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Chapter 12

Integration

If you look along the appropriate shelf of your college’s library, you will see that the words ‘measure’ and
‘integration’ go together like Siamese twins. The linkage is both more complex and more intimate than any
simple explanation can describe. But if we say that one of the concepts on which integration is based is
that of ‘area under a curve’, then it is clear that any method of determining ‘areas’ ought to correspond to
a method of integrating functions; and this has from the beginning been an essential part of the Lebesgue
theory. For a literal description of the integral of a non-negative function in terms of the area of its ordinate
set, I think it best to wait until Chapter 25 in Volume 2. In the present chapter I seek to give a concise
description of the standard integral of a real-valued function on a general measure space, with the half-dozen
most important theorems concerning this integral.

The construction bristles with technical difficulties at every step, and you will find it easy to understand
why it was not done before 1901. What may be less clear is why it was ever done at all. So perhaps you
should immediately read the statements of 123A-123D below. It is the case (some of the details will appear,
rather late, in §436 in Volume 4) that any theory of integration powerful enough to have theorems of this
kind must essentially encompass all the ideas of this chapter, and nearly all the ideas of the last.

Version of 21.12.03

121 Measurable functions

In this section, I take a step back to develop ideas relating to σ-algebras of sets, following §111; there will
be no mention of ‘measures’ here, except in the exercises. The aim is to establish the concept of ‘measurable
function’ (121C) and a variety of associated techniques. The best single example of a σ-algebra to bear in
mind when reading this chapter is probably the σ-algebra of Borel subsets of R; the σ-algebra of Lebesgue
measurable subsets of R is a good second.

Throughout the exposition here (starting with 121A) I seek to deal with functions which are not defined
on the whole of the space X under consideration. I believe that there are compelling reasons for facing up
to such functions at an early stage; but undeniably they add to the technical difficulties, and it would be
fair to read through the chapter once with the mental reservation that all functions are taken to be defined
everywhere, before returning to deal with the general case.

121A Lemma Let X be a set and Σ a σ-algebra of subsets of X. Let D be any subset of X and write

ΣD = {E ∩D : E ∈ Σ}.

Then ΣD is a σ-algebra of subsets of D.

Notation I will call ΣD the subspace σ-algebra of subsets of D, and I will say that its members are
relatively measurable in D. ΣD is also sometimes called the trace of Σ on D.

121B Proposition Let X be a set, Σ a σ-algebra of subsets of X, and D a subset of X. Write ΣD

for the subspace σ-algebra of subsets of D. Then for any function f : D → R the following assertions are
equiveridical:

(i) {x : f(x) < a} ∈ ΣD for every a ∈ R;
(ii) {x : f(x) ≤ a} ∈ ΣD for every a ∈ R;
(iii) {x : f(x) > a} ∈ ΣD for every a ∈ R;
(iv) {x : f(x) ≥ a} ∈ ΣD for every a ∈ R.
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2 Integration 121C

121C Definition Let X be a set, Σ a σ-algebra of subsets of X, and D a subset of X. A function
f : D → R is called measurable (or Σ-measurable) if it satisfies any, or equivalently all, of the conditions
(i)-(iv) of 121B.

If X is R or Rr, and Σ is its Borel σ-algebra, a Σ-measurable function is called Borel measurable. If X
is R or Rr, and Σ is the σ-algebra of Lebesgue measurable sets, a Σ-measurable function is called Lebesgue
measurable.

121D Proposition Let X be R
r for some r ≥ 1, D a subset of X, and g : D → R a function.

(a) If g is Borel measurable it is Lebesgue measurable.
(b) If g is continuous it is Borel measurable.
(c) If r = 1 and g is monotonic it is Borel measurable.

121E Theorem Let X be a set and Σ a σ-algebra of subsets of X. Let f and g be real-valued functions
defined on domains dom f , dom g ⊆ X.

(a) If f is constant it is measurable.
(b) If f and g are measurable, so is f + g, where (f + g)(x) = f(x) + g(x) for x ∈ dom f ∩ dom g.
(c) If f is measurable and c ∈ R, then cf is measurable, where (cf)(x) = c · f(x) for x ∈ dom f .
(d) If f and g are measurable, so is f × g, where (f × g)(x) = f(x)× g(x) for x ∈ dom f ∩ dom g.
(e) If f and g are measurable, so is f/g, where (f/g)(x) = f(x)/g(x) when x ∈ dom f ∩ dom g and

g(x) 6= 0.
(f) If f is measurable and E ⊆ R is a Borel set, then there is an F ∈ Σ such that f−1[E] = {x : f(x) ∈ E}

is equal to F ∩ dom f .
(g) If f is measurable and h is a Borel measurable function from a subset domh of R to R, then hf is

measurable, where (hf)(x) = h(f(x)) for x ∈ dom(hf) = {y : y ∈ dom f, f(y) ∈ domh}.
(h) If f is measurable and A is any set, then f↾A is measurable, where dom(f↾A) = A ∩ dom f and

(f↾A)(x) = f(x) for x ∈ A ∩ dom f .

121F Theorem Let X be a set and Σ a σ-algebra of subsets of X. Let 〈fn〉n∈N be a sequence of
Σ-measurable real-valued functions with domains included in X.

(a) Define a function limn→∞ fn by writing

(limn→∞ fn)(x) = limn→∞ fn(x)

for all those x ∈
⋃

n∈N

⋂
m≥n dom fm for which the limit exists in R. Then limn→∞ fn is Σ-measurable.

(b) Define a function supn∈N fn by writing

(supn∈N fn)(x) = supn∈N fn(x)

for all those x ∈
⋂

n∈N
dom fn for which the supremum exists in R. Then supn∈N fn is Σ-measurable.

(c) Define a function infn∈N fn by writing

(infn∈N fn)(x) = infn∈N fn(x)

for all those x ∈
⋂

n∈N
dom fn for which the infimum exists in R. Then infn∈N fn is Σ-measurable.

(d) Define a function lim supn→∞ fn by writing

(lim supn→∞ fn)(x) = lim supn→∞ fn(x)

for all those x ∈
⋃

n∈N

⋂
m≥n dom fm for which the lim sup exists in R. Then lim supn→∞ fn is Σ-measurable.

(e) Define a function lim infn→∞ fn by writing

(lim infn→∞ fn)(x) = lim infn→∞ fn(x)

for all those x ∈
⋃

n∈N

⋂
m≥n dom fm for which the lim inf exists in R. Then lim infn∈N fn is Σ-measurable.

121H Proposition Let X be a set and Σ a σ-algebra of subsets of X; let f , g and fn, for n ∈ N, be
Σ-measurable real-valued functions whose domains belong to Σ. Then all the functions

f + g, f × g, f/g,
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122D Definition of the integral 3

supn∈N fn, infn∈N fn, limn→∞ fn, lim supn→∞ fn, lim infn→∞ fn

have domains belonging to Σ. Moreover, if h is a Borel measurable real-valued function defined on a Borel
subset of R, then domhf ∈ Σ.

*121I Proposition Let X be a set and Σ a σ-algebra of subsets of X. Let D be a subset of X and
f : D → R a function. Then f is measurable iff there is a measurable function h : X → R extending f .

*121J Lemma Let r ≥ 1 be an integer, and write J for the family of subsets of R
r of the form

{x : ξi ≤ α} where i ≤ r, α ∈ R, writing x = (ξ1, . . . , ξr), as in §115. Then the σ-algebra of subsets of Rr

generated by J is precisely the σ-algebra B of Borel subsets of Rr.

*121K Proposition Let X be a set and Σ a σ-algebra of subsets of X. Let r ≥ 1 be an integer,
and f1, . . . , fr measurable functions defined on subsets of X. Set D =

⋂
i≤r dom fi and for x ∈ D set

f(x) = (f1(x), . . . , fr(x)) ∈ R
r. Then

(a) for any Borel set E ⊆ R
r, f−1[E] belongs to the subspace σ-algebra ΣD;

(b) if h is a Borel measurable function from a subset domh of Rr to R, then the composition hf is
measurable.

Version of 4.1.04

122 Definition of the integral

I set out the definition of ordinary integration for real-valued functions defined on an arbitrary measure
space, with its most basic properties.

122A Definitions Let (X,Σ, µ) be a measure space.

(a) For any set A ⊆ X, I write χA for the indicator function or characteristic function of A, the
function from X to {0, 1} given by setting χA(x) = 1 if x ∈ A, 0 if x ∈ X \ A. χA is Σ-measurable iff
A ∈ Σ.

(b) Now a simple function on X is a function of the form
∑n

i=0
aiχEi, where E0, . . . , En are measurable

sets of finite measure and a0, . . . , an belong to R.

122B Lemma Let (X,Σ, µ) be a measure space.
(a) Every simple function on X is measurable.
(b) If f , g : X → R are simple functions, so is f + g.
(c) If f : X → R is a simple function and c ∈ R, then cf : X → R is a simple function.
(d) The constant zero function is simple.

122C Lemma Let (X,Σ, µ) be a measure space.
(a) If E0, . . . , En are measurable sets of finite measure, there are disjoint measurable sets G0, . . . , Gm of

finite measure such that each Ei is expressible as a union of some of the Gj .
(b) If f : X → R is a simple function, it is expressible in the form

∑m
j=0

bjχGj where G0, . . . , Gm are
disjoint measurable sets of finite measure.

(c) If E0, . . . , En are measurable sets of finite measure, and a0, . . . , an ∈ R are such that
∑n

i=0
aiχEi(x) ≥

0 for every x ∈ X, then
∑n

i=0
aiµEi ≥ 0.

122D Corollary Let (X,Σ, µ) be a measure space. If
∑m

i=0
aiχEi =

∑n
j=0

bjχFj ,

where all the Ei and Fj are measurable sets of finite measure and the ai, bj are real numbers, then
∑m

i=0
aiµEi =

∑n
j=0

bjµFj .
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4 Integration 122E

122E Definition Let (X,Σ, µ) be a measure space. Then we may define the integral
∫
f of f , for

simple functions f : X → R, by saying that
∫
f =

∑m
i=0

aiµEi whenever f =
∑m

i=0
aiχEi and every Ei is a

measurable set of finite measure.

122F Proposition Let (X,Σ, µ) be a measure space.
(a) If f , g : X → R are simple functions, then f + g is a simple function and

∫
f + g =

∫
f +

∫
g.

(b) If f is a simple function and c ∈ R, then cf is a simple function and
∫
cf = c

∫
f .

(c) If f , g are simple functions and f(x) ≤ g(x) for every x ∈ X, then
∫
f ≤

∫
g.

122G Lemma Let (X,Σ, µ) be a measure space. If 〈fn〉n∈N is a sequence of simple functions which
is non-decreasing (in the sense that fn(x) ≤ fn+1(x) for every n ∈ N, x ∈ X) and f is a simple function
such that f(x) ≤ supn∈N fn(x) for almost every x ∈ X (allowing supn∈N fn(x) = ∞ in this formula), then∫
f ≤ supn∈N

∫
fn.

122H Definition Let (X,Σ, µ) be a measure space. For the rest of this section, I will write U for the
set of functions f such that

(i) the domain of f is a conegligible subset of X and f(x) ∈ [0,∞[ for each x ∈ dom f ,
(ii) there is a non-decreasing sequence 〈fn〉n∈N of non-negative simple functions such that supn∈N

∫
fn <

∞ and limn→∞ fn(x) = f(x) for almost every x ∈ X.

122I Lemma If f and 〈fn〉n∈N are as in 122H, then

supn∈N

∫
fn = sup{

∫
g : g is a simple function and g ≤a.e. f}.

122J Lemma Let (X,Σ, µ) be a measure space.
(a) If f is a function defined on a conegligible subset of X and taking values in [0,∞[, then f ∈ U iff

there is a conegligible measurable set E ⊆ dom f such that

(α) f↾E is measurable,
(β) for every ǫ > 0, µ{x : x ∈ E, f(x) ≥ ǫ} < ∞,
(γ) sup{

∫
g : g is a simple function, g ≤a.e. f} < ∞.

(b) Suppose that f ∈ U and that h is a function defined on a conegligible subset of X and taking values
in [0,∞[. Suppose that h ≤a.e. f and there is a conegligible F ⊆ X such that h↾F is measurable. Then
h ∈ U .

122K Definition Let (X,Σ, µ) be a measure space. For f ∈ U , set
∫
f = sup{

∫
g : g is a simple function and g ≤a.e. f}.

122L Lemma Let (X,Σ, µ) be a measure space.
(a) If f , g ∈ U then f + g ∈ U and

∫
f + g =

∫
f +

∫
g.

(b) If f ∈ U and c ≥ 0 then cf ∈ U and
∫
cf = c

∫
f .

(c) If f , g ∈ U and f ≤a.e. g then
∫
f ≤

∫
g.

(d) If f ∈ U and g is a function with domain a conegligible subset of X, taking values in [0,∞[, and equal
to f almost everywhere, then g ∈ U and

∫
g =

∫
f .

(e) If f1, g1, f2, g2 ∈ U and f1 − f2 = g1 − g2, then
∫
f1 −

∫
f2 =

∫
g1 −

∫
g2.

122M Definition Let (X,Σ, µ) be a measure space. A real-valued function f is integrable, or
integrable over X, or µ-integrable over X, if it is expressible as f1 − f2 with f1, f2 ∈ U , and in this
case its integral is

∫
f =

∫
f1 −

∫
f2.
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123D The convergence theorems 5

122O Theorem Let (X,Σ, µ) be a measure space.
(a) If f and g are integrable over X then f + g is integrable and

∫
f + g =

∫
f +

∫
g.

(b) If f is integrable over X and c ∈ R then cf is integrable and
∫
cf = c

∫
f .

(c) If f is integrable over X and f ≥ 0 a.e. then
∫
f ≥ 0.

(d) If f and g are integrable over X and f ≤a.e. g then
∫
f ≤

∫
g.

122P Theorem Let (X,Σ, µ) be a measure space and f a real-valued function defined on a conegligible
subset of X. Then the following are equiveridical:

(i) f is integrable;
(ii) |f | ∈ U and there is a conegligible set E ⊆ X such that f↾E is measurable;
(iii) there are a g ∈ U and a conegligible set E ⊆ X such that |f | ≤a.e. g and f↾E is measurable.

122Q Remark The condition ‘there is a conegligible set E such that f↾E is measurable’ recurs so often
that I think it worth having a phrase for it; I will call such functions virtually measurable, or µ-virtually
measurable if it seems necessary to specify the measure.

122R Corollary Let (X,Σ, µ) be a measure space.
(a) A non-negative real-valued function, defined on a subset of X, is integrable iff it belongs to U .
(b) If f is integrable over X and h is a real-valued function, defined on a conegligible subset of X and

equal to f almost everywhere, then h is integrable, with
∫
h =

∫
f .

(c) If f is integrable over X, f ≥ 0 a.e. and
∫
f ≤ 0, then f = 0 a.e.

(d) If f and g are integrable over X, f ≤a.e. g and
∫
g ≤

∫
f , then f =a.e. g.

(e) If f is integrable over X, so is |f |, and |
∫
f | ≤

∫
|f |.

Version of 18.11.04

123 The convergence theorems

The great labour we have gone through so far has not yet been justified by any theorems powerful enough
to make it worth while. We come now to the heart of the modern theory of integration, the ‘convergence
theorems’, describing conditions under which we can integrate the limit of a sequence of integrable functions.

123A B.Levi’s theorem Let (X,Σ, µ) be a measure space and 〈fn〉n∈N a sequence of real-valued func-
tions, all integrable over X, such that (i) fn ≤a.e. fn+1 for every n ∈ N (ii) supn∈N

∫
fn < ∞. Then

f = limn→∞ fn is integrable, and
∫
f = limn→∞

∫
fn.

Remarks The statement ‘f is integrable’ includes the assertion ‘f is defined, as a real number, almost
everywhere’.

123B Fatou’s Lemma Let (X,Σ, µ) be a measure space, and 〈fn〉n∈N a sequence of real-valued functions,
all integrable over X. Suppose that every fn is non-negative a.e., and that lim infn→∞

∫
fn < ∞. Then

lim infn→∞ fn is integrable, and
∫
lim infn→∞ fn ≤ lim infn→∞

∫
fn.

123C Lebesgue’s Dominated Convergence Theorem Let (X,Σ, µ) be a measure space and 〈fn〉n∈N

a sequence of real-valued functions, all integrable over X, such that f(x) = limn→∞ fn(x) exists in R for
almost every x ∈ X. Suppose moreover that there is an integrable function g such that |fn| ≤a.e. g for every
n. Then f is integrable, and limn→∞

∫
fn exists and is equal to

∫
f .

123D Corollary Let (X,Σ, µ) be a measure space and ]a, b[ a non-empty open interval in R. Let
f : X × ]a, b[ → R be a function such that

(i) the integral F (t) =
∫
f(x, t)dx is defined for every t ∈ ]a, b[;

(ii) the partial derivative ∂f
∂t

of f with respect to the second variable is defined everywhere in
X × ]a, b[;

(iii) there is an integrable function g : X → [0,∞[ such that |∂f
∂t
(x, t)| ≤ g(x) for every x ∈ X

and t ∈ ]a, b[.

Then the derivative F ′(t) and the integral
∫

∂f
∂t
(x, t)dx exist for every t ∈ ]a, b[, and are equal.
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6 Concordance

Version of 21.12.03

Concordance for Chapter 12

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

121Yb (Σ,T)-measurable functions Exercise 121Yb in the 2000 and 2001 editions, referred to in the
2001 and 2003 editions of Volume 2, has been moved to 121Yc.
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