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Appendix to Volume 1

Useful Facts

Each volume of this treatise will have an appendix, containing very brief accounts of material which many
readers will have met before but some may not, and which is relevant to some topic dealt with in the volume.
For this first volume the appendix is short, partly because the volume itself is short, but mostly because
the required basic knowledge of analysis is so fundamental that it must be done properly from a regular
textbook or in a regular course. However I do set out a few details that might be omitted from some first
courses in analysis, describing some not-quite-standard notation and the elementary theory of countable
sets (§1A1), open and closed sets in Euclidean space (§1A2) and upper and lower limits of sequences and
functions (§1A3).

Version of 5.11.03

1A1 Set theory

In 111E-111F I briefly discussed ‘countable’ sets. The approach there was along what seemed to be the
shortest path to the facts immediately needed, and it is perhaps right that I should here indicate a more
conventional route. I take the opportunity to list some notation which I find convenient but is not universally
employed.

1A1A Square bracket notations I use square brackets [ and ] in a variety of ways; the context will I
hope always make it clear what interpretation is expected.

(a) For a, b ∈ R, I write

[a, b] = {x : a ≤ x ≤ b}, ]a, b[ = {x : a < x < b},

[a, b[ = {x : a ≤ x < b}, ]a, b] = {x : a < x ≤ b}.

It is natural, when these formulae appear, to jump to the conclusion that a < b; but just occasionally it is
useful to interpret them when b ≤ a, in which case I follow the formulae above literally, so that

[a, a] = {a}, ]a, a[ = [a, a[ = ]a, a] = ∅,

[a, b] = ]a, b[ = [a, b[ = ]a, b] = ∅ if b < a.

(b) We can interpret the formulae with infinite a or b; for example,

]−∞, b[ = {x : x < b}, ]a,∞[ = {x : a < x}, ]−∞,∞[ = R,

[a,∞[ = {x : x ≥ a}, ]−∞, b] = {x : x ≤ b},

and even

[0,∞] = {x : x ∈ R, x ≥ 0} ∪ {∞}, [−∞,∞] = R ∪ {−∞,∞}.

(c)With some circumspection – since further choices have to be made, which it is safer to set out explicitly
when the occasion arises – we can use similar formulae for ‘intervals’ in multidimensional space Rr; see, for
instance, 115A or 136D; and even in general partially ordered sets, though these will not be important to
us before Volume 3.
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2 Appendix 1A1Ad

(d) Perhaps I owe you an explanation for my choice of ]a, b[, [a, b[ in favour of (a, b), [a, b), which are
both commoner and more pleasing to the eye. In the first instance it is simply because the formula

(1, 2) ∈ ]0, 2[× ]1, 3[

makes better sense than its translation. Generally, it leads to a slightly better balance in the number of
appearances of ( and [, even allowing for the further uses of [. . . ] which I am about to specify.

1A1B Direct and inverse images I now describe an entirely different use of square brackets, belonging
to abstract set theory rather than to the theory of the real number system.

(a) If f is a function and A is a set, I write

f [A] = {f(x) : x ∈ A ∩ dom f}

for the direct image of A under f . Note that while A will often be a subset of the domain of f , this is not
assumed.

(b) If f is a function and B is a set, I write

f−1[B] = {x : x ∈ dom f, f(x) ∈ B}

for the inverse image of B under f . This time, it is important to note that there is no presumption that
f is injective, or that f−1 is a function; the formula f−1[ ] is being given a meaning independent of any
meaning of the expression f−1. But it is easy to see that when f is injective, so that we have a true inverse
function f−1 (defined on the set of values of f , f [dom f ]), then f−1[B], as defined here, agrees with its
interpretation under (a).

(c) Now suppose that R is a relation, that is, a set of ordered pairs, and A, B are sets. Then I write

R[A] = {y : ∃x ∈ A such that (x, y) ∈ R},

R−1[B] = {x : ∃ y ∈ B such that (x, y) ∈ R}.

If we write

R−1 = {(y, x) : (x, y) ∈ R},

then we have an alternative interpretation of R−1[B] which agrees with the one just given. Moreover, if R
is the graph of a function f , that is, if for every x there is at most one y such that (x, y) ∈ R, then the
formulae here agree with those of (a)-(b) above.

(d) (The following is addressed exclusively to readers who have been taught to distinguish between the
words ‘set’ and ‘class’.) I have used the word ‘set’ more than once above. But that was purely for euphony.
The same formulae can be used with arbitrary classes, though in some set theories the expressions involved
may not be recognised as ‘terms’ in the technical sense.

1A1C Countable sets In 111Fa I defined ‘countable set’ as follows: a set K is countable if either it
is empty or there is a surjective function from N to K. A commoner formulation is to say that a set K is
countable iff either it is finite or there is a bijection between N and K. So I should check at once that these
two formulations agree.

1A1D Proposition Let K be a set. Then the following are equiveridical:
(i) either K is empty or there is a surjection from N onto K;
(ii) either K is finite or there is a bijection between N and K;
(iii) there is an injection from K to N.

proof (a)(i)⇒(iii) Assume (i). If K is empty, then the empty function is an injection from K to N.
Otherwise, there is a surjection φ : N → K. Now, for each k ∈ K, set

ψ(k) = min{n : n ∈ N, φ(n) = k};
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1A1F Set theory 3

this is always well-defined because φ is surjective, so that {n : φ(n) = k} is never empty, and must have a
least member. Because φψ(k) = k for every k, ψ must be injective, so is the required injection from K to N.

(b)(iii)⇒(ii) Assume (iii); let ψ : K → N be an injection, and set A = ψ[K] ⊆ N. Then ψ is a bijection
between K and A. If K is finite, then of course (ii) is satisfied. Otherwise, A must also be infinite. Define
φ : A→ N by setting

φ(m) = #({i : i ∈ A, i < m}),

the number of elements of A less than m, for each m ∈ A; thus φ(m) is the position of m if the elements
of A are listed from the bottom, starting at 0 for the least element of A. Then φ : A → N is a bijection,
because A is infinite, and φψ : K → N is a bijection.

(c)(ii)⇒(i) IfK is empty, surely it satisfies (i). IfK is finite and not empty, list its members as k0, . . . , kn;
now set φ(i) = ki for i ≤ n, k0 for i > n to get a surjection φ : N → K. If K is infinite, there is a bijection
from N to K, which is of course also a surjection from N to K. So (i) is true in all cases.

Remark I referred to the ‘empty function’ in the proof above. This is the function with domain ∅; having
said this, any, or no, rule for calculating the function will have the same effect, since it will never be applied.
By examining your feelings about this construction you can learn something about your basic attitude to
mathematics. You may feel that it is an artificial irrelevance, or you may feel that it is as necessary as the
number 0. Both are entirely legitimate feelings, and the fully rounded mathematician alternates between
them; but I have to say that I myself tend to the latter more often than the former, and that when I say
‘function’ in this treatise the empty function will generally be in the back of my mind as a possibility.

1A1E Properties of countable sets Let me recapitulate the basic properties of countable sets:

(a) If K is countable and φ : K → L is a surjection, then L is countable. PPP If K is empty then so is L.
Otherwise there is a surjection ψ : N → K, so φψ is a surjection from N onto L, and L is countable. QQQ

(b) If K is countable and φ : L → K is an injection, then L is countable. PPP By 1A1D(iii), there is an
injection ψ : K → N; now ψφ : L→ N is injective, so L is countable. QQQ

(c) In particular, any subset of a countable set is countable (as in 111F(b-i)).

(d) The Cartesian product of finitely many countable sets is countable (111Fb(iii)-(iv)).

(e) Z is countable. PPP The map (m,n) 7→ m− n : N× N → Z is surjective. QQQ

(f) Q is countable. PPP The map (m,n) 7→ m
n+1 : Z× N → Q is surjective. QQQ

1A1F Another fundamental property is worth distinguishing from these, as it relies on a slightly deeper
argument.

Theorem If K is a countable collection of countable sets, then
⋃

K = {x : ∃K ∈ K, x ∈ K}

is countable.

proof Set

K′ = K \ {∅} = {K : K ∈ K, K 6= ∅};

then K′ ⊆ K, so is countable, and
⋃

K′ =
⋃

K. If K′ = ∅, then
⋃

K =
⋃

K′ = ∅

is surely countable. Otherwise, let m 7→ Km : N → K′ be a surjection. For each m ∈ N, Km is a non-empty
countable set, so there is a surjection n 7→ kmn : N → Km. Now (m,n) 7→ kmn : N×N →

⋃

K is a surjection
(if k ∈

⋃

K, there is a K ∈ K′ such that k ∈ K; there is an m ∈ N such that K = Km; there is an n ∈ N

such that k = kmn). So
⋃

K is countable, as required.
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4 Appendix *1A1G

*1A1G Remark I divide this result from the ‘elementary’ facts in 1A1E partly because it uses a different
principle of argument from any necessary for the earlier work. In the middle of the proof I wrote ‘so there
is a surjection n 7→ kmn : N → Km’. That there is a surjection from N onto Km does indeed follow from the
immediately preceding statement ‘Km is a non-empty countable set’. The sleight of hand lies in immediately
naming such a surjection as ‘n 7→ kmn’. There may of course be many surjections from N to Km – as a rule,
indeed, there will be uncountably many – and what I am in effect doing here is picking arbitrarily on one
of them. The choice has to be arbitrary, because I am working in a totally abstract context, and while in
any particular application of this theorem there may be some natural surjection to use, I have no way of
forecasting what approach, if any, might offer a criterion for distinguishing a particular function here. Now
it has been a basic method of mathematical argument, from Euclid’s time at least, that we are willing to
give a name to an object, a ‘general point’ or an ‘arbitrary number’, without specifying exactly which object
we are naming. But here I am picking out simultaneously infinitely many objects, all arbitrary members of
certain sets. This is a use of the Axiom of Choice.

I do not recall ever having had a student criticise an argument in the form of that in 1A1F on the grounds
that it uses a new, and possibly illegitimate, principle; I am sure that it never occurred to me that anything
exceptionable was being done in these cases, until someone pointed it out. If you find that discussions of
this kind are irrelevant to your own mathematical interests, you can certainly pass them by, at least until
you reach Volume 5. Mathematical systems have been studied in which the axiom of choice is false; they
are of great interest but so far remain peripheral to the subject. Systems in which the axiom of choice is
so false that the union of countably many countable sets is sometimes uncountable have a character all of
their own, and in particular the theory of Lebesgue measure is transformed; I will come to this possibility
in Chapter 56 of Volume 5.

For a brief comment on other ways of using the axiom of choice, see 134C.

1A1H Some uncountable sets Of course not all sets are countable. In 114G/115G I remark that all
countable subsets of Euclidean space are negligible for Lebesgue measure; consequently, any set which is not
negligible – for instance, any non-trivial interval – must be uncountable. But perhaps it will be helpful if I
offer here elementary arguments to show that R and PN are not countable.

(a) There is no surjection from N onto R. PPP Let n 7→ an : N → R be any function. For each n ∈ N,
express an in decimal form as

an = kn + 0 · ǫn1ǫn2 . . . = kn +
∑∞

i=1 10
−iǫni,

where kn ∈ Z is the greatest integer not greater than an, and each ǫni is an integer between 0 and 9;
for definiteness, if an happens to be an exact decimal, use the terminating expansion, so that the ǫni are
eventually 0 rather than eventually 9.

Now define ǫi, for i ≥ 1, by saying that

ǫi = 6 if ǫii < 6,

= 5 if ǫii ≥ 6.

Consider a = k0 +1+
∑∞

i=1 10
−iǫi, so that a = k0 +1+ 0 · ǫ1ǫ2 . . . in decimal form. I claim that a 6= an for

every n. Of course a 6= a0 because a0 < k0 + 1 ≤ a. If n ≥ 1, then ǫn 6= ǫnn; because no ǫi is either 0 or 9,
there is no alternative decimal expansion of a, so the expansion an = kn + 0 · ǫn1ǫn2 . . . cannot represent a,
and a 6= an.

Thus I have constructed a real number which is not in the list a0, a1, . . . . As 〈an〉n∈N is arbitrary, there
is no surjection from N onto R. QQQ

Thus R is uncountable.

(b) There is no surjection from N onto its power set PN. PPP Let n 7→ An : N → PN be any function. Set

A = {n : n ∈ N, n /∈ An}.

If n ∈ N, then

either n ∈ An, in which case n /∈ A,

or n /∈ An, in which case n ∈ A.

Measure Theory



1A2B Open and closed sets in R
r

5

Thus in both cases we have n ∈ A△An, so that A 6= An. As n is arbitrary, A /∈ {An : n ∈ N} and n 7→ An

is not a surjection. As 〈An〉n∈N is arbitrary, there is no surjection from N onto PN. QQQ
Thus PN is also uncountable.

1A1I Remark In fact it is the case that there is a bijection between R and PN (2A1Ha); so that the
uncountability of both can be established by just one of the arguments above.

1A1J Notation For definiteness, I remark here that I will say that a family A of sets is a partition of
a set X whenever A is a disjoint cover of X, that is, X =

⋃

A and A ∩A′ = ∅ for all distinct A, A′ ∈ A; in
particular, the empty set may or may not belong to A. Similarly, an indexed family 〈Ai〉i∈I is a partition
partition of X if

⋃

i∈I Ai = X and Ai ∩Aj = ∅ for all distinct i, j ∈ I; again, one or more of the Ai may be
empty.

1A1 Notes and comments The ideas of 1A1C-1A1I are essentially due to G.F.Cantor. These concepts
are fundamental to modern set theory, and indeed to very large parts of modern pure mathematics. The
notes above hardly begin to suggest the extraordinary fertility of these ideas, which need a book of their
own for their proper expression; my only aim here has been to try to make sense of those tiny parts of
the subject which are needed in the present volume. In later volumes I will present results which call on
substantially more advanced ideas, which I will discuss in appendices to those volumes.

Version of 21.11.03

1A2 Open and closed sets in Rr

In 111G I gave the definition of an open set in R or Rr, and in 121D I used, in passing, some of the basic
properties of these sets; perhaps it will be helpful if I set out a tiny part of the elementary theory.

1A2A Open sets Recall that a set G ⊆ R is open if for every x ∈ G there is a δ > 0 such that
]x− δ, x+ δ[ ⊆ G; similarly, a set G ⊆ Rr is open if for every x ∈ G there is a δ > 0 such that U(x, δ) ⊆ G,

where U(x, δ) = {y : ‖y − x‖ < δ}, writing ‖z‖ for
√

ζ21 + . . .+ ζ2r if z = (ζ1, . . . , ζr). Henceforth I give the
arguments for general r; if you are at present interested only in the one-dimensional case, you should have
no difficulty in reading them as if r = 1 throughout.

1A2B The family of all open sets Let T be the family of open sets of Rr. Then T has the following
properties.

(a) ∅ ∈ T, that is, the empty set is open. PPP Because the definition of ‘∅ is open’ begins with ‘for every
x ∈ ∅, . . . ’, it must be vacuously satisfied by the empty set. QQQ

(b) Rr ∈ T, that is, the whole space under consideration is an open set. PPP U(x, 1) ⊆ Rr for every x ∈ Rr.
QQQ

(c) If G, H ∈ T then G ∩H ∈ T; that is, the intersection of two open sets is always an open set. PPP Let
x ∈ G ∩H. Then there are δ1, δ2 > 0 such that U(x, δ1) ⊆ G and U(x, δ2) ⊆ H. Set δ = min(δ1, δ2) > 0;
then

U(x, δ) = {y : ‖y − x‖ < min(δ1, δ2)} = U(x, δ1) ∩ U(x, δ2) ⊆ G ∩H.

As x is arbitrary, G ∩H is open. QQQ
(d) If G ⊆ T, then

⋃

G = {x : ∃G ∈ G, x ∈ G} ∈ T;

that is, the union of any family of open sets is open. PPP Let x ∈
⋃

G. Then there is a G ∈ G such that
x ∈ G. Because G ∈ T, there is a δ > 0 such that

U(x, δ) ⊆ G ⊆
⋃

G.

As x is arbitrary,
⋃

G ∈ T. QQQ

c© 1994 D. H. Fremlin
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6 Appendix 1A2C

1A2C Cauchy’s inequality: Proposition For all x, y ∈ Rr, ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

proof Express x as (ξ1, . . . , ξr), y as (η1, . . . , ηr); set α = ‖x‖, β = ‖y‖. Then both α and β are non-
negative. If α = 0 then

∑r
j=1 ξ

2
j = 0 so every ξj = 0 and x = 0, so ‖x + y‖ = ‖y‖ = ‖x‖ + ‖y‖; if β = 0,

then y = 0 and ‖x+ y‖ = ‖x‖ = ‖x‖+ ‖y‖. Otherwise, consider

αβ‖x+ y‖2 ≤ αβ‖x+ y‖2 + ‖αy − βx‖2

= αβ

r
∑

j=1

(ξj + ηj)
2 +

r
∑

j=1

(αηj − βξj)
2

=

r
∑

j=1

αβξ2j + αβη2j + α2η2j + β2ξ2j

= α3β + αβ3 + α2β2 + β2α2

= αβ(α+ β)2 = αβ(‖x‖+ ‖y‖)2.

Dividing both sides by αβ and taking square roots we have the result.

1A2D Corollary U(x, δ), as defined in 1A2A, is open, for every x ∈ Rr and δ > 0.

proof If y ∈ U(x, δ), then η = δ − ‖y − x‖ > 0. Now if z ∈ U(y, η),

‖z − x‖ = ‖(z − y) + (y − x)‖ ≤ ‖z − y‖+ ‖y − x‖ < η + ‖y − x‖ = δ,

and z ∈ U(x, δ); thus U(y, η) ⊆ U(x, δ). As y is arbitrary, U(x, δ) is open.

1A2E Closed sets: Definition A set F ⊆ Rr is closed if Rr \F is open. (Warning! ‘Most’ subsets of
Rr are neither open nor closed; two subsets of Rr, viz., ∅ and Rr, are both open and closed.) Corresponding
to the list in 1A2B, we have the following properties of the family F of closed subsets of Rr.

1A2F Proposition Let F be the family of closed subsets of Rr.
(a) ∅ ∈ F (because Rr ∈ T).
(b) Rr ∈ F (because ∅ ∈ T).
(c) If E, F ∈ F then E ∪ F ∈ F , because

Rr \ (E ∪ F ) = (Rr \ E) ∩ (Rr \ F ) ∈ T.

(d) If E ⊆ F is a non-empty family of closed sets, then
⋂

E = {x : x ∈ F ∀ F ∈ E} = Rr \
⋃

F∈E(R
r \ F ) ∈ F .

Remark In (d), we need to assume that E 6= ∅ to ensure that
⋂

E ⊆ Rr.

1A2G Corresponding to 1A2D, we have the following fact:

Lemma If x ∈ Rr and δ ≥ 0 then B(x, δ) = {y : ‖y − x‖ ≤ δ} is closed.

proof Set G = Rr \B(x, δ). If y ∈ G, then η = ‖y − x‖ − δ > 0; if z ∈ U(y, η), then

δ + η = ‖y − x‖ ≤ ‖y − z‖+ ‖z − x‖ < η + ‖z − x‖,

so ‖z − x‖ > δ and z ∈ G. So U(y, η) ⊆ G. As y is arbitrary, G is open and B(x, δ) is closed.

Version of 18.12.03

1A3 Lim sups and lim infs

It occurs to me that not every foundation course in real analysis has time to deal with the concepts
lim sup and lim inf.

Measure Theory



1A3B Lim sups and lim infs 7

1A3A Definition (a) For a real sequence 〈an〉n∈N, write

lim supn→∞ an = limn→∞ supm≥n am = infn∈N supm≥n am,

lim infn→∞ an = limn→∞ infm≥n am = supn∈N infm≥n am;

if we allow the values ±∞, both for suprema and infima and for limits (see 112Ba), these will always be
defined, because the sequences

〈supm≥n am〉n∈N, 〈infm≥n am〉n∈N

are monotonic.

(b) Explicitly:

lim supn→∞ an = ∞ ⇐⇒ {an : n ∈ N} is unbounded above,

lim supn→∞ an = −∞ ⇐⇒ limn→∞ an = −∞,

that is, if and only if for every a ∈ R there is an n0 ∈ N such that an ≤ a for every n ≥ n0;

lim infn→∞ an = −∞ ⇐⇒ {an : n ∈ N} is unbounded below,

lim infn→∞ an = ∞ ⇐⇒ limn→∞ an = ∞,

that is, if and only if for every a ∈ R there is an n0 ∈ N such that an ≥ a for every n ≥ n0.

(c) For finite a ∈ R, we have

lim supn→∞ an = a iff (i) for every ǫ > 0 there is an n0 ∈ N such that an ≤ a + ǫ for every
n ≥ n0 (ii) for every ǫ > 0, n0 ∈ N there is an n ≥ n0 such that an ≥ a− ǫ,

while

lim infn→∞ an = a iff (i) for every ǫ > 0 there is an n0 ∈ N such that an ≥ a − ǫ for every
n ≥ n0 (ii) for every ǫ > 0, n0 ∈ N there is an n ≥ n0 such that an ≤ a+ ǫ.

Generally, for u ∈ [−∞,∞], we can say that

lim supn→∞ an = u iff (i) for every v > u (if any) there is an n0 ∈ N such that an ≤ v for
every n ≥ n0 (ii) for every v < u, n0 ∈ N there is an n ≥ n0 such that an ≥ v,

lim infn→∞ an = u iff (i) for every v < u there is an n0 ∈ N such that an ≥ v for every n ≥ n0
(ii) for every v > u, n0 ∈ N there is an n ≥ n0 such that an ≤ v.

1A3B We have the following basic results.

Proposition For any sequences 〈an〉n∈N, 〈bn〉n∈N in R,

(a) lim infn→∞ an ≤ lim supn→∞ an,

(b) limn→∞ an = u ∈ [−∞,∞] iff lim supn→∞ an = lim infn→∞ an = u,

(c) lim infn→∞ an = − lim supn→∞(−an),
(d) lim supn→∞(an + bn) ≤ lim supn→∞ an + lim supn→∞ bn,

(e) lim infn→∞(an + bn) ≥ lim infn→∞ an + lim infn→∞ bn,

(f) lim supn→∞ can = c lim supn→∞ an if c ≥ 0,

(g) lim infn→∞ can = c lim infn→∞ an if c ≥ 0,

with the proviso in (d) and (e) that we must be able to interpret the right-hand-side of the inequality
according to the rules in 135A, while in (f) and (g) we take 0 · ∞ = 0 · (−∞) = 0.

proof (a) supm≥n am ≥ infm≥n am for every n, so

lim supn→∞ an = limn→∞ supm≥n am ≥ limn→∞ infm≥n am = lim infn→∞ an.

(b) Using the last description of lim supn→∞ and lim infn→∞ in 1A3Ac, and a corresponding description
of limn→∞, we have

D.H.Fremlin



8 Appendix 1A3B

lim
n→∞

an = u

⇐⇒ for every v > u there is an n1 ∈ N such that an ≤ v for every n ≥ n1

and for every v < u there is an n2 ∈ N such that an ≥ v for every n ≥ n2

⇐⇒ for every v > u there is an n1 ∈ N such that an ≤ v for every n ≥ n1

and for every v < u, n0 ∈ N there is an n ≥ n0 such that an ≥ v

and for every v < u there is an n2 ∈ N such that an ≥ v for every n ≥ n2

and for every v > u, n0 ∈ N there is an n ≥ n0 such that an ≤ v

⇐⇒ lim sup
n→∞

an = lim inf
n→∞

an = u.

(c) This is just a matter of turning the formulae upside down:

lim inf
n→∞

an = sup
n∈N

inf
m≥n

am = sup
n∈N

(− sup
m≥n

(−am))

= − inf
n∈N

sup
m≥n

(−am) = − lim sup
n→∞

(−an).

(d) If v > lim supn→∞ an + lim supn→∞ bn, there are v1, v2 such that v1 > lim supn→∞ an, v2 >
lim supn→∞ bn and v1 + v2 = v. Now there are n1, n2 ∈ N such that supm≥n1

an ≤ v1 and supm≥n2
bn ≤ v2;

so that

sup
m≥max(n1,n2)

am + bm ≤ sup
m≥max(n1,n2)

am + sup
m≥max(n1,n2)

bm

≤ sup
m≥n1

am + sup
m≥n2

bm ≤ v1 + v2 = v.

As v is arbitrary,

lim supn→∞ an + bn = infn∈N supm≥n am + bm ≤ lim supn→∞ an + lim supn→∞ bn.

(e) Putting (c) and (d) together,

lim inf
n→∞

an + bn = − lim sup
n→∞

(−an) + (−bn)

≥ − lim sup
n→∞

(−an)− lim sup
n→∞

(−bn) = lim inf
n→∞

an + lim inf
n→∞

bn.

(f) Because c ≥ 0,

lim sup
n→∞

can = inf
n∈N

sup
m≥n

cam = inf
n∈N

c sup
m≥n

am

= c inf
n∈N

sup
m≥n

am = c lim sup
n→∞

an.

(g) Finally,

lim infn→∞ can = − lim supn→∞ c(−an) = −c lim supn→∞(−an) = c lim infn→∞ an.

1A3C RemarkOf course the familiar results that limn→∞ an+bn = limn→∞ an+limn→∞ bn, limn→∞ can =
c limn→∞ an are immediate corollaries of 1A3B.

*1A3D Other expressions of the same idea The concepts of lim sup and lim inf may be applied in
any context in which we can consider the limit of a real-valued function. For instance, if f is a real-valued
function defined (at least) on a punctured interval of the form {x : 0 < |c− x| ≤ ǫ} where c ∈ R and ǫ > 0,
then

Measure Theory



*1A3D Lim sups and lim infs 9

lim supt→c f(t) = limδ↓0 sup0<|t−c|≤δ f(t) = inf0<δ≤ǫ sup0<|t−c|≤δ f(t),

lim inft→c f(t) = limδ↓0 inf0<|t−c|≤δ f(t) = sup0<δ≤ǫ inf0<|t−c|≤δ f(t),

allowing ∞ and −∞ whenever they seem called for. Or if f is defined on the half-open interval ]c, c+ ǫ], we
can say

lim supt↓c f(t) = limδ↓0 supc<t≤c+δ f(t) = inf0<δ≤ǫ supc<t≤c+δ f(t),

lim inft↓c f(t) = limδ↓0 infc<t≤c+δ f(t) = sup0<δ≤ǫ infc<t≤c+δ f(t).

Similarly, if f is defined on [M,∞[ for some M ∈ R, we have

lim supt→∞ f(t) = lima→∞ supt≥a f(t) = infa≥M supt≥a f(t),

lim inft→∞ f(t) = lima→∞ inft≥a f(t) = supa≥M inft≥a f(t).

A further extension of the idea is examined briefly in 2A3S in Volume 2.

D.H.Fremlin
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