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Appendix to Volume 1

Useful Facts

Each volume of this treatise will have an appendix, containing very brief accounts of material which many
readers will have met before but some may not, and which is relevant to some topic dealt with in the volume.
For this first volume the appendix is short, partly because the volume itself is short, but mostly because
the required basic knowledge of analysis is so fundamental that it must be done properly from a regular
textbook or in a regular course. However I do set out a few details that might be omitted from some first
courses in analysis, describing some not-quite-standard notation and the elementary theory of countable
sets (§1A1), open and closed sets in Euclidean space (§1A2) and upper and lower limits of sequences and
functions (§1A3).
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1A1 Set theory

In 111E-111F I briefly discussed ‘countable’ sets. The approach there was along what seemed to be the
shortest path to the facts immediately needed, and it is perhaps right that I should here indicate a more
conventional route. I take the opportunity to list some notation which I find convenient but is not universally
employed.

1A1A Square bracket notations(a) For a, b ∈ R, I write

[a, b] = {x : a ≤ x ≤ b}, ]a, b[ = {x : a < x < b},

[a, b[ = {x : a ≤ x < b}, ]a, b] = {x : a < x ≤ b}.

It is natural, when these formulae appear, to jump to the conclusion that a < b; but just occasionally it is
useful to interpret them when b ≤ a, in which case

[a, a] = {a}, ]a, a[ = [a, a[ = ]a, a] = ∅,

[a, b] = ]a, b[ = [a, b[ = ]a, b] = ∅ if b < a.

(b)

]−∞, b[ = {x : x < b}, ]a,∞[ = {x : a < x}, ]−∞,∞[ = R,

[a,∞[ = {x : x ≥ a}, ]−∞, b] = {x : x ≤ b},

[0,∞] = {x : x ∈ R, x ≥ 0} ∪ {∞}, [−∞,∞] = R ∪ {−∞,∞}.

1A1B Direct and inverse images(a) If f is a function and A is a set, I write

f [A] = {f(x) : x ∈ A ∩ dom f}

for the direct image of A under f .

(b) If f is a function and B is a set, I write

f−1[B] = {x : x ∈ dom f, f(x) ∈ B}

for the inverse image of B under f .
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2 Appendix 1A1Bc

(c) Now suppose that R is a relation, that is, a set of ordered pairs, and A, B are sets. Then

R[A] = {y : ∃x ∈ A such that (x, y) ∈ R},

R−1[B] = {x : ∃ y ∈ B such that (x, y) ∈ R}.

1A1D Proposition Let K be a set. Then the following are equiveridical:
(i) either K is empty or there is a surjection from N onto K;
(ii) either K is finite or there is a bijection between N and K;
(iii) there is an injection from K to N.

1A1E Properties of countable sets(a) If K is countable and φ : K → L is a surjection, then L is
countable.

(b) If K is countable and φ : L → K is an injection, then L is countable.

(c) In particular, any subset of a countable set is countable.

(d) The Cartesian product of finitely many countable sets is countable.

(e) Z is countable.

(f) Q is countable.

1A1F Theorem If K is a countable collection of countable sets, then
⋃

K = {x : ∃K ∈ K, x ∈ K}

is countable.

1A1H Some uncountable sets(a) There is no surjection from N onto R.
Thus R is uncountable.

(b) There is no surjection from N onto its power set PN.
Thus PN is uncountable.

1A1J Notation I will say that a family A of sets is a partition of a set X whenever A is a disjoint
cover of X, that is, X =

⋃

A and A∩A′ = ∅ for all distinct A, A′ ∈ A. Similarly, an indexed family 〈Ai〉i∈I

is a partition partition of X if
⋃

i∈I Ai = X and Ai ∩Aj = ∅ for all distinct i, j ∈ I.
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1A2 Open and closed sets in Rr

In 111G I gave the definition of an open set in R or Rr, and in 121D I used, in passing, some of the basic
properties of these sets; perhaps it will be helpful if I set out a tiny part of the elementary theory.

1A2A Open sets Recall that a set G ⊆ R is open if for every x ∈ G there is a δ > 0 such that
]x− δ, x+ δ[ ⊆ G; similarly, a set G ⊆ Rr is open if for every x ∈ G there is a δ > 0 such that U(x, δ) ⊆ G,

where U(x, δ) = {y : ‖y − x‖ < δ}, writing ‖z‖ for
√

ζ21 + . . .+ ζ2r if z = (ζ1, . . . , ζr).

1A2B The family of all open sets Let T be the family of open sets of Rr.
(a) ∅ ∈ T.
(b) Rr ∈ T.
(c) If G, H ∈ T then G ∩H ∈ T.
(d) If G ⊆ T, then

⋃

G = {x : ∃G ∈ G, x ∈ G} ∈ T.
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*1A3D Lim sups and lim infs 3

1A2C Cauchy’s inequality: Proposition For all x, y ∈ Rr, ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

1A2D Corollary U(x, δ) is open, for every x ∈ Rr and δ > 0.

1A2E Closed sets: Definition A set F ⊆ Rr is closed if Rr \ F is open.

1A2F Proposition Let F be the family of closed subsets of Rr.
(a) ∅ ∈ F .
(b) Rr ∈ F .
(c) If E, F ∈ F then E ∪ F ∈ F .
(d) If E ⊆ F is a non-empty family of closed sets, then

⋂

E = {x : x ∈ F ∀ F ∈ E} ∈ F .

1A2G Lemma If x ∈ Rr and δ ≥ 0 then B(x, δ) = {y : ‖y − x‖ ≤ δ} is closed.

Version of 18.12.03

1A3 Lim sups and lim infs

It occurs to me that not every foundation course in real analysis has time to deal with the concepts
lim sup and lim inf.

1A3A Definition (a) For a real sequence 〈an〉n∈N, write

lim supn→∞ an = limn→∞ supm≥n am = infn∈N supm≥n am,

lim infn→∞ an = limn→∞ infm≥n am = supn∈N infm≥n am;

if we allow the values ±∞, both for suprema and infima and for limits, these will always be defined.

(c) For u ∈ [−∞,∞], we can say that

lim supn→∞ an = u iff (i) for every v > u (if any) there is an n0 ∈ N such that an ≤ v for
every n ≥ n0 (ii) for every v < u, n0 ∈ N there is an n ≥ n0 such that an ≥ v,

lim infn→∞ an = u iff (i) for every v < u there is an n0 ∈ N such that an ≥ v for every n ≥ n0

(ii) for every v > u, n0 ∈ N there is an n ≥ n0 such that an ≤ v.

1A3B Proposition For any sequences 〈an〉n∈N, 〈bn〉n∈N in R,
(a) lim infn→∞ an ≤ lim supn→∞ an,
(b) limn→∞ an = u ∈ [−∞,∞] iff lim supn→∞ an = lim infn→∞ an = u,
(c) lim infn→∞ an = − lim supn→∞(−an),
(d) lim supn→∞(an + bn) ≤ lim supn→∞ an + lim supn→∞ bn,
(e) lim infn→∞(an + bn) ≥ lim infn→∞ an + lim infn→∞ bn,
(f) lim supn→∞ can = c lim supn→∞ an if c ≥ 0,
(g) lim infn→∞ can = c lim infn→∞ an if c ≥ 0,

with the proviso in (d) and (e) that we must be able to interpret the right-hand-side of the inequality
according to the rules in 135A, while in (f) and (g) we take 0 · ∞ = 0 · (−∞) = 0.

*1A3D Other expressions of the same idea The concepts of lim sup and lim inf may be applied in
any context in which we can consider the limit of a real-valued function. For instance, if f is a real-valued
function defined (at least) on a punctured interval of the form {x : 0 < |c− x| ≤ ǫ} where c ∈ R and ǫ > 0,
then

lim supt→c f(t) = limδ↓0 sup0<|t−c|≤δ f(t) = inf0<δ≤ǫ sup0<|t−c|≤δ f(t),

lim inft→c f(t) = limδ↓0 inf0<|t−c|≤δ f(t) = sup0<δ≤ǫ inf0<|t−c|≤δ f(t),
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allowing ∞ and −∞ whenever they seem called for. Or if f is defined on the half-open interval ]c, c+ ǫ], we
can say

lim supt↓c f(t) = limδ↓0 supc<t≤c+δ f(t) = inf0<δ≤ǫ supc<t≤c+δ f(t),

lim inft↓c f(t) = limδ↓0 infc<t≤c+δ f(t) = sup0<δ≤ǫ infc<t≤c+δ f(t).

Similarly, if f is defined on [M,∞[ for some M ∈ R, we have

lim supt→∞ f(t) = lima→∞ supt≥a f(t) = infa≥M supt≥a f(t),

lim inft→∞ f(t) = lima→∞ inft≥a f(t) = supa≥M inft≥a f(t).
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