ≤ ǫ. Then, for w ∈ A,

(|w| −MχE•)+ ≤ (|w| − v)+ + (v −MχE•)+,

so
∫

E
(|w| −MχE•)+ ≤ ‖(|w| − v)+‖1 +

∫

E
(v −MχE•)+ ≤ 2ǫ. QQQ

Thus on either hypothesis we can be sure that {un : n ∈ N} and A = {u} ∪ {un : n ∈ N} are uniformly
integrable, so that the two topologies agree on A (by (b)) and 〈un〉n∈N converges to u in one topology iff it
converges to u in the other.

(d) Because A is ‖ ‖1-bounded (246Ca) and µ is semi-finite, A ⊆ L1 (245J(b-i)). Given ǫ > 0, let
M ≥ 0, E ∈ Σ be such that µE < ∞ and

∫

(|u| −MχE•)+ ≤ ǫ for every u ∈ A. Now the maps u 7→ |u|,
u 7→ u −MχE•, u 7→ u+ : L0 → L0 are all continuous for the topology of convergence in measure (245D),
while {u : ‖u‖1 ≤ ǫ} is closed for the same topology (245J again), so {u : u ∈ L0,

∫

(|u| −MχE•)+ ≤ ǫ} is

closed and must include A. Thus
∫

(|u| −MχE•)+ ≤ ǫ for every u ∈ A. As ǫ is arbitrary, A is uniformly
integrable.

246K Complex L
1 and L1 The definitions and theorems above can be repeated without difficulty

for spaces of (equivalence classes of) complex-valued functions, with just one variation: in the complex
equivalent of 246F, the constant must be changed. It is easy to see that, for u ∈ L1

C(µ),

‖u‖1 ≤ ‖Re(u)‖1 + ‖ Im(u)‖1

≤ 2 sup
F∈Σ

|

∫

F

Re(u)|+ 2 sup
F∈Σ

|

∫

F

Im(u)| ≤ 4 sup
F∈Σ

|

∫

F

u|.
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(In fact, ‖u‖1 ≤ π supF∈Σ |
∫

F
u|; see 246Yl and 252Yt.) Consequently some of the arguments of 246G need

to be written out with different constants, but the results, as stated, are unaffected.

246X Basic exercises (a) Let (X,Σ, µ) be a measure space and A a subset of L1 = L1(µ). Show that
the following are equiveridical: (i) A is uniformly integrable; (ii) for every ǫ > 0 there is a w ≥ 0 in L1

such that
∫

(|u| − w)+ ≤ ǫ for every u ∈ A; (iii) 〈(|un+1| − supi≤n |ui|)
+〉n∈N → 0 in L1 for every sequence

〈un〉n∈N in A. (Hint : for (ii)⇒(iii), set vn = supi≤n |ui| and note that 〈vn ∧ w〉n∈N is convergent in L1 for
every w ≥ 0.)

>>>(b) Let (X,Σ, µ) be a totally finite measure space. Show that for any p > 1 and M ≥ 0 the set
{f : f ∈ L

p(µ), ‖f‖p ≤M} is uniformly integrable. (Hint :
∫

(|f | −MχX)+ ≤M1−p
∫

|f |p.)

>>>(c) Let µ be counting measure on N. Show that a set A ⊆ L
1(µ) = ℓ1 is uniformly integrable iff (i)

supf∈A |f(n)| < ∞ for every n ∈ N (ii) for every ǫ > 0 there is an m ∈ N such that
∑∞

n=m |f(n)| ≤ ǫ for
every f ∈ A.

(d) Let X be a set, and let µ be counting measure on X. Show that a set A ⊆ L
1(µ) = ℓ1(X) is uniformly

integrable iff (i) supf∈A |f(x)| <∞ for every x ∈ X (ii) for every ǫ > 0 there is a finite set I ⊆ X such that
∑

x∈X\I |f(x)| ≤ ǫ for every f ∈ A. Show that in this case A is relatively compact for the norm topology of

ℓ1(X).

(e) Let (X,Σ, µ) be a measure space, δ > 0, and I ⊆ Σ a family such that (i) every atom belongs to I
(ii) E ∈ I whenever E ∈ Σ and µE ≤ δ (iii) E ∪F ∈ I whenever E, F ∈ I and E ∩F = ∅. Show that every
set of finite measure belongs to I.

(f) Let (X,Σ, µ) and (Y,T, ν) be measure spaces and φ : X → Y an inverse-measure-preserving function.
Show that a set A ⊆ L

1(ν) is uniformly integrable iff {gφ : g ∈ A} is uniformly integrable in L
1(µ). (Hint :

use 246G for ‘if’, 246A for ‘only if’.)

>>>(g) Let (X,Σ, µ) be a measure space and p ∈ [1,∞[. Let 〈fn〉n∈N be a sequence in L
p = L

p(µ) such
that {|fn|

p : n ∈ N} is uniformly integrable and fn → f a.e. Show that f ∈ L
p and limn→∞

∫

|fn − f |p = 0.

(h) Let (X,Σ, µ) be a semi-finite measure space and p ∈ [1,∞[. Let 〈un〉n∈N be a sequence in Lp = Lp(µ)
and u ∈ L0(µ). Show that the following are equiveridical: (i) u ∈ Lp and 〈un〉n∈N converges to u for ‖ ‖p
(ii) 〈un〉n∈N converges in measure to u and {|un|

p : n ∈ N} is uniformly integrable. (Hint : 245Xl.)

(i) Let (X,Σ, µ) be a totally finite measure space, and 1 ≤ p < r ≤ ∞. Let 〈un〉n∈N be a ‖ ‖r-bounded
sequence in Lr(µ) which converges in measure to u ∈ L0(µ). Show that 〈un〉n∈N converges to u for ‖ ‖p.
(Hint : show that {|un|

p : n ∈ N} is uniformly integrable.)

246Y Further exercises (a) Let (X,Σ, µ) be a totally finite measure space. Show that A ⊆ L
1(µ)

is uniformly integrable iff there is a convex function φ : [0,∞[ → R such that lima→∞ φ(a)/a = ∞ and
supf∈A

∫

φ(|f |) <∞.

(b) For any metric space (Z, ρ), let CZ be the family of closed subsets of Z, and for F , F ′ ∈ CZ \ {∅} set
ρ̃(F, F ′) = min(1,max(supz∈F infz′∈F ′ ρ(z, z′), supz′∈F ′ infz∈F ρ(z, z

′))). Show that ρ̃ is a metric on CZ \{∅}
(it is the Hausdorff metric). Show that if (Z, ρ) is complete then the family KZ \ {∅} of non-empty
compact subsets of Z is closed for ρ̃. Now let (X,Σ, µ) be any measure space and take Z = L1 = L1(µ),
ρ(z, z′) = ‖z − z′‖1 for z, z′ ∈ Z. Show that the family of non-empty closed uniformly integrable subsets of
L1 is a closed subset of CZ \ {∅} including KZ \ {∅}.

(c) Let (X,Σ, µ) be a totally finite measure space and A ⊆ L1(µ) a uniformly integrable set. Show that
there is a uniformly integrable set C ⊇ A such that (i) C is convex and closed in L0(µ) for the topology of
convergence in measure (ii) if u ∈ C and |v| ≤ |u| then v ∈ C (iii) if T belongs to the set T + of operators
from L1(µ) =M1,∞(µ) to itself, as described in 244Xm, then T [C] ⊆ C.
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(d) Let µ be Lebesgue measure on R. Show that a set A ⊆ L
1(µ) is uniformly integrable iff limn→∞

∫

Fn
fn

= 0 for every disjoint sequence 〈Fn〉n∈N of compact sets in R and every sequence 〈fn〉n∈N in A.

(e) Let µ be Lebesgue measure on R. Show that a set A ⊆ L
1(µ) is uniformly integrable iff limn→∞

∫

Gn
fn

= 0 for every disjoint sequence 〈Gn〉n∈N of open sets in R and every sequence 〈fn〉n∈N in A.

(f) Repeat 246Yd and 246Ye for Lebesgue measure on arbitrary subsets of Rr.

(g) Let X be a set and Σ a σ-algebra of subsets of X. Let 〈νn〉n∈N be a sequence of countably additive
functionals on Σ such that νE = limn→∞ νnE is defined for every E ∈ Σ. Show that limn→∞ νnFn = 0
whenever 〈Fn〉n∈N is a disjoint sequence in Σ. (Hint : suppose otherwise. By taking suitable subsequences
reduce to the case in which |νnFi − νFi| ≤ 2−nǫ for i < n, |νnFn| ≥ 3ǫ, |νnFi| ≤ 2−iǫ for i > n. Set
F =

⋃

i∈N F2i+1 and show that |ν2n+1F − ν2nF | ≥ ǫ for every n.)

(h) Let (X,Σ, µ) be a measure space and 〈un〉n∈N a sequence in L1 = L1(µ) such that limn→∞

∫

F
un is

defined for every F ∈ Σ. Show that {un : n ∈ N} is uniformly integrable. (Hint : suppose not. Then there are
a disjoint sequence 〈Fn〉n∈N in Σ and a subsequence 〈u′n〉n∈N of 〈un〉n∈N such that infn∈N |

∫

Fn
u′n| = ǫ > 0.

But this contradicts 246Yg.)

(i) In 246Yg, show that ν is countably additive. (Hint : Set µ =
∑∞

n=0 anνn for a suitable sequence
〈an〉n∈N of strictly positive numbers. For each n choose a Radon-Nikodým derivative fn of νn with respect
to µ. Show that {fn : n ∈ N} is uniformly integrable, so that ν is truly continuous.)(This is the Vitali-
Hahn-Saks theorem.)

(j) Let (X,Σ, µ) be any measure space, and A ⊆ L1(µ). Show that the following are equiveridical: (i)
A is ‖ ‖1-bounded; (ii) supu∈A |

∫

F
u| < ∞ for every µ-atom F ∈ Σ and lim supn→∞ supu∈A |

∫

Fn
u| < ∞

for every disjoint sequence 〈Fn〉n∈N of measurable sets of finite measure; (iii) supu∈A |
∫

E
u| < ∞ for every

E ∈ Σ. (Hint : show that 〈anun〉n∈N is uniformly integrable whenever limn→∞ an = 0 in R and 〈un〉n∈N is
a sequence in A.)

(k) Let (X,Σ, µ) be a measure space and A ⊆ L1(µ) a non-empty set. Show that the following are
equiveridical: (i) A is uniformly integrable; (ii) whenever B ⊆ L∞(µ) is non-empty and downwards-directed
and has infimum 0 in L∞(µ) then infv∈B supu∈A |

∫

u×v| = 0. (Hint : for (i)⇒(ii), note that infv∈B w×v = 0
for every w ≥ 0 in L0. For (ii)⇒(i), use 246G(iv).)

(l) Set f(x) = eix for x ∈ [−π, π]. Show that |
∫

E
f | ≤ 2 for every E ⊆ [−π, π].

246 Notes and comments I am holding over to the next section the most striking property of uniformly
integrable sets (they are the relatively weakly compact sets in L1) because this demands some non-trivial
ideas from functional analysis and general topology. In this section I give the results which can be regarded
as essentially measure-theoretic in inspiration. The most important new concept, or technique, is that of
‘disjoint-sequence theorem’. A typical example is in condition (iii) of 246G, relating uniform integrability
to the behaviour of functionals on disjoint sequences of sets. I give variants of this in 246Yd-246Yf, and
246Yg-246Yj are further results in which similar methods can be used. The central result of the next section
(247C) will also use disjoint sequences in the proof, and they will appear more than once in Chapter 35 in
the next volume.

The phrase ‘uniformly integrable’ ought to mean something like ‘uniformly approximable by simple func-
tions’, and the definition 246A can be forced into such a form, but I do not think it very useful to do so.
However condition (ii) of 246G amounts to something like ‘uniformly truly continuous’, if we think of mem-
bers of L1 as truly continuous functionals on Σ, as in 242I. (See 246Yi.) Note that in each of the statements
(ii)-(iv) of 246G we need to take special note of any atoms for the measure, since they are not controlled by
the main condition imposed. In an atomless measure space, of course, we have a simplification here, as in
246Yd-246Yf.

Another way of justifying the ‘uniformly’ in ‘uniformly integrable’ is by considering functionals θw where
w ≥ 0 in L1, setting θw(u) =

∫

(|u| − w)+ for u ∈ L1; then A ⊆ L1 is uniformly integrable iff θw → 0
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uniformly on A as w rises in L1 (246Xa). It is sometimes useful to know that if this is true at all then it is
necessarily witnessed by elements w which can be built directly from materials at hand (see (iii) of 246Xa).
Furthermore, the sets Awǫ = {u : θw(u) ≤ ǫ} are always convex, ‖ ‖1-closed and ‘solid’ (if u ∈ Awǫ and
|v| ≤ |u| then v ∈ Awǫ)(246Cd); they are closed under pointwise convergence of sequences (246Ja) and in
semi-finite measure spaces they are closed for the topology of convergence in measure (246Jd); in probability
spaces, for level w, they are closed under conditional expectations (246D) and similar operators (246Yc).
Consequently we can expect that any uniformly integrable set will be included in a uniformly integrable set
which is closed under operations of several different types.

Yet another ‘uniform’ property of uniformly integrable sets is in 246Yk. The norm ‖ ‖∞ is never (in
interesting cases) order-continuous in the way that other ‖ ‖p are (244Ye); but the uniformly integrable
subsets of L1 provide interesting order-continuous seminorms on L∞.

246J supplements results from §245. In the notes to that section I mentioned the question: if 〈fn〉n∈N → f
a.e., in what ways can 〈

∫

fn〉n∈N fail to converge to
∫

f? Here we find that 〈
∫

|fn−f |〉n∈N → 0 iff {fn : n ∈ N}
is uniformly integrable; this is a way of making precise the expression ‘none of the weight of the sequence is
lost at infinity’. Generally, for sequences, convergence in ‖ ‖p, for p ∈ [1,∞[, is convergence in measure for
pth-power-uniformly-integrable sequences (246Xh).

Version of 26.8.13

247 Weak compactness in L1

I now come to the most striking feature of uniform integrability: it provides a description of the relatively
weakly compact subsets of L1 (247C). I have put this into a separate section because it demands some
knowledge of functional analysis – in particular, of course, of weak topologies on Banach spaces. I will try
to give an account in terms which are accessible to novices in the theory of normed spaces because the result
is essentially measure-theoretic, as well as being of vital importance to applications in probability theory. I
have written out the essential definitions in §§2A3-2A5.

247A Part of the argument of the main theorem below will run more smoothly if I separate out an idea
which is, in effect, a simple special case of a theme which has been running through the exercises of this
chapter (241Yg, 242Yb, 243Ya, 244Yd).

Lemma Let (X,Σ, µ) be a measure space, and G any member of Σ. Let µG be the subspace measure on
G, so that µGE = µE when E ⊆ G and E ∈ Σ. Set

U = {u : u ∈ L1(µ), u× χG• = u} ⊆ L1(µ).

Then we have an isomorphism S between the ordered normed spaces U and L1(µG), given by writing

S(f•) = (f↾G)•

for every f ∈ L
1(µ) such that f• ∈ U .

proof Of course I should remark explicitly that U is a linear subspace of L1(µ). I have discussed integration
over subspaces in §§131 and 214; in particular, I noted that f↾G is integrable, and that

∫

|f↾G|dµG =
∫

|f | × χGdµ ≤
∫

|f |dµ

for every f ∈ L
1(µ) (131Fa). If f , g ∈ L

1(µ) and f = g µ-a.e., then f↾G = g↾G µG-a.e.; so the proposed
formula for S does indeed define a map from U to L1(µG).

Because

(f + g)↾G = (f↾G) + (g↾G), (cf)↾G = c(f↾G)

for all f , g ∈ L
1(µ) and all c ∈ R, S is linear. Because

f ≤ g µ-a.e.=⇒ f↾G ≤ g↾G µG-a.e.,

S is order-preserving. Because
∫

|f↾G|dµG ≤
∫

|f |dµ for every f ∈ L
1(µ), ‖Su‖1 ≤ ‖u‖1 for every u ∈ U .

To see that S is surjective, take any v ∈ L1(µG). Express v as g• where g ∈ L
1(µG). By 131E, f ∈ L

1(µ),
where f(x) = g(x) for x ∈ dom g, 0 for x ∈ X \G; so that f• ∈ U and f↾G = g and v = S(f•) ∈ S[U ].
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To see that S is norm-preserving, note that, for any f ∈ L
1(µ),

∫

|f↾G|dµG =
∫

|f | × χGdµ,

so that if u = f• ∈ U we shall have

‖Su‖1 =
∫

|f↾G|dµG =
∫

|f | × χGdµ = ‖u× χG•‖1 = ‖u‖1.

247B Corollary Let (X,Σ, µ) be any measure space, and let G ∈ Σ be a measurable set expressible as
a countable union of sets of finite measure. Define U as in 247A, and let h : L1(µ) → R be any continuous
linear functional. Then there is a v ∈ L∞(µ) such that h(u) =

∫

u× v dµ for every u ∈ U .

proof Let S : U → L1(µG) be the isomorphism described in 247A. Then S−1 : L1(µG) → U is linear and
continuous, so h1 = hS−1 belongs to the normed space dual (L1(µG))

∗ of L1(µG). Now of course µG is
σ-finite, therefore localizable (211L), so 243Gb tells us that there is a v1 ∈ L∞(µG) such that

h1(u) =
∫

u× v1dµG

for every u ∈ L1(µG).
Express v1 as g•

1 where g1 : G → R is a bounded measurable function. Set g(x) = g1(x) for x ∈ G, 0 for
x ∈ X \G; then g : X → R is a bounded measurable function, and v = g• ∈ L∞(µ). If u ∈ U , express u as
f• where f ∈ L

1(µ); then

h(u) = h(S−1Su) = h1((f↾G)
•) =

∫

(f↾G)× g1dµG

=

∫

(f × g)↾GdµG =

∫

f × g × χGdµ =

∫

f × g dµ =

∫

u× v.

As u is arbitrary, this proves the result.

247C Theorem Let (X,Σ, µ) be any measure space and A a subset of L1 = L1(µ). Then A is uniformly
integrable iff it is relatively compact in L1 for the weak topology of L1.

proof (a) Suppose that A is relatively compact for the weak topology. I seek to show that it satisfies the
condition (iii) of 246G.

(i) If F ∈ Σ, then surely supu∈A |
∫

F
u| <∞, because u 7→

∫

F
u belongs to (L1)∗, and if h ∈ (L1)∗ then

the image of any relatively weakly compact set under h must be bounded (2A5Ie).

(ii) Now suppose that 〈Fn〉n∈N is a disjoint sequence in Σ. ??? Suppose, if possible, that

〈supu∈A |
∫

Fn

u|〉n∈N

does not converge to 0. Then there is a strictly increasing sequence 〈n(k)〉k∈N in N such that

γ =
1

2
infk∈N supu∈A |

∫

Fn(k)
u| > 0.

For each k, choose uk ∈ A such that |
∫

Fn(k)
uk| ≥ γ. Because A is relatively compact for the weak topology,

there is a cluster point u of 〈uk〉k∈N in L1 for the weak topology (2A3Ob). Set ηj = 2−jγ/6 > 0 for each
j ∈ N.

We can now choose a strictly increasing sequence 〈k(j)〉j∈N inductively so that, for each j,
∫

Fn(k(j))
(|u|+

∑j−1
i=0 |uk(i)|) ≤ ηj

∑j−1
i=0 |

∫

Fn(k(i))
u−

∫

Fn(k(i))
uk(j)| ≤ ηj

for every j, interpreting
∑−1

i=0 as 0. PPP Given 〈k(i)〉i<j , set v
∗ = |u|+

∑j−1
i=0 |uk(i)|; then limk→∞

∫

Fn(k)
v∗ = 0,

by Lebesgue’s Dominated Convergence Theorem or otherwise, so there is a k∗ such that k∗ > k(i) for every
i < j and

∫

Fn(k)
v∗ ≤ ηj for every k ≥ k∗. Next,
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w 7→
∑j−1

i=0 |
∫

Fn(k(i))
u−

∫

Fn(k(i))
w| : L1 → R

is continuous for the weak topology of L1 and zero at u, and u belongs to every weakly open set containing

{uk : k ≥ k∗}, so there is a k(j) ≥ k∗ such that
∑j−1

i=0 |
∫

Fn(k(i))
u−

∫

Fn(k(i))
uk(j)| < ηj , which continues the

construction. QQQ
Let v be any cluster point in L1, for the weak topology, of 〈uk(j)〉j∈N. Setting Gi = Fn(k(i)), we have

|
∫

Gi
u−

∫

Gi
uk(j)| ≤ ηj whenever i < j, so limj→∞

∫

Gi
uk(j) exists =

∫

Gi
u for each i, and

∫

Gi
v =

∫

Gi
u for

every i; setting G =
⋃

i∈NGi,
∫

G
v =

∑∞
i=0

∫

Gi

v =
∑∞

i=0

∫

Gi

u =
∫

G
u,

by 232D, because 〈Gi〉i∈N is disjoint.
For each j ∈ N,

j−1
∑

i=0

|

∫

Gi

uk(j)|+
∞
∑

i=j+1

|

∫

Gi

uk(j)|

≤

j−1
∑

i=0

∫

Gi

|u|+

j−1
∑

i=0

|

∫

Gi

u−

∫

Gi

uk(j)|+
∞
∑

i=j+1

∫

Gi

|uk(j)|

≤

j−1
∑

i=0

ηi + ηj +

∞
∑

i=j+1

ηi =

∞
∑

i=0

ηi =
γ

3
.

On the other hand, |
∫

Gj
uk(j)| ≥ γ. So

|
∫

G
uk(j)| = |

∑∞
i=0

∫

Gi

uk(j)| ≥
2

3
γ.

This is true for every j; because every weakly open set containing v meets {uk(j) : j ∈ N}, |
∫

G
v| ≥ 2

3γ

and |
∫

G
u| ≥ 2

3γ. On the other hand,

|
∫

G
u| = |

∑∞
i=0

∫

Gi

u| ≤
∑∞

i=0

∫

Gi

|u| ≤
∑∞

i=0 ηi =
γ

3
,

which is absurd. XXX
This contradiction shows that limn→∞ supu∈A |

∫

Fn
u| = 0. As 〈Fn〉n∈N is arbitrary, A satisfies the

condition 246G(iii) and is uniformly integrable.

(b) Now assume that A is uniformly integrable. I seek a weakly compact set C ⊇ A.

(i) For each n ∈ N, choose En ∈ Σ, Mn ≥ 0 such that µEn < ∞ and
∫

(|u| −MnχE
•

n)
+ ≤ 2−n for

every u ∈ A. Set

C = {v : v ∈ L1, |
∫

F
v| ≤Mnµ(F ∩ En) + 2−n ∀ n ∈ N, F ∈ Σ},

and note that A ⊆ C, because if u ∈ A and F ∈ Σ,

|
∫

F
u| ≤

∫

F
(|u| −MnχE

•

n)
+ +

∫

F
MnχE

•

n ≤ 2−n +Mnµ(F ∩ En)

for every n. Observe also that C is ‖ ‖1-bounded, because

‖u‖1 ≤ 2 supF∈Σ |
∫

F
u| ≤ 2 supF∈Σ(1 +M0µ(F ∩ E0)) ≤ 2(1 +M0µE0)

for every u ∈ C (using 246F).

(ii) Because I am seeking to prove this theorem for arbitrary measure spaces (X,Σ, µ), I cannot use
243G to identify the dual of L1. Nevertheless, 247B above shows that 243Gb it is ‘nearly’ valid, in the
following sense: if h ∈ (L1)∗, there is a v ∈ L∞ such that h(u) =

∫

u × v for every u ∈ C. PPP Set
G =

⋃

n∈NEn ∈ Σ, and define U ⊆ L1 as in 247A-247B. By 247B, there is a v ∈ L∞ such that h(u) =
∫

u×v
for every u ∈ U . But if u ∈ C, we can express u as f• where f : X → R is measurable. If F ∈ Σ and
F ∩G = ∅, then
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|
∫

F
f | = |

∫

F
u| ≤ 2−n +Mnµ(F ∩ En) = 2−n

for every n ∈ N, so
∫

F
f = 0; it follows that f = 0 a.e. on X \ G (131Fc), so that f × χG =a.e. f and

u = u× χG•, that is, u ∈ U , and h(u) =
∫

u× v, as required. QQQ

(iii) So we may proceed, having an adequate description, not of (L1(µ))∗ itself, but of its action on C.
Let F be any ultrafilter on L1 containing C (see 2A3R). For each F ∈ Σ, set

νF = limu→F

∫

F
u;

because

supu∈C |
∫

F
u| ≤ supu∈C ‖u‖1 <∞,

this is well-defined in R (2A3S(e-ii)). If E, F are disjoint members of Σ, then
∫

E∪F
u =

∫

E
u +

∫

F
u for

every u ∈ C, so

ν(E ∪ F ) = limu→F

∫

E∪F
u = limu→F

∫

E
u+ limu→F

∫

F
u = νE + νF

(2A3Sf). Thus ν : Σ → R is additive. Next, it is truly continuous with respect to µ. PPP Given ǫ > 0, take
n ∈ N such that 2−n ≤ 1

2ǫ, set δ = ǫ/2(Mn + 1) > 0 and observe that

|νF | ≤ supu∈C |
∫

F
u| ≤ 2−n +Mnµ(F ∩ En) ≤ ǫ

whenever µ(F ∩ En) ≤ δ. QQQ By the Radon-Nikodým theorem (232E), there is an f0 ∈ L
1 such that

∫

F
f0 = νF for every F ∈ Σ. Set u0 = f•

0 ∈ L1. If n ∈ N, F ∈ Σ then

|
∫

F
u0| = |νF | ≤ supu∈C |

∫

F
u| ≤ 2−n +Mnµ(F ∩ En),

so u0 ∈ C.

(iv) Of course the point is that F converges to u0. PPP Let h ∈ (L1)∗. Then there is a v ∈ L∞ such
that h(u) =

∫

u× v for every u ∈ C. Express v as g•, where g : X → R is bounded and Σ-measurable. Let
ǫ > 0. Take a0 ≤ a1 ≤ . . . ≤ an such that ai+1 − ai ≤ ǫ for each i while a0 ≤ g(x) < an for each x ∈ X. Set
Fi = {x : ai−1 ≤ g(x) < ai} for 1 ≤ i ≤ n, and set g̃ =

∑n
i=1 aiχFi, ṽ = g̃•; then ‖ṽ − v‖∞ ≤ ǫ. We have

∫

u0 × ṽ =

n
∑

i=1

ai

∫

Fi

u =

n
∑

i=1

aiνFi

=

n
∑

i=1

ai lim
u→F

∫

Fi

u = lim
u→F

n
∑

i=1

ai

∫

Fi

u = lim
u→F

∫

u× ṽ.

Consequently

lim sup
u→F

|

∫

u× v −

∫

u0 × v| ≤ |

∫

u0 × v −

∫

u0 × ṽ|+ sup
u∈C

|

∫

u× v −

∫

u× ṽ|

≤ ‖u0‖1‖v − ṽ‖∞ + sup
u∈C

‖u‖1‖v − ṽ‖∞

≤ 2ǫ sup
u∈C

‖u‖1.

As ǫ is arbitrary,

lim sup
u→F

|h(u)− h(u0)| = lim sup
u→F

|

∫

u× v −

∫

u0 × v| = 0.

As h is arbitrary, u0 is a limit of F in C for the weak topology of L1. QQQ
As F is arbitrary, C is weakly compact in L1, and the proof is complete.

247D Corollary Let (X,Σ, µ) and (Y,T, ν) be any two measure spaces, and T : L1(µ) → L1(ν) a
continuous linear operator. Then T [A] is a uniformly integrable subset of L1(ν) whenever A is a uniformly
integrable subset of L1(µ).
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proof The point is that T is continuous for the respective weak topologies (2A5If). If A ⊆ L1(µ) is uniformly
integrable, then there is a weakly compact C ⊇ A, by 247C; T [C], being the image of a compact set under
a continuous map, must be weakly compact (2A3N(b-ii)); so T [C] and T [A] are uniformly integrable by the
other half of 247C.

247E Complex L1 There are no difficulties, and no surprises, in proving 247C for L1
C. If we follow the

same proof, everything works, but of course we must remember to change the constant when applying 246F,
or rather 246K, in part (b-i) of the proof.

247X Basic exercises >>>(a) Let (X,Σ, µ) be any measure space. Show that if A ⊆ L1 = L1(µ) is
relatively weakly compact, then {v : v ∈ L1, |v| ≤ |u| for some u ∈ A} is relatively weakly compact.

(b) Let (X,Σ, µ) be a measure space. On L1 = L1(µ) define pseudometrics ρF , ρ
′
w for F ∈ Σ, w ∈ L∞(µ)

by setting ρF (u, v) = |
∫

F
u−

∫

F
v|, ρ′w(u, v) = |

∫

u×w−
∫

v×w| for u, v ∈ L1. Show that on any ‖ ‖1-bounded
subset of L1, the topology defined by {ρF : F ∈ Σ} agrees with the topology generated by {ρ′w : w ∈ L∞}.

>>>(c) Show that for any set X a subset of ℓ1 = ℓ1(X) is compact for the weak topology of ℓ1 iff it is
compact for the norm topology of ℓ1. (Hint : 246Xd.)

(d) Use the argument of (a-ii) in the proof of 247C to show directly that if A ⊆ ℓ1(N) is weakly compact
then infn∈N |un(n)| = 0 for any sequence 〈un〉n∈N in A.

(e) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and T : L2(ν) → L1(µ) any bounded linear operator.
Show that {Tu : u ∈ L2(ν), ‖u‖2 ≤ 1} is uniformly integrable in L1(µ). (Hint : use 244K to see that
{u : ‖u‖2 ≤ 1} is weakly compact in L2(ν).)

247Y Further exercises (a) Let (X,Σ, µ) be a measure space. Take 1 < p < ∞ and M ≥ 0 and set
A = {u : u ∈ Lp = Lp(µ), ‖u‖p ≤M}. Write SA for the topology of convergence in measure on A, that is,
the subspace topology induced by the topology of convergence in measure on L0(µ). Show that if h ∈ (Lp)∗

then h↾A is continuous for SA; so that if T is the weak topology on Lp, then the subspace topology TA is
included in SA.

(b) Let (X,Σ, µ) be a measure space and 〈un〉n∈N a sequence in L1 = L1(µ) such that limn→∞

∫

F
un is

defined for every F ∈ Σ. Show that {un : n ∈ N} is weakly convergent. (Hint : 246Yh.)

247 Notes and comments In 247D and 247Xa I try to suggest the power of the identification between
weak compactness and uniform integrability. That a continuous image of a weakly compact set should be
weakly compact is a commonplace of functional analysis; that the solid hull of a uniformly integrable set
should be uniformly integrable is immediate from the definition. But I see no simple arguments to show
that a continuous image of a uniformly integrable set should be uniformly integrable, or that the solid hull
of a weakly compact set should be relatively weakly compact. (Concerning the former, an alternative route
does exist; see 371Xf in the next volume.)

I can distinguish two important ideas in the proof of 247C. The first, in (a-ii) of the proof, is a careful
manipulation of sequences; it is the argument needed to show that a weakly compact subset of ℓ1 is norm-
compact. (You may find it helpful to write out a solution to 247Xd.) The Fn(k) and uk are chosen to mimic

the situation in which we have a sequence in ℓ1 such that uk(k) = 1 for each k. The k(i) are chosen so that
the ‘hump’ moves sufficiently rapidly along for uk(j)(k(i)) to be very small whenever i 6= j. But this means

that
∑∞

i=0 uk(j)(k(i)) (corresponding to
∫

G
uk(j) in the proof) is always substantial, while

∑∞
i=0 v(k(i)) will

be small for any proposed cluster point v of 〈uk(j)〉j∈N. I used similar techniques in §246; compare 246Yg.

In the other half of the proof of 247C, the strategy is clearer. Members of L1 correspond to truly continuous
functionals on Σ; the uniform integrability of C makes the corresponding set of functionals ‘uniformly truly
continuous’, so that any limit functional will also be truly continuous and will give us a member of L1 via
the Radon-Nikodým theorem. A straightforward approximation argument ((b-iv) in the proof, and 247Xb)
shows that limu∈F

∫

u×w =
∫

v×w for every w ∈ L∞. For localizable measures µ, this would complete the
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proof. For the general case, we need another step, here done in 247A-247B; a uniformly integrable subset
of L1 effectively lives on a σ-finite part of the measure space, so that we can ignore the rest of the measure
and suppose that we have a localizable measure space.

The conditions (ii)-(iv) of 246G make it plain that weak compactness in L1 can be effectively discussed
in terms of sequences; see also 246Yh. I should remark that this is a general feature of weak compactness
in Banach spaces (2A5J). Of course the disjoint-sequence formulations in 246G are characteristic of L1 –
I mean that while there are similar results applicable elsewhere (see Fremlin 74, chap. 8), the ideas are
clearest and most dramatically expressed in their application to L1.
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Version of 6.3.09

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

241Yd Countable sup property This exercise, referred to in the 2002 edition of Volume 3, has been
moved to 241Ye.

241Yh Quotient Riesz spaces This exercise, referred to in the 2002 edition of Volume 3, has been
moved to 241Yc.

242Xf Inverse-measure-preserving functions This exercise, referred to in the 2002 edition of Volume
3, has been moved to 242Xd.

242Yc Order-continuous norms This exercise, referred to in the 2002 edition of Volume 3, has been
moved to 242Yg.

244O Complex Lp This paragraph, referred to in the 2002 and 2004 editions of Volume 3, and the 2003
and 2006 editions of Volume 4, is now 244P.

244Xf Lp and Lq This exercise, referred to in the 2003 edition of Volume 4, has been moved to 244Xe.

244Yd-244Yf Lp as Banach lattice These exercises, referred to in the 2002 and 2004 editions of
Volume 3, are now 244Ye-244Yg.

c© 2009 D. H. Fremlin
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Kirszbraun M.D. [1934] ‘Über die zusammenziehenden und Lipschitzian Transformationen’, Fund. Math.
22 (1934) 77-108. [262C.]
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St-Pétersbourg 12(5) (1901) 1-24. [274Xh.]
Lighthill M.J. [59] Introduction to Fourier Analysis and Generalised Functions. Cambridge U.P., 1959.

[§284 notes.]
Lindeberg J.W. [1922] ‘Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung’,

Math. Zeitschrift 15 (1922) 211-225. [274H, §274 notes.]
Lipschutz S. [64] Set Theory and Related Topics. McGraw-Hill, 1964 (Schaum’s Outline Series). [§2A1.]
Loève M. [77] Probability Theory I. Springer, 1977. [Chap. 27 intro., 274H.]
Luxemburg W.A.J. & Zaanen A.C. [71] Riesz Spaces I. North-Holland, 1971. [241F.]

Mozzochi C.J. [71] On the Pointwise Convergence of Fourier Series. Springer, 1971 (Lecture Notes in
Mathematics 199). [§286 notes.]

Naor A. [04] ‘Proof of the uniform convexity lemma’, http://www.cims.nyu.edu/∼naor/homepage

files/inequality.pdf, 26.2.04. [244O.]
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