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Chapter 22

The Fundamental Theorem of Calculus

In this chapter I address one of the most important properties of the Lebesgue integral. Given an
integrable function f : [a, b] → R, we can form its indefinite integral F (x) =

∫ x

a
f(t)dt for x ∈ [a, b]. Two

questions immediately present themselves. (i) Can we expect to have the derivative F ′ of F equal to f?
(ii) Can we identify which functions F will appear as indefinite integrals? Reasonably satisfactory answers
may be found for both of these questions: F ′ = f almost everywhere (222E) and indefinite integrals are the
absolutely continuous functions (225E). In the course of dealing with them, we need to develop a variety
of techniques which lead to many striking results both in the theory of Lebesgue measure and in other,
apparently unrelated, topics in real analysis.

The first step is ‘Vitali’s theorem’ (§221), a remarkable argument – it is more a method than a theorem –
which uses the geometric nature of the real line to extract disjoint subfamilies from collections of intervals.
It is the foundation stone not only of the results in §222 but of all geometric measure theory, that is, measure
theory on spaces with a geometric structure. I use it here to show that monotonic functions are differentiable
almost everywhere (222A). Following this, Fatou’s Lemma and Lebesgue’s Dominated Convergence Theorem
are enough to show that the derivative of an indefinite integral is almost everywhere equal to the integrand.
We find that some innocent-looking manipulations of this fact take us surprisingly far; I present these in
§223.

I begin the second half of the chapter with a discussion of functions ‘of bounded variation’, that is, ex-
pressible as the difference of bounded monotonic functions (§224). This is one of the least measure-theoretic
sections in the volume; only in 224I and 224J are measure and integration even mentioned. But this material
is needed for Chapter 28 as well as for the next section, and is also one of the basic topics of twentieth-century
real analysis. §225 deals with the characterization of indefinite integrals as the ‘absolutely continuous’ func-
tions. In fact this is now quite easy; it helps to call on Vitali’s theorem again, but everything else is a
straightforward application of methods previously used. The second half of the section introduces some new
ideas in an attempt to give a deeper intuition into the essential nature of absolutely continuous functions.
§226 returns to functions of bounded variation and their decomposition into ‘saltus’ and ‘absolutely contin-
uous’ and ‘singular’ parts, the first two being relatively manageable and the last looking something like the
Cantor function.

Version of 2.6.03

221 Vitali’s theorem in R

I give the first theorem of this chapter a section to itself. It occupies a position between measure theory
and geometry (it is, indeed, one of the fundamental results of ‘geometric measure theory’), and its proof
involves both the measure and the geometry of the real line.

221A Vitali’s theorem Let A be a bounded subset of R and I a family of non-singleton closed intervals
in R such that every point of A belongs to arbitrarily short members of I. Then there is a countable set
I0 ⊆ I such that (i) I0 is disjoint, that is, I ∩ I ′ = ∅ for all distinct I, I ′ ∈ I0 (ii) µ(A \

⋃

I0) = 0, where µ

is Lebesgue measure on R.
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2 The Fundamental Theorem of Calculus

Version of 20.11.03/18.10.04

222 Differentiating an indefinite integral

I come now to the first of the two questions mentioned in the introduction to this chapter: if f is an
integrable function on [a, b], what is d

dx

∫ x

a
f? It turns out that this derivative exists and is equal to f

almost everywhere (222E). The argument is based on a striking property of monotonic functions: they are
differentiable almost everywhere (222A), and we can bound the integrals of their derivatives (222C).

222A Theorem Let I ⊆ R be an interval and f : I → R a monotonic function. Then f is differentiable
almost everywhere in I.

222B Remarks If (X,Σ, µ) is a measure space, K is a countable set, and 〈Ek〉k∈K is a family in Σ,

µ(
⋃

k∈K Ek) ≤
∑

k∈K µEk,

with equality if 〈Ek〉k∈K is disjoint.

222C Lemma Suppose that a ≤ b in R, and that F : [a, b] → R is a non-decreasing function. Then
∫ b

a
F ′ exists and is at most F (b)− F (a).

Remark I write
∫ x

a
f to mean

∫

[a,x[
f .

222D Lemma Suppose that a < b in R, and that f , g are real-valued functions, both integrable over
[a, b], such that

∫ x

a
f =

∫ x

a
g for every x ∈ [a, b]. Then f = g almost everywhere in [a, b].

222E Theorem Suppose that a ≤ b in R and that f is a real-valued function which is integrable over
[a, b]. Then F (x) =

∫ x

a
f exists in R for every x ∈ [a, b], and the derivative F ′(x) exists and is equal to f(x)

for almost every x ∈ [a, b].

222F Corollary Suppose that f is any real-valued function which is integrable over R, and set F (x) =
∫ x

−∞ f for every x ∈ R. Then F ′(x) exists and is equal to f(x) for almost every x ∈ R.

222G Corollary Suppose that E ⊆ R is a measurable set and that f is a real-valued function which
is integrable over E. Set F (x) =

∫

E∩]−∞,x[
f for x ∈ R. Then F ′(x) = f(x) for almost every x ∈ E, and

F ′(x) = 0 for almost every x ∈ R \ E.

222H Proposition Suppose that a ≤ b in R and that f is a real-valued function which is integrable over
[a, b]. Set F (x) =

∫ x

a
f for x ∈ [a, b]. Then F ′(x) exists and is equal to f(x) at any point x ∈ dom(f)∩ ]a, b[

at which f is continuous.

222I Complex-valued functions (a) If a ≤ b in R and f is a complex-valued function which is
integrable over [a, b], then F (x) =

∫ x

a
f is defined in C for every x ∈ [a, b], and its derivative F ′(x) exists

and is equal to f(x) for almost every x ∈ [a, b]; moreover, F ′(x) = f(x) whenever x ∈ dom(f) ∩ ]a, b[ and f

is continuous at x.

(b) If f is a complex-valued function which is integrable over R, and F (x) =
∫ x

−∞ f for each x ∈ R, then

F ′ exists and is equal to f almost everywhere in R.

(c) If E ⊆ R is a measurable set and f is a complex-valued function which is integrable over E, and
F (x) =

∫

E∩]−∞,x[
f for each x ∈ R, then F ′(x) = f(x) for almost every x ∈ E and F ′(x) = 0 for almost

every x ∈ R \ E.

c© 2004 D. H. Fremlin
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223A Lebesgue’s density theorems 3

*222J The Denjoy-Young-Saks theorem: Definition Let f be any real function, and A ⊆ R its
domain. Write

Ã+ = {x : x ∈ A, ]x, x+ δ] ∩A 6= ∅ for every δ > 0},

Ã− = {x : x ∈ A, [x− δ, x[ ∩A 6= ∅ for every δ > 0}.

Set

(D+f)(x) = lim supy∈A,y↓x
f(y)−f(x)

y−x
= infδ>0 supy∈A,x<y≤x+δ

f(y)−f(x)

y−x
,

(D+f)(x) = lim infy∈A,y↓x
f(y)−f(x)

y−x
= supδ>0 infy∈A,x<y≤x+δ

f(y)−f(x)

y−x

for x ∈ Ã+, and

(D−f)(x) = lim supy∈A,y↑x
f(y)−f(x)

y−x
= infδ>0 supy∈A,x−δ≤y<x

f(y)−f(x)

y−x
,

(D−f)(x) = lim infy∈A,y↑x
f(y)−f(x)

y−x
= supδ>0 infy∈A,x−δ≤y<x

f(y)−f(x)

y−x

for x ∈ Ã−, all defined in [−∞,∞]. (These are the four Dini derivates of f .)

Note that we surely have (D+f)(x) ≤ (D+f)(x) for every x ∈ Ã+, while (D−f)(x) ≤ (D−f)(x) for every

x ∈ Ã−. The ordinary derivative f ′(x) is defined and equal to c ∈ R iff (α) x belongs to some open interval

included in A (β) (D+f)(x) = (D+f)(x) = (D−f)(x) = (D−f)(x) = c.

*222K Lemma For A ⊆ R, define Ã+ and Ã− as in 222J. Then A \ Ã+ and A \ Ã− are countable,
therefore negligible.

*222L Theorem Let f be any real function, and A its domain. Then for almost every x ∈ A

either all four Dini derivates of f at x are defined, finite and equal
or (D+f)(x) = (D−f)(x) is finite, (D+f)(x) = −∞ and (D−f)(x) = ∞

or (D+f)(x) = (D−f)(x) is finite, (D+f)(x) = ∞ and (D−f)(x) = −∞

or (D+f)(x) = (D−f)(x) = ∞ and (D+f)(x) = (D−f)(x) = −∞.

Version of 9.9.04

223 Lebesgue’s density theorems

I now turn to a group of results which may be thought of as corollaries of Theorem 222E, but which also
have a vigorous life of their own, including the possibility of significant generalizations which will be treated
in Chapter 26. The idea is that any measurable function f on R is almost everywhere ‘continuous’ in a
variety of very weak senses; for almost every x, the value f(x) is determined by the behaviour of f near x,
in the sense that f(y) ≏ f(x) for ‘most’ y near x. I should perhaps say that while I recommend this work as
a preparation for Chapter 26, and I also rely on it in Chapter 28, I shall not refer to it again in the present
chapter, so that readers in a hurry to characterize indefinite integrals may proceed directly to §224.

223A Lebesgue’s Density Theorem: integral form Let I be an interval in R, and let f be a
real-valued function which is integrable over I. Then

f(x) = lim
h↓0

1

h

∫ x+h

x

f = lim
h↓0

1

h

∫ x

x−h

f = lim
h↓0

1

2h

∫ x+h

x−h

f

for almost every x ∈ I.

c© 1995 D. H. Fremlin
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4 The Fundamental Theorem of Calculus 223B

223B Corollary Let E ⊆ R be a measurable set. Then

limh↓0
1

2h
µ(E ∩ [x− h, x+ h]) = 1 for almost every x ∈ E,

limh↓0
1

2h
µ(E ∩ [x− h, x+ h]) = 0 for almost every x ∈ R \ E.

223C Corollary Let f be a measurable real-valued function defined almost everywhere in R. Then for
almost every x ∈ R,

limh↓0
1

2h
µ{y : y ∈ dom f, |y − x| ≤ h, |f(y)− f(x)| ≤ ǫ} = 1,

limh↓0
1

2h
µ{y : y ∈ dom f, |y − x| ≤ h, |f(y)− f(x)| ≥ ǫ} = 0

for every ǫ > 0.

223D Theorem Let I be an interval in R, and let f be a real-valued function which is integrable over
I. Then

limh↓0
1

2h

∫ x+h

x−h
|f(y)− f(x)|dy = 0

for almost every x ∈ I.

Remark The set

{x : x ∈ dom f, limh↓0
1

2h

∫ x+h

x−h
|f(y)− f(x)|dy = 0}

is sometimes called the Lebesgue set of f .

223E Complex-valued functions

(a) Let I be an interval in R, and let f be a complex-valued function which is integrable over I. Then

f(x) = lim
h↓0

1

h

∫ x+h

x

f = lim
h↓0

1

h

∫ x

x−h

f = lim
h↓0

1

2h

∫ x+h

x−h

f

for almost every x ∈ I.

(b) Let f be a measurable complex-valued function defined almost everywhere in R. Then for almost
every x ∈ R,

limh↓0
1

2h
µ{y : y ∈ dom f, |y − x| ≤ h, |f(y)− f(x)| ≥ ǫ} = 0

for every ǫ > 0.

(c) Let I be an interval in R, and let f be a complex-valued function which is integrable over I. Then

limh↓0
1

2h

∫ x+h

x−h
|f(y)− f(x)|dy = 0

for almost every x ∈ I.

Version of 29.9.04

224 Functions of bounded variation
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224F Functions of bounded variation 5

I turn now to the second of the two problems to which this chapter is devoted: the identification of those
real functions which are indefinite integrals. I take the opportunity to offer a brief introduction to the theory
of functions of bounded variation, which are interesting in themselves and will be important in Chapter 28.
I give the basic characterization of these functions as differences of monotonic functions (224D), with a
representative sample of their elementary properties.

224A Definition Let f be a real-valued function and D a subset of R. I define VarD(f), the (total)
variation of f on D, as follows. If D ∩ dom f = ∅, VarD(f) = 0. Otherwise, VarD(f) is

sup{
∑n

i=1 |f(ai)− f(ai−1)| : a0, a1, . . . , an ∈ D ∩ dom f, a0 ≤ a1 ≤ . . . ≤ an},

allowing VarD(f) = ∞. If VarD(f) is finite, we say that f is of bounded variation on D. I may write
Var f for Vardom f (f), and say that f is simply ‘of bounded variation’ if this is finite.

224B Remarks

VarD(f) = VarD∩dom f (f) = Var(f↾D)

for all D, f .

224C Proposition (a) If f , g are two real-valued functions and D ⊆ R, then

VarD(f + g) ≤ VarD(f) + VarD(g).

(b) If f is a real-valued function, D ⊆ R and c ∈ R then VarD(cf) = |c|VarD(f).
(c) If f is a real-valued function, D ⊆ R and x ∈ R then

VarD(f) ≥ VarD∩]−∞,x](f) + VarD∩[x,∞[(f),

with equality if x ∈ D ∩ dom f .
(d) If f is a real-valued function and D ⊆ D′ ⊆ R then VarD(f) ≤ VarD′(f).
(e) If f is a real-valued function and D ⊆ R, then |f(x)− f(y)| ≤ VarD(f) for all x, y ∈ D ∩ dom f ; so if

f is of bounded variation on D then f is bounded on D ∩ dom f and (if D ∩ dom f 6= ∅)

supy∈D∩dom f |f(y)| ≤ |f(x)|+VarD(f)

for every x ∈ D ∩ dom f .
(f) If f is a monotonic real-valued function and D ⊆ R meets dom f , then

VarD(f) = supx∈D∩dom f f(x)− infx∈D∩dom f f(x).

224D Theorem For any real-valued function f and any set D ⊆ R, the following are equiveridical:
(i) there are two bounded non-decreasing functions f1, f2 : R → R such that f = f1−f2 on D∩dom f ;
(ii) f is of bounded variation on D;
(iii) there are bounded non-decreasing functions f1, f2 : R → R such that f = f1 − f2 on D ∩ dom f

and VarD(f) = Var f1 +Var f2.

224E Corollary Let f be a real-valued function and D any subset of R. If f is of bounded variation on
D, then

limx↓a VarD∩]a,x](f) = limx↑a VarD∩[x,a[(f) = 0

for every a ∈ R, and

lima→−∞ VarD∩]−∞,a](f) = lima→∞ VarD∩[a,∞[(f) = 0.

224F Corollary Let f be a real-valued function of bounded variation on [a, b], where a < b. If dom f

meets every interval ]a, a+ δ] with δ > 0, then

limt∈dom f,t↓a f(t)

D.H.Fremlin



6 The Fundamental Theorem of Calculus 224F

is defined in R. If dom f meets [b− δ, b[ for every δ > 0, then

limt∈dom f,t↑b f(t)

is defined in R.

224G Corollary Let f , g be real functions and D a subset of R. If f and g are of bounded variation on
D, so is f × g.

224H Proposition Let f : D → R be a function of bounded variation, where D ⊆ R. Then f is
continuous at all except countably many points of D.

224I Theorem Let I ⊆ R be an interval, and f : I → R a function of bounded variation. Then f is
differentiable almost everywhere in I, and f ′ is integrable over I, with

∫

I
|f ′| ≤ VarI(f).

224J Proposition Let f , g be real-valued functions defined on subsets of R, and suppose that g is
integrable over an interval [a, b], where a < b, and f is of bounded variation on ]a, b[ and defined almost
everywhere in ]a, b[. Then f × g is integrable over [a, b], and

∣

∣

∫ b

a

f × g
∣

∣ ≤
(

lim
x∈dom f,x↑b

|f(x)|+Var]a,b[(f)
)

sup
c∈[a,b]

∣

∣

∫ c

a

g
∣

∣.

224K Complex-valued functions

(a) Let D be a subset of R and f a complex-valued function. The variation of f on D, VarD(f), is zero
if D ∩ dom f = ∅, and otherwise is

sup{
∑n

j=1 |f(aj)− f(aj−1)| : a0 ≤ a1 ≤ . . . ≤ an in D ∩ dom f},

allowing ∞. If VarD(f) is finite, we say that f is of bounded variation on D.

(b) A complex-valued function of bounded variation must be bounded, and

VarD(f + g) ≤ VarD(f) + VarD(g),

VarD(cf) = |c|VarD(f),

VarD(f) ≥ VarD∩]−∞,x](f) + VarD∩[x,∞[(f)

for every x ∈ R, with equality if x ∈ D ∩ dom f ,

VarD(f) ≤ VarD′(f) whenever D ⊆ D′.

(c) A complex-valued function is of bounded variation iff its real and imaginary parts are both of bounded
variation. So a complex-valued function f is of bounded variation on D iff there are bounded non-decreasing
functions f1, . . . , f4 : R → R such that f = f1 − f2 + if3 − if4 on D.

(d) Let f be a complex-valued function and D any subset of R. If f is of bounded variation on D, then

limx↓a VarD∩]a,x](f) = limx↑a VarD∩[x,a[(f) = 0

for every a ∈ R, and

lima→−∞ VarD∩]−∞,a](f) = lima→∞ VarD∩[a,∞[(f) = 0.

(e) Let f be a complex-valued function of bounded variation on [a, b], where a < b. If dom f meets every
interval ]a, a+ δ] with δ > 0, then limt∈dom f,t↓a f(t) is defined in C. If dom f meets [b− δ, b[ for every δ > 0,
then limt∈dom f,t↑b f(t) is defined in C.

Measure Theory (abridged version)



225F Absolutely continuous functions 7

(f) Let f , g be complex functions and D a subset of R. If f and g are of bounded variation on D, so is
f × g.

(g) Let I ⊆ R be an interval, and f : I → C a function of bounded variation. Then f is differentiable
almost everywhere in I, and

∫

I
|f ′| ≤ VarI(f).

(h) Let f and g be complex-valued functions defined on subsets of R, and suppose that g is integrable
over an interval [a, b], where a < b, and f is of bounded variation on ]a, b[ and defined almost everywhere in
]a, b[. Then f × g is integrable over [a, b], and

∣

∣

∫ b

a

f × g
∣

∣ ≤
(

lim
x∈dom f,x↑b

|f(x)|+Var]a,b[(f)
)

sup
c∈[a,b]

∣

∣

∫ c

a

g
∣

∣.

Version of 16.8.15

225 Absolutely continuous functions

We are now ready for a full characterization of the functions that can appear as indefinite integrals
(225E, 225Xf). The essential idea is that of ‘absolute continuity’ (225B). In the second half of the section
(225G-225N) I describe some of the relationships between this concept and those we have already seen.

225A Absolute continuity of the indefinite integral: Theorem Let (X,Σ, µ) be any measure space
and f an integrable real-valued function defined on a conegligible subset of X. Then for any ǫ > 0 there
are a measurable set E of finite measure and a real number δ > 0 such that

∫

F
|f | ≤ ǫ whenever F ∈ Σ and

µ(F ∩ E) ≤ δ.

225B Absolutely continuous functions on R: Definition If [a, b] is a non-empty closed interval in
R and f : [a, b] → R is a function, we say that f is absolutely continuous if for every ǫ > 0 there is
a δ > 0 such that

∑n
i=1 |f(bi) − f(ai)| ≤ ǫ whenever a ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn ≤ b and

∑n
i=1 bi − ai ≤ δ.

225C Proposition Let [a, b] be a non-empty closed interval in R.
(a) If f : [a, b] → R is absolutely continuous, it is uniformly continuous.
(b) If f : [a, b] → R is absolutely continuous it is of bounded variation on [a, b], so is differentiable almost

everywhere in [a, b], and its derivative is integrable over [a, b].
(c) If f , g : [a, b] → R are absolutely continuous, so are f + g and cf , for every c ∈ R.
(d) If f , g : [a, b] → R are absolutely continuous so is f × g.
(e) If g : [a, b] → [c, d] and f : [c, d] → R are absolutely continuous, and g is non-decreasing, then the

composition fg : [a, b] → R is absolutely continuous.

225D Lemma Let [a, b] be a non-empty closed interval in R and f : [a, b] → R an absolutely continuous
function which has zero derivative almost everywhere in [a, b]. Then f is constant on [a, b].

225E Theorem Let [a, b] be a non-empty closed interval in R and F : [a, b] → R a function. Then the
following are equiveridical:

(i) there is an integrable real-valued function f such that F (x) = F (a) +
∫ x

a
f for every x ∈ [a, b];

(ii)
∫ x

a
F ′ exists and is equal to F (x)− F (a) for every x ∈ [a, b];

(iii) F is absolutely continuous.

225F Integration by parts: Theorem Let f be a real-valued function which is integrable over an
interval [a, b] ⊆ R, and g : [a, b] → R an absolutely continuous function. Suppose that F is an indefinite
integral of f , so that F (x)− F (a) =

∫ x

a
f for x ∈ [a, b]. Then

∫ b

a
f × g = F (b)g(b)− F (a)g(a)−

∫ b

a
F × g′.

c© 1996 D. H. Fremlin
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8 The Fundamental Theorem of Calculus 225G

225G Proposition Let [a, b] be a non-empty closed interval in R and f : [a, b] → R an absolutely
continuous function.

(a) f [A] is negligible for every negligible set A ⊆ R.
(b) f [E] is measurable for every measurable set E ⊆ R.

225H Semi-continuous functions If D ⊆ R
r, a function g : D → [−∞,∞] is lower semi-continuous

if {x : g(x) > u} is an open subset of D for every u ∈ [−∞,∞]. Any lower semi-continuous function is Borel
measurable, therefore Lebesgue measurable.

225I Proposition Suppose that r ≥ 1 and that f is a real-valued function, defined on a subset D of Rr,
which is integrable over D. Then for any ǫ > 0 there is a lower semi-continuous function g : Rr → [−∞,∞]
such that g(x) ≥ f(x) for every x ∈ D and

∫

D
g is defined and not greater than ǫ+

∫

D
f .

225J Theorem Let D be a subset of R and f : D → R any function. Then

E = {x : x ∈ D, f is continuous at x}

is relatively Borel measurable in D, and

F = {x : x ∈ D, f is differentiable at x}

is Borel measurable in R; moreover, f ′ : F → R is Borel measurable.

225K Proposition Let [a, b] be a non-empty closed interval in R, and f : [a, b] → R a function. Set
F = {x : x ∈ ]a, b[ , f ′(x) is defined}. Then f is absolutely continuous iff (i) f is continuous (ii) f ′ is
integrable over F (iii) f [ [a, b] \ F ] is negligible.

225L Corollary Let [a, b] be a non-empty closed interval in R. Let f : [a, b] → R be a continuous
function which is differentiable on the open interval ]a, b[. If its derivative f ′ is integrable over [a, b], then f

is absolutely continuous, and f(b)− f(a) =
∫ b

a
f ′.

225M Corollary Let [a, b] be a non-empty closed interval in R, and f : [a, b] → R a continuous function.
Then f is absolutely continuous iff it is continuous and of bounded variation and f [A] is negligible for every
negligible A ⊆ [a, b].

225N The Cantor function Let C ⊆ [0, 1] be the Cantor set. Recall that the ‘Cantor function’ is a
non-decreasing continuous function f : [0, 1] → [0, 1] such that f ′(x) is defined and equal to zero for every
x ∈ [0, 1] \ C, but f(0) = 0 < 1 = f(1). f is of bounded variation and not absolutely continuous. C

is negligible and f [C] = [0, 1] is not. If x ∈ C, then for every n ∈ N there is an interval of length 3−n,
containing x, on which f increases by 2−n; so f cannot be differentiable at x, and the set F = dom f ′ of
225K is precisely [0, 1] \ C, so that f [ [0, 1] \ F ] = [0, 1].

225O Complex-valued functions (a) Let (X,Σ, µ) be any measure space and f an integrable complex-
valued function defined on a conegligible subset of X. Then for any ǫ > 0 there are a measurable set E of
finite measure and a real number δ > 0 such that

∫

F
|f | ≤ ǫ whenever F ∈ Σ and µ(F ∩ E) ≤ δ.

(b) If [a, b] is a non-empty closed interval in R and f : [a, b] → C is a function, we say that f is
absolutely continuous if for every ǫ > 0 there is a δ > 0 such that

∑n
i=1 |f(bi) − f(ai)| ≤ ǫ whenever

a ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn ≤ b and
∑n

i=1 bi − ai ≤ δ. Observe that f is absolutely continuous
iff its real and imaginary parts are both absolutely continuous.

(c) Let [a, b] be a non-empty closed interval in R.
(i) If f : [a, b] → C is absolutely continuous it is of bounded variation on [a, b], so is differentiable

almost everywhere in [a, b], and its derivative is integrable over [a, b].
(ii) If f , g : [a, b] → C are absolutely continuous, so are f + g and ζf , for any ζ ∈ C, and f × g.
(iii) If g : [a, b] → [c, d] is monotonic and absolutely continuous, and f : [c, d] → C is absolutely

continuous, then fg : [a, b] → C is absolutely continuous.

Measure Theory (abridged version)



226Ad The Lebesgue decomposition of a function of bounded variation 9

(d) Let [a, b] be a non-empty closed interval in R and F : [a, b] → C a function. Then the following are
equiveridical:

(i) there is an integrable complex-valued function f such that F (x) = F (a) +
∫ x

a
f for every x ∈ [a, b];

(ii)
∫ x

a
F ′ exists and is equal to F (x)− F (a) for every x ∈ [a, b];

(iii) F is absolutely continuous.

(e) Let f be an integrable complex-valued function on an interval [a, b] ⊆ R, and g : [a, b] → C an
absolutely continuous function. Set F (x) =

∫ x

a
f for x ∈ [a, b]. Then

∫ b

a
f × g = F (b)g(b)− F (a)g(a)−

∫ b

a
F × g′.

(f) Let f be a continuous complex-valued function on a closed interval [a, b] ⊆ R, and suppose that f is
differentiable at every point of the open interval ]a, b[, with f ′ integrable over [a, b]. Then f is absolutely
continuous.

Version of 16.11.13

226 The Lebesgue decomposition of a function of bounded variation

I end this chapter with some notes on a method of analysing a general function of bounded variation
which may help to give a picture of what such functions can be, though (apart from 226A) it is hardly
needed in this volume.

226A Sums over arbitrary index sets (a) If I is any set and 〈ai〉i∈I any family in [0,∞], we set
∑

i∈I ai = sup{
∑

i∈K ai : K is a finite subset of I},

with the convention that
∑

i∈∅ ai = 0. For general ai ∈ [−∞,∞], we can set
∑

i∈I ai =
∑

i∈I a
+
i −

∑

i∈I a
−
i

if this is defined in [−∞,∞], where a+ = max(a, 0) and a− = max(−a, 0) for each a. If
∑

i∈I ai is defined
and finite, we say that 〈ai〉i∈I is summable.

(b) For any set I, we have the corresponding ‘counting measure’ µ on I. Every family 〈ai〉i∈I of real
numbers is a measurable real-valued function on I. A real-valued function f on I is ‘simple’ if K = {i :
f(i) 6= 0} is finite. Now a general function f : I → R is integrable iff

∑

i∈I |f(i)| < ∞, and in this case
∫

fdµ =
∑

i∈I f(i),

Thus we have
∑

i∈I ai =
∫

I
aiµ(di),

and the standard rules under which we allow ∞ as the value of an integral match the interpretations in (a)
above.

(c) I observe here that this notion of summability is ‘absolute’; a family 〈ai〉i∈I is summable iff it is
absolutely summable.

(d) If 〈ai〉i∈I is an (absolutely) summable family of real numbers, then for every ǫ > 0 there is a finite
K ⊆ I such that

∑

i∈I\K |ai| ≤ ǫ. Consequently, for any family 〈ai〉i∈I of real numbers and any s ∈ R, the

following are equiveridical:

(i)
∑

i∈I ai = s;

(ii) for every ǫ > 0 there is a finite K ⊆ I such that |s−
∑

i∈J ai| ≤ ǫ whenever J is finite and
K ⊆ J ⊆ I.

c© 2000 D. H. Fremlin
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10 The Fundamental Theorem of Calculus 226Ae

(e) If
∑

i∈I |ai| < ∞, then

J = {i : ai 6= 0} =
⋃

n∈N
{i : |ai| ≥ 2−n}

is countable. If J is finite, then
∑

i∈I ai =
∑

i∈J ai reduces to a finite sum. Otherwise, we can enumerate J

as 〈jn〉n∈N, and we shall have
∑

i∈I ai =
∑

i∈J ai = limn→∞

∑n
k=0 ajk =

∑∞
n=0 ajn .

Conversely, if 〈ai〉i∈I is such that there is a countably infinite J ⊆ {i : ai 6= 0} enumerated as 〈jn〉n∈N, and
if
∑∞

n=0 |ajn | < ∞, then
∑

i∈I ai will be
∑∞

n=0 ajn .

(f) Let I and J be sets and 〈aij〉i∈I,j∈J a family in [0,∞]. Then
∑

(i,j)∈I×J aij =
∑

i∈I(
∑

j∈J aij) =
∑

j∈J(
∑

i∈I aij).

226B Saltus functions Suppose that a < b in R.

(a) A (real) saltus function on [a, b] is a function F : [a, b] → R expressible in the form

F (x) =
∑

t∈[a,x[ ut +
∑

t∈[a,x] vt

for x ∈ [a, b], where 〈ut〉t∈[a,b[, 〈vt〉t∈[a,b] are real-valued families such that
∑

t∈[a,b[ |ut| and
∑

t∈[a,b] |vt| are
finite.

(b) For any function F : [a, b] → R we can write

F (x+) = limy↓x F (y) if x ∈ [a, b[ and the limit exists,

F (x−) = limy↑x F (y) if x ∈ ]a, b] and the limit exists.

Observe that if F is a saltus function, as defined in (b), with associated families 〈ut〉t∈[a,b[ and 〈vt〉t∈[a,b],

then va = F (a), vx = F (x)− F (x−) for x ∈ ]a, b] and ux = F (x+)− F (x) for x ∈ [a, b[.
F is continuous at x ∈ ]a, b[ iff ux = vx = 0, while F is continuous at a iff ua = 0 and F is continuous at

b iff vb = 0. In particular, {x : x ∈ [a, b], F is not continuous at x} is countable.

(c) If F is a saltus function defined on [a, b], with associated families 〈ut〉t∈[a,b[ and 〈vt〉t∈[a,b], then F is
of bounded variation on [a, b], and

Var[a,b](F ) ≤
∑

t∈[a,b[ |ut|+
∑

t∈]a,b] |vt|.

(d) The inequality in (c) is actually an equality.

(e) Because a saltus function is of bounded variation, it is differentiable almost everywhere. In fact its
derivative is zero almost everywhere.

226C The Lebesgue decomposition of a function of bounded variation Take a, b ∈ R with a < b.

(a) If F : [a, b] → R is non-decreasing, set va = 0, vt = F (t)− F (t−) for t ∈ ]a, b], ut = F (t+)− F (t) for
t ∈ [a, b[. Then all the vt, ut are non-negative, and

∑

t∈[a,b[ ut and
∑

t∈[a,b] vt are both finite. Let Fp be the

corresponding saltus function. Fp and Fc = F − Fp are non-decreasing. Fc is continuous.
Clearly this expression of F = Fp+Fc as the sum of a saltus function and a continuous function is unique,

except that we can freely add a constant to one if we subtract it from the other.

(b) Set Fac(x) = F (a)+
∫ x

a
F ′ for each x ∈ [a, b]. Fcs = Fc−Fac is still non-decreasing; Fcs is continuous;

F ′
cs = 0 a.e.
Again, the expression of Fc = Fac + Fcs as the sum of an absolutely continuous function and a function

with zero derivative almost everywhere is unique, except for the possibility of moving a constant from one
to the other.

Measure Theory (abridged version)



226E The Lebesgue decomposition of a function of bounded variation 11

(c) Putting these together: if F : [a, b] → R is any non-decreasing function, it is expressible as Fp+Fac+
Fcs, where Fp is a saltus function, Fac is absolutely continuous, and Fcs is continuous and differentiable,
with zero derivative, almost everywhere; all three components are non-decreasing; and the expression is
unique if we say that Fac(a) = F (a) and Fp(a) = Fcs(a) = 0.

The Cantor function f : [0, 1] → [0, 1] is continuous and f ′ = 0 a.e., so fp = fac = 0 and f = fcs. Setting
g(x) = 1

2 (x+ f(x)) for x ∈ [0, 1], we get gp(x) = 0, gac(x) =
x
2 and gcs(x) =

1
2f(x).

(d) Now suppose that F : [a, b] → R is of bounded variation. Then it is expressible as a difference G−H

of non-decreasing functions. So writing Fp = Gp − Hp, etc., we can express F as a sum Fp + Fcs + Fac,
where Fp is a saltus function, Fac is absolutely continuous, Fcs is continuous, F ′

cs = 0 a.e., Fac(a) = F (a)
and Fcs(a) = Fp(a) = 0. Under these conditions the expression is unique.

This is a Lebesgue decomposition of the function F . I will call Fp the saltus part of F .

226D Complex functions (a) If I is any set and 〈aj〉j∈I is a family of complex numbers, then the
following are equiveridical:

(i)
∑

j∈I |aj | < ∞;

(ii) there is an s ∈ C such that for every ǫ > 0 there is a finiteK ⊆ I such that |s−
∑

j∈J aj | ≤ ǫ

whenever J is finite and K ⊆ J ⊆ I.

In this case

s =
∑

j∈I Re(aj) + i
∑

j∈I Im(aj) =
∫

I
ajµ(dj),

where µ is counting measure on I, and we write s =
∑

j∈I aj .

(b) If a < b in R, a complex saltus function on [a, b] is a function F : [a, b] → C expressible in the form

F (x) =
∑

t∈[a,x[ ut +
∑

t∈[a,x] vt

for x ∈ [a, b], where 〈ut〉t∈[a,b[, 〈vt〉t∈[a,b] are complex-valued families such that
∑

t∈[a,b[ |ut| and
∑

t∈[a,b] |vt|
are finite. In this case F is continuous except at countably many points and differentiable, with zero
derivative, almost everywhere in [a, b], and

ux = limt↓x F (t)− F (x) for every x ∈ [a, b[,

vx = limt↑x F (x)− F (t) for every x ∈ ]a, b].

F is of bounded variation, and its variation is

Var[a,b](F ) =
∑

t∈[a,b[ |ut|+
∑

t∈]a,b] |vt|.

(c) If F : [a, b] → C is a function of bounded variation, where a < b in R, it is uniquely expressible as
F = Fp + Fcs + Fac, where Fp is a saltus function, Fac is absolutely continuous, Fcs is continuous and has
zero derivative almost everywhere, and Fac(a) = F (a), Fp(a) = Fcs(a) = 0.

226E Proposition Let (X,Σ, µ) be a measure space, I a countable set, and 〈fi〉i∈I a family of µ-
integrable real- or complex-valued functions such that

∑

i∈I

∫

|fi|dµ is finite. Then f(x) =
∑

i∈I fi(x) is

defined almost everywhere and
∫

fdµ =
∑

i∈I

∫

fidµ.
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