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Introduction to Volume 2

For this second volume I have chosen seven topics through which to explore the insights and challenges
offered by measure theory. Some, like the Radon-Nikodým theorem (Chapter 23) are necessary for any
understanding of the structure of the subject; others, like Fourier analysis (Chapter 28) and the discussion
of function spaces (Chapter 24) demonstrate the power of measure theory to attack problems in general
real and functional analysis. But all have applications outside measure theory, and all have influenced its
development. These are the parts of measure theory which any analyst may find himself using.

Every topic is one which ideally one would wish undergraduates to have seen, but the length of this
volume makes it plain that no ordinary undergraduate course could include very much of it. It is directed
rather at graduate level, where I hope it will be found adequate to support all but the most ambitious
courses in measure theory, though it is perhaps a bit too solid to be suitable for direct use as a course text,
except with careful selection of the parts to be covered. If you are using it to teach yourself measure theory,
I strongly recommend an eclectic approach, looking for particular subjects and theorems that seem startling
or useful, and working backwards from them. My other objective, of course, is to provide an account of the
central ideas at this level in measure theory, rather fuller than can easily be found in one volume elsewhere.
I cannot claim that it is ‘definitive’, but I do think I cover a good deal of ground in ways that provide a
firm foundation for further study. As in Volume 1, I usually do not shrink from giving ‘best’ results, like
Lindeberg’s condition for the Central Limit Theorem (§274), or the theory of products of arbitrary measure
spaces (§251). If I were teaching this material to students in a PhD programme I would rather accept a
limitation in the breadth of the course than leave them unaware of what could be done in the areas discussed.

The topics interact in complex ways – one of the purposes of this book is to exhibit their relationships.
There is no canonical linear ordering in which they should be taken. Nor do I think organization charts are
very helpful, not least because it may be only two or three paragraphs in a section which are needed for a
given chapter later on. I do at least try to lay the material of each section out in an order which makes
initial segments useful by themselves. But the order in which to take the chapters is to a considerable extent
for you to choose, perhaps after a glance at their individual introductions. I have done my best to pitch the
exposition at much the same level throughout the volume, sometimes allowing gradients to steepen in the
course of a chapter or a section, but always trying to return to something which anyone who has mastered
Volume 1 ought to be able to cope with. (Though perhaps the main theorems of Chapter 26 are harder
work than the principal results elsewhere, and §286 is only for the most determined.)

I said there were seven topics, and you will see eight chapters ahead of you. This is because Chapter 21
is rather different from the rest. It is the purest of pure measure theory, and is here only because there are
places later in the volume where (in my view) the theorems make sense only in the light of some abstract
concepts which are not particularly difficult, but are also not obvious. However it is fair to say that the
most important ideas of this volume do not really depend on the work of Chapter 21.

As always, it is a puzzle to know how much prior knowledge to assume in this volume. I do of course call
on the results of Volume 1 of this treatise whenever they seem to be relevant. I do not doubt, however, that
there will be readers who have learnt the elementary theory from other sources. Provided you can, from first
principles, construct Lebesgue measure and prove the basic convergence theorems for integrals on arbitrary
measure spaces, you ought to be able to embark on the present volume. Perhaps it would be helpful to have
in hand the results-only version of Volume 1, since that includes the most important definitions as well as
statements of the theorems.

There is also the question of how much material from outside measure theory is needed. Chapter 21
calls for some non-trivial set theory (given in §2A1), but the more advanced ideas are needed only for the
counter-examples in §216, and can be passed over to begin with. The problems become acute in Chapter
24. Here we need a variety of results from functional analysis, some of them depending on non-trivial ideas
in general topology. For a full understanding of this material there is no substitute for a course in normed
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spaces up to and including a study of weak compactness. But I do not like to insist on such a preparation,
because it is likely to be simultaneously too much and too little. Too much, because I hardly mention linear
operators at this stage; too little, because I do ask for some of the theory of non-locally-convex spaces,
which is often omitted in first courses on functional analysis. At the risk, therefore, of wasting paper, I have
written out condensed accounts of the essential facts (§§2A3-2A5).

Note on second printing, April 2003

For the second printing of this volume, I have made two substantial corrections to inadequate proofs and
a large number of minor amendments; I am most grateful to T.D.Austin for his careful reading of the first
printing. In addition, I have added a dozen exercises and a handful of straightforward results which turn
out to be relevant to the work of later volumes and fit naturally here.

The regular process of revision of this work has led me to make a couple of notational innovations not
described explicitly in the early printings of Volume 1. I trust that most readers will find these immediately
comprehensible. If, however, you find that there is a puzzling cross-reference which you are unable to match
with anything in the version of Volume 1 which you are using, it may be worth while checking the errata
pages in http://www1.essex.ac.uk/maths/people/fremlin/mterr.htm.

Note on hardback edition, January 2010

For the new (‘Lulu’) edition of this volume, I have eliminated a number of further errors; no doubt many
remain. There are many new exercises, several new theorems and some corresponding rearrangements of
material. The new results are mostly additions with little effect on the structure of the work, but there is a
short new section (§266) on the Brunn-Minkowski inequality.

Note on second printing of hardback edition, April 2016

There is the usual crop of small mistakes to be corrected, and assorted minor amendments and additions.
But my principal reason for issuing a new printed version is a major fault in the proof of Carleson’s theorem,
where an imprudent move to simplify the argument of Lacey & Thiele 00 was based on an undergraduate
error1. While the blunder is conspicuous enough, a resolution seems to require an adjustment in a definition,
and is not a fair demand on a graduate seminar, the intended readership for this material. Furthermore, the
proof was supposed to be a distinguishing feature of not only this volume, but of the treatise as a whole.
So, with apologies to any who retired hurt from an encounter with the original version, I present a revision
which I hope is essentially sound.

1I am most grateful to A.Derighetti for bringing this to my attention.
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Version of 17.1.15

*Chapter 21

Taxonomy of measure spaces

I begin this volume with a ‘starred chapter’. The point is that I do not really recommend this chapter
for beginners. It deals with a variety of technical questions which are of great importance for the later
development of the subject, but are likely to be both abstract and obscure for anyone who has not encoun-
tered the problems these techniques are designed to solve. On the other hand, if (as is customary) this
work is omitted, and the ideas are introduced only when urgently needed, the student is likely to finish with
very vague ideas on which theorems can be expected to apply to which types of measure space, and with
no vocabulary in which to express those ideas. I therefore take a few pages to introduce the terminology
and concepts which can be used to distinguish ‘good’ measure spaces from others, with a few of the basic
relationships. The only paragraphs which are immediately relevant to the theory set out in Volume 1 are
those on ‘complete’, ‘σ-finite’ and ‘semi-finite’ measure spaces (211A, 211D, 211F, 211Lc, §212, 213A-213B,
215B), and on Lebesgue measure (211M). For the rest, I think that a newcomer to the subject can very
well pass over this chapter for the time being, and return to it for particular items when the text of later
chapters refers to it. On the other hand, it can also be used as an introduction to the flavour of the ‘purest’
kind of measure theory, the study of measure spaces for their own sake, with a systematic discussion of a
few of the elementary constructions.

Version of 20.11.03

211 Definitions

I start with a list of definitions, corresponding to the concepts which I have found to be of value in
distinguishing different types of measure space. Necessarily, the significance of many of these ideas is likely
to be obscure until you have encountered some of the obstacles which arise later on. Nevertheless, you
will I hope be able to deal with these definitions on a formal, abstract basis, and to follow the elementary
arguments involved in establishing the relationships between them (211L).

In 216C-216E below I will give three substantial examples to demonstrate the rich variety of objects which
the definition of ‘measure space’ encompasses. In the present section, therefore, I content myself with very
brief descriptions of sufficient cases to show at least that each of the definitions here discriminates between
different spaces (211M-211R).

211A Definition Let (X,Σ, µ) be a measure space. Then µ, or (X,Σ, µ), is (Carathéodory) complete
if whenever A ⊆ E ∈ Σ and µE = 0 then A ∈ Σ.

211B Definition Let (X,Σ, µ) be a measure space. Then (X,Σ, µ) is a probability space if µX = 1.
In this case µ is called a probability or probability measure.

211C Definition Let (X,Σ, µ) be a measure space. Then µ, or (X,Σ, µ), is totally finite if µX < ∞.

211D Definition Let (X,Σ, µ) be a measure space. Then µ, or (X,Σ, µ), is σ-finite if there is a sequence
〈En〉n∈N of measurable sets of finite measure such that X =

⋃
n∈N

En.

211E Definition Let (X,Σ, µ) be a measure space. Then µ, or (X,Σ, µ), is strictly localizable or
decomposable if there is a partition 〈Xi〉i∈I of X into measurable sets of finite measure such that

Σ = {E : E ⊆ X, E ∩Xi ∈ Σ ∀ i ∈ I},

µE =
∑

i∈I µ(E ∩Xi) for every E ∈ Σ.

I will call such a family 〈Xi〉i∈I a decomposition of X.

c© 1994 D. H. Fremlin
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4 Taxonomy of measure spaces 211F

211F Definition Let (X,Σ, µ) be a measure space. Then µ, or (X,Σ, µ), is semi-finite if whenever
E ∈ Σ and µE = ∞ there is an F ⊆ E such that F ∈ Σ and 0 < µF < ∞.

211G Definition Let (X,Σ, µ) be a measure space. Then µ, or (X,Σ, µ), is localizable if it is semi-finite
and, for every E ⊆ Σ, there is an H ∈ Σ such that (i) E \H is negligible for every E ∈ E (ii) if G ∈ Σ and
E \G is negligible for every E ∈ E , then H \G is negligible. It will be convenient to call such a set H an
essential supremum of E in Σ.

211H Definition Let (X,Σ, µ) be a measure space. Then µ, or (X,Σ, µ), is locally determined if it
is semi-finite and

Σ = {E : E ⊆ X, E ∩ F ∈ Σ whenever F ∈ Σ and µF < ∞}.

211I Definition Let (X,Σ, µ) be a measure space. A set E ∈ Σ is an atom for µ if µE > 0 and whenever
F ∈ Σ, F ⊆ E one of F , E \ F is negligible.

211J Definition Let (X,Σ, µ) be a measure space. Then µ, or (X,Σ, µ), is atomless or diffused if
there are no atoms for µ.

211K Definition Let (X,Σ, µ) be a measure space. Then µ, or (X,Σ, µ), is purely atomic if whenever
E ∈ Σ and E is not negligible there is an atom for µ included in E.

Remark Every point-supported measure is purely atomic, but not every purely atomic measure is point-
supported.

211L Theorem (a) A probability space is totally finite.
(b) A totally finite measure space is σ-finite.
(c) A σ-finite measure space is strictly localizable.
(d) A strictly localizable measure space is localizable and locally determined.
(e) A localizable measure space is semi-finite.
(f) A locally determined measure space is semi-finite.

211M Example: Lebesgue measure Write µ for Lebesgue measure on R
r.

(a) µ is complete.

(b) µ is σ-finite.

(c) µ is strictly localizable, localizable, locally determined and semi-finite.

(d) µ is atomless.

(e) It is now a trivial observation that µ cannot be purely atomic.

211N Counting measure Take X to be any uncountable set, and µ to be counting measure on X.

(a) µ is complete.

(b) µ is not σ-finite. µ is not a probability measure nor totally finite.

(c) µ is strictly localizable. µ is localizable, locally determined and semi-finite.

(d) µ is purely atomic. µ is not atomless.

211O A non-semi-finite space Set X = {0}, Σ = {∅, X}, µ∅ = 0 and µX = ∞. Then µ is not
semi-finite, localizable, locally determined, σ-finite, totally finite nor a probability measure. µ is complete.
µ is purely atomic (indeed, it is point-supported).

Measure Theory (abridged version)



212Cd Complete spaces 5

211P A non-complete space Write B for the σ-algebra of Borel subsets of R, and µ for the restriction
of Lebesgue measure to B. Then (R,B, µ) is atomless, σ-finite and not complete.

211Q Some probability spaces Two constructions of probability spaces are
(a) the subspace measure induced by Lebesgue measure on [0, 1];
(b) the point-supported measure induced on a setX by a function h : X → [0, 1] such that

∑
x∈X h(x) = 1,

writing µE =
∑

x∈E h(x) for every E ⊆ X; for instance, if X is a singleton {x} and h(x) = 1, or if X = N

and h(n) = 2−n−1.
Of these two, (a) gives an atomless probability measure and (b) gives a purely atomic probability measure.

211R Countable-cocountable measure(a) Let X be any set. Let Σ be the family of those sets
E ⊆ X such that either E or X \ E is countable. Then Σ is a σ-algebra of subsets of X. Σ is called the
countable-cocountable σ-algebra of X.

(b) Now consider the function µ : Σ → {0, 1} defined by writing µE = 0 if E is countable, µE = 1 if
E ∈ Σ and E is not countable. Then µ is a measure. This is the countable-cocountable measure on
X.

(c) If X is any uncountable set and µ is the countable-cocountable measure on X, then µ is a complete,
purely atomic probability measure, but is not point-supported.

Version of 10.9.04

212 Complete spaces

In the next two sections of this chapter I give brief accounts of the theory of measure spaces possessing
certain of the properties described in §211. I begin with ‘completeness’. I give the elementary facts about
complete measure spaces in 212A-212B; then I turn to the notion of ‘completion’ of a measure (212C) and
its relationships with the other concepts of measure theory introduced so far (212D-212G).

212A Proposition Any measure space constructed by Carathéodory’s method is complete.

212B Proposition (a) If (X,Σ, µ) is a complete measure space, then any conegligible subset of X is
measurable.

(b) Let (X,Σ, µ) be a complete measure space, and f a [−∞,∞]-valued function defined on a subset of
X. If f is virtually measurable, then f is measurable.

(c) Let (X,Σ, µ) be a complete measure space, and f a real-valued function defined on a conegligible
subset of X. Then the following are equiveridical, that is, if one is true so are the others:

(i) f is integrable;
(ii) f is measurable and |f | is integrable;
(iii) f is measurable and there is an integrable function g such that |f | ≤a.e. g.

212C The completion of a measure Let (X,Σ, µ) be any measure space.

(a) Let Σ̂ be the family of those sets E ⊆ X such that there are E′, E′′ ∈ Σ with E′ ⊆ E ⊆ E′′ and

µ(E′′ \ E′) = 0. Then Σ̂ is a σ-algebra of subsets of X.

(b) For E ∈ Σ̂, set

µ̂E = µ∗E = min{µF : E ⊆ F ∈ Σ}.

(c) (X, Σ̂, µ̂) is a measure space.

(d) (X, Σ̂, µ̂) is called the completion of the measure space (X,Σ, µ); I will call µ̂ the completion of

µ, and occasionally I will call Σ̂ the completion of Σ. Members of Σ̂ are sometimes called µ-measurable.

D.H.Fremlin



6 Taxonomy of measure spaces 212D

212D Proposition Let (X,Σ, µ) be any measure space. Then (X, Σ̂, µ̂), as defined in 212C, is a complete

measure space and µ̂ is an extension of µ; and (X, Σ̂, µ̂) = (X,Σ, µ) iff (X,Σ, µ) is complete.

212E Proposition Let (X,Σ, µ) be a measure space, and (X, Σ̂, µ̂) its completion.
(a) The outer measures µ̂∗, µ∗ defined from µ̂ and µ coincide.
(b) µ, µ̂ give rise to the same negligible and conegligible sets and the same sets of full outer measure.

(c) µ̂ is the only measure with domain Σ̂ which agrees with µ on Σ.

(d) A subset of X belongs to Σ̂ iff it is expressible as F△A where F ∈ Σ and A is µ-negligible.

212F Proposition Let (X,Σ, µ) be a measure space and (X, Σ̂, µ̂) its completion.

(a) A [−∞,∞]-valued function f defined on a subset of X is Σ̂-measurable iff it is µ-virtually measurable.
(b) Let f be a [−∞,∞]-valued function defined on a subset of X. Then

∫
fdµ =

∫
fdµ̂ if either is defined

in [−∞,∞]; in particular, f is µ-integrable iff it is µ̂-integrable.

212G Proposition Let (X,Σ, µ) be a measure space, and (X, Σ̂, µ̂) its completion.

(a) (X, Σ̂, µ̂) is a probability space, or totally finite, or σ-finite, or semi-finite, or localizable, iff (X,Σ, µ)
is.

(b) (X, Σ̂, µ̂) is strictly localizable if (X,Σ, µ) is, and any decomposition of X for µ is a decomposition
for µ̂.

(c) A set H ∈ Σ̂ is an atom for µ̂ iff there is an E ∈ Σ such that E is an atom for µ and µ̂(H△E) = 0.

(d) (X, Σ̂, µ̂) is atomless or purely atomic iff (X,Σ, µ) is.

Version of 13.9.13

213 Semi-finite, locally determined and localizable spaces

In this section I collect a variety of useful facts concerning these types of measure space. I start with the
characteristic properties of semi-finite spaces (213A-213B), and continue with complete locally determined
spaces (213C) and the concept of ‘c.l.d. version’ (213D-213H), the most powerful of the universally available
methods of modifying a measure space into a better-behaved one. I briefly discuss ‘locally determined
negligible sets’ (213I-213L), and measurable envelopes (213L-213M), and end with results on localizable
spaces (213N) and strictly localizable spaces (213O).

213A Lemma Let (X,Σ, µ) be a semi-finite measure space. Then

µE = sup{µF : F ∈ Σ, F ⊆ E, µF < ∞}

for every E ∈ Σ.

213B Proposition Let (X,Σ, µ) be a semi-finite measure space. Let f be a µ-virtually measurable
[0,∞]-valued function defined almost everywhere in X. Then

∫
f = sup{

∫
g : g is a simple function, g ≤a.e. f}

= sup
F∈Σ,µF<∞

∫
F

f

in [0,∞].

*213C Proposition Let (X,Σ, µ) be a complete locally determined measure space, and µ∗ the outer
measure derived from µ. Then the measure defined from µ∗ by Carathéodory’s method is µ itself.

c© 2000 D. H. Fremlin
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213L Semi-finite, locally determined and localizable spaces 7

213D C.l.d. versions: Proposition Let (X,Σ, µ) be a measure space. Write (X, Σ̂, µ̂) for its completion
and Σf for {E : E ∈ Σ, µE < ∞}. Set

Σ̃ = {H : H ⊆ X, H ∩ E ∈ Σ̂ for every E ∈ Σf},

and for H ∈ Σ̃ set

µ̃H = sup{µ̂(H ∩ E) : E ∈ Σf}.

Then (X, Σ̃, µ̃) is a complete locally determined measure space.

213E Definition For any measure space (X,Σ, µ), I will call (X, Σ̃, µ̃), as constructed in 213D, the c.l.d.
version (‘complete locally determined version’) of (X,Σ, µ); and µ̃ will be the c.l.d. version of µ.

213F Proposition Let (X,Σ, µ) be any measure space and (X, Σ̃, µ̃) its c.l.d. version.

(a) Σ ⊆ Σ̃ and µ̃E = µE whenever E ∈ Σ and µE < ∞ – in fact, if (X, Σ̂, µ̂) is the completion of

(X,Σ, µ), Σ̂ ⊆ Σ̃ and µ̃E = µ̂E whenever µ̂E < ∞.
(b) Writing µ̃∗ and µ∗ for the outer measures defined from µ̃ and µ respectively, µ̃∗A ≤ µ∗A for every

A ⊆ X, with equality if µ∗A is finite. In particular, µ-negligible sets are µ̃-negligible; consequently, µ-
conegligible sets are µ̃-conegligible.

(c) If H ∈ Σ̃,
(i) µ̃H = sup{µF : E ∈ Σ, µF < ∞, F ⊆ H};
(ii) there is an E ∈ Σ such that E ⊆ H and µE = µ̃H, so that if µ̃H < ∞ then µ̃(H \ E) = 0.

213G Proposition Let (X,Σ, µ) be a measure space, and (X, Σ̃, µ̃) its c.l.d. version.

(a) If a real-valued function f defined on a subset of X is µ-virtually measurable, it is Σ̃-measurable.
(b) If a real-valued function is µ-integrable, it is µ̃-integrable with the same integral.
(c) If f is a µ̃-integrable real-valued function, there is a µ-integrable real-valued function which is equal

to f µ̃-almost everywhere.

213H Proposition Let (X,Σ, µ) be a measure space, (X, Σ̂, µ̂) its completion and (X, Σ̃, µ̃) its c.l.d.
version.

(a) If (X,Σ, µ) is a probability space, or totally finite, or σ-finite, or strictly localizable, so is (X, Σ̃, µ̃),
and in all these cases µ̃ = µ̂;

(b) if (X,Σ, µ) is localizable, so is (X, Σ̃, µ̃), and for everyH ∈ Σ̃ there is an E ∈ Σ such that µ̃(E△H) = 0;
(c) (X,Σ, µ) is semi-finite iff µ̃F = µF for every F ∈ Σ, and in this case

∫
fdµ̃ =

∫
fdµ whenever the

latter is defined in [−∞,∞];

(d) a set H ∈ Σ̃ is an atom for µ̃ iff there is an atom E for µ such that µE < ∞ and µ̃(H△E) = 0;

(e) if (X,Σ, µ) is atomless or purely atomic, so is (X, Σ̃, µ̃);
(f) (X,Σ, µ) is complete and locally determined iff µ̃ = µ.

213I Locally determined negligible sets: Definition A measure space (X,Σ, µ) has locally deter-
mined negligible sets if for every non-negligible A ⊆ X there is an E ∈ Σ such that µE < ∞ and A ∩ E
is not negligible.

213J Proposition If a measure space (X,Σ, µ) is either strictly localizable or complete and locally
determined, it has locally determined negligible sets.

*213K Lemma If a measure space (X,Σ, µ) has locally determined negligible sets, and E ⊆ Σ has an
essential supremum H ∈ Σ, then H \

⋃
E is negligible.

213L Proposition Let (X,Σ, µ) be a localizable measure space with locally determined negligible sets.
Then every subset A of X has a measurable envelope.

D.H.Fremlin



8 Taxonomy of measure spaces 213M

213M Corollary (a) If (X,Σ, µ) is σ-finite, then every subset of X has a measurable envelope for µ.
(b) If (X,Σ, µ) is localizable, then every subset of X has a measurable envelope for the c.l.d. version of

µ.

213N Theorem Let (X,Σ, µ) be a localizable measure space. Suppose that Φ is a family of measurable
real-valued functions, all defined on measurable subsets of X, such that whenever f , g ∈ Φ then f = g
almost everywhere in dom f ∩dom g. Then there is a measurable function h : X → R such that every f ∈ Φ
agrees with h almost everywhere in dom f .

213O Proposition Let (X,Σ, µ) be a complete locally determined space.
(a) Suppose that there is a disjoint family E ⊆ Σ such that (α) µE < ∞ for every E ∈ E (β) whenever

F ∈ Σ and µF > 0 then there is an E ∈ E such that µ(E ∩ F ) > 0. Then (X,Σ, µ) is strictly localizable,⋃
E is conegligible, and E ∪ {X \

⋃
E} is a decomposition of X.

(b) Suppose that 〈Xi〉i∈I is a partition of X into measurable sets of finite measure such that whenever
E ∈ Σ and µE > 0 there is an i ∈ I such that µ(E ∩ Xi) > 0. Then (X,Σ, µ) is strictly localizable, and
〈Xi〉i∈I is a decomposition of X.

Version of 22.5.09

214 Subspaces

In §131 I described a construction for subspace measures on measurable subsets. It is now time to give
the generalization to subspace measures on arbitrary subsets of a measure space. The relationship between
this construction and the properties listed in §211 is not quite as straightforward as one might imagine, and
in this section I try to give a full account of what can be expected of subspaces in general. I think that
for the present volume only (i) general subspaces of σ-finite spaces and (ii) measurable subspaces of general
measure spaces will be needed in any essential way, and these do not give any difficulty; but in later volumes
we shall need the full theory.

I begin with a general construction for ‘subspace measures’ (214A-214C), with an account of integration
with respect to a subspace measure (214E-214G); these (with 131E-131H) give a solid foundation for the
concept of ‘integration over a subset’ (214D). I present this work in its full natural generality, which will
eventually be essential, but even for Lebesgue measure alone it is important to be aware of the ideas here.
I continue with answers to some obvious questions concerning subspace measures and the properties of
measure spaces so far considered, both for general subspaces (214I) and for measurable subspaces (214K),
and I mention a basic construction for assembling measure spaces side-by-side, the ‘direct sums’ of 214L-
214M. At the end of the section I discuss a measure extension problem (214O-214P).

214A Proposition Let (X,Σ, µ) be a measure space, and Y any subset of X. Let µ∗ be the outer
measure defined from µ, and set ΣY = {E ∩ Y : E ∈ Σ}; let µY be the restriction of µ∗ to ΣY . Then
(Y,ΣY , µY ) is a measure space.

214B Definition If (X,Σ, µ) is any measure space and Y is any subset of X, then µY , defined as in
214A, is the subspace measure on Y .

214C Lemma Let (X,Σ, µ) be a measure space, Y a subset of X, µY the subspace measure on Y and
ΣY its domain. Then

(a) for any F ∈ ΣY , there is an E ∈ Σ such that F = E ∩ Y and µE = µY F ;
(b) for any A ⊆ Y , A is µY -negligible iff it is µ-negligible;
(c)(i) if A ⊆ X is µ-conegligible, then A ∩ Y is µY -conegligible;

(ii) if A ⊆ Y is µY -conegligible, then A ∪ (X \ Y ) is µ-conegligible;
(d) (µY )

∗ agrees with µ∗ on PY ;
(e) if Z ⊆ Y ⊆ X, then ΣZ = (ΣY )Z , the subspace σ-algebra of subsets of Z regarded as a subspace of

(Y,ΣY ), and µZ = (µY )Z is the subspace measure on Z regarded as a subspace of (Y, µY );
(f) if Y ∈ Σ, then µY , as defined here, is exactly the subspace measure on Y defined in 131A-131B.

c© 2009 D. H. Fremlin
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214K Subspaces 9

214D Integration over subsets: Definition Let (X,Σ, µ) be a measure space, Y a subset of X and f
a [−∞,∞]-valued function defined on a subset of X. By

∫
Y
f I mean

∫
(f↾Y )dµY , if this exists in [−∞,∞].

214E Proposition Let (X,Σ, µ) be a measure space, Y ⊆ X, and f a [−∞,∞]-valued function defined
on a subset dom f of X.

(a) If f is µ-integrable then f↾Y is µY -integrable, and
∫
Y
f ≤

∫
f if f is non-negative.

(b) If dom f ⊆ Y and f is µY -integrable, then there is a µ-integrable function f̃ on X, extending f , such

that
∫
F
f̃ =

∫
F∩Y

f for every F ∈ Σ.

214F Proposition Let (X,Σ, µ) be a measure space, Y a subset of X, and f a [−∞,∞]-valued function
such that

∫
X
f is defined in [−∞,∞]. If either Y has full outer measure in X or f is zero almost everywhere

in X \ Y , then
∫
Y
f is defined and equal to

∫
X
f .

214G Corollary Let (X,Σ, µ) be a measure space, Y a subset of X, and E ∈ Σ a measurable envelope
of Y . If f is a [−∞,∞]-valued function such that

∫
E
f is defined in [−∞,∞], then

∫
Y
f is defined and equal

to
∫
E
f .

214H Subspaces and Carathéodory’s method: Lemma Let X be a set, Y ⊆ X a subset, and θ an
outer measure on X.

(a) θY = θ↾PY is an outer measure on Y .
(b) Let µ, ν be the measures on X, Y defined by Carathéodory’s method from the outer measures θ, θY ,

and Σ, T their domains; let µY be the subspace measure on Y induced by µ, and ΣY its domain. Then
(i) ΣY ⊆ T and νF ≤ µY F for every F ∈ ΣY ;
(ii) if Y ∈ Σ then ν = µY ;
(iii) if θ = µ∗ then ν extends µY ;
(iv) if θ = µ∗ and θY < ∞ then ν = µY .

214I Theorem Let (X,Σ, µ) be a measure space and Y a subset of X. Let µY be the subspace measure
on Y and ΣY its domain.

(a) If (X,Σ, µ) is complete, or totally finite, or σ-finite, or strictly localizable, so is (Y,ΣY , µY ). If 〈Xi〉i∈I

is a decomposition of X for µ, then 〈Xi ∩ Y 〉i∈I is a decomposition of Y for µY .
(b) Writing µ̂ for the completion of µ, the subspace measure µ̂Y = (µ̂)Y is the completion of µY .
(c) If (X,Σ, µ) has locally determined negligible sets, then µY is semi-finite.
(d) If (X,Σ, µ) is complete and locally determined, then (Y,ΣY , µY ) is complete and semi-finite.
(e) If (X,Σ, µ) is complete, locally determined and localizable then so is (Y,ΣY , µY ).

214J Upper and lower integrals: Proposition Let (X,Σ, µ) be a measure space, A a subset of X
and f a real-valued function defined almost everywhere in X. Then

(a) if either f is non-negative or A has full outer measure in X,
∫
(f↾A)dµA ≤

∫
fdµ;

(b) if A has full outer measure in X,
∫
fdµ ≤

∫
(f↾A)dµA.

214K Measurable subspaces: Proposition Let (X,Σ, µ) be a measure space.
(a) Let E ∈ Σ and let µE be the subspace measure, with ΣE its domain. If (X,Σ, µ) is complete, or totally

finite, or σ-finite, or strictly localizable, or semi-finite, or localizable, or locally determined, or atomless, or
purely atomic, so is (E,ΣE , µE).

(b) Suppose that 〈Xi〉i∈I is a partition of X into measurable sets such that

Σ = {E : E ⊆ X, E ∩Xi ∈ Σ for every i ∈ I},

µE =
∑

i∈I µ(E ∩Xi) for every E ∈ Σ.

Then (X,Σ, µ) is complete, or strictly localizable, or semi-finite, or localizable, or locally determined, or
atomless, or purely atomic, iff (Xi,ΣXi

, µXi
) has that property for every i ∈ I.

D.H.Fremlin



10 Taxonomy of measure spaces 214L

214L Direct sums Let 〈(Xi,Σi, µi)〉i∈I be any indexed family of measure spaces. Set X =
⋃

i∈I(Xi ×
{i}); for E ⊆ X, i ∈ I set Ei = {x : (x, i) ∈ E}. Write

Σ = {E : E ⊆ X, Ei ∈ Σi for every i ∈ I},

µE =
∑

i∈I µiEi for every E ∈ Σ.

Then it is easy to check that (X,Σ, µ) is a measure space; I will call it the direct sum of the family
〈(Xi,Σi, µi)〉i∈I . Note that if (X,Σ, µ) is any strictly localizable measure space, with decomposition 〈Xi〉i∈I ,
then we have a natural isomorphism between (X,Σ, µ) and the direct sum (X ′,Σ′, µ′) =

⊕
i∈I(Xi,ΣXi

, µXi
)

of the subspace measures, if we match (x, i) ∈ X ′ with x ∈ X for every i ∈ I and x ∈ Xi.

214M Proposition Let 〈(Xi,Σi, µi)〉i∈I be a family of measure spaces, with direct sum (X,Σ, µ). Let f
be a real-valued function defined on a subset ofX. For each i ∈ I, set fi(x) = f(x, i) whenever (x, i) ∈ dom f .

(a) f is measurable iff fi is measurable for every i ∈ I.
(b) If f is non-negative, then

∫
fdµ =

∑
i∈I

∫
fidµi if either is defined in [0,∞].

214N Corollary Let (X,Σ, µ) be a measure space with a decomposition 〈Xi〉i∈I . If f is a real-valued
function defined on a subset of X, then

(a) f is measurable iff f↾Xi is measurable for every i ∈ I,
(b) if f ≥ 0, then

∫
f =

∑
i∈I

∫
Xi

f if either is defined in [0,∞].

*214O Lemma Let (X,Σ, µ) be a measure space, and I an ideal of subsets of X, that is, a family of
subsets of X such that ∅ ∈ I, I ∪ J ∈ I for all I, J ∈ I, and I ∈ I whenever I ⊆ J ∈ I. Then there is a
measure λ on X such that Σ ∪ I ⊆ domλ, µE = λE + supI∈I µ∗(E ∩ I) for every E ∈ Σ, and λI = 0 for
every I ∈ I.

*214P Theorem Let (X,Σ, µ) be a measure space, and A a family of subsets of X which is well-ordered
by the relation ⊆. Then there is an extension of µ to a measure λ on X such that λ(E ∩ A) is defined and
equal to µ∗(E ∩A) whenever E ∈ Σ and A ∈ A.

*214Q Proposition Suppose that (X,Σ, µ) is an atomless measure space and Y a subset of X such that
the subspace measure µY is semi-finite. Then µY is atomless.

Version of 13.11.13

215 σ-finite spaces and the principle of exhaustion

I interpolate a short section to deal with some useful facts which might get lost if buried in one of the
longer sections of this chapter. The great majority of the applications of measure theory involve σ-finite
spaces, to the point that many authors skim over any others. I myself prefer to signal the importance of
such concepts by explicitly stating just which theorems apply only to the restricted class of spaces. But
undoubtedly some facts about σ-finite spaces need to be grasped early on. In 215B I give a list of properties
characterizing σ-finite spaces. Some of these make better sense in the light of the principle of exhaustion
(215A). I take the opportunity to include a fundamental fact about atomless measure spaces (215D).

215A The principle of exhaustion: Lemma Let (X,Σ, µ) be any measure space and E ⊆ Σ a
non-empty set such that supn∈N µFn is finite for every non-decreasing sequence 〈Fn〉n∈N in E .

(a) There is a non-decreasing sequence 〈Fn〉n∈N in E such that, for every E ∈ Σ, either there is an n ∈ N

such that E ∪ Fn is not included in any member of E or, setting F =
⋃

n∈N
Fn,

limn→∞ µ(E \ Fn) = µ(E \ F ) = 0.

In particular, if E ∈ E and E ⊇ F , then E \ F is negligible.

c© 2000 D. H. Fremlin
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(b) If E is upwards-directed, then there is a non-decreasing sequence 〈Fn〉n∈N in E such that, setting
F =

⋃
n∈N

Fn, µF = supE∈E µE and E \F is negligible for every E ∈ E , so that F is an essential supremum
of E in Σ.

(c) If the union of any non-decreasing sequence in E belongs to E , then there is an F ∈ E such that E \F
is negligible whenever E ∈ E and F ⊆ E.

215B Proposition Let (X,Σ, µ) be a semi-finite measure space. Write N for the family of µ-negligible
sets and Σf for the family of measurable sets of finite measure. Then the following are equiveridical:

(i) (X,Σ, µ) is σ-finite;
(ii) every disjoint family in Σf \ N is countable;
(iii) every disjoint family in Σ \ N is countable;
(iv) for every E ⊆ Σ there is a countable set E0 ⊆ E such that E \

⋃
E0 is negligible for every E ∈ E ;

(v) for every non-empty upwards-directed E ⊆ Σ there is a non-decreasing sequence 〈Fn〉n∈N in E such
that E \

⋃
n∈N

Fn is negligible for every E ∈ E ;
(vi) for every non-empty E ⊆ Σ, there is a non-decreasing sequence 〈Fn〉n∈N in E such that E \

⋃
n∈N

Fn

is negligible whenever E ∈ E and E ⊇ Fn for every n ∈ N;
(vii) either µX = 0 or there is a probability measure ν onX with the same domain and the same negligible

sets as µ;
(viii) there is a measurable integrable function f : X → ]0, 1];
(ix) either µX = 0 or there is a measurable function f : X → ]0,∞[ such that

∫
fdµ = 1.

215C Corollary Let (X,Σ, µ) be a σ-finite measure space, and suppose that E ⊆ Σ is any non-empty
set.

(a) There is a non-decreasing sequence 〈Fn〉n∈N in E such that, for every E ∈ Σ, either there is an n ∈ N

such that E ∪ Fn is not included in any member of E or E \
⋃

n∈N
Fn is negligible.

(b) If E is upwards-directed, then there is a non-decreasing sequence 〈Fn〉n∈N in E such that
⋃

n∈N
Fn is

an essential supremum of E in Σ.
(c) If the union of any non-decreasing sequence in E belongs to E , then there is an F ∈ E such that E \F

is negligible whenever E ∈ E and F ⊆ E.

215D Proposition Let (X,Σ, µ) be an atomless measure space. If E ∈ Σ and 0 ≤ α ≤ µE < ∞, there
is an F ∈ Σ such that F ⊆ E and µF = α.

*215E Proposition Let (X,Σ, µ) be an atomless measure space and x ∈ X.
(a) If µ∗{x} is finite then {x} is negligible.
(b) If µ has locally determined negligible sets then {x} is negligible.
(c) If µ is localizable then {x} is negligible.

Version of 25.9.04

216 Examples

It is common practice – and, in my view, good practice – in books on pure mathematics, to provide
discriminating examples; I mean that whenever we are given a list of new concepts, we expect to be provided
with examples to show that we have a fair picture of the relationships between them, and in particular that
we are not being kept ignorant of some startling implication. Concerning the concepts listed in 211A-211K,
we have ten different properties which some, but not all, measure spaces possess, giving a conceivable total
of 210 different types of measure space, classified according to which of these ten properties they have. The
list of basic relationships in 211L reduces these 1024 possibilities to 72. Observing that a space can be
simultaneously atomless and purely atomic only when the measure of the whole space is 0, we find ourselves
with 56 possibilities, being two trivial cases with µX = 0 (because such a measure may or may not be
complete) together with 9× 2× 3 cases, corresponding to the nine classes

c© 1994 D. H. Fremlin
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12 Taxonomy of measure spaces §216 intro.

probability spaces,
spaces which are totally finite, but not probability spaces,
spaces which are σ-finite, but not totally finite,
spaces which are strictly localizable, but not σ-finite,
spaces which are localizable and locally determined, but not strictly localizable,
spaces which are localizable, but not locally determined,
spaces which are locally determined, but not localizable,
spaces which are semi-finite, but neither locally determined nor localizable,
spaces which are not semi-finite;

the two classes
spaces which are complete,
spaces which are not complete;

and the three classes
spaces which are atomless, not of measure 0,
spaces which are purely atomic, not of measure 0,
spaces which are neither atomless nor purely atomic.

I do not propose to give a complete set of fifty-six examples, particularly as rather fewer than fifty-six
different ideas are required. However, I do think that for a proper understanding of abstract measure spaces
it is necessary to have seen realizations of some of the critical combinations of properties. I therefore take
a few paragraphs to describe three special examples to add to those of 211M-211R.

216A Lebesgue measure(a) Lebesgue measure µ on R is complete, atomless and σ-finite, therefore
strictly localizable, localizable and locally determined.

(b) The subspace measure µ[0,1] on [0, 1] is a complete, atomless probability measure.
(c) The restriction µ↾B of µ to the Borel σ-algebra B of R is atomless, σ-finite and not complete.

*216C A complete, localizable, non-locally-determined space(a) Let I be any uncountable set,
and set X = {0, 1} × I. For E ⊆ X, y ∈ {0, 1} set E[{y}] = {i : (y, i) ∈ E} ⊆ I. Set

Σ = {E : E ⊆ X, E[{0}]△E[{1}] is countable}.

Then Σ is a σ-algebra of subsets of X.
For E ∈ Σ, set µE = #(E[{0}]) if this is finite, ∞ otherwise; then (X,Σ, µ) is a measure space.

(b) (X,Σ, µ) is complete.

(c) (X,Σ, µ) is semi-finite.

(d) (X,Σ, µ) is localizable.

(e) (X,Σ, µ) is not locally determined.

(f) (X,Σ, µ) is purely atomic.

*216D A complete, locally determined space which is not localizable We need two sets I, J
such that I is uncountable, I ⊆ J and J cannot be expressed as

⋃
i∈I Ki where every Ki is countable.

(a) Let T be the countable-cocountable σ-algebra of J and ν the countable-cocountable measure on J .
Set X = J × J and for E ⊆ X set

E[{ξ}] = {η : (ξ, η) ∈ E}, E−1[{ξ}] = {η : (η, ξ) ∈ E}

for every ξ ∈ J . Set

Σ = {E : E[{ξ}] and E−1[{ξ}] belong to T for every ξ ∈ J},

µE =
∑

ξ∈J νE[{ξ}] +
∑

ξ∈J νE−1[{ξ}]

for every E ∈ Σ. Σ is a σ-algebra and µ is a measure.

(b) (X,Σ, µ) is complete.

Measure Theory (abridged version)
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(d) (X,Σ, µ) is semi-finite.

(e) (X,Σ, µ) is locally determined.

(f) (X,Σ, µ) is not localizable.

(g) (X,Σ, µ) is purely atomic.

*216E A complete, locally determined, localizable space which is not strictly localizable(a)
Let C be any set with cardinal greater than c. Set I = PC and X = {0, 1}I . For γ ∈ C, define xγ ∈ X by
saying that xγ(Γ) = 1 if γ ∈ Γ ⊆ C and xγ(Γ) = 0 if γ /∈ Γ ⊆ C. Let K be the family of countable subsets
of I, and for K ∈ K, γ ∈ C set

FγK = {x : x ∈ X, x↾K = xγ↾K} ⊆ X.

Let

Σγ = {E : E ⊆ X, either there is a K ∈ K such that FγK ⊆ E

or there is a K ∈ K such that FγK ⊆ X \ E}.

Then Σγ is a σ-algebra of subsets of X.

(b) Set

Σ =
⋂

γ∈C Σγ ;

then Σ is a σ-algebra of subsets of X. Define µ : Σ → [0,∞] by setting

µE = #({γ : xγ ∈ E}) if this is finite,

= ∞ otherwise;

then µ is a measure.

(c) It will be convenient later to know something about the sets

GD = {x : x ∈ X, x(D) = 1}

for D ⊆ C. In particular, every GD belongs to Σ. Also {γ : xγ ∈ GD} = D.

(d) (X,Σ, µ) is complete.

(e) (X,Σ, µ) is semi-finite.

(f) (X,Σ, µ) is localizable.

(g) (X,Σ, µ) is not strictly localizable.

(h) (X,Σ, µ) is purely atomic.
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