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Chapter 13

Complements

In this chapter I collect a number of results which do not lie in the direct line of the argument from 111A
(the definition of ‘σ-algebra’) to 123C (Lebesgue’s Dominated Convergence Theorem), but which nevertheless
demand inclusion in this volume, being both relatively elementary, essential for further developments and
necessary to a proper comprehension of what has already been done. The longest section is §134, dealing
with a few of the elementary special properties of Lebesgue measure; in particular, its translation-invariance,
the existence of non-measurable sets and functions, and the Cantor set. The other sections are comparatively
lightweight. §131 discusses (measurable) subspaces and the interpretation of the formula

∫

E
f , generalizing

the idea of an integral
∫ b

a
f of a function over an interval. §132 introduces the outer measure associated with

a measure, a kind of inverse of Carathéodory’s construction of a measure from an outer measure. §§133 and
135 lay out suitable conventions for dealing with ‘infinity’ and complex numbers (separately! they don’t mix
well) as values either of integrands or of integrals; at the same time I mention ‘upper’ and ‘lower’ integrals.
Finally, in §136, I give some theorems on σ-algebras of sets, describing how they can (in some of the most
important cases) be generated by relatively restricted operations.

Version of 18.3.05

131 Measurable subspaces

Very commonly we wish to integrate a function over a subset of a measure space; for instance, to form

an integral
∫ b

a
f(x)dx, where a < b in R. As often as not, we wish to do this when the function is partly or

wholly undefined outside the subset, as in such expressions as
∫ 1

0
lnx dx. The natural framework in which

to perform such operations is that of ‘subspace measures’. If (X,Σ, µ) is a measure space and H ∈ Σ, there
is a natural subspace measure µH on H, which I describe in this section. I begin with the definition of this
subspace measure (131A-131C), with a description of integration with respect to it (131E-131H); this gives
a solid foundation for the concept of ‘integration over a (measurable) subset’ (131D).

131A Proposition Let (X,Σ, µ) be a measure space, and H ∈ Σ. Set ΣH = {E : E ∈ Σ, E ⊆ H} and
let µH be the restriction of µ to ΣH . Then (H,ΣH , µH) is a measure space.

proof Of course ΣH is just {E ∩H : E ∈ Σ}, and I have noted already (in 121A) that this is a σ-algebra
of subsets of H. It is now obvious that µH satisfies (iii) of 112A, so that (H,ΣH , µH) is a measure space.

131B Definition If (X,Σ, µ) is any measure space and H ∈ Σ, then µH , as defined in 131A, is the
subspace measure on H.

When X = Rr, where r ≥ 1, and µ is Lebesgue measure on Rr, I will call a subspace measure µH

Lebesgue measure on H.
It is worth noting the following elementary facts.

131C Lemma Let (X,Σ, µ) be a measure space, H ∈ Σ, and µH the subspace measure on H, with
domain ΣH . Then

(a) for any A ⊆ H, A is µH -negligible iff it is µ-negligible;
(b) if G ∈ ΣH then (µH)G, the subspace measure on G when G is regarded as a measurable subset of H,

is identical to µG, the subspace measure on G when G is regarded as a measurable subset of X.
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2 Complements 131D

131D Integration over subsets: Definition Let (X,Σ, µ) be a measure space, H ∈ Σ and f a real-
valued function defined on a subset of X. By

∫

H
f (or

∫

H
f(x)µ(dx), etc.) I shall mean

∫

(f↾H)dµH , if this
exists, following the definitions of 131A-131B and 122M, and taking dom(f↾H) = H ∩ dom f , (f↾H)(x) =
f(x) for x ∈ H ∩ dom f .

131E Proposition Let (X,Σ, µ) be a measure space, H ∈ Σ, and f a real-valued function defined on a

subset dom f of H. Set f̃(x) = f(x) if x ∈ dom f , 0 if x ∈ X \H. Then
∫

fdµH =
∫

f̃dµ if either is defined
in R.

proof (a) If f is µH -simple, it is expressible as
∑n

i=0 aiχEi, where E0, . . . , En ∈ ΣH , a0, . . . , an ∈ R and

µHEi < ∞ for each i. Now f̃ also is equal to
∑n

i=0 aiχEi if this is now interpreted as a function from X to
R. So

∑n
i=0 aiµHEi =

∑n
i=0 aiµEi =

∫

f̃dµ.

(b) If f is a non-negative µH -integrable function, there is a non-decreasing sequence 〈fn〉n∈N of non-

negative µH -simple functions converging to f µH -almost everywhere; now 〈f̃n〉n∈N is a non-decreasing se-

quence of µ-simple functions converging to f̃ µ-a.e. (131Ca), and

supn∈N

∫

f̃ndµ = supn∈N

∫

fndµH =
∫

fdµH < ∞,

so
∫

f̃dµ exists and is equal to
∫

fdµH .

(c) If f is µH -integrable, it is expressible as f1 − f2 where f1 and f2 are non-negative µH -integrable

functions, so that f̃ = f̃1 − f̃2 and
∫

f̃dµ =
∫

f̃1dµ−
∫

f̃2dµ =
∫

f1dµH −
∫

f2dµH =
∫

fdµH .

(d) Now suppose that f̃ is µ-integrable. In this case there is a µ-conegligible E ∈ Σ such that E ⊆ dom f̃

and f̃↾E is Σ-measurable (122P). Of course µ(H \E) = 0 so E ∩H is µH -conegligible; also, for any a ∈ R,

{x : x ∈ E ∩H, f(x) ≥ a} = H ∩ {x : x ∈ E, f̃(x) ≥ a} ∈ ΣH ,

so f↾E ∩H is ΣH -measurable, and f is µH -virtually measurable and defined µH -a.e. Next, for ǫ > 0,

µH{x : x ∈ E ∩H, |f(x)| ≥ ǫ} = µ{x : x ∈ E, |f̃(x)| ≥ ǫ} < ∞,

while if g is a µH -simple function and g ≤ |f | µH -a.e. then g̃ ≤ |f̃ | µ-a.e. and
∫

g dµH =
∫

g̃ dµ ≤
∫

|f̃ |dµ < ∞.

By the criteria of 122J and 122P, f is µH -integrable, so that again we have
∫

fdµH =
∫

f̃dµ.

131F Corollary Let (X,Σ, µ) be a measure space and f a real-valued function defined on a subset dom f
of X.

(a) IfH ∈ Σ and f is defined almost everywhere inX, then f↾H is µH -integrable iff f×χH is µ-integrable,
and in this case

∫

H
f =

∫

f × χH.

(b) If f is µ-integrable, then f ≥ 0 a.e. iff
∫

H
f ≥ 0 for every H ∈ Σ.

(c) If f is µ-integrable, then f = 0 a.e. iff
∫

H
f = 0 for every H ∈ Σ.

proof (a) Because dom f is µ-conegligible, (f↾H)
∼

, as defined in 131E, is equal to f × χH µ-a.e., so that,
by 131E,

∫

H
fdµ =

∫

(f↾H)
∼

dµ =
∫

(f × χH)dµ

if any one of the integrals exists.

(b)(i) If f ≥ 0 µ-a.e., then for any H ∈ Σ we must have f↾H ≥ 0 µH -a.e., so
∫

H
f =

∫

(f↾H)dµH ≥ 0.

(ii) If
∫

H
f ≥ 0 for every H ∈ Σ, let E ∈ Σ be a conegligible subset of dom f such that f↾E is

measurable. Set F = {x : x ∈ E, f(x) < 0}. Then
∫

F
f ≥ 0; by 122Rc, it follows that f↾F = 0 µF -a.e.,

which is possible only if µF = 0, in which case f ≥ 0 µ-a.e.

(c) Apply (b) to f and to −f to see that f ≤ 0 ≤ f a.e.
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131 Notes Measurable subspaces 3

131G Corollary Let (X,Σ, µ) be a measure space and H ∈ Σ a conegligible set. If f is any real-valued
function defined on a subset of X,

∫

H
f =

∫

f if either is defined.

proof In the language of 131E, f = (f↾H)
∼

µ-almost everywhere, so that
∫

f =
∫

(f↾H)
∼

=
∫

H
f

if any of the integrals is defined.

131H Corollary Let (X,Σ, µ) be a measure space and f , g two µ-integrable real-valued functions.
(a) If

∫

H
f ≥

∫

H
g for every H ∈ Σ then f ≥ g a.e.

(b) If
∫

H
f =

∫

H
g for every H ∈ Σ then f = g a.e.

proof Apply 131Fb-131Fc to f − g.

131X Basic exercises >>>(a) Let (X,Σ, µ) be a measure space, and f a real-valued function which
is integrable over X. For E ∈ Σ set νE =

∫

E
f . (i) Show that if E, F are disjoint members of Σ

then ν(E ∪ F ) = νE + νF . (Hint : 131E.) (ii) Show that if 〈En〉n∈N is a disjoint sequence in Σ then
ν(
⋃

n∈N En) =
∑∞

n=0 νEn. (Hint : 123C.) (iii) Show that if f is non-negative then (X,Σ, ν) is a measure
space.

>>>(b) Let µ be Lebesgue measure on R. (i) Show that whenever a ≤ b in R and f is a real-valued function
with dom f ⊆ R, then

fdµ =
∫

[a,b[
fdµ =

∫

]a,b]
fdµ =

∫

[a,b]
fdµ

if any of these is defined. (Hint : apply 131E to four different versions of f̃ .) Write
∫ b

a
fdµ for the common

value. (ii) Show that if a ≤ b ≤ c in R then, for any real-valued function f ,
∫ c

a
fdµ =

∫ b

a
fdµ +

∫ c

b
fdµ if

either side is defined. (iii) Show that if f is integrable over R, then (a, b) 7→
∫ b

a
fdµ is continuous. (Hint :

Either consider simple functions f first or consider limn→∞

∫ b

an

fdµ for monotonic sequences 〈an〉n∈N.)

(c) Let g : R → R be a non-decreasing function and µg the associated Lebesgue-Stieltjes measure (114Xa).
(i) Show that if a ≤ b ≤ c in R then, for any real-valued function f ,

∫

[a,c[
fdµg =

∫

[a,b[
fdµg +

∫

[b,c[
fdµg if

either side is defined. (ii) Show that if f is µg-integrable over R, then (a, b) 7→
∫

[a,b[
fdµg is continuous on

{(a, b) : a ≤ b, g is continuous at both a and b}.

131Y Further exercises (a) Let (X,Σ, µ) be a measure space and E ∈ Σ a measurable set of finite
measure. Let 〈fn〉n∈N be a sequence of measurable real-valued functions, with measurable domains1, such
that f = limn→∞ fn is defined almost everywhere in E (following the conventions of 121Fa). Show that for
every ǫ > 0 there is a measurable set F ⊆ E such that µ(E \ F ) ≤ ǫ and 〈fn〉n∈N converges uniformly to f
on F . (This is Egorov’s theorem.)

131 Notes and comments If you want a quick definition of
∫

H
f for measurable H, the simplest seems to

be that of 131E, which enables you to avoid the concept of ‘subspace measure’ entirely. I think however that
we really do need to be able to speak of ‘Lebesgue measure on [0, 1]’, for instance, meaning the subspace
measure µ[0,1] where µ is Lebesgue measure on R.

This section has a certain amount of detailed technical analysis. The point is that from 131A on we
generally have at least two measures in play, and the ordinary language of measure theory – words like
‘measurable’ and ‘integrable’ – becomes untrustworthy in such contexts, since it omits the crucial declarations
of which σ-algebras or measures are under consideration. Consequently I have to use less elegant and more
explicit terminology. I hope however that once you have worked carefully through such results as 131F you
will feel that the pattern formed is reasonably coherent. The general rule is that for measurable subspaces
there are no serious surprises (131Cb, 131Fa).

1I am grateful to P.Wallace Thompson for pointing out that this clause, or something with similar effect, is necessary.
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4 Complements 131 Notes

I ought to remark that there is also a standard definition of subspace measure on non-measurable subsets
of a measure space. I have given the definition already in 113Yb; for the theory of integration, extending
the results above, I will wait until §214. There are significant extra difficulties and the extra generality is
not often needed in elementary applications.

Let me call your attention to 131Fb-131Fc and 131Xa-131Xc; these are first steps to understanding
‘indefinite integrals’, the functionals E 7→

∫

E
f : Σ → R where f is an integrable function. I will return to

these in Chapters 22 and 23.

Version of 6.4.05

132 Outer measures from measures

The next topic I wish to mention is a simple construction with applications everywhere in measure theory.
With any measure there is associated, in a straightforward way, a standard outer measure (132A-132B). If
we start with Lebesgue measure we just return to Lebesgue outer measure (132C). I take the opportunity
to introduce the idea of ‘measurable envelope’ (132D-132E).

132A Proposition Let (X,Σ, µ) be a measure space. Define µ∗ : PX → [0,∞] by writing

µ∗A = inf{µE : E ∈ Σ, A ⊆ E}

for every A ⊆ X. Then
(a) for every A ⊆ X there is an E ∈ Σ such that A ⊆ E and µ∗A = µE;
(b) µ∗ is an outer measure on X;
(c) µ∗E = µE for every E ∈ Σ;
(d) a set A ⊆ X is µ-negligible iff µ∗A = 0;
(e) µ∗(

⋃

n∈N An) = limn→∞ µ∗An for every non-decreasing sequence 〈An〉n∈N of subsets of X;
(f) µ∗A = µ∗(A ∩ F ) + µ∗(A \ F ) whenever A ⊆ X and F ∈ Σ.

proof (a) For each n ∈ N we can choose an En ∈ Σ such that A ⊆ En and µEn ≤ µ∗A + 2−n; now
E =

⋂

n∈N En ∈ Σ, A ⊆ E and

µ∗A ≤ µE ≤ infn∈N µEn ≤ µ∗A.

(b)(i) µ∗∅ = µ∅ = 0. (ii) If A ⊆ B ⊆ X then {E : A ⊆ E ∈ Σ} ⊇ {E : B ⊆ E ∈ Σ} so µ∗A ≤ µ∗B.
(iii) If 〈An〉n∈N is any sequence in PX, then for each n ∈ N there is an En ∈ Σ such that An ⊆ En and
µEn = µ∗An; now

⋃

n∈N An ⊆
⋃

n∈N En ∈ Σ so

µ∗(
⋃

n∈N An) ≤ µ(
⋃

n∈N En) ≤
∑∞

n=0 µEn =
∑∞

n=0 µ
∗An.

(c) This is just because µE ≤ µF whenever E, F ∈ Σ and E ⊆ F .

(d) By (a), µ∗A = 0 iff there is an E ∈ Σ such that A ⊆ E and µE = 0; but this is the definition of
‘negligible set’.

(e) Of course 〈µ∗An〉n∈N is a non-decreasing sequence with limit at most µ∗A, writing A =
⋃

n∈N An,
just because µ∗B ≤ µ∗C whenever B ⊆ C ⊆ X. For each n ∈ N, let En ∈ Σ be such that An ⊆ En

and µEn = µ∗An. Set Fn =
⋂

m≥n Em for each n; then 〈Fn〉n∈N is a non-decreasing sequence in Σ, and

An ⊆ Fn ⊆ En, so µ∗An = µFn for each n ∈ N. Set F =
⋃

n∈N Fn; then A ⊆ F so

µ∗A ≤ µF = limn→∞ µFn = limn→∞ µ∗An.

Thus µ∗A = limn→∞ µ∗An, as claimed.

(f) Of course µ∗A ≤ µ∗(A ∩ F ) + µ∗(A \ F ), by (b). On the other hand, there is an E ∈ Σ such that
A ⊆ E and µE = µ∗A, by (a), and now A ∩ F ⊆ E ∩ F ∈ Σ, A \ F ⊆ E \ F ∈ Σ so

µ∗(A ∩ F ) + µ∗(A \ F ) ≤ µ(E ∩ F ) + µ(E \ F ) = µE = µ∗A.

132B Definition If (X,Σ, µ) is a measure space, I will call µ∗, as defined in 132A, the outer measure
defined from µ.

Measure Theory



132E Outer measures from measures 5

Remark If we start with an outer measure θ on a set X, construct a measure µ from θ by Carathéodory’s
method, and then construct the outer measure µ∗ from µ, it is not necessarily the case that µ∗ = θ. PPP
Take any set X with at least three members, and set θA = 0 if A = ∅, 1 if A = X, 1

2 otherwise. Then
domµ = {∅, X} and µ∗A = 1 for every non-empty A ⊆ X. QQQ

However, this problem does not arise with Lebesgue outer measure. I state the next proposition in terms
of Lebesgue measure on Rr, but if you skipped §115 I hope that you will still be able to make sense of this,
and later results, in terms of Lebesgue measure on R, by setting r = 1.

132C Proposition If θ is Lebesgue outer measure on Rr and µ is Lebesgue measure, then µ∗, as defined
in 132A, is equal to θ.

proof Let A ⊆ Rr.

(a) If E is measurable and A ⊆ E, then θA ≤ θE = µE; so θA ≤ µ∗A.

(b) If ǫ > 0, there is a sequence 〈In〉n∈N of half-open intervals, covering A, with
∑∞

n=0 µIn ≤ θA + ǫ
(using 114G/115G to identify µIn with the volume λIn used in the definition of θ), so

µ∗A ≤ µ(
⋃

n∈N In) ≤
∑∞

n=0 µIn ≤ θA+ ǫ.

As ǫ is arbitrary, µ∗A ≤ θA.

Remark Accordingly it will henceforth be unnecessary to distinguish θ from µ∗ when speaking of ‘Lebesgue
outer measure’. (In the language of 132Xa below, Lebesgue outer measure is ‘regular’.) In particular (using
132Aa), if A ⊆ Rr there is a measurable set E ⊇ A such that µE = θA (compare 134Fc).

132D Measurable envelopes The following is a useful concept in this context. If (X,Σ, µ) is a measure
space and A ⊆ X, a measurable envelope (or measurable cover) of A is a set E ∈ Σ such that A ⊆ E
and µ(F ∩E) = µ∗(F ∩A) for every F ∈ Σ. In general, not every set in a measure space has a measurable
envelope (I suggest examples in 216Yc in Volume 2). But we do have the following.

132E Lemma Let (X,Σ, µ) be a measure space.
(a) If A ⊆ E ∈ Σ, then E is a measurable envelope of A iff µF = 0 whenever F ∈ Σ and F ⊆ E \A.
(b) If A ⊆ E ∈ Σ and µE < ∞ then E is a measurable envelope of A iff µE = µ∗A.
(c) If E is a measurable envelope of A and H ∈ Σ, then E ∩H is a measurable envelope of A ∩H.
(d) Let 〈An〉n∈N be a sequence of subsets of X. Suppose that each An has a measurable envelope En.

Then
⋃

n∈N En is a measurable envelope of
⋃

n∈N An.
(e) If A ⊆ X can be covered by a sequence of sets of finite measure, then A has a measurable envelope.
(f) In particular, if µ is Lebesgue measure on Rr, then every subset of Rr has a measurable envelope for

µ.

proof (a) If E is a measurable envelope of A, F ∈ Σ and F ⊆ E \A, then

µF = µ(F ∩ E) = µ∗(F ∩A) = 0.

If E is not a measurable envelope of A, there is an H ∈ Σ such that µ∗(A ∩H) < µ(E ∩H). Let G ∈ Σ be
such that A ∩H ⊆ G and µG = µ∗(A ∩H), and set F = E ∩H \ G. Since µG < µ(E ∩H), µF > 0; but
also F ⊆ E and F ∩A ⊆ H ∩A \G is empty.

(b) If E is a measurable envelope of A then we must have

µ∗A = µ∗(A ∩ E) = µ(E ∩ E) = µE.

If µE = µ∗A, and F ∈ Σ is a subset of E \ A, then A ⊆ E \ F , so µ(E \ F ) = µE; because µE is finite, it
follows that µF = 0, so the condition of (a) is satisfied and E is a measurable envelope of A.

(c) If F ∈ Σ and F ⊆ E ∩ H \ A, then F ⊆ E \ A, so µF = 0, by (a); as F is arbitrary, E ∩ H is a
measurable envelope of A ∩H, by (a) again.

(d) Write A for
⋃

n∈N An and E for
⋃

n∈N En. Then A ⊆ E. If F ∈ Σ and F ⊆ E \ A, then, for every
n ∈ N, F ∩ En ⊆ En \ An, so µ(F ∩ En) = 0, by (a). Consequently F =

⋃

n∈N F ∩ En is negligible; as F is
arbitrary, E is a measurable envelope of A.

D.H.Fremlin



6 Complements 132E

(e) Let 〈Fn〉n∈N be a sequence of sets of finite measure covering A. For each n ∈ N, let En ∈ Σ be such
that A ∩ Fn ⊆ En and µEn = µ∗(A ∩ Fn) (using 132Aa above); by (b), En is a measurable envelope of
A ∩ Fn. By (d),

⋃

n∈N En is a measurable envelope of
⋃

n∈N A ∩ Fn = A.

(f) In the case of Lebesgue measure on Rr, of course, the same sequence 〈Bn〉n∈N will work for every A,
if we take Bn to be the half-open interval [−n,n[ for each n ∈ N, writing n = (n, . . . , n) as in §115.

132F Full outer measure This is a convenient moment at which to introduce the following term. If
(X,Σ, µ) is a measure space, a set A ⊆ X is of full outer measure or thick if X is a measurable envelope
of A; that is, if µ∗(F ∩ A) = µF for every F ∈ Σ; equivalently, if µF = 0 whenever F ∈ Σ and F ⊆ X \ A.
If µX < ∞, A ⊆ X has full outer measure iff µ∗A = µX.

132X Basic exercises >>>(a) Let X be a set and θ an outer measure on X; let µ be the measure on X
defined by Carathéodory’s method from θ, and µ∗ the outer measure defined from µ by the construction of
132A. (i) Show that µ∗A ≥ θA for every A ⊆ X. (ii) θ is said to be a regular outer measure if θ = µ∗.
Show that if there is any measure ν on X such that θ = ν∗ then θ is regular. (iii) Show that if θ is regular
and 〈An〉n∈N is a non-decreasing sequence of subsets of X, then θ(

⋃

n∈N An) = limn→∞ θAn.

(b) Let (X,Σ, µ) be a measure space and H any member of Σ. Let µH be the subspace measure on H
(131B) and µ∗, µ∗

H the outer measures defined from µ, µH respectively. Show that µ∗
H = µ∗↾PH.

(c) Give an example of a measure space (X,Σ, µ) such that the measure µ̌ defined by Carathéodory’s
method from the outer measure µ∗ is a proper extension of µ. (Hint : take µX = 0.)

>>>(d) Let (X,Σ, µ) be a measure space and A a subset of X. Suppose that 〈En〉n∈N is a sequence in Σ
such that 〈A ∩ En〉n∈N is disjoint. Show that µ∗(A ∩

⋃

n∈N En) =
∑∞

n=0 µ
∗(A ∩ En). (Hint : replace En by

E′
n = En \

⋃

i<n Ei, and use 132Ae-132Af.)

(e) Let (X,Σ, µ) be a measure space and 〈An〉n∈N any sequence of subsets of X. Show that the outer
measure of

⋃

n∈N

⋂

i≥n Ai is at most lim infn→∞ µ∗An.

(f) Let (X,Σ, µ) be a measure space and suppose that A ⊆ B ⊆ X are such that µ∗A = µ∗B < ∞. Show
that µ∗(A ∩E) = µ∗(B ∩E) for every E ∈ Σ. (Hint : a measurable envelope of B is a measurable envelope
of A.)

>>>(g) Let νg be a Lebesgue-Stieltjes measure on R, constructed as in 114Xa from a non-decreasing function
g : R → R. Show that (i) the outer measure ν∗g derived from νg (132A) coincides with the outer measure θg
of 114Xa; (ii) if A ⊆ R is any set, then A has a measurable envelope for the measure νg.

>>>(h) Let A ⊆ Rr be a set which is not measured by Lebesgue measure µ. Show that there is a bounded
measurable set E such that µ∗(E ∩A) = µ∗(E \A) = µE > 0. (Hint : take E = E′ ∩E′′ ∩B, where E′ is a
measurable envelope for A, E′′ is a measurable envelope for Rr \A, and B is a suitable bounded set.)

(i) Let µ be Lebesgue measure on Rr and Σ its domain, and f a real-valued function, defined on a subset
of Rr, which is not Σ-measurable. Show that there are q < q′ in Q and a bounded measurable set E such
that

µ∗{x : x ∈ E ∩ dom f, f(x) ≤ q} = µ∗{x : x ∈ E ∩ dom f, f(x) ≥ q′} = µE > 0.

(Hint : take Eq, E
′
q to be measurable envelopes for {x : f(x) ≤ q}, {x : f(x) > q} for each q. Find q such

that µ(Eq ∩ E′
q) > 0 and q′ such that µ(Eq ∩ E′

q′) > 0.)

(j) Check that you can do exercise 113Yc.

(k) Let (X,Σ, µ) be a measure space and µ∗ the outer measure defined from µ. Show that µ∗(A ∪B) +
µ∗(A ∩B) ≤ µ∗A+ µ∗B for all A, B ⊆ X.

Measure Theory
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132Y Further exercises (a) Let (X,Σ, µ) be a measure space and 〈fn〉n∈N a sequence of real-valued
functions defined almost everywhere in X. Suppose that 〈ǫn〉n∈N is a sequence of non-negative real numbers
such that

∑∞
n=0 ǫn < ∞,

∑∞
n=0 µ

∗{x : |fn+1(x)− fn(x)| ≥ ǫn} < ∞.

Show that limn→∞ fn is defined (as a real-valued function) almost everywhere.

(b) Let (X,Σ, µ) be a measure space, Y a set and f : X → Y a function. Let ν be the image measure
µf−1 (112Xf). Show that ν∗f [A] ≥ µ∗A for every A ⊆ X.

(c) Let (X,Σ, µ) be a measure space with µX < ∞. Let 〈An〉n∈N be a sequence of subsets of X such
that

⋃

n∈N An has full outer measure in X. Show that there is a partition 〈En〉n∈N of X into measurable
sets such that µEn = µ∗(An ∩ En) for every n ∈ N.

(d) Let (X,Σ, µ) be a measure space and A a family of subsets of X such that
⋂

n∈N An has full outer
measure for every sequence 〈An〉n∈N in A. Show that there is a measure ν on X, extending µ, such that
every member of A is ν-conegligible.

(e) Check that you can do exercises 113Yg-113Yh.

(f) Let (X,Σ, µ) be a measure space. Show that µ∗ : PX → [0,∞] is alternating of all orders, that
is,

∑

J⊆I,#(J) is even µ
∗(A ∪

⋃

i∈J Ai) ≤
∑

J⊆I,#(J) is odd µ
∗(A ∪

⋃

i∈J Ai)

whenever I is a non-empty finite set, 〈Ai〉i∈I is a family of subsets of X and A is another subset of X.

(g) Let (X,Σ, µ) be a measure space. Suppose that A ⊆ B ⊆ C ⊆ X and that µ∗(B \ A) = µ∗B. Show
that µ∗(C \A) = µ∗C.

132 Notes and comments Almost the most fundamental fact in measure theory is that in all important
measure spaces there are non-measurable sets. (For Lebesgue measure see 134B below.) One can respond to
this fact in a variety of ways. An approach which works quite well is just to ignore it. The point is that, for
very deep reasons, the sets and functions which arise in ordinary applications nearly always are measurable,
or can be made so by elementary manipulations; the only exceptions I know of in applied mathematics
appear in generalized control theory. As a pure mathematician I am uncomfortable with such an approach,
and as a measure theorist I think it closes the door on some of the most subtle ideas of the theory. In this
treatise, therefore, non-measurable sets will always be present, if only subliminally. In this section I have
described two of the basic methods of dealing with them: the move from a measure to an outer measure,
which at least assigns some sort of size to an arbitrary set, and the idea of ‘measurable envelope’, which
(when defined) describes the region in which the non-measurable set has to be taken into account. In both
cases we seek to describe the non-measurable set from the outside, so to speak. There are no real difficulties,
and the only points to take note of are that (i) outside the boundary marked by 132Ee measurable envelopes
need not exist (ii) Carathéodory’s construction of a measure from an outer measure, and the construction
here of an outer measure from a measure, are closely related (132C, 132Xg, 113Yc, 132Xa(i)), but are not
quite inverses of each other in general (132B, 132Xc).

Version of 29.3.10

133 Wider concepts of integration

There are various contexts in which it is useful to be able to assign a value to the integral of a function
which is not quite covered by the basic definition in 122M. In this section I offer suggestions concerning the
assignment of the values ±∞ to integrals of real-valued functions (133A), the integration of complex-valued
functions (133C-133H) and upper and lower integrals (133I-133L). In §135 below I will discuss a further
elaboration of the ideas of Chapter 12.

c© 1994 D. H. Fremlin
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8 Complements 133A

133A Infinite integrals It is normal to restrict the phrase ‘f is integrable’ to functions f to which
a finite integral

∫

f can be assigned (just as a series is called ‘summable’ only when a finite sum can be
assigned to it). But for non-negative functions it is sometimes convenient to write ‘

∫

f = ∞’ if, in some
sense, the only way in which f fails to be integrable is that the integral is too large; that is, f is defined
almost everywhere, is µ-virtually measurable, and either

{x : x ∈ dom f, f(x) ≥ ǫ}

includes a set of infinite measure for some ǫ > 0, or

sup{
∫

h : h is simple, h ≤a.e. f} = ∞.

(Compare 122J.) Under this rule, we shall still have
∫

f1 + f2 =
∫

f1 +
∫

f2,
∫

cf = c
∫

f

whenever c ∈ [0,∞[ and f1, f2, f are non-negative functions for which
∫

f1,
∫

f2,
∫

f are defined in [0,∞].
We can therefore repeat the definition 122M and say that

∫

f1 − f2 =
∫

f1 −
∫

f2

whenever f1, f2 are real-valued functions such that
∫

f1,
∫

f2 are defined in [0,∞] and are not both infinite;
the last condition being imposed to avoid the possibility of being asked to calculate ∞−∞.

We still have the rules that
∫

f + g =
∫

f +
∫

g,
∫

(cf) = c
∫

f ,
∫

|f | ≥ |
∫

f |

at least when the right-hand-sides can be interpreted, allowing 0 ·∞ = 0, but not allowing any interpretation
of ∞−∞; and

∫

f ≤
∫

g whenever both integrals are defined and f ≤a.e. g. (But of course it is now possible
to have f ≤ g and

∫

f =
∫

g = ±∞ without f and g being equal almost everywhere.)
Setting f+(x) = max(f(x), 0), f−(x) = max(−f(x), 0) for x ∈ dom f , then

∫

f = ∞ ⇐⇒
∫

f+ = ∞ and f− is integrable,

∫

f = −∞ ⇐⇒ f+ is integrable and
∫

f− = ∞.

For further ideas in this direction, see §135 below.

133B Functions with exceptional values It is also convenient to allow as ‘integrable’ functions f
which take occasional values which are not real – typically, where a formula for f(x) allows the value ‘∞’

on some convention. For such a function I will write
∫

f =
∫

f̃ if
∫

f̃ is defined, where

dom f̃ = {x : x ∈ dom f, f(x) ∈ R}, f̃(x) = f(x) for x ∈ dom f̃ .

Since in this convention I still require f̃ to be defined almost everywhere in X, the set {x : x ∈ dom f, f(x) /∈
R} will have to be negligible.

133C Complex-valued functions All the theory of measurable and integrable functions so far de-
veloped has been devoted to real-valued functions. There are no substantial new ideas required to deal
with complex-valued functions, but perhaps I should spell out some of the details, since there are many
applications in which complex-valued functions are the most natural context in which to work.

133D Definitions (a) Let X be a set and Σ a σ-algebra of subsets of X. If D ⊆ X and f : D → C is
a function, then we say that f is measurable if its real and imaginary parts Re f , Im f are measurable in
the sense of 121B-121C.

(b) Let (X,Σ, µ) be a measure space. If f is a complex-valued function defined on a conegligible subset
of X, we say that f is integrable if its real and imaginary parts are integrable, and then

∫

f =
∫

Re f + i
∫

Im f .

(c) Let (X,Σ, µ) be a measure space, H ∈ Σ and f a complex-valued function defined on a subset of X.
Then

∫

H
f is

∫

(f↾H)dµH if this is defined in the sense of (b), taking the subspace measure µH to be that
of 131A-131B.

Measure Theory
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133E Lemma (a) If X is a set, Σ is a σ-algebra of subsets of X, and f and g are measurable complex-
valued functions with domains dom f , dom g ⊆ X, then

(i) f + g : dom f ∩ dom g → C is measurable;
(ii) cf : dom f → C is measurable, for every c ∈ C;
(iii) f × g : dom f ∩ dom g → C is measurable;
(iv) f/g : {x : x ∈ dom f ∩ dom g, g(x) 6= 0} → C is measurable;
(v) |f | : dom f → R is measurable.

(b) If 〈fn〉n∈N is a sequence of measurable complex-valued functions defined on subsets of X, then f =
limn→∞ fn is measurable, if we take dom f to be

{x : x ∈
⋃

n∈N

⋂

m≥n

dom fm, lim
n→∞

fn(x) exists in C}

= dom( lim
n→∞

Re fn) ∩ dom( lim
n→∞

Im fn).

proof (a) All are immediate from 121E, if you write down the formulae for the real and imaginary parts of
f + g, . . . , |f | in terms of the real and imaginary parts of f and g.

(b) Use 121Fa.

133F Proposition Let (X,Σ, µ) be a measure space.
(a) If f and g are integrable complex-valued functions defined on conegligible subsets of X, then f + g

and cf are integrable,
∫

f + g =
∫

f +
∫

g and
∫

cf = c
∫

f , for every c ∈ C.
(b) If f is a complex-valued function defined on a conegligible subset of X, then f is integrable iff |f | is

integrable and f is µ-virtually measurable, that is, Re f and Im f are µ-virtually measurable.

proof (a) Use 122Oa-122Ob.

(b) The point is that |Re f |, | Im f | ≤ |f | ≤ |Re f |+ | Im f |; now we need only apply 122P an adequate
number of times.

133G Lebesgue’s Dominated Convergence Theorem Let (X,Σ, µ) be a measure space and 〈fn〉n∈N

a sequence of integrable complex-valued functions onX such that f(x) = limn→∞ fn(x) exists in C for almost
every x ∈ X. Suppose moreover that there is a real-valued integrable function g on X such that |fn| ≤a.e. g
for each n. Then f is integrable and limn→∞

∫

fn exists and is equal to
∫

f .

proof Apply 123C to the sequences 〈Re fn〉n∈N and 〈Im fn〉n∈N.

133H Corollary Let (X,Σ, µ) be a measure space and ]a, b[ a non-empty open interval in R. Let
f : X × ]a, b[ → C be a function such that

(i) the integral F (t) =
∫

f(x, t)dx is defined for every t ∈ ]a, b[;

(ii) the partial derivative ∂f
∂t

of f with respect to the second variable is defined everywhere in
X × ]a, b[;

(iii) there is an integrable function g : X → [0,∞[ such that |∂f
∂t
(x, t)| ≤ g(x) for every x ∈ X,

t ∈ ]a, b[.

Then the derivative F ′(t) and the integral
∫

∂f
∂t
(x, t)dx exist for every t ∈ ]a, b[, and are equal.

proof Apply 123D to Re f and Im f .

133I Upper and lower integrals I return now to real-valued functions. Let (X,Σ, µ) be a measure
space and f a real-valued function defined almost everywhere in X. Its upper integral is

∫

f = inf{
∫

g :
∫

g is defined in the sense of 133A and f ≤a.e. g},

allowing ∞ for inf{∞} or inf ∅ and −∞ for inf R. Similarly, the lower integral of f is
∫

f = sup{
∫

g :
∫

g is defined, f ≥a.e. g},

allowing −∞ for sup{−∞} or sup ∅ and ∞ for supR.

D.H.Fremlin
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133J Proposition Let (X,Σ, µ) be a measure space.

(a) Let f be a real-valued function defined almost everywhere in X.

(i) If
∫

f is finite, then there is an integrable g such that f ≤a.e. g and
∫

g =
∫

f . In this case,

{x : x ∈ dom f ∩ dom g, g(x) ≤ f(x) + g0(x)}

has full outer measure for every measurable function g0 : X → ]0,∞[.

(ii) If
∫

f is finite, then there is an integrable h such that h ≤a.e. f and
∫

h =
∫

f . In this case,

{x : x ∈ dom f ∩ domh, f(x) ≤ h(x) + h0(x)}

has full outer measure for every measurable function h0 : X → ]0,∞[.

(b) For any real-valued functions f , g defined on conegligible subsets of X and any c ≥ 0,

(i)
∫

f ≤
∫

f ,

(ii)
∫

f + g ≤
∫

f +
∫

g,

(iii)
∫

cf = c
∫

f ,

(iv)
∫

(−f) = −
∫

f ,

(v)
∫

f + g ≥
∫

f +
∫

g,

(vi)
∫

cf = c
∫

f

whenever the right-hand-sides do not involve adding ∞ to −∞.

(c) If f ≤a.e. g then
∫

f ≤
∫

g and
∫

f ≤
∫

g.

(d) A real-valued function f defined almost everywhere in X is integrable iff
∫

f =
∫

f = a ∈ R,

and in this case
∫

f = a.

(e) µ∗A =
∫

χA for every A ⊆ X.

proof (a)(i) For each n ∈ N, choose a function gn such that f ≤a.e. gn and
∫

gn is defined and at most

2−n+
∫

f ; as
∫

f ≤
∫

gn,
∫

gn is finite, so gn is integrable. Set hn = infi≤n gi for each n; then hn is integrable
(because |hn − g0| ≤

∑n
i=0 |gi − g0| on

⋂

i≤n dom gi), and f ≤a.e. hn, so

∫

f ≤
∫

hn ≤
∫

gn ≤ 2−n +
∫

f .

By B.Levi’s theorem (123A), applied to 〈−hn〉n∈N, g(x) = infn∈N hn(x) ∈ R for almost every x, and
∫

g = infn∈N

∫

hn =
∫

f ; also, of course, f ≤a.e. g.

Now take a measurable function g0 : X → ]0,∞[, and consider the set

A = {x : x ∈ dom f ∩ dom g, g(x) ≤ f(x) + g0(x)}.

??? If A does not have full outer measure, there is a non-negligible measurable set F ⊆ X \ A. Since g0 is
strictly positive, F =

⋃

n∈N Fn where Fn = {x : x ∈ F , g0(x) ≥ 2−n}, and there is an n ∈ N such that

µFn > 0. Consider the function g1 = g− 2−nχF . Then f ≤a.e. g1. Also
∫

g1 =
∫

g− 2−nµFn is strictly less

than
∫

g, so
∫

f <
∫

g. XXX

(ii) Argue similarly, or use (b-iv).

(b)(i) If either
∫

f = −∞ or
∫

f = ∞ this is trivial. Otherwise it follows at once from the fact that if

g ≤a.e. f ≤a.e. h then
∫

g ≤
∫

h if the integrals are defined (in the wide sense).

(ii) If a >
∫

f +
∫

g, neither
∫

f nor
∫

g can be ∞, so there must be functions f1, g1 such that f ≤a.e. f1,
g ≤a.e. g1 and

∫

f1 +
∫

g1 ≤ a. Now f + g ≤a.e. f1 + g1, so
∫

f + g ≤
∫

f1 + g1 ≤ a.

As a is arbitrary, we have the result.

Measure Theory
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(iii)(ααα) If c = 0 this is trivial. (βββ) If c > 0 and a > c
∫

f , there must be an f1 such that f ≤a.e. f1 and

c
∫

f1 ≤ a. Now cf ≤a.e. cf1 and
∫

cf1 ≤ a, so
∫

cf ≤ a. As a is arbitrary,
∫

cf ≤ c
∫

f . (γγγ) Still supposing
that c > 0, we also have

c
∫

f = c
∫

c−1cf ≤ cc−1
∫

cf =
∫

cf ,

so we get equality.

(iv) This is just because
∫

(−f1) = −
∫

f1 for any function f1 for which either integral is defined.

(v)-(vi) Use (iv) to turn
∫

into
∫

, and apply (ii) or (iii).

(c) These are immediate from the definitions, because (for instance) if g ≤a.e. h then f ≤a.e. h.

(d) If f is integrable, then
∫

f =
∫

f =
∫

f

by 122Od. If
∫

f =
∫

f = a ∈ R, then, by (a), there are integrable g, h such that g ≤a.e. f ≤a.e. h and
∫

g =
∫

h = a, so that g =a.e. h, by 122Rc, g =a.e. f =a.e. h and f is integrable, by 122Rb.

(e) If E ⊇ A is measurable, then

µE =
∫

χE ≥
∫

χA;

as E is arbitrary, µ∗A ≥
∫

χA. If
∫

g is defined and χA ≤a.e. g, let E ⊆ dom g be a conegligible measurable
set such that g↾E is measurable, and set F = {x : x ∈ E, g(x) ≥ 1}. Then A \ F is negligible, so

µ∗A ≤ µF ≤
∫

g; as g is arbitrary, µ∗A ≤
∫

χA.

Remark I hope that the formulae here remind you of lim sup, lim inf.

133K Convergence theorems for upper integralsWe have the following versions of B.Levi’s theorem
and Fatou’s Lemma.

Proposition Let (X,Σ, µ) be a measure space, and 〈fn〉n∈N a sequence of real-valued functions defined
almost everywhere in X.

(a) If, for each n, fn ≤a.e. fn+1, and −∞ < supn∈N

∫

fn < ∞, then f(x) = supn∈N fn(x) is defined in R

for almost every x ∈ X, and
∫

f = supn∈N

∫

fn.

(b) If, for each n, fn ≥ 0 a.e., and lim infn→∞

∫

fn < ∞, then f(x) = lim infn→∞ fn(x) is defined in R

for almost every x ∈ X, and
∫

f ≤ lim infn→∞

∫

fn.

proof (a) Set c = supn∈N

∫

fn. For each n, there is an integrable function gn such that fn ≤a.e. gn and
∫

gn =
∫

fn (133J(a-i)). Set g′n = min(gn, gn+1); then g′n is integrable and fn ≤a.e. g
′
n ≤a.e. gn, so

∫

fn ≤
∫

g′n ≤
∫

gn =
∫

fn

and g′n must be equal to gn a.e. Consequently gn ≤a.e. gn+1, for each n, while supn∈N

∫

gn = c < ∞. By
B.Levi’s theorem, g = supn∈N gn is defined, as a real-valued function, almost everywhere in X, and

∫

g = c.
Now of course f(x) is defined, and not greater than g(x), for any x ∈ dom g ∩

⋂

n∈N dom fn such that

fn(x) ≤ gn(x) for every n, that is, for almost every x; so
∫

f ≤
∫

g = c. On the other hand, fn ≤a.e. f , so
∫

fn ≤
∫

f , for every n ∈ N; it follows that
∫

f must be at least c, and is therefore equal to c, as required.

(b) The argument follows that of 123B. Set c = lim infn→∞

∫

fn. For each n, set gn = infm≥n fn; then
∫

gn ≤ infm≥n

∫

fm ≤ c. We have gn(x) ≤ gn+1(x) for every x ∈ dom gn, that is, almost everywhere, for
each n; so, by (a),

∫

g = supn∈N

∫

gn ≤ c,

where

g = supn∈N gn =a.e. lim infn→∞ fn,

D.H.Fremlin



12 Complements 133K

and
∫

lim infn→∞ fn ≤ c, as claimed.

*133L The following is at a less fundamental level than the results in 133J, but is still important.

Proposition Let (X,Σ, µ) be a measure space and f a real-valued function defined almost everywhere in
X. Suppose that h1, h2 are non-negative virtually measurable functions defined almost everywhere in X.
Then

∫

f × (h1 + h2) =
∫

f × h1 +
∫

f × h2,

where here, for once, we can interpret ∞+ (−∞) or (−∞) +∞ as ∞ if called for on the right-hand side.

proof (a) If either
∫

f × h1 = ∞ or
∫

f × h2 = ∞ then
∫

f × (h1 + h2) = ∞. PPP??? Otherwise, there is a g
such that f × (h1 + h2) ≤a.e. g and

∫

g < ∞. In this case,

f × h1 ≤a.e. f
+ × h1 ≤a.e. f

+ × (h1 + h2) = (f × (h1 + h2))
+ ≤a.e. g

+

so
∫

f × h1 ≤
∫

g+ < ∞. Similarly,
∫

f × h2 < ∞; contradicting our hypothesis. XXXQQQ So in this case, under
the local rule ∞+ (−∞) = (−∞) +∞ = ∞, we have the result.

(b) Now suppose that the upper integrals
∫

f × h1 and
∫

f × h2 are both less than ∞, so that their sum

can be interpreted by the usual rules. By 133J(b-ii),
∫

f × (h1 +h2) ≤
∫

f ×h1 +
∫

f ×h2 < ∞. In the other
direction, suppose that g ≥a.e. f × (h1 + h2) and

∫

g < ∞. For i = 1, 2 set

gi(x) =
g(x)hi(x)

h1(x)+h2(x)
if x ∈ dom g ∩ domh1 ∩ domh2 and h1(x) + h2(x) > 0,

= 0 for other x ∈ X.

Then, for both i, gi is virtually measurable, g+i ≤a.e. g
+ and gi ≥a.e. f ×hi; while g ≥a.e. g1+ g2. PPP The set

H = {x : x ∈ dom f ∩ dom g ∩ domh1 ∩ domh2, g(x) ≥ f(x)(h1(x) + h2(x))}

is conegligible, and for x ∈ H

g(x) = g1(x) + g2(x) if h1(x) + h2(x) > 0,

≥ 0 = g1(x) + g2(x) if h1(x) + h2(x) = 0. QQQ

So
∫

f × h1 +
∫

f × h2 ≤
∫

g1 +
∫

g2 =
∫

g1 + g2 ≤
∫

g

(because
∫

g1 and
∫

g2 are both at most
∫

g+ < ∞, so we can add them on the usual rules). As g is arbitrary,
∫

f × h1 +
∫

f × h2 ≤
∫

f × (h1 + h2) and we must have equality.

133X Basic exercises >>>(a) Let (X,Σ, µ) be a measure space, and f : X → [0,∞[ a measurable
function. Show that

∫

fdµ = sup
n∈N

2−n

4n
∑

k=1

µ{x : f(x) ≥ 2−nk}

= lim
n→∞

2−n

4n
∑

k=1

µ{x : f(x) ≥ 2−nk}

in [0,∞].

(b) Let (X,Σ, µ) be a measure space and f a complex-valued function defined on a subset of X. (i) Show

that if E ∈ Σ, then f↾E is µE-integrable iff f̃ is µ-integrable, writing µE for the subspace measure on E and
f̃(x) = f(x) if x ∈ E ∩ dom f , 0 if x ∈ X \ E; and in this case

∫

E
fdµE =

∫

f̃dµ. (ii) Show that if E ∈ Σ
and f is defined µ-almost everywhere, then f↾E is µE-integrable iff f ×χE is µ-integrable, and in this case
∫

E
f =

∫

f × χE. (iii) Show that if
∫

E
f = 0 for every E ∈ Σ, then f = 0 a.e.

Measure Theory
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(c) Suppose that (X,Σ, µ) is a measure space and that G is an open subset of C, that is, a set such that
for every w ∈ G there is a δ > 0 such that {z : |z − w| < δ} ⊆ G. Let f : X × G → C be a function, and

suppose that the derivative ∂f
∂z

of f with respect to the second variable exists for all x ∈ X, z ∈ G. Suppose

moreover that (i) F (z) =
∫

f(x, z)dx exists for every z ∈ G (ii) there is an integrable function g such that

|∂f
∂z

(x, z)| ≤ g(x) for every x ∈ X, z ∈ G. Show that the derivative F ′ of F exists everywhere in G, and

F ′(z) =
∫

∂f
∂z

(x, z)dx for every z ∈ G. (Hint : you will need to check that |f(x, z) − f(x,w)| ≤ |z − w|g(x)
whenever x ∈ X, z ∈ G and w is close to z.)

>>>(d) Let f be a complex-valued function defined almost everywhere on [0,∞[, endowed as usual with
Lebesgue measure. Its Laplace transform is the function F defined by writing

F (s) =
∫∞

0
e−sxf(x)dx

for all those complex numbers s for which the integral is defined in C.
(i) Show that if s ∈ domF and Re s′ ≥ Re s then s′ ∈ domF (because |e−s′xesx| ≤ 1 for all x).
(ii) Show that F is analytic (that is, differentiable as a function of a complex variable) on the interior

of its domain. (Hint : 133Xc.)
(iii) Show that if F is defined anywhere then limRe s→∞ F (s) = 0.
(iv) Show that if f , g have Laplace transforms F , G then the Laplace transform of f + g is F +G, at

least on domF ∩ domG.

>>>(e) Let f be an integrable complex-valued function defined almost everywhere in R, endowed as usual

with Lebesgue measure. Its Fourier transform is the function
∧

f defined by

∧

f(s) =
1√
2π

∫∞

−∞
e−isxf(x)dx

for all real s.

(i) Show that
∧

f is continuous. (Hint : use Lebesgue’s Dominated Convergence Theorem on sequences
of the form fn(x) = e−isnxf(x).)

(ii) Show that if f , g have Fourier transforms
∧

f ,
∧

g then the Fourier transform of f + g is
∧

f +
∧

g.

(iii) Show that if
∫

xf(x)dx exists then
∧

f is differentiable, with
∧

f ′(s) = −
i√
2π

∫

xe−isxf(x)dx for every

s.

(f) Let (X,Σ, µ) be a measure space and 〈fn〉n∈N a sequence of real-valued functions each defined almost
everywhere in X. Suppose that there is an integrable real-valued function g such that |fn| ≤a.e. g for each
n. Show that

∫

lim infn→∞ fn ≤ lim infn→∞

∫

fn,
∫

lim supn→∞ fn ≥ lim supn→∞

∫

fn.

133Y Further exercises (a) Use the ideas of 133C-133H to develop a theory of measurable and inte-
grable functions taking values in Rr, where r ≥ 2.

(b) Let X be a set and Σ a σ-algebra of subsets of X. Let Y be a subset of X and f : Y → C a ΣY -

measurable function, where ΣY = {E ∩ Y : E ∈ Σ}. Show that there is a Σ-measurable function f̃ : X → C

extending f . (Hint : 121I.)

(c) Let f be an integrable complex-valued function defined almost everywhere in Rr, endowed as usual

with Lebesgue measure, where r ≥ 1. Its Fourier transform is the function
∧

f defined by

∧

f(s) =
1

(
√
2π)

r

∫

e−is .xf(x)dx

for all s ∈ Rr, writing s .x for σ1ξ1 + . . .+ σrξr if s = (σ1, . . . , σr), x = (ξ1, . . . , ξr) ∈ Rr.

(i) Show that
∧

f is continuous.

(ii) Show that if f , g have Fourier transforms
∧

f ,
∧

g then the Fourier transform of f + g is
∧

f +
∧

g.
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(iii) Show that if
∫

‖x‖|f(x)|dx is finite (taking ‖x‖ =
√

ξ21 + . . .+ ξ2r if x = (ξ1, . . . , ξr)), then
∧

f is
differentiable, with

∂
∧

f

∂σk

(s) = −
i

(
√
2π)

r

∫

ξke
−is .xf(x)dx

for every s ∈ Rr, k ≤ r.

(d) Recall the definition of ‘quasi-simple’ function from 122Yd. Show that for any measure space (X,Σ, µ)
and any real-valued function f defined almost everywhere in X,

∫

f = inf{
∫

g : g is quasi-simple, f ≤a.e. g},

∫

f = sup{
∫

g : g is quasi-simple, f ≥a.e. g},

allowing ∞ for inf ∅ and supR and −∞ for inf R and sup ∅.

(e) State and prove a similar result concerning the ‘pseudo-simple’ functions of 122Ye.

133 Notes and comments I have spelt this section out in detail, even though there is nothing that can
really be called a new idea in it, because it gives us an opportunity to review the previous work, and because
the manipulations which are by now, I hope, becoming ‘obvious’ to you are in fact justifiable only through
difficult theorems, and I believe that it is at least some of the time right to look back to the exact points at
which justifications were written out.

You may have noticed similarities between results involving ‘upper integrals’, as described here, and those
of §132 concerning ‘outer measure’ (132Ae and 133Ka, for instance, or 132Xe and 133Kb). These are not a
coincidence; an explanation of sorts can be found in 252Ym in Volume 2.

Version of 7.1.04

134 More on Lebesgue measure

The special properties of Lebesgue measure will take up a substantial proportion of this treatise. In
this section I present a miscellany of relatively easy basic results. In 134A-134F, r will be a fixed integer
greater than or equal to 1, µ will be Lebesgue measure on Rr and µ∗ will be Lebesgue outer measure (see
132C); when I say that a set or a function is ‘measurable’, then it is to be understood that (unless otherwise
stated) this means ‘measurable with respect to the σ-algebra of Lebesgue measurable sets’, while ‘negligible’
means ‘negligible for Lebesgue measure’. Most of the results will be expressed in terms adapted to the
multi-dimensional case; but if you are primarily interested in the real line, you will miss none of the ideas if
you read the whole section as if r = 1.

134A Proposition Both Lebesgue outer measure and Lebesgue measure are translation-invariant; that
is, setting A+ x = {a+ x : a ∈ A} for A ⊆ Rr, x ∈ Rr, we have

(a) µ∗(A+ x) = µ∗A for every A ⊆ Rr, x ∈ Rr;
(b) whenever E ⊆ Rr is measurable and x ∈ Rr, then E + x is measurable, with µ(E + x) = µE.

proof The point is that if I ⊆ Rr is a half-open interval, as defined in 114Aa/115Ab, then so is I + x, and
λ(I+x) = λI for every x ∈ Rr, where λ is defined as in 114Ab/115Ac; this is immediate from the definition,
since [a, b[ + x = [a+ x, b+ x[.

(a) If A ⊆ Rr and x ∈ Rr and ǫ > 0, we can find a sequence 〈Ij〉j∈N of half-open intervals such that
A ⊆

⋃

j∈N Ij and
∑∞

j=0 λIj ≤ µ∗A+ ǫ. Now A+ x ⊆
⋃

j∈N(Ij + x) so

µ∗(A+ x) ≤
∑∞

j=0 λ(Ij + x) =
∑∞

j=0 λIj ≤ µ∗A+ ǫ.

As ǫ is arbitrary, µ∗(A+ x) ≤ µ∗A. Similarly

µ∗A = µ∗((A+ x) + (−x)) ≤ µ∗(A+ x),

so µ∗(A+ x) = µ∗A, as claimed.

Measure Theory
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(b) Now suppose that E ⊆ Rr is measurable and x ∈ Rr, and that A ⊆ Rr. Then, using (a) repeatedly,

µ∗(A ∩ (E + x)) + µ∗(A \ (E + x)) = µ∗(((A− x) ∩ E) + x) + µ∗(((A− x) \ E) + x)

= µ∗((A− x) ∩ E) + µ∗((A− x) \ E)

= µ∗(A− x) = µ∗A,

writing A− x for A+ (−x) = {a− x : a ∈ A}. As A is arbitrary, E + x is measurable. Now

µ(E + x) = µ∗(E + x) = µ∗E = µE.

134B Theorem Not every subset of Rr is Lebesgue measurable.

proof Set 0 = (0, . . . , 0), 1 = (1, . . . , 1) ∈ Rr. On

[0,1[ = {(ξ1, . . . , ξr) : ξi ∈ [0, 1[ for every i ≤ r},

consider the relation ∼, defined by saying that x ∼ y iff y−x ∈ Qr. It is easy to see that this is an equivalence
relation, so divides [0,1[ into equivalence classes. Choose one point from each of these equivalence classes,
and let A be the set of points obtained in this way. Then µ∗A ≤ µ∗ [0,1[ = 1.

Consider A + Qr = {a + q : a ∈ A, q ∈ Qr} =
⋃

q∈Qr A + q. This is equal to Rr. PPP If x ∈ Rr, there

is an e ∈ Zr such that x − e ∈ [0,1[; there is an a ∈ A such that a ∼ x − e, that is, x − e − a ∈ Qr; now
x = a+ (e+ x− e− a) ∈ A+Qr. QQQ Next, Qr is countable (111F(b-iv)), so we have

∞ = µRr ≤
∑

q∈Qr µ∗(A+ q),

and there must be some q ∈ Qr such that µ∗(A+ q) > 0; but as µ∗ is translation-invariant (134A), µ∗A > 0.
Take n ∈ N such that n > 2r/µ∗A, and distinct q1, . . . , qn ∈ [0,1[ ∩ Qr. If a, b ∈ A and 1 ≤ i < j ≤ n,

then a + qi 6= b + qj ; for if a = b then qi 6= qj , while if a 6= b then a 6∼ b so b − a 6= qi − qj . Thus
A+ q1, . . . , A+ qn are disjoint. On the other hand, all are subsets of [0,2[. So we have

∑n
i=1 µ

∗(A+ qi) = nµ∗A > 2r = µ [0,2[ ≥ µ∗(
⋃

1≤i≤n(A+ qi)).

It follows that not all the A + qi can be measurable; as Lebesgue measure is translation-invariant, we see
that A itself is not measurable. In any case we have found a non-measurable set.

*134C Remark 134B is known as ‘Vitali’s construction’.
Observe that at the beginning of the proof I asked you to choose one member of each of the equivalence

classes for ∼. This is of course an appeal to the Axiom of Choice. So far I have made rather few appeals to
the axiom of choice. One was in (a-iv) of the proof of 114D/115D; an earlier one was in 112Db; yet another
in 121A. See also 1A1F. In all of these, only ‘countable choice’ was involved; that is, I needed to choose
simultaneously one member of each of a named sequence of sets. Because there are surely uncountably many
equivalence classes for ∼, the form of choice needed for the example above is essentially stronger than that
needed for the positive results so far. It is in fact the case that very large parts of measure theory can be
developed without appealing to the full strength of the axiom of choice.

The significance of this is that it suggests the possibility that there might be a consistent mathematical
system in which enough of the axiom of choice is valid to make measure theory possible, without hav-
ing enough to construct a non-Lebesgue-measurable set. Such a system has indeed been worked out by
R.M.Solovay (Solovay 70). (In a formal sense there is room for a residual doubt concerning its consis-
tency. In my view this is of no importance.) In Volume 5 I will return to the question of what Lebesgue
measure looks like with a weak axiom of choice, or none at all. For the moment, I have to say that nearly
all measure theory continues to proceed in directions at least consistent with the full axiom of choice, so
that non-measurable sets are constantly present, at least potentially; and that will be my normal position
in this treatise. But I mention the point at this early stage because I believe that it could happen at any
time that the focus of interest might switch to systems in which the axiom of choice is false; and in this
case measure theory without non-measurable sets might become important to many pure mathematicians,
and even to applied mathematicians, who have no reason, other than the convenience of being able to quote
results from books like this one, for loyalty to the axiom of choice.
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I ought to remark that while we need a fairly strong form of the axiom of choice to construct a non-
Lebesgue-measurable set, a non-Borel set can be constructed in much weaker set theories. One possible
construction is outlined in §423 in Volume 4.

Of course there is a non-Lebesgue-measurable subset of R iff there is a non-Lebesgue-measurable function
from R to R; for if every set is measurable, then the definition 121C makes it plain that every real-valued
function on any subset of R is measurable; while if A ⊆ R is not measurable, then χA : R → R is not
measurable.

*134D In fact there are much stronger results than 134B concerning the existence of non-measurable
sets (provided, of course, that we allow ourselves to use the axiom of choice). Here I give one which can be
reached by a slight refinement of the methods of 134B.

Proposition There is a set C ⊆ Rr such that F ∩C is not measurable for any measurable set F of non-zero
measure; so that both C and its complement have full outer measure in Rr.

proof (a) Start from a set A ⊆ [0,1[ ⊆ Rr such that 〈A+ q〉q∈Qr is a partition of Rr, as constructed in the
proof of 134B. As in 134B, the outer measure µ∗A of A must be greater than 0. The argument there shows in
fact that µF = 0 for every measurable set F ⊆ A. PPP For every n we can find distinct q1, . . . , qn ∈ [0,1[∩Qr,
and now

nµF = µ(
⋃

1≤i≤n F + qi) ≤ µ [0,2[ = 2r,

so that µF ≤ 2r/n; as n is arbitrary, µF = 0. QQQ

(b) Now let E ⊆ [0,1[ be a measurable envelope of A (132Ef). Then E + q is a measurable envelope of
A+ q for any q. PPP I hope that this will very soon be ‘an obvious consequence of the translation-invariance
of Lebesgue measure’. In detail: A+ q ⊆ E + q, E + q is measurable and, for any measurable F ,

µ(F ∩ (E + q)) = µ(((F − q) ∩ E) + q) = µ((F − q) ∩ E)

= µ∗((F − q) ∩A) = µ∗(((F − q) ∩A) + q) = µ∗(F ∩ (A+ q)),

using 134A repeatedly. QQQ Also E is a measurable envelope of A′ = E \ A. PPP Of course E is a measurable
set including A′. If F ⊆ E \ A′ is measurable then F ⊆ A, so µF = 0, by (a); now 132Ea tells us that E is
a measurable envelope of A′. QQQ It follows that E + q is a measurable envelope of A′ + q for every q.

(c) Let 〈qn〉n∈N be a sequence running over Qr. Then
⋃

n∈N E + qn ⊇
⋃

n∈N A+ qn = Rr.

Write En for E + qn \
⋃

i<n E + qi for n ∈ N, so that 〈En〉n∈N is disjoint and
⋃

n∈N En = Rr.
Now set

C =
⋃

n∈N En ∩ (A+ qn).

This is a set with the required properties.
PPP (i) Let F ⊆ Rr be any non-negligible measurable set. Then there must be some n ∈ N such that

µ(F ∩ En) > 0. But this means that

µ∗(F ∩ En ∩ C) ≥ µ∗(F ∩ En ∩ (A+ qn)) = µ(F ∩ En ∩ (E + qn)) = µ(F ∩ En),

µ∗(F ∩ En \ C) ≥ µ∗(F ∩ En ∩ ((E + qn) \ (A+ qn)))

= µ(F ∩ En ∩ (E + qn)) = µ(F ∩ En).

Since

µ(F ∩ En) ≤ µ(E + qn) = µE ≤ 1,

µ∗(F ∩ En ∩ C) + µ∗(F ∩ En \ C) > µ(F ∩ En), and F ∩ C cannot be measurable.

(ii) In particular, no measurable subset of Rr \ C can have non-zero measure, and C has full outer
measure; similarly, C has no measurable subset of non-zero measure, and Rr \C has full outer measure. QQQ

Measure Theory
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Remark In fact it is the case that for any sequence 〈Dn〉n∈N of subsets of Rr there is a set C ⊆ Rr such
that

µ∗(E ∩Dn ∩ C) = µ∗(E ∩Dn \ C) = µ∗(E ∩Dn)

for every measurable set E ⊆ Rr and every n ∈ N. But for the proof of this result we must wait for Volume
5.

134E Borel sets and Lebesgue measure on Rr Recall from 111G that the family B of Borel sets in
Rr is the σ-algebra generated by the family of open sets. In 114G/115G I showed that every Borel set in
Rr is Lebesgue measurable. It is time we returned to the topic and looked more closely at the very intimate
connexion between Borel and measurable sets.

Recall that a set A ⊆ Rr is bounded if there is an M such that A ⊆ B(0,M) = {x : ‖x‖ ≤ M};
equivalently, if supx∈A |ξj | < ∞ for every j ≤ r (writing x = (ξ1, . . . , ξr), as in §115).

134F Proposition (a) If A ⊆ Rr is any set, then

µ∗A = inf{µG : G is open, G ⊇ A} = min{µH : H is Borel, H ⊇ A}.

(b) If E ⊆ Rr is measurable, then

µE = sup{µF : F is closed and bounded, F ⊆ E},

and there are Borel sets H1, H2 such that H1 ⊆ E ⊆ H2 and

µ(H2 \H1) = µ(H2 \ E) = µ(E \H1) = 0.

(c) If A ⊆ Rr is any set, then A has a measurable envelope which is a Borel set.
(d) If f is a Lebesgue measurable real-valued function defined on a subset of Rr, then there is a conegligible

Borel set H ⊆ Rr such that f↾H is Borel measurable.

proof (a)(i) First note that if I ⊆ Rr is a half-open interval, and ǫ > 0, then either I = ∅ is already open,
or I is expressible as [a, b[ where a = (α1, . . . , αr), b = (β1, . . . , βr) and αi < βi for every i. In the latter
case, G = ]a− ǫ(b− a), b[ is an open set including I, and

µG =
∏r

i=1(1 + ǫ)(βi − αi) = (1 + ǫ)rµI,

by the formula in 114G/115G.

(ii) Now, given ǫ > 0, there is a sequence 〈In〉n∈N of half-open intervals, covering A, such that
∑∞

n=0 µIn ≤ µ∗A + ǫ. For each n, let Gn ⊇ In be an open set of measure at most (1 + ǫ)rµIn. Then
G =

⋃

n∈N Gn is open (1A2Bd), and A ⊆ G; also

µG ≤
∑∞

n=0 µGn ≤ (1 + ǫ)r
∑∞

n=0 µIn ≤ (1 + ǫ)r(µ∗A+ ǫ).

As ǫ is arbitrary, µ∗A ≥ inf{µG : G is open, G ⊇ A}.

(iii) Next, using (ii), we can choose for each n ∈ N an open set Gn ⊇ A such that µGn ≤ µ∗A+ 2−n.
Set H0 =

⋂

n∈N Gn; then H0 is a Borel set, A ⊆ H0, and

µH0 ≤ infn∈N µGn ≤ µ∗A.

(iv) On the other hand, we surely have µ∗A ≤ µ∗H = µH for every Borel set H ⊇ A. So we must
have

µ∗A ≤ inf{µG : G is open, G ⊇ A},

and

µ∗A = µH0 = min{µH : H is Borel, H ⊇ A}.

(b)(i) For each n ∈ N, set En = E∩B(0, n). Let Gn ⊇ En be an open set of measure at most µEn+2−n;
then (because µB(0, n) < ∞) µ(Gn \ En) ≤ 2−n. Now, for each n, set G′

n =
⋃

m≥n Gm; then G′
n is open,

E =
⋃

m≥n Em ⊆ G′
n, and
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µ(G′
n \ E) ≤

∑∞
m=n µ(Gm \ E) ≤

∑∞
m=n µ(Gm \ Em) ≤

∑∞
m=n 2

−m = 2−n+1.

Setting H2 =
⋂

n∈N Gn, we see that H2 is a Borel set including E and that µ(H2 \ E) = 0.

(ii) Repeating the argument of (i) with Rr \E in place of E, we obtain a Borel set H̃2 ⊇ Rr \E such

that µ(H̃2 \ (R
r \ E)) = 0; now H1 = Rr \ H̃2 is a Borel set included in E and

µ(E \H1) = µ(H̃2 \ (R
r \ E)) = 0.

Of course we now also have

µ(H2 \H1) = µ(H2 \ E) + µ(E \H1) = 0.

(iii) Again using the idea of (i), there is for each n ∈ N an open set G̃n ⊇ B(0, n) \ E such that

µ(G̃n ∩ En) ≤ µ(G̃n \ (B(0, n) \ E)) ≤ 2−n.

Set

Fn = B(0, n) \ G̃n = B(0, n) ∩ (Rr \ G̃n);

then Fn is closed (1A2Fd) and bounded and Fn ⊆ En ⊆ E. Also

µEn = µFn + µ(En \ Fn) = µFn + µ(G̃n ∩ En) ≤ µFn + 2−n.

So

µE = limn→∞ µEn ≤ supn∈N µFn ≤ sup{µF : F is closed and bounded, F ⊆ E},

and

µE = sup{µF : F is closed and bounded, F ⊆ E}.

(c) Let E be any measurable envelope of A (132Ef), and H ⊇ E a Borel set such that µ(H \ E) = 0;
then µ∗(F ∩A) = µ(F ∩ E) = µ(F ∩H) for every measurable set F , so H is a measurable envelope of A.

(d) Set D = dom f and write B for the σ-algebra of Borel sets. For each rational number q, let Eq be
a measurable set such that {x : f(x) ≤ q} = Eq ∩ D. Let Hq, H

′
q ∈ B be such that Hq ⊆ Eq ⊆ H ′

q and
µ(H ′

q \Hq) = 0. Let H be the conegligible Borel set Rr \
⋃

(H ′
q \Hq). Then

{x : (f↾H)(x) ≤ q} = H ∩ Eq ∩D = Hq ∩D ∩H

belongs to the subspace σ-algebra B(D) for every q ∈ Q. For irrational a ∈ R, set Ha =
⋂

q∈Q,q≥a Hq; then
Ha ∈ B, and

{x : (f↾H)(x) ≤ a} = Ha ∩ dom(f↾H).

Thus f↾H is Borel measurable.

Remark The emphasis on closed bounded sets in part (b) of this proposition is on account of their important
topological properties, in particular, the fact that they are ‘compact’. This is one of the most important
facts about Lebesgue measure, as will appear in Volume 4. I will discuss ‘compactness’ briefly in §2A2 of
Volume 2.

134G The Cantor set One of the purposes of the theory of Lebesgue measure and integration is to
study rather more irregular sets and functions than can be dealt with by more primitive methods. In the
next few paragraphs I discuss measurable sets and functions which from the point of view of the present
theory are amenable without being trivial. From now on, µ will be Lebesgue measure on R.

(a) The ‘Cantor set’ C ⊆ [0, 1] is defined as the intersection of a sequence 〈Cn〉n∈N of sets, constructed
as follows. C0 = [0, 1]. Given that Cn consists of 2n disjoint closed intervals each of length 3−n, take each of
these intervals and delete the middle third to produce two closed intervals each of length 3−n−1; take Cn+1

to be the union of the 2n+1 closed intervals so formed, and continue. Observe that µCn = ( 23 )
n for each n.
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0 1

C0

C2

C4

Approaching the Cantor set

The Cantor set is C =
⋂

n∈N Cn. Its measure is

µC = limn→∞ µCn = limn→∞(
2

3
)n = 0.

(b) Each Cn can also be described as the set of real numbers expressible as
∑∞

j=1 3
−jǫj where every ǫj is

either 0, 1 or 2, and ǫj 6= 1 for j ≤ n. Consequently C itself is the set of numbers expressible as
∑∞

j=1 3
−jǫj

where every ǫj is either 0 or 2; that is, the set of numbers between 0 and 1 expressible in ternary form
without 1’s. The expression in each case will be unique, so we have a bijection φ : {0, 1}N → C defined by
writing

φ(z) =
2

3

∑∞
j=0 3

−jz(j)

for every z ∈ {0, 1}N.

134H The Cantor function Continuing from 134G, we have the following construction.

(a) For each n ∈ N we define a function fn : [0, 1] → [0, 1] by setting

fn(x) = (
3

2
)nµ(Cn ∩ [0, x])

for each x ∈ [0, 1]. Because Cn is just a finite union of intervals, fn is a polygonal function, with fn(0) = 0,
fn(1) = 1; fn is constant on each of the 2n − 1 open intervals composing [0, 1] \ Cn, and rises with slope
( 32 )

n on each of the 2n closed intervals composing Cn.

0 1

1

Approaching the Cantor function: the functions f0, f1, f2, f3f3f3

If the jth interval of Cn, counting from the left, is [anj , bnj ], then fn(anj) = 2−n(j−1) and fn(bnj) = 2−nj.
Also, anj = an+1,2j−1 and bnj = bn+1,2j ; hence, or otherwise, fn+1(anj) = fn(anj) and fn+1(bnj) = fn(bnj),
and fn+1 agrees with fn on all the endpoints of the intervals of Cn, and therefore on [0, 1] \ Cn.
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Within any particular interval [anj , bnj ] of Cn, the greatest difference between fn(x) and fn+1(x) is at the
new endpoints within that interval, viz., bn+1,2j−1 and an+1,2j ; and the magnitude of the difference is 1

62
−n

(because, for instance, fn(bn+1,2j−1) =
2
3fn(anj)+

1
3fn(bnj), while fn+1(bn+1,2j−1) =

1
2fn(anj)+

1
2fn(bnj)).

Thus we have |fn+1(x) − fn(x)| ≤
1
62

−n for every n ∈ N, x ∈ [0, 1]. Because
∑∞

n=0
1
62

−n < ∞, 〈fn〉n∈N is
uniformly convergent to a function f : [0, 1] → [0, 1], and f will be continuous. f is the Cantor function
or Devil’s Staircase.

0 1

1

The Cantor function

(b) Because every fn is non-decreasing, so is f . If x ∈ [0, 1] \ C, there is an n such that x ∈ [0, 1] \ Cn;
let I be the open interval of [0, 1] \ Cn containing x; then fm+1 agrees on I with fm for every m ≥ n, so
f agrees on I with fn, and f is constant on I. Thus, in particular, the derivative f ′(x) exists and is 0 for
every x ∈ [0, 1] \C; so f ′ is zero almost everywhere in [0, 1]. Also, of course, f(0) = 0 and f(1) = 1, because
fn(0) = 0, fn(1) = 1 for every n. It follows that f : [0, 1] → [0, 1] is surjective (by the Intermediate Value
Theorem).

(c) Let φ : {0, 1}N → C be the function described in 134Gb. Then f(φ(z)) = 1
2

∑∞
j=0 2

−jz(j) for every

z ∈ {0, 1}N. PPP Fix z = (ζ0, ζ1, ζ2, . . . ) in {0, 1}N, and for each n take In to be the component interval of Cn

containing φ(z). Then In+1 will be the left-hand third of In if ζn = 0 and the right-hand third if ζn = 1.
Taking an to be the left-hand endpoint of In, we see that

an+1 = an +
2

3
3−nζn, fn+1(an+1) = fn(an) +

1

2
2−nζn

for each n. Now

φ(z) = limn→∞ an, f(φ(z)) = limn→∞ f(an) = limn→∞ fn(an) =
1

2

∑∞
j=0 2

−jζj ,

as claimed. QQQ
In particular, f [C] = [0, 1]. PPP Any x ∈ [0, 1] is expressible as

∑∞
j=0 2

−j−1z(j) = f(φ(z)) for some

z ∈ {0, 1}N. QQQ

134I The Cantor function modified I continue the argument of 134G-134H.

(a) Consider the formula

g(x) =
1

2
(x+ f(x)),

where f is the Cantor function, as defined in 134H; this defines a continuous function g : [0, 1] → [0, 1]
which is strictly increasing (because f is non-decreasing) and has g(0) = 0, g(1) = 1; consequently, by the
Intermediate Value Theorem, g is bijective, and its inverse g−1 : [0, 1] → [0, 1] is continuous.
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Now g[C] is a closed set and µg[C] = 1
2 . PPP Because g is a permutation of the points of [0, 1], [0, 1]\g[C] =

g[ [0, 1] \ C]. For each of the open intervals Inj = ]bnj , an,j+1[ making up [0, 1] \ Cn, we see that g[Inj ] =
]g(bnj), g(an,j+1)[ has length just half the length of Inj . Consequently g[ [0, 1] \ C] =

⋃

n≥1,1≤j<2n g[Inj ] is
open, and

µ(g[ [0, 1] \ Cn]) =

2n−1
∑

j=1

g(an,j+1)− g(bnj) =
1

2

2n−1
∑

j=1

an,j+1 − bnj

=
1

2
µ([0, 1] \ Cn) =

1

2
(1− (

2

3
)n)

(134Ga). Because 〈[0, 1] \ Cn〉n∈N is an increasing sequence of sets with union [0, 1] \ C,

µg([ [0, 1] \ C]) = limn→∞ µg([ [0, 1] \ Cn]) =
1

2
.

So g[C] = [0, 1] \ g[ [0, 1] \ C] is closed and µg[C] = 1
2 . QQQ

(b) By 134D there is a set D ⊆ R such that

µ∗(g[C] ∩D) = µ∗(g[C] \D) = µg[C] =
1

2
;

set A = g[C]∩D. Of course A cannot be measurable, since µ∗A+µ∗(g[C]\A) > µg[C]. However, g−1[A] ⊆ C
must be measurable, because µ∗C = 0. This means that if we set h = χ(g−1[A]) : [0, 1] → R, then h is
measurable; but hg−1 = χA : [0, 1] → R is not.

Thus the composition of a measurable function with a continuous function need not be
measurable. Contrast this with 121Eg.

134J More examples I think it is worth taking the space to spell out two more of the basic examples
of Lebesgue measurable set in detail.

(a) As already observed in 114G, every countable subset of R is negligible. In particular, Q is negligible
(111Eb). We can say more. Let 〈qn〉n∈N be a sequence running over Q, and for each n ∈ N set

In = ]qn − 2−n, qn + 2−n[,

Gn =
⋃

k≥n Ik.

Then Gn is an open set of measure at most
∑∞

k=n 2 · 2−k = 4 · 2−n, and it contains all but finitely many
points of Q, so is dense (that is, meets every non-trivial interval). Set Fn = R \ Gn; then Fn is closed,
µ(R \ Fn) ≤ 4/2n, but Fn does not contain qk for any k ≥ n, so Fn cannot include any non-trivial interval.
Observe that 〈Gn〉n∈N is non-increasing so 〈Fn〉n∈N is non-decreasing.

(b) We can elaborate the above construction, as follows. There is a measurable set E ⊆ R such that
µ(I ∩ E) > 0 and µ(I \ E) > 0 for every non-trivial interval I ⊆ R. PPP First note that if k, n ∈ N, there is
a j ≥ n such that qj ∈ Ik, so that Ik ∩ Ij 6= ∅ and µ(Ik \ Fn) > 0. Now there must be an l > n such that
µGl < µ(Ik \ Fn), so that

µ(Ik ∩ Fl \ Fn) = µ((Ik \ Fn) \Gl) > 0.

Choose n0 < n1 < n2 < . . . as follows. Start with n0 = 0. Given n2k, where k ∈ N, choose n2k+1, n2k+2

such that

µ(Ik ∩ Fn2k+1
\ Fn2k

) > 0, µ(Ik ∩ Fn2k+2
\ Fn2k+1

) > 0.

Continue.
On completing the induction, set

E =
⋃

k∈N Fn2k+1
\ Fn2k

, H =
⋃

k∈N Fn2k+2
\ Fn2k+1

.

Because 〈Fk〉k∈N is non-decreasing, E ∩H = ∅. If k ∈ N, E ∩ Ik and H ∩ Ik both have positive measure.
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Now suppose that I ⊆ R is an interval with more than one point; suppose that a, b ∈ I and a < b. Then
there is an m ∈ N such that 4 · 2−m ≤ b − a; now there is a k ≥ m such that qk ∈ [a + 2−m, b − 2−m], so
that Ik ⊆ I and

µ(I ∩ E) ≥ µ(E ∩ Ik) > 0, µ(I \ E) ≥ µ(H ∩ Ik) > 0. QQQ

(c) This shows that E and its complement are measurable sets which are not merely both dense (like
Q and R \ Q), but ‘essentially’ dense in that they meet every non-empty open interval in a set of positive
measure, so that (for instance) E \A is dense for every negligible set A.

*134K Riemann integration I have tried, in writing this book, to assume as little prior knowledge as
possible. In particular, it is not necessary to have studied Riemann integration. Nevertheless, if you have
worked through the basic theory of the Riemann integral – which is, indeed, not only a splendid training in
the techniques of ǫ-δ analysis, but also a continuing source of ideas for the subject – you will, I hope, wish to
connect it with the material we are looking at here; both because you will not want to feel that your labour
has been wasted, and because you have probably developed a number of intuitions which will continue to be
valuable, if suitably adapted to the new context. I therefore give a brief account of the relationship between
the Riemann and Lebesgue methods of integration on the real line.

(a) There are many ways of describing the Riemann integral; I choose one of the popular ones. If [a, b] is
a non-trivial closed interval in R, then I say that a dissection of [a, b] is a finite list D = (a0, a1, . . . , an),
where n ≥ 1, such that a = a0 < a1 < . . . < an = b. If now f is a real-valued function defined (at least) on
[a, b] and bounded on [a, b], the upper sum and lower sum of f on [a, b] derived from D are

SD(f) =
∑n

i=1(ai − ai−1) supx∈]ai−1,ai[ f(x),

sD(f) =
∑n

i=1(ai − ai−1) infx∈]ai−1,ai[ f(x).

You have to prove that if D and D′ are two dissections of [a, b], then sD(f) ≤ SD′(f). Now define the upper
Riemann integral and lower Riemann integral of f to be

U[a,b](f) = inf{SD(f) : D is a dissection of [a, b]},

L[a,b](f) = sup{sD(f) : D is a dissection of [a, b]}.

Check that L[a,b](f) is necessarily less than or equal to U[a,b](f). Finally, declare f to be Riemann in-
tegrable over [a, b] if U[a,b](f) = L[a,b](f), and in this case take the common value to be the Riemann

integral R
∫ b

a
f of f over [a, b].

(b) If f : [a, b] → R is Riemann integrable, it is Lebesgue integrable, with the same integral. PPP For any
dissection D = (a0, . . . , an) of [a, b], define gD, hD : [a, b] → R by saying

gD(x) = inf{f(y) : y ∈ ]ai−1, ai[} if ai−1 < x < ai, gD(ai) = f(ai) for each i,

hD(x) = sup{f(y) : y ∈ ]ai−1, ai[} if ai−1 < x < ai, hD(ai) = f(ai) for each i.

Then gD and hD are constant on each interval ]ai−1, ai[, so all sets {x : gD(x) ≤ c}, {x : hD(x) ≤ c} are
finite unions of intervals, and gD and hD are measurable; moreover,

∫

gDdµ = sD(f),
∫

hDdµ = SD(f).

Consequently

R

∫ b

a

f = L[a,b](f) = sup
D

∫

gDdµ ≤

∫

fdµ

≤

∫

fdµ ≤ inf
D

∫

hDdµ = U[a,b](f) = R

∫ b

a

f,

and
∫

fdµ =
∫

fdν = R
∫ b

a
f , so that

∫

fdµ exists and is equal to R
∫ b

a
f (133Jd). QQQ
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(c) The discussion above is of the ‘proper’ Riemann integral, of bounded functions on bounded intervals.
For unbounded functions and unbounded intervals, one uses various forms of ‘improper’ integral; for instance,

the improper Riemann integral
∫∞

0
sin x
x

dx is taken to be lima→∞

∫ a

0
sin x
x

dx, while
∫ 1

0
lnx dx is taken to

be lima↓0

∫ 1

a
lnx dx. Of these, the second exists as a Lebesgue integral, but the first does not, because

∫∞

0
| sin x

x
|dx = ∞. The power of the Lebesgue integral to deal directly with ‘absolutely integrable’ unbounded

functions on unbounded domains means that what one might call ‘conditionally integrable’ functions are
pushed into the background of the theory. In Chapter 48 of Volume 4 I will discuss the general theory of
such functions, but for the time being I will deal with them individually, on the rare occasions when they
arise.

*134L There is in fact a beautiful characterization of the Riemann integrable functions, as follows.

Proposition If a < b in R, a bounded function f : [a, b] → R is Riemann integrable iff it is continuous
almost everywhere in [a, b].

proof (a) Suppose that f is Riemann integrable. For each x ∈ [a, b], set

g(x) = supδ>0 infy∈[a,b],|y−x|≤δ f(y),

h(x) = infδ>0 supy∈[a,b],|y−x|≤δ f(y),

so that f is continuous at x iff g(x) = h(x). We have g ≤ f ≤ h, so if D is any dissection of [a, b] then
SD(g) ≤ SD(f) ≤ SD(h) and sD(g) ≤ sD(f) ≤ sD(h). But in fact SD(f) = SD(h) and sD(g) = sD(f),
because on any open interval ]c, d[ ⊆ [a, b] we must have

infx∈]c,d[ g(x) = infx∈]c,d[ f(x), supx∈]c,d[ f(x) = supx∈]c,d[ h(x).

It follows that

L[a,b](f) = L[a,b](g) ≤ U[a,b](g) ≤ U[a,b](f),

L[a,b](f) ≤ L[a,b](h) ≤ U[a,b](h) = U[a,b](f).

Because f is Riemann integrable, both g and h must be Riemann integrable, with integrals equal to R
∫ b

a
f .

By 134Kb, they are both Lebesgue integrable, with the same integral. But g ≤ h, so g =a.e. h, by 122Rd.
Now f is continuous at any point where g and h agree, so f is continuous a.e.

(b) Now suppose that f is continuous a.e. For each n ∈ N, let Dn be the dissection of [a, b] into 2n equal
portions. Set

hn(x) = supy∈]c,d[ f(y), gn(x) = infy∈]c,d[ f(y)

if ]c, d[ is an open interval of Dn containing x; for definiteness, say hn(x) = gn(x) = f(x) if x is one of
the points of the list Dn. Then 〈gn〉n∈N, 〈hn〉n∈N are, respectively, increasing and decreasing sequences of
functions, each function constant on each of a finite family of intervals covering [a, b]; and sDn

(f) =
∫

gndµ,
SDn

(f) =
∫

hndµ. Next,

limn→∞ gn(x) = limn→∞ hn(x) = f(x)

at any point x at which f is continuous; so f =a.e. limn→∞ gn =a.e. limn→∞ hn. By Lebesgue’s Dominated
Convergence Theorem (123C),

limn→∞

∫

gndµ =
∫

fdµ = limn→∞

∫

hndµ;

but this means that

L[a,b](f) ≥
∫

fdµ ≥ U[a,b](f),

so these are all equal and f is Riemann integrable.

134X Basic exercises >>>(a) Show that if f is an integrable real-valued function on Rr, then
∫

f(x+a)dx
exists and is equal to

∫

f for every a ∈ Rr. (Hint : start with simple functions f .)
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(b) More generally, show that if E ⊆ Rr is measurable and f is a real-valued function which is integrable
over E in the sense of 131D, then

∫

E−a
f(x+ a)dx exists and is equal to

∫

E
f for every a ∈ Rr.

(c) Show that if C ⊆ R is any non-negligible set, it has a non-measurable subset. (Hint : use the method
of 134B, taking the relation ∼ on a suitable bounded subset of C in place of [0,1[.)

>>>(d) Let νg be a Lebesgue-Stieltjes measure on R, constructed as in 114Xa from a non-decreasing function
g : R → R, and Σg its domain. (See also 132Xg.) Show that

(i) if A ⊆ R is any set, then

ν∗gA = inf{νgG : G is open, G ⊇ A}

= min{νgH : H is Borel, H ⊇ A};

(ii) if E ∈ Σg, then

νgE = sup{νgF : F is closed and bounded, F ⊆ E},

and there are Borel sets H1, H2 such that H1 ⊆ E ⊆ H2 and νg(H2 \H1) = νg(H2 \ E) = νg(E \H1) = 0;
(iii) if A ⊆ R is any set, then A has a measurable envelope which is a Borel set;
(iv) if f is a Σg-measurable real-valued function defined on a subset of R, then there is a νg-conegligible

Borel set H ⊆ R such that f↾H is Borel measurable.

(e) Let E ⊆ Rr be a measurable set, and ǫ > 0. (i) Show that there is an open set G ⊇ E such that
µ(G \E) ≤ ǫ. (Hint : apply 134Fa to each set E ∩B(0, n).) (ii) Show that there is a closed set F ⊆ E such
that µ(E \ F ) ≤ ǫ.

(f) Let C ⊆ [0, 1] be the Cantor set. Show that {x+y : x, y ∈ C} = [0, 2] and {x−y : x, y ∈ C} = [−1, 1].

(g) Let f , g be functions from R to itself. Show that (i) if f and g are both Borel measurable, so is their
composition fg (ii) if f is Borel measurable and g is Lebesgue measurable, then fg is Lebesgue measurable
(iii) if f is Lebesgue measurable and g is Borel measurable, then fg need not be Lebesgue measurable.

(h) Show that for any integer r ≥ 1 there is a measurable set E ⊆ Rr such that E and Rr \E both meet
every non-empty open interval in a set of strictly positive measure.

(i) Give [0, 1] its subspace measure. (i) Show that there is a disjoint sequence 〈An〉n∈N of subsets of [0, 1]

all of outer measure 1. (ii) Show that there is a function f : [0, 1] → ]0, 1[ such that
∫

f = 0 and
∫

f = 1.

(j) Let f be a measurable real function and g a real function such that dom g \ dom f and {x : x ∈
dom g ∩ dom f , g(x) 6= f(x)} are both negligible. Show that g is measurable.

134Y Further exercises (a) Fix c > 0. For A ⊆ Rr set cA = {cx : x ∈ A}. (i) Show that µ∗(cA) =
crµ∗A for every A ⊆ Rr. (ii) Show that cE is measurable for every measurable E ⊆ Rr.

(b) Let 〈fmn〉m,n∈N, 〈fm〉m∈N, f be real-valued measurable functions defined almost everywhere in Rr and
such that fm =a.e. limn→∞ fmn for each m and f =a.e. limm→∞ fm. Show that there is a sequence 〈nk〉k∈N

such that f =a.e. limk→∞ fk,nk
. (Hint : take nk such that the measure of {x : ‖x‖ ≤ k, |fk(x)− fk,nk

(x)| ≥
2−k} is at most 2−k for each k.)

(c) Let f be a measurable real-valued function defined almost everywhere in Rr. Show that there is
a sequence 〈fn〉n∈N of continuous functions converging to f almost everywhere. (Hint : Deal successively
with the cases (i) f = χI where I is a half-open interval (ii) f = χ(

⋃

j≤n Ij) where I0, . . . , In are disjoint

half-open intervals (iii) f = χE where E is a measurable set of finite measure (iv) f is a simple function (v)
general f , using 134Yb at steps (iii) and (v).)

(d) Let f be a real-valued function defined on a subset of Rr. Show that the following are equiveridical:
(i) f is measurable (ii) whenever E ⊆ Rr is measurable and µE > 0, there is a measurable set F ⊆ E such
that µF > 0 and f↾F is continuous (iii) whenever E ⊆ Rr is measurable and γ < µE, there is a measurable
F ⊆ E such that µF ≥ γ and f↾F is continuous. (Hint : for (i)⇒(iii), use 134Yc and 131Ya; for (ii)⇒(i)
use 121D. This is a version of Lusin’s theorem.)
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(e) Let ν be a measure on R which is translation-invariant in the sense of 134Ab, and such that ν[0, 1]
is defined and equal to 1. Show that ν agrees with Lebesgue measure on the Borel sets of R. (Hint : Show
first that [a, 1] belongs to the domain of ν for every a ∈ [0, 1], and hence that every half-open interval of
length at most 1 belongs to the domain of ν; show that ν [a, a+ 2−n[ = 2−n for every a ∈ R, n ∈ N, and
hence that ν [a, b[ = b− a whenever a < b.)

(f) Let ν be a measure on Rr which is translation-invariant in the sense of 134Ab, where r > 1, and such
that ν[0,1] is defined and equal to 1. Show that ν agrees with Lebesgue measure on the Borel sets of Rr.

(g) Show that if f is any real-valued integrable function on R, and ǫ > 0, there is a continuous function
g : R → R such that {x : g(x) 6= 0} is bounded and

∫

|f − g| ≤ ǫ. (Hint : show that the set Φ of functions f
with this property satisfies the conditions of 122Yb.)

(h) Repeat 134Yg for real-valued integrable functions on Rr, where r > 1.

(i) Repeat 134Fd, 134Xa, 134Xb, 134Yb, 134Yc, 134Yd, 134Yg and 134Yh for complex-valued functions.

(j) Show that if G ⊆ Rr is open and not empty, it is expressible as a disjoint union of a sequence
of half-open intervals each of the form {x : 2−mni ≤ ξi < 2−m(ni + 1) for every i ≤ r} where m ∈ N,
n1, . . . , nr ∈ Z.

(k) Show that a set E ⊆ Rr is Lebesgue negligible iff there is a sequence 〈Cn〉n∈N of hypercubes in Rr

such that E ⊆
⋂

n∈N

⋃

k≥n Ck and
∑∞

k=0(diamCk)
r < ∞, writing diamCk for the diameter of Ck.

(l) Show that there is a continuous function f : [0, 1] → [0, 1]2 such that µ1f
−1[E] = µ2E for every

measurable E ⊆ [0, 1]2, writing µ1, µ2 for Lebesgue measure on R, R2 respectively. (Hint : for each n ∈ N,
express [0, 1]2 as the union of 4n closed squares of side 2−n; call the set of these squares Dn. Construct
continuous fn : [0, 1] → [0, 1]2, families 〈ID〉D∈Dn

inductively in such a way that each ID is a closed interval
of length 4−n and fm[ID] ⊆ D whenever D ∈ Dn and m ≥ n. The induction will proceed more smoothly if
you suppose that the path fn enters each square in Dn at a corner and leaves at an adjacent corner. Take
f = limn→∞ fn. This is a special kind of Peano or space-filling curve.)

(m) Show that if r ≤ s there is a continuous function f : [0, 1]r → [0, 1]s such that µrf
−1[E] = µsE for

every measurable E ⊆ [0, 1]s, writing µr, µs for Lebesgue measure on Rr, Rs respectively.

(n) Show that there is a continuous function f : R → R2 such that µ1f
−1[E] = µ2E for every measurable

E ⊆ R2, writing µ1, µ2 for Lebesgue measure on R, R2 respectively.

(o) Show that the function f : [0, 1] → [0, 1]2 of 134Yl may be chosen in such a way that µ2f [E] = µ1E
for every Lebesgue measurable set E ⊆ [0, 1]. (Hint : using the construction suggested in 134Yl, and setting
H = f−1[([0, 1] \Q)2], f↾H will be an isomorphism between (H,µ1,H) and (f [H], µ2,f [H]), writing µ1,H and
µ2,f [H] for the subspace measures.)

(p) Show that R can be expressed as the union of a disjoint sequence 〈En〉n∈N of sets of finite measure
such that µ(I ∩ En) > 0 for every non-empty open interval I ⊆ R and every n ∈ N.

(q) Show that for any r ≥ 1, Rr can be expressed as the union of a disjoint sequence 〈En〉n∈N of sets of
finite measure such that µ(G ∩ En) > 0 for every non-empty open set G ⊆ Rr and every n ∈ N.

(r) Show that there is a disjoint sequence 〈An〉n∈N of subsets of R such that µ∗(An ∩E) = µE for every
measurable set E and every n ∈ N. (Remark : in fact there is a disjoint family 〈At〉t∈R with this property,
but I think a new idea is needed for this extension. See 419I in Volume 4.)

(s) Repeat 134Yr for Rr, where r > 1.

(t) Describe a Borel measurable function f : [0, 1] → [0, 1] such that f↾A is discontinuous at every point
of A whenever A ⊆ [0, 1] is a set of full outer measure.
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(u) Let 〈En〉n∈N be a sequence of non-negligible measurable subsets of Rr. Show that there is a measurable
set E ⊆ Rr such that all the sets En ∩ E, En \ E are non-negligible.

134 Notes and comments Lebesgue measure enjoys an enormous variety of special properties, corre-
sponding to the richness of the real line, with its algebraic and topological and order structures. Here I have
only been able to hint at what is possible.

There are many methods of constructing non-measurable sets, all significant; the one I give in 134B is
perhaps the most accessible, and shows that translation-invariance is (subject to the axiom of choice) an
insuperable barrier to measuring every subset of R.

In 134F I list some of the basic relationships between the measure and the topology of Euclidean space.
Others are in 134Yc, 134Yd and 134Yg; see also 134Xd. A systematic analysis of these will take up a large
part of Volume 4.

The Cantor set and function (134G-134I) form one of the basic examples in the theory. Here I present
them just as an interesting design and as a counter-example to a natural conjecture. But they will reappear
in three different chapters of Volume 2 as illustrations of three quite different phenomena.

The relationship between the Lebesgue and Riemann integrals goes a good deal deeper than I wish to
explore just at present; the fact that the Lebesgue integral extends the Riemann integral (134Kb) is only a
small part of the story, and I should be sorry if you were left with the impression that the Lebesgue integral
therefore renders the Riemann integral obsolete. Without going into the details here, I hope that 134F and
134Yg make it plain that the Lebesgue integral is in some sense the canonical extension of the Riemann
integral. (This, at least, I shall return to in Chapter 43.) Another way of looking at this is 134Yf; the
Lebesgue integral is the basic translation-invariant integral on Rr.

Version of 14.9.04/14.7.07

135 The extended real line

It is often convenient to allow ‘∞’ into our formulae, and in the context of measure theory the appropriate
manipulations are sufficiently consistent for it to be possible to develop a theory of the extended real line,
the set [−∞,∞] = R ∪ {−∞,∞}, sometimes written R. I give a brief account without full proofs, as I
hope that by the time this material becomes necessary to the arguments I use it will all appear thoroughly
elementary.

135A The algebraic structure of [−∞,∞] (a) If we write

a+∞ = ∞+ a = ∞, a+ (−∞) = (−∞) + a = −∞

for every a ∈ R, and

∞+∞ = ∞, (−∞) + (−∞) = −∞,

but refuse to define ∞ + (−∞) or (−∞) +∞, we obtain a partially-defined binary operation on [−∞,∞],
extending ordinary addition on R. This is associative in the sense that

if u, v, w ∈ [−∞,∞] and one of u+ (v + w), (u+ v) + w is defined, so is the other, and they
are then equal,

and commutative in the sense that

if u, v ∈ [−∞,∞] and one of u+ v, v + u is defined, so is the other, and they are then equal.

It has an identity 0 such that u+ 0 = 0 + u = u for every u ∈ [−∞,∞]; but ∞ and −∞ lack inverses.

(b) If we define

a · ∞ = ∞ · a = ∞, a · (−∞) = (−∞) · a = −∞

for real a > 0,

a · ∞ = ∞ · a = −∞, a · (−∞) = (−∞) · a = ∞

for real a < 0,

∞ ·∞ = (−∞) · (−∞) = ∞, (−∞) · ∞ = ∞ · (−∞) = −∞,
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0 · ∞ = ∞ · 0 = 0 · (−∞) = (−∞) · 0 = 0

then we obtain a binary operation on [−∞,∞] extending ordinary multiplication on R, which is associative
and commutative and has an identity 1; 0, ∞ and −∞ lack inverses.

(c) We have a distributive law, a little weaker than the associative and commutative laws of addition:

if u, v, w ∈ [−∞,∞] and both u(v + w) and uv + uw are defined, then they are equal.

(But note the problems which arise with such combinations as ∞(1 + (−2)), 0 · ∞+ 0 · (−∞).)

(d) While ∞ and −∞ do not have inverses in the semigroup ([−∞,∞], ·), there seems no harm in writing
a/∞ = a/(−∞) = 0 for every a ∈ R. But of course such an extension of the notion of division must be
watched carefully in such formulae as u · v

u
.

135B The order structure of [−∞,∞] (a) If we write

−∞ ≤ u ≤ ∞ for every u ∈ [−∞,∞],

we obtain a relation on [−∞,∞], extending the usual ordering of R, which is a total ordering, that is,

for any u, v, w ∈ [−∞,∞], if u ≤ v and v ≤ w then u ≤ w,

u ≤ u for every u ∈ [−∞,∞],

for any u, v ∈ [−∞,∞], if u ≤ v and v ≤ u then u = v,

for any u, v ∈ [−∞,∞], either u ≤ v or v ≤ u.

Moreover, every subset of [−∞,∞] has a supremum and an infimum, if we write sup ∅ = −∞, inf ∅ = ∞.

(b) The ordering is ‘translation-invariant’ in the weak sense that

if u, v, w ∈ [−∞,∞] and v ≤ w and u+ v, u+ w are both defined, then u+ v ≤ u+ w.

It is preserved by non-negative multiplications in the sense that

if u, v, w ∈ [−∞,∞] and 0 ≤ u and v ≤ w, then uv ≤ uw,

while it is reversed by non-positive multiplications in the sense that

if u, v, w ∈ [−∞,∞] and u ≤ 0 and v ≤ w, then uw ≤ uv.

135C The Borel structure of [−∞,∞] We say that a set E ⊆ [−∞,∞] is a Borel set in [−∞,∞]
if E ∩ R is a Borel subset of R. It is easy to check that the family of such sets is a σ-algebra of subsets of
[−∞,∞]. See also 135Xb below.

135D Convergent sequences in [−∞,∞] We can say that a sequence 〈un〉n∈N in [−∞,∞] converges
to u ∈ [−∞,∞] if

whenever v < u there is an n0 ∈ N such that v ≤ un for every n ≥ n0, and whenever u < v
there is an n0 ∈ N such that un ≤ v for every n ≥ n0;

alternatively,

either u ∈ R and for every δ > 0 there is an n0 ∈ N such that un ∈ [u − δ, u + δ] for every
n ≥ n0

or u = −∞ and for every a ∈ R there is an n0 ∈ N such that un ≤ a for every n ≥ n0

or u = ∞ and for every a ∈ R there is an n0 ∈ N such that un ≥ a for every n ≥ n0.

(Compare the notion of convergence in 112Ba.)

135E Measurable functions Let X be any set and Σ a σ-algebra of subsets of X.

(a) Let D be a subset of X and ΣD the subspace σ-algebra (121A). For any function f : D → [−∞,∞],
the following are equiveridical:

(i) {x : f(x) < u} ∈ ΣD for every u ∈ [−∞,∞];
(ii) {x : f(x) ≤ u} ∈ ΣD for every u ∈ [−∞,∞];
(iii) {x : f(x) > u} ∈ ΣD for every u ∈ [−∞,∞];
(iv) {x : f(x) ≥ u} ∈ ΣD for every u ∈ [−∞,∞];
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(v) {x : f(x) ≤ q} ∈ ΣD for every q ∈ Q.
PPP The proof is almost identical to that of 121B. The only modifications are:

– in (i)⇒(ii), {x : f(x) ≤ ∞} and {x : f(x) ≤ −∞} are not necessarily equal to
⋂

n∈N{x : f(x) <
∞ + 2−n},

⋂

n∈N{x : f(x) < −∞ + 2−n}; but the former is D, so surely belongs to ΣD, and the latter is
⋂

n∈N{x : f(x) < −n}, so belongs to ΣD.
– In (iii)⇒(iv), similarly, we have to use the facts that

{x : f(x) ≥ −∞} = D ∈ ΣD, {x : f(x) ≥ ∞} =
⋂

n∈N{x : f(x) > n} ∈ ΣD.

– Concerning the extra condition (v), of course we have (ii)⇒(v), but also we have (v)⇒(i), because

{x : f(x) < u} =
⋃

q∈Q,q<u{x : f(x) ≤ q}

for every u ∈ [−∞,∞]. QQQ

(b) We may therefore say, as in 121C, that a function taking values in [−∞,∞] is measurable if it
satisfies these equivalent conditions.

(c) Note that if f : D → [−∞,∞] is Σ-measurable, then

E∞(f) = f−1[{∞}] = {x : f(x) ≥ ∞}, E−∞(f) = f−1[{−∞}] = {x : f(x) ≤ −∞}

must belong to ΣD, while fR = f↾D \ (E∞(f) ∪ E−∞(f)), the ‘real-valued part of f ’, is measurable in the
sense of 121C.

(d) Conversely, if E∞ and E−∞ belong to ΣD, and fR : D \ (E∞ ∪ E−∞) → R is measurable, then
f : D → [−∞,∞] will be measurable, where f(x) = ∞ if x ∈ E∞, f(x) = −∞ if x ∈ E−∞ and f(x) = fR(x)
for other x ∈ D.

(e) It follows that if f , g are measurable functions from subsets of X to [−∞,∞], then f + g, f × g and
f/g are measurable. PPP This can be proved either by adapting the arguments of 121Eb, 121Ed and 121Ee,
or by applying those results to fR and gR and considering separately the sets on which one or both are
infinite. QQQ

(f) We can say that a function h from a subset D of [−∞,∞] to [−∞,∞] is Borel measurable if it
is measurable (in the sense of (b) above) with respect to the Borel σ-algebra of [−∞,∞] (as defined in
135C). Now if X is a set, Σ is a σ-algebra of subsets of X, f is a measurable function from a subset of X to
[−∞,∞] and h is a Borel measurable function from a subset of [−∞,∞] to [−∞,∞], then hf is measurable.
PPP Apply 121Eg to h∗fR, where h

∗ = h↾(R∩h−1[R]), and then look separately at the sets {x : f(x) = ±∞},
{x : hf(x) = ±∞}. QQQ

(g) Let X be a set and Σ a σ-algebra of subsets of X. Let 〈fn〉n∈N be a sequence of measurable functions
from subsets of X to [−∞,∞]. Then limn→∞ fn, supn∈N fn and infn∈N fn are measurable, if, following the
principles set out in 121F, we take their domains to be

{x : x ∈
⋃

n∈N

⋂

m≥n dom fm, limn→∞ fn(x) exists in [−∞,∞]},

⋂

n∈N dom fn.

PPP Follow the method of 121Fa-121Fc. QQQ

135F [−∞,∞]-valued integrable functions (a) We are surely not going to admit a function as
‘integrable’ unless it is finite almost everywhere, and for such functions the remarks in 133B are already
adequate.

(b) However, it is possible to make a consistent extension of the idea of an infinite integral, elaborating
slightly the ideas of 133A. If (X,Σ, µ) is a measure space and f is a function, defined almost everywhere
in X, taking values in [0,∞], and virtually measurable (that is, such that f↾E is measurable in the sense
of 135E for some conegligible set E), then we can safely write ‘

∫

f = ∞’ whenever f is not integrable. We
shall find that for such functions we have

∫

f + g =
∫

f +
∫

g and
∫

cf = c
∫

f for every c ∈ [0,∞], using
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the definitions given above for addition and multiplication on [0,∞]. Consequently, as in 122M-122O, we
can say that for a general virtually measurable function f , defined almost everywhere in X, taking values in
[−∞,∞],

∫

f =
∫

f1 −
∫

f2 whenever f is expressible as a difference f1 − f2 of non-negative functions such
that

∫

f1 and
∫

f2 are both defined and not both infinite. Now we have, as always, the basic formulae
∫

f + g =
∫

f +
∫

g,
∫

cf = c
∫

f ,
∫

|f | ≥ |
∫

f |

whenever the right-hand-sides are defined, and
∫

f ≤
∫

g whenever f ≤a.e. g and both integrals are defined.
It is important to note that

∫

f can be finite, on this definition, only when f is finite almost everywhere.

135G We now have versions of B.Levi’s theorem and Fatou’s Lemma (compare 133K).

Proposition Let (X,Σ, µ) be a measure space, and 〈fn〉n∈N a sequence of [−∞,∞]-valued functions defined
almost everywhere in X which have integrals defined in [−∞,∞].

(a) If fn ≤a.e. fn+1 for every n and −∞ < supn∈N

∫

fn, then
∫

supn∈N fn = supn∈N

∫

fn.
(b) If, for each n, fn ≥ 0 a.e., then

∫

lim infn→∞ fn ≤ lim infn→∞

∫

fn.

proof (a) Note that f = supn∈N fn is defined everywhere on
⋂

n∈N dom fn, which is almost everywhere; and
that there is a conegligible set E such that fn↾E is measurable for every n, so that f↾E is measurable. Now
if u = supn∈N

∫

fn is finite, then all but finitely many of the fn must be finite almost everywhere, and the
result is a consequence of B.Levi’s theorem for real-valued functions; while if u = ∞ then surely

∫

supn∈N fn
is infinite.

(b) As in 123B or 133Kb, this now follows, applying (a) to gn = infm≥n fm.

135H Upper and lower integrals again (a) To handle functions taking values in [−∞,∞] we need
to adapt the definitions in 133I. Let (X,Σ, µ) be a measure space and f a [−∞,∞]-valued function defined
almost everywhere in X. Its upper integral is

∫

f = inf{
∫

g :
∫

g is defined in the sense of 135F and f ≤a.e. g},

allowing ∞ for inf{∞} and −∞ for inf ]−∞,∞] or inf[−∞,∞]. Similarly, the lower integral of f is
∫

f = sup{
∫

g :
∫

g is defined, f ≥a.e. g}.

With this modification, all the results of 133J are valid for functions taking values in [−∞,∞] rather than
in R.

(b) Corresponding to 133Ka, we have the following. Let (X,Σ, µ) be a measure space, and 〈fn〉n∈N a
sequence of [−∞,∞]-valued functions defined almost everywhere in X.

(i) If fn ≤a.e. fn+1 for every n and supn∈N

∫

fn > −∞, then
∫

supn∈N fn = supn∈N

∫

fn.

(ii) If, for each n, fn ≥ 0 a.e., then
∫

lim infn→∞ fn ≤ lim infn→∞

∫

fn.

135I Subspace measures We need to re-examine the ideas of §131 in the new context.

Proposition Let (X,Σ, µ) be a measure space, and H ∈ Σ; write ΣH for the subspace σ-algebra on H and

µH for the subspace measure. For any [−∞,∞]-valued function f defined on a subset of H, write f̃ for the

extension of f defined by saying that f̃(x) = f(x) if x ∈ dom f , 0 if x ∈ X \H.
(a) Suppose that f is a [−∞,∞]-valued function defined on a subset of H.

(i) dom f is µH -conegligible iff dom f̃ is µ-conegligible.

(ii) f is µH -virtually measurable iff f̃ is µ-virtually measurable.

(iii)
∫

H
fdµH =

∫

X
f̃dµ if either is defined in [−∞,∞].

(b) Suppose that h is a [−∞,∞]-valued function defined almost everywhere in X. Then
∫

H
(h↾H)dµH =

∫

h× χH dµ if either is defined in [−∞,∞].
(c) If h is a [−∞,∞]-valued function and

∫

X
h dµ is defined in [−∞,∞], then

∫

H
(h↾H)dµH is defined in

[−∞,∞].
(d) Suppose that h is a [−∞,∞]-valued function defined almost everywhere in X. Then
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∫

H
(h↾H)dµH =

∫

X
h× χHdµ.

proof (a)(i) This is immediate from 131Ca, since H \ dom f = X \ dom f̃ .

(ii)(ααα) If f is µH -virtually measurable, there is a µH -conegligible E ∈ ΣH such that f↾E is ΣH -
measurable. There is an F ∈ Σ such that E = F ∩H; now G = F ∪ (X \H) belongs to Σ and E = G ∩H
and G is µ-conegligible. Also, for q ∈ Q,

{x : x ∈ G, f̃(x) ≤ q} = {x : x ∈ E, f(x) ≤ q} ∈ ΣH ⊆ Σ if q < 0,

= {x : x ∈ E, f(x) ≤ q} ∪ (X \H) ∈ Σ if q ≥ 0,

so f̃↾G is Σ-measurable and f̃ is µ-virtually measurable.

(βββ) If f̃ is µ-virtually measurable, there is a µ-conegligible G ∈ Σ such that f̃↾G is Σ-measurable.
Now E = G ∩H belongs to ΣH and is µH -conegligible, and for q ∈ Q

{x : x ∈ E, f(x) ≤ q} = H ∩ {x : x ∈ G, f(x) ≤ q} ∈ ΣH .

So f↾E is ΣH -measurable and f is µH -virtually measurable.

(iii) Assume that at least one of the integrals is defined. Then (ii) tells us that there is a µ-conegligible

E ∈ Σ such that f̃↾E is Σ-measurable, in which case f↾H ∩ E is ΣH -measurable.

(ααα) Suppose that f is non-negative everywhere on its domain. Then
∫

H
fdµH and

∫

X
f̃dµ are both

defined in [0,∞]. If both are infinite, we can stop. Otherwise,

G = {x : x ∈ E ∩H, f(x) < ∞} = {x : x ∈ E, f̃(x) < ∞}

must be conegligible. Set g = f↾G ∩ H; then g̃ = f̃↾G, so g = f µH -a.e. and g̃ = f̃ µ-a.e. Accordingly
∫

H
fdµH =

∫

H
g dµH and

∫

X
f̃dµ =

∫

X
g̃ dµ. Now we are supposing that at least one of these is finite. But

in this case we can apply 131E to see that
∫

H
g dµ =

∫

X
g̃ dµ, so

∫

H
f dµ =

∫

X
f̃ dµ.

(βββ) In general, express f as f+ − f−, where

f+(x) = max(0, f(x)), f−(x) = max(0,−f(x))

for x ∈ dom f . Then (f+)
∼

= f̃+ and (f−)
∼

= f̃−. So
∫

H
fdµH =

∫

H
f+dµH −

∫

H
f−dµH =

∫

X
f̃+dµ−

∫

X
f̃−dµ =

∫

X
f̃dµ

if any of the four expressions is defined in [−∞,∞].

(b) Set f = h↾H; then (h× χH)(x) = f̃(x) for every x ∈ domh, so (a-iii) tells us that
∫

X
h× χH dµ =

∫

X
f̃dµ =

∫

H
(h↾H)dµH

if any of the three is defined in [−∞,∞].

(c) Setting h+(x) = max(0, h(x)) and h−(x) = max(0,−h(x)) for x ∈ domh, both
∫

X
h+dµ and

∫

X
h−dµ

are defined in [0,∞], and at most one of them is infinite. In particular, both are µ-virtually measurable and
defined µ-almost everywhere, so the same is true of h+ × χH and h− × χH. As

∫

X
h+ × χHdµ ≤

∫

X
h+dµ

and
∫

X
h− × χHdµ ≤

∫

X
h−dµ, at most one of

∫

X
h+ × χHdµ,

∫

X
h− × χHdµ is infinite, and

∫

X
h× χHdµ =

∫

X
h+ × χHdµ−

∫

X
h− × χHdµ

is defined in [−∞,∞]. By (b) above,
∫

H
(h↾H)dµH is defined in [−∞,∞].

(d)(i) Suppose that
∫

X
g dµ is defined in [−∞,∞] and that h× χH ≤ g µ-a.e. Then

∫

H
(g↾H)dµH =

∫

X
g × χHdµ

is defined, by (c); and as g(x) ≥ 0 for µ-almost every x ∈ X \H, g × χH ≤a.e. g. So
∫

H
(h↾H)dµH ≤

∫

H
(g↾H)dµH =

∫

X
g × χHdµ ≤

∫

X
g dµ.
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As g is arbitrary,
∫

H
(h↾H)dµH ≤

∫

X
h× χH dµ.

(ii) Suppose that
∫

H
fdµH is defined in [−∞,∞] and that h↾H ≤ f µH -a.e. Then

∫

X
f̃dµ is defined

in [−∞,∞] and h× χH ≤ f̃ µ-a.e., so
∫

X
h× χH dµ ≤

∫

X
f̃dµ =

∫

H
f dµH .

As f is arbitrary,
∫

X
h× χH dµ ≤

∫

H
(h↾H)dµH .

135X Basic exercises (a) We say that a set G ⊆ [−∞,∞] is open if (i) G ∩ R is open in the usual
sense as a subset of R (ii) if ∞ ∈ G, then there is some a ∈ R such that ]a,∞] ⊆ G (iii) if −∞ ∈ G then
there is some a ∈ R such that [−∞, a[ ⊆ G. Show that the family T of open subsets of [−∞,∞] has the
properties corresponding to (a)-(d) of 1A2B.

(b) Show that the Borel sets of [−∞,∞] as defined in 135C are precisely the members of the σ-algebra
of subsets of [−∞,∞] generated by the open sets as defined in 135Xa.

>>>(c) Define φ : [−∞,∞] → [−1, 1] by setting

φ(−∞) = −1, φ(x) = tanhx =
e2x−1

e2x+1
if −∞ < x < ∞, φ(∞) = 1.

Show that (i) φ is an order-isomorphism between [−∞,∞] and [−1, 1] (ii) for any sequence 〈un〉n∈N in
[−∞,∞], 〈un〉n∈N → u iff 〈φ(un)〉n∈N → φ(u) (iii) for any set E ⊆ [−∞,∞], E is Borel in [−∞,∞] iff φ[E]
is a Borel subset of R (iv) a real-valued function h defined on a subset of [−∞,∞] is Borel measurable iff
hφ−1 is Borel measurable.

>>>(d) Let X be a set, Σ a σ-algebra of subsets of X and f a function from a subset of X to [−∞,∞].
Show that f is measurable iff the composition φf is measurable, where φ is the function of 135Xc. Use this
to reduce 135Ef and 135Eg to the corresponding results in §121.

(e) Let φ : [−∞,∞] → [−1, 1] be the function described in 135Xc. Show that the functions

(t, u) 7→ φ(φ−1(t) + φ−1(u)) : [−1, 1]2 \ {(−1, 1), (1,−1)} → [−1, 1],

(t, u) 7→ φ(φ−1(t)φ−1(u)) : [−1, 1]2 → [−1, 1],

(t, u) 7→ φ(φ−1(t)/φ−1(u)) :
(

[−1, 1]× ([−1, 1] \ {0})
)

\ {(±1,±1)} → [−1, 1]

are Borel measurable. Use this with 121K to prove 135Ee.

(f) Following the conventions of 135Ab and 135Ad, give full descriptions of the cases in which uu′/vv′ =
(u/v)(u′/v′) and in which uw/vw = u/v.

(g) Let (X,Σ, µ) be a measure space and suppose that E ∈ Σ has non-zero finite measure. Let f be a
virtually measurable [−∞,∞]-valued function defined on a subset of X and suppose that f(x) is defined
and greater than α for almost every x ∈ E. Show that

∫

E
f > αµE.

135Y Further exercises (a) Let X be a set and Σ a σ-algebra of subsets of X. Show that if f : X →

[0,∞] is Σ-measurable, there is a sequence 〈En〉n∈N in Σ such that f =
∑∞

n=0
1

n+1
χEn.

(b) Let (X,Σ, µ) be a measure space, and f , g two [−∞,∞]-valued functions, defined on subsets of X,
such that

∫

f and
∫

g are both defined in [−∞,∞]. (i) Show that
∫

f ∨g and
∫

f ∧g are defined in [−∞,∞],
where (f ∨ g)(x) = max(f(x), g(x)), (f ∧ g)(x) = min(f(x), g(x)) for x ∈ dom f ∩ dom g. (ii) Show that
∫

f ∨ g +
∫

f ∧ g =
∫

f +
∫

g in the sense that if one of the sums is defined in [−∞,∞] so is the other, and
they are then equal.

(c) Let (X,Σ, µ) be a measure space, f : X → [−∞,∞] a function and g : X → [0,∞], h : X → [0,∞]

measurable functions. Show that
∫

f × (g + h) =
∫

f × g +
∫

f × h, where here we interpret ∞ + (−∞) as
∞, as in 133L.
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135 Notes and comments I have taken this exposition into a separate section partly because of its length,
and partly because I wish to emphasize that these techniques are incidental to the principal ideas of this
volume. Really all I am trying to do here is give a coherent account of the language commonly used to deal
with a variety of peripheral cases. As a general rule, ‘∞’ enters these arguments only as a shorthand for
certain types of triviality. When we find ourselves wishing to assign the values ±∞ to a function, either
this happens on a negligible set – in which case it is often right, if slightly less comforting, to think of the
function as undefined on that set – or things have got completely out of hand, and the theory has little
useful to tell us.

Of course it is not difficult to incorporate the theory of the extended real line directly into the arguments
of Chapter 12, so that the results of this section become the basic ones. I have avoided this route partly in
an attempt to reduce the number of new ideas needed in the technically very demanding material of Chapter
12 – believing, as I do, that independently of our treatment of ±∞ it is absolutely necessary to be able to
deal with partially-defined functions – and partly because I do not think that the real line should really be
regarded as a substructure of the extended real line. I think that they are different structures with different
properties, and that the original real line is overwhelmingly more important. But it is fair to say that in
terms of the ideas treated in this volume they are so similar that when you are properly familiar with this
work you will be able to move freely from one to the other, so freely indeed that you can safely leave the
distinction to formal occasions, such as when you are presenting the statement of a theorem.

Version of 22.6.05

*136 The Monotone Class Theorem

For the final section of this volume, I present two theorems on σ-algebras, with some simple corollaries.
They are here because I find no natural home for them in Volume 2. While they (especially 136B) are part
of the basic technique of measure theory, and have many and widespread applications, they are not central
to the particular approach I have chosen, and can if you wish be left on one side until they come to be
needed.

136A Lemma Let X be a set, and A a family of subsets of X. Then the following are equiveridical:

(i) X ∈ A, B \ A ∈ A whenever A, B ∈ A and A ⊆ B, and
⋃

n∈N An ∈ A whenever 〈An〉n∈N

is a non-decreasing sequence in A;
(ii) ∅ ∈ A, X \ A ∈ A for every A ∈ A, and

⋃

n∈N An ∈ A whenever 〈An〉n∈N is a disjoint
sequence in A.

proof (i)⇒(ii) Suppose that (i) is true. Then of course ∅ = X \X belongs to A and X \ A ∈ A for every
A ∈ A. If A, B ∈ A are disjoint, then A ⊆ X \ B ∈ A, so (X \ B) \ A and its complement A ∪ B belong
to A. So if 〈An〉n∈N is a disjoint sequence in A,

⋃

i≤n Ai ∈ A for every n, and
⋃

n∈N An is the union of a

non-decreasing sequence in A, so belongs to A. Thus (ii) is true.

(ii)⇒(i) If (ii) is true, then of course X = X \ ∅ belongs to A. If A and B are members of A such that
A ⊆ B, then X \ B belongs to A and is disjoint from A, so A ∪ (X \ B) and its complement B \ A belong
to A. Thus the second clause of (i) is satisfied. As for the third, if 〈An〉n∈N is a non-decreasing sequence in
A, then A0, A1 \A0, A2 \A1, . . . is a disjoint sequence in A, so its union

⋃

n∈N An belongs to A.

Definition If A ⊆ PX satisfies the conditions of (i) and/or (ii) above, it is called a Dynkin class of subsets
of X.

136B Monotone Class Theorem Let X be a set and A a Dynkin class of subsets of X. Suppose that
I ⊆ A is such that I ∩ J ∈ I for all I, J ∈ I. Then A includes the σ-algebra of subsets of X generated by
I.

proof (a) Let S be the family of Dynkin classes of subsets of X including I. Then it is easy to check, using
either (i) or (ii) of 136A, that the intersection Σ =

⋂

S also is a Dynkin class (compare 111Ga). Because
A ∈ S, Σ ⊆ A.
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136D The Monotone Class Theorem 33

(b) If H ∈ Σ, then

ΣH = {E : E ∈ Σ, E ∩H ∈ Σ}

is a Dynkin class. PPP (α) X ∩H = H ∈ Σ so X ∈ ΣH . (β) If A, B ∈ ΣH and A ⊆ B then A ∩H, B ∩H
belong to Σ and A ∩H ⊆ B ∩H; consequently

(B \A) ∩H = (B ∩H) \ (A ∩H) ∈ Σ

and B \A ∈ ΣH . (γ) If 〈An〉n∈N is a non-decreasing sequence in ΣH , then 〈An ∩H〉n∈N is a non-decreasing
sequence in Σ, so

(
⋃

n∈N An) ∩H =
⋃

n∈N(An ∩H) ∈ Σ

and
⋃

n∈N An ∈ ΣH . QQQ
It follows that if I ∩H ∈ Σ for every I ∈ I, so that ΣH ⊇ I, then ΣH ∈ S and must be equal to Σ.

(c) We find next that G ∩H ∈ Σ for all G, H ∈ Σ. PPP Take I, J ∈ I. We know that I ∩ J ∈ I. As I
is arbitrary, ΣJ = Σ and H ∈ ΣJ , that is, H ∩ J ∈ Σ. As J is arbitrary, ΣH = Σ and G ∈ ΣH , that is,
G ∩H ∈ Σ. QQQ

(d) Since Σ is a Dynkin class, ∅ = X \X ∈ Σ. Also

G ∪H = X \ ((X \G) ∩ (X \H)) ∈ Σ

for any G, H ∈ Σ (using (c)). So if 〈Gn〉n∈N is any sequence in Σ, G′
n =

⋃

i≤n Gi ∈ Σ for each n (inducing

on n). But 〈G′
n〉n∈N is now a non-decreasing sequence in Σ, so

⋃

n∈N Gn =
⋃

n∈N G′
n ∈ Σ.

This means that Σ satisfies all the conditions of 111A and is a σ-algebra of subsets of X. Since I ⊆ Σ,
Σ must include the σ-algebra Σ′ of subsets of X generated by I. So Σ′ ⊆ Σ ⊆ A, as required.

(Actually, of course, Σ = Σ′, because Σ′ ∈ S.)

Remark I have seen this result called the Sierpiński Class Theorem and the πππ-λλλ Theorem.

136C Corollary Let X be a set, and µ, ν two measures defined on X with domains Σ, T respectively.
Suppose that µX = νX < ∞, and that I ⊆ Σ∩T is a family of sets such that µI = νI for every I ∈ I and
I ∩ J ∈ I for all I, J ∈ I. Then µE = νE for every E in the σ-algebra of subsets of X generated by I.

proof The point is that

A = {H : H ∈ Σ ∩ T, µH = νH}

is a Dynkin class of subsets of X. PPP I work from (ii) of 136A. Of course ∅ ∈ A. If A ∈ A then

µ(X \A) = µX − µA = νX − νA = ν(X \A)

(because µX = νX < ∞, so the subtraction is safe), and X \A ∈ A. If 〈An〉n∈N is a disjoint sequence in A,
then

µA =
∑∞

n=0 µAn =
∑∞

n=0 νAn = νA,

and
⋃

n∈N An ∈ A. QQQ
Since I ⊆ A, 136B tells us that the σ-algebra Σ′ generated by I is included in A, that is, µ and ν agree

on Σ′.

136D Corollary Let µ, ν be two measures on Rr, where r ≥ 1, both defined, and agreeing, on all
intervals of the form

]−∞, a] = {x : x ≤ a} = {(ξ1, . . . , ξr) : ξi ≤ αi for every i ≤ r}

for a = (α1, . . . , αr) ∈ Rr. Suppose further that µRr < ∞. Then µ and ν agree on all the Borel subsets of
Rr.

proof In 136C, take X = Rr and I the set of intervals ]−∞, a]. Then I ∩ J ∈ I for all I, J ∈ I,
since ]−∞, a] ∩ ]−∞, b] = ]−∞, a ∧ b], writing a ∧ b = (min(α1, β1), . . . ,min(αr, βr)) if a = (α1, . . . , αr),
b = (β1, . . . , βr) ∈ Rr. Also, setting n = (n, . . . , n) for n ∈ N,

D.H.Fremlin



34 Complements 136D

νRr = limn→∞ ν ]−∞,n] = limn→∞ µ ]−∞,n] = µRr.

So all the conditions of 136C are satisfied and µ, ν agree on the σ-algebra Σ generated by I. But this is
just the σ-algebra of Borel sets, by 121J.

136E Algebras of sets: Definition Let X be a set. A family E ⊆ PX is an algebra or field of subsets
of X if

(i) ∅ ∈ E ;
(ii) for every E ∈ E , its complement X \ E belongs to E ;
(iii) for every E, F ∈ E , E ∪ F ∈ E .

136F Remarks (a) I could very well have introduced this notion in Chapter 11, along with ‘σ-algebras’.
I omitted it, apart from some exercises, because there seemed to be quite enough new definitions in §111
already, and because I had nothing substantial to say about algebras of sets.

(b) If E is an algebra of subsets of X, then

E ∩ F = X \ ((X \ E) ∪ (X \ F )), E \ F = E ∩ (X \ F ),

E0 ∪ E1 ∪ . . . ∪ En, E0 ∩ E1 ∩ . . . ∩ En

belong to E for all E, F , E0, . . . , En ∈ E . (Induce on n for the last.)

(c) A σ-algebra of subsets of X is (of course) an algebra of subsets of X.

136G Theorem Let X be a set and E an algebra of subsets of X. Suppose that A ⊆ PX is a family of
sets such that

(α)
⋃

n∈N An ∈ A for every non-decreasing sequence 〈An〉n∈N in A,
(β)

⋂

n∈N An ∈ A for every non-increasing sequence 〈An〉n∈N in A,
(γ) E ⊆ A.

Then A includes the σ-algebra of subsets of X generated by E .

proof I use the same ideas as in 136B.

(a) Let S be the family of all sets S ⊆ PX satisfying (α)-(γ). Then its intersection Σ =
⋂

S also satisfies
the conditions. Because A ∈ S, Σ ⊆ A.

(b) If H ∈ Σ, then

ΣH = {E : E ∈ Σ, E ∩H ∈ Σ}

satisfies conditions (α)-(β). PPP (α) If 〈An〉n∈N is a non-decreasing sequence in ΣH , then 〈An ∩H〉n∈N is a
non-decreasing sequence in Σ, so

(
⋃

n∈N An) ∩H =
⋃

n∈N(An ∩H) ∈ Σ

and
⋃

n∈N An ∈ ΣH . (β) Similarly, if 〈An〉n∈N is a non-increasing sequence in ΣH , then
⋂

n∈N An ∩H ∈ Σ
so

⋂

n∈N An ∈ ΣH . QQQ
It follows that if E ∩H ∈ Σ for every E ∈ E , so that ΣH also satisfies (γ), then ΣH ∈ S and must be

equal to Σ.

(c) Consequently G ∩ H ∈ Σ for all G, H ∈ Σ. PPP Take E, F ∈ E . We know that E ∩ F ∈ E . As E
is arbitrary, ΣF = Σ and H ∈ ΣF , that is, H ∩ F ∈ Σ. As F is arbitrary, ΣH = Σ and G ∈ ΣH , that is,
G ∩H ∈ Σ. QQQ

(d) Next, Σ∗ = {X \ H : H ∈ Σ} ∈ S. PPP (α) If 〈An〉n∈N is a non-decreasing sequence in Σ∗, then
〈X \An〉n∈N is a non-increasing sequence in Σ, so

⋃

n∈N An = X \
⋂

n∈N(X \An) ∈ Σ∗.

(β) Similarly, if 〈An〉n∈N is a non-increasing sequence in Σ∗, then
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⋂

n∈N An = X \
⋃

n∈N(X \An) ∈ Σ∗.

(γ) If E ∈ E then X \E ∈ E so X \E ∈ Σ and E ∈ Σ∗. QQQ It follows that Σ ⊆ Σ∗, that is, that X \H ∈ Σ
for every H ∈ Σ.

(e) Putting (c) and (d) together with the fact that X ∈ Σ (because X ∈ E) and the union of a non-
decreasing sequence in Σ belongs to Σ (by condition (α)), we see that the same argument as in part (d) of
the proof of 136B shows that Σ is a σ-algebra of subsets of X. So, just as in 136B, we conclude that the
σ-algebra generated by E is included in Σ and therefore in A.

*136H Proposition Let (X,Σ, µ) be a measure space such that µX < ∞, and E a subalgebra of Σ;
let Σ′ be the σ-algebra of subsets of X generated by E . If F ∈ Σ′ and ǫ > 0, there is an E ∈ E such that
µ(E ∩ F ) ≤ ǫ.

proof Let A be the family of sets F ∈ Σ such that

for every ǫ > 0 there is an E ∈ E such that µ(F△E) ≤ ǫ.

Then A is a Dynkin class. PPP I check the three conditions of 136A(i). (α) X ∈ A because X ∈ E . (β) If F1,
F2 ∈ A and ǫ > 0, there are E1, E2 ∈ E such that µ(Fi△Ei) ≤

1
2ǫ for both i; now E1 \ E2 ∈ E and

(F1 \ F2)△(E1 \ E2) ⊆ (F1△E1) ∪ (F2△E2),

so

µ((F1 \ F2)△(E1 \ E2)) ≤ µ(F1△E1) + µ(F2△E2) ≤ ǫ.

As ǫ is arbitrary, F1 \ F2 ∈ A. (γ) If 〈Fn〉n∈N is a non-decreasing sequence in A, with union F , and ǫ > 0,
then

limn→∞ µFn = µF ≤ µX < ∞,

so there is an n ∈ N such that µ(F \ Fn) ≤ 1
2ǫ. Now there is an E ∈ E such that µ(Fn△E) ≤ 1

2ǫ; as
F△E ⊆ (F \ Fn) ∪ (Fn△E), µ(F△E) ≤ ǫ. As ǫ is arbitrary, F ∈ A. QQQ

Since E ⊆ A and E is closed under ∩, A includes the σ-algebra Σ′ generated by E , as claimed.

136X Basic exercises >>>(a) Let X be a set and A a family of subsets of X. Show that the following
are equiveridical:

(i) X ∈ A and B \A ∈ A whenever A, B ∈ A and A ⊆ B;
(ii) ∅ ∈ A, X \A ∈ A for every A ∈ A and A ∪B ∈ A whenever A, B ∈ A are disjoint.

(b) Suppose that X is a set and A ⊆ PX. Show that A is a σ-algebra of subsets of X iff it is a Dynkin
class and A ∩B ∈ A whenever A, B ∈ A.

(c) Let X be a set, and I a family of subsets of X such that I ∩ J ∈ I for all I, J ∈ I; let Σ be the
σ-algebra of subsets of X generated by I. Show that µE = νE whenever E ∈ Σ is covered by a sequence in
I. (Hint : For J ∈ I, set µJE = µ(E ∩ J), νJE = ν(E ∩ J) for E ∈ Σ. Use 136C to show that µJ = νJ for
each J .)

>>>(d) Set X = {0, 1, 2, 3}, I = {X, {0, 1}, {0, 2}}. Find two distinct measures µ, ν on X, both defined on
the σ-algebra PX and with µI = νI < ∞ for every I ∈ I.

(e) Let Σ be the family of subsets of [0, 1[ expressible as finite unions of half-open intervals [a, b[. Show
that Σ is an algebra of subsets of [0, 1[.

(f) Let X be a set, and I a family of subsets of X such that I ∩ J ∈ I whenever I, J ∈ I. Let Σ be the
smallest family of sets such that X ∈ Σ, F \E ∈ Σ whenever E, F ∈ Σ and E ⊆ F , and I ⊆ Σ. Show that
Σ is an algebra of subsets of X.

(g) Let X be a set, and E an algebra of subsets of X. A functional ν : E → R is called (finitely)
additive if ν(E ∪ F ) = νE + νF whenever E, F ∈ E and E ∩ F = ∅. (i) Show that in this case
ν(E ∪ F ) + ν(E ∩ F ) = νE + νF for all E, F ∈ E . (ii) Show that if νE ≥ 0 for every E ∈ E then
ν(
⋃

i≤n Ei) ≤
∑n

i=0 νEi for all E0, . . . , En ∈ E .
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>>>(h) Let X be a set, and A a family of subsets of X such that (α) ∅, X belong to A (β) A ∩B ∈ A for
all A, B ∈ A (γ) A ∪ B ∈ A whenever A, B ∈ A and A ∩ B = ∅. Show that {A : A ∈ A, X \ A ∈ A} is an
algebra of subsets of X.

>>>(i) Let X be a set, and A a family of subsets of X such that (α) ∅, X belong to A (β)
⋂

n∈N An ∈ A
for every sequence 〈An〉n∈N in A (γ)

⋃

n∈N An ∈ A for every disjoint sequence 〈An〉n∈N in A. Show that
{A : A ∈ A, X \A ∈ A} is a σ-algebra of subsets of X.

>>>(j) Let A be a family of subsets of R such that (i)
⋂

n∈N An ∈ A for every sequence 〈An〉n∈N in A (ii)
⋃

n∈N An ∈ A for every disjoint sequence 〈An〉n∈N in A (iii) every open interval ]a, b[ belongs to A. Show
that every Borel subset of R belongs to A. (Hint : show that every half-open interval [a, b[, ]a, b] belongs to
A, and therefore all intervals ]−∞, a], [a,∞[; now use 136Xi.)

>>>(k) Let X be a set, E an algebra of subsets of X, and A a family of subsets of X such that (α)
⋂

n∈N An ∈ A for every non-increasing sequence 〈An〉n∈N in A (β)
⋃

n∈N An ∈ A for every disjoint sequence
in A (γ) E ⊆ A. Show that the σ-algebra of sets generated by E is included in A. (Hint : use the method of
136B to reduce to the case in which A ∩B ∈ A for every A, B ∈ A; now use 136Xi.)

136Y Further exercises (a) Let X be a set and E an algebra of subsets of X. Let ν : E → [0,∞[ be a
non-negative functional which is additive in the sense of 136Xg. Define θ : PX → [0,∞[ by setting

θA = inf{
∑∞

n=0 νEn : 〈En〉n∈N is a sequence in E covering A}

for every A ⊆ X. (i) Show that θ is an outer measure on X and that θE ≤ νE for every E ∈ E . (ii) Let
µ be the measure on X defined from θ by Carathéodory’s method, and Σ its domain. Show that E ⊆ Σ
and that µE ≤ νE for every E ∈ E . (iii) Show that the following are equiveridical: (α) µE = νE for
every E ∈ E (β) θX = νX (γ) whenever 〈En〉n∈N is a non-increasing sequence in E with empty intersection,
limn→∞ νEn = 0.

(b) Let X be a set, E an algebra of subsets of X, and ν a non-negative additive functional on E . Let Σ be
the σ-algebra of subsets of X generated by E . Show that there is at most one measure µ on X with domain
Σ extending ν, and that there is such a measure iff limn→∞ νEn = 0 for every non-increasing sequence
〈En〉n∈N in E with empty intersection.

(c) Let X be a set. Let G be a family of subsets of X such that (i) G ∩H ∈ G for all G, H ∈ G (ii) for
every G ∈ G there is a sequence 〈Gn〉n∈N in G such that X \G =

⋂

n∈N Gn. Let A be a family of subsets of X
such that (α) ∅, X ∈ A (β)

⋂

n∈N An ∈ A for every non-increasing sequence 〈An〉n∈N in A (γ)
⋃

n∈N An ∈ A
for every disjoint sequence in A (δ) G ⊆ A. Show that the σ-algebra of sets generated by G is included in A.

136 Notes and comments The most useful result here is 136B; it will be needed in Chapter 27, and
helpful at various other points in Volume 2, often through its corollaries 136C and 136Xc. Of course 136C,
like its corollary 136D and its special case 136Yb, can be used directly only on measures which do not take
the value ∞, since we have to know that µ(F \ E) = µF − µE for measurable sets E ⊆ F ; that is why
it comes into prominence only when we specialize to probability measures (for which the whole space has
measure 1). So I include 136Xc to indicate a technique that can take us a step farther. I do not feel that
we are really ready for general measures on the Borel sets of Rr, but I mention 136D to show what kind of
class I can appear in 136B.

The two theorems here (136B, 136G) both address the question: given a family of sets I, what operations
must we perform in order to build the σ-algebra Σ generated by I? For arbitrary I, of course, we expect
to need complements and unions of sequences. The point of the theorems here is that if I has a certain
amount of structure then we can reach Σ with more limited operations; thus if I is an algebra of sets, then
monotonic unions and intersections are enough (136G). Of course there are innumerable variations on this
theme. I offer 136Xh-136Xj as a typical result which will actually be used in Volume 4, and 136Xk and
136Yc as examples of possible modifications. There is an abstract version of 136B in 313G in Volume 3.

Having once started to consider the extension of an algebra of sets to a σ-algebra, it is natural to ask
for conditions under which a functional on an algebra of sets can be extended to a measure. The condition
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of additivity (136Xg) is obviously necessary, and almost equally obviously not sufficient. I include 136Ya-
136Yb as the most important of many necessary and sufficient conditions for an additive functional to be
extendable to a measure. We shall have to return to this in Volume 4.
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Concordance for Chapter 13

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

132E Measurable envelopes Parts (d) and (e) of 132E in the 2000 and 2001 editions, referred to in
the 2001 edition of Volume 2 and the 2002 edition of Volume 3, are now parts (e) and (f).

132G Pull-back measures Proposition 132G, referred to in the 2006 edition of Volume 4, has been
moved to 234F.

Version of 31.5.03
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