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Chapter 23

The Radon-Nikodým Theorem

In Chapter 22, I discussed the indefinite integrals of integrable functions on R, and gave what I hope you
feel are satisfying descriptions both of the functions which are indefinite integrals (the absolutely continuous
functions) and of how to find which functions they are indefinite integrals of (you differentiate them).
For general measure spaces, we have no structure present which can give such simple formulations; but
nevertheless the same questions can be asked and, up to a point, answered.

The first section of this chapter introduces the basic machinery needed, the concept of ‘countably additive’
functional and its decomposition into positive and negative parts. The main theorem takes up the second
section: indefinite integrals are the ‘truly continuous’ additive functionals; on σ-finite spaces, these are
the ‘absolutely continuous’ countably additive functionals. In §233 I discuss the most important single
application of the theorem, its use in providing a concept of ‘conditional expectation’. This is one of the
central concepts of probability theory – as you very likely know; but the form here is a dramatic generalization
of the elementary concept of the conditional probability of one event given another, and needs the whole
strength of the general theory of measure and integration as developed in Volume 1 and this chapter. I
include some notes on convex functions, up to and including versions of Jensen’s inequality (233I-233J).

While we are in the area of ‘pure’ measure theory, I take the opportunity to discuss some further topics.
I begin with some essentially elementary constructions, image measures, sums of measures and indefinite-
integral measures; I think the details need a little attention, and I work through them in §234. Rather deeper
ideas are needed to deal with ‘measurable transformations’. In §235 I set out the techniques necessary to
provide an abstract basis for a general method of integration-by-substitution, with a detailed account of
sufficient conditions for a formula of the type

∫
g(y)dy =

∫
g(φ(x))J(x)dx

to be valid.

Version of 25.8.15

231 Countably additive functionals

I begin with an abstract description of the objects which will, in appropriate circumstances, correspond
to the indefinite integrals of general integrable functions. In this section I give those parts of the theory
which do not involve a measure, but only a set with a distinguished σ-algebra of subsets. The basic concepts
are those of ‘finitely additive’ and ‘countably additive’ functional, and there is one substantial theorem, the
‘Hahn decomposition’ (231E).

231A Definition Let X be a set and Σ an algebra of subsets of X. A functional ν : Σ → R is finitely
additive, or just additive, if ν(E ∪ F ) = νE + νF whenever E, F ∈ Σ and E ∩ F = ∅.

231B Elementary facts Let X be a set, Σ an algebra of subsets of X, and ν : Σ → R a finitely additive
functional.

(a) ν∅ = 0.

(b) If E0, . . . , En are disjoint members of Σ then ν(
⋃

i≤nEi) =
∑n

i=0 νEi.
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2 The Radon-Nikodým theorem 231Bc

(c) If E, F ∈ Σ and E ⊆ F then νF = νE + ν(F \ E). More generally, for any E, F ∈ Σ,

νF = ν(F ∩ E) + ν(F \ E),

νE + νF = ν(E ∪ F ) + ν(E ∩ F ),

νE − νF = ν(E \ F )− ν(F \ E).

231C Definition Let X be a set and Σ an algebra of subsets of X. A function ν : Σ → R is countably
additive or σ-additive if

∑∞
n=0 νEn exists in R and is equal to ν(

⋃
n∈NEn) for every disjoint sequence

〈En〉n∈N in Σ such that
⋃

n∈NEn ∈ Σ.

231D Elementary facts Let X be a set, Σ a σ-algebra of subsets of X and ν : Σ → R a countably
additive functional.

(a) ν is finitely additive.

(b) If 〈En〉n∈N is a non-decreasing sequence in Σ, with union E ∈ Σ, then

νE = νE0 +
∑∞

n=0 ν(En+1 \ En) = limn→∞ νEn.

(c) If 〈En〉n∈N is a non-increasing sequence in Σ with intersection E ∈ Σ, then

νE = limn→∞ νEn.

(d) If ν ′ : Σ → R is another countably additive functional, and c ∈ R, then ν+ν ′ : Σ → R and cν : Σ → R

are countably additive.

(e) If H ∈ Σ, then νH : Σ → R is countably additive, where νHE = ν(E ∩H) for every E ∈ Σ.

231E Theorem Let X be a set, Σ a σ-algebra of subsets of X, and ν : Σ → R a countably additive
functional. Then

(a) ν is bounded;
(b) there is a set H ∈ Σ such that

νF ≥ 0 whenever F ∈ Σ and F ⊆ H,

νF ≤ 0 whenever F ∈ Σ and F ∩H = ∅.

231F Corollary Let X be a set, Σ a σ-algebra of subsets of X, and ν : Σ → R a countably additive
functional. Then ν can be expressed as the difference of two totally finite measures with domain Σ.

Remark This is called the ‘Jordan decomposition’ of ν. The expression of 231Eb is a ‘Hahn decom-
position’.

Version of 19.5.17

232 The Radon-Nikodým theorem

I come now to the chief theorem of this chapter, one of the central results of measure theory, relating
countably additive functionals to indefinite integrals. The objective is to give a complete description of the
functionals which can arise as indefinite integrals of integrable functions (232E). These can be characterized
as the ‘truly continuous’ additive functionals (232Ab). A more commonly used concept, and one adequate in
many cases, is that of ‘absolutely continuous’ additive functional (232Aa); I spend the first few paragraphs
(232B-232D) on elementary facts about truly continuous and absolutely continuous functionals. I end the
section with a discussion of decompositions of general countably additive functionals (232I).

Measure Theory (abridged version)



232I The Radon-Nikodým theorem 3

232A Absolutely continuous functionals Let (X,Σ, µ) be a measure space and ν : Σ → R a finitely
additive functional.

(a) ν is absolutely continuous with respect to µ (sometimes written ‘ν ≪ µ’) if for every ǫ > 0 there
is a δ > 0 such that |νE| ≤ ǫ whenever E ∈ Σ and µE ≤ δ.

(b) ν is truly continuous with respect to µ if for every ǫ > 0 there are E ∈ Σ and δ > 0 such that
µE <∞ and |νF | ≤ ǫ whenever F ∈ Σ and µ(E ∩ F ) ≤ δ.

(c) If ν is countably additive, it is singular with respect to µ if there is a set F ∈ Σ such that µF = 0
and νE = 0 whenever E ∈ Σ and E ⊆ X \ F .

232B Proposition Let (X,Σ, µ) be a measure space and ν : Σ → R a finitely additive functional.
(a) If ν is countably additive, it is absolutely continuous with respect to µ iff νE = 0 whenever µE = 0.
(b) ν is truly continuous with respect to µ iff (α) it is countably additive (β) it is absolutely continuous

with respect to µ (γ) whenever E ∈ Σ and νE 6= 0 there is an F ∈ Σ such that µF <∞ and ν(E ∩ F ) 6= 0.
(c) If (X,Σ, µ) is σ-finite, then ν is truly continuous with respect to µ iff it is countably additive and

absolutely continuous with respect to µ.
(d) If (X,Σ, µ) is totally finite, then ν is truly continuous with respect to µ iff it is absolutely continuous

with respect to µ.

232C Lemma Let (X,Σ, µ) be a measure space and ν, ν ′ two countably additive functionals on Σ which
are truly continuous with respect to µ. Take c ∈ R and H ∈ Σ, and set νHE = ν(E ∩ H) for E ∈ Σ.
Then ν + ν ′, cν and νH are all truly continuous with respect to µ, and ν is expressible as the difference of
non-negative countably additive functionals which are truly continuous with respect to µ.

232D Proposition Let (X,Σ, µ) be a measure space, and f a µ-integrable real-valued function. For
E ∈ Σ set νE =

∫
E
f . Then ν : Σ → R is a countably additive functional and is truly continuous with

respect to µ, therefore absolutely continuous with respect to µ.

Remark The functional E 7→
∫
E
f is called the indefinite integral of f .

232E The Radon-Nikodým theorem Let (X,Σ, µ) be a measure space and ν : Σ → R a function.
Then the following are equiveridical:

(i) there is a µ-integrable function f such that νE =
∫
E
f for every E ∈ Σ;

(ii) ν is finitely additive and truly continuous with respect to µ.

232F Corollary Let (X,Σ, µ) be a σ-finite measure space and ν : Σ → R a function. Then there is
a µ-integrable function f such that νE =

∫
E
f for every E ∈ Σ iff ν is countably additive and absolutely

continuous with respect to µ.

232G Corollary Let (X,Σ, µ) be a totally finite measure space and ν : Σ → R a function. Then there is
a µ-integrable function f on X such that νE =

∫
E
f for every E ∈ Σ iff ν is finitely additive and absolutely

continuous with respect to µ.

232H Remarks If (X,Σ, µ) is a measure space and ν is a [−∞,∞]-valued functional defined on a family
of subsets of X, I will say that a [−∞,∞]-valued function f defined on a subset of X is a Radon-Nikodým
derivative of ν with respect to µ if

∫
E
fdµ is defined and equal to νE for every E ∈ dom ν.

232I The Lebesgue decomposition of a countably additive functional: Proposition (a) Let
(X,Σ, µ) be a measure space and ν : Σ → R a countably additive functional. Then ν has unique expressions
as

ν = νs + νac = νs + νtc + νe,
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4 The Radon-Nikodým theorem 232I

where νs is singular with respect to µ, νac is absolutely continuous with respect to µ, νtc is truly continuous
with respect to µ, and νe is absolutely continuous with respect to µ and zero on every set of finite measure.

(b) If X = Rr, Σ is the algebra of Borel sets in Rr and µ is the restriction of Lebesgue measure to Σ,
then ν is uniquely expressible as νp + νcs + νac where νac is absolutely continuous with respect to µ, νcs is
singular with respect to µ and zero on singletons, and νpE =

∑
x∈E νp{x} for every E ∈ Σ.

Remark The expression ν = νp + νcs + νac of (b) is the Lebesgue decomposition of ν.

Version of 16.6.02

233 Conditional expectations

I devote a section to a first look at one of the principal applications of the Radon-Nikodým theorem. It
is one of the most vital ideas of measure theory, and will appear repeatedly in one form or another. Here I
give the definition and most basic properties of conditional expectations as they arise in abstract probability
theory, with notes on convex functions and a version of Jensen’s inequality (233I-233J).

233A σ-subalgebras Let X be a set and Σ a σ-algebra of subsets of X. A σ-subalgebra of Σ is a
σ-algebra T of subsets of X such that T ⊆ Σ. If (X,Σ, µ) is a measure space and T is a σ-subalgebra of Σ,
then (X,T, µ↾T) is again a measure space.

233B Lemma Let (X,Σ, µ) be a measure space and T a σ-subalgebra of Σ. A real-valued function f
defined on a subset of X is µ↾T-integrable iff (i) it is µ-integrable (ii) dom f is µ↾T-conegligible (iii) f is
µ↾T-virtually measurable; and in this case

∫
fd(µ↾T) =

∫
fdµ.

233D Conditional expectations Let (X,Σ, µ) be a probability space. Let T ⊆ Σ be a σ-subalgebra.
If f is a µ-integrable real-valued function, there is a µ↾T-integrable function g such that

∫
F
g =

∫
F
f for

every F ∈ T; such a function is a conditional expectation of f on T.

233E Proposition Let (X,Σ, µ) be a probability space and T a σ-subalgebra of Σ. Let 〈fn〉n∈N be a
sequence of µ-integrable real-valued functions, and for each n let gn be a conditional expectation of fn on
T. Then

(a) g1 + g2 is a conditional expectation of f1 + f2 on T;
(b) for any c ∈ R, cg0 is a conditional expectation of cf0 on T;
(c) if f1 ≤a.e. f2 then g1 ≤a.e. g2;
(d) if 〈fn〉n∈N is non-decreasing a.e. and f = limn→∞ fn is µ-integrable, then limn→∞ gn is a conditional

expectation of f on T;
(e) if f = limn→∞ fn is defined a.e. and there is a µ-integrable function h such that |fn| ≤a.e. h for every

n, then limn→∞ gn is a conditional expectation of f on T;
(f) if F ∈ T then g0 × χF is a conditional expectation of f0 × χF on T;
(g) if h is a bounded, µ↾T-virtually measurable real-valued function defined µ↾T-almost everywhere in

X, then g0 × h is a conditional expectation of f0 × h on T;
(h) if Υ is a σ-subalgebra of T, then a function h0 is a conditional expectation of f0 on Υ iff it is a

conditional expectation of g0 on Υ.

233G Convex functions Recall that a real-valued function φ defined on an interval I ⊆ R is convex if

φ(tb+ (1− t)c) ≤ tφ(b) + (1− t)φ(c)

whenever b, c ∈ I and t ∈ [0, 1].

233H Lemma Let I ⊆ R be a non-empty open interval and φ : I → R a convex function.
(a) For every a ∈ I there is a b ∈ R such that φ(x) ≥ φ(a) + b(x− a) for every x ∈ I.
(b) If we take, for each q ∈ I ∩Q, a bq ∈ R such that φ(x) ≥ φ(q) + bq(x− q) for every x ∈ I, then

φ(x) = supq∈I∩Q φ(q) + bq(x− q)

for every x ∈ I.
(c) φ is Borel measurable.

Measure Theory (abridged version)



234D Operations on measures 5

233I Jensen’s inequality Let (X,Σ, µ) be a measure space and φ : R → R a convex function.
(a) Suppose that f and g are real-valued µ-virtually measurable functions defined almost everywhere in

X and that g ≥ 0 almost everywhere,
∫
g = 1 and g × f is integrable. Then φ(

∫
g × f) ≤

∫
g × φf , where

we may need to interpret the right-hand integral as ∞.
(b) In particular, if µX = 1 and f is a real-valued function which is integrable over X, then φ(

∫
f) ≤

∫
φf .

233J Theorem Let (X,Σ, µ) be a probability space and T a σ-subalgebra of Σ. Let φ : R → R be a
convex function and f a µ-integrable real-valued function defined almost everywhere in X such that the
composition φf is also integrable. If g and h are conditional expectations on T of f , φf respectively, then
φg ≤a.e. h. Consequently

∫
φg ≤

∫
φf .

233K Proposition Let (X,Σ, µ) be a probability space, and T a σ-subalgebra of Σ. Suppose that f
is a µ-integrable function and h is a (µ↾T)-virtually measurable real-valued function defined (µ↾T)-almost
everywhere in X. Let g, g0 be conditional expectations of f and |f | on T. Then f ×h is integrable iff g0×h
is integrable, and in this case g × h is a conditional expectation of f × h on T.

Version of 11.4.09

234 Operations on measures

I take a few pages to describe some standard constructions. The ideas are straightforward, but a number
of details need to be worked out if they are to be securely integrated into the general framework I employ.
The first step is to formally introduce inverse-measure-preserving functions (234A-234B), the most important
class of transformations between measure spaces. For construction of new measures, we have the notions
of image measure (234C-234E), sum of measures (234G-234H) and indefinite-integral measure (234I-234O).
Finally I mention a way of ordering the measures on a given set (234P-234Q).

234A Inverse-measure-preserving functions If (X,Σ, µ) and (Y,T, ν) are measure spaces, a function
φ : X → Y is inverse-measure-preserving if φ−1[F ] ∈ Σ and µ(φ−1[F ]) = νF for every F ∈ T.

234B Proposition Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and φ : X → Y an inverse-measure-
preserving function.

(a) If µ̂, ν̂ are the completions of µ, ν respectively, φ is also inverse-measure-preserving for µ̂ and ν̂.
(b) µ is a probability measure iff ν is a probability measure.
(c) µ is totally finite iff ν is totally finite.
(d)(i) If ν is σ-finite, then µ is σ-finite.

(ii) If ν is semi-finite and µ is σ-finite, then ν is σ-finite.
(e)(i) If ν is σ-finite and atomless, then µ is atomless.
(ii) If ν is semi-finite and µ is purely atomic, then ν is purely atomic.

(f)(i) µ∗φ−1[B] ≤ ν∗B for every B ⊆ Y .
(ii) µ∗A ≤ ν∗φ[A] for every A ⊆ X.

(g) If (Z,Λ, λ) is another measure space, and ψ : Y → Z is inverse-measure-preserving, then ψφ : X → Z

is inverse-measure-preserving.

234C Image measures: Proposition Let (X,Σ, µ) be a measure space, Y any set, and φ : X → Y a
function. Set

T = {F : F ⊆ Y, φ−1[F ] ∈ Σ}, νF = µ(φ−1[F ]) for every F ∈ T.

Then (Y,T, ν) is a measure space.

234D Definition In the context of 234C, ν is called the image measure; I will denote it µφ−1.

c© 2008 D. H. Fremlin
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6 The Radon-Nikodým theorem 234E

234E Proposition Let (X,Σ, µ) be a measure space, Y a set and φ : X → Y a function; let µφ−1 be
the image measure on Y .

(a) φ is inverse-measure-preserving for µ and µφ−1.
(b) If µ is complete, so is µφ−1.
(c) If Z is another set, and ψ : Y → Z a function, then the image measures µ(ψφ)−1 and (µφ−1)ψ−1 on

Z are the same.

*234F Proposition Let X be a set, (Y,T, ν) a measure space, and φ : X → Y a function such that
φ[X] has full outer measure in Y . Then there is a measure µ on X, with domain Σ = {φ−1[F ] : F ∈ T},
such that φ is inverse-measure-preserving for µ and ν.

234G Sums of measures: Proposition Let X be a set, and 〈µi〉i∈I a family of measures on X. For
each i ∈ I, let Σi be the domain of µi. Set Σ = PX ∩

⋂
i∈I Σi and define µ : Σ → [0,∞] by setting

µE =
∑

i∈I µiE for every E ∈ Σ. Then µ is a measure on X.

Remark In this context, I will call µ the sum of the family 〈µi〉i∈I .

234H Proposition Let X be a set and 〈µi〉i∈I a family of complete measures on X with sum µ.
(a) µ is complete.
(b)(i) A subset of X is µ-negligible iff it is µi-negligible for every i ∈ I.
(ii) A subset of X is µ-conegligible iff it is µi-conegligible for every i ∈ I.

(c) Let f be a function from a subset of X to [−∞,∞]. Then
∫
fdµ is defined in [−∞,∞] iff

∫
fdµi

is defined in [−∞,∞] for every i and one of
∑

i∈I f
+dµi,

∑
i∈I f

−dµi is finite, and in this case
∫
fdµ =∑

i∈I

∫
fdµi.

234I Indefinite-integral measures: Theorem Let (X,Σ, µ) be a measure space, and f a non-negative
µ-virtually measurable real-valued function defined on a conegligible subset of X. Write νF =

∫
f × χF dµ

whenever F ⊆ X is such that the integral is defined in [0,∞]. Then ν is a complete measure on X, and its
domain includes Σ.

234J Definition Let (X,Σ, µ) be a measure space, and ν another measure on X with domain T. I will
call ν an indefinite-integral measure over µ, or sometimes a completed indefinite-integral measure,
if it can be obtained by the method of 234I from some non-negative virtually measurable function f defined
almost everywhere on X. In this case, f is a Radon-Nikodým derivative of ν with respect to µ in the sense
of 232Hf.

234K Remarks Let (X,Σ, µ) be a measure space, and f a µ-virtually measurable non-negative real-
valued function defined almost everywhere on X; let ν be the associated indefinite-integral measure.

(a) ν has a Radon-Nikodým derivative which is Σ-measurable and defined everywhere.

(b) If E is µ-negligible, then νE = 0.

(d) νE =
∫
E
fdµ for every E ∈ dom ν.

(e) µ and its completion define the same indefinite-integral measures.

234L The domain of an indefinite-integral measure: Proposition Let (X,Σ, µ) be a measure
space, f a non-negative µ-virtually measurable function defined almost everywhere inX, and ν the associated
indefinite-integral measure. Set G = {x : x ∈ dom f , f(x) > 0}, and let Σ̂ be the domain of the completion
µ̂ of µ.

(a) The domain T of ν is {E : E ⊆ X, E ∩G ∈ Σ̂}; T ⊇ Σ̂ ⊇ Σ.
(b) ν is the completion of its restriction to Σ.
(c) A set A ⊆ X is ν-negligible iff A ∩G is µ-negligible.
(d) In particular, if µ is complete, then T = {E : E ⊆ X, E ∩G ∈ Σ} and νA = 0 iff µ(A ∩G) = 0.

Measure Theory (abridged version)



235A Measurable transformations 7

234M Corollary If (X,Σ, µ) is a complete measure space and G ∈ Σ, then the indefinite-integral measure
over µ defined by χG is just the measure µ G defined by setting

(µ G)(F ) = µ(F ∩G) whenever F ⊆ X and F ∩G ∈ Σ.

*234N Proposition Let (X,Σ, µ) be a measure space, and ν an indefinite-integral measure over µ.
(a) If µ is semi-finite, so is ν.
(b) If µ is complete and locally determined, so is ν.
(c) If µ is localizable, so is ν.
(d) If µ is strictly localizable, so is ν.
(e) If µ is σ-finite, so is ν.
(f) If µ is atomless, so is ν.

*234O Theorem Let (X,Σ, µ) be a localizable measure space. Then a measure ν, with domain T ⊇ Σ,
is an indefinite-integral measure over µ iff (α) ν is semi-finite and zero on µ-negligible sets (β) ν is the
completion of its restriction to Σ (γ) whenever νE > 0 there is an F ⊆ E such that F ∈ Σ, µF < ∞ and
νF > 0.

234P Ordering measures: Definition Let µ, ν be two measures on a set X. I will say that µ ≤ ν if
µE is defined, and µE ≤ νE, whenever ν measures E.

234Q Proposition Let X be a set, and write M for the set of all measures on X.
(a) Defining ≤ as in 234P, (M,≤) is a partially ordered set.
(b) If µ, ν ∈ M, then µ ≤ ν iff there is a λ ∈ M such that µ+ λ = ν.
(c) If µ ≤ ν in M and f is a [−∞,∞]-valued function, defined on a subset of X, such that

∫
fdν is defined

in [−∞,∞], then
∫
fdµ is defined; if f is non-negative,

∫
fdµ ≤

∫
fdν.

Version of 30.3.03/20.8.08

235 Measurable transformations

I turn now to a topic which is separate from the Radon-Nikodým theorem, but which seems to fit better
here than in either of the next two chapters. I seek to give results which will generalize the basic formula of
calculus

∫
g(y)dy =

∫
g(φ(x))φ′(x)dx

in the context of a general transformation φ between measure spaces. The principal results are I suppose
235A/235E, which are very similar expressions of the basic idea, and 235J, which gives a general criterion
for a stronger result. A formulation from a different direction is in 235R.

235A Theorem Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and φ : Dφ → Y , J : DJ → [0,∞[
functions defined on conegligible subsets Dφ, DJ of X such that

∫
J × χ(φ−1[F ])dµ exists = νF

whenever F ∈ T and νF <∞. Then
∫
φ−1[H]

J × gφ dµ exists =
∫
H
g dν

for every ν-integrable function g taking values in [−∞,∞] and every H ∈ T, provided that we interpret
(J × gφ)(x) as 0 when J(x) = 0 and g(φ(x)) is undefined. Consequently, interpreting J × fφ in the same
way,

∫
fdν ≤

∫
J × fφ dµ ≤

∫
J × fφ dµ ≤

∫
fdν

for every [−∞,∞]-valued function f defined almost everywhere in Y .

c© 1994 D. H. Fremlin
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8 The Radon-Nikodým theorem 235C

235C Lemma Let Σ, T be σ-algebras of subsets of X and Y respectively. Suppose that D ⊆ X and
that φ : D → Y is a function such that φ−1[F ] ∈ ΣD, the subspace σ-algebra, for every F ∈ T. Then gφ is
Σ-measurable for every [−∞,∞]-valued T-measurable function g defined on a subset of Y .

235D Lemma Let (X,Σ, µ) and (Y,T, ν) be measure spaces, with completions (X, Σ̂, µ̂) and (Y, T̂, ν̂).
Let φ : Dφ → Y , J : DJ → [0,∞[ be functions defined on conegligible subsets of X.

(a) If
∫
J × χ(φ−1[F ])dµ = νF whenever F ∈ T and νF < ∞, then

∫
J × χ(φ−1[F ])dµ̂ = ν̂F whenever

F ∈ T̂ and ν̂F <∞.
(b) If

∫
J × χ(φ−1[F ])dµ = νF whenever F ∈ T, then

∫
J × χ(φ−1[F ])dµ̂ = ν̂F whenever F ∈ T̂.

235E Theorem Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and φ : Dφ → Y , J : DJ → [0,∞[ two
functions defined on conegligible subsets of X such that

∫
J × χ(φ−1[F ])dµ = νF

for every F ∈ T, allowing ∞ as a value of the integral.
(a) J × gφ is µ-virtually measurable for every ν-virtually measurable function g defined on a subset of Y .
(b) Let g be a ν-virtually measurable [−∞,∞]-valued function defined on a conegligible subset of Y .

Then
∫
J × gφ dµ =

∫
g dν whenever either integral is defined in [−∞,∞], if we interpret (J × gφ)(x) as 0

when J(x) = 0 and g(φ(x)) is undefined.

235G Theorem Let (X,Σ, µ) and (Y,T, ν) be measure spaces and φ : X → Y an inverse-measure-
preserving function. Then

(a) if g is a ν-virtually measurable [−∞,∞]-valued function defined on a subset of Y , gφ is µ-virtually
measurable;

(b) if g is a ν-virtually measurable [−∞,∞]-valued function defined on a conegligible subset of Y ,∫
gφ dµ =

∫
g dν if either integral is defined in [−∞,∞];

(c) if g is a ν-virtually measurable [−∞,∞]-valued function defined on a conegligible subset of Y , and
F ∈ T, then

∫
φ−1[F ]

gφ dµ =
∫
F
g dν if either integral is defined in [−∞,∞].

235I Lemma Let Σ, T be σ-algebras of subsets of X, Y respectively, and φ a function from a subset D
of X to Y . Suppose that G ⊆ X and that

T = {F : F ⊆ Y, G ∩ φ−1[F ] ∈ Σ}.

Then a real-valued function g, defined on a member of T, is T-measurable iff χG× gφ is Σ-measurable.

235J Theorem Let (X,Σ, µ) and (Y,T, ν) be complete measure spaces. Let φ : Dφ → Y , J : DJ → [0,∞[
be functions defined on conegligible subsets of X, and set G = {x : x ∈ DJ , J(x) > 0}. Suppose that

T = {F : F ⊆ Y, G ∩ φ−1[F ] ∈ Σ},

νF =
∫
J × χ(φ−1[F ])dµ for every F ∈ T.

Then, for any real-valued function g defined on a subset of Y ,
∫
J × gφ dµ =

∫
g dν whenever either integral

is defined in [−∞,∞], provided that we interpret (J × gφ)(x) as 0 when J(x) = 0 and g(φ(x)) is undefined.

235K Corollary Let (X,Σ, µ) be a complete measure space, and J a non-negative measurable function
defined on a conegligible subset of X. Let ν be the associated indefinite-integral measure, and T its domain.
Then for any real-valued function g defined on a subset of X, g is T-measurable iff J × g is Σ-measurable,
and

∫
g dν =

∫
J × g dµ if either integral is defined in [−∞,∞], provided that we interpret (J × g)(x) as 0

when J(x) = 0 and g(x) is undefined.

235M Theorem Let (X,Σ, µ) be a σ-finite measure space, (Y,T, ν) a semi-finite measure space, and
φ : D → Y a function such that

(i) D is a conegligible subset of X,
(ii) φ−1[F ] ∈ Σ for every F ∈ T;
(iii) µφ−1[F ] > 0 whenever F ∈ T and νF > 0.

Then there is a Σ-measurable function J : X → [0,∞[ such that
∫
J × χφ−1[F ] dµ = νF for every F ∈ T.

Measure Theory (abridged version)
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235N Remark Theorem 235M can fail if µ is only strictly localizable rather than σ-finite.

*235O Lemma Let (X,Σ, µ) be a measure space and f a non-negative integrable function on X. If
A ⊆ X is such that

∫
A
f +

∫
X\A

f =
∫
f , then f × χA is integrable.

*235P Proposition Let (X,Σ, µ) be a complete measure space and (Y,T, ν) a complete σ-finite measure
space. Suppose that φ : Dφ → Y , J : DJ → [0,∞[ are functions defined on conegligible subsets Dφ, DJ of
X such that

∫
φ−1[F ]

J dµ exists and is equal to νF whenever F ∈ T and νF <∞.

(a) J × gφ is Σ-measurable for every T-measurable real-valued function g defined on a subset of Y .
(b) If g is a T-measurable real-valued function defined almost everywhere in Y , then

∫
J×gφ dµ =

∫
g dν

whenever either integral is defined in [−∞,∞], interpreting (J × gφ)(x) as 0 when J(x) = 0, g(φ(x)) is
undefined.

*235Q Example Set X = Y = [0, 2]. Write ΣL for the algebra of Lebesgue measurable subsets of R,
and µL for Lebesgue measure; write µc for counting measure on R. Set

Σ = T = {E : E ⊆ [0, 2], E ∩ [0, 1[ ∈ ΣL}.

For E ∈ Σ = T, set

µE = νE = µL(E ∩ [0, 1[) + µc(E ∩ [1, 2]).

Let A ⊆ [0, 1[ be a non-Lebesgue-measurable set such that µ∗
L(E \A) = µLE for every Lebesgue measurable

E ⊆ [0, 1[. Define φ : [0, 2] → [0, 2] by setting φ(x) = x+ 1 if x ∈ A, φ(x) = x if x ∈ [0, 2] \A.
If F ∈ Σ, then µ∗(φ−1[F ]) = µF .
This means that if we set J(x) = 1 for every x ∈ [0, 2], φ, J satisfy the amended hypotheses for 235A.

But if we set g = χ [0, 1[, then g is µ-integrable, with
∫
g dµ = 1, while J × gφ is not µ-integrable.

235R Reversing the burden: Theorem Let (X,Σ, µ), (Y,T, ν) be measure spaces and φ : X → Y ,
J : Y → [0,∞[ functions such that

∫
F
J dν and µφ−1[F ] are defined in [0,∞] and equal for every F ∈ T.

Then
∫
gφ dµ =

∫
J×g dν whenever g is ν-virtually measurable and defined ν-almost everywhere and either

integral is defined in [−∞,∞].

D.H.Fremlin


