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Chapter 22

The Fundamental Theorem of Calculus

In this chapter I address one of the most important properties of the Lebesgue integral. Given an
integrable function f : [a, b] → R, we can form its indefinite integral F (x) =

∫ x

a
f(t)dt for x ∈ [a, b]. Two

questions immediately present themselves. (i) Can we expect to have the derivative F ′ of F equal to f?
(ii) Can we identify which functions F will appear as indefinite integrals? Reasonably satisfactory answers
may be found for both of these questions: F ′ = f almost everywhere (222E) and indefinite integrals are the
absolutely continuous functions (225E). In the course of dealing with them, we need to develop a variety
of techniques which lead to many striking results both in the theory of Lebesgue measure and in other,
apparently unrelated, topics in real analysis.

The first step is ‘Vitali’s theorem’ (§221), a remarkable argument – it is more a method than a theorem –
which uses the geometric nature of the real line to extract disjoint subfamilies from collections of intervals.
It is the foundation stone not only of the results in §222 but of all geometric measure theory, that is, measure
theory on spaces with a geometric structure. I use it here to show that monotonic functions are differentiable
almost everywhere (222A). Following this, Fatou’s Lemma and Lebesgue’s Dominated Convergence Theorem
are enough to show that the derivative of an indefinite integral is almost everywhere equal to the integrand.
We find that some innocent-looking manipulations of this fact take us surprisingly far; I present these in
§223.

I begin the second half of the chapter with a discussion of functions ‘of bounded variation’, that is, ex-
pressible as the difference of bounded monotonic functions (§224). This is one of the least measure-theoretic
sections in the volume; only in 224I and 224J are measure and integration even mentioned. But this material
is needed for Chapter 28 as well as for the next section, and is also one of the basic topics of twentieth-century
real analysis. §225 deals with the characterization of indefinite integrals as the ‘absolutely continuous’ func-
tions. In fact this is now quite easy; it helps to call on Vitali’s theorem again, but everything else is a
straightforward application of methods previously used. The second half of the section introduces some new
ideas in an attempt to give a deeper intuition into the essential nature of absolutely continuous functions.
§226 returns to functions of bounded variation and their decomposition into ‘saltus’ and ‘absolutely contin-
uous’ and ‘singular’ parts, the first two being relatively manageable and the last looking something like the
Cantor function.

Version of 2.6.03

221 Vitali’s theorem in R

I give the first theorem of this chapter a section to itself. It occupies a position between measure theory
and geometry (it is, indeed, one of the fundamental results of ‘geometric measure theory’), and its proof
involves both the measure and the geometry of the real line.

221A Vitali’s theorem Let A be a bounded subset of R and I a family of non-singleton closed intervals
in R such that every point of A belongs to arbitrarily short members of I. Then there is a countable set
I0 ⊆ I such that (i) I0 is disjoint, that is, I ∩ I ′ = ∅ for all distinct I, I ′ ∈ I0 (ii) µ(A \⋃ I0) = 0, where µ
is Lebesgue measure on R.

proof (a) If there is a finite disjoint set I0 ⊆ I such that A ⊆ ⋃ I0 (including the possibility that A = I0 =
∅), we can stop. So let us suppose henceforth that there is no such I0.

Let µ∗ be Lebesgue outer measure on R. Suppose that |x| < M for every x ∈ A, and set

I ′ = {I : I ∈ I, I ⊆ [−M,M ]}.
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2 The Fundamental Theorem of Calculus 221A

(b) In this case, if I0 is any finite disjoint subset of I ′, there is a J ∈ I ′ which is disjoint from any
member of I0. PPP Take x ∈ A\⋃ I0. Now there is a δ > 0 such that [x− δ, x+ δ] does not meet any member
of I0, and as |x| < M we can suppose that [x − δ, x + δ] ⊆ [−M,M ]. Let J be a member of I, containing
x, and of length at most δ; then J ∈ I ′ and J ∩⋃ I0 = ∅. QQQ

(c) We can now choose a sequence 〈γn〉n∈N of real numbers and a disjoint sequence 〈In〉n∈N in I ′ induc-
tively, as follows. Given 〈Ij〉j<n (if n = 0, this is the empty sequence, with no members), with Ij ∈ I ′ for
each j < n, and Ij ∩ Ik = ∅ for j < k < n, set

Jn = {I : I ∈ I ′, I ∩ Ij = ∅ for every j < n}.
We know from (b) that Jn 6= ∅. Set

γn = sup{µI : I ∈ Jn};
then 0 < γn ≤ 2M . We may therefore choose a set In ∈ Jn such that µIn ≥ 1

2γn, and this continues the
induction.

(e) Because the In are disjoint Lebesgue measurable subsets of [−M,M ], we have
∑∞

n=0 γn ≤ 2
∑∞

n=0 µIn ≤ 4M < ∞,

and limn→∞ γn = 0. Now define I ′n to be the closed interval with the same midpoint as In but five times
the length, so that it projects past each end of In by at least γn. I claim that, for any n,

A ⊆ ⋃

j<n Ij ∪
⋃

j≥n I
′
j .

PPP??? Suppose, if possible, otherwise. Take any x belonging to A \ (⋃j<n Ij ∪
⋃

j≥n I
′
j). Let δ > 0 be such

that

[x− δ, x+ δ] ⊆ [−M,M ] \⋃j<n Ij ,

and let J ∈ I be such that

x ∈ J ⊆ [x− δ, x+ δ].

Then

µJ > 0 = limm→∞ γm;

let m be the least integer greater than or equal to n such that γm < µJ . In this case J cannot belong to
Jm, so there must be some k < m such that J ∩ Ik 6= ∅, because certainly J ∈ I ′. By the choice of δ, k
cannot be less than n, so n ≤ k < m, and γk ≥ µJ . In this case, the distance from x to the nearest endpoint
of Ik is at most µJ ≤ γk. But the ends of I ′k project beyond the ends of Ik by at least γk, so x ∈ I ′k; which
contradicts the choice of x. XXXQQQ

(f) It follows that

µ∗(A \⋃j<n Ij) ≤ µ(
⋃

j≥n I
′
j) ≤

∑∞
j=n µI

′
j ≤ 5

∑∞
j=n µIj .

As
∑∞

j=0 µIj ≤ 2M < ∞,

we must have

limn→∞ µ∗(A \⋃j<n Ij) = 0,

and

µ(A \⋃j∈N Ij) = µ∗(A \⋃j∈N Ij) ≤ infn∈N µ∗(A \⋃j<n Ij) = 0.

Thus in this case we may set I0 = {In : n ∈ N} to obtain a countable disjoint family in I with
µ(A \⋃ I0) = 0.

221B Remarks (a) I have expressed this theorem in the form ‘there is a countable set I0 ⊆ I such that
. . . ’ in an attempt to find a concise way of expressing the three possibilities

(i) A = I = ∅, so that we must take I0 = ∅;
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221Ye Vitali’s theorem in R 3

(ii) there are disjoint I0, . . . , In ∈ I such that A ⊆ I0 ∪ . . . ∪ In, so that we can take I0 =
{I0, . . . , In};

(iii) there is a disjoint sequence 〈In〉n∈N in I such that µ(A \ ⋃

n∈N In) = 0, so that we can
take I0 = {In : n ∈ N}.

Of course many applications, like the proof of 221A itself, will use forms of these three alternatives.

(b) The actual theorem here, as stated, will be used in the next section. But quite as important as the
statement of the theorem is the principle of its proof. The In are chosen ‘greedily’, that is, when we come
to choose In we look at the family Jn of possible intervals, given the choices I0, . . . , In−1 already made,
and choose an In ∈ Jn which is ‘about’ as big as it could be. The supremum of the possibilities for µIn
is γn; but since we do not know that there is any I ∈ Jn such that µI = γn, we must settle for a little
less. I follow the standard formula in taking µIn ≥ 1

2γn, but of course I could have taken µIn ≥ 99
100γn, or

µIn ≥ (1− 2−n)γn, if that had helped later on. The remarkable thing is that this works; we can choose the
In without foresight and without considering their interrelationships (for that matter, without examining
the set A) beyond the minimal requirement that In ∩ Ij = ∅ for j < n, and even this arbitrary and casual
procedure yields a suitable sequence.

(c) I have stated the theorem in terms of bounded sets A and closed intervals, which is adequate for
our needs, but very small changes in the proof suffice to deal with arbitrary (non-singleton) intervals, and
another refinement handles unbounded sets A. (See 221Ya.)

221X Basic exercises (a) Let α ∈ ]0, 1[. Suppose, in part (c) of the proof of 221A, we take µIn ≥ αγn
for each n ∈ N, rather than µIn ≥ 1

2γn. What will be the appropriate constant to take in place of 5 in
defining the sets I ′j of part (e)?

221Y Further exercises (a) Let A be a subset of R and I a family of non-singleton intervals in R

such that every point of A belongs to arbitrarily short members of I. Show that there is a countable
disjoint set I0 ⊆ I such that A \⋃ I0 is Lebesgue negligible. (Hint : apply 221A to the sets A ∩ ]n, n+ 1[,
{I : I ∈ I, I ⊆ ]n, n+ 1[}, writing I for the closed interval with the same endpoints as I.)

(b) Let J be any family of non-singleton intervals in R. Show that
⋃J is Lebesgue measurable. (Hint :

apply (a) to A =
⋃J and the family I of non-singleton subintervals of members of J .)

(c) Let (X, ρ) be a metric space, A a subset of X, and I a family of closed balls of non-zero radius in X
such that every point of A belongs to arbitrarily small members of I. (I say here that a set is a ‘closed ball
of non-zero radius’ if it is expressible in the form B(x, δ) = {y : ρ(y, x) ≤ δ} where x ∈ X and δ > 0. Of
course it is possible for such a ball to be a singleton {x}.) Show that either A can be covered by a finite
disjoint family in I or there is a disjoint sequence 〈B(xn, δn)〉n∈N in I such that

A ⊆ ⋃

m≤n B(xm, δm) ∪⋃

m>n B(xm, 5δm) for every n ∈ N

or there is a disjoint sequence 〈B(xn, δn)〉n∈N in I such that infn∈N δn > 0.

(d) Give an example of a family I of open intervals such that every point of R belongs to arbitrarily
small members of I, but if 〈In〉n∈N is any disjoint sequence in I, and for each n ∈ N we write I ′n for
the closed interval with the same centre as In and ten times the length, then there is an n such that
]0, 1[ 6⊆ ⋃

m<n Im ∪⋃

m≥n I
′
m.

(e)(i) Show that if I is a finite family of intervals in R there are I0, I1 ⊆ I such that
⋃

(I0 ∪ I1) =
⋃ I

and both I0 and I1 are disjoint families. (Hint : induce on #(I).) (ii) Suppose that I is a family of non-
singleton intervals, of length at most 1, covering a bounded set A ⊆ R, and that ǫ > 0. Show that there
is a disjoint subfamily I0 of I such that µ∗(A \⋃ I0) ≤ 1

2µ
∗A + ǫ. (Hint : replacing each member of I by

a slightly longer one with rational endpoints, reduce to the case in which I is countable and thence to the
case in which I is finite; now use (i).) (iii) Use (ii) to prove Vitali’s theorem. (I learnt this argument from
J.Aldaz.)
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4 The Fundamental Theorem of Calculus 221 Notes

221 Notes and comments I have headed this section ‘Vitali’s theorem in R’ because there is an r-
dimensional version, which will appear in Chapter 26 below. There is an anomaly in the position of this
theorem. It is an indispensable element of the proofs of some of the most important theorems in measure
theory; on the other hand, the ideas involved in its own proof are not used elsewhere in the elementary
theory. I have therefore myself sometimes omitted the proof when teaching this material, and would not
reproach any student who left it to one side for the moment. At some stage, of course, any measure theorist
must master the method, not just for the sake of completeness, but in order to gain an intuition for possible
variations. I must emphasize that it is the principle of the proof, rather than its details, which is important,
because there are innumerable forms of ‘Vitali’s theorem’. (I offer some variations in the exercises here and
in §261 below, and there are many others which are important in more advanced work; one will appear in
§472 in Volume 4.) This principle is, I suppose, that

(i) we choose the In greedily, according to some more or less natural criterion applicable to
each In as we come to choose it, without attempting to look ahead;

(ii) we prove that their sizes tend to zero, even though we seemed to do nothing to ensure that
they would (but note the shift from I to I ′ in part (a) of the proof of 221A, which is exactly
what is needed to make this step work);

(iii) we check that for a suitable definition of I ′n, enlarging In, we shall have A ⊆ ⋃

m<n Im ∪
⋃

m≥n I
′
m for every n, while

∑∞
n=0 µI

′
n < ∞.

In a way, we have to count ourselves lucky every time this works. The reason for studying as many variations
as possible of a technique of this kind is to learn to guess when we might be lucky.

Version of 20.11.03/18.10.04

222 Differentiating an indefinite integral

I come now to the first of the two questions mentioned in the introduction to this chapter: if f is an
integrable function on [a, b], what is d

dx

∫ x

a
f? It turns out that this derivative exists and is equal to f

almost everywhere (222E). The argument is based on a striking property of monotonic functions: they are
differentiable almost everywhere (222A), and we can bound the integrals of their derivatives (222C).

222A Theorem Let I ⊆ R be an interval and f : I → R a monotonic function. Then f is differentiable
almost everywhere in I.

Remark If I seem to be speaking of a measure on R without naming it, as here, I mean Lebesgue measure.

proof As usual, write µ∗ for Lebesgue outer measure on R, µ for Lebesgue measure.

(a) To begin with (down to the end of (c) below), let us suppose that f is non-decreasing and I is a
bounded open interval on which f is bounded; say |f(x)| ≤ M for x ∈ I. For any closed subinterval J = [a, b]
of I, write f∗(J) for the open interval ]f(a), f(b)[. For x ∈ I, write

Df(x) = lim suph→0
1
h (f(x+ h)− f(x)), Df(x) = lim infh→0

1
h (f(x+ h)− f(x)),

allowing the value ∞ in both cases. Then f is differentiable at x iff Df(x) = Df(x) ∈ R. Because surely

Df(x) ≥ Df(x) ≥ 0, f will be differentiable at x iff Df(x) is finite and Df(x) ≤ Df(x).
I therefore have to show that the sets

{x : x ∈ I, Df(x) = ∞}, {x : x ∈ I, Df(x) > Df(x)}
are negligible.

(b) Let us take A = {x : x ∈ I, Df(x) = ∞} first. Fix an integer m ≥ 1 for the moment, and set

Am = {x : x ∈ I, Df(x) > m} ⊇ A.

Let I be the family of non-trivial closed intervals [a, b] ⊆ I such that f(b) − f(a) ≥ m(b − a); then
µf∗(J) ≥ mµJ for every J ∈ I. If x ∈ Am, then for any δ > 0 we have an h with 0 < |h| ≤ δ and
1
h (f(x+ h)− f(x)) > m, so that

c© 2004 D. H. Fremlin
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222B Differentiating an indefinite integral 5

[x, x+ h] ∈ I if h > 0, [x+ h, x] ∈ I if h < 0;

thus every member of Am belongs to arbitrarily small intervals in I. By Vitali’s theorem (221A), there is
a countable disjoint set I0 ⊆ I such that µ(A \⋃ I0) = 0. Now, because f is non-decreasing, 〈f∗(J)〉J∈I0

is disjoint, and all the f∗(J) are included in [−M,M ], so
∑

J∈I0
µf∗(J) ≤ 2M and

∑

J∈I0
µJ ≤ 2M/m.

Because Am \⋃ I0 is negligible,

µ∗A ≤ µ∗Am ≤ 2M

m
.

As m is arbitrary, µ∗A = 0 and A is negligible.

(c) Now consider B = {x : x ∈ I, Df(x) > Df(x)}. For q, q′ ∈ Q with 0 ≤ q < q′, set

Bqq′ = {x : x ∈ I, Df(x) < q, Df(x) > q′}.
Fix such q, q′ for the moment, and write γ = µ∗Bqq′ . Take any ǫ > 0, and let G be an open set including
Bqq′ such that µG ≤ γ + ǫ (134Fa). Let J be the set of non-trivial closed intervals [a, b] ⊆ I ∩ G such
that f(b)− f(a) ≤ q(b− a); this time µf∗(J) ≤ qµJ for J ∈ J . Then every member of Bqq′ is included in
arbitrarily small members of J , so there is a countable disjoint J0 ⊆ J such that Bqq′ \

⋃J0 is negligible.
Let L be the set of endpoints of members of J0; then L is a countable union of doubleton sets, so is countable,
therefore negligible. Set

C = Bqq′ ∩
⋃J0 \ L;

then µ∗C = γ. Let I be the set of non-trivial closed intervals J = [a, b] such that (i) J is included in one of
the members of J0 (ii) f(b) − f(a) ≥ q′(b − a); now µf∗(J) ≥ q′µJ for every J ∈ I. Once again, because
every member of C is an interior point of some member of J0, every point of C belongs to arbitrarily small
members of I; so there is a countable disjoint I0 ⊆ I such that µ(C \⋃ I0) = 0.

As in (b) above,

γq′ ≤ q′µ(
⋃ I0) =

∑

I∈I0
q′µI ≤ ∑

I∈I0
µf∗(I) = µ(

⋃

I∈I0
f∗(I)).

On the other hand,

µ(
⋃

J∈J0

f∗(J)) =
∑

J∈J0

µf∗(J) ≤ q
∑

J∈J0

µJ = qµ(
⋃

J0)

≤ qµ(
⋃

J ) ≤ qµG ≤ q(γ + ǫ).

But
⋃

I∈I0
f∗(I) ⊆ ⋃

J∈J0
f∗(J), because every member of I0 is included in a member of J0, so γq

′ ≤ q(γ+ǫ)

and γ ≤ ǫq/(q′ − q). As ǫ is arbitrary, γ = 0.
Thus every Bqq′ is negligible. Consequently B =

⋃

q,q′∈Q,0≤q<q′ Bqq′ is negligible.

(d) This deals with the case of a bounded open interval on which f is bounded and non-decreasing. Still
for non-decreasing f , but for an arbitrary interval I, observe that K = {(q, q′) : q, q′ ∈ I ∩ Q, q < q′} is
countable and that I \⋃(q,q′)∈K ]q, q′[ has at most two points (the endpoints of I, if any), so is negligible. If

we write S for the set of points of I at which f is not differentiable, then from (a)-(c) we see that S ∩ ]q, q′[
is negligible for every (q, q′) ∈ K, so that S ∩⋃

(q,q′)∈K ]q, q′[ is negligible and S is negligible.

(e) Thus we are done if f is non-decreasing. For non-increasing f , apply the above to −f , which is
differentiable at exactly the same points as f .

222B Remarks (a) I note that in the above argument I am using such formulae as
∑

J∈I0
µf∗(J). This

is because Vitali’s theorem leaves it open whether the families I0 will be finite or infinite. The sum must be
interpreted along the lines laid down in 112Bd in Volume 1; generally,

∑

k∈K ak, where K is an arbitrary
set and every ak ≥ 0, is to be supL⊆K is finite

∑

k∈L ak, with the convention that
∑

k∈∅ ak = 0. Now, in this
context, if (X,Σ, µ) is a measure space, K is a countable set, and 〈Ek〉k∈K is a family in Σ,

µ(
⋃

k∈K Ek) ≤
∑

k∈K µEk,

with equality if 〈Ek〉k∈K is disjoint. PPP If K = ∅, this is trivial. Otherwise, let n 7→ kn : N → K be a
surjection, and set

D.H.Fremlin



6 The Fundamental Theorem of Calculus 222B

Kn = {ki : i ≤ n}, Gn =
⋃

i≤n Eki
=

⋃

k∈Kn
Ek

for each n ∈ N. Then 〈Gn〉n∈N is a non-decreasing sequence with union E =
⋃

k∈K Ek, so

µE = limn→∞ µGn = supn∈N µGn;

and

µGn ≤ ∑

k∈Kn
µEk ≤ ∑

k∈K µEk

for every n, so µE ≤ ∑

k∈K µEk. If the Ek are disjoint, then µGn is precisely
∑

k∈Kn
µEk for each n; but

as 〈Kn〉n∈N is a non-decreasing sequence of sets with union K, every finite subset of K is included in some
Kn, and

∑

k∈K µEk = supn∈N

∑

k∈Kn
µEk = supn∈N µGn = µE,

as required. QQQ

(b) Some readers will prefer to re-index sets regularly, so that all the sums they need to look at will be
of the form

∑n
i=0 or

∑∞
i=0. In effect, that is what I did in Volume 1, in the proof of 114Da/115Da, when

showing that Lebesgue outer measure is indeed an outer measure. The disadvantage of this procedure in
the context of 222A is that we must continually check that it doesn’t matter whether we have a finite or
infinite sum at any particular moment. I believe that it is worth taking the trouble to learn the technique
sketched here, because it very frequently happens that we wish to consider unions of sets indexed by sets
other than N and {0, . . . , n}.

(c) Of course the argument above can be shortened if you know a tiny bit more about countable sets
than I have explicitly stated so far. But note that the value assigned to

∑

k∈K ak must not depend on which
enumeration 〈kn〉n∈N we pick on.

222C Lemma Suppose that a ≤ b in R, and that F : [a, b] → R is a non-decreasing function. Then
∫ b

a
F ′ exists and is at most F (b)− F (a).

Remark I discussed integration over subsets at length in §131 and §214. For measurable subsets, which
are sufficient for our needs in this chapter, we have a simple description: if (X,Σ, µ) is a measure space,

E ∈ Σ and f is a real-valued function, then
∫

E
f =

∫

f̃ if the latter integral exists, where dom f̃ =

(E ∩ dom f) ∪ (X \ E) and f̃(x) = f(x) if x ∈ E ∩ dom f , 0 if x ∈ X \ E (apply 131Fa to f̃). It follows at
once that if now F ∈ Σ and F ⊆ E,

∫

F
f =

∫

E
f × χF .

I write
∫ x

a
f to mean

∫

[a,x[
f , which (because [a, x[ is measurable) can be dealt with as described above.

Note that, as long as we are dealing with Lebesgue measure, so that [a, x]\ ]a, x[ = {a, x} is negligible, there
is no need to distinguish between

∫

[a,x]
,
∫

]a,x[
,
∫

[a,x[
,
∫

]a,x]
; for other measures on R we may need to take

more care. I use half-open intervals to make it obvious that
∫ x

a
f +

∫ y

x
f =

∫ y

a
f if a ≤ x ≤ y, because

f × χ [a, y[ = f × χ [a, x[ + f × χ [x, y[.

proof (a) The result is trivial if a = b; let us suppose that a < b. By 222A, F ′ is defined almost everywhere
in [a, b].

(b) For each n ∈ N, define a simple function gn : [a, b[ → R as follows. For 0 ≤ k < 2n, set ank =
a + 2−nk(b − a), bnk = a + 2−n(k + 1)(b − a), Ink = [ank, bnk[. For each x ∈ [a, b[, take that k < 2n such
that x ∈ Ink, and set

gn(x) =
2n

b−a
(F (bnk)− F (ank))

for x ∈ Ink, so that gn gives the slope of the chord of the graph of F defined by the endpoints of Ink. Then
∫ b

a
gn =

∑2n−1
k=0 F (bnk)− F (ank) = F (b)− F (a).

(c) On the other hand, if we set

C = {x : x ∈ ]a, b[ , F ′(x) exists},

Measure Theory



222D Differentiating an indefinite integral 7

then [a, b] \ C is negligible, by 222A, and F ′(x) = limn→∞ gn(x) for every x ∈ C. PPP Let ǫ > 0. Then there
is a δ > 0 such that x + h ∈ [a, b] and |F (x + h) − F (x)) − hF ′(x)| ≤ ǫ|h| whenever |h| ≤ δ. Let n ∈ N be
such that 2−n(b− a) ≤ δ. Let k < 2n be such that x ∈ Ink. Then

x− δ ≤ ank ≤ x < bnk ≤ x+ δ, gn(x) =
2n

b−a
(F (bnk)− F (ank)).

Now we have

|gn(x)− F ′(x)| = | 2
n

b−a
(F (bnk)− F (ank))− F ′(x)|

=
2n

b−a
|F (bnk)− F (ank)− (bnk − ank)F

′(x)|

≤ 2n

b−a

(

|F (bnk)− F (x)− (bnk − x)F ′(x)|

+ |F (x)− F (ank)− (x− ank)F
′(x)|

)

≤ 2n

b−a
(ǫ|bnk − x|+ ǫ|x− ank|) = ǫ.

And this is true whenever 2−n ≤ δ, that is, for all n large enough. As ǫ is arbitrary, F ′(x) = limn→∞ gn(x).
QQQ

(d) Thus gn → F ′ almost everywhere in [a, b]. By Fatou’s Lemma,
∫ b

a
F ′ =

∫ b

a
lim infn→∞ gn ≤ lim infn→∞

∫ b

a
gn = limn→∞

∫ b

a
gn = F (b)− F (a),

as required.

Remark There is a generalization of this result in 224I.

222D Lemma Suppose that a < b in R, and that f , g are real-valued functions, both integrable over
[a, b], such that

∫ x

a
f =

∫ x

a
g for every x ∈ [a, b]. Then f = g almost everywhere in [a, b].

proof The point is that
∫

E
f =

∫ b

a
f × χE =

∫ b

a
g × χE =

∫

E
g

for any measurable set E ⊆ [a, b[.
PPP (i) If E = [c, d[ where a ≤ c ≤ d ≤ b, then

∫

E
f =

∫ d

a
f −

∫ c

a
f =

∫ d

a
g −

∫ c

a
g =

∫

E
g.

(ii) If E = [a, b[ ∩G for some open set G ⊆ R, then for each n ∈ N set

Kn = {k : k ∈ Z, |k| ≤ 4n, [2−nk, 2−n(k + 1)[ ⊆ G},

Hn =
⋃

k∈Kn
[2−nk, 2−n(k + 1)[ ∩ [a, b[;

then 〈Hn〉n∈N is a non-decreasing sequence of measurable sets with union E, so f ×χE = limn→∞ f ×χHn,
and (by Lebesgue’s Dominated Convergence Theorem, because |f ×χHn| ≤ |f | almost everywhere for every
n, and |f | is integrable)

∫

E
f = limn→∞

∫

Hn

f .

At the same time, each Hn is a finite disjoint union of half-open intervals in [a, b[, so
∫

Hn

f =
∑

k∈Kn

∫

[2−nk,2−n(k+1)[∩[a,b[
f =

∑

k∈Kn

∫

[2−nk,2−n(k+1)[∩[a,b[
g =

∫

Hn

g,

and
∫

E
g = limn→∞

∫

Hn

g = limn→∞

∫

Hn

f =
∫

E
f .

(iii) For general measurable E ⊆ [a, b[, we can choose for each n ∈ N an open set Gn ⊇ E such that
µGn ≤ µE + 2−n (134Fa). Set G′

n =
⋂

m≤n Gm, En = [a, b[ ∩G′
n for each n,

D.H.Fremlin



8 The Fundamental Theorem of Calculus 222D

F = [a, b[ ∩⋂

n∈N Gn =
⋂

n∈N [a, b[ ∩G′
n =

⋂

n∈N En.

Then E ⊆ F and

µF ≤ infn∈N µGn = µE,

so F \E is negligible and f ×χ(F \E) is zero almost everywhere; consequently
∫

F\E f = 0 and
∫

F
f =

∫

E
f .

On the other hand,

f × χF = limn→∞ f × χEn,

so by Lebesgue’s Dominated Convergence Theorem again
∫

E
f =

∫

F
f = limn→∞

∫

En

f .

Similarly
∫

E
g = limn→∞

∫

En

g.

But by part (ii) we have
∫

En
g =

∫

En
f for every n, so

∫

E
g =

∫

E
f , as required. QQQ

By 131Hb, f = g almost everywhere in [a, b[, and therefore almost everywhere in [a, b].

222E Theorem Suppose that a ≤ b in R and that f is a real-valued function which is integrable over
[a, b]. Then F (x) =

∫ x

a
f exists in R for every x ∈ [a, b], and the derivative F ′(x) exists and is equal to f(x)

for almost every x ∈ [a, b].

proof (a) For most of this proof (down to the end of (c) below) I suppose that f is non-negative. In this
case,

F (y) = F (x) +
∫ y

x
f ≥ F (x)

whenever a ≤ x ≤ y ≤ b; thus F is non-decreasing and therefore differentiable almost everywhere in [a, b],
by 222A.

By 222C we know also that
∫ x

a
F ′ exists and is less than or equal to F (x) − F (a) = F (x) for every

x ∈ [a, b].

(b) Now suppose, in addition, that f is bounded; say 0 ≤ f(t) ≤ M for every t ∈ dom f . Then M − f is
integrable over [a, b]; let G be its indefinite integral, so that G(x) = M(x − a) − F (x) for every x ∈ [a, b].
Applying (a) to M − f and G, we have

∫ x

a
G′ ≤ G(x) for every x ∈ [a, b]; but of course G′ = M − F ′, so

M(x − a) −
∫ x

a
F ′ ≤ M(x − a) − F (x), that is,

∫ x

a
F ′ ≥ F (x) for every x ∈ [a, b]. Thus

∫ x

a
F ′ =

∫ x

a
f for

every x ∈ [a, b]. Now 222D tells us that F ′ = f almost everywhere in [a, b].

(c) Thus for bounded, non-negative f we are done. For unbounded f , let 〈fn〉n∈N be a non-decreasing
sequence of non-negative simple functions converging to f almost everywhere in [a, b], and let 〈Fn〉n∈N be
the corresponding indefinite integrals. Then for any n and any x, y with a ≤ x ≤ y ≤ b, we have

F (y)− F (x) =
∫ y

x
f ≥

∫ y

x
fn = Fn(y)− Fn(x),

so that F ′(x) ≥ F ′
n(x) for any x ∈ ]a, b[ where both are defined, and F ′(x) ≥ fn(x) for almost every x ∈ [a, b].

This is true for every n, so F ′ ≥ f almost everywhere, and F ′ − f ≥ 0 almost everywhere. On the other
hand, as noted in (a),

∫ b

a
F ′ ≤ F (b)− F (a) =

∫ b

a
f ,

so
∫ b

a
F ′ − f ≤ 0. It follows that F ′ =a.e. f (that is, that F ′ = f almost everywhere in [a, b])(122Rd).

(d) This completes the proof for non-negative f . For general f , we can express f as f1 − f2 where f1,
f2 are non-negative integrable functions; now F = F1 − F2 where F1, F2 are the corresponding indefinite
integrals, so F ′ =a.e. F

′
1 − F ′

2 =a.e. f1 − f2, and F ′ =a.e. f .

222F Corollary Suppose that f is any real-valued function which is integrable over R, and set F (x) =
∫ x

−∞ f for every x ∈ R. Then F ′(x) exists and is equal to f(x) for almost every x ∈ R.

proof For each n ∈ N, set

Measure Theory



*222J Differentiating an indefinite integral 9

Fn(x) =
∫ x

−n
f

for x ∈ [−n, n]. Then F ′
n(x) = f(x) for almost every x ∈ [−n, n]. But F (x) = F (−n) + Fn(x) for every

x ∈ [−n, n], so F ′(x) exists and is equal to F ′
n(x) for every x ∈ ]−n, n[ for which F ′

n(x) is defined; and
F ′(x) = f(x) for almost every x ∈ [−n, n]. As n is arbitrary, F ′ =a.e. f .

222G Corollary Suppose that E ⊆ R is a measurable set and that f is a real-valued function which
is integrable over E. Set F (x) =

∫

E∩]−∞,x[
f for x ∈ R. Then F ′(x) = f(x) for almost every x ∈ E, and

F ′(x) = 0 for almost every x ∈ R \ E.

proof Apply 222F to f̃ , where f̃(x) = f(x) for x ∈ E ∩ dom f and f̃(x) = 0 for x ∈ R \ E, so that

F (x) =
∫ x

−∞ f̃ for every x ∈ R.

222H The result that d
dx

∫ x

a
f = f(x) for almost every x is satisfying, but is no substitute for the more

elementary result that this equality is valid at any point at which f is continuous.

Proposition Suppose that a ≤ b in R and that f is a real-valued function which is integrable over [a, b].
Set F (x) =

∫ x

a
f for x ∈ [a, b]. Then F ′(x) exists and is equal to f(x) at any point x ∈ dom(f) ∩ ]a, b[ at

which f is continuous.

proof Set c = f(x). Let ǫ > 0. Let δ > 0 be such that δ ≤ min(b − x, x − a) and |f(t) − c| ≤ ǫ whenever
t ∈ dom f and |t− x| ≤ δ. If x < y ≤ x+ δ, then

|F (y)−F (x)

y−x
− c| = 1

y−x
|
∫ y

x
f − c| ≤ 1

y−x

∫ y

x
|f − c| ≤ ǫ.

Similarly, if x− δ ≤ y < x,

|F (y)−F (x)

y−x
− f(x)| = 1

x−y
|
∫ x

y
f − c| ≤ 1

x−y

∫ x

y
|f − c| ≤ ǫ.

As ǫ is arbitrary,

F ′(x) = limy→x
F (y)−F (x)

y−x
= c,

as required.

222I Complex-valued functions So far in this section, I have taken every f to be real-valued. The
extension to complex-valued f is just a matter of applying the above results to the real and imaginary parts
of f . Specifically, we have the following.

(a) If a ≤ b in R and f is a complex-valued function which is integrable over [a, b], then F (x) =
∫ x

a
f

is defined in C for every x ∈ [a, b], and its derivative F ′(x) exists and is equal to f(x) for almost every
x ∈ [a, b]; moreover, F ′(x) = f(x) whenever x ∈ dom(f) ∩ ]a, b[ and f is continuous at x.

(b) If f is a complex-valued function which is integrable over R, and F (x) =
∫ x

−∞ f for each x ∈ R, then

F ′ exists and is equal to f almost everywhere in R.

(c) If E ⊆ R is a measurable set and f is a complex-valued function which is integrable over E, and
F (x) =

∫

E∩]−∞,x[
f for each x ∈ R, then F ′(x) = f(x) for almost every x ∈ E and F ′(x) = 0 for almost

every x ∈ R \ E.

*222J The Denjoy-Young-Saks theorem The next result will not be used, on present plans, anywhere
in this treatise. It is however a classical part of the real analysis for which this volume is supposed to be
a foundation, and while the argument requires a certain sophistication it is not really a large step from
Lebesgue’s theorem 222A. I must begin with some notation.

Definition Let f be any real function, and A ⊆ R its domain. Write

Ã+ = {x : x ∈ A, ]x, x+ δ] ∩A 6= ∅ for every δ > 0},

D.H.Fremlin



10 The Fundamental Theorem of Calculus *222J

Ã− = {x : x ∈ A, [x− δ, x[ ∩A 6= ∅ for every δ > 0}.
Set

(D+f)(x) = lim supy∈A,y↓x
f(y)−f(x)

y−x
= infδ>0 supy∈A,x<y≤x+δ

f(y)−f(x)

y−x
,

(D+f)(x) = lim infy∈A,y↓x
f(y)−f(x)

y−x
= supδ>0 infy∈A,x<y≤x+δ

f(y)−f(x)

y−x

for x ∈ Ã+, and

(D−f)(x) = lim supy∈A,y↑x
f(y)−f(x)

y−x
= infδ>0 supy∈A,x−δ≤y<x

f(y)−f(x)

y−x
,

(D−f)(x) = lim infy∈A,y↑x
f(y)−f(x)

y−x
= supδ>0 infy∈A,x−δ≤y<x

f(y)−f(x)

y−x

for x ∈ Ã−, all defined in [−∞,∞]. (These are the four Dini derivates of f . You will also see D+, d+,

D−, d− used in place of my D+, D+, D− and D−.)

Note that we surely have (D+f)(x) ≤ (D+f)(x) for every x ∈ Ã+, while (D−f)(x) ≤ (D−f)(x) for every

x ∈ Ã−. The ordinary derivative f ′(x) is defined and equal to c ∈ R iff (α) x belongs to some open interval

included in A (β) (D+f)(x) = (D+f)(x) = (D−f)(x) = (D−f)(x) = c.

*222K Lemma For A ⊆ R, define Ã+ and Ã− as in 222J. Then A \ Ã+ and A \ Ã− are countable,
therefore negligible.

proof We have

A \ Ã+ =
⋃

q∈Q{x : x ∈ A, x < q, A ∩ ]x, q] = ∅}.

But for any q ∈ Q there can be at most one x ∈ A such that x < q and ]x, q] does not meet A, so A \ Ã+ is
a countable union of finite sets and is countable. Similarly,

A \ Ã− =
⋃

q∈Q{x : x ∈ A, q < x, A ∩ [q, x[ = ∅}
is countable.

*222L Theorem Let f be any real function, and A its domain. Then for almost every x ∈ A
either all four Dini derivates of f at x are defined, finite and equal

or (D+f)(x) = (D−f)(x) is finite, (D+f)(x) = −∞ and (D−f)(x) = ∞
or (D+f)(x) = (D−f)(x) is finite, (D+f)(x) = ∞ and (D−f)(x) = −∞
or (D+f)(x) = (D−f)(x) = ∞ and (D+f)(x) = (D−f)(x) = −∞.

proof1(a)(i) Suppose that n ∈ N and q ∈ Q are such that

Eqn = {x : x ∈ A, x < q, f(y) ≥ f(x)− n(y − x)} for every y ∈ A ∩ [x, q]}
is not empty. Set βqn = supEqn ∈ ]−∞, q], αqn = inf Eqn ∈ [−∞, βqn] and Iqn = ]αqn, βqn[; now for x ∈ Iqn
set fqn(x) = inf{f(y) + ny : y ∈ A ∩ [x, q]}. Note that if x ∈ Eqn \ {αqn, βqn} then fqn(x) = f(x) + nx is
finite; also fqn is non-decreasing, therefore finite everywhere in Iqn, and of course fqn(x) ≤ f(x) + nx for
every x ∈ A ∩ Iqn.

Set Fqn = Eqn ∩ dom f ′
qn ⊆ Iqn, and gqn(x) = fqn(x)− nx for x ∈ Iqn; then gqn is differentiable at every

point of Fqn, while gqn(x) ≤ f(x) for x ∈ A ∩ Iqn and gqn(x) = f(x) for x ∈ Eqn ∩ Iqn.

(ii) Take x ∈ F̃+
qn ∩ F̃−

qn. Then x ∈ Iqn ∩ Ã+ ∩ Ã− so the Dini derivates (D+f)(x) and (D−f)(x) are
defined in [−∞,∞], while gqn(x) = f(x).

(ααα) (D+f)(x) = g′qn(x). PPP

1I am indebted to P.Klinger Monteiro for pointing out a blunder in the original version of this proof.
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*222L Differentiating an indefinite integral 11

(D+f)(x) = sup
δ>0

inf
y∈A∩]x,x+δ]

f(y)−f(x)

y−x
≤ sup

δ>0
inf

y∈Eqn∩]x,x+δ]

f(y)−f(x)

y−x

= sup
δ>0

inf
y∈Eqn∩]x,x+δ]

gqn(y)−gqn(x)

y−x
= g′qn(x)

(because x ∈ Ẽ+
qn)

= sup
0<δ<βqn−x

inf
y∈]x,x+δ]

gqn(y)−gqn(x)

y−x

≤ sup
0<δ<βqn−x

inf
y∈A∩]x,x+δ]

gqn(y)−f(x)

y−x

≤ sup
0<δ<βqn−x

inf
y∈A∩]x,x+δ]

f(y)−f(x)

y−x

(because gqn(y) ≤ f(y) for y ∈ A ∩ Iqn)

≤ sup
δ>0

inf
y∈A∩]x,x+δ]

f(y)−f(x)

y−x
= (D+f)(x). QQQ

(βββ) (D−f)(x) = g′qn(x). PPP

(D−f)(x) = inf
δ>0

sup
y∈A∩[x−δ,x[

f(y)−f(x)

y−x
= inf

δ>0
sup

y∈A∩[x−δ,x[

f(x)−f(y)

x−y

≤ inf
0<δ<x−αqn

sup
y∈A∩[x−δ,x[

f(x)−f(y)

x−y

≤ inf
0<δ<x−αqn

sup
y∈A∩[x−δ,x[

gqn(x)−gqn(y)

x−y

(because gqn(y) ≤ f(y) for y ∈ A ∩ Iqn)

≤ inf
0<δ<x−αqn

sup
y∈[x−δ,x[

gqn(y)−gqn(x)

y−x
= g′qn(x)

= inf
δ>0

sup
y∈Eqn∩[x−δ,x[

gqn(y)−gqn(x)

y−x

(because x ∈ Ẽ−
qn)

= inf
δ>0

sup
y∈Eqn∩[x−δ,x[

f(y)−f(x)

y−x

≤ inf
δ>0

sup
y∈A∩[x−δ,x[

f(y)−f(x)

y−x
= (D−f)(x). QQQ

(γγγ) Putting these together, we see that if x ∈ F̃+
qn ∩ F̃−

qn then (D+f)(x) = (D−f)(x) = g′qn(x) is
finite.

(iii) Conventionally setting Fqn = ∅ if Eqn is empty, the last sentence is true for all q ∈ Q and n ∈ N.

Now we know that A\Ã+ is negligible (222K), as are Fqn\F̃+
qn, Fqn\F̃−

qn and Iqn\dom f ′
qn (222A), whenever

q ∈ Q and n ∈ N. So H = (A \ Ã+) ∪ ⋃

q∈Q,n∈N((Eqn \ Fqn) ∪ (Fqn \ (F̃+
qn ∩ F̃−

qn))) is negligible. And if

x ∈ A \ H and (D+f(x)) > −∞, then (D+f)(x) = (D−f)(x) ∈ R. PPP As A \ Ã+ ⊆ H, x ∈ Ã+. Let

n ∈ N be such that (D+f)(x) > −n. Then there is a δ > 0 such that
f(y)−f(x)

y−x
> −n whenever y ∈ A and

x < y ≤ x+ δ. Let q ∈ Q be such that x < q ≤ x+ δ; then f(y) ≥ f(x)− n(y − x) whenever y ∈ A ∩ [x, q],

and x ∈ Eqn \H. So x ∈ Fqn \H ⊆ F̃+
qn ∩ F̃−

qn. So (ii) above tells us that (D+f)(x) = (D−f)(x) = g′qn(x)
is finite. QQQ
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12 The Fundamental Theorem of Calculus *222L

(b) Thus for almost every x ∈ A,

either (D+f)(x) = −∞ or (D+f)(x) = (D−f)(x) ∈ R.

Applying (a) to x 7→ f(−x) : −A → R, x 7→ −f(x) : A → R and x 7→ −f(−x) : −A → R, we see that, for
almost every x ∈ A,

either (D−f)(x) = ∞ or (D−f)(x) = (D+f)(x) ∈ R,

either (D+f)(x) = ∞ or (D+f)(x) = (D−f)(x) ∈ R,

either (D−f)(x) = −∞ or (D−f)(x) = (D+f)(x) ∈ R.

For almost every x ∈ A, therefore,

(D+f)(x) > −∞ =⇒ (D−f)(x) < ∞ =⇒ (D+f)(x) < ∞
and in this case (D+f)(x) = (D−f)(x) is finite; similarly,

(D−f)(x) > −∞ ⇐⇒ (D+f)(x) < ∞ ⇐⇒ (D−f)(x) = (D+f)(x) ∈ R.

Thus we have

either (D+f)(x) = (D−f)(x) is finite or (D+f)(x) = −∞ and (D−f)(x) = ∞,

either (D−f)(x) = (D+f)(x) is finite or (D−f)(x) = −∞ and (D+f)(x) = ∞.

These two dichotomies lead to four possibilities; and since

(D+f)(x) = (D−f)(x) is finite, (D−f)(x) = (D+f)(x) is finite

together imply that

(D−f)(x) ≤ (D−f)(x) = (D+f)(x) ≤ (D+f)(x) = (D−f)(x),

this can happen only when all four derivates are equal and finite, so we have the four cases listed in the
statement of the theorem.

222X Basic exercises >>>(a) Let F : [0, 1] → [0, 1] be the Cantor function (134H). Show that
∫ 1

0
F ′ =

0 < F (1)− F (0).

>>>(b) Suppose that a < b in R and that h is a real-valued function such that
∫ y

x
h exists and is non-negative

whenever a ≤ x ≤ y ≤ b. Show that h ≥ 0 almost everywhere in [a, b].

>>>(c) Suppose that a < b in R and that f , g are integrable complex-valued functions on [a, b] such that
∫ x

a
f =

∫ x

a
g for every x ∈ [a, b]. Show that f = g almost everywhere in [a, b].

>>>(d) Suppose that a < b in R and that f is a real-valued function which is integrable over [a, b]. Show
that the indefinite integral x 7→

∫ x

a
f is continuous.

222Y Further exercises (a) Let 〈Fn〉n∈N be a sequence of non-negative, non-decreasing functions on
[0, 1] such that F (x) =

∑∞
n=0 Fn(x) is finite for every x ∈ [0, 1]. Show that

∑∞
n=0 F

′
n(x) = F ′(x) for almost

every x ∈ [0, 1]. (Hint : take 〈nk〉k∈N such that
∑∞

k=0 F (1) − Gk(1) < ∞, where Gk =
∑nk

j=0 Fj , and set

H(x) =
∑∞

k=0 F (x) − Gk(x). Observe that
∑∞

k=0 F
′(x) − G′

k(x) ≤ H ′(x) whenever all the derivatives are
defined, so that F ′ = limk→∞ G′

k almost everywhere.)

(b) Let F : [0, 1] → R be a continuous non-decreasing function. (i) Show that if c ∈ R then C = {(x, y) :
x, y ∈ [0, 1], F (y) − F (x) = c} is connected. (Hint : A set A ⊆ Rr is connected if there is no continuous
surjection h : A → {0, 1}. Show that if h : C → {0, 1} is continuous then it is of the form (x, y) 7→ h1(x)
for some continuous function h1.) (ii) Now suppose that F (0) = 0, F (1) = 1 and that G : [0, 1] → [0, 1] is a
second continuous non-decreasing function with G(0) = 0, G(1) = 1. Show that for any n ≥ 1 there are x,
y ∈ [0, 1] such that F (y)− F (x) = G(y)−G(x) = 1

n .
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(c) Let f , g be non-negative integrable functions on R, and n ≥ 1. Show that there are u < v in [−∞,∞]
such that

∫ v

u
f = 1

n

∫

f and
∫ v

u
g = 1

n

∫

g.

(d) Let f : R → R be measurable. Show that H = dom f ′ is a measurable set and that f ′ is a measurable
function.

(e) Suppose that A ⊆ B ⊆ R, f : B → R is a function and fA = f↾A. Show that (i) if x ∈ Ã+, as

defined in 222J, then (D+f)(x) ≤ (D+fA)(x) ≤ (D+fA)(x) ≤ (D+f)(x) (ii) if x ∈ Ã−, then (D−f)(x) ≤
(D−fA)(x) ≤ (D−fA)(x) ≤ (D−f)(x).

(f) Construct a Borel measurable function f : [0, 1] → {−1, 0, 1} such that each of the four possibilities
described in Theorem 222L occurs on a set of measure 1

4 .

222 Notes and comments I have relegated to an exercise (222Xd) the fundamental fact that an indefinite
integral x 7→

∫ x

a
f is always continuous; this is not strictly speaking needed in this section, and a much

stronger result is given in 225E. There is also much more to be said about monotonic functions, to which I
will return in §224. What we need here is the fact that they are differentiable almost everywhere (222A),
which I prove by applying Vitali’s theorem three times, once in part (b) of the proof and twice in part (c).
Following this, the arguments of 222C-222E form a fine series of exercises in the central ideas of Volume
1, using the concept of integration over a (measurable) subset, Fatou’s Lemma (part (d) of the proof of
222C), Lebesgue’s Dominated Convergence Theorem (parts (ii) and (iii) of the proof of 222D) and the
approximation of Lebesgue measurable sets by open sets (part (iii) of the proof of 222D). Of course knowing
that d

dx

∫ x

a
f = f(x) almost everywhere is not at all the same thing as knowing that this holds for any

particular x, and when we come to differentiate any particular indefinite integral we generally turn to 222H
first; the point of 222E is that it applies to wildly discontinuous functions, for which more primitive methods
give no information at all.

Version of 9.9.04

223 Lebesgue’s density theorems

I now turn to a group of results which may be thought of as corollaries of Theorem 222E, but which also
have a vigorous life of their own, including the possibility of significant generalizations which will be treated
in Chapter 26. The idea is that any measurable function f on R is almost everywhere ‘continuous’ in a
variety of very weak senses; for almost every x, the value f(x) is determined by the behaviour of f near x,
in the sense that f(y) ≏ f(x) for ‘most’ y near x. I should perhaps say that while I recommend this work as
a preparation for Chapter 26, and I also rely on it in Chapter 28, I shall not refer to it again in the present
chapter, so that readers in a hurry to characterize indefinite integrals may proceed directly to §224.

223A Lebesgue’s Density Theorem: integral form Let I be an interval in R, and let f be a
real-valued function which is integrable over I. Then

f(x) = lim
h↓0

1

h

∫ x+h

x

f = lim
h↓0

1

h

∫ x

x−h

f = lim
h↓0

1

2h

∫ x+h

x−h

f

for almost every x ∈ I.

proof Setting F (x) =
∫

I∩]−∞,x[
f , we know from 222G that

f(x) = F ′(x) = lim
h↓0

1

h
(F (x+ h)− F (x)) = lim

h↓0

1

h

∫ x+h

x

f

= lim
h↓0

1

h
(F (x)− F (x− h)) = lim

h↓0

1

h

∫ x

x−h

f

= lim
h↓0

1

2h
(F (x+ h)− F (x− h)) = lim

h↓0

1

2h

∫ x+h

x−h

f

for almost every x ∈ I.

c© 1995 D. H. Fremlin
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14 The Fundamental Theorem of Calculus 223B

223B Corollary Let E ⊆ R be a measurable set. Then

limh↓0
1

2h
µ(E ∩ [x− h, x+ h]) = 1 for almost every x ∈ E,

limh↓0
1

2h
µ(E ∩ [x− h, x+ h]) = 0 for almost every x ∈ R \ E.

proof Take n ∈ N. Applying 223A to f = χ(E ∩ [−n, n]), we see that

limh↓0
1

2h

∫ x+h

x−h
f = limh↓0

1

2h
µ(E ∩ [x− h, x+ h])

whenever x ∈ ]−n, n[ and either limit exists, so that

limh↓0
1

2h
µ(E ∩ [x− h, x+ h]) = 1 for almost every x ∈ E ∩ [−n, n],

limh↓0
1

2h
µ(E ∩ [x− h, x+ h]) = 0 for almost every x ∈ [−n, n] \ E.

As n is arbitrary, we have the result.

Remark For a measurable set E ⊆ R, a point x such that limh↓0
1

2h
µ(E ∩ [x− h, x+ h]) = 1 is sometimes

called a density point of E.

223C Corollary Let f be a measurable real-valued function defined almost everywhere in R. Then for
almost every x ∈ R,

limh↓0
1

2h
µ{y : y ∈ dom f, |y − x| ≤ h, |f(y)− f(x)| ≤ ǫ} = 1,

limh↓0
1

2h
µ{y : y ∈ dom f, |y − x| ≤ h, |f(y)− f(x)| ≥ ǫ} = 0

for every ǫ > 0.

proof For q, q′ ∈ Q, set

Dqq′ = {x : x ∈ dom f, q ≤ f(x) < q′},
so that Dqq′ is measurable,

Cqq′ = {x : x ∈ Dqq′ , limh↓0
1

2h
µ(Dqq′ ∩ [x− h, x+ h]) = 1},

so that Dqq′ \ Cqq′ is negligible, by 223B; now set

C = dom f \⋃q,q′∈Q(Dqq′ \ Cqq′),

so that C is conegligible. If x ∈ C and ǫ > 0, then there are q, q′ ∈ Q such that f(x)− ǫ ≤ q ≤ f(x) < q′ ≤
f(x) + ǫ, so that x belongs to Dqq′ and therefore to Cqq′ , and now

lim inf
h↓0

1

2h
µ{y : y ∈ dom f ∩ [x− h, x+ h], |f(y)− f(x)| ≤ ǫ}

≥ lim inf
h↓0

1

2h
µ(Dqq′ ∩ [x− h, x+ h]) = 1,

so

limh↓0
1

2h
µ{y : y ∈ dom f ∩ [x− h, x+ h], |f(y)− f(x)| ≤ ǫ} = 1.

It follows at once that

limh↓0
1

2h
µ{y : y ∈ dom f ∩ [x− h, x+ h], |f(y)− f(x)| > ǫ} = 0

Measure Theory



223Ea Lebesgue’s density theorems 15

for almost every x; but since ǫ is arbitrary, this is also true of 1
2ǫ, so in fact

limh↓0
1

2h
µ{y : y ∈ dom f ∩ [x− h, x+ h], |f(y)− f(x)| ≥ ǫ} = 0

for almost every x.

223D Theorem Let I be an interval in R, and let f be a real-valued function which is integrable over
I. Then

limh↓0
1

2h

∫ x+h

x−h
|f(y)− f(x)|dy = 0

for almost every x ∈ I.

proof (a) Suppose first that I is a bounded open interval ]a, b[. For each q ∈ Q, set gq(x) = |f(x)− q| for
x ∈ I ∩ dom f ; then g is integrable over I, and

limh↓0
1

2h

∫ x+h

x−h
gq = gq(x)

for almost every x ∈ I, by 223A. Setting

Eq = {x : x ∈ I ∩ dom f, limh↓0
1

2h

∫ x+h

x−h
gq = gq(x)},

we have I \ Eq negligible, so I \ E is negligible, where E =
⋂

q∈Q Eq. Now

limh↓0
1

2h

∫ x+h

x−h
|f(y)− f(x)|dy = 0

for every x ∈ E. PPP Take x ∈ E and ǫ > 0. Then there is a q ∈ Q such that |f(x)− q| ≤ ǫ, so that

|f(y)− f(x)| ≤ |f(y)− q|+ ǫ = gq(y) + ǫ

for every y ∈ I ∩ dom f , and

lim sup
h↓0

1

2h

∫ x+h

x−h

|f(y)− f(x)|dy ≤ lim sup
h↓0

1

2h

∫ x+h

x−h

gq(y) + ǫ dy

= ǫ+ gq(x) ≤ 2ǫ.

As ǫ is arbitrary,

limh↓0
1

2h

∫ x+h

x−h
|f(y)− f(x)|dy = 0,

as required. QQQ

(b) If I is an unbounded open interval, apply (a) to the intervals In = I ∩ ]−n, n[ to see that the limit
is zero almost everywhere in every In, and therefore on I. If I is an arbitrary interval, note that it differs
by at most two points from an open interval, and that since we are looking only for something to happen
almost everywhere we can ignore these points.

Remark The set

{x : x ∈ dom f, limh↓0
1

2h

∫ x+h

x−h
|f(y)− f(x)|dy = 0}

is sometimes called the Lebesgue set of f .

223E Complex-valued functions I have expressed the results above in terms of real-valued functions,
this being the most natural vehicle for the ideas. However there are applications of great importance in
which the functions involved are complex-valued, so I spell out the relevant statements here. In all cases
the proof is elementary, being nothing more than applying the corresponding result (223A, 223C or 223D)
to the real and imaginary parts of the function f .

(a) Let I be an interval in R, and let f be a complex-valued function which is integrable over I. Then

D.H.Fremlin



16 The Fundamental Theorem of Calculus 223Ea

f(x) = lim
h↓0

1

h

∫ x+h

x

f = lim
h↓0

1

h

∫ x

x−h

f = lim
h↓0

1

2h

∫ x+h

x−h

f

for almost every x ∈ I.

(b) Let f be a measurable complex-valued function defined almost everywhere in R. Then for almost
every x ∈ R,

limh↓0
1

2h
µ{y : y ∈ dom f, |y − x| ≤ h, |f(y)− f(x)| ≥ ǫ} = 0

for every ǫ > 0.

(c) Let I be an interval in R, and let f be a complex-valued function which is integrable over I. Then

limh↓0
1

2h

∫ x+h

x−h
|f(y)− f(x)|dy = 0

for almost every x ∈ I.

223X Basic exercises >>>(a) Let E ⊆ [0, 1] be a measurable set for which there is an α > 0 such that
µ(E ∩ [a, b]) ≥ α(b− a) whenever 0 ≤ a ≤ b ≤ 1. Show that µE = 1.

(b) Let A ⊆ R be any set. Show that limh↓0
1

2h
µ∗(A ∩ [x− h, x+ h]) = 1 for almost every x ∈ A. (Hint :

apply 223B to a measurable envelope E of A.)

(c) Let E, F ⊆ R be measurable sets, and x ∈ R a point which is a density point of both. Show that x
is a density point of E ∩ F .

(d) Let E ⊆ R be a non-negligible measurable set. Show that for any n ∈ N there is a δ > 0 such that
⋂

i≤n E + xi is non-empty whenever x0, . . . , xn ∈ R are such that |xi − xj | ≤ δ for all i, j ≤ n. (Hint : find

a non-trivial interval I such that µ(E ∩ I) > n
n+1µI.)

(e) Let f be any real-valued function defined almost everywhere in R. Show that limh↓0
1

2h
µ∗{y : y ∈

dom f, |y − x| ≤ h, |f(y) − f(x)| ≤ ǫ} = 1 for almost every x ∈ R. (Hint : use the argument of 223C, but
with 223Xb in place of 223B.)

>>>(f) Let I be an interval in R, and let f be a real-valued function which is integrable over I. Show that

limh↓0
1
h

∫ x+h

x
|f(y)− f(x)|dy = 0 for almost every x ∈ I.

(g) Let E, F ⊆ R be measurable sets, and suppose that F is bounded and of non-zero measure. Let

x ∈ R be such that limh↓0
1

2h
µ(E ∩ [x − h, x + h]) = 1. Show that limh↓0

µ(E∩(x+hF ))

hµF
= 1. (Hint: it helps

to know that µ(hF ) = hµF (134Ya, 263A). Show that if F ⊆ [−M,M ], then

1

2hM
µ(E ∩ [x− hM, x+ hM ]) ≤ 1− µF

2M

(

1− µ(E∩(x+hF ))

hµF

)

.)

(Compare 223Ya.)

(h) Let f be a real-valued function which is integrable over R, and E be the Lebesgue set of f . Show

that limh↓0
1
2h

∫ x+h

x−h
|f(t)− c|dt = |f(x)− c| for every x ∈ E and c ∈ R.

(i) Let f be an integrable real-valued function defined almost everywhere in R. Let x ∈ dom f be such

that limn→∞
n

2

∫ x+1/n

x−1/n
|f(y)− f(x)| = 0. Show that x belongs to the Lebesgue set of f .

(j) Let f be an integrable real-valued function defined almost everywhere in R, and x any point of the
Lebesgue set of f . Show that for every ǫ > 0 there is a δ > 0 such that whenever I is a non-trivial interval

and x ∈ I ⊆ [x− δ, x+ δ], then |f(x)− 1

µI

∫

I
f | ≤ ǫ.

Measure Theory



223 Notes Lebesgue’s density theorems 17

223Y Further exercises (a) Let E, F ⊆ R be measurable sets, and suppose that 0 < µF < ∞. Let

x ∈ R be such that limh↓0
1

2h
µ(E ∩ [x− h, x+ h]) = 1. Show that

limh↓0
µ(E∩(x+hF ))

hµF
= 1.

(Hint : apply 223Xg to sets of the form F ∩ [−M,M ].)

(b) Let T be the family of measurable sets G ⊆ R such that every point of G is a density point of G. (i)
Show that T is a topology on R. (Hint : take G ⊆ T. By 215B(iv) there is a countable G0 ⊆ G such that
µ(G \⋃G0) = 0 for every G ∈ G. Show that

⋃G ⊆ {x : lim suph↓0
1

2h
µ(
⋃G0 ∩ [x− h, x+ h]) > 0},

so that µ(
⋃G \ ⋃G0) = 0.) (ii) Show that a function f : R → R is measurable iff it is T-continuous at

almost every x ∈ R. (T is the density topology on R. See 414P in Volume 4.)

(c) Show that if f : [a, b] → R is bounded and continuous for the density topology on R, then f(x) =
d
dx

∫ x

a
f for every x ∈ ]a, b[.

(d) Show that a function f : R → R is continuous for the density topology at x ∈ R iff limh↓0
1
2hµ

∗{y :
y ∈ [x− h, x+ h], |f(y)− f(x)| ≥ ǫ} = 0 for every ǫ > 0.

(e) A set A ⊆ R is porous at a point x ∈ R if lim supy→x
ρ(y,A)

|y−x|
> 0, where ρ(y,A) = infa∈A |y − a|.

(Take ρ(y, ∅) = ∞.) Show that if A is porous at every x ∈ A then A is negligible.

(f) For a measurable set E ⊆ R write int*E for the set of its density points. Show that if E, F ⊆ R are
measurable then (i) int*(E ∩ F ) = int*E ∩ int*F (ii) int*E ⊆ int*F iff µ(E \ F ) = 0 (iii) µ(E△int*E) = 0
(iv) int*(int*E) = int*E (v) for every compact set K ⊆ int*E there is a compact set L ⊆ K ∪ E such that
K ⊆ int*L.

(g) Let f be an integrable real-valued function defined almost everywhere in R, and x any point of the
Lebesgue set of f . Show that for every ǫ > 0 there is a δ > 0 such that |f(x)

∫

g−
∫

f × g| ≤ ǫ
∫

g whenever
g : R → [0,∞[ is such that g is non-decreasing on ]−∞, x], non-increasing on [x,∞[ and zero outside

[x − δ, x + δ]. (Hint : express g as a limit almost everywhere of functions of the form
g(x)

n+1

∑n
i=0 χ ]ai, bi[,

where x− δ ≤ a0 ≤ . . . ≤ an ≤ x ≤ bn ≤ . . . ≤ b0 ≤ x+ δ.)

(h) For each integrable real-valued function f defined almost everywhere in R, let Ef be the Lebesgue
set of f . Show that Ef ∩ Eg ⊆ Ef+g, Ef ⊆ E|f | for all integrable f , g.

(i) Let E ⊆ R be a non-negligible measurable set. Show that 0 belongs to the interior of E−E = {x−y : x,
y ∈ E}.

223 Notes and comments The results of this section can be thought of as saying that a measurable
function is in some sense ‘almost continuous’; indeed, 223Yb is an attempt to make this notion precise. For
an integrable function we have stronger results, of which the furthest-reaching seems to be 223D/223Ec.

There are r-dimensional versions of all these theorems, using balls centered on x in place of intervals
[x− h, x+ h]; I give these in 261C-261E. A new idea is needed for the r-dimensional version of Lebesgue’s
density theorem (261C), but the rest of the generalization is straightforward. A less natural, and less
important, extension, also in §261, involves functions defined on non-measurable sets (compare 223Xb-
223Xe).

D.H.Fremlin
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Version of 29.9.04

224 Functions of bounded variation

I turn now to the second of the two problems to which this chapter is devoted: the identification of those
real functions which are indefinite integrals. I take the opportunity to offer a brief introduction to the theory
of functions of bounded variation, which are interesting in themselves and will be important in Chapter 28.
I give the basic characterization of these functions as differences of monotonic functions (224D), with a
representative sample of their elementary properties.

224A Definition Let f be a real-valued function and D a subset of R. I define VarD(f), the (total)
variation of f on D, as follows. If D ∩ dom f = ∅, VarD(f) = 0. Otherwise, VarD(f) is

sup{∑n
i=1 |f(ai)− f(ai−1)| : a0, a1, . . . , an ∈ D ∩ dom f, a0 ≤ a1 ≤ . . . ≤ an},

allowing VarD(f) = ∞. If VarD(f) is finite, we say that f is of bounded variation on D. If the context
seems clear, I may write Var f for Vardom f (f), and say that f is simply ‘of bounded variation’ if this is
finite.

224B Remarks (a) In the present chapter, we shall virtually exclusively be concerned with the case in
which D is a bounded closed interval included in dom f . The general formulation will be useful for some
technical questions arising in Chapter 28; but if it makes you more comfortable, you will lose nothing by
supposing for the moment that D is an interval.

(b) Clearly

VarD(f) = VarD∩dom f (f) = Var(f↾D)

for all D, f .

224C Proposition (a) If f , g are two real-valued functions and D ⊆ R, then

VarD(f + g) ≤ VarD(f) + VarD(g).

(b) If f is a real-valued function, D ⊆ R and c ∈ R then VarD(cf) = |c|VarD(f).
(c) If f is a real-valued function, D ⊆ R and x ∈ R then

VarD(f) ≥ VarD∩]−∞,x](f) + VarD∩[x,∞[(f),

with equality if x ∈ D ∩ dom f .
(d) If f is a real-valued function and D ⊆ D′ ⊆ R then VarD(f) ≤ VarD′(f).
(e) If f is a real-valued function and D ⊆ R, then |f(x)− f(y)| ≤ VarD(f) for all x, y ∈ D ∩ dom f ; so if

f is of bounded variation on D then f is bounded on D ∩ dom f and (if D ∩ dom f 6= ∅)
supy∈D∩dom f |f(y)| ≤ |f(x)|+VarD(f)

for every x ∈ D ∩ dom f .
(f) If f is a monotonic real-valued function and D ⊆ R meets dom f , then

VarD(f) = supx∈D∩dom f f(x)− infx∈D∩dom f f(x).

proof (a) If D ∩ dom(f + g) = ∅ this is trivial, because VarD(f) and VarD(g) are surely non-negative.
Otherwise, if a0 ≤ . . . ≤ an in D ∩ dom(f + g), then

n
∑

i=1

|(f + g)(ai)− (f + g)(ai−1)| ≤
n
∑

i=1

|f(ai)− f(ai−1)|+
n
∑

i=1

|g(ai)− g(ai−1)|

≤ VarD(f) + VarD(g);

as a0, . . . , an are arbitrary, VarD(f + g) ≤ VarD(f) + VarD(g).

c© 1997 D. H. Fremlin

Measure Theory



224C Functions of bounded variation 19

(b)
∑n

i=1 |(cf)(ai)− (cf)(ai−1)| = |c|∑n
i=1 |f(ai)− f(ai−1)|

whenever a0 ≤ . . . ≤ an in D ∩ dom f .

(c)(i) If either D ∩ ]−∞, x] ∩ dom f or D ∩ [x,∞[ ∩ dom f is empty, this is trivial. If a0 ≤ . . . ≤ am in
D ∩ ]−∞, x] ∩ dom f , b0 ≤ . . . ≤ bn in D ∩ [x,∞[ ∩ dom f , then

m
∑

i=1

|f(ai)− f(ai−1)|+
n
∑

j=1

|f(bi)− f(bi−1)| ≤
m+n+1
∑

i=1

|f(ai)− f(ai−1)|

≤ VarD(f),

if we write ai = bi−m−1 for m+ 1 ≤ i ≤ m+ n+ 1. So

VarD∩]−∞,x](f) + VarD∩[x,∞[(f) ≤ VarD(f).

(ii) Now suppose that x ∈ D ∩ dom f . If a0 ≤ . . . ≤ an in D ∩ dom f , and a0 ≤ x ≤ an, let k be such
that x ∈ [ak−1, ak]; then

n
∑

i=1

|f(ai)− f(ai−1)| ≤
k−1
∑

i=1

|f(ai)− f(ai−1)|+ |f(x)− f(ak−1)|

+ |f(ak)− f(x)|+
n
∑

i=k+1

|f(ai)− f(ai−1)|

≤ VarD∩]−∞,x](f) + VarD∩[x,∞[(f)

(counting empty sums
∑0

i=1,
∑n

i=n+1 as 0). If x ≤ a0 then
∑n

i=1 |f(ai) − f(ai−1)| ≤ VarD∩[x,∞[(f); if

x ≥ an then
∑n

i=1 |f(ai)− f(ai−1)| ≤ VarD∩]−∞,x](f). Thus
∑n

i=1 |f(ai)− f(ai−1)| ≤ VarD∩]−∞,x](f) + VarD∩[x,∞[(f)

in all cases; as a0, . . . , an are arbitrary,

VarD(f) ≤ VarD∩]−∞,x](f) + VarD∩[x,∞[(f).

So the two sides are equal.

(d) is trivial.

(e) If x, y ∈ D ∩ dom f and x ≤ y then

|f(x)− f(y)| = |f(y)− f(x)| ≤ VarD(f)

by the definition of VarD; and the same is true if y ≤ x. So of course |f(y)| ≤ |f(x)|+VarD(f).

(f) If f is non-decreasing, then

VarD(f) = sup{
n
∑

i=1

|f(ai)− f(ai−1)| : a0, a1, . . . , an ∈ D ∩ dom f, a0 ≤ a1 ≤ . . . ≤ an}

= sup{
n
∑

i=1

f(ai)− f(ai−1) : a0, a1, . . . , an ∈ D ∩ dom f, a0 ≤ a1 ≤ . . . ≤ an}

= sup{f(b)− f(a) : a, b ∈ D ∩ dom f, a ≤ b}
= sup

b∈D∩dom f
f(b)− inf

a∈D∩dom f
f(a).

If f is non-increasing then
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VarD(f) = sup{
n
∑

i=1

|f(ai)− f(ai−1)| : a0, a1, . . . , an ∈ D ∩ dom f, a0 ≤ a1 ≤ . . . ≤ an}

= sup{
n
∑

i=1

f(ai−1)− f(ai) : a0, a1, . . . , an ∈ D ∩ dom f, a0 ≤ a1 ≤ . . . ≤ an}

= sup{f(a)− f(b) : a, b ∈ D ∩ dom f, a ≤ b}
= sup

a∈D∩dom f
f(a)− inf

b∈D∩dom f
f(b).

224D Theorem For any real-valued function f and any set D ⊆ R, the following are equiveridical:
(i) there are two bounded non-decreasing functions f1, f2 : R → R such that f = f1−f2 on D∩dom f ;
(ii) f is of bounded variation on D;
(iii) there are bounded non-decreasing functions f1, f2 : R → R such that f = f1 − f2 on D ∩ dom f

and VarD(f) = Var f1 +Var f2.

proof (i)⇒(ii) If f : R → R is bounded and non-decreasing, then Var f = supx∈R f(x) − infx∈R f(x) is
finite. So if f agrees on D ∩ dom f with f1 − f2 where f1 and f2 are bounded and non-decreasing, then

VarD(f) = VarD∩dom f (f) ≤ VarD∩dom f (f1) + VarD∩dom f (f2)

≤ Var f1 +Var f2 < ∞,

using (a), (b) and (d) of 224C.

(ii)⇒(iii) Suppose that f is of bounded variation on D. Set D′ = D ∩ dom f . If D′ = ∅ we can take
both fj to be the zero function, so henceforth suppose that D′ 6= ∅. Write

g(x) = VarD∩]−∞,x](f)

for x ∈ D′. Then g1 = g + f and g2 = g − f are both non-decreasing. PPP If a, b ∈ D′ and a ≤ b, then

g(b) = g(a) + VarD∩[a,b](f) ≥ g(a) + |f(b)− f(a)|.
So

g1(b)− g1(a) = g(b)− g(a) + f(b)− f(a), g2(b)− g2(a) = g(b)− g(a)− f(b) + f(a)

are both non-negative. QQQ
Now there are non-decreasing functions h1, h2 : R → R, extending g1, g2 respectively, such that Varhj =

Var gj for both j. PPP f is bounded on D, by 224Ce, and g is bounded just because VarD(f) < ∞, so that
gj is bounded. Set cj = infx∈D′ gj(x) and

hj(x) = sup({cj} ∪ {gj(y) : y ∈ D′, y ≤ x})
for every x ∈ R; this works. QQQ Observe that for x ∈ D′,

h1(x) + h2(x) = g1(x) + g2(x) = g(x) + f(x) + g(x)− f(x) = 2g(x),

h1(x)− h2(x) = 2f(x).

Now, because g1 and g2 are non-decreasing,

supx∈D′ g1(x) + supx∈D′ g2(x) = supx∈D′ g1(x) + g2(x) = 2 supx∈D′ g(x),

infx∈D′ g1(x) + infx∈D′ g2(x) = infx∈D′ g1(x) + g2(x) = 2 infx∈D′ g(x) ≥ 0.

But this means that

Varh1 +Varh2 = Var g1 +Var g2 = 2Var g ≤ 2VarD(f),

using 224Cf three times. So if we set fj(x) =
1
2hj(x) for j ∈ {1, 2} and x ∈ R, we shall have non-decreasing

functions such that
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f1(x)− f2(x) = f(x) for x ∈ D′, Var f1 +Var f2 =
1

2
Varh1 +

1

2
Varh2 ≤ VarD(f).

Since we surely also have

VarD(f) ≤ VarD(f1) + VarD(f2) ≤ Var f1 +Var f2,

we see that VarD(f) = Var f1 +Var f2, and (iii) is true.

(iii)⇒(i) is trivial.

224E Corollary Let f be a real-valued function and D any subset of R. If f is of bounded variation on
D, then

limx↓a VarD∩]a,x](f) = limx↑a VarD∩[x,a[(f) = 0

for every a ∈ R, and

lima→−∞ VarD∩]−∞,a](f) = lima→∞ VarD∩[a,∞[(f) = 0.

proof (a) Consider first the case in which D = dom f = R and f is a bounded non-decreasing function.
Then

VarD∩]a,x](f) = supy∈]a,x] f(x)− f(y) = f(x)− infy>a f(y) = f(x)− limy↓a f(y),

so of course

limx↓a VarD∩]a,x](f) = limx↓a f(x)− limy↓a f(y) = 0.

In the same way

limx↑a VarD∩[x,a[(f) = limy↑a f(y)− limx↑a f(x) = 0,

lima→−∞ VarD∩]−∞,a](f) = lima→−∞ f(a)− limy→−∞ f(y) = 0,

lima→∞ VarD∩[a,∞[(f) = limy→∞ f(y)− lima→∞ f(a) = 0.

(b) For the general case, define f1, f2 from f and D as in 224D. Then for every interval I we have

VarD∩I(f) ≤ VarI(f1) + VarI(f2),

so the results for f follow from those for f1 and f2 as established in part (a) of the proof.

224F Corollary Let f be a real-valued function of bounded variation on [a, b], where a < b. If dom f
meets every interval ]a, a+ δ] with δ > 0, then

limt∈dom f,t↓a f(t)

is defined in R. If dom f meets [b− δ, b[ for every δ > 0, then

limt∈dom f,t↑b f(t)

is defined in R.

proof Let f1, f2 : R → R be non-decreasing functions such that f = f1 − f2 on [a, b] ∩ dom f . Then

limt∈dom f,t↓a f(t) = limt↓a f1(t)− limt↓a f2(t) = inft>a f1(t)− inft>a f2(t),

limt∈dom f,t↑b f(t) = limt↑b f1(t)− limt↑b f2(t) = supt<b f1(t)− supt<b f2(t).

224G Corollary Let f , g be real functions and D a subset of R. If f and g are of bounded variation on
D, so is f × g.

proof (a) The point is that there are non-negative bounded non-decreasing functions f1, f2 : R → R such
that f = f1 − f2 on D ∩ dom f . PPP We know that there are bounded non-decreasing h1, h2 such that
f = h1 − h2 on D ∩ dom f . Set γi = infx∈R hi(x) for i = 1, 2,
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22 The Fundamental Theorem of Calculus 224G

β1 = max(γ1 − γ2, 0), β2 = max(γ2 − γ1, 0),

f1 = h1 − γ1 + β1, f2 = h1 − γ2 + β2;

this works. QQQ

(b) Now taking similar functions g1, g2 such that g = g1 − g2 on D ∩ dom g, we have

f × g = f1 × g1 − f2 × g1 − f1 × g2 + f2 × g2

everywhere in D∩dom(f×g) = D∩dom f ∩dom g; but all the fi×gj are bounded non-decreasing functions,
so of bounded variation, and f × g must be of bounded variation on D.

224H Proposition Let f : D → R be a function of bounded variation, where D ⊆ R. Then f is
continuous at all except countably many points of D.

proof For n ≥ 1 set

An = {x : x ∈ D, for every δ > 0 there is a y ∈ D ∩ [x− δ, x+ δ]

such that |f(y)− f(x)| ≥ 1

n
}.

Then #(An) ≤ nVar f . PPP??? Otherwise, we can find distinct x0, . . . , xk ∈ An with k + 1 > nVar f .
Order these so that x0 < x1 < . . . < xk. Set δ = 1

2 min1≤i≤k xi − xi−1 > 0. For each i, there is a

yi ∈ D ∩ [xi − δ, xi + δ] such that |f(yi)− f(xi)| ≥ 1
n . Take x′

i, y
′
i to be xi, yi in order, so that x′

i < y′i. Now

x′
0 ≤ y′0 ≤ x′

1 ≤ y′1 ≤ . . . ≤ x′
k ≤ y′k,

and

Var f ≥ ∑k
i=0 |f(y′i)− f(x′

i)| =
∑k

i=0 |f(yi)− f(xi)| ≥ 1

n
(k + 1) > Var f ,

which is impossible. XXXQQQ
It follows that A =

⋃

n∈N An is countable, being a countable union of finite sets. But A is exactly the set
of points of D at which f is not continuous.

224I Theorem Let I ⊆ R be an interval, and f : I → R a function of bounded variation. Then f is
differentiable almost everywhere in I, and f ′ is integrable over I, with

∫

I
|f ′| ≤ VarI(f).

proof (a) Let f1 and f2 be non-decreasing functions such that f = f1 − f2 everywhere in I (224D). Then
f1 and f2 are differentiable almost everywhere (222A). At any point of I except possibly its endpoints, if
any, f will be differentiable if f1 and f2 are, so f ′(x) is defined for almost every x ∈ I.

(b) Set F (x) = VarI∩]−∞,x] f for x ∈ R. If x, y ∈ I and x ≤ y, then

F (y)− F (x) = Var[x,y] f ≥ |f(y)− f(x)|,
by 224Cc; so F ′(x) ≥ |f ′(x)| whenever x is an interior point of I and both derivatives exist, which is almost
everywhere. So

∫

I
|f ′| ≤

∫

I
F ′. But if a, b ∈ I and a ≤ b,

∫ b

a
F ′ ≤ F (b)− F (a) ≤ F (b) ≤ Var f .

Now I is expressible as
⋃

n∈N[an, bn] where an+1 ≤ an ≤ bn ≤ bn+1 for every n. So

∫

I

|f ′| ≤
∫

I

F ′ =

∫

F ′ × χI

=

∫

sup
n∈N

F ′ × χ[an, bn] = sup
n∈N

∫

F ′ × χ[an, bn]

(by B.Levi’s theorem)
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= sup
n∈N

∫ bn

an

F ′ ≤ VarI(f).

224J The next result is not needed in this chapter, but is one of the most useful properties of functions
of bounded variation, and will be used repeatedly in Chapter 28.

Proposition Let f , g be real-valued functions defined on subsets of R, and suppose that g is integrable
over an interval [a, b], where a < b, and f is of bounded variation on ]a, b[ and defined almost everywhere in
]a, b[. Then f × g is integrable over [a, b], and

∣

∣

∫ b

a

f × g
∣

∣ ≤
(

lim
x∈dom f,x↑b

|f(x)|+Var]a,b[(f)
)

sup
c∈[a,b]

∣

∣

∫ c

a

g
∣

∣.

proof (a) By 224F, l = limx∈dom f,x↑b f(x) is defined. Write M = |l| + Var]a,b[(f). Note that if y is any
point of dom f ∩ ]a, b[,

|f(y)| ≤ |f(x)|+ |f(x)− f(y)| ≤ |f(x)|+Var]a,b[(f) → M

as x ↑ b in dom f , so |f(y)| ≤ M . Moreover, f is measurable on ]a, b[, because there are bounded monotonic
functions f1, f2 : R → R such that f = f1 − f2 everywhere in ]a, b[ ∩ dom f . So f × g is measurable and
dominated by M |g|, and is integrable over ]a, b[ or [a, b].

(b) For n ∈ N, k ≤ 2n set ank = a+ 2−nk(b− a), and for 1 ≤ k ≤ 2n choose xnk ∈ dom f ∩ ]an,k−1, ank].
Define fn : ]a, b] → R by setting fn(x) = f(xnk) if 1 ≤ k ≤ 2n and x ∈ ]an,k−1, ank]. Then f(x) =
limn→∞ fn(x) whenever x ∈ ]a, b[ ∩ dom f and f is continuous at x, which must be almost everywhere
(224H). Note next that all the fn are measurable, and that they are uniformly bounded, in modulus, by M .
So {fn × g : n ∈ N} is dominated by the integrable function M |g|, and Lebesgue’s Dominated Convergence
Theorem tells us that

∫ b

a
f × g = limn→∞

∫ b

a
fn × g.

(c) Fix n ∈ N for the moment. Set K = supc∈[a,b] |
∫ c

a
g|. (Note that K is finite because c 7→

∫ c

a
g is

continuous.) Then

∣

∣

∫ b

a

fn × g
∣

∣ =
∣

∣

2n
∑

k=1

∫ ank

an,k−1

fn × g
∣

∣

=
∣

∣

2n
∑

k=1

f(xnk)(

∫ ank

a

g −
∫ an,k−1

a

g)
∣

∣

=
∣

∣

2n−1
∑

k=1

(f(xnk)− f(xn,k+1))

∫ ank

a

g + f(xn,2n)

∫ b

a

g
∣

∣

≤
∣

∣f(xn,2n)
∣

∣

∣

∣

∫ b

a

g
∣

∣+
2n−1
∑

k=1

∣

∣f(xn,k+1)− f(xnk)
∣

∣

∣

∣

∫ ank

a

g
∣

∣

≤ (|f(xn,2n)|+Var]a,b[(f))K → MK

as n → ∞.

(d) Now

|
∫ b

a
f × g| = limn→∞ |

∫ b

a
fn × g| ≤ MK,

as required.
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24 The Fundamental Theorem of Calculus 224K

224K Complex-valued functions So far I have taken all functions to be real-valued. This is adequate
for the needs of the present chapter, but in Chapter 28 we shall need to look at complex-valued functions of
bounded variation, and I should perhaps spell out the (elementary) adaptations involved in the extension
to the complex case.

(a) Let D be a subset of R and f a complex-valued function. The variation of f on D, VarD(f), is zero
if D ∩ dom f = ∅, and otherwise is

sup{∑n
j=1 |f(aj)− f(aj−1)| : a0 ≤ a1 ≤ . . . ≤ an in D ∩ dom f},

allowing ∞. If VarD(f) is finite, we say that f is of bounded variation on D.

(b) Just as in the real case, a complex-valued function of bounded variation must be bounded, and

VarD(f + g) ≤ VarD(f) + VarD(g),

VarD(cf) = |c|VarD(f),

VarD(f) ≥ VarD∩]−∞,x](f) + VarD∩[x,∞[(f)

for every x ∈ R, with equality if x ∈ D ∩ dom f ,

VarD(f) ≤ VarD′(f) whenever D ⊆ D′;

the arguments of 224C go through unchanged.

(c) A complex-valued function is of bounded variation iff its real and imaginary parts are both of bounded
variation (because

max(VarD(Re f),VarD(Im f)) ≤ VarD(f) ≤ VarD(Re f) + VarD(Im f).)

So a complex-valued function f is of bounded variation on D iff there are bounded non-decreasing functions
f1, . . . , f4 : R → R such that f = f1 − f2 + if3 − if4 on D (224D).

(d) Let f be a complex-valued function and D any subset of R. If f is of bounded variation on D, then

limx↓a VarD∩]a,x](f) = limx↑a VarD∩[x,a[(f) = 0

for every a ∈ R, and

lima→−∞ VarD∩]−∞,a](f) = lima→∞ VarD∩[a,∞[(f) = 0.

(Apply 224E to the real and imaginary parts of f .)

(e) Let f be a complex-valued function of bounded variation on [a, b], where a < b. If dom f meets every
interval ]a, a+ δ] with δ > 0, then limt∈dom f,t↓a f(t) is defined in C. If dom f meets [b− δ, b[ for every δ > 0,
then limt∈dom f,t↑b f(t) is defined in C. (Apply 224F to the real and imaginary parts of f .)

(f) Let f , g be complex functions and D a subset of R. If f and g are of bounded variation on D, so is
f × g. (For f × g is expressible as a linear combination of the four products Re f ×Re g, . . . , Im f × Im g,
to each of which we can apply 224G.)

(g) Let I ⊆ R be an interval, and f : I → C a function of bounded variation. Then f is differentiable
almost everywhere in I, and

∫

I
|f ′| ≤ VarI(f). (As 224I.)

(h) Let f and g be complex-valued functions defined on subsets of R, and suppose that g is integrable
over an interval [a, b], where a < b, and f is of bounded variation on ]a, b[ and defined almost everywhere in
]a, b[. Then f × g is integrable over [a, b], and

∣

∣

∫ b

a

f × g
∣

∣ ≤
(

lim
x∈dom f,x↑b

|f(x)|+Var]a,b[(f)
)

sup
c∈[a,b]

∣

∣

∫ c

a

g
∣

∣.

(The argument of 224J applies virtually unchanged.)
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224X Basic exercises >>>(a) Set f(x) = x2 sin
1

x2
for x 6= 0, f(0) = 0. Show that f : R → R is

differentiable everywhere and uniformly continuous, but is not of bounded variation on any non-trivial
interval containing 0.

(b) Give an example of a non-negative function g : [0, 1] → [0, 1], of bounded variation, such that
√
g is

not of bounded variation.

(c) Show that if f is any real-valued function defined on a subset of R, there is a function f̃ : R → R,

extending f , such that Var f̃ = Var f . Under what circumstances is f̃ unique?

(d) Let f : D → R be a function of bounded variation, where D ⊆ R is a non-empty set. Show that if
infx∈D |f(x)| > 0 then 1/f is of bounded variation.

(e) Let f : [a, b] → R be a continuous function, where a ≤ b in R. Show that if c < Var f then there is a
δ > 0 such that

∑n
i=1 |f(ai)−f(ai−1)| ≥ c whenever a = a0 ≤ a1 ≤ . . . ≤ an = b and max1≤i≤n ai−ai−1 ≤ δ.

(f) Let 〈fn〉n∈N be a sequence of real functions, and set f(x) = limn→∞ fn(x) whenever the limit is
defined. Show that Var f ≤ lim infn→∞ Var fn.

(g) Let f be a real-valued function which is integrable over an interval [a, b] ⊆ R. Set F (x) =
∫ x

a
f for

x ∈ [a, b]. Show that VarF =
∫ b

a
|f |. (Hint : start by checking that VarF ≤

∫

|f |; for the reverse inequality,
consider the case f ≥ 0 first.)

(h) Show that if f is a real-valued function defined on a non-empty set D ⊆ R, then

Var f = sup{|∑n
i=1(−1)i(f(ai)− f(ai−1))| : a0 ≤ a1 ≤ . . . ≤ an in D}.

(i) Let f be a real-valued function which is integrable over a bounded interval [a, b] ⊆ R. Show that
∫ b

a
|f | =sup{|∑n

i=1(−1)i
∫ ai

ai−1

f | : a = a0 ≤ a1 ≤ a2 ≤ . . . ≤ an = b}.

(Hint : put 224Xg and 224Xh together.)

(j) Let f and g be real-valued functions defined on subsets of R, and suppose that g is integrable over an
interval [a, b], where a < b, and f is of bounded variation on ]a, b[ and defined almost everywhere in ]a, b[.
Show that

|
∫ b

a
f × g| ≤ (limx∈dom f,x↓a |f(x)|+Var]a,b[(f)) supc∈[a,b] |

∫ b

c
g|.

(k) Suppose that D ⊆ R and f : D → R is a function. Show that f is expressible as a difference of
non-decreasing functions iff VarD∩[a,b](f) is finite whenever a ≤ b in D.

(l) Suppose that D ⊆ R and that f : D → R is a continuous function of bounded variation. Show that f
is expressible as the difference of two continuous non-decreasing functions.

(m) Suppose that D ⊆ R and that f : D → R is a function of bounded variation which is continuous
on the right, that is, whenever x ∈ D and ǫ > 0 there is a δ > 0 such that |f(t) − f(x)| ≤ ǫ for every
t ∈ D ∩ [x, x + δ]. Show that f is expressible as the difference of two non-decreasing functions which are
continuous on the right.

224Y Further exercises (a) Show that if f is any complex-valued function defined on a subset of R,

there is a function f̃ : R → C, extending f , such that Var f̃ = Var f . Under what circumstances is f̃ unique?

(b) Let D be any non-empty subset of R, and let V be the space of functions f : D → R of bounded
variation. For f ∈ V set

‖f‖ = sup{|f(t0)|+
∑n

i=1 |f(ti)− f(ti−1)| : t0 ≤ . . . ≤ tn ∈ D}.
Show that (i) ‖ ‖ is a norm on V (ii) V is complete under ‖ ‖ (iii) ‖f × g‖ ≤ ‖f‖‖g‖ for all f , g ∈ V, so that
V is a Banach algebra.
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26 The Fundamental Theorem of Calculus 224Yc

(c) Let f : R → R be a function of bounded variation. Show that there is a sequence 〈fn〉n∈N of
differentiable functions such that limn→∞ fn(x) = f(x) for every x ∈ R, limn→∞

∫

|fn − f | = 0, and
Var(fn) ≤ Var(f) for every n ∈ N. (Hint : start with non-decreasing f .)

(d) For any partially ordered set X and any function f : X → R, say that VarX(f) = 0 if X = ∅ and
otherwise

VarX(f) = sup{∑n
i=1 |f(ai)− f(ai−1)| : a0, a1, . . . , an ∈ X, a0 ≤ a1 ≤ . . . ≤ an}.

State and prove results in this framework generalizing 224D and 224Yb. (Hints : f will be ‘non-decreasing’
if f(x) ≤ f(y) whenever x ≤ y; interpret ]−∞, x] as {y : y ≤ x}.)

(e) Let (X, ρ) be a metric space and f : [a, b] → X a function, where a ≤ b in R. Set Var[a,b](f) =

sup{∑n
i=1 ρ(f(ai), f(ai−1)) : a ≤ a0 ≤ . . . ≤ an ≤ b}. (i) Show that Var[a,b](f) = Var[a,c](f) + Var[c,b](f)

for every c ∈ [a, b]. (ii) Show that if Var[a,b](f) is finite then f is continuous at all but countably many
points of [a, b]. (iii) Show that if X is complete and Var[a,b](f) < ∞ then limt↑x f(t) is defined for every
x ∈ ]a, b]. (iv) Show that if X is complete then Var[a,b](f) is finite iff f is expressible as a composition gh,
where h : [a, b] → R is non-decreasing and g : R → X is 1-Lipschitz, that is, ρ(g(c), g(d)) ≤ |c− d| for all c,
d ∈ R.

(f) Let U be a normed space and a ≤ b in R. For functions f : [a, b] → U define Var[a,b](f) as
in 224Ye, using the standard metric ρ(x, y) = ‖x − y‖ for x, y ∈ U . (i) Show that Var[a,b](f + g) ≤
Var[a,b](f) + Var[a,b](g), Var[a,b](cf) = |c|Var[a,b](f) for all f , g : [a, b] → U and all c ∈ R. (ii) Show that if
V is another normed space and T : U → V is a bounded linear operator then Var[a,b](Tf) ≤ ‖T‖Var[a,b](f)
for every f : [a, b] → U .

(g) Let f : [0, 1] → R be a continuous function. For y ∈ R set h(y) = #(f−1[{y}]) if this is finite, ∞
otherwise. Show that (if we allow ∞ as a value of the integral) Var[0,1](f) =

∫

h. (Hint : for n ∈ N, i < 2n

set cni = sup{f(x) − f(y) : x, y ∈ [2−ni, 2−n(i + 1)]}, hni(y) = 1 if y ∈ f [ [2−ni, 2−n(i+ 1)[ ], 0 otherwise.

Show that cni =
∫

hni, limn→∞

∑2n−1
i=0 cni = Var f , limn→∞

∑2n−1
i=0 hni = h.) (See also 226Yc.)

(h) Let ν be any Lebesgue-Stieltjes measure on R, I ⊆ R an interval (which may be either open or closed,
bounded or unbounded), and D ⊆ I a non-empty set. Let V be the space of functions of bounded variation
from D to R, and ‖ ‖ the norm of 224Yb on V. Let g : D → R be a function such that

∫

[a,b]∩D
g dν exists

whenever a ≤ b in I, and K = supa,b∈I,a≤b |
∫

[a,b]∩D
g dν|. Show that |

∫

D
f × g dν| ≤ K‖f‖ for every f ∈ V.

(i) Explain how to apply 224Yh with D = N to obtain Abel’s theorem that the product of a monotonic
sequence converging to 0 with a series which has bounded partial sums is summable.

(j) Suppose that I ⊆ R is an interval, and that 〈An〉n∈N is a sequence of sets covering I. Let f : I → R

be continuous. Show that Var f ≤ ∑∞
n=0 VarAn

f . (Hint : reduce to the case of closed sets An; use Baire’s
theorem (4A2Ma).)

(k) Let f : D → R be a function, where D ⊆ R. Show that the following are equiveridical: (α)
limn→∞ f(tn) is defined for every montonic sequence 〈tn〉n∈N in D; (β) for every ǫ > 0 there is a function
g : D → R of bounded variation such that |f(t)− g(t)| ≤ ǫ for every t ∈ D.

224 Notes and comments I have taken the ideas above rather farther than we need immediately; for the
present chapter, it is enough to consider the case in which D = dom f = [a, b] for some interval [a, b] ⊆ R.
The extension to functions with irregular domains will be useful in Chapter 28, and the extension to irregular
sets D, while not important to us here, is of some interest – for instance, taking D = N, we obtain the notion
of ‘sequence of bounded variation’, which is surely relevant to problems of convergence and summability.

The central result of the section is of course the fact that a function of bounded variation can be expressed
as the difference of monotonic functions (224D); indeed, one of the objects of the concept is to characterize
the linear span of the monotonic functions. Nearly everything else here can be derived as easy consequences
of this, as in 224E-224G. In 224I and 224Xg we go a little deeper, and indeed some measure theory appears;
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this is where the ideas here begin to connect with the real business of this chapter, to be continued in the
next section. Another result which is easy enough in itself, but contains the germs of important ideas, is
224Yg.

In 224Yb I mention a natural development in functional analysis, and in 224Yd-224Yf I suggest further
wide-ranging generalizations.

Version of 16.8.15

225 Absolutely continuous functions

We are now ready for a full characterization of the functions that can appear as indefinite integrals
(225E, 225Xf). The essential idea is that of ‘absolute continuity’ (225B). In the second half of the section
(225G-225N) I describe some of the relationships between this concept and those we have already seen.

225A Absolute continuity of the indefinite integral I begin with an easy fundamental result from
general measure theory.

Theorem Let (X,Σ, µ) be any measure space and f an integrable real-valued function defined on a coneg-
ligible subset of X. Then for any ǫ > 0 there are a measurable set E of finite measure and a real number
δ > 0 such that

∫

F
|f | ≤ ǫ whenever F ∈ Σ and µ(F ∩ E) ≤ δ.

proof There is a non-decreasing sequence 〈gn〉n∈N of non-negative simple functions such that |f | =a.e.

limn→∞ gn and
∫

|f | = limn→∞

∫

gn. Take n ∈ N such that
∫

gn ≥
∫

|f | − 1
2ǫ. Let M > 0, E ∈ Σ be such

that µE < ∞ and gn ≤ MχE; set δ = ǫ/2M . If F ∈ Σ and µ(F ∩ E) ≤ δ, then

∫

F
gn =

∫

gn × χF ≤ Mµ(F ∩ E) ≤ 1

2
ǫ;

consequently
∫

F
|f | =

∫

F
gn +

∫

F
|f | − gn ≤ 1

2
ǫ+

∫

|f | − gn ≤ ǫ.

225B Absolutely continuous functions on R: Definition If [a, b] is a non-empty closed interval in
R and f : [a, b] → R is a function, we say that f is absolutely continuous if for every ǫ > 0 there is
a δ > 0 such that

∑n
i=1 |f(bi) − f(ai)| ≤ ǫ whenever a ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn ≤ b and

∑n
i=1 bi − ai ≤ δ.

Remark The phrase ‘absolutely continuous’ is used in various senses in measure theory, closely related (if
you look at them in the right way) but not identical; you will need to keep the context of each definition in
clear focus.

225C Proposition Let [a, b] be a non-empty closed interval in R.
(a) If f : [a, b] → R is absolutely continuous, it is uniformly continuous.
(b) If f : [a, b] → R is absolutely continuous it is of bounded variation on [a, b], so is differentiable almost

everywhere in [a, b], and its derivative is integrable over [a, b].
(c) If f , g : [a, b] → R are absolutely continuous, so are f + g and cf , for every c ∈ R.
(d) If f , g : [a, b] → R are absolutely continuous so is f × g.
(e) If g : [a, b] → [c, d] and f : [c, d] → R are absolutely continuous, and g is non-decreasing, then the

composition fg : [a, b] → R is absolutely continuous.

proof (a) Let ǫ > 0. Then there is a δ > 0 such that
∑n

i=1 |f(bi)− f(ai)| ≤ ǫ whenever a ≤ a1 ≤ b1 ≤ a2 ≤
b2 ≤ . . . ≤ an ≤ bn ≤ b and

∑n
i=1 bi − ai ≤ δ; but of course now |f(y)− f(x)| ≤ ǫ whenever x, y ∈ [a, b] and

|x− y| ≤ δ. As ǫ is arbitrary, f is uniformly continuous.

(b) Let δ > 0 be such that
∑n

i=1 |f(bi)− f(ai)| ≤ 1 whenever a ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn ≤ b
and

∑n
i=1 bi − ai ≤ δ. If a ≤ c = c0 ≤ c1 ≤ . . . ≤ cn ≤ d ≤ min(b, c+ δ), then

∑n
i=1 |f(ci)− f(ci−1)| ≤ 1, so

c© 1996 D. H. Fremlin
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Var[c,d](f) ≤ 1; accordingly (inducing on k, using 224Cc for the inductive step) Var[a,min(a+kδ,b)](f) ≤ k for
every k, and

Var[a,b](f) ≤ ⌈(b− a)/δ⌉ < ∞.

It follows that f ′ is integrable, by 224I.

(c)(i) Let ǫ > 0. Then there are δ1, δ2 > 0 such that

∑n
i=1 |f(bi)− f(ai)| ≤ 1

2
ǫ

whenever a ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn ≤ b and
∑n

i=1 bi − ai ≤ δ1,

∑n
i=1 |g(bi)− g(ai)| ≤ 1

2
ǫ

whenever a ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn ≤ b and
∑n

i=1 bi − ai ≤ δ2. Set δ = min(δ1, δ2) > 0, and
suppose that a ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn ≤ b and

∑n
i=1 bi − ai ≤ δ. Then

∑n
i=1 |(f + g)(bi)− (f + g)(ai)| ≤

∑n
i=1 |f(bi)− f(ai)|+

∑n
i=1 |g(bi)− g(ai)| ≤ ǫ.

As ǫ is arbitrary, f + g is absolutely continuous.

(ii) Let ǫ > 0. Then there is a δ > 0 such that

∑n
i=1 |f(bi)− f(ai)| ≤ ǫ

1+|c|

whenever a ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn ≤ b and
∑n

i=1 bi − ai ≤ δ. Now
∑n

i=1 |(cf)(bi)− (cf)(ai)| ≤ ǫ

whenever a ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn ≤ b and
∑n

i=1 bi − ai ≤ δ. As ǫ is arbitrary, cf is
absolutely continuous.

(d) By either (a) or (b), f and g are bounded; set M = supx∈[a,b] |f(x)|, M ′ = supx∈[a,b] |g(x)|. Let
ǫ > 0. Then there are δ1, δ2 > 0 such that

∑n
i=1 |f(bi) − f(ai)| ≤ ǫ whenever a ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn ≤ b and

∑n
i=1 bi − ai ≤ δ1,
∑n

i=1 |g(bi) − g(ai)| ≤ ǫ whenever a ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn ≤ b and
∑n

i=1 bi − ai ≤ δ2.

Set δ = min(δ1, δ2) > 0 and suppose that a ≤ a1 ≤ b1 ≤ . . . ≤ bn ≤ b and
∑n

i=1 bi − ai ≤ δ. Then

n
∑

i=1

|f(bi)g(bi)− f(ai)g(ai)| =
n
∑

i=1

|(f(bi)− f(ai))g(bi) + f(ai)(g(bi)− g(ai))|

≤
n
∑

i=1

|f(bi)− f(ai)||g(bi)|+ |f(ai)||g(bi)− g(ai)|

≤
n
∑

i=1

|f(bi)− f(ai)|M ′ +M |g(bi)− g(ai)|

≤ ǫM ′ +Mǫ = ǫ(M +M ′).

As ǫ is arbitrary, f × g is absolutely continuous.

(e) Let ǫ > 0. Then there is a δ > 0 such that
∑n

i=1 |f(di) − f(ci)| ≤ ǫ whenever c ≤ c1 ≤ d1 ≤ . . . ≤
cn ≤ dn ≤ d and

∑n
i=1 di − ci ≤ δ; and there is an η > 0 such that

∑n
i=1 |g(bi) − g(ai)| ≤ δ whenever

a ≤ a1 ≤ b1 ≤ . . . ≤ an ≤ bn ≤ b and
∑n

i=1 bi − ai ≤ η. Now suppose that a ≤ a1 ≤ b1 ≤ . . . ≤ an ≤
bn ≤ b and

∑n
i=1 bi − ai ≤ η. Because g is non-decreasing, we have c ≤ g(a1) ≤ . . . ≤ g(bn) ≤ d and

∑n
i=1 g(bi)− g(ai) ≤ δ, so

∑n
i=1 |f(g(bi))− f(g(ai))| ≤ ǫ; as ǫ is arbitrary, fg is absolutely continuous.

225D Lemma Let [a, b] be a non-empty closed interval in R and f : [a, b] → R an absolutely continuous
function which has zero derivative almost everywhere in [a, b]. Then f is constant on [a, b].
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proof Let x ∈ [a, b], ǫ > 0. Let δ > 0 be such that
∑n

i=1 |f(bi)− f(ai)| ≤ ǫ whenever a ≤ a1 ≤ b1 ≤ a2 ≤
b2 ≤ . . . ≤ an ≤ bn ≤ b and

∑n
i=1 bi − ai ≤ δ. Set A = {t : a < t < x, f ′(t) exists = 0}; then µA = x − a,

writing µ for Lebesgue measure. Let I be the set of non-empty non-singleton closed intervals [c, d] ⊆ [a, x]
such that |f(d) − f(c)| ≤ ǫ(d − c); then every member of A belongs to arbitrarily short members of I. By
Vitali’s theorem (221A), there is a countable disjoint family I0 ⊆ I such that µ(A \⋃ I0) = 0, that is,

x− a = µ(
⋃ I0) =

∑

I∈I0
µI.

Now there is a finite I1 ⊆ I0 such that

µ(
⋃ I1) =

∑

I∈I1
µI ≥ x− a− δ.

If I1 = ∅, then x ≤ a + δ and |f(x) − f(a)| ≤ ǫ. Otherwise, express I1 as {[c0, d0], . . . , [cn, dn]}, where
a ≤ c0 < d0 < c1 < d1 < . . . < cn < dn ≤ x. Then

(c0 − a) +
∑n

i=1(ci − di−1) + (x− dn) = µ([a, x] \⋃ I1) ≤ δ,

so

|f(c0)− f(a)|+∑n
i=1 |f(ci)− f(di−1)|+ |f(x)− f(dn)| ≤ ǫ.

On the other hand, |f(di)− f(ci)| ≤ ǫ(di − ci) for each i, so
∑n

i=0 |f(di)− f(ci)| ≤ ǫ
∑n

i=0 di − ci ≤ ǫ(x− a).

Putting these together,

|f(x)− f(a)| ≤ |f(c0)− f(a)|+ |f(d0)− f(c0)|+ |f(c1)− f(d0)|+ . . .

+ |f(dn)− f(cn)|+ |f(x)− f(dn)|

= |f(c0)− f(a)|+
n
∑

i=1

|f(ci)− f(di−1)|

+ |f(x)− f(dn)|+
n
∑

i=0

|f(di)− f(ci)|

≤ ǫ+ ǫ(x− a) = ǫ(1 + x− a).

As ǫ is arbitrary, f(x) = f(a). As x is arbitrary, f is constant.

225E Theorem Let [a, b] be a non-empty closed interval in R and F : [a, b] → R a function. Then the
following are equiveridical:

(i) there is an integrable real-valued function f such that F (x) = F (a) +
∫ x

a
f for every x ∈ [a, b];

(ii)
∫ x

a
F ′ exists and is equal to F (x)− F (a) for every x ∈ [a, b];

(iii) F is absolutely continuous.

Remark Here, and for the rest of the section (except in 225Oa), integrals will be taken with respect to
Lebesgue measure on R.

proof (i)⇒(iii) Assume (i). Let ǫ > 0. By 225A, there is a δ > 0 such that
∫

H
|f | ≤ ǫ whenever H ⊆ [a, b]

and µH ≤ δ, writing µ for Lebesgue measure as usual. Now suppose that a ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤
an ≤ bn ≤ b and

∑n
i=1 bi − ai ≤ δ. Consider H =

⋃

1≤i≤n [ai, bi[. Then µH ≤ δ and
∑n

i=1 |F (bi)− F (ai)| =
∑n

i=1 |
∫

[ai,bi[
f | ≤ ∑n

i=1

∫

[ai,bi[
|f | =

∫

F
|f | ≤ ǫ.

As ǫ is arbitrary, F is absolutely continuous.

(iii)⇒(ii) If F is absolutely continuous, then it is of bounded variation (225Cb), so
∫ b

a
F ′ exists (224I).

Set G(x) =
∫ x

a
F ′ for x ∈ [a, b]; then G′ =a.e. F

′ (222E) and G is absolutely continuous (by (i)⇒(iii) just
proved). Accordingly G − F is absolutely continuous (225Cc) and is differentiable, with zero derivative,
almost everywhere. It follows that G − F must be constant (225D). But as G(a) = 0, G = F − F (a); just
as required by (ii).

(ii)⇒(i) is trivial.
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225F Integration by parts As an application of this result, I give a justification of a familiar formula.

Theorem Let f be a real-valued function which is integrable over an interval [a, b] ⊆ R, and g : [a, b] → R

an absolutely continuous function. Suppose that F is an indefinite integral of f , so that F (x)−F (a) =
∫ x

a
f

for x ∈ [a, b]. Then
∫ b

a
f × g = F (b)g(b)− F (a)g(a)−

∫ b

a
F × g′.

proof Set h = F×g. Because F is absolutely continuous (225E), so is h (225Cd). Consequently h(b)−h(a) =
∫ b

a
h′, by (iii)⇒(ii) of 225E. But h′ = F ′ × g + F × g′ wherever F ′ and g′ are defined, which is almost

everywhere, and F ′ =a.e. f , by 222E again; so h′ =a.e. f × g + F × g′. Finally, g and F are continuous,
therefore measurable, and bounded, while f and g′ are integrable (using 225E yet again), so f×g and F ×g′

are integrable, and

F (b)g(b)− F (a)g(a) = h(b)− h(a) =
∫ b

a
h′ =

∫ b

a
f × g +

∫ b

a
F × g′,

as required.

225G I come now to a group of results at a rather deeper level than most of the work of this chapter,
being closer to the ideas of Chapter 26.

Proposition Let [a, b] be a non-empty closed interval in R and f : [a, b] → R an absolutely continuous
function.

(a) f [A] is negligible for every negligible set A ⊆ R.
(b) f [E] is measurable for every measurable set E ⊆ R.

proof (a) Let ǫ > 0. Then there is a δ > 0 such that
∑n

i=1 |f(bi) − f(ai)| ≤ ǫ whenever a ≤ a1 ≤ b1 . . . ≤
an ≤ bn ≤ b and

∑n
i=1 bi − ai ≤ δ. Now there is a sequence 〈Ik〉k∈N of closed intervals, covering A, with

∑∞
k=0 µIk ≤ δ. For each m ∈ N, let Fm be [a, b] ∩⋃

k≤m Ik. Then µf [Fm] ≤ ǫ. PPP Fm must be expressible

as
⋃

i≤n[ci, di] where n ≤ m and a ≤ c0 ≤ d0 ≤ . . . ≤ cn ≤ dn ≤ b. For each i ≤ n choose xi, yi such that
ci ≤ xi, yi ≤ di and

f(xi) = minx∈[ci,di] f(x), f(yi) = maxx∈[ci,di] f(x);

such exist because f is continuous (225Ca), so is bounded and attains its bounds on [ci, di]. Set ai =
min(xi, yi), bi = max(xi, yi), so that ci ≤ ai ≤ bi ≤ di. Then

∑n
i=0 bi − ai ≤

∑n
i=0 di − ci = µFm ≤ µ(

⋃

k∈N Ik) ≤ δ,

so

µf [Fm] = µ(
⋃

i≤m

f [ [ci, di] ]) ≤
n
∑

i=0

µ(f [ [ci, di] ])

=

n
∑

i=0

µ[f(xi), f(yi)] =

n
∑

i=0

|f(bi)− f(ai)| ≤ ǫ. QQQ

But 〈f [Fm]〉m∈N is a non-decreasing sequence covering f [A], so

µ∗f [A] ≤ µ(
⋃

m∈N f [Fm]) = supm∈N µf [Fm] ≤ ǫ.

As ǫ is arbitrary, f [A] is negligible, as claimed.

(b) By 134Fb, there is a sequence 〈Fn〉n∈N of closed subsets of E ∩ [a, b] such that limn→∞ µFn =
µ(E ∩ [a, b]). For each n, Fn is closed and bounded, therefore compact (2A2F); as f is continuous, f [Fn]
is compact (2A2Eb), therefore closed (2A2F, in the other direction) and measurable (114G). Next, setting
A = E∩[a, b]\⋃n∈N Fn, A is negligible, so f [A] is negligible, by (a) here, therefore measurable. Consequently

f [E] = f [E ∩ [a, b]] = f [
⋃

n∈N Fn ∪A] =
⋃

n∈N f [Fn] ∪ f [A]

is measurable, as claimed.
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225H Semi-continuous functions In preparation for the last main result of this section, I give a
general result concerning measurable real-valued functions on subsets of R. It will be convenient here, for
once, to consider functions taking values in [−∞,∞]. If D ⊆ Rr, a function g : D → [−∞,∞] is lower
semi-continuous if {x : g(x) > u} is an open subset of D (for the subspace topology, see 2A3C) for every
u ∈ [−∞,∞]. Any lower semi-continuous function is Borel measurable, therefore Lebesgue measurable
(121B-121D). Now we have the following result.

225I Proposition Suppose that r ≥ 1 and that f is a real-valued function, defined on a subset D of Rr,
which is integrable over D. Then for any ǫ > 0 there is a lower semi-continuous function g : Rr → [−∞,∞]
such that g(x) ≥ f(x) for every x ∈ D and

∫

D
g is defined and not greater than ǫ+

∫

D
f .

Remarks This is a result of great general importance, so I give it in a fairly general form; but for the
present chapter all we need is the case r = 1, D = [a, b] where a ≤ b.

proof (a) We can enumerate Q as 〈qn〉n∈N. By 225A, there is a δ > 0 such that
∫

F
|f | ≤ 1

2ǫ whenever
µDF ≤ δ, where µD is the subspace measure on D, so that µDF = µ∗F , the outer Lebesgue measure of F ,
for every F ∈ ΣD, the domain of µD (214A-214B). For each n ∈ N, set

δn = 2−n−1 min(
ǫ

1+2|qn|
, δ),

so that
∑∞

n=0 δn|qn| ≤ 1
2ǫ and

∑∞
n=0 δn ≤ δ. For each n ∈ N, let En ⊆ Rr be a Lebesgue measurable

set such that {x : f(x) ≥ qn} = D ∩ En, and choose an open set Gn ⊇ En ∩ B(0, n) such that µGn ≤
µ(En ∩B(0, n)) + δn (134Fa), writing B(0, n) for the ball {x : ‖x‖ ≤ n}. For x ∈ Rr, set

g(x) = sup{qn : x ∈ Gn},
allowing −∞ as sup ∅ and ∞ as the supremum of a set with no upper bound in R.

(b) Now check the properties of g.

(i) g is lower semi-continuous. PPP If u ∈ [−∞,∞], then

{x : g(x) > u} =
⋃{Gn : qn > u}

is a union of open sets, therefore open. QQQ

(ii) g(x) ≥ f(x) for every x ∈ D. PPP If x ∈ D and η > 0, there is an n ∈ N such that ‖x‖ ≤ n and
f(x)− η ≤ qn ≤ f(x); now x ∈ En ⊆ Gn so g(x) ≥ qn ≥ f(x)− η. As η is arbitrary, g(x) ≥ f(x). QQQ

(iii) Consider the functions h1, h2 : D → ]−∞,∞] defined by setting

h1(x) = |f(x)| if x ∈ D ∩
⋃

n∈N

(Gn \ En),

= 0 for other x ∈ D,

h2(x) =

∞
∑

n=0

|qn|χ(Gn \ En)(x) for every x ∈ D.

Setting F =
⋃

n∈N Gn \ En,

µF ≤ ∑∞
n=0 µ(Gn \ En) ≤ δ,

so
∫

D
h1 =

∫

D∩F
|f | ≤ 1

2
ǫ

by the choice of δ. As for h2, we have (by B.Levi’s theorem)
∫

D
h2 =

∑∞
n=0 |qn|µD(D ∩Gn \ Fn) ≤

∑∞
n=0 |qn|µ(Gn \ Fn) ≤ 1

2
ǫ

– because this is finite, h2(x) < ∞ for almost every x ∈ D. Thus
∫

D
h1 + h2 ≤ ǫ.

D.H.Fremlin



32 The Fundamental Theorem of Calculus 225I

(iv) The point is that g ≤ f + h1 + h2 everywhere in D. PPP Take any x ∈ D. If n ∈ N and x ∈ Gn,
then either x ∈ En, in which case

f(x) + h1(x) + h2(x) ≥ f(x) ≥ qn,

or x ∈ Gn \ En, in which case

f(x) + h1(x) + h2(x) ≥ f(x) + |f(x)|+ |qn| ≥ qn.

Thus

f(x) + h1(x) + h2(x) ≥ sup{qn : x ∈ Gn} ≥ g(x). QQQ

So g ≤ f + h1 + h2 everywhere in D.

(v) Putting (iii) and (iv) together,
∫

D
g ≤

∫

D
f + h1 + h2 ≤ ǫ+

∫

D
f ,

as required.

225J We need some results on Borel measurable sets and functions which are of independent interest.

Theorem Let D be a subset of R and f : D → R any function. Then

E = {x : x ∈ D, f is continuous at x}
is relatively Borel measurable in D, and

F = {x : x ∈ D, f is differentiable at x}
is Borel measurable in R; moreover, f ′ : F → R is Borel measurable.

proof (a) For k ∈ N set

Gk = {]a, b[ : a, b ∈ R, |f(x)− f(y)| ≤ 2−k for all x, y ∈ D ∩ ]a, b[}.
Then Gk =

⋃Gk is an open set, so E0 =
⋂

k∈N Gk is a Borel set. But E = D∩E0, so E is a relatively Borel
subset of D.

(b)(i) I should perhaps say at once that when interpreting the formula f ′(x) = limh→0(f(x+h)−f(x))/h,
I insist on the restrictive definition

a = limh→0
f(x+h)−f(x)

h

if

for every ǫ > 0 there is a δ > 0 such that
f(x+h)−f(x)

h
is defined and

|f(x+h)−f(x)

h
− a| ≤ ǫ whenever 0 < |h| ≤ δ.

So f ′(x) can be defined only if there is some δ > 0 such that the whole interval [x− δ, x+ δ] lies within the
domain D of f .

(ii) For p, q, q′ ∈ Q and k ∈ N set

H(k, p, q, q′) = {x : x ∈ E ∩ ]q, q′[ , |f(y)− f(x)− p(y − x)| ≤ 2−k|y − x| for every y ∈ ]q, q′[}
if ]q, q′[ ⊆ D

= ∅ otherwise.

Then H(k, p, q, q′) = E ∩ ]q, q′[∩H(k, p, q, q′). PPP If x ∈ E ∩ ]q, q′[∩H(k, p, q, q′) there is a sequence 〈xn〉n∈N

in H(k, p, q, q′) converging to x. Because f is continuous at x,

|f(y)− f(x)− p(y − x)| = lim
n→∞

|f(y)− f(xn)− p(y − xn)|

≤ 2−k lim
n→∞

2−k|y − xn| = 2−k|y − x|
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for every y ∈ ]q, q′[, so that x ∈ H(k, p, q, q′). QQQ Consequently H(k, p, q, q′) is a Borel set. PPP There is a
Borel set E0 such that E = E0 ∩D, by (a), so that if ]q, q′[ ⊆ D then

H(k, p, q, q′) = E ∩ ]q, q′[ ∩H(k, p, q, q′) = E0 ∩ ]q, q′[ ∩H(k, p, q, q′)

is Borel. Otherwise, of course, H(k, p, q, q′) is Borel because it is empty. QQQ

(iii) Now

F =
⋂

k∈N

⋃

p,q,q′∈Q H(k, p, q, q′).

PPP (α) Suppose x ∈ F , that is, f ′(x) is defined; say f ′(x) = a. Take any k ∈ N. Then there are p ∈ Q,

δ > 0 such that |p − a| ≤ 2−k−1 and [x − δ, x + δ] ⊆ D and | f(x+h)−f(x)
h − a| ≤ 2−k−1 whenever 0 <

|h| ≤ δ; now take q ∈ Q ∩ [x− δ, x[, q′ ∈ Q ∩ ]x, x+ δ] and see that x ∈ H(k, p, q, q′). As x is arbitrary,
F ⊆ ⋂

k∈N

⋃

p,q,q′∈Q H(k, p, q, q′). (β) If x ∈ ⋂

k∈N

⋃

p,q,q′∈Q H(k, p, q, q′), then for each k ∈ N choose pk, qk,

q′k ∈ Q such that x ∈ H(k, pk, qk, q
′
k). If h 6= 0, x+h ∈ ]qk, q

′
k[ then | f(x+h)−f(x)

h −pk| ≤ 2−k. But this means,

first, that |pk−pl| ≤ 2−k+2−l for every k, l (since surely there is some h 6= 0 such that x+h ∈ ]qk, q
′
k[∩]ql, q′l[),

so that 〈pk〉k∈N is a Cauchy sequence, with limit a say; and, second, that | f(x+h)−f(x)
h − a| ≤ 2−k + |a− pk|

whenever h 6= 0 and x+ h ∈ ]qk, q
′
k[, so that f ′(x) is defined and equal to a. QQQ

(iv) Because Q is countable, all the unions
⋃

p,q,q′∈Q H(k, p, q, q′) are Borel sets, so F also is.

(v) Now enumerate Q3 as 〈(pi, qi, q′i)〉i∈N, and set H ′
ki = H(k, pi, qi, q

′
i) \

⋃

j<i H(k, pj , qj , q
′
j) for each

k, i ∈ N. Every H ′
ki is Borel measurable, 〈H ′

ki〉i∈N is disjoint, and
⋃

i∈N H ′
ki =

⋃

i∈N H(k, pi, qi, q
′
i) ⊇ F

for each k. Note that |f ′(x) − p| ≤ 2−k whenever x ∈ F ∩ H(k, p, q, q′), so if we set fk(x) = pi for every
x ∈ H ′

ki we shall have a Borel measurable function fk such that |f(x) − fk(x)| ≤ 2−k for every x ∈ F .
Accordingly f ′ = limk→∞ fk↾F is Borel measurable.

225K Proposition Let [a, b] be a non-empty closed interval in R, and f : [a, b] → R a function. Set
F = {x : x ∈ ]a, b[ , f ′(x) is defined}. Then f is absolutely continuous iff (i) f is continuous (ii) f ′ is
integrable over F (iii) f [ [a, b] \ F ] is negligible.

proof (a) Suppose first that f is absolutely continuous. Then f is surely continuous (225Ca) and f ′ is
integrable over [a, b], therefore over F (225E); also [a, b] \ F is negligible, so f [ [a, b] \ F ] is negligible, by
225G.

(b) So now suppose that f satisfies the conditions. Set f∗(x) = |f ′(x)| for x ∈ F , 0 for x ∈ [a, b] \ F .

Then f(b) ≤ f(a) +
∫ b

a
f∗.

PPP (i) Because F is a Borel set and f ′ is a Borel measurable function (225J), f∗ is measurable. Let ǫ > 0.
Let G be an open subset of R such that f [ [a, b] \ F ] ⊆ G and µG ≤ ǫ (134Fa again). Let g : R → [0,∞]

be a lower semi-continuous function such that f∗(x) ≤ g(x) for every x ∈ [a, b] and
∫ b

a
g ≤

∫ b

a
f∗ + ǫ (225I).

Consider

A = {x : a ≤ x ≤ b, µ([f(a), f(x)] \G) ≤ 2ǫ(x− a) +
∫ x

a
g},

interpreting [f(a), f(x)] as ∅ if f(x) < f(a). Then a ∈ A ⊆ [a, b], so c = supA is defined and belongs to
[a, b].

Because f is continuous, the function x 7→ µ([f(a), f(x)] \G) is continuous; also x 7→ 2ǫ(x− a) +
∫ x

a
g is

certainly continuous, so c ∈ A.

(ii) ??? If c ∈ F , so that f∗(c) = |f ′(c)|, then there is a δ > 0 such that

a ≤ c− δ ≤ c+ δ ≤ b,

g(x) ≥ g(c)− ǫ ≥ |f ′(c)| − ǫ whenever |x− c| ≤ δ,

|f(x)−f(c)

x−c
− f ′(c)| ≤ ǫ whenever |x− c| ≤ δ.
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Consider x = c+ δ. Then c < x ≤ b and

µ([f(a), f(x)] \G) ≤ µ([f(a), f(c)] \G) + |f(x)− f(c)|

≤ 2ǫ(c− a) +

∫ c

a

g + ǫ(x− c) + |f ′(c)|(x− c)

≤ 2ǫ(c− a) +

∫ c

a

g + ǫ(x− c) +

∫ x

c

(g + ǫ)

(because g(t) ≥ |f ′(c)| − ǫ whenever c ≤ t ≤ x)

= 2ǫ(x− a) +

∫ x

a

g,

so x ∈ A; but c is supposed to be an upper bound of A. XXX
Thus c ∈ [a, b] \ F .

(iii) ??? Now suppose, if possible, that c < b. We know that f(c) ∈ G, so there is an η > 0 such that
[f(c)− η, f(c) + η] ⊆ G; now there is a δ > 0 such that |f(x)− f(c)| ≤ η whenever x ∈ [a, b] and |x− c| ≤ δ.
Set x = min(c+ δ, b); then c < x ≤ b and [f(c), f(x)] ⊆ G, so

µ([f(a), f(x)] \G) = µ([f(a), f(c)] \G) ≤ 2ǫ(c− a) +
∫ c

a
g ≤ 2ǫ(x− a) +

∫ x

a
g

and once again x ∈ A, even though x > supA. XXX

(iv) We conclude that c = b, so that b ∈ A. But this means that

f(b)− f(a) ≤ µ([f(a), f(b)]) ≤ µ([f(a), f(b)] \G) + µG

≤ 2ǫ(b− a) +

∫ b

a

g + ǫ ≤ 2ǫ(b− a) +

∫ b

a

f∗ + ǫ+ ǫ

= 2ǫ(1 + b− a) +

∫ b

a

f∗.

As ǫ is arbitrary, f(b)− f(a) ≤
∫ b

a
f∗, as claimed. QQQ

(c) Similarly, or applying (b) to −f , f(a)− f(b) ≤
∫ b

a
f∗, so that |f(b)− f(a)| ≤

∫ b

a
f∗.

Of course the argument applies equally to any subinterval of [a, b], so |f(d) − f(c)| ≤
∫ d

c
f∗ whenever

a ≤ c ≤ d ≤ b. Now let ǫ > 0. By 225A once more, there is a δ > 0 such that
∫

E
f∗ ≤ ǫ whenever E ⊆ [a, b]

and µE ≤ δ. Suppose that a ≤ a1 ≤ b1 ≤ . . . ≤ an ≤ bn ≤ b and
∑n

i=1 bi − ai ≤ δ. Then

∑n
i=1 |f(bi)− f(ai)| ≤

∑n
i=1

∫ bi

ai

f∗ =
∫

⋃

i≤n
[ai,bi]

f∗ ≤ ǫ.

So f is absolutely continuous, as claimed.

225L Corollary Let [a, b] be a non-empty closed interval in R. Let f : [a, b] → R be a continuous
function which is differentiable on the open interval ]a, b[. If its derivative f ′ is integrable over [a, b], then f

is absolutely continuous, and f(b)− f(a) =
∫ b

a
f ′.

proof f [ [a, b] \ F ] = {f(a), f(b)} is surely negligible, so f is absolutely continuous, by 225K; consequently

f(b)− f(a) =
∫ b

a
f ′, by 225E.

225M Corollary Let [a, b] be a non-empty closed interval in R, and f : [a, b] → R a continuous function.
Then f is absolutely continuous iff it is continuous and of bounded variation and f [A] is negligible for every
negligible A ⊆ [a, b].

proof (a) Suppose that f is absolutely continuous. By 225C(a-b) it is continuous and of bounded variation,
and by 225G we have f [A] negligible for every negligible A ⊆ [a, b].

(b) So now suppose that f satisfies the conditions. Set F = {x : x ∈ ]a, b[ , f ′(x) is defined}. By 224I
once more, [a, b] \ F is negligible, so f [ [a, b] \ F ] is negligible. Moreover, also by 224I, f ′ is integrable over
[a, b] or F . So the conditions of 225K are satisfied and f is absolutely continuous.
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225N The Cantor function I should mention the standard example of a continuous function of bounded
variation which is not absolutely continuous. Let C ⊆ [0, 1] be the Cantor set (134G). Recall that the ‘Cantor
function’ is a non-decreasing continuous function f : [0, 1] → [0, 1] such that f ′(x) is defined and equal to
zero for every x ∈ [0, 1] \ C, but f(0) = 0 < 1 = f(1) (134H). Of course f is of bounded variation and not
absolutely continuous. C is negligible and f [C] = [0, 1] is not. If x ∈ C, then for every n ∈ N there is an
interval of length 3−n, containing x, on which f increases by 2−n; so f cannot be differentiable at x, and
the set F = dom f ′ of 225K is precisely [0, 1] \ C, so that f [ [0, 1] \ F ] = [0, 1].

225O Complex-valued functions As usual, I spell out the results above in the forms applicable to
complex-valued functions.

(a) Let (X,Σ, µ) be any measure space and f an integrable complex-valued function defined on a coneg-
ligible subset of X. Then for any ǫ > 0 there are a measurable set E of finite measure and a real number
δ > 0 such that

∫

F
|f | ≤ ǫ whenever F ∈ Σ and µ(F ∩ E) ≤ δ. (Apply 225A to |f |.)

(b) If [a, b] is a non-empty closed interval in R and f : [a, b] → C is a function, we say that f is
absolutely continuous if for every ǫ > 0 there is a δ > 0 such that

∑n
i=1 |f(bi) − f(ai)| ≤ ǫ whenever

a ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn ≤ b and
∑n

i=1 bi − ai ≤ δ. Observe that f is absolutely continuous
iff its real and imaginary parts are both absolutely continuous.

(c) Let [a, b] be a non-empty closed interval in R.
(i) If f : [a, b] → C is absolutely continuous it is of bounded variation on [a, b], so is differentiable

almost everywhere in [a, b], and its derivative is integrable over [a, b].
(ii) If f , g : [a, b] → C are absolutely continuous, so are f + g and ζf , for any ζ ∈ C, and f × g.
(iii) If g : [a, b] → [c, d] is monotonic and absolutely continuous, and f : [c, d] → C is absolutely

continuous, then fg : [a, b] → C is absolutely continuous.

(d) Let [a, b] be a non-empty closed interval in R and F : [a, b] → C a function. Then the following are
equiveridical:

(i) there is an integrable complex-valued function f such that F (x) = F (a) +
∫ x

a
f for every x ∈ [a, b];

(ii)
∫ x

a
F ′ exists and is equal to F (x)− F (a) for every x ∈ [a, b];

(iii) F is absolutely continuous.
(Apply 225E to the real and imaginary parts of F .)

(e) Let f be an integrable complex-valued function on an interval [a, b] ⊆ R, and g : [a, b] → C an
absolutely continuous function. Set F (x) =

∫ x

a
f for x ∈ [a, b]. Then

∫ b

a
f × g = F (b)g(b)− F (a)g(a)−

∫ b

a
F × g′.

(Apply 225F to the real and imaginary parts of f and g.)

(f) Let f be a continuous complex-valued function on a closed interval [a, b] ⊆ R, and suppose that f is
differentiable at every point of the open interval ]a, b[, with f ′ integrable over [a, b]. Then f is absolutely
continuous. (Apply 225L to the real and imaginary parts of f .)

(g) For a result corresponding to 225M, see 264Yp.

225X Basic exercises (a) Show directly from the definition in 225B (without appealing to 225E) that
any absolutely continuous real-valued function on a closed interval [a, b] is expressible as the difference of
non-decreasing absolutely continuous functions.

(b) Show directly from the definition in 225B and the Mean Value Theorem (without appealing to 225K)
that if a function f is continuous on a closed interval [a, b], differentiable on the open interval ]a, b[, and has
bounded derivative in ]a, b[, then f is absolutely continuous, so that f(x) = f(a) +

∫ x

a
f ′ for every x ∈ [a, b].

(c) Show that if f : [a, b] → R is absolutely continuous, then Var f =
∫ b

a
|f ′|. (Hint : put 224I and 225E

together.)
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(d) Let g : R → R be a non-decreasing function which is absolutely continuous on every bounded interval;
let µg be the associated Lebesgue-Stieltjes measure (114Xa), and Σg its domain. Show that

∫

E
g′ = µgE for

any E ∈ Σg, if we allow ∞ as a value of the integral. (Hint : start with intervals E.)

(e) Let g : [a, b] → R be a non-decreasing absolutely continuous function, and f : [g(a), g(b)] → R a

continuous function. Show that
∫ g(b)

g(a)
f(t)dt =

∫ b

a
f(g(t))g′(t)dt. (Hint : set F (x) =

∫ x

g(a)
f , G = Fg and

consider
∫ b

a
G′(t)dt. See also 263J.)

(f) Suppose that I ⊆ R is any non-trivial interval (bounded or unbounded, open, closed or half-open, but
not empty or a singleton), and f : I → R a function. Show that f is absolutely continuous on every closed

bounded subinterval of I iff there is a function g such that
∫ b

a
g = f(b) − f(a) whenever a ≤ b in I, and in

this case g is integrable iff f is of bounded variation on I.

(g) Show that
∫ 1

0

lnx

x−1
dx =

∑∞

n=1

1

n2
. (Hint : use 225F to find

∫ 1

0
xn lnx dx, and recall that 1

1−x =
∑∞

n=0 x
n for 0 ≤ x < 1.)

(h)(i) Show that
∫ 1

0
tadt is finite for every a > −1. (ii) Show that

∫∞

1
tae−tdt is finite for every a ∈ R.

(Hint : show that there is an M such that ta ≤ Met/2 for t ≥ 1.) (iii) Show that Γ(a) =
∫∞

0
ta−1e−tdt is

defined for every a > 0. (iv) Show that Γ(a+ 1) = aΓ(a) for every a > 0. (v) Show that Γ(n+ 1) = n! for
every n ∈ N.

(Γ is of course the gamma function.)

(i) Show that if b > 0 then
∫∞

0
ub−1e−u2/2du = 2(b−2)/2Γ( b2 ). (Hint : consider f(t) = t(b−2)/2e−t,

g(u) = u2/2 in 225Xe.)

(j) Suppose that f , g are lower semi-continuous functions, defined on subsets of Rr, and taking values in
]−∞,∞]. (i) Show that f+g, f∧g and f∨g are lower semi-continuous, and that αf is lower semi-continuous
for every α ≥ 0. (ii) Show that if f and g are non-negative, then f × g is lower semi-continuous. (iii) Show
that if f is non-negative and g is continuous, then f × g is lower semi-continuous. (iv) Show that if f is
non-decreasing then the composition fg is lower semi-continuous.

(k) Let A be a non-empty family of lower semi-continuous functions defined on subsets of Rr and taking
values in [−∞,∞]. Set g(x) = sup{f(x) : f ∈ A, x ∈ dom f} for x ∈ D =

⋃

f∈A dom f . Show that g is
lower semi-continuous.

(l) Let f : [a, b] → R be an absolutely continuous function, where a ≤ b. (i) Show that |f | : [a, b] → R is
absolutely continuous. (ii) Show that gf is absolutely continuous whenever g : f [ [a, b] ] → R is absolutely
continuous and g′ is bounded. (iii) Show that if g : [a, b] → R is absolutely continuous and infx∈[a,b] |g(x)| > 0
then f/g is absolutely continuous.

(m) Suppose that f : [a, b] → R is continuous, and differentiable at all but countably many points of
[a, b]. Show that f is absolutely continuous iff it is of bounded variation.

(n) Let f : [0,∞[ → C be a function which is absolutely continuous on [0, a] for every a ∈ [0,∞[ and has
Laplace transform F (s) =

∫∞

0
e−sxf(x)dx defined on {s : Re s > S}. Suppose also that limx→∞ e−Sxf(x) =

0. Show that f ′ has Laplace transform sF (s)− f(0) defined whenever Re s > S. (Hint : show that

f(x)e−sx − f(0) =
∫ x

0

d

dt
(f(t)e−st)dt

for every x ≥ 0.)

225Y Further exercises (a) Show that the composition of two absolutely continuous functions need
not be absolutely continuous. (Hint : 224Xb.)
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(b) Let f : [a, b] → R be a continuous function, where a < b. Set G = {x : x ∈ ]a, b[ , ∃ y ∈ ]x, b] such that
f(x) < f(y)}. Show that G is open and is expressible as a disjoint union of intervals ]c, d[ where f(c) ≤ f(d).
Use this to prove 225D without calling on Vitali’s theorem.

(c) Let f : [a, b] → R be a function of bounded variation and γ > 0. Show that there is an absolutely
continuous function g : [a, b] → R such that |g′(x)| ≤ γ wherever the derivative is defined and {x : x ∈
[a, b], f(x) 6= g(x)} has measure at most 1

γ Var f . (Hint : reduce to the case of non-decreasing f . Apply

225Yb to the function x 7→ f(x)− γx and show that γµG ≤ Var f . Set g(x) = f(x) for x ∈ ]a, b[ \G.)

(d) Let f : R → R be a function which is absolutely continuous on every bounded interval. Show that
Var f ≤ 1

2 Var f
′ +

∫

|f |.

(e) Let f be a non-negative measurable real-valued function defined on a subset D of Rr, where r ≥ 1.
Show that for any ǫ > 0 there is a lower semi-continuous function g : Rr → [−∞,∞] such that g(x) ≥ f(x)
for every x ∈ D and

∫

D
g − f ≤ ǫ.

(f) Let f be a measurable real-valued function defined on a subset D of Rr, where r ≥ 1. Show that
for any ǫ > 0 there is a lower semi-continuous function g : Rr → [−∞,∞] such that g(x) ≥ f(x) for every
x ∈ D and µ∗{x : x ∈ D, g(x) > f(x)} ≤ ǫ. (Hint : 134Yd, 134Fb.)

(g)(i) Show that if f is a Lebesgue measurable real function then all its Dini derivates are Lebesgue
measurable. (ii) Show that if f is a Borel measurable real function then all its Dini derivates are Borel
measurable.

225 Notes and comments There is a good deal more to say about absolutely continuous functions; I
will return to the topic in the next section and in Chapter 26. I shall rarely make direct use of the results
from 225H on in their full strengths, but it seems to me that this kind of investigation is necessary for any
clear picture of the relationships between such concepts as absolute continuity and bounded variation. Of
course, in order to apply these results, we do need a store of simple kinds of absolutely continuous function,
differentiable functions with bounded derivative forming the most important class (225Xb). A larger family
of the same kind is the class of ‘Lipschitz’ functions (262Bc).

The definition of ‘absolutely continuous function’ is ordinarily set out for closed bounded intervals, as in
225B. The point is that for other intervals the simplest generalizations of this formulation do not seem quite
appropriate. In 225Xf I try to suggest the kind of demands one might make on functions defined on other
types of interval.

I should remark that the real prize is still not quite within our grasp. I have been able to give a
reasonably satisfactory formulation of simple integration by parts (225F), at least for bounded intervals –
a further limiting process is necessary to deal with unbounded intervals. But a companion method from
advanced calculus, integration by substitution, remains elusive. The best I think we can do at this point is
225Xe, which insists on a continuous integrand f . It is the case that the result is valid for general integrable
f , but there are some further subtleties to be mastered on the way; the necessary ideas are given in the
much more general results 235A and 263D below, and applied to the one-dimensional case in 263J.

On the way to the characterization of absolutely continuous functions in 225K, I find myself calling on one
of the fundamental relationships between Lebesgue measure and the topology of Rr (225I). The technique
here can be adapted to give many variations of the result; see 225Ye-225Yf. If you have not seen semi-
continuous functions before, 225Xj-225Xk give a partial idea of their properties. In 225J I give a fragment
of ‘descriptive set theory’, the study of the kinds of set which can arise from the formulae of analysis. These
ideas too will re-surface elsewhere (compare 225Yg and also the proof of 262M below) and will be of great
importance in Volumes 4 and 5.
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Version of 16.11.13

226 The Lebesgue decomposition of a function of bounded variation

I end this chapter with some notes on a method of analysing a general function of bounded variation
which may help to give a picture of what such functions can be, though (apart from 226A) it is hardly
needed in this volume.

226A Sums over arbitrary index sets To get a full picture of this fragment of real analysis, a bit
of preparation will be helpful. This concerns the notion of a sum over an arbitrary index set, which I have
rather been skirting around so far.

(a) If I is any set and 〈ai〉i∈I any family in [0,∞], we set
∑

i∈I ai = sup{∑i∈K ai : K is a finite subset of I},
with the convention that

∑

i∈∅ ai = 0. (See 112Bd, 222Ba.) For general ai ∈ [−∞,∞], we can set
∑

i∈I ai =
∑

i∈I a
+
i −∑

i∈I a
−
i

if this is defined in [−∞,∞], that is, at least one of
∑

i∈I a
+
i ,

∑

i∈I a
−
i is finite, where a+ = max(a, 0) and

a− = max(−a, 0) for each a. If
∑

i∈I ai is defined and finite, we say that 〈ai〉i∈I is summable.

(b) Since this is a book on measure theory, I will immediately describe the relationship between this
kind of summability and an appropriate notion of integration. For any set I, we have the corresponding
‘counting measure’ µ on I (112Bd). Every subset of I is measurable, so every family 〈ai〉i∈I of real numbers
is a measurable real-valued function on I. A subset of I has finite measure iff it is finite; so a real-valued
function f on I is ‘simple’ if K = {i : f(i) 6= 0} is finite. In this case,

∫

fdµ =
∑

i∈K f(i) =
∑

i∈I f(i)

as defined in part (a). The measure µ is semi-finite (211Nc) so a non-negative function f is integrable iff
∫

f = supµK<∞

∫

K
f is finite (213B); but of course this supremum is precisely

sup{∑i∈K f(i) : K ⊆ I is finite} =
∑

i∈I f(i).

Now a general function f : I → R is integrable iff it is measurable and
∫

|f |dµ < ∞, that is, iff
∑

i∈I |f(i)| <
∞, and in this case

∫

fdµ =
∫

f+dµ−
∫

f−dµ =
∑

i∈I f(i)
+ −∑

i∈I f(i)
− =

∑

i∈I f(i),

writing f±(i) = f(i)± for each i. Thus we have
∑

i∈I ai =
∫

I
aiµ(di),

and the standard rules under which we allow ∞ as the value of an integral (133A, 135F) match well with
the interpretations in (a) above.

(c) Accordingly, and unsurprisingly, the operation of summation is a linear operation on the linear space
of summable families of real numbers.

I observe here that this notion of summability is ‘absolute’; a family 〈ai〉i∈I is summable iff it is absolutely
summable. This is necessary because it must also be ‘unconditional’; we have no structure on an arbitrary
set I to guide us to take the sum in any particular order. See 226Xa. In particular, I distinguish between
‘
∑

n∈N an’, which in this book will always be interpreted as in 226A above, and ‘
∑∞

n=0 an’ which (if it

makes a difference) should be interpreted as limm→∞

∑m
n=0 an. So, for instance,

∑∞
n=0

(−1)n

n+1
= ln 2, while

∑

n∈N

(−1)n

n+1
is undefined. Of course

∑∞
n=0 an =

∑

n∈N an whenever the latter is defined in [−∞,∞].

(d) There is another, and very important, approach to the sum described here. If 〈ai〉i∈I is an (absolutely)
summable family of real numbers, then for every ǫ > 0 there is a finite K ⊆ I such that

∑

i∈I\K |ai| ≤ ǫ. PPP

This is nothing but a special case of 225A; there is a set K with µK < ∞ such that
∫

I\K |ai|µ(di) ≤ ǫ, but

c© 2000 D. H. Fremlin
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∫

I\K
|ai|µ(di) =

∑

i∈I\K |ai|. QQQ

(Of course there are ‘direct’ proofs of this result from the definition in (a), not mentioning measures or
integrals. But I think you will see that they rely on the same idea as that in the proof of 225A.) Consequently,
for any family 〈ai〉i∈I of real numbers and any s ∈ R, the following are equiveridical:

(i)
∑

i∈I ai = s;

(ii) for every ǫ > 0 there is a finite K ⊆ I such that |s−∑

i∈J ai| ≤ ǫ whenever J is finite and
K ⊆ J ⊆ I.

PPP (i)⇒(ii) Take K such that
∑

i∈I\K |ai| ≤ ǫ. If K ⊆ J ⊆ I, then

|s−∑

i∈J ai| = |∑i∈I\J ai| ≤
∑

i∈I\K |ai| ≤ ǫ.

(ii)⇒(i) Let ǫ > 0, and let K ⊆ I be as described in (ii). If J ⊆ I \ K is any finite set, then set
J1 = {i : i ∈ J, ai ≥ 0}, J2 = J \ J1. We have

∑

i∈J

|ai| = |
∑

i∈J1∪K

ai −
∑

i∈J2∪K

ai|

≤ |s−
∑

i∈J1∪K

ai|+ |s−
∑

i∈J2∪K

ai| ≤ 2ǫ.

As J is arbitrary,
∑

i∈I\K |ai| ≤ 2ǫ and
∑

i∈I |ai| ≤
∑

i∈K |ai|+ 2ǫ < ∞.

Accordingly
∑

i∈I ai is well-defined in R. Also

|s−∑

i∈I ai| ≤ |s−∑

i∈K ai|+ |∑i∈I\K ai| ≤ ǫ+
∑

i∈I\K |ai| ≤ 3ǫ.

As ǫ is arbitrary,
∑

i∈I ai = s, as required. QQQ
In this way, we express

∑

i∈I ai directly as a limit; we could write it as
∑

i∈I ai = limK↑I

∑

i∈K ai,

on the understanding that we look at finite sets K in the right-hand formula.

(e) Yet another approach is through the following fact. If
∑

i∈I |ai| < ∞, then for any δ > 0 the set

{i : |ai| ≥ δ} is finite, indeed can have at most 1
δ

∑

i∈I |ai| members; consequently

J = {i : ai 6= 0} =
⋃

n∈N{i : |ai| ≥ 2−n}
is countable (1A1F). If J is finite, then of course

∑

i∈I ai =
∑

i∈J ai reduces to a finite sum. Otherwise, we
can enumerate J as 〈jn〉n∈N, and we shall have

∑

i∈I ai =
∑

i∈J ai = limn→∞

∑n
k=0 ajk =

∑∞
n=0 ajn

(using (d) to reduce the sum
∑

i∈J ai to a limit of finite sums). Conversely, if 〈ai〉i∈I is such that there is

a countably infinite J ⊆ {i : ai 6= 0} enumerated as 〈jn〉n∈N, and if
∑∞

n=0 |ajn | < ∞, then
∑

i∈I ai will be
∑∞

n=0 ajn .

(f) It will be useful later to have a fragment of general theory. Let I and J be sets and 〈aij〉i∈I,j∈J a
family in [0,∞]. Then

∑

(i,j)∈I×J aij =
∑

i∈I(
∑

j∈J aij) =
∑

j∈J(
∑

i∈I aij).

PPP (i) If
∑

(i,j)∈I×J aij > u, then there is a finite set M ⊆ I × J such that
∑

(i,j)∈M aij > u. Now

K = {i : (i, j) ∈ M} and L = {j : (i, j) ∈ M} are finite, so

∑

i∈I

∑

j∈J

aij ≥
∑

i∈K

∑

j∈J

aij ≥
∑

i∈K

∑

j∈L

aij

(because
∑

j∈J aij ≥
∑

j∈L aij for every i)
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=
∑

(i,j)∈K×L

aij ≥
∑

(i,j)∈M

aij > u.

As u is arbitrary,
∑

i∈I

∑

j∈J aij ≥ ∑

(i,j)∈I×J aij . (ii) If
∑

i∈I

∑

j∈J aij > u ≥ 0, there is a non-empty

finite set K ⊆ I such that
∑

i∈K

∑

j∈J aij > u. Let ǫ ∈ ]0, 1[ be such that
∑

i∈K

∑

j∈J aij > u+ ǫ, and set

δ =
ǫ

#(K)
. For each i ∈ K set γi = min(u+ 1,

∑

j∈J aij)− δ; then

ǫ+
∑

i∈K γi =
∑

i∈K min(u+ 1,
∑

j∈J aij) ≥ min(u+ 1,
∑

i∈K

∑

j∈J aij) > u+ ǫ,

so
∑

i∈K γi > u. For each i ∈ K, γi <
∑

j∈J aij , so there is a finite Li ⊆ J such that
∑

j∈Li
aij ≥ γi. Set

M = {(i, j) : i ∈ K, j ∈ Li}, so that M is a finite subset of I × J ; then
∑

(i,j)∈I×J aij ≥
∑

(i,j)∈M aij =
∑

i∈K

∑

j∈Li
aij ≥

∑

i∈K γi > u.

As u is arbitrary,
∑

(i,j)∈I×J aij ≥
∑

i∈I

∑

j∈J aij and these two sums are equal. (iii) Similarly,
∑

(i,j)∈I×J aij =
∑

j∈J

∑

i∈I aij . QQQ

226B Saltus functions Now we are ready for a special type of function of bounded variation on R.
Suppose that a < b in R.

(a) A (real) saltus function on [a, b] is a function F : [a, b] → R expressible in the form

F (x) =
∑

t∈[a,x[ ut +
∑

t∈[a,x] vt

for x ∈ [a, b], where 〈ut〉t∈[a,b[, 〈vt〉t∈[a,b] are real-valued families such that
∑

t∈[a,b[ |ut| and
∑

t∈[a,b] |vt| are
finite.

(b) For any function F : [a, b] → R we can write

F (x+) = limy↓x F (y) if x ∈ [a, b[ and the limit exists,

F (x−) = limy↑x F (y) if x ∈ ]a, b] and the limit exists.

(I hope that this will not lead to confusion with the alternative interpretation of x+ as max(x, 0).) Observe
that if F is a saltus function, as defined in (b), with associated families 〈ut〉t∈[a,b[ and 〈vt〉t∈[a,b], then

va = F (a), vx = F (x) − F (x−) for x ∈ ]a, b] and ux = F (x+) − F (x) for x ∈ [a, b[. PPP Let ǫ > 0. As
remarked in 226Ad, there is a finite K ⊆ [a, b] such that

∑

t∈[a,b[\K |ut|+
∑

t∈[a,b]\K |vt| ≤ ǫ.

Given x ∈ [a, b], let δ > 0 be such that [x− δ, x+ δ] contains no point of K except perhaps x. In this case,
if max(a, x− δ) ≤ y < x, we must have

|F (y)− (F (x)− vx)| = |
∑

t∈[y,x[

ut +
∑

t∈]y,x[

vt|

≤
∑

t∈[a,b[\K

|ut|+
∑

t∈[a,b]\K

|vt| ≤ ǫ,

while if x < y ≤ min(b, x+ δ) we shall have

|F (y)− (F (x) + ux)| = |
∑

t∈]x,y[

ut +
∑

t∈]x,y]

vt|

≤
∑

t∈[a,b[\K

|ut|+
∑

t∈[a,b]\K

|vt| ≤ ǫ.

As ǫ is arbitrary, we get F (x−) = F (x)− vx (if x > a) and F (x+) = F (x) + ux (if x < b). QQQ
It follows that F is continuous at x ∈ ]a, b[ iff ux = vx = 0, while F is continuous at a iff ua = 0 and F is

continuous at b iff vb = 0. In particular, {x : x ∈ [a, b], F is not continuous at x} is countable (see 226Ae).
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(c) If F is a saltus function defined on [a, b], with associated families 〈ut〉t∈[a,b[ and 〈vt〉t∈[a,b], then F is
of bounded variation on [a, b], and

Var[a,b](F ) ≤ ∑

t∈[a,b[ |ut|+
∑

t∈]a,b] |vt|.
PPP If a ≤ x < y ≤ b, then

F (y)− F (x) = ux +
∑

t∈]x,y[(ut + vt) + vy,

so

|F (y)− F (x)| ≤ ∑

t∈[x,y[ |ut|+
∑

t∈]x,y] |vt|.
If a ≤ a0 ≤ a1 ≤ . . . ≤ an ≤ b, then

n
∑

i=1

|F (ai)− F (ai−1)| ≤
n
∑

i=1

(

∑

t∈[ai−1,ai[

|ut|+
∑

t∈]ai−1,ai]

|vt|
)

≤
∑

t∈[a,b[

|ut|+
∑

t∈]a,b]

|vt|.

Consequently

Var[a,b](F ) ≤ ∑

t∈[a,b[ |ut|+
∑

t∈]a,b] |vt| < ∞. QQQ

(d) The inequality in (c) is actually an equality. To see this, note first that if a ≤ x < y ≤ b, then
Var[x,y](F ) ≥ |ux| + |vy|. PPP I noted in (b) that ux = limt↓x F (t) − F (x) and vy = F (y) − limt↑y F (t). So,
given ǫ > 0, we can find t1, t2 such that x < t1 ≤ t2 < y and

|F (t1)− F (x)| ≥ |ux| − ǫ, |F (y)− F (t2)| ≥ |vy| − ǫ.

Now

Var[x,y](F ) ≥ |F (t1)− F (x)|+ |F (t2)− F (t1)|+ |F (y)− F (t2)| ≥ |ux|+ |vy| − 2ǫ.

As ǫ is arbitrary, we have the result. QQQ

Now, given a ≤ t0 < t1 < . . . < tn ≤ b, we must have

Var[a,b](F ) ≥
n
∑

i=1

Var[ti−1,ti](F )

(using 224Cc)

≥
n
∑

i=1

|uti−1
|+ |vti |.

As t0, . . . , tn are arbitrary,

Var[a,b](F ) ≥ ∑

t∈[a,b[ |ut|+
∑

t∈]a,b] |vt|,
as required.

(e) Because a saltus function is of bounded variation ((c) above), it is differentiable almost everywhere
(224I). In fact its derivative is zero almost everywhere. PPP Let F : [a, b] → R be a saltus function, with
associated families 〈ut〉t∈[a,b[, 〈vt〉t∈[a,b]. Let ǫ > 0. Let K ⊆ [a, b] be a finite set such that

∑

t∈[a,b[\K |ut|+
∑

t∈[a,b]\K |vt| ≤ ǫ.

Set
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u′
t = ut if t ∈ [a, b[ ∩K,

= 0 if t ∈ [a, b[ \K,

v′t = vt if t ∈ K,

= 0 if t ∈ [a, b] \K,

u′′
t = ut − u′

t for t ∈ [a, b[ ,

v′′t = vt − v′t for t ∈ [a, b].

Let G, H be the saltus functions corresponding to 〈u′
t〉t∈[a,b[, 〈v′t〉t∈[a,b] and 〈u′′

t 〉t∈[a,b[ 〈v′′t 〉t∈[a,b], so that
F = G + H. Then G′(t) = 0 for every t ∈ ]a, b[ \ K, since ]a, b[ \ K comprises a finite number of open
intervals on each of which G is constant. So G′ = 0 a.e. and F ′ =a.e. H

′. On the other hand,
∫ b

a
|H ′| ≤ Var[a,b](H) =

∑

t∈[a,b[\K |ut|+
∑

t∈]a,b]\K |vt| ≤ ǫ,

using 224I and (d) above. So
∫ b

a
|F ′| =

∫ b

a
|H ′| ≤ ǫ.

As ǫ is arbitrary,
∫ b

a
|F ′| = 0 and F ′ = 0 a.e., as claimed. QQQ

226C The Lebesgue decomposition of a function of bounded variation Take a, b ∈ R with a < b.

(a) If F : [a, b] → R is non-decreasing, set va = 0, vt = F (t) − F (t−) for t ∈ ]a, b], ut = F (t+) − F (t)
for t ∈ [a, b[, defining F (t+), F (t−) as in 226Bb. Then all the vt, ut are non-negative, and if a < t0 < t1 <
. . . < tn < b, then

∑n
i=0(uti + vti) =

∑n
i=0(F (t+i )− F (t−i )) ≤ F (b)− F (a).

Accordingly
∑

t∈[a,b[ ut and
∑

t∈[a,b] vt are both finite. Let Fp be the corresponding saltus function, as

defined in 226Ba, so that

Fp(x) = F (a+)− F (a) +
∑

t∈]a,x[(F (t+)− F (t−)) + F (x)− F (x−)

if a < x ≤ b. If a ≤ x < y ≤ b then

Fp(y)− Fp(x) = F (x+)− F (x) +
∑

t∈]x,y[

(F (t+)− F (t−)) + F (y)− F (y−)

≤ F (y)− F (x)

because if x = t0 < t1 < . . . < tn < tn+1 = y then

F (x+)− F (x) +

n
∑

i=1

(F (t+i )− F (t−i )) + F (y)− F (y−)

= F (y)− F (x)−
n+1
∑

i=1

(F (t−i )− F (t+i−1)) ≤ F (y)− F (x).

Accordingly both Fp and Fc = F − Fp are non-decreasing. Also, because

Fp(a) = 0 = va,

Fp(t)− Fp(t
−) = vt = F (t)− F (t−) for t ∈ ]a, b],

Fp(t
+)− Fp(t) = ut = F (t+)− F (t) for t ∈ [a, b[,

we shall have

Fc(a) = F (a),

Fc(t) = Fc(t
−) for t ∈ ]a, b],
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Fc(t) = Fc(t
+) for t ∈ [a, b[,

and Fc is continuous.
Clearly this expression of F = Fp+Fc as the sum of a saltus function and a continuous function is unique,

except that we can freely add a constant to one if we subtract it from the other.

(b) Still taking F : [a, b] → R to be non-decreasing, we know that F ′ is integrable (222C); moreover,
F ′ =a.e. F

′
c, by 226Be. Set Fac(x) = F (a) +

∫ x

a
F ′ for each x ∈ [a, b]. We have

Fac(y)− Fac(x) =
∫ y

x
F ′
c ≤ Fc(y)− Fc(x)

for a ≤ x ≤ y ≤ b (222C again), so Fcs = Fc − Fac is still non-decreasing; Fac is continuous (225A), so Fcs

is continuous; F ′
ac =a.e. F

′ =a.e. F
′
c (222E), so F ′

cs = 0 a.e.
Again, the expression of Fc = Fac + Fcs as the sum of an absolutely continuous function and a function

with zero derivative almost everywhere is unique, except for the possibility of moving a constant from one
to the other, because two absolutely continuous functions whose derivatives are equal almost everywhere
must differ by a constant (225D).

(c) Putting all these together: if F : [a, b] → R is any non-decreasing function, it is expressible as
Fp + Fac + Fcs, where Fp is a saltus function, Fac is absolutely continuous, and Fcs is continuous and
differentiable, with zero derivative, almost everywhere; all three components are non-decreasing; and the
expression is unique if we say that Fac(a) = F (a) and Fp(a) = Fcs(a) = 0.

The Cantor function f : [0, 1] → [0, 1] (134H) is continuous and f ′ = 0 a.e. (134Hb), so fp = fac = 0
and f = fcs. Setting g(x) = 1

2 (x + f(x)) for x ∈ [0, 1], as in 134I, we get gp(x) = 0, gac(x) = x
2 and

gcs(x) =
1
2f(x).

(d) Now suppose that F : [a, b] → R is of bounded variation. Then it is expressible as a difference
G − H of non-decreasing functions (224D). So writing Fp = Gp − Hp, etc., we can express F as a sum
Fp + Fcs + Fac, where Fp is a saltus function, Fac is absolutely continuous, Fcs is continuous, F ′

cs = 0 a.e.,
Fac(a) = F (a) and Fcs(a) = Fp(a) = 0. Under these conditions the expression is unique, because (for
instance) Fp(t

+)− Fp(t) = F (t+)− F (t) for t ∈ [a, b[, while F ′
ac =a.e. (F − Fp)

′ =a.e. F
′.

This is a Lebesgue decomposition of the function F . (I have to say ‘a’ Lebesgue decomposition because
of course the assignments Fac(a) = F (a), Fp(a) = Fcs(a) = 0 are arbitrary.) I will call Fp the saltus part
of F .

226D Complex functions The modifications needed to deal with complex functions are elementary.

(a) If I is any set and 〈aj〉j∈I is a family of complex numbers, then the following are equiveridical:

(i)
∑

j∈I |aj | < ∞;

(ii) there is an s ∈ C such that for every ǫ > 0 there is a finiteK ⊆ I such that |s−∑

j∈J aj | ≤ ǫ
whenever J is finite and K ⊆ J ⊆ I.

In this case

s =
∑

j∈I Re(aj) + i
∑

j∈I Im(aj) =
∫

I
ajµ(dj),

where µ is counting measure on I, and we write s =
∑

j∈I aj .

(b) If a < b in R, a complex saltus function on [a, b] is a function F : [a, b] → C expressible in the form

F (x) =
∑

t∈[a,x[ ut +
∑

t∈[a,x] vt

for x ∈ [a, b], where 〈ut〉t∈[a,b[, 〈vt〉t∈[a,b] are complex-valued families such that
∑

t∈[a,b[ |ut| and
∑

t∈[a,b] |vt|
are finite; that is, if the real and imaginary parts of F are saltus functions. In this case F is continuous
except at countably many points and differentiable, with zero derivative, almost everywhere in [a, b], and

ux = limt↓x F (t)− F (x) for every x ∈ [a, b[,

vx = limt↑x F (x)− F (t) for every x ∈ ]a, b]
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(apply the results of 226B to the real and imaginary parts of F ). F is of bounded variation, and its variation
is

Var[a,b](F ) =
∑

t∈[a,b[ |ut|+
∑

t∈]a,b] |vt|
(repeat the arguments of 226Bc-d).

(c) If F : [a, b] → C is a function of bounded variation, where a < b in R, it is uniquely expressible as
F = Fp + Fcs + Fac, where Fp is a saltus function, Fac is absolutely continuous, Fcs is continuous and has
zero derivative almost everywhere, and Fac(a) = F (a), Fp(a) = Fcs(a) = 0. (Apply 226C to the real and
imaginary parts of F .)

226E As an elementary exercise in the language of 226A, I interpolate a version of a theorem of B.Levi
which is sometimes useful.

Proposition Let (X,Σ, µ) be a measure space, I a countable set, and 〈fi〉i∈I a family of µ-integrable real-
or complex-valued functions such that

∑

i∈I

∫

|fi|dµ is finite. Then f(x) =
∑

i∈I fi(x) is defined almost

everywhere and
∫

fdµ =
∑

i∈I

∫

fidµ.

proof If I is finite this is elementary. Otherwise, since there must be a bijection between I and N, we
may take it that I = N. Setting gn =

∑n
i=0 |fi| for each n, we have a non-decreasing sequence 〈gn〉n∈N of

integrable functions such that
∫

gn ≤ ∑

i∈N

∫

|fi| for every n, so that g = supn∈N gn is integrable, by B.Levi’s
theorem as stated in 123A. In particular, g is finite almost everywhere. Now if x ∈ X is such that g(x) is
defined and finite,

∑

i∈J |fi(x)| ≤ g(x) for every finite J ⊆ N, so
∑

i∈N |fi(x)| and
∑

i∈N fi(x) are defined.

In this case, of course,
∑

i∈N fi(x) = limn→∞

∑n
i=0 fi(x). But |∑n

i=0 fi| ≤a.e. g for each n, so Lebesgue’s
Dominated Convergence Theorem tells us that

∫

∑

i∈N fi = limn→∞

∫

∑n
i=0 fi = limn→∞

∑n
i=0

∫

fi =
∑

i∈N

∫

fi.

226X Basic exercises >>>(a) Suppose that I and J are sets and that 〈ai〉i∈I is a summable family of
real numbers. (i) Show that if f : J → I is injective then 〈af(j)〉j∈J is summable. (ii) Show that if g : I → J
is any function, then

∑

j∈J

∑

i∈g−1[{j}] ai is defined and equal to
∑

i∈I ai.

>>>(b) A step-function on an interval [a, b] is a function F such that, for suitable t0, . . . , tn with a =
t0 ≤ . . . ≤ tn = b, F is constant on each interval ]ti−1, ti[. Show that F : [a, b] → R is a saltus function iff
for every ǫ > 0 there is a step-function G : [a, b] → R such that Var[a,b](F −G) ≤ ǫ.

(c) Let F , G be real-valued functions of bounded variation defined on an interval [a, b] ⊆ R. Show that,
in the language of 226C,

(F +G)p = Fp +Gp, (F +G)c = Fc +Gc,

(F +G)cs = Fcs +Gcs, (F +G)ac = Fac +Gac.

>>>(d) Let F be a real-valued function of bounded variation on an interval [a, b] ⊆ R. Show that, in the
language of 226C,

Var[a,b](F ) = Var[a,b](Fp) + Var[a,b](Fc) = Var[a,b](Fp) + Var[a,b](Fcs) + Var[a,b](Fac).

(e) Let F be a real-valued function of bounded variation on an interval [a, b] ⊆ R. Show that F is

absolutely continuous iff Var[a,b](F ) =
∫ b

a
|F ′|.

(f) Consider the function g of 134I/226Cc. Show that g−1 : [0, 1] → [0, 1] is differentiable almost
everywhere in [0, 1], and find µ{x : (g−1)′(x) ≤ a} for each a ∈ R.

>>>(g)(i) Show that a continuous bijection f : [0, 1] → [0, 1] is either strictly increasing or strictly de-
creasing, and that its inverse is continuous. (ii) Show that if f : [0, 1] → [0, 1] is a continuous bijection,
then f ′ = 0 a.e. in [0, 1] iff there is a conegligible set E ⊆ [0, 1] such that f [E] is negligible, and that in
this case f−1 has the same property. (iii) Construct a function satisfying the conditions of (ii). (Hint : try
f =

∑∞
n=0 2

−n−1fn where each fn is a variation on the Cantor function.) (iv) Repeat (iii) with f = f−1.
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226Y Further exercises (a) Show that a set I is countable iff there is a summable family 〈ai〉i∈I of
non-zero real numbers.

(b) Explain modifications which might be appropriate in the description of the Lebesgue decomposition
of a function of bounded variation if we wish to consider functions on open or half-open intervals, including
unbounded intervals.

(c) Suppose that F : [a, b] → R is a function of bounded variation, and set h(y) = #(F−1[{y}]) for y ∈ R.
Show that

∫

h = Var[a,b](Fc), where Fc is the ‘continuous part’ of F as defined in 226Ca/226Cd.

(d) Suppose that a < b in R, and that F : [a, b] → R is a function of bounded variation; let Fp be its
saltus part. Show that |F (b)− F (a)| ≤ µF [ [a, b] ] + Var[a,b] Fp, where µ is Lebesgue measure on R.

226 Notes and comments In 232I and 232Yh below I will revisit these ideas, linking them to a decom-
position of the Lebesgue-Stieltjes measure corresponding to a non-decreasing real function, and thence to
more general measures. All this work is peripheral to the main concerns of this volume, but I think it is
illuminating, and certainly it is part of the basic knowledge assumed of anyone working in real analysis.
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