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Introduction to Volume 2

For this second volume I have chosen seven topics through which to explore the insights and challenges
offered by measure theory. Some, like the Radon-Nikodým theorem (Chapter 23) are necessary for any
understanding of the structure of the subject; others, like Fourier analysis (Chapter 28) and the discussion
of function spaces (Chapter 24) demonstrate the power of measure theory to attack problems in general
real and functional analysis. But all have applications outside measure theory, and all have influenced its
development. These are the parts of measure theory which any analyst may find himself using.

Every topic is one which ideally one would wish undergraduates to have seen, but the length of this
volume makes it plain that no ordinary undergraduate course could include very much of it. It is directed
rather at graduate level, where I hope it will be found adequate to support all but the most ambitious
courses in measure theory, though it is perhaps a bit too solid to be suitable for direct use as a course text,
except with careful selection of the parts to be covered. If you are using it to teach yourself measure theory,
I strongly recommend an eclectic approach, looking for particular subjects and theorems that seem startling
or useful, and working backwards from them. My other objective, of course, is to provide an account of the
central ideas at this level in measure theory, rather fuller than can easily be found in one volume elsewhere.
I cannot claim that it is ‘definitive’, but I do think I cover a good deal of ground in ways that provide a
firm foundation for further study. As in Volume 1, I usually do not shrink from giving ‘best’ results, like
Lindeberg’s condition for the Central Limit Theorem (§274), or the theory of products of arbitrary measure
spaces (§251). If I were teaching this material to students in a PhD programme I would rather accept a
limitation in the breadth of the course than leave them unaware of what could be done in the areas discussed.

The topics interact in complex ways – one of the purposes of this book is to exhibit their relationships.
There is no canonical linear ordering in which they should be taken. Nor do I think organization charts are
very helpful, not least because it may be only two or three paragraphs in a section which are needed for a
given chapter later on. I do at least try to lay the material of each section out in an order which makes
initial segments useful by themselves. But the order in which to take the chapters is to a considerable extent
for you to choose, perhaps after a glance at their individual introductions. I have done my best to pitch the
exposition at much the same level throughout the volume, sometimes allowing gradients to steepen in the
course of a chapter or a section, but always trying to return to something which anyone who has mastered
Volume 1 ought to be able to cope with. (Though perhaps the main theorems of Chapter 26 are harder
work than the principal results elsewhere, and §286 is only for the most determined.)

I said there were seven topics, and you will see eight chapters ahead of you. This is because Chapter 21
is rather different from the rest. It is the purest of pure measure theory, and is here only because there are
places later in the volume where (in my view) the theorems make sense only in the light of some abstract
concepts which are not particularly difficult, but are also not obvious. However it is fair to say that the
most important ideas of this volume do not really depend on the work of Chapter 21.

As always, it is a puzzle to know how much prior knowledge to assume in this volume. I do of course call
on the results of Volume 1 of this treatise whenever they seem to be relevant. I do not doubt, however, that
there will be readers who have learnt the elementary theory from other sources. Provided you can, from first
principles, construct Lebesgue measure and prove the basic convergence theorems for integrals on arbitrary
measure spaces, you ought to be able to embark on the present volume. Perhaps it would be helpful to have
in hand the results-only version of Volume 1, since that includes the most important definitions as well as
statements of the theorems.

There is also the question of how much material from outside measure theory is needed. Chapter 21
calls for some non-trivial set theory (given in §2A1), but the more advanced ideas are needed only for the
counter-examples in §216, and can be passed over to begin with. The problems become acute in Chapter
24. Here we need a variety of results from functional analysis, some of them depending on non-trivial ideas
in general topology. For a full understanding of this material there is no substitute for a course in normed
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spaces up to and including a study of weak compactness. But I do not like to insist on such a preparation,
because it is likely to be simultaneously too much and too little. Too much, because I hardly mention linear
operators at this stage; too little, because I do ask for some of the theory of non-locally-convex spaces,
which is often omitted in first courses on functional analysis. At the risk, therefore, of wasting paper, I have
written out condensed accounts of the essential facts (§§2A3-2A5).

Note on second printing, April 2003

For the second printing of this volume, I have made two substantial corrections to inadequate proofs and
a large number of minor amendments; I am most grateful to T.D.Austin for his careful reading of the first
printing. In addition, I have added a dozen exercises and a handful of straightforward results which turn
out to be relevant to the work of later volumes and fit naturally here.

The regular process of revision of this work has led me to make a couple of notational innovations not
described explicitly in the early printings of Volume 1. I trust that most readers will find these immediately
comprehensible. If, however, you find that there is a puzzling cross-reference which you are unable to match
with anything in the version of Volume 1 which you are using, it may be worth while checking the errata
pages in http://www1.essex.ac.uk/maths/people/fremlin/mterr.htm.

Note on hardback edition, January 2010

For the new (‘Lulu’) edition of this volume, I have eliminated a number of further errors; no doubt many
remain. There are many new exercises, several new theorems and some corresponding rearrangements of
material. The new results are mostly additions with little effect on the structure of the work, but there is a
short new section (§266) on the Brunn-Minkowski inequality.

Note on second printing of hardback edition, April 2016

There is the usual crop of small mistakes to be corrected, and assorted minor amendments and additions.
But my principal reason for issuing a new printed version is a major fault in the proof of Carleson’s theorem,
where an imprudent move to simplify the argument of Lacey & Thiele 00 was based on an undergraduate
error1. While the blunder is conspicuous enough, a resolution seems to require an adjustment in a definition,
and is not a fair demand on a graduate seminar, the intended readership for this material. Furthermore, the
proof was supposed to be a distinguishing feature of not only this volume, but of the treatise as a whole.
So, with apologies to any who retired hurt from an encounter with the original version, I present a revision
which I hope is essentially sound.

1I am most grateful to A.Derighetti for bringing this to my attention.
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Version of 17.1.15

*Chapter 21

Taxonomy of measure spaces

I begin this volume with a ‘starred chapter’. The point is that I do not really recommend this chapter
for beginners. It deals with a variety of technical questions which are of great importance for the later
development of the subject, but are likely to be both abstract and obscure for anyone who has not encoun-
tered the problems these techniques are designed to solve. On the other hand, if (as is customary) this
work is omitted, and the ideas are introduced only when urgently needed, the student is likely to finish with
very vague ideas on which theorems can be expected to apply to which types of measure space, and with
no vocabulary in which to express those ideas. I therefore take a few pages to introduce the terminology
and concepts which can be used to distinguish ‘good’ measure spaces from others, with a few of the basic
relationships. The only paragraphs which are immediately relevant to the theory set out in Volume 1 are
those on ‘complete’, ‘σ-finite’ and ‘semi-finite’ measure spaces (211A, 211D, 211F, 211Lc, §212, 213A-213B,
215B), and on Lebesgue measure (211M). For the rest, I think that a newcomer to the subject can very
well pass over this chapter for the time being, and return to it for particular items when the text of later
chapters refers to it. On the other hand, it can also be used as an introduction to the flavour of the ‘purest’
kind of measure theory, the study of measure spaces for their own sake, with a systematic discussion of a
few of the elementary constructions.

Version of 20.11.03

211 Definitions

I start with a list of definitions, corresponding to the concepts which I have found to be of value in
distinguishing different types of measure space. Necessarily, the significance of many of these ideas is likely
to be obscure until you have encountered some of the obstacles which arise later on. Nevertheless, you
will I hope be able to deal with these definitions on a formal, abstract basis, and to follow the elementary
arguments involved in establishing the relationships between them (211L).

In 216C-216E below I will give three substantial examples to demonstrate the rich variety of objects which
the definition of ‘measure space’ encompasses. In the present section, therefore, I content myself with very
brief descriptions of sufficient cases to show at least that each of the definitions here discriminates between
different spaces (211M-211R).

211A Definition Let (X,Σ, µ) be a measure space. Then µ, or (X,Σ, µ), is (Carathéodory) complete
if whenever A ⊆ E ∈ Σ and µE = 0 then A ∈ Σ; that is, if every negligible subset of X is measurable.

211B Definition Let (X,Σ, µ) be a measure space. Then (X,Σ, µ) is a probability space if µX = 1.
In this case µ is called a probability or probability measure.

211C Definition Let (X,Σ, µ) be a measure space. Then µ, or (X,Σ, µ), is totally finite if µX < ∞.

211D Definition Let (X,Σ, µ) be a measure space. Then µ, or (X,Σ, µ), is σ-finite if there is a sequence
〈En〉n∈N of measurable sets of finite measure such that X =

⋃
n∈N En.

Remark Note that in this case we can set

Fn = En \
⋃

i<n Ei, Gn =
⋃

i≤n Ei

for each n, to obtain a partition 〈Fn〉n∈N of X (that is, a disjoint cover of X) into measurable sets of finite
measure, and a non-decreasing sequence 〈Gn〉n∈N of sets of finite measure covering X.

211E Definition Let (X,Σ, µ) be a measure space. Then µ, or (X,Σ, µ), is strictly localizable or
decomposable if there is a partition 〈Xi〉i∈I of X into measurable sets of finite measure such that

c© 1994 D. H. Fremlin
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4 Taxonomy of measure spaces 211E

Σ = {E : E ⊆ X, E ∩Xi ∈ Σ ∀ i ∈ I},

µE =
∑

i∈I µ(E ∩Xi) for every E ∈ Σ.

I will call such a family 〈Xi〉i∈I a decomposition of X.

Remark In this context, we can interpret the sum
∑

i∈I µ(E ∩Xi) simply as

sup{
∑

i∈J µ(E ∩Xi) : J is a finite subset of I},

taking
∑

i∈∅ µ(E ∩Xi) = 0, because we are concerned only with sums of non-negative terms (cf. 112Bd).

211F Definition Let (X,Σ, µ) be a measure space. Then µ, or (X,Σ, µ), is semi-finite if whenever
E ∈ Σ and µE = ∞ there is an F ⊆ E such that F ∈ Σ and 0 < µF < ∞.

211G Definition Let (X,Σ, µ) be a measure space. Then µ, or (X,Σ, µ), is localizable if it is semi-finite
and, for every E ⊆ Σ, there is an H ∈ Σ such that (i) E \H is negligible for every E ∈ E (ii) if G ∈ Σ and
E \G is negligible for every E ∈ E , then H \G is negligible. It will be convenient to call such a set H an
essential supremum of E in Σ.

Remark The definition here is clumsy, because really the concept applies to measure algebras rather than to
measure spaces (see 211Ya-211Yb). However, the present definition can be made to work (see 213N, 241G,
243G below) and enables us to proceed without a formal introduction to the concept of ‘measure algebra’
before the time comes to do the job properly in Volume 3.

211H Definition Let (X,Σ, µ) be a measure space. Then µ, or (X,Σ, µ), is locally determined if it
is semi-finite and

Σ = {E : E ⊆ X, E ∩ F ∈ Σ whenever F ∈ Σ and µF < ∞};

that is to say, for any E ∈ PX \ Σ there is an F ∈ Σ such that µF < ∞ and E ∩ F /∈ Σ.

211I Definition Let (X,Σ, µ) be a measure space. A set E ∈ Σ is an atom for µ if µE > 0 and whenever
F ∈ Σ, F ⊆ E one of F , E \ F is negligible.

211J Definition Let (X,Σ, µ) be a measure space. Then µ, or (X,Σ, µ), is atomless or diffused if
there are no atoms for µ. (Note that this is not the same thing as saying that all finite sets are negligible;
see 211R below. Some authors use the word continuous in this context.)

211K Definition Let (X,Σ, µ) be a measure space. Then µ, or (X,Σ, µ), is purely atomic if whenever
E ∈ Σ and E is not negligible there is an atom for µ included in E.

Remark Recall that a measure µ on a set X is point-supported if µ measures every subset of X and
µE =

∑
x∈E µ{x} for every E ⊆ X (112Bd). Every point-supported measure is purely atomic, because {x}

must be an atom whenever µ{x} > 0, but not every purely atomic measure is point-supported (211R).

211L The relationships between the concepts above are in a sense very straightforward; all the direct
implications in which one property implies another are given in the next theorem.

Theorem (a) A probability space is totally finite.
(b) A totally finite measure space is σ-finite.
(c) A σ-finite measure space is strictly localizable.
(d) A strictly localizable measure space is localizable and locally determined.
(e) A localizable measure space is semi-finite.
(f) A locally determined measure space is semi-finite.

proof (a), (b), (e) and (f) are trivial.

Measure Theory



211Md Definitions 5

(c) Let (X,Σ, µ) be a σ-finite measure space; let 〈Fn〉n∈N be a disjoint sequence of measurable sets of
finite measure covering X (see the remark in 211D). If E ∈ Σ, then of course E ∩ Fn ∈ Σ for every n ∈ N,
and

µE =
∑∞

n=0 µ(E ∩ Fn) =
∑

n∈N µ(E ∩ Fn).

If E ⊆ X and E ∩ Fn ∈ Σ for every n ∈ N, then

E =
⋃

n∈N E ∩ Fn ∈ Σ.

So 〈Fn〉n∈N is a decomposition of X and (X,Σ, µ) is strictly localizable.

(d) Let (X,Σ, µ) be a strictly localizable measure space; let 〈Xi〉i∈I be a decomposition of X.

(i) Let E be a family of measurable subsets of X. Let F be the family of measurable sets F ⊆ X
such that µ(F ∩ E) = 0 for every E ∈ E . Note that ∅ ∈ F and, if 〈Fn〉n∈N is any sequence in F , then⋃

n∈N Fn ∈ F . For each i ∈ I, set γi = sup{µ(F ∩Xi) : F ∈ F} and choose a sequence 〈Fin〉n∈N in F such
that limn→∞ µ(Fin ∩Xi) = γi; set

Fi =
⋃

n∈N Fin ∈ F .

Set

F =
⋃

i∈I Fi ∩Xi ⊆ X

and H = X \ F .
We see that F ∩Xi = Fi ∩Xi for each i ∈ I (because 〈Xi〉i∈I is disjoint), so F ∈ Σ and H ∈ Σ. For any

E ∈ E ,

µ(E \H) = µ(E ∩ F ) =
∑

i∈I µ(E ∩ F ∩Xi) =
∑

i∈I µ(E ∩ Fi ∩Xi) = 0

because every Fi belongs to F . Thus F ∈ F . If G ∈ Σ and µ(E \G) = 0 for every E ∈ E , then X \G and
F ′ = F∪(X\G) belong to F . So µ(F ′∩Xi) ≤ γi for each i ∈ I. But also µ(F∩Xi) ≥ supn∈N µ(Fin∩Xi) = γi,
so µ(F ∩Xi) = µ(F ′ ∩Xi) for each i. Because µXi is finite, it follows that µ((F ′ \F )∩Xi) = 0, for each i.
Summing over i, µ(F ′ \ F ) = 0, that is, µ(H \G) = 0.

Thus H is an essential supremum for E in Σ. As E is arbitrary, (X,Σ, µ) is localizable.

(ii) If E ∈ Σ and µE = ∞, then there is some i ∈ I such that

0 < µ(E ∩Xi) ≤ µXi < ∞;

so (X,Σ, µ) is semi-finite. If E ⊆ X and E ∩ F ∈ Σ whenever µF < ∞, then, in particular, E ∩Xi ∈ Σ for
every i ∈ I, so E ∈ Σ; thus (X,Σ, µ) is locally determined.

211M Example: Lebesgue measure Let us consider Lebesgue measure in the light of the concepts
above. Write µ for Lebesgue measure on Rr and Σ for its domain.

(a) µ is complete, because it is constructed by Carathéodory’s method; if A ⊆ E and µE = 0, then
µ∗A = µ∗E = 0 (writing µ∗ for Lebesgue outer measure), so, for any B ⊆ R,

µ∗(B ∩A) + µ∗(B \A) ≤ 0 + µ∗B = µ∗B,

and A must be measurable.

(b) µ is σ-finite, because Rr =
⋃

n∈N[−n,n], writing n for the vector (n, . . . , n), and µ[−n,n] = (2n)r <
∞ for every n. Of course µ is neither totally finite nor a probability measure.

(c) Because µ is σ-finite, it is strictly localizable (211Lc), localizable (211Ld), locally determined (211Ld)
and semi-finite (211Le or 211Lf).

(d) µ is atomless. PPP Suppose that E ∈ Σ. Consider the function

a 7→ f(a) = µ(E ∩ [−a,a]) : [0,∞[ → R

We have

D.H.Fremlin



6 Taxonomy of measure spaces 211Md

f(a) ≤ f(b) ≤ f(a) + µ[−b,b]− µ[−a,a] = f(a) + (2b)r − (2a)r

whenever a ≤ b in [0,∞[, so f is continuous. Now f(0) = 0 and limn→∞ f(n) = µE > 0. By the Intermediate
Value Theorem there is an a ∈ [0,∞[ such that 0 < f(a) < µE. So we have

0 < µ(E ∩ [−a,a]) < µE.

As E is arbitrary, µ is atomless. QQQ

(e) It is now a trivial observation that µ cannot be purely atomic, because Rr itself is a set of positive
measure not including any atom.

211N Counting measure Take X to be any uncountable set (e.g., X = R), and µ to be counting
measure on X (112Bd).

(a) µ is complete, because if A ⊆ E and µE = 0 then

A = E = ∅ ∈ Σ.

(b) µ is not σ-finite, because if 〈En〉n∈N is any sequence of sets of finite measure then every En is finite,
therefore countable, and

⋃
n∈N En is countable (1A1F), so cannot be X. A fortiori, µ is not a probability

measure nor totally finite.

(c) µ is strictly localizable. PPP Set Xx = {x} for every x ∈ X. Then 〈Xx〉x∈X is a partition of X, and
for any E ⊆ X

µ(E ∩Xx) = 1 if x ∈ E, 0 otherwise.

By the definition of µ,

µE =
∑

x∈X µ(E ∩Xx)

for every E ⊆ X, and 〈Xx〉x∈X is a decomposition of X. QQQ
Consequently µ is localizable, locally determined and semi-finite.

(d) µ is purely atomic. PPP {x} is an atom for every x ∈ X, and if µE > 0 then surely E includes {x} for
some x. QQQ Obviously, µ is not atomless.

211O A non-semi-finite space Set X = {0}, Σ = {∅, X}, µ∅ = 0 and µX = ∞. Then µ is not semi-
finite, as µX = ∞ but X has no subset of non-zero finite measure. It follows that µ cannot be localizable,
locally determined, σ-finite, totally finite nor a probability measure. Because Σ = PX, µ is complete. X is
an atom for µ, so µ is purely atomic (indeed, it is point-supported).

211P A non-complete space Write B for the σ-algebra of Borel subsets of R (111G), and µ for the
restriction of Lebesgue measure to B (recall that by 114G every Borel subset of R is Lebesgue measurable).
Then (R,B, µ) is atomless, σ-finite and not complete.

proof (a) To see that µ is not complete, recall that there is a continuous, strictly increasing permutation
g : [0, 1] → [0, 1] such that µg[C] > 0, where C is the Cantor set, so that there is a set A ⊆ g[C] which
is not Lebesgue measurable (134Ib). Now g−1[A] ⊆ C cannot be a Borel set, since χA = χ(g−1[A])◦g−1

is not Lebesgue measurable, therefore not Borel measurable, and the composition of two Borel measurable
functions is Borel measurable (121Eg); so g−1[A] is a non-measurable subset of the negligible set C.

(b) The rest of the arguments of 211M apply to µ just as well as to true Lebesgue measure, so µ is σ-finite
and atomless.

*Remark The argument offered in (a) could give rise to a seriously false impression. The set A referred
to there can be constructed only with the use of a strong form of the axiom of choice. No such device is
necessary for the result here. There are many methods of constructing non-Borel subsets of the Cantor set,
all illuminating in different ways. In the absence of any form of the axiom of choice, there are difficulties
with the concept of ‘Borel set’, and others with the concept of ‘Lebesgue measure’, which I will come to in
Chapter 56; but countable choice is quite sufficient for the existence of a non-Borel subset of R. For details
of a possible approach see 423M in Volume 4.

Measure Theory



211Xe Definitions 7

211Q Some probability spaces Two obvious constructions of probability spaces, restricting myself to
the methods described in Volume 1, are

(a) the subspace measure induced by Lebesgue measure on [0, 1] (131B);
(b) the point-supported measure induced on a setX by a function h : X → [0, 1] such that

∑
x∈X h(x) = 1,

writing µE =
∑

x∈E h(x) for every E ⊆ X; for instance, if X is a singleton {x} and h(x) = 1, or if X = N

and h(n) = 2−n−1.
Of these two, (a) gives an atomless probability measure and (b) gives a purely atomic probability measure.

211R Countable-cocountable measure The following is one of the basic constructions to keep in
mind when considering abstract measure spaces.

(a) Let X be any set. Let Σ be the family of those sets E ⊆ X such that either E or X \E is countable.
Then Σ is a σ-algebra of subsets of X. PPP (i) ∅ is countable, so belongs to Σ. (ii) The condition for E
to belong to Σ is symmetric between E and X \ E, so X \ E ∈ Σ for every E ∈ Σ. (iii) Let 〈En〉n∈N be
any sequence in Σ, and set E =

⋃
n∈N En. If every En is countable, then E is countable, so belongs to Σ.

Otherwise, there is some n such that X \ En is countable, in which case X \ E ⊆ X \ En is countable, so
again E ∈ Σ. QQQ Σ is called the countable-cocountable σ-algebra of X.

(b) Now consider the function µ : Σ → {0, 1} defined by writing µE = 0 if E is countable, µE = 1 if
E ∈ Σ and E is not countable. Then µ is a measure. PPP (i) ∅ is countable so µ∅ = 0. (ii) Let 〈En〉n∈N be a
disjoint sequence in Σ, and E its union. (α) If every Em is countable, then so is E, so

µE = 0 =
∑∞

n=0 µEn.

(β) If some Em is uncountable, then E ⊇ Em also is uncountable, and µE = µEm = 1. But in this case,
because Em ∈ Σ, X \Em is countable, so En, being a subset of X \Em, is countable for every n 6= m; thus
µEn = 0 for every n 6= m, and

µE = 1 =
∑∞

n=0 µEn.

As 〈En〉n∈N is arbitrary, µ is a measure. QQQ This is the countable-cocountable measure on X.

(c) If X is any uncountable set and µ is the countable-cocountable measure on X, then µ is a complete,
purely atomic probability measure, but is not point-supported. PPP (i) If A ⊆ E and µE = 0, then E is
countable, so A also is countable and belongs to Σ. Thus µ is complete. (ii) Because X is uncountable,
µX = 1 and µ is a probability measure. (iii) If µE > 0, then µF = µE = 1 whenever F is a non-negligible
measurable subset of E, so E is itself an atom; thus µ is purely atomic. (iv) µX = 1 > 0 =

∑
x∈X µ{x}, so

µ is not point-supported. QQQ

211X Basic exercises >>>(a) Let (X,Σ, µ) be a semi-finite measure space. Show that µ is σ-finite iff
there is a totally finite measure ν on X with the same measurable sets and the same negligible sets as µ.

>>>(b) Let g : R → R be a non-decreasing function and µg the associated Lebesgue-Stieltjes measure
(114Xa). Show that µg is complete and σ-finite. Show that

(i) µg is totally finite iff g is bounded;
(ii) µg is a probability measure iff limx→∞ g(x)− limx→−∞ g(x) = 1;
(iii) µg is atomless iff g is continuous;
(iv) if E is any atom for µg, there is a point x ∈ E such that µgE = µg{x};
(v) µg is purely atomic iff it is point-supported.

>>>(c) Let µ be counting measure on a set X. Show that µ is always complete, strictly localizable and
purely atomic, and that it is σ-finite iff X is countable, totally finite iff X is finite, a probability measure iff
X is a singleton, and atomless iff X is empty.

(d) Show that a point-supported measure is always complete, and is strictly localizable iff it is semi-finite.

(e) Let X be a set. Show that for any σ-ideal I of subsets of X (definition: 112Db), the set

D.H.Fremlin



8 Taxonomy of measure spaces 211Xe

Σ = I ∪ {X \A : A ∈ I}

is a σ-algebra of subsets of X, and that there is a measure µ : Σ → {0, 1} given by setting

µE = 0 if E ∈ I, µE = 1 if E ∈ Σ \ I.

Show that I is precisely the null ideal of µ, that µ is complete, totally finite and purely atomic, and is a
probability measure iff X /∈ I.

(g) Let (X,Σ, µ) be a measure space such that µX > 0. Show that the set of conegligible subsets of X
is a filter on X.

211Y Further exercises (a) Let (X,Σ, µ) be a measure space, and for E, F ∈ Σ write E ∼ F if
µ(E△F ) = 0. Show that ∼ is an equivalence relation on Σ. Let A be the set of equivalence classes in Σ for
∼; for E ∈ Σ, write E• ∈ A for its equivalence class. Show that there is a partial ordering ⊆ on A defined
by saying that, for E, F ∈ Σ,

E• ⊆ F • ⇐⇒ µ(E \ F ) = 0.

Show that µ is localizable iff for every A ⊆ A there is an h ∈ A such that (i) a ⊆ h for every a ∈ A (ii)
whenever g ∈ A is such that a ⊆ g for every a ∈ A, then h ⊆ g.

(b) Let (X,Σ, µ) be a measure space, and construct A as in 211Ya. Show that there are operations ∪ ,
∩ , \ on A defined by saying that

E• ∩ F • = (E ∩ F )•, E• ∪ F • = (E ∪ F )•, E• \ F • = (E \ F )•

for all E, F ∈ Σ. Show that if A ⊆ A is any countable set, then there is an h ∈ A such that (i) a ⊆ h for every
a ∈ A (ii) whenever g ∈ A is such that a ⊆ g for every a ∈ A, then h ⊆ g. Show that there is a functional
µ̄ : A → [0,∞] defined by saying that µ̄(E•) = µE for every E ∈ Σ. ((A, µ̄) is called the measure algebra
of (X,Σ, µ).)

(c) Let (X,Σ, µ) be a semi-finite measure space. Show that it is atomless iff whenever ǫ > 0, E ∈ Σ and
µE < ∞, then there is a finite partition of E into measurable sets of measure at most ǫ.

(d) Let (X,Σ, µ) be a strictly localizable measure space. Show that the following are equiveridical: (i)
(X,Σ, µ) is atomless; (ii) for every ǫ > 0 there is a decomposition of X consisting of sets of measure at most
ǫ; (iii) there is a measurable function f : X → R such that µf−1[{t}] = 0 for every t ∈ R.

(e) Let Σ be the countable-cocountable σ-algebra of R. Show that [0,∞[ /∈ Σ. Let µ be the restriction of
counting measure to Σ. Show that (R,Σ, µ) is complete, semi-finite and purely atomic, but not localizable
nor locally determined.

211 Notes and comments The list of definitions in 211A-211K probably strikes you as quite long enough,
even though I have omitted many occasionally useful ideas. The concepts here vary widely in importance,
and the importance of each varies widely with context. My own view is that it is absolutely necessary, when
studying any measure space, to know its classification under the eleven discriminating features listed here,
and to be able to describe any atoms which are present. Fortunately, for most ‘ordinary’ measure spaces,
the classification is fairly quick, because if (for instance) the space is σ-finite, and you know the measure of
the whole space, the only remaining questions concern completeness and atoms. The distinctions between
spaces which are, or are not, strictly localizable, semi-finite, localizable and locally determined are relevant
only for spaces which are not σ-finite, and do not arise in elementary applications.

I think it is also fair to say that the notions of ‘complete’ and ‘locally determined’ measure space are
technical; I mean, that they do not correspond to significant features of the essential structure of a space,
though there are some interesting problems concerning incomplete measures. One manifestation of this is the
existence of canonical constructions for rendering spaces complete or complete and locally determined (212C,
213D-213E). In addition, measure spaces which are not semi-finite do not really belong to measure theory,
but rather to the more general study of σ-algebras and σ-ideals. The most important classifications, in

Measure Theory
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terms of the behaviour of a measure space, seem to me to be ‘σ-finite’, ‘localizable’ and ‘strictly localizable’;
these are the critical features which cannot be forced by elementary constructions.

If you know anything about Borel subsets of the real line, the argument of part (a) of the proof of 211P
must look very clumsy. But ‘better’ proofs rely on ideas which we shall not need until Volume 4, and the
proof here is based on a construction which we have to understand for other reasons.

Version of 10.9.04

212 Complete spaces

In the next two sections of this chapter I give brief accounts of the theory of measure spaces possessing
certain of the properties described in §211. I begin with ‘completeness’. I give the elementary facts about
complete measure spaces in 212A-212B; then I turn to the notion of ‘completion’ of a measure (212C) and
its relationships with the other concepts of measure theory introduced so far (212D-212G).

212A Proposition Any measure space constructed by Carathéodory’s method is complete.

proof Recall that ‘Carathéodory’s method’ starts from an arbitrary outer measure θ : PX → [0,∞] and
sets

Σ = {E : E ⊆ X, θA = θ(A ∩ E) + θ(A \ E) for every A ⊆ X}, µ = θ↾Σ

(113C). In this case, if B ⊆ E ∈ Σ and µE = 0, then θB = θE = 0 (113A(ii)), so for any A ⊆ X we have

θ(A ∩B) + θ(A \B) = θ(A \B) ≤ θA ≤ θ(A ∩B) + θ(A \B),

and B ∈ Σ.

212B Proposition (a) If (X,Σ, µ) is a complete measure space, then any conegligible subset of X is
measurable.

(b) Let (X,Σ, µ) be a complete measure space, and f a [−∞,∞]-valued function defined on a subset of
X. If f is virtually measurable (that is, there is a conegligible set E ⊆ X such that f↾E is measurable),
then f is measurable.

(c) Let (X,Σ, µ) be a complete measure space, and f a real-valued function defined on a conegligible
subset of X. Then the following are equiveridical, that is, if one is true so are the others:

(i) f is integrable;
(ii) f is measurable and |f | is integrable;
(iii) f is measurable and there is an integrable function g such that |f | ≤a.e. g.

proof (a) If E is conegligible, then X \ E is negligible, therefore measurable, and E is measurable.

(b) Let a ∈ R. Then there is an H ∈ Σ such that

{x : (f↾E)(x) ≤ a} = H ∩ dom(f↾E) = H ∩ E ∩ dom f .

Now F = {x : x ∈ dom f \ E, f(x) ≤ a} is a subset of the negligible set X \ E, so is measurable, and

{x : f(x) ≤ a} = (F ∪H) ∩ dom f ∈ Σdom f ,

writing ΣD = {D ∩ E : E ∈ Σ}, as in 121A. As a is arbitrary, f is measurable (135E).

(c)(i)⇒(ii) If f is integrable, then by 122P f is virtually measurable and by 122Re |f | is integrable. By
(b) here, f is measurable, so (ii) is true.

(ii)⇒(iii) is trivial.

(iii)⇒(i) If f is measurable and g is integrable and |f | ≤a.e. g, then f is virtually measurable, |g| is
integrable and |f | ≤a.e. |g|, so 122P tells us that f is integrable.

212C The completion of a measure Let (X,Σ, µ) be any measure space.

D.H.Fremlin



10 Taxonomy of measure spaces 212Ca

(a) Let Σ̂ be the family of those sets E ⊆ X such that there are E′, E′′ ∈ Σ with E′ ⊆ E ⊆ E′′ and

µ(E′′ \E′) = 0. Then Σ̂ is a σ-algebra of subsets of X. PPP (i) Of course ∅ belongs to Σ̂, because we can take

E′ = E′′ = ∅. (ii) If E ∈ Σ̂, take E′, E′′ ∈ Σ such that E′ ⊆ E ⊆ E′′ and µ(E′′ \ E′) = 0. Then

X \ E′′ ⊆ X \ E ⊆ X \ E′, µ((X \ E′) \ (X \ E′′)) = µ(E′′ \ E′) = 0,

so X\E ∈ Σ̂. (iii) If 〈En〉n∈N is a sequence in Σ̂, then for each n choose E′
n, E

′′
n ∈ Σ such that E′

n ⊆ En ⊆ E′′
n

and µ(E′′
n \ E′

n) = 0. Set

E =
⋃

n∈N En, E′ =
⋃

n∈N E′
n, E′′ =

⋃
n∈N E′′

n;

then E′ ⊆ E ⊆ E′′ and E′′ \ E′ ⊆
⋃

n∈N(E
′′
n \ E′

n) is negligible, so E ∈ Σ̂. QQQ

(b) For E ∈ Σ̂, set

µ̂E = µ∗E = min{µF : E ⊆ F ∈ Σ}

(132A). It is worth remarking at once that if E ∈ Σ̂, E′, E′′ ∈ Σ, E′ ⊆ E ⊆ E′′ and µ(E′′ \ E′) = 0, then
µE′ = µ̂E = µE′′; this is because

µE′ = µ∗E′ ≤ µ∗E ≤ µ∗E′′ = µE′′ = µE′ + µ(E′′ \ E) = µE′

(recalling from 132A, or noting now, that µ∗A ≤ µ∗B whenever A ⊆ B ⊆ X, and that µ∗ agrees with µ on
Σ).

(c) We now find that (X, Σ̂, µ̂) is a measure space. PPP (i) Of course µ̂, like µ, takes values in [0,∞]. (ii)

µ̂∅ = µ∅ = 0. (iii) Let 〈En〉n∈N be a disjoint sequence in Σ̂, with union E. For each n ∈ N choose E′
n,

E′′
n ∈ Σ such that E′

n ⊆ En ⊆ E′′
n and µ(E′′

n \ E′
n) = 0. Set E′ =

⋃
n∈N E′

n, E
′′ =

⋃
n∈N E′′

n. Then (as in
(a-iii) above) E′ ⊆ E ⊆ E′′ and µ(E′′ \ E′) = 0, so

µ̂E = µE′ =
∑∞

n=0 µE
′
n =

∑∞
n=0 µ̂En

because 〈E′
n〉n∈N, like 〈En〉n∈N, is disjoint. QQQ

(d) The measure space (X, Σ̂, µ̂) is called the completion of the measure space (X,Σ, µ); equally, I will
call µ̂ the completion of µ, and occasionally (if it seems plain which null ideal is under consideration) I

will call Σ̂ the completion of Σ. Members of Σ̂ are sometimes called µ-measurable.

212D There is something I had better check at once.

Proposition Let (X,Σ, µ) be any measure space. Then (X, Σ̂, µ̂), as defined in 212C, is a complete measure

space and µ̂ is an extension of µ; and (X, Σ̂, µ̂) = (X,Σ, µ) iff (X,Σ, µ) is complete.

proof (a) Suppose that A ⊆ E ∈ Σ̂ and µ̂E = 0. Then (by 212Cb) there is an E′′ ∈ Σ such that E ⊆ E′′

and µE′′ = 0. Accordingly we have

∅ ⊆ A ⊆ E′′, µ(E′′ \ ∅) = 0,

so A ∈ Σ̂. As A is arbitrary, µ̂ is complete.

(b) If E ∈ Σ, then of course E ∈ Σ̂, because E ⊆ E ⊆ E and µ(E \E) = 0; and µ̂E = µ∗E = µE. Thus

Σ ⊆ Σ̂ and µ̂ extends µ.

(c) If µ = µ̂ then of course µ must be complete. If µ is complete, and E ∈ Σ̂, then there are E′, E′′ ∈ Σ
such that E′ ⊆ E ⊆ E′′ and µ(E′′ \ E′) = 0. But now E \ E′ ⊆ E′′ \ E′, so (because (X,Σ, µ) is complete)

E \ E′ ∈ Σ and E = E′ ∪ (E \ E′) ∈ Σ. As E is arbitrary, Σ̂ ⊆ Σ and Σ̂ = Σ and µ = µ̂.

212E The importance of this construction is such that it is worth spelling out some further elementary
properties.

Proposition Let (X,Σ, µ) be a measure space, and (X, Σ̂, µ̂) its completion.
(a) The outer measures µ̂∗, µ∗ defined from µ̂ and µ coincide.
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(b) µ, µ̂ give rise to the same negligible and conegligible sets and the same sets of full outer measure.

(c) µ̂ is the only measure with domain Σ̂ which agrees with µ on Σ.

(d) A subset of X belongs to Σ̂ iff it is expressible as F△A where F ∈ Σ and A is µ-negligible.

proof (a) Take any A ⊆ X. (i) If A ⊆ F ∈ Σ, then F ∈ Σ̂ and µF = µ̂F , so

µ̂∗A ≤ µ̂F = µF ;

as F is arbitrary, µ̂∗A ≤ µ∗A. (ii) If A ⊆ E ∈ Σ̂, there is an E′′ ∈ Σ such that E ⊆ E′′ and µE′′ = µ̂E, so

µ∗A ≤ µE′′ = µ̂E;

as E is arbitrary, µ∗A ≤ µ̂∗A.

(b) Now, for A ⊆ X,

A is µ-negligible ⇐⇒ µ∗A = 0 ⇐⇒ µ̂∗A = 0 ⇐⇒ A is µ̂-negligible,

A is µ-conegligible ⇐⇒ µ∗(X \A) = 0

⇐⇒ µ̂∗(X \A) = 0 ⇐⇒ A is µ̂-conegligible.

If A has full outer measure for µ, F ∈ Σ̂ and F ∩ A = ∅, then there is an F ′ ∈ Σ such that F ′ ⊆ F and
µF ′ = µ̂F ; as F ′∩A = ∅, F ′ is µ-negligible and F is µ̂-negligible; as F is arbitrary, A has full outer measure
for µ̂. In the other direction, of course, if A has full outer measure for µ̂ then

µ∗(F ∩A) = µ̂∗(F ∩A) = µ̂F = µF

for every F ∈ Σ, so A has full outer measure for µ.

(c) If µ̃ is any measure with domain Σ̂ extending µ, we must have

µE′ ≤ µ̃E ≤ µE′′, µE′ = µ̂E = µE′′,

so µ̃E = µ̂E, whenever E′, E′′ ∈ Σ, E′ ⊆ E ⊆ E′′ and µ(E′′ \ E′) = 0.

(d)(i) If E ∈ Σ̂, take E′, E′′ ∈ Σ such that E′ ⊆ E ⊆ E′′ and µ(E′′ \E′) = 0. Then E \E′ ⊆ E′′ \E′, so
E \ E′ is µ-negligible, and E = E′△(E \ E′) is the symmetric difference of a member of Σ and a negligible
set.

(ii) If E = F△A, where F ∈ Σ and A is µ-negligible, take G ∈ Σ such that µG = 0 and A ⊆ G; then

F \G ⊆ E ⊆ F ∪G and µ((F ∪G) \ (F \G)) = µG = 0, so E ∈ Σ̂.

212F Now let us consider integration with respect to the completion of a measure.

Proposition Let (X,Σ, µ) be a measure space and (X, Σ̂, µ̂) its completion.

(a) A [−∞,∞]-valued function f defined on a subset of X is Σ̂-measurable iff it is µ-virtually measurable.
(b) Let f be a [−∞,∞]-valued function defined on a subset of X. Then

∫
fdµ =

∫
fdµ̂ if either is defined

in [−∞,∞]; in particular, f is µ-integrable iff it is µ̂-integrable.

proof (a)(i) Suppose that f is a [−∞,∞]-valued Σ̂-measurable function. For q ∈ Q let Eq ∈ Σ̂ be such
that {x : f(x) ≤ q} = dom f ∩ Eq, and choose E′

q, E
′′
q ∈ Σ such that E′

q ⊆ Eq ⊆ E′′
q and µ(E′′

q \ E′
q) = 0.

Set H = X \
⋃

q∈Q(E
′′
q \ E′

q); then H is µ-conegligible. For a ∈ R set

Ga =
⋃

q∈Q,q<a E
′
q ∈ Σ;

then

{x : x ∈ dom(f↾H), (f↾H)(x) < a} = Ga ∩ dom(f↾H).

This shows that f↾H is Σ-measurable, so that f is µ-virtually measurable.

(ii) If f is µ-virtually measurable, then there is a µ-conegligible set H ⊆ X such that f↾H is Σ-

measurable. Since Σ ⊆ Σ̂, f↾H is also Σ̂-measurable. And H is µ̂-conegligible, by 212Eb. But this means
that f is µ̂-virtually measurable, therefore Σ̂-measurable, by 212Bb.
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12 Taxonomy of measure spaces 212F

(b)(i) Let f : D → [−∞,∞] be a function, where D ⊆ X. If either of
∫
fdµ,

∫
fdµ̂ is defined in [−∞,∞],

then f is virtually measurable, and defined almost everywhere, for one of the appropriate measures, and
therefore for both (putting (a) above together with 212Bb).

(ii) Now suppose that f is non-negative and integrable either with respect to µ or with respect to µ̂.
Let E ∈ Σ be a conegligible set included in dom f such that f↾E is Σ-measurable. For n ∈ N, k ≥ 1 set

Enk = {x : x ∈ E, f(x) ≥ 2−nk};

then each Enk belongs to Σ and is of finite measure for both µ and µ̂. (If f is µ-integrable,

µ̂Enk = µEnk ≤ 2n
∫
fdµ;

if f is µ̂-integrable,

µEnk = µ̂Enk ≤ 2n
∫
fdµ̂.)

So

fn =
∑4n

k=1 2
−nχEnk

is both µ-simple and µ̂-simple, and
∫
fndµ =

∫
fndµ̂. Observe that, for x ∈ E,

fn(x) = 2−nk if k < 4n and 2−nk ≤ f(x) < 2−n(k + 1),

= 2n if f(x) ≥ 2n.

Thus 〈fn〉n∈N is a non-decreasing sequence of functions converging to f at every point of E, that is, both
µ-almost everywhere and µ̂-almost everywhere. So we have, for any c ∈ R,

∫
fdµ = c ⇐⇒ lim

n→∞

∫
fndµ = c

⇐⇒ lim
n→∞

∫
fndµ̂ = c ⇐⇒

∫
fdµ̂ = c.

(iii) As for infinite integrals, recall that for a non-negative function I write ‘
∫
f = ∞’ just when f is

defined almost everywhere, is virtually measurable, and is not integrable. So (i) and (ii) together show that∫
fdµ =

∫
fdµ̂ whenever f is non-negative and either integral is defined in [0,∞].

(iv) Since both µ, µ̂ agree that
∫
f is to be interpreted as

∫
f+ −

∫
f− just when this can be defined

in [−∞,∞], writing f+(x) = max(f(x), 0), f−(x) = max(−f(x), 0) for x ∈ dom f , the result for general
real-valued f follows at once.

212G I turn now to the question of the effect of the construction on the properties listed in 211B-211K.

Proposition Let (X,Σ, µ) be a measure space, and (X, Σ̂, µ̂) its completion.

(a) (X, Σ̂, µ̂) is a probability space, or totally finite, or σ-finite, or semi-finite, or localizable, iff (X,Σ, µ)
is.

(b) (X, Σ̂, µ̂) is strictly localizable if (X,Σ, µ) is, and any decomposition of X for µ is a decomposition
for µ̂.

(c) A set H ∈ Σ̂ is an atom for µ̂ iff there is an E ∈ Σ such that E is an atom for µ and µ̂(H△E) = 0.

(d) (X, Σ̂, µ̂) is atomless or purely atomic iff (X,Σ, µ) is.

proof (a)(i) Because µ̂X = µX, (X, Σ̂, µ̂) is a probability space, or totally finite, iff (X,Σ, µ) is.

(ii)(ααα) If (X,Σ, µ) is σ-finite, there is a sequence 〈En〉n∈N, covering X, with µEn < ∞ for each n.

Now µ̂En < ∞ for each n, so (X, Σ̂, µ̂) is σ-finite.

(βββ) If (X, Σ̂, µ̂) is σ-finite, there is a sequence 〈En〉n∈N, covering X, with µ̂En < ∞ for each n. Now
we can find, for each n, an E′′

n ∈ Σ such that µE′′
n < ∞ and En ⊆ E′′

n; so that 〈E′′
n〉n∈N witnesses that

(X,Σ, µ) is σ-finite.
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(iii)(ααα) If (X,Σ, µ) is semi-finite and µ̂E = ∞, then there is an E′ ∈ Σ such that E′ ⊆ E and µE′ = ∞.

Next, there is an F ∈ Σ such that F ⊆ E′ and 0 < µF < ∞. Of course we now have F ∈ Σ̂, F ⊆ E and
0 < µ̂F < ∞. As E is arbitrary, (X, Σ̂, µ) is semi-finite.

(βββ) If (X, Σ̂, µ̂) is semi-finite and µE = ∞, then µ̂E = ∞, so there is an F ⊆ E such that 0 <
µ̂F < ∞. Next, there is an F ′ ∈ Σ such that F ′ ⊆ F and µF ′ = µ̂F . Of course we now have F ′ ⊆ E and
0 < µF ′ < ∞. As E is arbitrary, (X,Σ, µ) is semi-finite.

(iv)(ααα) If (X,Σ, µ) is localizable and E ⊆ Σ̂, then set

F = {F : F ∈ Σ, ∃ E ∈ E , F ⊆ E}.

Let H be an essential supremum of F in Σ, as in 211G.

If E ∈ E , there is an E′ ∈ Σ such that E′ ⊆ E and E \ E′ is negligible; now E′ ∈ F , so

µ̂(E \H) ≤ µ̂(E \ E′) + µ(E′ \H) = 0.

If G ∈ Σ̂ and µ̂(E \G) = 0 for every E ∈ E , let G′′ ∈ Σ be such that G ⊆ G′′ and µ̂(G′′ \G) = 0; then, for
any F ∈ F , there is an E ∈ E including F , so that

µ(F \G′′) ≤ µ̂(E \G) = 0.

As F is arbitrary, µ(H \ G′′) = 0 and µ̂(H \ G) = 0. This shows that H is an essential supremum of E in

Σ̂. As E is arbitrary, (X, Σ̂, µ̂) is localizable.

(βββ) Suppose that (X, Σ̂, µ̂) is localizable and that E ⊆ Σ. Working in (X, Σ̂, µ̂), let H be an essential

supremum for E in Σ̂. Let H ′ ∈ Σ be such that H ′ ⊆ H and µ̂(H \H ′) = 0. Then

µ(E \H ′) ≤ µ̂(E \H) + µ̂(H \H ′) = 0

for every E ∈ E ; while if G ∈ Σ and µ(E \G) = 0 for every E ∈ E , we must have

µ(H ′ \G) ≤ µ̂(H \G) = 0.

Thus H ′ is an essential supremum of E in Σ. As E is arbitrary, (X,Σ, µ) is localizable.

(b) Let 〈Xi〉i∈I be a decomposition of X for µ, as in 211E. Of course it is a partition of X into sets of

finite µ̂-measure. If H ⊆ X and H ∩Xi ∈ Σ̂ for every i, choose for each i ∈ I sets E′
i, E

′′
i ∈ Σ such that

E′
i ⊆ H ∩Xi ⊆ E′′

i , µ(E′′
i \ E′

i) = 0.

Set E′ =
⋃

i∈I E
′
i, E

′′ =
⋃

i∈I(E
′′
i ∩Xi). Then E′ ∩Xi = E′

i, E
′′ ∩Xi = E′′

i ∩Xi for each i, so E′ and E′′

belong to Σ. Also

µ(E′′ \ E′) =
∑

i∈I µ(E
′′
i ∩Xi \ E

′
i) = 0.

As E′ ⊆ H ⊆ E′′, H ∈ Σ̂ and

µ̂H = µE′ =
∑

i∈I µE
′
i =

∑
i∈I µ̂(H ∩Xi).

As H is arbitrary, 〈Xi〉i∈I is a decomposition of X for µ̂.

Accordingly, (X, Σ̂, µ̂) is strictly localizable if such a decomposition exists, which is so if (X,Σ, µ) is
strictly localizable.

(c)-(d)(i) Suppose that E ∈ Σ̂ is an atom for µ̂. Let E′ ∈ Σ be such that E′ ⊆ E and µ̂(E \ E′) = 0.
Then µE′ = µ̂E > 0. If F ∈ Σ and F ⊆ E′, then F ⊆ E, so either µF = µ̂F = 0 or µ(E′\F ) = µ̂(E\F ) = 0.
As F is arbitrary, E′ is an atom for µ, and µ̂(E△E′) = µ̂(E \ E′) = 0.

(ii) Suppose that E ∈ Σ is an atom for µ, and that H ∈ Σ̂ is such that µ̂(H△E) = 0. Then

µ̂H = µE > 0. If F ∈ Σ̂ and F ⊆ H, let F ′ ⊆ F be such that F ′ ∈ Σ and µ̂(F \ F ′) = 0. Then E ∩ F ′ ⊆ E
and µ̂(F△(E ∩ F ′)) = 0, so either µ̂F = µ(E ∩ F ′) = 0 or µ̂(H \ F ) = µ(E \ F ′) = 0. As F is arbitrary, H
is an atom for µ̂.

(iii) It follows at once that (X, Σ̂, µ̂) is atomless iff (X,Σ, µ) is.
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14 Taxonomy of measure spaces 212G

(iv)(ααα) On the other hand, if (X,Σ, µ) is purely atomic and µ̂H > 0, there is an E ∈ Σ such that
E ⊆ H and µE > 0, and an atom F for µ such that F ⊆ E; but F is also an atom for µ̂. As H is arbitrary,
(X, Σ̂, µ̂) is purely atomic.

(βββ) And if (X, Σ̂, µ̂) is purely atomic and µE > 0, then there is an H ⊆ E which is an atom for µ̂;
now let F ∈ Σ be such that F ⊆ H and µ̂(H \ F ) = 0, so that F is an atom for µ and F ⊆ E. As E is
arbitary, (X,Σ, µ) is purely atomic.

212X Basic exercises >>>(a) Let (X,Σ, µ) be a complete measure space. Suppose that A ⊆ E ∈ Σ and
that µ∗A+ µ∗(E \A) = µE < ∞. Show that A ∈ Σ.

>>>(b) Let µ and ν be two measures on a set X, with completions µ̂ and ν̂. Show that the following are
equiveridical: (i) the outer measures µ∗, ν∗ defined from µ and ν coincide; (ii) µ̂E = ν̂E whenever either
is defined and finite; (iii)

∫
fdµ =

∫
fdν whenever f is a real-valued function such that either integral is

defined and finite. (Hint : for (i)⇒(ii), if µ̂E < ∞, take a measurable envelope F of E for ν and calculate
ν∗E + ν∗(F \ E).)

(c) Let µ be the restriction of Lebesgue measure to the Borel σ-algebra of R, as in 211P. Show that its
completion is Lebesgue measure itself. (Hint : 134F.)

(d) Repeat 212Xc for (i) Lebesgue measure on Rr (ii) Lebesgue-Stieltjes measures on R (114Xa).

(e) Let X be a set and Σ a σ-algebra of subsets of X. Let I be a σ-ideal of subsets of X (112Db). (i)
Show that Σ1 = {E△A : E ∈ Σ, A ∈ I} is a σ-algebra of subsets of X. (ii) Let Σ2 be the family of sets
E ⊆ X such that there are E′, E′′ ∈ Σ with E′ ⊆ E ⊆ E′′ and E′′ \E′ ∈ I. Show that Σ2 is a σ-algebra of
subsets of X and that Σ2 ⊆ Σ1. (iii) Show that Σ2 = Σ1 iff every member of I is included in a member of
Σ ∩ I.

(f) Let (X,Σ, µ) be a measure space, Y any set and φ : X → Y a function. Set θB = µ∗φ−1[B] for
every B ⊆ Y . (i) Show that θ is an outer measure on Y . (ii) Let ν be the measure defined from θ by
Carathéodory’s method, and T its domain. Show that if C ⊆ Y and φ−1[C] ∈ Σ then C ∈ T. (iii) Suppose
that (X,Σ, µ) is complete and totally finite. Show that ν is the image measure µφ−1.

(g) Let g, h be two non-decreasing functions from R to itself, and µg, µh the associated Lebesgue-
Stieltjes measures. Show that a real-valued function f defined on a subset of R is µg+h-integrable iff it is
both µg-integrable and µh-integrable, and that then

∫
fdµg+h =

∫
fdµg +

∫
fdµh. (Hint : 114Yb).

(h) Let (X,Σ, µ) be a measure space, and I a σ-ideal of subsets of X; set Σ1 = {E△A : E ∈ Σ, A ∈ I},
as in 212Xe. Show that if every member of Σ ∩ I is µ-negligible, then there is a unique extension of µ to a
measure µ1 with domain Σ1 such that µ1A = 0 for every A ∈ I.

(i) Let (X,Σ, µ) be a complete measure space such that µX > 0, Y a set, f : X → Y a function and
µf−1 the image measure on Y . Show that if F is the filter of µ-conegligible subsets of X, then the image
filter f [[F ]] (2A1Ib) is the filter of µf−1-conegligible subsets of Y .

(j) Let (X,Σ, µ) be a complete measure space and f : X → R a function such that
∫
fdµ < ∞. Show

that there is a measurable function g : X → R such that f(x) ≤ g(x) for every x ∈ X and
∫
g dµ =

∫
fdµ.

212Y Further exercises (a) Let X be a set and φ an inner measure on X, that is, a functional from
PX to [0,∞] such that

φ∅ = 0,

φ(A ∪B) ≥ φA+ φB if A ∩B = ∅,

φ(
⋂

n∈N An) = limn→∞ φAn whenever 〈An〉n∈N is a non-increasing sequence of subsets of X
and φA0 < ∞,

if φA = ∞, a ∈ R there is a B ⊆ A such that a ≤ φB < ∞.

Let µ be the measure defined from φ, that is, µ = φ↾Σ, where

Σ = {E : φ(A) = φ(A ∩ E) + φ(A \ E) ∀ A ⊆ X}

(113Yg). Show that µ must be complete.

Measure Theory
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(b) Let (X,Σ, µ) be a strictly localizable measure space. Suppose that for every n ∈ N there is a disjoint
family 〈Di〉i<n of subsets of full outer measure. Show that there is a disjoint sequence 〈Dn〉n∈N of sets of
full outer measure.

212 Notes and comments The process of completion is so natural, and so universally applicable, and so
convenient, that over large parts of measure theory it is reasonable to use only complete measure spaces.
Indeed many authors so phrase their definitions that, explicitly or implicitly, only complete measure spaces
are considered. In this treatise I avoid taking quite such a large step, even though it would simplify the
statements of many of the theorems in this volume (for instance). I did take the trouble, in Volume 1, to
give a definition of ‘integrable function’ which, in effect, looks at integrability with respect to the completion
of a measure (212Fb). There are non-complete measure spaces which are worthy of study (for example, the
restriction of Lebesgue measure to the Borel σ-algebra of R – see 211P), and some interesting questions
to be dealt with in Volumes 3 and 5 apply to them. At the cost of rather a lot of verbal manoeuvres,
therefore, I prefer to write theorems out in a form in which they can be applied to arbitrary measure spaces,
without assuming completeness. But it would be reasonable, and indeed would sharpen your technique, if
you regularly sought the alternative formulations which become natural if you are interested only in complete
spaces.

Version of 13.9.13

213 Semi-finite, locally determined and localizable spaces

In this section I collect a variety of useful facts concerning these types of measure space. I start with the
characteristic properties of semi-finite spaces (213A-213B), and continue with complete locally determined
spaces (213C) and the concept of ‘c.l.d. version’ (213D-213H), the most powerful of the universally available
methods of modifying a measure space into a better-behaved one. I briefly discuss ‘locally determined
negligible sets’ (213I-213L), and measurable envelopes (213L-213M), and end with results on localizable
spaces (213N) and strictly localizable spaces (213O).

213A Lemma Let (X,Σ, µ) be a semi-finite measure space. Then

µE = sup{µF : F ∈ Σ, F ⊆ E, µF < ∞}

for every E ∈ Σ.

proof Set c = sup{µF : F ∈ Σ, F ⊆ E, µF < ∞}. Then surely c ≤ µE, so if c = ∞ we can stop. If
c < ∞, let 〈Fn〉n∈N be a sequence of measurable subsets of E, of finite measure, such that limn→∞ µFn = c;
set F =

⋃
n∈N Fn. For each n ∈ N,

⋃
k≤n Fk is a measurable set of finite measure included in E, so

µ(
⋃

k≤n Fk) ≤ c, and

µF = limn→∞ µ(
⋃

k≤n Fk) ≤ c.

Also

µF ≥ supn∈N µFn ≥ c,

so µF = c.

If F ′ is a measurable subset of E \ F and µF ′ < ∞, then F ∪ F ′ has finite measure and is included
in E, so has measure at most c = µF ; it follows that µF ′ = 0. But this means that µ(E \ F ) cannot be
infinite, since then, because (X,Σ, µ) is semi-finite, it would have to include a measurable set of non-zero
finite measure. So E \ F has finite measure, and is therefore in fact negligible; and µE = c, as claimed.

c© 2000 D. H. Fremlin
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16 Taxonomy of measure spaces 213B

213B Proposition Let (X,Σ, µ) be a semi-finite measure space. Let f be a µ-virtually measurable
[0,∞]-valued function defined almost everywhere in X. Then

∫
f = sup{

∫
g : g is a simple function, g ≤a.e. f}

= sup
F∈Σ,µF<∞

∫

F

f

in [0,∞].

proof (a) For any measure space (X,Σ, µ), a [0,∞]-valued function defined on a subset of X is integrable
iff there is a conegligible set E such that

(α) E ⊆ dom f and f↾E is measurable,

(β) sup{
∫
g : g is a simple function, g ≤a.e. f} is finite,

(γ) for every ǫ > 0, {x : x ∈ E, f(x) ≥ ǫ} has finite measure,

(δ) f is finite almost everywhere

(see 122Ja, 133B). But if µ is semi-finite, (γ) and (δ) are consequences of the rest. PPP Let ǫ > 0. Set

Eǫ = {x : x ∈ E, f(x) ≥ ǫ},

c = sup{
∫
g : g is a simple function, g ≤a.e. f};

we are supposing that c is finite. If F ⊆ Eǫ is measurable and µF < ∞, then ǫχF is a simple function and
ǫχF ≤a.e. f , so

ǫµF =
∫
ǫχF ≤ c, µF ≤

c

ǫ

.

As F is arbitrary, 213A tells us that µEǫ ≤
c
ǫ
is finite. As ǫ is arbitrary, (γ) is satisfied.

As for (δ), if F = {x : x ∈ E, f(x) = ∞} then µF is finite (by (γ)) and nχF ≤a.e. f , so nµF ≤ c, for
every n ∈ N, so µF = 0. QQQ

(b) Now suppose that f : D → [0,∞] is a µ-virtually measurable function, where D ⊆ X is conegligible,
so that

∫
f is defined in [0,∞] (135F). Then (a) tells us that

∫
f = sup

g is simple
g≤f a.e.

∫
g

(if either is finite, and therefore also if either is infinite)

= sup
g is simple
g≤f a.e.
µF<∞

∫

F

g ≤ sup
µF<∞

∫

F

f ≤

∫
f,

so we have the equalities we seek.

*213C Proposition Let (X,Σ, µ) be a complete locally determined measure space, and µ∗ the outer
measure derived from µ (132A-132B). Then the measure defined from µ∗ by Carathéodory’s method is µ
itself.

proof Write µ̌ for the measure defined by Carathéodory’s method from µ∗, and Σ̌ for its domain.

(a) If E ∈ Σ and A ⊆ X then µ∗(A ∩ E) + µ∗(A \ E) = µ∗A (132Af), so E ∈ Σ̌. Now µ̌E = µ∗E = µE
(132Ac). Thus Σ ⊆ Σ̌ and µ = µ̌↾Σ.

(b) Now suppose that H ∈ Σ̌. Let E ∈ Σ be such that µE < ∞. Then H ∩ E ∈ Σ. PPP Let E1, E2 ∈ Σ
be measurable envelopes of E ∩H, E \H respectively, both included in E (132Ee). Because H ∈ Σ̌,

µE1 + µE2 = µ∗(E ∩H) + µ∗(E \H) = µ∗E = µE.

Measure Theory



213F Semi-finite, locally determined and localizable spaces 17

As E1 ∪ E2 = E,

µ(E1 ∩ E2) = µE1 + µE2 − µE = 0.

Now E1 \ (E ∩H) ⊆ E1 ∩ E2; because µ is complete, E1 \ (E ∩H) and E ∩H belong to Σ. QQQ
As E is arbitrary, and µ is locally determined, H ∈ Σ. As H is arbitrary, Σ̌ = Σ and µ̌ = µ.

213D C.l.d. versions: Proposition Let (X,Σ, µ) be a measure space. Write (X, Σ̂, µ̂) for its completion
(212C) and Σf for {E : E ∈ Σ, µE < ∞}. Set

Σ̃ = {H : H ⊆ X, H ∩ E ∈ Σ̂ for every E ∈ Σf},

and for H ∈ Σ̃ set

µ̃H = sup{µ̂(H ∩ E) : E ∈ Σf}.

Then (X, Σ̃, µ̃) is a complete locally determined measure space.

proof (a) I check first that Σ̃ is a σ-algebra. PPP (i) ∅ ∩E = ∅ ∈ Σ̂ for every E ∈ Σf , so ∅ ∈ Σ̃. (ii) If H ∈ Σ̃
then

(X \H) ∩ E = E \ (E ∩H) ∈ Σ̂

for every E ∈ Σf , so X \H ∈ Σ̃. (iii) If 〈Hn〉n∈N is a sequence in Σ̃ with union H, then

H ∩ E =
⋃

n∈N Hn ∩ E ∈ Σ̂

for every E ∈ Σf , so H ∈ Σ̃. QQQ

(b) It is obvious that µ̃∅ = 0. If 〈Hn〉n∈N is a disjoint sequence in Σ̃ with union H, then

µ̃H = sup{µ̂(H ∩ E) : E ∈ Σf}

= sup{
∞∑

n=0

µ̂(Hn ∩ E) : E ∈ Σf} ≤
∞∑

n=0

µ̃Hn.

On the other hand, given a <
∑∞

n=0 µ̃Hn, there is an m ∈ N such that a <
∑m

n=0 µ̃Hn; now we can find
E0, . . . , Em ∈ Σf such that a ≤

∑m
n=0 µ̂(Hn ∩ En). Set E =

⋃
n≤m En ∈ Σf ; then

µ̃H ≥ µ̂(H ∩ E) =
∑∞

n=0 µ̂(Hn ∩ E) ≥
∑m

n=0 µ̂(Hn ∩ En) ≥ a.

As a is arbitrary, µ̃H ≥
∑∞

n=0 µ̃Hn and µ̃H =
∑∞

n=0 µ̃Hn.

(c) Thus (X, Σ̃, µ̃) is a measure space. To see that it is semi-finite, note first that Σ̂ ⊆ Σ̃ (because if

H ∈ Σ̂ then surely H ∩ E ∈ Σ̂ for every E ∈ Σf ), and that µ̃H = µ̂H whenever µ̂H < ∞ (because then,
by the definition in 212Ca, there is an E ∈ Σf such that H ⊆ E, so that µ̃H = µ̂(H ∩ E) = µ̂H). Now

suppose that H ∈ Σ̃ and that µ̃H = ∞. There is surely an E ∈ Σf such that µ̂(H ∩ E) > 0; but now
0 < µ̂(H ∩ E) < ∞, so 0 < µ̃(H ∩ E) < ∞.

(d) Thus (X, Σ̃, µ̃) is a semi-finite measure space. To see that it is locally determined, let H ⊆ X be

such that H ∩ G ∈ Σ̃ whenever G ∈ Σ̃ and µ̃G < ∞. Then, in particular, we must have H ∩ E ∈ Σ̃ for
every E ∈ Σf . But this means in fact that H ∩E ∈ Σ̂ for every E ∈ Σf , so that H ∈ Σ̃. As H is arbitrary,
(X,Σ, µ) is locally determined.

(e) To see that (X, Σ̃, µ̃) is complete, suppose that A ⊆ H ∈ Σ̃ and that µ̃H = 0. Then for every E ∈ Σf

we must have µ̂(H ∩ E) = 0. Because (X, Σ̂, µ̂) is complete, and A ∩ E ⊆ H ∩ E, A ∩ E ∈ Σ̂. As E is

arbitrary, A ∈ Σ̃.

213E Definition For any measure space (X,Σ, µ), I will call (X, Σ̃, µ̃), as constructed in 213D, the c.l.d.
version (‘complete locally determined version’) of (X,Σ, µ); and µ̃ will be the c.l.d. version of µ.

213F Following the same pattern as in 212E-212G, I start with some elementary remarks to facilitate
manipulation of this construction.

D.H.Fremlin



18 Taxonomy of measure spaces 213F

Proposition Let (X,Σ, µ) be any measure space and (X, Σ̃, µ̃) its c.l.d. version.

(a) Σ ⊆ Σ̃ and µ̃E = µE whenever E ∈ Σ and µE < ∞ – in fact, if (X, Σ̂, µ̂) is the completion of

(X,Σ, µ), Σ̂ ⊆ Σ̃ and µ̃E = µ̂E whenever µ̂E < ∞.
(b) Writing µ̃∗ and µ∗ for the outer measures defined from µ̃ and µ respectively, µ̃∗A ≤ µ∗A for every

A ⊆ X, with equality if µ∗A is finite. In particular, µ-negligible sets are µ̃-negligible; consequently, µ-
conegligible sets are µ̃-conegligible.

(c) If H ∈ Σ̃,
(i) µ̃H = sup{µF : E ∈ Σ, µF < ∞, F ⊆ H};
(ii) there is an E ∈ Σ such that E ⊆ H and µE = µ̃H, so that if µ̃H < ∞ then µ̃(H \ E) = 0.

proof (a) This is already covered by remarks in the proof of 213D.

(b) If µ∗A = ∞ then surely µ̃∗A ≤ µ∗A. If µ∗A < ∞, take E ∈ Σ such that A ⊆ E and µE = µ∗A
(132Aa). Then

µ̃∗A ≤ µ̃E = µE = µ∗A.

On the other hand, if A ⊆ H ∈ Σ̃, then

µ̃H ≥ µ̂(H ∩ E) ≥ µ̂∗A = µ∗A,

using 212Ea. So µ∗A ≤ µ̃∗A and µ∗A = µ̃∗A.

(c) Write Σf for {E : E ∈ Σ, µE < ∞}; then, by the definition in 213D, µ̃H = sup{µ̂(H ∩E) : E ∈ Σf}.
Let 〈En〉n∈N be a sequence in Σf such that µ̃H = supn∈N µ̂(H ∩ En). For each n ∈ N there is an Fn ∈ Σ
such that Fn ⊆ H ∩ En and µFn = µ̂(H ∩ En) (212C). Set E =

⋃
n∈N Fn. Then E ∈ Σ, E ⊆ H and

µ̃H = supn∈N µFn ≤ limn→∞ µ(
⋃

i≤n Fi) = µE = limn→∞ µ̃(
⋃

i≤n Fi) ≤ µ̃H,

so µE = µ̃H, and if µ̃H < ∞ then µ̃(H \ E) = 0. At the same time,

µ̃H = sup
n∈N

µFn ≤ sup
F∈Σf ,F⊆H

µF = sup
F∈Σf ,F⊆H

µ̃F

(by (a) again)

≤ µ̃H,

so we have equality here too.

213G The next step is to look at functions which are measurable or integrable with respect to µ̃.

Proposition Let (X,Σ, µ) be a measure space, and (X, Σ̃, µ̃) its c.l.d. version.

(a) If a real-valued function f defined on a subset of X is µ-virtually measurable, it is Σ̃-measurable.
(b) If a real-valued function is µ-integrable, it is µ̃-integrable with the same integral.
(c) If f is a µ̃-integrable real-valued function, there is a µ-integrable real-valued function which is equal

to f µ̃-almost everywhere.

proof Write Σf for {E : E ∈ Σ, µE < ∞}. By 213Fa, µ̃ and µ agree on Σf .

(a) By 212Fa, f is Σ̂-measurable, where Σ̂ is the domain of the completion of µ; but since Σ̂ ⊆ Σ̃, f is

Σ̃-measurable.

(b)(i) If f is a µ-simple function it is µ̃-simple, and
∫
fdµ =

∫
fdµ̃, because µ̃E = µE for every E ∈ Σf .

(ii) If f is a non-negative µ-integrable function, there is a non-decreasing sequence 〈fn〉n∈N of µ-simple
functions converging to f µ-almost everywhere; now (by 213Fb) µ-negligible sets are µ̃-negligible, so 〈fn〉n∈N

converges to f µ̃-a.e. and (by B.Levi’s theorem, 123A) f is µ̃-integrable, with∫
fdµ̃ = limn→∞

∫
fndµ̃ = limn→∞

∫
fndµ =

∫
fdµ.

(iii) In general, if
∫
fdµ is defined in R, we have

Measure Theory
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∫
fdµ̃ =

∫
f+dµ̃−

∫
f−dµ̃ =

∫
f+dµ−

∫
f−dµ =

∫
fdµ,

writing f+ for f ∨ 0 and f− for (−f) ∨ 0.

(c)(i) Let f be a µ̃-simple function. Express it as
∑n

i=0 aiχHi where µ̃Hi < ∞ for each i. Choose
E0, . . . , En ∈ Σ such that Ei ⊆ Hi and µ̃(Hi \Ei) = 0 for each i (using 213Fc above). Then g =

∑n
i=0 aiχEi

is µ-simple, g = f µ̃-a.e., and
∫
g dµ =

∫
fdµ̃.

(ii) Let f be a non-negative µ̃-integrable function. Let 〈fn〉n∈N be a non-decreasing sequence of µ̃-simple
functions converging µ̃-almost everywhere to f . For each n, choose a µ-simple function gn equal µ̃-almost
everywhere to fn. Then {x : gn+1(x) < gn(x)} belongs to Σf and is µ̃-negligible, therefore µ-negligible. So
〈gn〉n∈N is non-decreasing µ-almost everywhere. Because

limn→∞

∫
gndµ = limn→∞

∫
fndµ̃ =

∫
fdµ̃,

B.Levi’s theorem tells us that 〈gn〉n∈N converges µ-almost everywhere to a µ-integrable function g; because
µ-negligible sets are µ̃-negligible,

(X \ dom f) ∪ (X \ dom g)

∪
⋃

n∈N

{x : fn(x) 6= gn(x)}

∪ {x : x ∈ dom f, f(x) 6= sup
n∈N

fn(x)}

∪ {x : x ∈ dom g, g(x) 6= sup
n∈N

gn(x)}

is µ̃-negligible, and f = g µ̃-a.e.

(iii) If f is µ̃-integrable, express it as f1 − f2 where f1 and f2 are µ̃-integrable and non-negative; then
there are µ-integrable functions g1, g2 such that f1 = g1, f2 = g2 µ̃-a.e., so that g = g1 − g2 is µ-integrable
and equal to f µ̃-a.e.

213H Thirdly, I turn to the effect of the construction here on the other properties being considered in
this chapter.

Proposition Let (X,Σ, µ) be a measure space, (X, Σ̂, µ̂) its completion and (X, Σ̃, µ̃) its c.l.d. version.

(a) If (X,Σ, µ) is a probability space, or totally finite, or σ-finite, or strictly localizable, so is (X, Σ̃, µ̃),
and in all these cases µ̃ = µ̂;

(b) if (X,Σ, µ) is localizable, so is (X, Σ̃, µ̃), and for everyH ∈ Σ̃ there is an E ∈ Σ such that µ̃(E△H) = 0;
(c) (X,Σ, µ) is semi-finite iff µ̃F = µF for every F ∈ Σ, and in this case

∫
fdµ̃ =

∫
fdµ whenever the

latter is defined in [−∞,∞];

(d) a set H ∈ Σ̃ is an atom for µ̃ iff there is an atom E for µ such that µE < ∞ and µ̃(H△E) = 0;

(e) if (X,Σ, µ) is atomless or purely atomic, so is (X, Σ̃, µ̃);
(f) (X,Σ, µ) is complete and locally determined iff µ̃ = µ.

proof (a)(i) I start by showing that if (X,Σ, µ) is strictly localizable, then µ̃ = µ̂. PPP Let 〈Xi〉i∈I be a

decomposition of X for µ; then it is also a decomposition for µ̂ (212Gb). If H ∈ Σ̃, we shall have H∩Xi ∈ Σ̂

for every i, and therefore H ∈ Σ̂; moreover,

µ̂H =
∑

i∈I

µ̂(H ∩Xi) = sup{
∑

i∈J

µ̂(H ∩Xi) : J ⊆ I is finite}

≤ sup{µ̂(H ∩ E) : E ∈ Σ, µE < ∞} = µ̃H ≤ µ̂H.

So µ̂H = µ̃H for every H ∈ Σ̃ and µ̂ = µ̃. QQQ

(ii) Consequently, if (X,Σ, µ) is a probability space, or totally finite, or σ-finite, or strictly localizable,

so is (X, Σ̃, µ̃), using 212Ga-212Gb to see that (X, Σ̂, µ̂) has the property involved.

(b) If (X,Σ, µ) is localizable, let H be any subset of Σ̃. Set

D.H.Fremlin



20 Taxonomy of measure spaces 213H

E = {E : E ∈ Σf , ∃ H ∈ H, E ⊆ H}

where Σf = {E : µE < ∞} as usual. Working in (X,Σ, µ), let F ∈ Σ be an essential supremum for E .

(i) ??? Suppose, if possible, that there is an H ∈ H such that µ̃(H \ F ) > 0. By 213F(c-i), there is an
E ∈ Σf such that E ⊆ H \F and µE > 0. This E belongs to E and µ(E \F ) = µE > 0; which is impossible
if F is an essential supremum of E . XXX

(ii) Thus µ̃(H \ F ) = 0 for every H ∈ H. Now take any G ∈ Σ̃ such that µ̃(H \ G) = 0 for every
H ∈ H. ??? If µ̃(F \G) > 0, there is an E0 ∈ Σf such that E0 ⊆ F \G and µE0 > 0. If E ∈ E , there is an
H ∈ H such that E ⊆ H, so that E \ (F \ E0) ⊆ H \ (F ∩G), while µ(E \ (F \ E0)) < ∞; so

µ(E \ (F \ E0)) ≤ µ̃(H \ (F ∩G)) ≤ µ̃(H \ F ) + µ̃(H \G) = 0.

Because F is an essential supremum for E in Σ,

0 = µ(F \ (F \ E0)) = µE0. XXX

This shows that F is an essential supremum for H in Σ̃. As H is arbitrary, (X, Σ̃, µ̃) is localizable.

(iii) The argument of (i)-(ii) shows in fact that if H ⊆ Σ̃ then H has an essential supremum F in Σ̃

such that F actually belongs to Σ. Taking H = {H}, we see that if H ∈ Σ̃ there is an F ∈ Σ such that
µ(H△F ) = 0.

(c) We already know that µ̃E ≤ µE for every E ∈ Σ, with equality if µE < ∞, by 213Fa.

(i) If (X,Σ, µ) is semi-finite, then 213A and 213F(c-i) tell us that for any F ∈ Σ we have

µF = sup{µE : E ∈ Σ, E ⊆ F, µE < ∞} = µ̃F .

(ii) Suppose that µ̃F = µF for every F ∈ Σ. If µF = ∞, then µ̃F = ∞ so (by 213F(c-i) again) there
must be an E ∈ Σf such that E ⊆ F and µE > 0; as F is arbitrary, (X,Σ, µ) is semi-finite.

(iii) If f is non-negative and
∫
fdµ = ∞, then f is µ-virtually measurable, therefore Σ̃-measurable

(213Ga), and defined µ-almost everywhere, therefore µ̃-almost everywhere. Now

∫
fdµ̃ = sup{

∫
g dµ̃ : g is µ̃-simple, 0 ≤ g ≤ f µ̃-a.e.}

≥ sup{

∫
g dµ : g is µ-simple, 0 ≤ g ≤ f µ-a.e.} = ∞

by 213B. With 213Gb, this shows that
∫
fdµ̃ =

∫
fdµ whenever f is non-negative and

∫
fdµ is defined in

[0,∞]. Applying this to the positive and negative parts of f , we see that
∫
fdµ̃ =

∫
fdµ whenever the latter

is defined in [−∞,∞].

(d)(i) If H ∈ Σ̃ is an atom for µ̃, then there is an E ∈ Σf such that E ⊆ H and 0 < µE < ∞.
In this case, µ̃E > 0 so µ̃(H \ E) must be zero. If F ∈ Σ and F ⊆ E, then either µF = µ̃F = 0 or
µ(E \ F ) = µ̃(H \ F ) = 0. Thus E ∈ Σ is an atom for µ with µ̃(H△E) = 0 and µE < ∞.

(ii) If H ∈ Σ̃ and there is an atom E for µ such that µE < ∞ and µ̃(H△E) = 0, let G ∈ Σ̃ be a subset
of H with µ̃G > 0. We have µ̃(E ∩ G) = µ̃(H ∩ G) > 0, so there is an F ∈ Σ such that F ⊆ E ∩ G and
µF > 0. Now µ(E \ F ) must be zero, so

µ̃(H \G) ≤ µ̃(H \ F ) = µ̃(E \ F ) = µ(E \ F ) = 0.

As G is arbitrary, H is an atom for µ̃.

(e) If (X,Σ, µ) is atomless, then (X, Σ̃, µ̃) must be atomless, by (d).

If (X,Σ, µ) is purely atomic, H ∈ Σ̃ and µ̃H > 0, then there is an E ∈ Σf such that E ⊆ H and µE > 0.
There is an atom F for µ such that F ⊆ E; now µF < ∞ so F is an atom for µ̃, by (d). Also F ⊆ H. As

H is arbitrary, (X, Σ̃, µ̃) is purely atomic.

(f) If µ = µ̃, then of course (X,Σ, µ) must be complete and locally determined, because (X, Σ̃, µ̃) is. If

(X,Σ, µ) is complete and locally determined, then µ̂ = µ so (using the definition in 213D) Σ̃ ⊆ Σ and µ̃ = µ,
by (c) above.
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213I Locally determined negligible sets The following simple idea is occasionally useful.

Definition A measure space (X,Σ, µ) has locally determined negligible sets if for every non-negligible
A ⊆ X there is an E ∈ Σ such that µE < ∞ and A ∩ E is not negligible.

213J Proposition If a measure space (X,Σ, µ) is either strictly localizable or complete and locally
determined, it has locally determined negligible sets.

proof Let A ⊆ X be a set such that A ∩ E is negligible whenever µE < ∞; I need to show that A is
negligible.

(i) If µ is strictly localizable, let 〈Xi〉i∈I be a decomposition of X. For each i ∈ I, A ∩Xi is negligible,
so there we can choose a negligible Ei ∈ Σ such that A ∩ Xi ⊆ Ei. Set E =

⋃
i∈I Ei ∩ Xi. Then

µE =
∑

i∈I µ(Ei ∩Xi) = 0 and A ⊆ E, so A is negligible.

(ii) If µ is complete and locally determined, take any measurable set E of finite measure. Then A∩E is
negligible, therefore measurable; as E is arbitrary, A is measurable; as µ is semi-finite, A is negligible.

*213K Lemma If a measure space (X,Σ, µ) has locally determined negligible sets, and E ⊆ Σ has an
essential supremum H ∈ Σ in the sense of 211G, then H \

⋃
E is negligible.

proof Set A = H \
⋃

E . Take any F ∈ Σ such that µF < ∞. Then F ∩ A has a measurable envelope V
say (132Ee again). If E ∈ E , then

µ(E \ (X \ V )) = µ(E ∩ V ) = µ∗(E ∩ F ∩A) = 0,

so H ∩V = H \ (X \V ) is negligible and F ∩A is negligible. As F is arbitrary and µ has locally determined
negligible sets, A is negligible, as claimed.

213L Proposition Let (X,Σ, µ) be a localizable measure space with locally determined negligible sets.
Then every subset A of X has a measurable envelope.

proof Set

E = {E : E ∈ Σ, µ∗(A ∩ E) = µE < ∞}.

Let G be an essential supremum for E in Σ.

(i) A \G is negligible. PPP Let F be any set of finite measure for µ. Let E be a measurable envelope of
A ∩ F . Then E ∈ E so E \ G is negligible. But F ∩ A \ G ⊆ E \ G, so F ∩ A \ G is negligible. Because µ
has locally determined negligible sets, this is enough to show that A \G is negligible. QQQ

(ii) Let E0 be a negligible measurable set including A \G, and set G̃ = E0 ∪G, so that G̃ ∈ Σ, A ⊆ G̃

and µ(G̃ \ G) = 0. ??? Suppose, if possible, that there is an F ∈ Σ such that µ∗(A ∩ F ) < µ(G̃ ∩ F ). Let
F1 ⊆ F be a measurable envelope of A ∩ F . Set H = X \ (F \ F1); then A ⊆ H. If E ∈ E then

µE = µ∗(A ∩ E) ≤ µ(H ∩ E),

so E \H is negligible; as E is arbitrary, G \H is negligible and G̃ \H is negligible. But G̃∩F \F1 ⊆ G̃ \H
and

µ(G̃ ∩ F \ F1) = µ(G̃ ∩ F )− µ∗(A ∩ F ) > 0. XXX

This shows that G̃ is a measurable envelope of A, as required.

213M Corollary (a) If (X,Σ, µ) is σ-finite, then every subset of X has a measurable envelope for µ.
(b) If (X,Σ, µ) is localizable, then every subset of X has a measurable envelope for the c.l.d. version of

µ.

proof (a) Use 132Ee, or 213L, 211Lc and 213J.

(b) Use 213L and the fact that the c.l.d. version of µ is localizable as well as being complete and locally
determined (213Hb).
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213N When we come to use the concept of ‘localizability’, it will frequently be through the following
property, which in fact characterizes localizable spaces (213Xm).

Theorem Let (X,Σ, µ) be a localizable measure space. Suppose that Φ is a family of measurable real-
valued functions, all defined on measurable subsets of X, such that whenever f , g ∈ Φ then f = g almost
everywhere in dom f ∩ dom g. Then there is a measurable function h : X → R such that every f ∈ Φ agrees
with h almost everywhere in dom f .

proof For q ∈ Q, f ∈ Φ set

Efq = {x : x ∈ dom f, f(x) ≥ q} ∈ Σ.

For each q ∈ Q, let Eq be an essential supremum of {Efq : f ∈ Φ} in Σ. Set

h∗(x) = sup{q : q ∈ Q, x ∈ Eq} ∈ [−∞,∞]

for x ∈ X, taking sup ∅ = −∞ if necessary.
If f , g ∈ Φ and q ∈ Q, then

Efq \ (X \ (dom g \ Egq)) = Efq ∩ dom g \ Egq

⊆ {x : x ∈ dom f ∩ dom g, f(x) 6= g(x)}

is negligible; as f is arbitrary,

Eq ∩ dom g \ Egq = Eq \ (X \ (dom g \ Egq))

is negligible. Also Egq\Eq is negligible, so Egq△(Eq∩dom g) is negligible. SetHg =
⋃

q∈Q Egq△(Eq∩dom g);

then Hg is negligible. But if x ∈ dom g \Hg, then, for every q ∈ Q, x ∈ Eq ⇐⇒ x ∈ Egq; it follows that
for such x, h∗(x) = g(x). Thus h∗ = g almost everywhere in dom g; and this is true for every g ∈ Φ.

The function h∗ is not necessarily real-valued. But it is measurable, because

{x : h∗(x) > a} =
⋃
{Eq : q ∈ Q, q > a} ∈ Σ

for every real a. So if we modify it by setting

h(x) = h∗(x) if h(x) ∈ R,

= 0 if h∗(x) ∈ {−∞,∞},

we shall get a measurable real-valued function h : X → R; and for any g ∈ Φ, h(x) will be equal to g(x) at
least whenever h∗(x) = g(x), which is true for almost every x ∈ dom g. Thus h is a suitable function.

213O There is an interesting and useful criterion for a space to be strictly localizable which I introduce
at this point, though it will be used rarely in this volume.

Proposition Let (X,Σ, µ) be a complete locally determined space.
(a) Suppose that there is a disjoint family E ⊆ Σ such that (α) µE < ∞ for every E ∈ E (β) whenever

F ∈ Σ and µF > 0 then there is an E ∈ E such that µ(E ∩ F ) > 0. Then (X,Σ, µ) is strictly localizable,⋃
E is conegligible, and E ∪ {X \

⋃
E} is a decomposition of X.

(b) Suppose that 〈Xi〉i∈I is a partition of X into measurable sets of finite measure such that whenever
E ∈ Σ and µE > 0 there is an i ∈ I such that µ(E ∩ Xi) > 0. Then (X,Σ, µ) is strictly localizable, and
〈Xi〉i∈I is a decomposition of X.

proof (a)(i) The first thing to note is that if F ∈ Σ and µF < ∞, there is a countable E ′ ⊆ E such that
µ(F \

⋃
E ′) = 0. PPP Set

E ′
n = {E : E ∈ E , µ(F ∩ E) ≥ 2−n} for each n ∈ N,

E ′ =
⋃

n∈N E ′
n = {E : E ∈ E , µ(F ∩ E) > 0}.

Because E is disjoint, we must have

#(E ′
n) ≤ 2nµF
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for every n ∈ N, so that every E ′
n is finite and E ′, being the union of a sequence of countable sets, is

countable. Set E′ =
⋃
E ′ and F ′ = F \ E′, so that both E′ and F ′ belong to Σ. If E ∈ E ′, then E ⊆ E′ so

µ(E ∩ F ′) = µ∅ = 0; if E ∈ E \ E ′, then µ(E ∩ F ′) = µ(E ∩ F ) = 0. Thus µ(E ∩ F ′) = 0 for every E ∈ E .
By the hypothesis (β) on E , µF ′ = 0, so µ(F \

⋃
E ′) = 0, as required. QQQ

(ii) Now suppose that H ⊆ X is such that H ∩ E ∈ Σ for every E ∈ E . In this case H ∈ Σ. PPP Let
F ∈ Σ be such that µF < ∞. Let E ′ ⊆ E be a countable set such that µ(F \ E′) = 0, where E′ =

⋃
E ′.

Then H ∩ (F \ E′) ∈ Σ because (X,Σ, µ) is complete. But also H ∩ E′ =
⋃

E∈E′ H ∩ E ∈ Σ. So

H ∩ F = (H ∩ (F \ E′)) ∪ (F ∩ (H ∩ E′)) ∈ Σ.

As F is arbitrary and (X,Σ, µ) is locally determined, H ∈ Σ. QQQ

(iii) We find also that µH =
∑

E∈E µ(H ∩ E) for every H ∈ Σ. PPP (α) Because E is disjoint, we must
have

∑
E∈E′ µ(H ∩ E) ≤ µH for every finite E ′ ⊆ E , so

∑
E∈E µ(H ∩ E) = sup{

∑
E∈E′ µ(H ∩ E) : E ′ ⊆ E is finite} ≤ µH.

(β) For the reverse inequality, consider first the case µH < ∞. By (i), there is a countable E ′ ⊆ E such that
µ(H \

⋃
E ′) = 0, so that

µH = µ(H ∩
⋃
E ′) =

∑
E∈E′ µ(H ∩ E) ≤

∑
E∈E µ(H ∩ E).

(γ) In general, because (X,Σ, µ) is semi-finite,

µH = sup{µF : F ⊆ H, µF < ∞}

≤ sup{
∑

E∈E

µ(F ∩ E) : F ⊆ H, µF < ∞} ≤
∑

E∈E

µ(H ∩ E).

So in all cases we have µH ≤
∑

E∈E µ(H ∩ E), and the two are equal. QQQ

(iv) In particular, setting E0 = X \
⋃
E , E0 ∈ Σ and µE0 = 0; that is,

⋃
E is conegligible. Consider

E∗ = E ∪ {E0}. This is a partition of X into sets of finite measure (now using the hypothesis (α) on E). If
H ⊆ X is such that H ∩ E ∈ Σ for every E ∈ E∗, then H ∈ Σ and

µH =
∑

E∈E µ(H ∩ E) =
∑

E∈E∗ µ(H ∩ E).

Thus E∗ (or, if you prefer, the indexed family 〈E〉E∈E∗) is a decomposition witnessing that (X,Σ, µ) is
strictly localizable.

(b) Apply (a) with E = {Xi : i ∈ I}, noting that E0 in (iv) is empty, so can be dropped.

213X Basic exercises (a) Let (X,Σ, µ) be any measure space, µ∗ the outer measure defined from µ,
and µ̌ the measure defined by Carathéodory’s method from µ∗; write Σ̌ for the domain of µ̌. Show that (i)
µ̌ extends the completion µ̂ of µ; (ii) if H ⊆ X is such that H ∩ F ∈ Σ̌ whenever F ∈ Σ and µF < ∞, then
H ∈ Σ̌; (iii) (µ̌)∗ = µ∗, so that the integrable functions for µ̌ and µ are the same (212Xb); (iv) if µ is strictly
localizable then µ̌ = µ̂.

>>>(b) Let µ be counting measure restricted to the countable-cocountable σ-algebra of a set X (211R,
211Ye). (i) Show that the c.l.d. version µ̃ of µ is just counting measure on X. (ii) Show that µ̌, as defined
in 213Xa, is equal to µ̃, and in particular strictly extends the completion of µ if X is uncountable.

(c) Let (X,Σ, µ) be any measure space. For E ∈ Σ set

µsfE = sup{µ(E ∩ F ) : F ∈ Σ, µF < ∞}.

(i) Show that (X,Σ, µsf) is a semi-finite measure space, and is equal to (X,Σ, µ) iff (X,Σ, µ) is semi-
finite.

(ii) Show that a µ-integrable real-valued function f is µsf-integrable, with the same integral.
(iii) Show that if E ∈ Σ then E can be expressed as E1 ∪ E2 where E1, E2 ∈ Σ, µE1 = µsfE1 and

µsfE2 = 0.
(iv) Show that if f is a µsf-integrable real-valued function on X, it is equal µsf-almost everywhere to a

µ-integrable function.
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(v) Show that if (X,Σ, µsf) is complete, so is (X,Σ, µ).
(vi) Show that µ and µsf have identical c.l.d. versions.

(d) Let (X,Σ, µ) be any measure space. Define µ̌ as in 213Xa. Show that (µ̌)sf, as constructed in 213Xc,
is precisely the c.l.d. version µ̃ of µ, so that µ̌ = µ̃ iff µ̌ is semi-finite.

(e) Let (X,Σ, µ) be a measure space. For A ⊆ X set µ∗A = sup{µE : E ∈ Σ, µE < ∞, E ⊆ A}, as
in 113Yh. (i) Show that the measure constructed from µ∗ by the method of 113Yg/212Ya is just the c.l.d.
version µ̃ of µ. (ii) Show that µ̃∗ = µ∗. (iii) Show that if ν is another measure on X, with domain T, then
µ̃ = ν̃ iff µ∗ = ν∗.

(f) Let X be a set and θ an outer measure on X. Show that θsf, defined by writing

θsfA = sup{θB : B ⊆ A, θB < ∞}

is also an outer measure on X. Show that the measures defined by Carathéodory’s method from θ, θsf have
the same domains.

(g) Let (X,Σ, µ) be any measure space. Set

µ∗
sfA = sup{µ∗(A ∩ E) : E ∈ Σ, µE < ∞}

for every A ⊆ X.
(i) Show that

µ∗
sfA = sup{µ∗B : B ⊆ A, µ∗B < ∞}

for every A.
(ii) Show that µ∗

sf is an outer measure.
(iii) Show that if A ⊆ X and µ∗

sfA < ∞, there is an E ∈ Σ such that µ∗
sfA = µ∗(A ∩ E) = µE,

µ∗
sf(A \ E) = 0. (Hint : take a non-decreasing sequence 〈En〉n∈N of measurable sets of finite measure such

that µ∗
sfA = limn→∞ µ∗(A ∩ En), and let E ⊆

⋃
n∈N En be a measurable envelope of A ∩

⋃
n∈N En.)

(iv) Show that the measure defined from µ∗
sf by Carathéodory’s method is precisely the c.l.d. version µ̃

of µ.
(v) Show that µ∗

sf = µ̃∗, so that if µ is complete and locally determined then µ∗
sf = µ∗.

>>>(h) Let (X,Σ, µ) be a measure space with locally determined measurable sets. Show that it is semi-
finite.

>>>(i) Let (X,Σ, µ) be a measure space, µ̂ the completion of µ, µ̃ the c.l.d. version of µ and µ̌ the measure
defined by Carathéodory’s method from µ∗. Show that the following are equiveridical: (i) µ has locally
determined negligible sets; (ii) µ and µ̃ have the same negligible sets; (iii) µ̌ = µ̃; (iv) µ̂ and µ̃ have the same
sets of finite measure; (v) µ and µ̃ have the same integrable functions; (vi) µ̃∗ = µ∗; (vii) the outer measure
µ∗
sf of 213Xg is equal to µ∗.

>>>(j) Let (X,Σ, µ) be a strictly localizable measure space with a decomposition 〈Xi〉i∈I . Show that
µ∗A =

∑
i∈I µ

∗(A ∩Xi) for every A ⊆ X.

>>>(k) Let (X,Σ, µ) be a complete locally determined measure space, and let A ⊆ X be such that
min(µ∗(E∩A), µ∗(E\A)) < µE whenever E ∈ Σ and 0 < µE < ∞. Show that A ∈ Σ. (Hint : given µF < ∞,
consider the intersection E of measurable envelopes of F ∩A, F \A to see that µ∗(F ∩A)+µ∗(F \A) = µF .)

(l) Let us say that a measure space (X,Σ, µ) has the measurable envelope property if every subset of
X has a measurable envelope. (i) Show that a semi-finite space with the measurable envelope property has
locally determined negligible sets. (ii) Show that a complete semi-finite space with the measurable envelope
property is locally determined.

(m) Let (X,Σ, µ) be a semi-finite measure space, and suppose that it satisfies the conclusion of Theorem
213N. Show that it is localizable. (Hint : given E ⊆ Σ, set F = {F : F ∈ Σ, E ∩ F is negligible for
every E ∈ E}. Let Φ be the set of functions f from subsets of X to {0, 1} such that f−1[{1}] ∈ E and
f−1[{0}] ∈ F .)
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(n) Let (X,Σ, µ) be a measure space. Show that its c.l.d. version is strictly localizable iff there is a
disjoint family E ⊆ Σ such that µE < ∞ for every E ∈ E and whenever F ∈ Σ and 0 < µF < ∞ there is an
E ∈ E such that µ(E ∩ F ) > 0.

(o) Show that the c.l.d. version of any point-supported measure is point-supported.

213Y Further exercises (a) Let (X,Σ, µ) be a measure space. Show that µ is semi-finite iff there is a
family E ⊆ Σ such that µE < ∞ for every E ∈ E and µF =

∑
E∈E µ(F ∩ E) for every F ∈ Σ. (Hint : take

E maximal subject to the intersection of any two elements being negligible.)

(b) Set X = N, and for A ⊆ X set

θA =
√
#(A) if A is finite, ∞ if A is infinite.

Show that θ is an outer measure on X, that θA = sup{θB : B ⊆ A, θB < ∞} for every A ⊆ X, but that
the measure µ defined from θ by Carathéodory’s method is not semi-finite. Show that if µ̌ is the measure
defined by Carathéodory’s method from µ∗ (213Xa), then µ̌ 6= µ.

(c) Set X = [0, 1]× {0, 1}, and let Σ be the family of those subsets E of X such that

{x : x ∈ [0, 1], E[{x}] 6= ∅, E[{x}] 6= {0, 1}}

is countable, writing E[{x}] = {y : (x, y) ∈ E} for each x ∈ [0, 1]. Show that Σ is a σ-algebra of subsets
of X. For E ∈ Σ, set µE = #({x : (x, 1) ∈ E}) if this is finite, ∞ otherwise. Show that µ is a complete
semi-finite measure. Show that the measure µ̌ defined from µ∗ by Carathéodory’s method (213Xa) is not
semi-finite. Show that the domain of the c.l.d. version of µ is the whole of PX.

(d) Set X = N, and for A ⊆ X set

φA = #(A)2 if A is finite, ∞ if A is infinite.

Show that φ satisfies the conditions of 212Ya, but that the measure defined from φ by the method there is
not semi-finite.

(e) Let (X,Σ, µ) be a complete locally determined measure space. Suppose that D ⊆ X and that
f : D → R is a function. Show that the following are equiveridical: (i) f is measurable; (ii)

µ∗{x : x ∈ D ∩ E, f(x) ≤ a}+ µ∗{x : x ∈ D ∩ E, f(x) ≥ b} ≤ µE

whenever a < b in R, E ∈ Σ and µE < ∞ (iii)

min(µ∗{x : x ∈ D ∩ E, f(x) ≤ a}, µ∗{x : x ∈ D ∩ E, f(x) ≥ b}) < µE

whenever a < b in R and 0 < µE < ∞. (Hint : for (iii)⇒(i), show that if E ⊆ X then

µ∗{x : x ∈ D ∩ E, f(x) > a} = supb>a µ
∗{x : x ∈ D ∩ E, f(x) ≥ b},

and use 213Xk above.)

(f) Let (X,Σ, µ) be a complete locally determined measure space and suppose that E ⊆ Σ is such that
µE < ∞ for every E ∈ E and whenever F ∈ Σ and µF < ∞ there is a countable E0 ⊆ E such that F \

⋃
E0,

F ∩
⋃
(E \ E0) are negligible. Show that (X,Σ, µ) is strictly localizable.

213 Notes and comments I think it is fair to say that if the definition of ‘measure space’ were re-written
to exclude all spaces which are not semi-finite, nothing significant would be lost from the theory. There are
solid reasons for not taking such a drastic step, starting with the fact that it would confuse everyone (if you
say to an unprepared audience ‘let (X,Σ, µ) be a measure space’, there is a danger that some will imagine
that you mean ‘σ-finite measure space’, but very few will suppose that you mean ‘semi-finite measure space’).
But the whole point of measure theory is that we distinguish between sets by their measures, and if every
subset of E is either non-measurable, or negligible, or of infinite measure, the classification is too crude to
support most of the usual ideas, starting, of course, with ordinary integration.
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Let us say that a measurable set E is purely infinite if E itself and all its non-negligible measurable
subsets have infinite measure. On the definition of the integral which I chose in Volume 1, every simple
function, and therefore every integrable function, must be zero almost everywhere in E. This means that the
whole theory of integration will ignore E entirely. Looking at the definition of ‘c.l.d. version’ (213D-213E),
you will see that the c.l.d. version of the measure will render E negligible, as does the ‘semi-finite version’
described in 213Xc. These amendments do not, however, affect sets of finite measure, and consequently
leave integrable functions integrable, with the same integrals.

The strongest reason we have yet seen for admitting non-semi-finite spaces into consideration is that
Carathéodory’s method does not always produce semi-finite spaces. (I give examples in 213Yb-213Yc; more
important ones are the Hausdorff measures of §§264-265 below.) In practice the right thing to do is often
to take the c.l.d. version of the measure produced by Carathéodory’s construction.

It is a reasonable general philosophy, in measure theory, to say that we wish to measure as many sets,
and integrate as many functions, as we can manage in a canonical way – I mean, without making blatantly
arbitrary choices about the values we assign to our measure or integral. The revision of a measure µ to its
c.l.d. version µ̃ is about as far as we can go with an arbitrary measure space in which we have no other
structure to guide our choices.

You will observe that µ̃ is not as close to µ as the completion µ̂ of µ is; naturally so, because if E ∈ Σ is
purely infinite for µ then we have to choose between setting µ̃E = 0 6= µE and finding some way of fitting
many sets of finite measure into E; which if E is a singleton will be actually impossible, and in any case
would be an arbitrary process. However the integrable functions for µ̃, while not always the same as those for
µ (since µ̃ turns purely infinite sets into negligible ones, so that their indicator functions become integrable),
are ‘nearly’ the same, in the sense that any µ̃-integrable function can be changed into a µ-integrable function
by adjusting it on a µ̃-negligible set. This corresponds, of course, to the fact that any set of finite measure
for µ̃ is the symmetric difference of a set of finite measure for µ and a µ̃-negligible set. For sets of infinite
measure this can fail, unless µ is localizable (213Hb, 213Xb).

If (X,Σ, µ) is semi-finite, or localizable, or strictly localizable, then of course it is correspondingly closer

to (X, Σ̃, µ̃), as detailed in 213Ha-c.

It is worth noting that while the measure µ̌ obtained by Carathéodory’s method directly from the outer
measure µ∗ defined from µ may fail to be semi-finite, even when µ is (213Yc), a simple modification of
µ∗ (213Xg) yields the c.l.d. version µ̃ of µ, which can also be obtained from an appropriate inner measure
(213Xe). The measure µ̌ is of course related in other ways to µ̃; see 213Xd.

Version of 22.5.09

214 Subspaces

In §131 I described a construction for subspace measures on measurable subsets. It is now time to give
the generalization to subspace measures on arbitrary subsets of a measure space. The relationship between
this construction and the properties listed in §211 is not quite as straightforward as one might imagine, and
in this section I try to give a full account of what can be expected of subspaces in general. I think that
for the present volume only (i) general subspaces of σ-finite spaces and (ii) measurable subspaces of general
measure spaces will be needed in any essential way, and these do not give any difficulty; but in later volumes
we shall need the full theory.

I begin with a general construction for ‘subspace measures’ (214A-214C), with an account of integration
with respect to a subspace measure (214E-214G); these (with 131E-131H) give a solid foundation for the
concept of ‘integration over a subset’ (214D). I present this work in its full natural generality, which will
eventually be essential, but even for Lebesgue measure alone it is important to be aware of the ideas here.
I continue with answers to some obvious questions concerning subspace measures and the properties of
measure spaces so far considered, both for general subspaces (214I) and for measurable subspaces (214K),
and I mention a basic construction for assembling measure spaces side-by-side, the ‘direct sums’ of 214L-
214M. At the end of the section I discuss a measure extension problem (214O-214P).

c© 2009 D. H. Fremlin
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214A Proposition Let (X,Σ, µ) be a measure space, and Y any subset of X. Let µ∗ be the outer
measure defined from µ (132A-132B), and set ΣY = {E ∩Y : E ∈ Σ}; let µY be the restriction of µ∗ to ΣY .
Then (Y,ΣY , µY ) is a measure space.

proof (a) I have noted in 121A that ΣY is a σ-algebra of subsets of Y .

(b) Of course µY F ∈ [0,∞] for every F ∈ ΣY .

(c) µY ∅ = µ∗∅ = 0.

(d) If 〈Fn〉n∈N is a disjoint sequence in ΣY with union F , then choose En, E′
n, E ∈ Σ such that

Fn = Y ∩En, Fn ⊆ E′
n and µY Fn = µE′

n for each n, F ⊆ E and µY F = µE (using 132Aa repeatedly). Set
Gn = En ∩ E′

n ∩ E \
⋃

m<n Em for each n ∈ N; then 〈Gn〉n∈N is disjoint and Fn ⊆ Gn ⊆ E′
n for each n, so

µY Fn = µGn. Also F ⊆
⋃

n∈N Gn ⊆ E, so

µY F = µ(
⋃

n∈N Gn) =
∑∞

n=0 µGn =
∑∞

n=0 µY Fn.

As 〈Fn〉n∈N is arbitrary, µY is a measure.

214B Definition If (X,Σ, µ) is any measure space and Y is any subset of X, then µY , defined as in
214A, is the subspace measure on Y .

It is worth noting the following.

214C Lemma Let (X,Σ, µ) be a measure space, Y a subset of X, µY the subspace measure on Y and
ΣY its domain. Then

(a) for any F ∈ ΣY , there is an E ∈ Σ such that F = E ∩ Y and µE = µY F ;
(b) for any A ⊆ Y , A is µY -negligible iff it is µ-negligible;
(c)(i) if A ⊆ X is µ-conegligible, then A ∩ Y is µY -conegligible;

(ii) if A ⊆ Y is µY -conegligible, then A ∪ (X \ Y ) is µ-conegligible;
(d) (µY )

∗, the outer measure on Y defined from µY , agrees with µ∗ on PY ;
(e) if Z ⊆ Y ⊆ X, then ΣZ = (ΣY )Z , the subspace σ-algebra of subsets of Z regarded as a subspace of

(Y,ΣY ), and µZ = (µY )Z is the subspace measure on Z regarded as a subspace of (Y, µY );
(f) if Y ∈ Σ, then µY , as defined here, is exactly the subspace measure on Y defined in 131A-131B; that

is, ΣY = Σ ∩ PY and µY = µ↾ΣY .

proof (a) By the definition of ΣY , there is an E0 ∈ Σ such that F = E0 ∩Y . By 132Aa, there is an E1 ∈ Σ
such that F ⊆ E1 and µ∗F = µE1. Set E = E0 ∩ E1; this serves.

(b)(i) If A is µY -negligible, there is a set F ∈ ΣY such that A ⊆ F and µY F = 0; now µ∗A ≤ µ∗F = 0
so A is µ-negligible, by 132Ad. (ii) If A is µ-negligible, there is an E ∈ Σ such that A ⊆ E and µE = 0;
now A ⊆ E ∩ Y ∈ ΣY and µY (E ∩ Y ) = 0, so A is µY -negligible.

(c) If A ⊆ X is µ-conegligible, then A ∩ Y is µY -conegligible, because Y \ A = Y ∩ (X \ A) is µ-
negligible, therefore µY -negligible. If A ⊆ Y is µY -conegligible, then A ∪ (X \ Y ) is µ-conegligible because
X \ (A ∪ (X \ Y )) = Y \A is µY -negligible, therefore µ-negligible.

(d) Let A ⊆ Y . (i) If A ⊆ E ∈ Σ, then A ⊆ E ∩ Y ∈ ΣY , so µ∗
Y A ≤ µY (E ∩ Y ) ≤ µE; as E is arbitrary,

µ∗
Y A ≤ µ∗A. (ii) If A ⊆ F ∈ ΣY , there is an E ∈ Σ such that F ⊆ E and µY F = µ∗F = µE; now A ⊆ E

so µ∗A ≤ µE = µY F . As F is arbitrary, µ∗A ≤ µ∗
Y A.

(e) That ΣZ = (ΣY )Z is immediate from the definition of ΣY , etc.; now

(µY )Z = µ∗
Y ↾ΣZ = µ∗↾ΣZ = µZ

by (d).

(f) This is elementary, because E ∩ Y ∈ Σ and µ∗(E ∩ Y ) = µ(E ∩ Y ) for every E ∈ Σ.

214D Integration over subsets: Definition Let (X,Σ, µ) be a measure space, Y a subset of X
and f a [−∞,∞]-valued function defined on a subset of X. By

∫
Y
f (or

∫
Y
f(x)µ(dx), etc.) I mean∫

(f↾Y )dµY , if this exists in [−∞,∞], following the definitions of 214A-214B, 133A and 135F, and taking
dom(f↾Y ) = Y ∩ dom f , (f↾Y )(x) = f(x) for x ∈ Y ∩ dom f . (Compare 131D.)
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214E Proposition Let (X,Σ, µ) be a measure space, Y ⊆ X, and f a [−∞,∞]-valued function defined
on a subset dom f of X.

(a) If f is µ-integrable then f↾Y is µY -integrable, and
∫
Y
f ≤

∫
f if f is non-negative.

(b) If dom f ⊆ Y and f is µY -integrable, then there is a µ-integrable function f̃ on X, extending f , such

that
∫
F
f̃ =

∫
F∩Y

f for every F ∈ Σ.

proof (a)(i) If f is µ-simple, it is expressible as
∑n

i=0 aiχEi, where E0, . . . , En ∈ Σ, a0, . . . , an ∈ R and
µEi < ∞ for each i. Now f↾Y =

∑n
i=0 aiχY (Ei∩Y ), where χY (Ei∩Y ) = (χEi)↾Y is the indicator function

of Ei ∩ Y regarded as a subset of Y ; and each Ei ∩ Y belongs to ΣY , with µY (Ei ∩ Y ) ≤ µEi < ∞, so
f↾Y : Y → R is µY -simple.

If f : X → R is a non-negative simple function, it is expressible as
∑n

i=0 aiχEi where E0, . . . , En are
disjoint sets of finite measure (122Cb). Now f↾Y =

∑n
i=0 aiχY (Ei ∩ Y ) and

∫
(f↾Y )dµY =

∑n
i=0 aiµY (Ei ∩ Y ) ≤

∑n
i=0 aiµEi =

∫
fdµ

because ai ≥ 0 whenever Ei 6= ∅, so that aiµY (Ei ∩ Y ) ≤ aiµEi for every i.

(ii) If f is a non-negative µ-integrable function, there is a non-decreasing sequence 〈fn〉n∈N of non-
negative µ-simple functions converging to f µ-almost everywhere; now 〈fn↾Y 〉n∈N is a non-decreasing se-
quence of µY -simple functions increasing to f↾Y µY -a.e. (by 214Cb), and

supn∈N

∫
(fn↾Y )dµY ≤ supn∈N

∫
fndµ =

∫
fdµ < ∞,

so
∫
(f↾Y )dµY exists and is at most

∫
fdµ.

(iii) Finally, if f is any µ-integrable real-valued function, it is expressible as f1 − f2 where f1 and f2
are non-negative µ-integrable functions, so that f↾Y = (f1↾Y )− (f2↾Y ) is µY -integrable.

(b) Let us say that if f is a µY -integrable function, then an ‘enveloping extension’ of f is a µ-integrable

function f̃ , extending f , real-valued on X \ Y , such that
∫
F
f̃ =

∫
F∩Y

f for every F ∈ Σ.

(i) If f is of the form χH, where H ∈ ΣY and µY H < ∞, let E0 ∈ Σ be such that H = Y ∩ E0

and E1 ∈ Σ a measurable envelope for H (132Ee); then E = E0 ∩ E1 is a measurable envelope for H and

H = E ∩ Y . Set f̃ = χE, regarded as a function from X to {0, 1}. Then f̃↾Y = f , and for any F ∈ Σ we
have ∫

F
f̃ = µF (E ∩ F ) = µ(E ∩ F ) = µ∗(H ∩ F ) = µY ∩F (H ∩ F ) =

∫
Y ∩F

f .

So f̃ is an enveloping extension of f .

(ii) If f , g are µY -integrable functions with enveloping extensions f̃ , g̃, and a, b ∈ R, then af̃ + bg̃
extends af + bg and

∫

F

af̃ + bg̃ = a

∫

F

f̃ + b

∫

F

g̃

= a

∫

F∩Y

f + b

∫

F∩Y

g =

∫

F∩Y

af + bg

for every F ∈ Σ, so af̃ + bg̃ is an enveloping extension of af + bg.

(iii) Putting (i) and (ii) together, we see that every µY -simple function f has an enveloping extension.

(iv) Now suppose that 〈fn〉n∈N is a non-decreasing sequence of non-negative µY -simple functions

converging µY -almost everywhere to a µY -integrable function f . For each n ∈ N let f̃n be an enveloping
extension of fn. Then f̃n ≤a.e. f̃n+1. PPP If F ∈ Σ then∫

F
f̃n =

∫
F∩Y

fn ≤
∫
F∩Y

fn+1 =
∫
F
f̃n+1.

So f̃n ≤a.e. f̃n+1, by 131Ha. QQQ Also

limn→∞

∫
F
f̃n = limn→∞

∫
F∩Y

fn =
∫
F∩Y

f
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for every F ∈ Σ. Taking F = X to begin with, B.Levi’s theorem tells us that h = limn→∞ f̃n is defined (as
a real-valued function) µ-almost everywhere; now letting F vary, we have

∫
F
h =

∫
F∩Y

f for every F ∈ Σ,

because h↾F = limn→∞ f̃n↾F µF -a.e. (I seem to be using 214Cb here.) Now h↾Y = f µY -a.e., by 214Cb

again. If we define f̃ by setting

f̃(x) = f(x) for x ∈ dom f , h(x) for x ∈ domh \ dom f , 0 for other x ∈ X,

then f̃ is defined everywhere in X and is equal to h µ-almost everywhere; so that if F ∈ Σ, f̃↾F will be
equal to h↾F µF -almost everywhere, and ∫

F
f̃ =

∫
F
h =

∫
F∩Y

f .

As F is arbitrary, f̃ is an enveloping extension of f .

(v) Thus every non-negative µY -integrable function has an enveloping extension. Using (ii) again,
every µY -integrable function has an enveloping extension, as claimed.

214F Proposition Let (X,Σ, µ) be a measure space, Y a subset of X, and f a [−∞,∞]-valued function
such that

∫
X
f is defined in [−∞,∞]. If either Y has full outer measure in X or f is zero almost everywhere

in X \ Y , then
∫
Y
f is defined and equal to

∫
X
f .

proof (a) Suppose first that f is non-negative, Σ-measurable and defined everywhere in X. In this case

f↾Y is ΣY -measurable. Set Fnk = {x : x ∈ X, f(x) ≥ 2−nk} for k, n ∈ N, fn =
∑4n

k=1 2
−nχFnk for n ∈ N,

so that 〈fn〉n∈N is a non-decreasing sequence of real-valued measurable functions converging everywhere to
f , and

∫
X
f = limn→∞

∫
X
fn. For each n ∈ N and k ≥ 1,

µY (Fnk ∩ Y ) = µ∗(Fnk ∩ Y ) = µFnk

either because Fnk \ Y is negligible or because X is a measurable envelope of Y . So

∫

Y

f = lim
n→∞

∫

Y

fn = lim
n→∞

4n∑

k=1

2−nµY (Fnk ∩ Y )

= lim
n→∞

4n∑

k=1

2−nµFnk = lim
n→∞

∫

X

fn =

∫

X

f.

(b) Now suppose that f is non-negative, defined almost everywhere in X and µ-virtually measurable. In

this case there is a conegligible measurable set E ⊆ dom f such that f↾E is measurable. Set f̃(x) = f(x) for

x ∈ E, 0 for x ∈ X \E; then f̃ satisfies the conditions of (a) and f = f̃ µ-a.e. Accordingly f↾Y = f̃↾Y µY -
a.e. (214Cc), and ∫

Y
f =

∫
Y
f̃ =

∫
X
f̃ =

∫
X
f .

(c) Finally, for the general case, we can apply (b) to the positive and negative parts f+, f− of f to get∫
Y
f =

∫
Y
f+ −

∫
Y
f− =

∫
X
f+ −

∫
X
f− =

∫
X
f .

214G Corollary Let (X,Σ, µ) be a measure space, Y a subset of X, and E ∈ Σ a measurable envelope
of Y . If f is a [−∞,∞]-valued function such that

∫
E
f is defined in [−∞,∞], then

∫
Y
f is defined and equal

to
∫
E
f .

proof By 214Ce, we can identify the subspace measure µY with the subspace measure (µE)Y induced by
the subspace measure on E. Now, regarded as a subspace of E, Y has full outer measure, so 214F gives the
result.

214H Subspaces and Carathéodory’s method The following easy technical results will occasionally
be useful.
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Lemma Let X be a set, Y ⊆ X a subset, and θ an outer measure on X.
(a) θY = θ↾PY is an outer measure on Y .
(b) Let µ, ν be the measures on X, Y defined by Carathéodory’s method from the outer measures θ, θY ,

and Σ, T their domains; let µY be the subspace measure on Y induced by µ, and ΣY its domain. Then
(i) ΣY ⊆ T and νF ≤ µY F for every F ∈ ΣY ;
(ii) if Y ∈ Σ then ν = µY ;
(iii) if θ = µ∗ (that is, θ is ‘regular’) then ν extends µY ;
(iv) if θ = µ∗ and θY < ∞ then ν = µY .

proof (a) You have only to read the definition of ‘outer measure’ (113A).

(b)(i) Suppose that F ∈ ΣY . Then it is of the form E ∩ Y where E ∈ Σ. If A ⊆ Y , then

θY (A ∩ F ) + θY (A \ F ) = θ(A ∩ F ) + θ(A \ F ) = θ(A ∩ E) + θ(A \ E) = θA = θY A,

so F ∈ T. Now

νF = θY F = θF ≤ µ∗F = µY F .

(ii) Suppose that F ∈ T. If A ⊆ X, then

θA = θ(A ∩ Y ) + θ(A \ Y ) = θY (A ∩ Y ) + θ(A \ Y )

= θY (A ∩ Y ∩ F ) + θY (A ∩ Y \ F ) + θ(A \ Y )

= θ(A ∩ F ) + θ(A ∩ Y \ F ) + θ(A \ Y )

= θ(A ∩ F ) + θ((A \ F ) ∩ Y ) + θ((A \ F ) \ Y ) = θ(A ∩ F ) + θ(A \ F );

as A is arbitrary, F ∈ Σ and therefore F ∈ ΣY . Also

µY F = µF = θF = θY F = νF .

Putting this together with (i), we see that µY and ν are identical.

(iii) Let F ∈ ΣY . Then F ∈ T, by (i). Now νF = θF = µ∗F = µY F . As F is arbitrary, ν extends µY .

(iv) Now suppose that F ∈ T. Because µ∗Y = θY < ∞, we have measurable envelopes E1, E2 of F
and Y \ F for µ (132Ee). Then

θY = θY Y = θY F + θY (Y \ F ) = θF + θ(Y \ F )

= µ∗F + µ∗(Y \ F ) = µE1 + µE2 ≥ µ(E1 ∪ E2) = θ(E1 ∪ E2) ≥ θY,

so µE1 + µE2 = µ(E1 ∪ E2) and

µ(E1 ∩ E2) = µE1 + µE2 − µ(E1 ∪ E2) = 0.

As µ is complete (212A) and E1 ∩ Y \ F ⊆ E1 ∩ E2 is µ-negligible, therefore belongs to Σ, F = Y ∩ (E1 \
(E1 ∩ Y \ F )) belongs to ΣY . Thus T ⊆ ΣY ; putting this together with (iii), we see that ν = µY .

214I I now turn to the relationships between subspace measures and the classification of measure spaces
developed in this chapter.

Theorem Let (X,Σ, µ) be a measure space and Y a subset of X. Let µY be the subspace measure on Y
and ΣY its domain.

(a) If (X,Σ, µ) is complete, or totally finite, or σ-finite, or strictly localizable, so is (Y,ΣY , µY ). If 〈Xi〉i∈I

is a decomposition of X for µ, then 〈Xi ∩ Y 〉i∈I is a decomposition of Y for µY .
(b) Writing µ̂ for the completion of µ, the subspace measure µ̂Y = (µ̂)Y is the completion of µY .
(c) If (X,Σ, µ) has locally determined negligible sets, then µY is semi-finite.
(d) If (X,Σ, µ) is complete and locally determined, then (Y,ΣY , µY ) is complete and semi-finite.
(e) If (X,Σ, µ) is complete, locally determined and localizable then so is (Y,ΣY , µY ).

proof (a)(i) Suppose that (X,Σ, µ) is complete. If A ⊆ U ∈ ΣY and µY U = 0, there is an E ∈ Σ such that
U = E ∩ Y and µE = µY U = 0; now A ⊆ E so A ∈ Σ and A = A ∩ Y ∈ ΣY .
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(ii) µY Y = µ∗Y ≤ µX, so µY is totally finite if µ is.

(iii) If 〈Xn〉n∈N is a sequence of sets of finite measure for µ which covers X, then 〈Xn ∩ Y 〉n∈N is a
sequence of sets of finite measure for µY which covers Y . So (Y,ΣY , µY ) is σ-finite if (X,Σ, µ) is.

(iv) Suppose that 〈Xi〉i∈I is a decomposition of X for µ. Then 〈Xi ∩ Y 〉i∈I is a decomposition of Y
for µY . PPP Because µY (Xi ∩ Y ) ≤ µXi < ∞ for each i, 〈Xi ∩ Y 〉i∈I is a partition of Y into sets of finite
measure. Suppose that U ⊆ Y is such that Ui = U ∩Xi ∩Y ∈ ΣY for every i. For each i ∈ I, choose Ei ∈ Σ
such that Ui = Ei ∩ Y and µEi = µY Ui; we may of course suppose that Ei ⊆ Xi. Set E =

⋃
i∈I Ei. Then

E ∩Xi = Ei ∈ Σ for every i, so E ∈ Σ and µE =
∑

i∈I µEi. Now U = E ∩ Y so U ∈ ΣY and

µY U ≤ µE =
∑

i∈I µEi =
∑

i∈I µY Ui.

On the other hand, µY U is surely greater than or equal to
∑

i∈I µY Ui = supJ⊆I is finite

∑
i∈J µY Ui, so they

are equal. As U is arbitrary, 〈Xi ∩ Y 〉i∈I is a decomposition of Y for µY . QQQ
Consequently (Y,ΣY , µY ) is strictly localizable if (X,Σ, µ) is.

(b) The domain of the completion (µY )̂ is

Σ̂Y = {F△A : F ∈ ΣY , A ⊆ Y is µY -negligible}

= {(E ∩ Y )△(A ∩ Y ) : E ∈ Σ, A ⊆ X is µ-negligible}

(214Cb)

= {(E△A) ∩ Y : E ∈ Σ, A is µ-negligible} = dom µ̂Y .

If H ∈ Σ̂Y then

(µY ) (̂H) = µ∗
Y H = µ∗H = (µ̂)∗H = µ̂Y H,

using 214Cd for the second step, and 212Ea for the third.

(c) Take U ∈ ΣY such that µY U > 0. Then there is an E ∈ Σ such that µE < ∞ and µ∗(E ∩ U) > 0.
PPP??? Otherwise, E ∩ U is µ-negligible whenever µE < ∞; because µ has locally determined negligible sets,
U is µ-negligible and µY U = µ∗U = 0. XXXQQQNow E ∩ U ∈ ΣY and

0 < µ∗(E ∩ U) = µY (E ∩ U) ≤ µE < ∞.

(d) By (a), µY is complete; by 213J and (c) here, it is semi-finite.

(e) By (d), µY is complete and semi-finite. To see that it is locally determined, take any U ⊆ Y such
that U ∩ V ∈ ΣY whenever V ∈ ΣY and µY V < ∞. By 213J and 213L, there is a measurable envelope E
of U for µ; of course E ∩ Y ∈ ΣY .

I claim that µ(E ∩ Y \ U) = 0. PPP Take any F ∈ Σ with µF < ∞. Then F ∩ U ∈ ΣY , so

µY (F ∩ E ∩ Y ) ≤ µ(F ∩ E) = µ∗(F ∩ U) = µY (F ∩ U) ≤ µY (F ∩ E ∩ Y );

thus µY (F ∩ E ∩ Y ) = µY (F ∩ U) and

µ∗(F ∩ E ∩ Y \ U) = µY (F ∩ E ∩ Y \ U) = 0.

Because µ is complete, µ(F∩E∩Y \U) = 0; because µ is locally determined and F is arbitrary, µ(E∩Y \U) =
0. QQQ But this means that E ∩ Y \ U ∈ ΣY and U ∈ ΣY . As U is arbitrary, µY is locally determined.

To see that µY is localizable, let U be any family in ΣY . Set

E = {E : E ∈ Σ, µE < ∞, µE = µ∗(E ∩ U) for some U ∈ U},

and let G ∈ Σ be an essential supremum for E in Σ. I claim that G ∩ Y is an essential supremum for U in
ΣY . PPP (i) ??? If U ∈ U and U \ (G∩ Y ) is not negligible, then (because µY is semi-finite) there is a V ∈ ΣY

such that V ⊆ U \ G and 0 < µY V < ∞. Now there is an E ∈ Σ such that V ⊆ E and µE = µ∗V . We
have µ∗(E ∩ U) ≥ µ∗V = µE, so E ∈ E and E \G must be negligible; but V ⊆ E \G is not negligible. XXX
Thus U \ (G ∩ Y ) is negligible for every U ∈ U . (ii) If W ∈ ΣY is such that U \W is negligible for every
U ∈ U , express W as H ∩ Y where H ∈ Σ. If E ∈ E , there is a U ∈ U such that µE = µ∗(E ∩ U); now
µ∗(E ∩ U \W ) = 0, so µE = µ∗(E ∩ U ∩W ) ≤ µ(E ∩H) and E \H is negligible. As E is arbitrary, H is
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an essential upper bound for E and G \H is negligible; but this means that G ∩ Y \W is negligible. As W
is arbitrary, G ∩ Y is an essential supremum for U . QQQ

As U is arbitrary, µY is localizable.

214J Upper and lower integrals The following elementary facts are sometimes useful.

Proposition Let (X,Σ, µ) be a measure space, A a subset of X and f a real-valued function defined almost
everywhere in X. Then

(a) if either f is non-negative or A has full outer measure in X,
∫
(f↾A)dµA ≤

∫
fdµ;

(b) if A has full outer measure in X,
∫
fdµ ≤

∫
(f↾A)dµA.

proof (a)(i) Suppose that f is non-negative. If
∫
fdµ = ∞, the result is trivial. Otherwise, there is a

µ-integrable function g such that f ≤ g µ-a.e. and
∫
fdµ =

∫
g dµ, by 133J(a-i). Now f↾A ≤ g↾A µA-a.e.,

by 214Cb, and
∫
(g↾A) dµA is defined and less than or equal to

∫
g dµ, by 214Ea; so

∫
(f↾A)dµA ≤

∫
(g↾A)dµA ≤

∫
g dµ =

∫
fdµ.

(ii) Now suppose that A has full outer measure in X. If g is such that f ≤ g µ-a.e. and
∫
g dµ is

defined in [−∞,∞], then f↾A ≤ g↾A µA-a.e. and
∫
(g↾A)dµA =

∫
g dµ, by 214F. So

∫
(f↾A)dµA ≤

∫
g dµ.

As g is arbitrary,
∫
(f↾A)dµA ≤

∫
f dµ.

(b) Apply (a) to −f , and use 133J(b-iv).

214K Measurable subspaces: Proposition Let (X,Σ, µ) be a measure space.
(a) Let E ∈ Σ and let µE be the subspace measure, with ΣE its domain. If (X,Σ, µ) is complete, or totally

finite, or σ-finite, or strictly localizable, or semi-finite, or localizable, or locally determined, or atomless, or
purely atomic, so is (E,ΣE , µE).

(b) Suppose that 〈Xi〉i∈I is a partition of X into measurable sets (not necessarily of finite measure) such
that

Σ = {E : E ⊆ X, E ∩Xi ∈ Σ for every i ∈ I},

µE =
∑

i∈I µ(E ∩Xi) for every E ∈ Σ.

Then (X,Σ, µ) is complete, or strictly localizable, or semi-finite, or localizable, or locally determined, or
atomless, or purely atomic, iff (Xi,ΣXi

, µXi
) has that property for every i ∈ I.

proof I really think that if you have read attentively up to this point, you ought to find this easy. If you
are in any doubt, this makes a very suitable set of sixteen exercises to do.

214L Direct sums Let 〈(Xi,Σi, µi)〉i∈I be any indexed family of measure spaces. Set X =
⋃

i∈I(Xi ×
{i}); for E ⊆ X, i ∈ I set Ei = {x : (x, i) ∈ E}. Write

Σ = {E : E ⊆ X, Ei ∈ Σi for every i ∈ I},

µE =
∑

i∈I µiEi for every E ∈ Σ.

Then it is easy to check that (X,Σ, µ) is a measure space; I will call it the direct sum of the family
〈(Xi,Σi, µi)〉i∈I . Note that if (X,Σ, µ) is any strictly localizable measure space, with decomposition 〈Xi〉i∈I ,
then we have a natural isomorphism between (X,Σ, µ) and the direct sum (X ′,Σ′, µ′) =

⊕
i∈I(Xi,ΣXi

, µXi
)

of the subspace measures, if we match (x, i) ∈ X ′ with x ∈ X for every i ∈ I and x ∈ Xi.
For some of the elementary properties (to put it plainly, I know of no properties which are not elementary)

of direct sums, see 214M and 214Xh-214Xk.

214M Proposition Let 〈(Xi,Σi, µi)〉i∈I be a family of measure spaces, with direct sum (X,Σ, µ). Let f
be a real-valued function defined on a subset ofX. For each i ∈ I, set fi(x) = f(x, i) whenever (x, i) ∈ dom f .

(a) f is measurable iff fi is measurable for every i ∈ I.
(b) If f is non-negative, then

∫
fdµ =

∑
i∈I

∫
fidµi if either is defined in [0,∞].
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proof (a) For a ∈ R, set Fa = {(x, i) : (x, i) ∈ dom f, f(x, i) ≥ a}. (i) If f is measurable, i ∈ I and a ∈ R,
then there is an E ∈ Σ such that Fa = E ∩ dom f ; now

{x : fi(x) ≥ a} = dom fi ∩ {x : (x, i) ∈ E}

belongs to the subspace σ-algebra on dom fi induced by Σi. As a is arbitrary, fi is measurable. (ii) If every
fi is measurable and a ∈ R, then for each i ∈ I there is an Ei ∈ Σi such that {x : (x, i) ∈ Fa} = Ei ∩ dom f ;
setting E = {(x, i) : i ∈ I, x ∈ Ei}, Fa = dom f ∩ E belongs to the subspace σ-algebra on dom f . As a is
arbitrary, f is measurable.

(b)(i) Suppose first that f is measurable and defined everywhere. Set Fnk = {(x, i) : (x, i) ∈ X, f(x, i) ≥

2−nk} for k, n ∈ N, gn =
∑4n

k=1 2
−nχFnk for n ∈ N, Fnki = {x : (x, i) ∈ Fnk} for k, n ∈ N and i ∈ I,

gni(x) = gn(x, i) for i ∈ I, x ∈ Xi. Then

∫
fdµ = lim

n→∞

∫
gndµ = sup

n∈N

4n∑

k=1

2−nµFnk

= sup
n∈N

4n∑

k=1

∑

i∈I

2−nµFnki =
∑

i∈I

sup
n∈N

4n∑

k=1

2−nµFnki

=
∑

i∈I

sup
n∈N

∫
gnidµi =

∑

i∈I

∫
fidµi.

(ii) Generally, if
∫
fdµ is defined, there are a measurable g : X → [0,∞[ and a conegligible measurable

set E ⊆ dom f such that g = f on E. Now Ei = {x : (x, i) ∈ Xi} belongs to Σi for each i, and∑
i∈I µi(Xi \ Ei) = µ(X \ E) = 0, so Ei is µi-conegligible for every i. Setting gi(x) = g(x, i) for x ∈ Xi, (i)

tells us that
∑

i∈I

∫
fidµi =

∑
i∈I

∫
gidµi =

∫
g dµ =

∫
fdµ.

(iii) On the other hand, if
∫
fidµi is defined for every i ∈ I, then for each i ∈ I we can find a measurable

function gi : Xi → [0,∞[ and a µi-conegligible measurable set Ei ⊆ dom fi such that gi = fi on Ei. Setting
g(x, i) = gi(x) for i ∈ I, x ∈ Xi, (a) tells us that g is measurable, while g = f on {(x, i) : i ∈ I, x ∈ Ei},
which is conegligible (by the calculation in (ii) just above); so∫

fdµ =
∫
g dµ =

∑
i∈I

∫
gidµi =

∑
i∈I

∫
fidµi,

again using (i) for the middle step.

214N Corollary Let (X,Σ, µ) be a measure space with a decomposition 〈Xi〉i∈I . If f is a real-valued
function defined on a subset of X, then

(a) f is measurable iff f↾Xi is measurable for every i ∈ I,
(b) if f ≥ 0, then

∫
f =

∑
i∈I

∫
Xi

f if either is defined in [0,∞].

proof Apply 214M to the direct sum of 〈(Xi,ΣXi
, µXi

)〉i∈I , identified with (X,Σ, µ) as in 214L.

*214O I make space here for a general theorem which puts rather heavy demands on the reader. So
I ought to say that I advise skipping it on first reading. It will not be quoted in this volume, in the full
form here I do not expect to use it anywhere in this treatise, only the special case of 214Xm is at all often
applied, and the proof depends on a concept (‘ideal of sets’) and a technique (‘transfinite induction’, part
(d) of the proof of 214P) which are used nowhere else in this volume. However, ‘extension of measures’ is
one of the central themes of Volume 4, and this result may help to make sense of some of the patterns which
will appear there.

Lemma Let (X,Σ, µ) be a measure space, and I an ideal of subsets of X, that is, a family of subsets of X
such that ∅ ∈ I, I ∪ J ∈ I for all I, J ∈ I, and I ∈ I whenever I ⊆ J ∈ I. Then there is a measure λ on X
such that Σ ∪ I ⊆ domλ, µE = λE + supI∈I µ∗(E ∩ I) for every E ∈ Σ, and λI = 0 for every I ∈ I.
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proof (a) Let Λ be the set of those F ⊆ X such that there are E ∈ Σ and a countable J ⊆ I such that
E△F ⊆

⋃
J . Then Λ is a σ-algebra of subsets of X including Σ ∪ I. PPP Σ ⊆ Λ because E△E ⊆

⋃
∅ for

every E ∈ Σ. I ⊆ Λ because ∅△I ⊆
⋃
{I} for every I ∈ I. In particular, ∅ ∈ Λ. If F ∈ Λ, let E ∈ Σ

and J ⊆ I be such that J is countable and F△E ⊆
⋃
J ; then (X \ F )△(X \ E) ⊆

⋃
J so X \ F ∈ Λ.

If 〈Fn〉n∈N is a sequence in Λ with union F , then for each n ∈ N choose En ∈ Σ, Jn ⊆ I such that Jn is
countable and En△Fn ⊆

⋃
Jn; then E =

⋃
n∈N En belongs to Σ, J =

⋃
n∈N Jn is a countable subset of I

and E△F ⊆
⋃

J , so F ∈ Λ. Thus Λ is a σ-algebra. QQQ

(b) For F ∈ Λ set

λF = sup{µE : E ∈ Σ, E ⊆ F , µ∗(E ∩ I) = 0 for every I ∈ I}.

Then λ is a measure. PPP The only subset of ∅ is ∅, so λ∅ = 0. Let 〈Fn〉n∈N be a disjoint sequence in Λ
with union F and set u =

∑∞
n=0 λFn. (i) For each n ∈ N take En ∈ Σ and a countable Jn ⊆ I such

that En△Fn ⊆
⋃

Jn. Set J =
⋃

n∈N Jn. If E ∈ Σ, E ⊆ F and µ∗(E ∩ I) = 0 for every I ∈ I, then
µ∗(E∩

⋃
J ) = 0; let H ∈ Σ be a µ-negligible set including E∩

⋃
J . If n ∈ N, then (E∩En)△(E∩Fn) ⊆ H

so E ∩ Fn \H = E ∩ En \H belongs to Σ, while µ∗((E ∩ Fn \H) ∩ I) = 0 for every I ∈ I. Now

µE = µ(E ∩ F \H) =
∑∞

n=0 µ(E ∩ Fn \H) ≤
∑∞

n=0 λFn = u.

As E is arbitrary, λF ≤ u. (ii) Take any γ < u. For n ∈ N, set γn = λFn − 2−n−1 min(1, u − γ) if λFn is
finite, γ otherwise. For each n, we can find an En ∈ Σ such that En ⊆ Fn, µ

∗(En ∩ I) = 0 for every I ∈ I,
and µEn ≥ γn. Set E =

⋃
n∈N En; then E ⊆ F and E ∩ I =

⋃
n∈N En ∩ I is µ-negligible for every I ∈ I, so

λF ≥ µE =
∑∞

n=0 µEn ≥ γ. As γ is arbitrary, λF ≥ u. (iii) As 〈Fn〉n∈N is arbitrary, λ is a measure. QQQ

(c) Now take any E ∈ Σ and set u = supI∈I µ∗(E∩I). If u = ∞ then we certainly have µE = ∞ = λE+u.
Otherwise, let 〈In〉n∈N be a sequence in I such that limn→∞ µ∗(E ∩ In) = u; replacing In by

⋃
m≤n Im for

each n if necessary, we may suppose that 〈In〉n∈N is non-decreasing. Set A = E ∩
⋃

n∈N In; because E ∩ In
has finite outer measure for each n, A can be covered by a sequence of sets of finite measure, and has a
measurable envelope H for µ included in E (132Ee). Observe that

µH = µ∗A = supn∈N µ∗(E ∩ In) = u

by 132Ae.
Set G = E \ H. Then µ∗(G ∩ I) = 0 for every I ∈ I. PPP For any n ∈ N there is an F ∈ Σ such that

F ⊇ E ∩ (In ∪ I) and µF ≤ u; in which case

µ∗(G ∩ I) + µ∗(E ∩ In) ≤ µ(F \H) + µ(F ∩H) ≤ u.

As n is arbitrary, µ∗(G ∩ I) = 0. QQQ Accordingly

u+ λE ≥ µH + µG = µE.

On the other hand, if F ∈ Σ is such that F ⊆ E and µ∗(F ∩ I) = 0 for every I ∈ I, then

µ∗(E ∩ In) ≤ µ(E \ F ) + µ∗(F ∩ In) = µ(E \ F )

for every n, so

u+ µF ≤ µ(E \ F ) + µF = µE;

as F is arbitrary, u+ λE ≤ µE.

(d) If J ∈ I, F ∈ Σ, F ⊆ J and µ∗(F ∩ I) = 0 for every I ∈ I, then F ∩ J = F is µ-negligible; as F is
arbitrary, λJ = 0. Thus λ has all the required properties.

*214P Theorem Let (X,Σ, µ) be a measure space, and A a family of subsets of X which is well-ordered
by the relation ⊆. Then there is an extension of µ to a measure λ on X such that λ(E ∩ A) is defined and
equal to µ∗(E ∩A) whenever E ∈ Σ and A ∈ A.

proof (a) Adding ∅ and X to A if necessary, we may suppose that A has ∅ as its least member and X as
its greatest member. By 2A1Dg, A is isomorphic, as ordered set, to some ordinal; since A has a greatest
member, this ordinal is a successor, expressible as ζ + 1; let ξ 7→ Aξ : ζ + 1 → A be the order-isomorphism,
so that 〈Aξ〉ξ≤ζ is a non-decreasing family of subsets of X, A0 = ∅ and Aζ = X.
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(b) For each ordinal ξ ≤ ζ, write µξ for the subspace measure on Aξ, Σξ for its domain and Iξ for⋃
η<ξ PAη. Because Aη ∪Aη′ = Amax(η,η′) for η, η

′ < ξ, Iξ is an ideal of subsets of Aξ. By 214O, we have a

measure λξ on Aξ, with domain Λξ ⊇ Σξ ∪ Iξ, such that µξE = λξE + supI∈Iξ
µ∗
ξ(E ∩ I) for every E ∈ Σξ

and λξI = 0 for every I ∈ Iξ. Because every member of Iξ is included in Aη for some η < ξ, we have

µ∗(E ∩Aξ) = λξ(E ∩Aξ) + supη<ξ µ
∗
ξ(E ∩Aη) = λξ(E ∩Aξ) + supη<ξ µ

∗(E ∩Aη)

(214Cd) for every E ∈ Σ. Also, of course, λξAη = 0 for every η < ξ.

(c) Now set

Λ = {F : F ⊆ X, F ∩Aξ ∈ Λξ for every ξ ≤ ζ},

λF =
∑

ξ≤ζ λξ(F ∩Aξ)

for every F ∈ Λ. Because Λξ is a σ-algebra of subsets of Aξ for each ξ, Λ is a σ-algebra of subsets of X;
because every λξ is a measure, so is λ. If E ∈ Σ, then

E ∩Aξ ∈ Σξ ⊆ Λξ

for each ξ, so E ∈ Λ. If η ≤ ζ, then for each ξ ≤ ζ either η < ξ and

Aη ∩Aξ = Aη ∈ Iξ ⊆ Λξ

or η ≥ ξ and Aη ∩Aξ = Aξ belongs to Λξ. So Aη ∈ Λ for every η ≤ ζ.

(d) Finally, λ(E ∩ Aξ) = µ∗(E ∩ Aξ) whenever E ∈ Σ and ξ ≤ ζ. PPP??? Otherwise, because the ordinal
ζ + 1 is well-ordered, there is a least ξ such that λ(E ∩ Aξ) 6= µ∗(E ∩ Aξ). As A0 = ∅ we surely have
λ(E ∩A0) = µ∗(E ∩A0) and ξ > 0. Note that if η > ξ, then λη(E ∩Aξ) = 0; so

λ(E ∩Aξ) =
∑

η≤ξ λη(E ∩Aξ ∩Aη) =
∑

η≤ξ λη(E ∩Aη).

Now

µ∗(E ∩Aξ) = λξ(E ∩Aξ) + sup
ξ′<ξ

µ∗(E ∩Aξ′)

((b) above)

= λξ(E ∩Aξ) + sup
ξ′<ξ

∑

η≤ξ′

λη(E ∩Aη)

(because ξ was the first problematic ordinal)

= λξ(E ∩Aξ) + sup
ξ′<ξ

sup
K⊆ξ′+1 is finite

∑

η∈K

λη(E ∩Aη)

(see the definition of ‘sum’ in 112Bd, or 226A below)

= λξ(E ∩Aξ) + sup
K⊆ξ is finite

∑

η∈K

λη(E ∩Aη)

= sup
K⊆ξ+1 is finite

∑

η∈K

λη(E ∩Aη) =
∑

η≤ξ

λη(E ∩Aη) 6= µ∗(E ∩Aξ)

by the choice of ξ; but this is absurd. XXXQQQ
In particular,

λE = λ(E ∩Aζ) = µ∗(E ∩Aζ) = µE

for every E ∈ Σ. This completes the proof of the theorem.

*214Q Proposition Suppose that (X,Σ, µ) is an atomless measure space and Y a subset of X such that
the subspace measure µY is semi-finite. Then µY is atomless.

proof Let F ⊆ Y be such that µY F is defined and not 0. Because µY is semi-finite, there is an F ′ ⊆ F
such that µY F

′ is defined, finite and not zero. In this case, µ∗F ′ = µY F
′ is finite, so F ′ has a measurable
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envelope E say with respect to µ. Because µ is atomless, there is an E1 ∈ Σ such that E1 ⊆ E and neither
E1 nor E \ E1 is µ-negligible. Now F ∩ E1 is measured by µY and

µY (F ∩ E1) ≥ µ∗(F ′ ∩ E1) = µ(E ∩ E1) > 0,

µY (F \ E1) ≥ µ∗(F ′ \ E1) = µ(E \ E1) > 0.

As F is arbitrary, µY is atomless.

214X Basic exercises (a) Let (X,Σ, µ) be a localizable measure space. Show that there is an E ∈ Σ
such that the subspace measure µE is purely atomic and µX\E is atomless.

(b) Let X be a set, θ a regular outer measure on X, and Y a subset of X. Let µ be the measure on X
defined by Carathéodory’s method from θ, µY the subspace measure on Y , and ν the measure on Y defined
by Carathéodory’s method from θ↾PY . Show that if µY is locally determined (in particular, if µ is locally
determined and localizable) then ν = µY .

(c) Let (X,Σ, µ) be a localizable measure space, and Y a subset of X such that the subspace measure
µY is semi-finite. Show that µY is localizable.

>>>(d) Let (X,Σ, µ) be a measure space, and Y a subset of X such that the subspace measure µY is
semi-finite. (i) Show that a set F ⊆ Y is an atom for µY iff it is of the form E ∩ Y where E an atom for µ.
(ii) Show that if µ is purely atomic, so is µY .

(e) Let (X,Σ, µ) be a localizable measure space, and Y any subset of X. Show that the c.l.d. version of
the subspace measure on Y is localizable.

(f) Let (X,Σ, µ) be a measure space with locally determined negligible sets, and Y a subset of X, with
its subspace measure µY . Show that µY has locally determined negligible sets.

>>>(g) Let (X,Σ, µ) be a measure space. Show that (X,Σ, µ) has locally determined negligible sets iff the
subspace measure µY is semi-finite for every Y ⊆ X.

>>>(h) Let 〈(Xi,Σi, µi)〉i∈I be a family of measure spaces, with direct sum (X,Σ, µ) (214L). Set X ′
i =

Xi×{i} ⊆ X for each i ∈ I. Show that X ′
i, with the subspace measure, is isomorphic to (Xi,Σi, µi). Under

what circumstances is 〈X ′
i〉i∈I a decomposition of X? Show that µ is complete, or strictly localizable, or

localizable, or locally determined, or semi-finite, or atomless, or purely atomic iff every µi is. Show that a
measure space is strictly localizable iff it is isomorphic to a direct sum of totally finite spaces.

>>>(i) Let 〈(Xi,Σi, µi)〉i∈I be a family of measure spaces, and (X,Σ, µ) their direct sum. Show that the
completion of (X,Σ, µ) can be identified with the direct sum of the completions of the (Xi,Σi, µi), and that
the c.l.d. version of (X,Σ, µ) can be identified with the direct sum of the c.l.d. versions of the (Xi,Σi, µi).

(j) Let 〈(Xi,Σi, µi)〉i∈I be a family of measure spaces. Show that their direct sum has locally determined
negligible sets iff every µi has.

(k) Let 〈(Xi,Σi, µi)〉i∈I be a family of measure spaces, and (X,Σ, µ) their direct sum. Show that (X,Σ, µ)
has the measurable envelope property (213Xl) iff every (Xi,Σi, µi) has.

(l) Let (X,Σ, µ) be a measure space, Y a subset of X, and f : X → [0,∞] a function such that
∫
Y
f is

defined in [0,∞]. Show that
∫
Y
f =

∫
f × χY dµ.

>>>(m) Write out a direct proof of 214P in the special case in which A = {A}. (Hint : for E, F ∈ Σ,

λ((E ∩A) ∪ (F \A)) = µ∗(E ∩A) + sup{µG : G ∈ Σ, G ⊆ F \A}.)

>>>(n) Let (X,Σ, µ) be a measure space and A a finite family of subsets of X. Show that there is a measure
on X, extending µ, which measures every member of A.
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>>>(o) Let (X,Σ, µ) be a measure space and 〈Xn〉n∈N a sequence of subsets of X such that
⋃

n∈N Xn has
full outer measure on X. Suppose that for each n ∈ N we have a set An ⊆ Xn of full outer measure for the
subspace measure on Xn, Show that

⋃
n∈N An has full outer measure in X.

214Y Further exercises (a) Let (X,Σ, µ) be a measure space and A a subset of X such that the
subspace measure on A is semi-finite. Set α = sup{µE : E ∈ Σ, E ⊆ A}. Show that if α ≤ γ ≤ µ∗A then
there is a measure λ on X, extending µ, such that λA = γ.

(b) Let (X,Σ, µ) be a measure space and 〈An〉n∈Z a double-ended sequence of subsets of X such that
Am ⊆ An whenever m ≤ n in Z. Show that there is a measure on X, extending µ, which measures every
An. (Hint : use 214P twice.)

(c) Let X be a set and A a family of subsets of X. Show that the following are equiveridical: (i) for
every measure µ on X there is a measure on X extending µ and measuring every member of A; (ii) for
every totally finite measure µ on X there is a measure on X extending µ and measuring every member of
A. (Hint : 213Xa.)

(d) For this exercise only, I will say that a measure µ on a set X is nowhere all-measuring if whenever
A ⊆ X is not µ-negligible there is a subset of A which is not measured by the subspace measure on A. Show
that if X is a set and µ0, . . . , µn are nowhere all-measuring complete totally finite measures on X, then
there are disjoint A0, . . . , An ⊆ X such that µ∗

iAi = µiX for every i ≤ n. (Hint : start with the case n = 1,
µ0 = µ1.)

(e) Let (X,Σ, µ) be a measure space and A a disjoint family of subsets of X. Show that there is a
measure on X, extending µ, which measures every member of A.

214 Notes and comments I take the first part of the section, down to 214H, slowly and carefully, because
while none of the arguments are deep (214Eb is the longest) the patterns formed by the results are not
always easy to predict. There is a counter-example to a tempting extension of 214H/214Xb in 216Xb.

The message of the second part of the section (214I-214L, 214Q) is that subspaces inherit many, but not
all, of the properties of a measure space; and in particular there can be a difficulty with semi-finiteness, unless
we have locally determined negligible sets (214Xg). (I give an example in 216Xa.) Of course 213Hb shows
that if we start with a localizable space, we can convert it into a complete locally determined localizable
space without doing great violence to the structure of the space, so the difficulty is ordinarily superable.

By far the most important case of 214P is when A = {A} is a singleton, so that the argument simplifies
dramatically (214Xm). In §439 of Volume 4 I will return to the problem of extending a measure to a given
larger σ-algebra in the absence of any helpful auxiliary structure. That section will mostly offer counter-
examples, in particular showing that there is no general theorem extending 214Xn from finite families to
countable families, and that the special conditions in 214P and 214Yb are there for good reasons. But in
Chapter 54 and §552 of Volume 5 I will discuss mathematical systems in which much stronger extension
theorems are true, at least if we start from Lebesgue measure.

Version of 13.11.13

215 σ-finite spaces and the principle of exhaustion

I interpolate a short section to deal with some useful facts which might get lost if buried in one of the
longer sections of this chapter. The great majority of the applications of measure theory involve σ-finite
spaces, to the point that many authors skim over any others. I myself prefer to signal the importance of
such concepts by explicitly stating just which theorems apply only to the restricted class of spaces. But
undoubtedly some facts about σ-finite spaces need to be grasped early on. In 215B I give a list of properties
characterizing σ-finite spaces. Some of these make better sense in the light of the principle of exhaustion
(215A). I take the opportunity to include a fundamental fact about atomless measure spaces (215D).

c© 2000 D. H. Fremlin
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215A The principle of exhaustion The following is an example of the use of one of the most important
methods in measure theory.

Lemma Let (X,Σ, µ) be any measure space and E ⊆ Σ a non-empty set such that supn∈N µFn is finite for
every non-decreasing sequence 〈Fn〉n∈N in E .

(a) There is a non-decreasing sequence 〈Fn〉n∈N in E such that, for every E ∈ Σ, either there is an n ∈ N

such that E ∪ Fn is not included in any member of E or, setting F =
⋃

n∈N Fn,

limn→∞ µ(E \ Fn) = µ(E \ F ) = 0.

In particular, if E ∈ E and E ⊇ F , then E \ F is negligible.
(b) If E is upwards-directed, then there is a non-decreasing sequence 〈Fn〉n∈N in E such that, setting

F =
⋃

n∈N Fn, µF = supE∈E µE and E \F is negligible for every E ∈ E , so that F is an essential supremum
of E in Σ in the sense of 211G.

(c) If the union of any non-decreasing sequence in E belongs to E , then there is an F ∈ E such that E \F
is negligible whenever E ∈ E and F ⊆ E.

proof (a) Choose 〈Fn〉n∈N, 〈En〉n∈N and 〈un〉n∈N inductively, as follows. Take F0 to be any member of E .
Given Fn ∈ E , set En = {E : Fn ⊆ E ∈ E} and un = sup{µE : E ∈ En} in [0,∞], and choose Fn+1 ∈ En
such that µFn+1 ≥ min(n, un − 2−n); continue.

Observe that this construction yields a non-decreasing sequence 〈Fn〉n∈N in E . Since En+1 ⊆ En for every
n, 〈un〉n∈N is non-increasing, and has a limit u in [0,∞]. Since min(n, u− 2−n) ≤ µFn+1 ≤ un for every n,
limn→∞ µFn = u. Our hypothesis on E now tells us that u is finite.

If E ∈ Σ is such that for every n ∈ N there is an En ∈ E such that E ∪ Fn ⊆ En, then En ∈ En, so

µFn ≤ µ(E ∪ Fn) ≤ µEn ≤ un

for every n, and limn→∞ µ(E ∪ Fn) = u. But this means that

µ(E \ F ) ≤ limn→∞ µ(E \ Fn) = limn→∞ µ(E ∪ Fn)− µFn = 0,

as stated. In particular, this is so if E ∈ E and E ⊇ F .

(b) Take 〈Fn〉n∈N from (a). If E ∈ E , then (because E is upwards-directed) E ∪ Fn is included in some
member of E for every n ∈ N; so we must have the second alternative of (a), and E \ F is negligible. It
follows that

supE∈E µE ≤ µF = limn→∞ µFn ≤ supE∈E µE,

so µF = supE∈E µE.
If G is any measurable set such that E \ G is negligible for every E ∈ E , then Fn \ G is negligible for

every n, so that F \G is negligible; thus F is an essential supremum for E .

(c) Again take 〈Fn〉n∈N from (a), and set F =
⋃

n∈N En. Our hypothesis now is that F ∈ E , so has both
the properties declared.

215B σ-finite spaces are so important that I think it is worth spelling out the following facts.

Proposition Let (X,Σ, µ) be a semi-finite measure space. Write N for the family of µ-negligible sets and
Σf for the family of measurable sets of finite measure. Then the following are equiveridical:

(i) (X,Σ, µ) is σ-finite;
(ii) every disjoint family in Σf \ N is countable;
(iii) every disjoint family in Σ \ N is countable;
(iv) for every E ⊆ Σ there is a countable set E0 ⊆ E such that E \

⋃
E0 is negligible for every E ∈ E ;

(v) for every non-empty upwards-directed E ⊆ Σ there is a non-decreasing sequence 〈Fn〉n∈N in E such
that E \

⋃
n∈N Fn is negligible for every E ∈ E ;

(vi) for every non-empty E ⊆ Σ, there is a non-decreasing sequence 〈Fn〉n∈N in E such that E \
⋃

n∈N Fn

is negligible whenever E ∈ E and E ⊇ Fn for every n ∈ N;
(vii) either µX = 0 or there is a probability measure ν onX with the same domain and the same negligible

sets as µ;
(viii) there is a measurable integrable function f : X → ]0, 1];
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(ix) either µX = 0 or there is a measurable function f : X → ]0,∞[ such that
∫
fdµ = 1.

proof (i)⇒(vii) and (viii) If µX = 0, (vii) is trivial and we can take f = χX in (viii). Otherwise, let
〈En〉n∈N be a disjoint sequence in Σf covering X. Then it is easy to see that there is a sequence 〈αn〉n∈N of
strictly positive real numbers such that

∑∞
n=0 αnµEn = 1. Set νE =

∑∞
n=0 αnµ(E ∩En) for E ∈ Σ; then ν

is a probability measure with domain Σ and the same negligible sets as µ. Also f =
∑∞

n=0 min(1, αn)χEn

is a strictly positive measurable integrable function.

(vii)⇒(vi) and (v) Assume (vii), and let E be a non-empty family of measurable sets. If µX = 0
then (vi) and (v) are certainly true. Otherwise, let ν be a probability measure with domain Σ and the
same negligible sets as µ. Since supE∈E νE ≤ 1 is finite, we can apply 215Aa to find a non-decreasing
sequence 〈Fn〉n∈N in E such that E \

⋃
n∈N Fn is negligible whenever E ∈ E includes

⋃
n∈N Fn; and if E is

upwards-directed, E \
⋃

n∈N Fn will be negligible for every E ∈ E , as in 215Ab.

(vi)⇒(iv) Assume (vi), and let E be any subset of Σ. Set

H = {
⋃
E0 : E0 ⊆ E is countable}.

By (vi), there is a sequence 〈Hn〉n∈N in H such that H \
⋃

n∈N Hn is negligible whenever H ∈ H and H ⊇ Hn

for every n ∈ N. Now we can express each Hn as
⋃

E ′
n, where E ′

n ⊆ E is countable; setting E0 =
⋃

n∈N E ′
n,

E0 is countable. If E ∈ E , then E ∪
⋃

n∈N Hn =
⋃
({E} ∪ E0) belongs to H and includes every Hn, so that

E \
⋃
E0 = E \

⋃
n∈N Hn is negligible. So E0 has the property we need, and (iv) is true.

(iv)⇒(iii) Assume (iv). If E is a disjoint family in Σ \ N , take a countable E0 ⊆ E such that E \
⋃

E0 is
negligible for every E ∈ E . Then E = E \

⋃
E0 is negligible for every E ∈ E \ E0; but this just means that

E \ E0 is empty, so that E = E0 is countable.

(iii)⇒(ii) is trivial.

(ii)⇒(i) Assume (ii). Let P be the set of all disjoint subsets of Σf \ N , ordered by ⊆. Then P is a
partially ordered set, not empty (as ∅ ∈ P), and if Q ⊆ P is non-empty and totally ordered then it has an
upper bound in P. PPP Set E =

⋃
Q, the union of all the disjoint families belonging to Q. If E ∈ E then

E ∈ C for some C ∈ Q, so E ∈ Σf \ N . If E, F ∈ E and E 6= F , then there are C, D ∈ Q such that E ∈ C,
F ∈ D; now Q is totally ordered, so one of C, D is larger than the other, and in either case C∪D is a member
of Q containing both E and F . But since any member of Q is a disjoint collection of sets, E ∩F = ∅. As E
and F are arbitrary, E is a disjoint family of sets and belongs to P. And of course C ⊆ E for every C ∈ Q,
so E is an upper bound for Q in P. QQQ

By Zorn’s Lemma (2A1M), P has a maximal element E say. By (ii), E must be countable, so
⋃

E ∈ Σ.
Now H = X \

⋃
E is negligible. PPP??? Suppose, if possible, otherwise. Because (X,Σ, µ) is semi-finite, there is

a set G of finite measure such that G ⊆ H and µG > 0, that is, G ∈ Σf \N and G∩E = ∅ for every E ∈ E .
But this means that {G} ∪ E is a member of P strictly larger than E , which is supposed to be impossible.
XXXQQQ

Let 〈Xn〉n∈N be a sequence running over E ∪ {H}. Then 〈Xn〉n∈N is a cover of X by a sequence of
measurable sets of finite measure, so (X,Σ, µ) is σ-finite.

(v)⇒(i) If (v) is true, then we have a sequence 〈En〉n∈N in Σf such that E \
⋃

n∈N En is negligible for

every E ∈ Σf . Because µ is semi-finite, X \
⋃

n∈N En must be negligible, so X is covered by a countable
family of sets of finite measure and µ is σ-finite.

(viii)⇒(ix) If µX = 0 this is trivial. Otherwise, if f is a strictly positive measurable integrable function,

then c =
∫
f > 0 (122Rc), so

1

c

f is a strictly positive measurable function with integral 1.

(ix)⇒(i) If f : X → ]0,∞[ is measurable and integrable, 〈{x : f(x) ≥ 2−n}〉n∈N is a sequence of sets of
finite measure covering X.

215C Corollary Let (X,Σ, µ) be a σ-finite measure space, and suppose that E ⊆ Σ is any non-empty
set.

(a) There is a non-decreasing sequence 〈Fn〉n∈N in E such that, for every E ∈ Σ, either there is an n ∈ N

such that E ∪ Fn is not included in any member of E or E \
⋃

n∈N Fn is negligible.
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(b) If E is upwards-directed, then there is a non-decreasing sequence 〈Fn〉n∈N in E such that
⋃

n∈N Fn is
an essential supremum of E in Σ.

(c) If the union of any non-decreasing sequence in E belongs to E , then there is an F ∈ E such that E \F
is negligible whenever E ∈ E and F ⊆ E.

proof By 215B, there is a totally finite measure ν on X with the same measurable sets and the same
negligible sets as µ. Since supE∈E νE is finite, we can apply 215A to ν to obtain the results.

215D As a further example of the use of the principle of exhaustion, I give a fundamental fact about
atomless measure spaces.

Proposition Let (X,Σ, µ) be an atomless measure space. If E ∈ Σ and 0 ≤ α ≤ µE < ∞, there is an
F ∈ Σ such that F ⊆ E and µF = α.

proof (a) We need to know that if G ∈ Σ is non-negligible and n ∈ N, then there is an H ⊆ G such that
0 < µH ≤ 2−nµG. PPP Induce on n. For n = 0 this is trivial. For the inductive step to n + 1, use the
inductive hypothesis to find H ⊆ G such that 0 < µH ≤ 2−nµG. Because µ is atomless, there is an H ′ ⊆ H
such that µH ′, µ(H \H ′) are both defined and non-zero. Now at least one of them has measure less than
or equal to 1

2µH, so gives us a subset of G of non-zero measure less than or equal to 2−n−1µG. QQQ
It follows that if G ∈ Σ has non-zero finite measure and ǫ > 0, there is a measurable set H ⊆ G such that

0 < µH ≤ ǫ.

(b) Let H be the family of all those H ∈ Σ such that H ⊆ E and µH ≤ α. If 〈Hn〉n∈N is any non-
decreasing sequence in H, then µ(

⋃
n∈N Hn) = limn→∞ µHn ≤ α, so

⋃
n∈N Hn ∈ H. So 215Ac tells us that

there is an F ∈ H such that H \ F is negligible whenever H ∈ H and F ⊆ H. ??? Suppose, if possible, that
µF < α. By (a), there is an H ⊆ E \ F such that 0 < µH ≤ α − µF . But in this case H ∪ F ∈ H and
µ((H ∪ F ) \ F ) > 0, which is impossible. XXX

So we have found an appropriate set F .

*215E One of the basic properties of Lebesgue measure is that singleton subsets (and therefore countable
subsets) are negligible. This is of course associated with the fact that Lebesgue measure is atomless (211Md).
It is easy to construct measures for which singleton sets are negligible but there are atoms (e.g., the countable-
cocountable measures of 211R). It takes a little more ingenuity to construct atomless measures in which
not all singleton sets are negligible (216Ye). The following result gives conditions under which this can’t
happen.

Proposition Let (X,Σ, µ) be an atomless measure space and x ∈ X.
(a) If µ∗{x} is finite then {x} is negligible.
(b) If µ has locally determined negligible sets then {x} is negligible.
(c) If µ is localizable then {x} is negligible.

proof (a) ??? Otherwise, 0 < µ∗{x} < ∞. Let E be a set containing x such that µE < 2µ∗{x}. By 215D,
there is an F ⊆ E such that

µF = 1
2µE = µ(E \ F ) < µ∗{x}.

So neither F nor E \ F can contain x; but x ∈ E. XXX

(b) For any set E of finite measure, E ∩ {x} is negligible; for if it is not empty then x ∈ E and we can
apply (a). As µ has locally determined negligible sets, {x} is negligible.

(c) Let E ⊆ Σf be a maximal family such that µE < ∞ for every E ∈ E and µ(E ∩ F ) = ∅ whenever
E, F ∈ E are distinct. For each E ∈ E and n ∈ N, use 215D n times to find a partition En0, En1, . . . , Enn

of E such that µEni =
1

n+1µE for every i ≤ n. Next, for i ≤ n ∈ N, let Hni be an essential supremum of

{Eni : E ∈ E}. For each n ∈ N and E ∈ E .

µ(E \
⋃

i≤n Hni) ≤
∑n

i=0 µ(Eni \Hni) = 0.

So if F ∈ Σ, µF < ∞ and F ∩
⋃

i≤n Hni = ∅, we shall have µ(E∩F ) = 0 for every E ∈ E ; as E was maximal,

F must be negligible. We are supposing that µ is semi-finite, so X \
⋃

i≤n Hni is negligible.
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It follows that if there is any n such that x /∈
⋃

i≤n Hni then {x} is negligible and we can stop. Consider

H =
⋂
{Hni : i ≤ n ∈ N, x ∈ Hni}. ??? If µH > 0, there is an F ⊆ H such that 0 < µF < ∞. By the

maximality of E , there is an E∗ ∈ E such that µ(F ∩ E∗) > 0. Let n be such that µ(F ∩ E∗) > 1
n+1µE

∗.

There is an i ≤ n such that x ∈ Hni, so that F ⊆ Hni, while µ(F ∩ E∗
ni) ≤

1
n+1µE

∗, so F ′ = F ∩ E∗ \ E∗
ni

has non-zero measure. Consider G = Hni \ F
′. If E ∈ E , then either E = E∗ and

Eni \G = E∗
ni \G = E∗

ni \Hni

is negligible, or E 6= E∗ and

Eni \G ⊆ (Eni \Hni) ∪ (E ∩ E∗)

is negligible. Because Hni is an essential supremum of {Eni : E ∈ E}, Hni \G must be negligible and F ′ is
negligible; which is impossible. QQQ

Thus H is a negligible set containing x and {x} is negligible in this case also.

215X Basic exercises (a) Let (X,Σ, µ) be a measure space and Φ a non-empty set of µ-integrable
real-valued functions from X to R. Suppose that supn∈N

∫
fn is finite for every sequence 〈fn〉n∈N in Φ such

that fn ≤a.e. fn+1 for every n. Show that there is a sequence 〈fn〉n∈N in Φ such that fn ≤a.e. fn+1 for every
n and, for every integrable real-valued function f on X, either f ≤a.e. supn∈N fn or there is an n ∈ N such
that no member of Φ is greater than or equal to max(f, fn) almost everywhere.

>>>(b) Let (X,Σ, µ) be a measure space. (i) Suppose that E is a non-empty upwards-directed subset of
Σ such that c = supE∈E µE is finite. Show that E \

⋃
n∈N Fn is negligible whenever E ∈ E and 〈Fn〉n∈N

is a sequence in E such that limn→∞ µFn = c. (ii) Let Φ be a non-empty set of integrable functions on X
which is upwards-directed in the sense that for all f , g ∈ Φ there is an h ∈ Φ such that max(f, g) ≤a.e. h,
and suppose that c = supf∈Φ

∫
f is finite. Show that f ≤a.e. supn∈N fn whenever f ∈ Φ and 〈fn〉n∈N is a

sequence in Φ such that limn→∞

∫
fn = c.

(c) Use 215A to shorten the proof of 211Ld.

(d) Give an example of a (non-semi-finite) measure space (X,Σ, µ) satisfying conditions (ii)-(iv) of 215B,
but not (i).

>>>(e) Let (X,Σ, µ) be an atomless σ-finite measure space. Show that for any ǫ > 0 there is a disjoint
sequence 〈En〉n∈N of measurable sets with measure at most ǫ such that X =

⋃
n∈N En.

(f) Let (X,Σ, µ) be an atomless strictly localizable measure space. Show that for any ǫ > 0 there is a
decomposition 〈Xi〉i∈I of X such that µXi ≤ ǫ for every i ∈ I.

215Y Further exercises (a) Let (X,Σ, µ) be a σ-finite measure space and 〈fmn〉m,n∈N, 〈fm〉m∈N, f
measurable real-valued functions defined almost everywhere in X and such that 〈fmn〉n∈N → fm a.e. for
each m and 〈fm〉m∈N → f a.e. Show that there is a strictly increasing sequence 〈nm〉m∈N in N such that
〈fm,nm

〉m∈N → f a.e. (Compare 134Yb.)

(b) Let (X,Σ, µ) be a σ-finite measure space. Let 〈fn〉n∈N be a sequence of measurable real-valued
functions such that f = limn→∞ fn is defined almost everywhere in X. Show that there is a non-decreasing
sequence 〈Xk〉k∈N of measurable subsets of X such that

⋃
k∈N Xk is conegligible in X and 〈fn〉n∈N → f

uniformly on every Xk, in the sense that for any ǫ > 0 there is an m ∈ N such that |fj(x)− f(x)| is defined
and less than or equal to ǫ whenever j ≥ m and x ∈ Xk.

(This is a version of Egorov’s theorem.)

(c) Let (X,Σ, µ) be a totally finite measure space and 〈fn〉n∈N, f measurable real-valued functions defined
almost everywhere in X. Show that 〈fn〉n∈N → f a.e. iff there is a sequence 〈ǫn〉n∈N of strictly positive real
numbers, converging to 0, such that

limn→∞ µ∗(
⋃

k≥n{x : x ∈ dom fk ∩ dom f, |fk(x)− f(x)| ≥ ǫn}) = 0.
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(d) Find a direct proof of (v)⇒(vi) in 215B. (Hint : given E ⊆ Σ, use Zorn’s Lemma to find a maximal
totally ordered E ′ ⊆ E such that E△F /∈ N for any distinct E, F ∈ E ′, and apply (v) to E ′.)

215 Notes and comments The common ground of 215A, 215B(vi), 215C and 215Xa is actually one of the
most fundamental ideas in measure theory. It appears in such various forms that it is often easier to prove
an application from first principles than to explain how it can be reduced to the versions here. But I will
try henceforth to signal such applications as they arise, calling the method (the proof of 215Aa or 215Xa)
the ‘principle of exhaustion’. One point which is perhaps worth noting here is the inductive construction
of the sequence 〈Fn〉n∈N in the proof of 215Aa. Each Fn+1 is chosen after the preceding one. It is this
which makes it possible, in the proof of 215B(vii)⇒(vi), to extract a suitable sequence 〈Fn〉n∈N directly.
In many applications (starting with what is surely the most important one in the elementary theory, the
Radon-Nikodým theorem of §232, or with part (i) of the proof of 211Ld), this refinement is not needed;
we are dealing with an upwards-directed set, as in 215B(v), and can choose the whole sequence 〈Fn〉n∈N at
once, no term interacting with any other, as in 215Xb. The axiom of ‘dependent choice’, which asserts that
we can construct sequences term-by-term, is known to be stronger than the axiom of ‘countable choice’,
which asserts only that we can choose countably many objects simultaneously.

In 215B I try to indicate the most characteristic properties of σ-finiteness; in particular, the properties
which distinguish σ-finite measures from other strictly localizable measures. This result is in a way more
abstract than the manipulations in the rest of the section. Note that it makes an essential use of the axiom
of choice in the form of Zorn’s Lemma. I spent a paragraph in 134C commenting on the distinction between
‘countable choice’, which is needed for anything which looks like the standard theory of Lebesgue measure,
and the full axiom of choice, which is relatively little used in the elementary theory. The implication (ii)⇒(i)
of 215B is one of the points where we do need something beyond countable choice. (I should perhaps remark
that the whole theory of non-σ-finite measure spaces looks very odd without the general axiom of choice.)
Note also that in 215B the proofs of (i)⇒(vii) and (vii)⇒(vi) are the only points where anything so vulgar
as a number appears. The conditions (iii), (iv), (v) and (vi) are linked in ways that have nothing to do with
measure theory, and involve only with the structure (X,Σ,N ). (See 215Yd here, and 316D-316E in Volume
3.) There are similar conditions relating to measurable functions rather than measurable sets; for a fairly
abstract example, see 241Ye.

In 215Ya-215Yc are three more standard theorems on almost-everywhere-convergent sequences which
depend on σ- or total finiteness.

Version of 25.9.04

216 Examples

It is common practice – and, in my view, good practice – in books on pure mathematics, to provide
discriminating examples; I mean that whenever we are given a list of new concepts, we expect to be provided
with examples to show that we have a fair picture of the relationships between them, and in particular that
we are not being kept ignorant of some startling implication. Concerning the concepts listed in 211A-211K,
we have ten different properties which some, but not all, measure spaces possess, giving a conceivable total
of 210 different types of measure space, classified according to which of these ten properties they have. The
list of basic relationships in 211L reduces these 1024 possibilities to 72. Observing that a space can be
simultaneously atomless and purely atomic only when the measure of the whole space is 0, we find ourselves
with 56 possibilities, being two trivial cases with µX = 0 (because such a measure may or may not be
complete) together with 9× 2× 3 cases, corresponding to the nine classes

probability spaces,
spaces which are totally finite, but not probability spaces,
spaces which are σ-finite, but not totally finite,
spaces which are strictly localizable, but not σ-finite,
spaces which are localizable and locally determined, but not strictly localizable,
spaces which are localizable, but not locally determined,
spaces which are locally determined, but not localizable,

c© 1994 D. H. Fremlin
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spaces which are semi-finite, but neither locally determined nor localizable,
spaces which are not semi-finite;

the two classes
spaces which are complete,
spaces which are not complete;

and the three classes
spaces which are atomless, not of measure 0,
spaces which are purely atomic, not of measure 0,
spaces which are neither atomless nor purely atomic.

I do not propose to give a complete set of fifty-six examples, particularly as rather fewer than fifty-six
different ideas are required. However, I do think that for a proper understanding of abstract measure spaces
it is necessary to have seen realizations of some of the critical combinations of properties. I therefore take
a few paragraphs to describe three special examples to add to those of 211M-211R.

216A Lebesgue measure Before turning to the new ideas, let me mention Lebesgue measure again.
As remarked in 211M, 211P and 211Qa,

(a) Lebesgue measure µ on R is complete, atomless and σ-finite, therefore strictly localizable, localizable
and locally determined.

(b) The subspace measure µ[0,1] on [0, 1] is a complete, atomless probability measure.
(c) The restriction µ↾B of µ to the Borel σ-algebra B of R is atomless, σ-finite and not complete.

216B I now embark on the description of three ‘counter-examples’; meaning spaces built specifically
for the purpose of showing that there are no unexpected implications among the ten properties under
consideration here. Even by the standards of this chapter these must be regarded as dispensable by the
student who wants to get on with the real business of understanding the big theorems of the subject. Neither
the existence of these examples, nor the techniques needed in constructing them, are vital for anything else
we shall look at before Volume 5. But if you are going to take abstract measure theory seriously at all,
sooner or later you will need to form some kind of mental picture of the nature of the spaces possessing
the different properties here, and a minimal requirement of such a picture is that it should include the
discriminations witnessed by these examples.

*216C A complete, localizable, non-locally-determined space The first example hardly needs an
idea beyond what we already have, but it does call for more manipulations than it seems fair to set as an
exercise, and may therefore be useful as a demonstration of technique.

(a) Let I be any uncountable set, and set X = {0, 1}× I. For E ⊆ X, y ∈ {0, 1} set E[{y}] = {i : (y, i) ∈
E} ⊆ I. Set

Σ = {E : E ⊆ X, E[{0}]△E[{1}] is countable}.

Then Σ is a σ-algebra of subsets of X. PPP (i) ∅[{0}]△∅[{1}] = ∅ is countable, so ∅ ∈ Σ. (ii) If E ∈ Σ then

(X \ E)[{0}]△(X \ E)[{1}] = E[{0}]△E[{1}]

is countable. (iii) If 〈En〉n∈N is a sequence in Σ and E =
⋃

n∈N En, then

E[{0}]△E[{1}] ⊆
⋃

n∈N En[{0}]△En[{1}]

is countable. QQQ
For E ∈ Σ, set µE = #(E[{0}]) if this is finite, ∞ otherwise; then (X,Σ, µ) is a measure space.

(b) (X,Σ, µ) is complete. PPP If A ⊆ E ∈ Σ and µE = 0, then (0, i) /∈ E for every i. So

A[{0}]△A[{1}] = A[{1}] ⊆ E[{1}] = E[{1}]△E[{0}]

must be countable, and A ∈ Σ. QQQ

(c) (X,Σ, µ) is semi-finite. PPP If E ∈ Σ and µE > 0, there is an i ∈ I such that (0, i) ∈ E; now
F = {(0, i)} ⊆ E and µF = 1. QQQ

(d) (X,Σ, µ) is localizable. PPP Let E be any subset of Σ. Set
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J =
⋃

E∈E E[{0}], G = {0, 1} × J .

Then G ∈ Σ. If H ∈ Σ, then

µ(E \H) = 0 for every E ∈ E

⇐⇒ E[{0}] ⊆ H[{0}] for every E ∈ E

⇐⇒ (0, i) ∈ H for every i ∈ J

⇐⇒ µ(G \H) = 0.

Thus G is an essential supremum for E in Σ; as E is arbitrary, µ is localizable. QQQ

(e) (X,Σ, µ) is not locally determined. PPP Consider H = {0}×I. Then H /∈ Σ because H[{0}]△H[{1}] =
I is uncountable. But let E ∈ Σ be any set such that µE < ∞. Then

(E ∩H)[{0}]△(E ∩H)[{1}] = (E ∩H)[{0}] ⊆ E[{0}]

is finite, so E ∩H ∈ Σ. As E is arbitrary, H witnesses that µ is not locally determined. QQQ

(f) (X,Σ, µ) is purely atomic. PPP Let E ∈ Σ be any set of non-zero measure. Let i ∈ I be such that
(0, i) ∈ E. Then (0, i) ∈ E and F = {(0, i)} is a set of measure 1, included in E; because F is a singleton
set, it must be an atom for µ; as E is arbitrary, µ is purely atomic. QQQ

(g) Thus the construction here yields a complete, localizable, purely atomic, non-locally-determined
space.

*216D A complete, locally determined space which is not localizable The next construction
requires a little set theory. We need two sets I, J such that I is uncountable (more strictly, I cannot be
expressed as the union of countably many countable sets), I ⊆ J and J cannot be expressed as

⋃
i∈I Ki

where every Ki is countable. The most natural way of doing this, subject to the axiom of choice, is to take
I = ω1, the first uncountable ordinal, and J to be ω2, the first ordinal from which there is no injection into
ω1 (see 2A1Fc); but in case you prefer other formulations (e.g., I = {{x} : x ∈ R} and J = PR), I will write
the following argument in terms of I and J , and you can pick your own pair.

(a) Let T be the countable-cocountable σ-algebra of J and ν the countable-cocountable measure on J
(211R). Set X = J × J and for E ⊆ X set

E[{ξ}] = {η : (ξ, η) ∈ E}, E−1[{ξ}] = {η : (η, ξ) ∈ E}

for every ξ ∈ J . Set

Σ = {E : E[{ξ}] and E−1[{ξ}] belong to T for every ξ ∈ J},

µE =
∑

ξ∈J νE[{ξ}] +
∑

ξ∈J νE−1[{ξ}]

for every E ∈ Σ. It is easy to check that Σ is a σ-algebra and that µ is a measure.

(b) (X,Σ, µ) is complete. PPP If A ⊆ E ∈ Σ and µE = 0, then all the sets E[{ξ}] and E−1[{ξ}] are
countable, so the same is true of all the sets A[{ξ}] and A−1[{ξ}], and A ∈ Σ. QQQ

(d) (X,Σ, µ) is semi-finite. PPP For each ζ ∈ J , set

Gζ = {ζ} × J , G̃ζ = J × {ζ}.

Then all the sections Gζ [{ξ}], G
−1
ζ [{ξ}], G̃ζ [{ξ}] and G̃−1

ζ [{ξ}] are either J or ∅ or {ζ}, so belong to T, and

all the Gζ , G̃ζ belong to Σ, with µ-measure 1.
Suppose that E ∈ Σ is a set of strictly positive measure. Then there must be some ξ ∈ J such that

0 < νE[{ξ}] + νE−1[{ξ}] = µ(E ∩Gξ) + µ(E ∩ G̃ξ) < ∞,

and one of the sets E ∩Gξ, E ∩ G̃ξ is a set of non-zero finite measure included in E. QQQ

(e) (X,Σ, µ) is locally determined. PPP Suppose that H ⊆ X is such that H ∩E ∈ Σ whenever E ∈ Σ and

µE < ∞. Then, in particular, H ∩Gζ and H ∩ G̃ζ belong to Σ, so
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H[{ζ}] = (H ∩ G̃ζ)[{ζ}] ∈ T,

H−1[{ζ}] = (H ∩Gζ)
−1[{ζ}] ∈ T,

for every ζ ∈ J . This shows that H ∈ Σ. As H is arbitrary, µ is locally determined. QQQ

(f) (X,Σ, µ) is not localizable. PPP Set E = {Gζ : ζ ∈ J}. ??? Suppose, if possible, that G ∈ Σ is an
essential supremum for E . Then

ν(J \G[{ξ}]) = µ(Gξ \G) = 0

and J \G[{ξ}] is countable, for every ξ ∈ J . Consequently J 6=
⋃

ξ∈I(J \G[{ξ}]), and there is an η belonging

to J \
⋃

ξ∈I(J \ G[{ξ}]) =
⋂

ξ∈I G[{ξ}]. This means just that (ξ, η) ∈ G for every ξ ∈ I, that is, that

I ⊆ G−1[{η}]. Accordingly G−1[{η}] is uncountable, so that νG−1[{η}] = µ(G∩ G̃η) = 1. But observe that

µ(Gξ ∩ G̃η) = µ{(ξ, η)} = 0 for every ξ ∈ J . This means that, setting H = X \ G̃η, E \H is negligible, for

every E ∈ E ; so that we must have 0 = µ(G \H) = µ(G ∩ G̃η) = 1, which is absurd. XXX
Thus E has no essential supremum in Σ, and µ cannot be localizable. QQQ

(g) (X,Σ, µ) is purely atomic. PPP If E ∈ Σ has non-zero measure, there must be some ξ ∈ J such that

one of E[{ξ}], E−1[{ξ}] is not countable; that is, such that one of E ∩ Gξ, E ∩ G̃ξ is not negligible. But
if now H ∈ Σ and H ⊆ E ∩ Gξ, either H[{ξ}] is countable, and µH = 0, or J \ H[{ξ}] is countable, and

µ(Gξ \H) = 0; similarly, if H ⊆ E ∩ G̃ξ, one of µH, µ(G̃ξ \H) must be 0, according to whether H−1[{ξ}] is

countable or not. Thus E ∩Gξ and E ∩ G̃ξ, if not negligible, must be atoms, and E must include an atom.
As E is arbitrary, µ is purely atomic. QQQ

(h) Thus (X,Σ, µ) is complete, locally determined and purely atomic, but is not localizable.

*216E A complete, locally determined, localizable space which is not strictly localizable For
the last, and most interesting, construction, we need a non-trivial result in infinitary combinatorics, which
I have written out in 2A1P: if I is any set, and 〈fα〉α∈A is a family in {0, 1}I , the set of functions from I
to {0, 1}, with #(A) strictly greater than c, the cardinal of the continuum, and if 〈Kα〉α∈A is any family of
countable subsets of I, then there must be distinct α, β ∈ A such that fα and fβ agree on Kα ∩Kβ .

Armed with this fact, I proceed as follows.

(a) Let C be any set with cardinal greater than c. Set I = PC and X = {0, 1}I . For γ ∈ C, define
xγ ∈ X by saying that xγ(Γ) = 1 if γ ∈ Γ ⊆ C and xγ(Γ) = 0 if γ /∈ Γ ⊆ C. Let K be the family of countable
subsets of I, and for K ∈ K, γ ∈ C set

FγK = {x : x ∈ X, x↾K = xγ↾K} ⊆ X.

Let

Σγ = {E : E ⊆ X, either there is a K ∈ K such that FγK ⊆ E

or there is a K ∈ K such that FγK ⊆ X \ E}.

Then Σγ is a σ-algebra of subsets of X. PPP (i) Fγ∅ ⊆ X \ ∅ so ∅ ∈ Σγ . (ii) The definition of Σγ is symmetric
between E and X \E, so X \E ∈ Σγ whenever E ∈ Σγ . (iii) Let 〈En〉n∈N be a sequence in Σγ , with union
E. (α) If there are n ∈ N, K ∈ K such that FγK ⊆ En, then FγK ⊆ E, so E ∈ Σγ . (β) Otherwise, there is
for each n ∈ N a Kn ∈ K such that Fγ,Kn

⊆ X \ En. Set K =
⋃

n∈N Kn ∈ K. Then

FγK = {x : x↾K = xγ↾K} = {x : x↾Kn = xγ↾Kn for every n ∈ N}

=
⋂

n∈N

Fγ,Kn
⊆

⋂

n∈N

X \ En = X \ E,

so again E ∈ Σγ . As 〈En〉n∈N is arbitrary, Σγ is a σ-algebra. QQQ

(b) Set

Σ =
⋂

γ∈C Σγ ;
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then Σ, being an intersection of σ-algebras, is a σ-algebra of subsets of X (see 111Ga). Define µ : Σ → [0,∞]
by setting

µE = #({γ : xγ ∈ E}) if this is finite,

= ∞ otherwise;

then µ is a measure.

(c) It will be convenient later to know something about the sets

GD = {x : x ∈ X, x(D) = 1}

for D ⊆ C. In particular, every GD belongs to Σ. PPP If γ ∈ D, then xγ(D) = 1 so GD = Fγ,{D} ∈ Σγ . If
γ ∈ C \D, then xγ(D) = 0 so GD = X \ Fγ,{D} ∈ Σγ . QQQ Also, of course, {γ : xγ ∈ GD} = D.

(d) (X,Σ, µ) is complete. PPP Suppose that A ⊆ E ⊆ Σ and that µE = 0. For every γ ∈ C, E ∈ Σγ and
xγ /∈ E, so FγK 6⊆ E for any K ∈ K and there is a K ∈ K such that

FγK ⊆ X \ E ⊆ X \A.

Thus A ∈ Σγ ; as γ is arbitrary, A ∈ Σ. As A is arbitrary, µ is complete. QQQ

(e) (X,Σ, µ) is semi-finite. PPP Let E ∈ Σ be a set of positive measure. Then there must be some
γ ∈ C such that xγ ∈ E. Consider E′ = E ∩ G{γ}. As xγ ∈ E′, µE′ ≥ 1 > 0. On the other hand,
µG{γ} = #({δ : δ ∈ {γ}}) = 1, so µE′ = 1. As E is arbitrary, µ is semi-finite. QQQ

(f) (X,Σ, µ) is localizable. PPP Let E be any subset of Σ. Set D = {δ : δ ∈ C, xδ ∈
⋃
E}. Consider GD.

For H ∈ Σ,

µ(E \H) = 0 for every E ∈ E

⇐⇒ xγ /∈ E \H for every E ∈ E , γ ∈ C

⇐⇒ xγ ∈ H for every γ ∈ D

⇐⇒ xγ /∈ GD \H for every γ ∈ C

⇐⇒ µ(GD \H) = 0.

Thus GD is an essential supremum for E in Σ. As E is arbitrary, µ is localizable. QQQ

(g) (X,Σ, µ) is not strictly localizable. PPP??? Suppose, if possible, that 〈Xj〉j∈J is a decomposition of
(X,Σ, µ). Set J ′ = {j : j ∈ J, µXj > 0}. For each j ∈ J ′, the set Cj = {γ : xγ ∈ Xj} must be finite and
non-empty. Moreover, for each γ ∈ C, there must be some j ∈ J such that µ(G{γ} ∩Xj) > 0, and in this
case j ∈ J ′ and γ ∈ Cj . Thus C =

⋃
j∈J ′ Cj . Because #(C) > c, #(J ′) > c (2A1Ld).

For each j ∈ J ′, choose γj ∈ Cj . Then

xγj
∈ Xj ∈ Σ ⊆ Σγj

,

so there must be a Kj ∈ K such that Fγj ,Kj
⊆ Xj .

At this point I finally turn to the result cited at the start of this example. Because #(J ′) > c, there must
be distinct j, k ∈ J ′ such that xγj

and xγk
agree on Kj ∩ Kk. We may therefore define x ∈ X by saying

that

x(δ) = xγj
(δ) if δ ∈ Kj ,

= xγk
(δ) if δ ∈ Kk,

= 0 if δ ∈ C \ (Kj ∪Kj).

Now

x ∈ Fγj ,Kj
∩ Fγk,Kk

⊆ Xj ∩Xk,

and Xj ∩Xk 6= ∅; contradicting the assumption that the Xj formed a decomposition of X. XXXQQQ

(h) (X,Σ, µ) is purely atomic. PPP If E ∈ Σ and µE > 0, then (as remarked in (e) above) there is a γ ∈ C
such that µ(E ∩G{γ}) = 1; now E ∩G{γ} must be an atom. QQQ
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(i) Accordingly (X,Σ, µ) is a complete, locally determined, localizable, purely atomic measure space
which is not strictly localizable.

216X Basic exercises (a) In the construction of 216C, show that the subspace measure on {1} × I is
not semi-finite.

(b) Suppose, in 216D, that I = ω1. (i) Show that the set {(ξ, η) : ξ ≤ η < ω1} is measured by the
measure constructed by Carathéodory’s method from µ∗↾P(I × I), but not by the subspace measure on
I × I. (ii) Hence, or otherwise, show that the subspace measure on I × I is not locally determined.

(c) In 216Ya, 252Yq and 252Ys below, I indicate how to construct atomless versions of 216C, 216D and
216E, that is, atomless complete measure spaces of which the first is localizable but not locally determined,
the second is locally determined spaces but not localizable, and the third is locally determined and localizable
but not strictly localizable. Show how direct sums of these, together with counting measure and the examples
described in this chapter, can be assembled to provide all 56 examples called for by the discussion in the
introduction to this section.

216Y Further exercises (a) Let λ be Lebesgue measure on [0, 1], and Λ its domain. Set Y = [0, 1] ×
{0, 1} and write

T = {F : F ⊆ Y, F−1[{0}] ∈ Λ},

νF = λF−1[{0}] for every F ∈ T.

Set

T0 = {F : F ∈ T, F−1[{0}]△F−1[{1}] is λ-negligible}.

Let I be an uncountable set. Set X = Y × I,

Σ = {E : E ⊆ X, E−1[{i}] ∈ T for every i ∈ I, {i : E−1[{i}] /∈ T0} is countable},

µE =
∑

i∈I νE
−1[{i}] for E ∈ Σ.

(i) Show that (Y,T, ν) and (Y,T0, ν↾T0) are complete probability spaces, and that for every F ∈ T there is
an F ′ ∈ T0 such that ν(F△F ′) = 0. (ii) Show that (X,Σ, µ) is an atomless complete localizable measure
space which is not locally determined.

(b) Define a measure µ on X = ω2×ω2 as follows. Take Σ to be the σ-algebra of subsets of X generated
by

{A× ω2 : A ⊆ ω2} ∪ {ω2 × α : α < ω2}.

For E ∈ Σ set

W (E) = {ξ : ξ < ω2, supE[{ξ}] = ω2},

and set µE = #(W (E)) if this is finite, ∞ otherwise. Show that µ is a measure on X, is localizable and
locally determined, but does not have locally determined negligible sets. Find a subspace Y of X such that
the subspace measure on Y is not semi-finite.

(c) Show that in the space described in 216E every set has a measurable envelope, but that this is not
true in the spaces of 216C and 216D.

(d) Set X = ω1 × ω2. For E ⊆ X set

A(E) = {ζ : for some ξ, just one of (ξ, ζ), (ξ, ζ + 1) belongs to E},

B(E) = {ζ : there are ξ, ζ ′ such that ζ < ζ ′ < ω2 and just one of (ξ, ζ), (ξ, ζ ′) belongs to E},

W (E) = {ξ : #(E[{ξ}]) = ω2}.
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Let Σ be the set of subsets E of X such that A(E) is countable and #(B(E)) ≤ ω1. For E ∈ Σ, set
µE = #(W (E)) if this is finite, ∞ otherwise. (i) Show that (X,Σ, µ) is a measure space. (ii) Show that if
µ̂ is the completion of µ, then its domain is the set of subsets E of X such that A(E) is countable, and µ̂ is
strictly localizable. (iii) Show that µ is not strictly localizable.

(e) Show that there is a complete atomless semi-finite measure space with a singleton subset which is
not negligible. (Hint : set X = (ω1 × [0, 1]) ∪ {ω1} and let Σ be the σ-algebra of subsets of X generated by
{{ξ} × E : ξ < ω1, E ⊆ [0, 1] is Lebesgue measurable}).

216 Notes and comments The examples 216C-216E are designed to form, with Lebesgue measure, a basis
for constructing a complete set of examples for the concepts listed in 211A-211K. One does not really expect
to encounter these phenomena in applications, but a clear understanding of the possibilities demonstrated
by these examples is part of a proper appreciation of their rarity. Of course, if we add further properties
to our list – for instance, the property of having locally determined negligible sets (213I), or the property
that every subset should have a measurable envelope (213Xl) – then there are further positive results to
complement 211L, and more examples to hunt for, like 216Yb. But it is time, perhaps past time, that we
returned to the classical theorems which apply to the measure spaces at the centre of the subject.

Version of 10.4.00/29.9.04

Concordance

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

211Ya Countable-cocountable algebra of R This exercise, referred to in the 2002 edition of Volume
3, has been moved to 211Ye.

213Y Inner measures Exercise 213Yc, referred to in the 2003 and 2006 editions of Volume 4, is now
213Yd.

214J Subspace measures on measurable subspaces, direct sums 214J-214M, referred to in the
2002 and 2004 editions of Volume 3, the 2003 and 2006 editions of Volume 4, and the 2008 edition of Volume
5, have been moved to 214K-214N.

214N Upper and lower integrals This result, referred to in the 2008 edition of Volume 5, has been
moved to 214J.

215Yc Measurable envelopes This exercise, referred to in the 2000 edition of Volume 1, has been
moved to 216Yc.

c© 2000 D. H. Fremlin
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