Frenchi 852

1er et 8 Décembre 1983

Séminaire Initiation à l'Analyse

G. CHOQUET, M. ROGALSKI, J. SAINT RAYMOND 23e année, 1983/84, n° 5, 13 p.

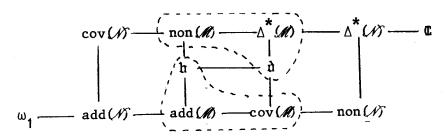
CICHOŃ'S DIAGRAM

par D.H. FREMLIN

In this note I discuss the relationships between ten cardinal numbers lying between ω_1 and C, related to category and measure. I learnt this material from J. Cichon (University of Wroclaw), who was closely involved with its evolution into its present form.

The principal results are encapsulated in the diagram of § 1; this is interpreted in §§ 2-3 and proved in §§ 4-17.

1. THE DIAGRAM.



2. DEFINITIONS. (a) $\mathscr N$ is the ideal of Lebesgue negligible subsets of $\mathbb R:\mathscr M$ is the ideal of meagre subsets of $\mathbb R$.

(b) For
$$\mathcal{I} = \mathcal{M}$$
 or $\mathcal{I} = \mathcal{N}$,

$$\operatorname{add}(\mathscr{I}) = \min\{\#(\mathscr{E}) : \mathscr{E} \subseteq \mathscr{I}, \ \cup \mathscr{E} \notin \mathscr{I}\}$$

(the additivity of the ideal);

$$cov(\mathcal{I}) = min\{\#(\mathcal{E}) : \mathcal{E} \subseteq \mathcal{I}, \cup \mathcal{E} = R\}$$
;

$$non(\mathscr{I}) = min\{\#(A) : A \subseteq R, A \notin \mathscr{I}\}$$
.

(c) For any partially ordered set P,

$$\Delta^*(P) = \min\{\#(Q) : Q \subseteq P \text{ is cofinal with } P\}$$
,

$$\Delta_*(P) = \min\{\#(Q) : Q \subseteq P \text{ is coinitial with } P\}$$
.

Thus if $\mathcal{I} = \mathcal{M}$ of $\mathcal{I} = \mathcal{N}$,

$$\Delta^*(\mathcal{I}) = \min\{\#(\mathcal{E}) : \mathcal{I} = \cup_{E \in \mathcal{E}} \mathcal{I}_E^*\}.$$

(d) For f , g $\in \mathbb{N}^{\mathbb{N}}$ say that f \leq g ("g eventually dominates f") if $\{n:g(n)< f(n)\}$ is finite. Now

$$h = \min\{\#(B) : B \subseteq \cancel{N}^{N}, \not\exists g \in \cancel{N}^{N}, f \leq^* g \quad \forall f \in B\},$$

$$\hat{n} = \min\{\#(D) : D \subseteq N^{N}, \forall f \in N^{N} \exists g \in D, f \leq^* g\}$$
$$= \Delta^*(N^{N}).$$

3. INTERPRETATION OF THE DIAGRAM. The cardinals increase (not necessarily strictly) from south-west to north-east; thus

$$\omega_1 \leq \operatorname{add}(\mathcal{N}) \leq \operatorname{add}(\mathcal{M}) \leq h \leq h \leq h \leq \Delta^*(\mathcal{M}) < \dots$$

but nothing is said about the relative sizes of n and non(N). The two closed curves, indicated by lines of dashes, represent the further known relations

add(
$$M$$
) = min(h , cov(M)), $\Delta^*(M)$ = max(\hat{h} , non(M)).

4. PROPOSITION. (a) $\omega_1 \leq add(\mathcal{N})$. (b) $\Delta^*(\mathcal{N}) \leq \mathcal{I}$.

Proof (a) This says just that Lebesgue measure is countably additive.

- (b) This is because $\mathscr{B} \cap \mathscr{N}$ is cofinal with \mathscr{N} , where \mathscr{B} is the algebra of Borel subsets of R, and $\#(\mathscr{B}) = C$.
- 5. PROPOSITION. For $\mathcal{I} = \mathcal{M}$ or $\mathcal{I} = \mathcal{N}$, $(\underline{a}) \quad add(\mathcal{I}) \leq cov(\mathcal{I}) , \quad (\underline{b}) \quad non(\mathcal{I}) \leq \underline{\Delta}^*(\mathcal{I}) .$

 $\frac{\text{Proof }(\underline{a}) \text{ This is because } \underset{E}{\mathbb{R}} \not\in \mathscr{I} \text{ . } (\underline{b}) \text{ Let } \mathscr{E} \subseteq \mathscr{I} \text{ be a cofinal set of cardinal }}{\Delta^{\bigstar}(\mathscr{I}) \text{ ; for each } E \in \mathscr{E} \text{ choose } \alpha_{\underline{E}} \in \mathbb{R} \setminus E \text{ ; then } \{\alpha_{\underline{E}} : E \in \mathscr{E}\} \not\in \mathscr{I} \text{ .}}$

6. LOCALIZATION. I write

$$\mathcal{S} = \{S : S \subseteq N \times N, \#\{j : (i,j) \in S\} \leq i \quad \forall i \in N\}.$$
For $f \in N^N$, $S \subseteq N \times N$ I write $f \subseteq S$ if
$$\{i : i \in N, (i,f(i)) \notin S\}$$

is finite.

7. <u>LEMMA</u>. There are functions $f\mapsto V_f: \stackrel{\mathbb{N}}{\longleftarrow} +_{\mathscr{N}}$ and $E \to R_E: \mathscr{N} \to \mathscr{S}_0$ such that $f \subseteq R_E^*$ whenever $V_f \subseteq E$.

Proof. Write

$$\mathcal{S}_{1} = \{s : s \subseteq \underline{\mathbb{N}} \times \underline{\mathbb{N}}, \#\{j : (i,j) \in s\} \leq (i+1)^{2} \ \forall \ i \in \underline{\mathbb{N}}\}.$$

Let μ_L be Lebesgue measure. Take any μ_L -independent double sequence $< G_{ij} >_{i,j \in \mathbb{N}}$ of open subsets of]0,1[such that $\mu_L G_{ij} = 1/(i+1)^2$ for all $i,j \in \mathbb{N}$. For each $f \in \mathbb{N}^{\mathbb{N}}$ set

$$V_f' = \bigcap_{n \in \mathbb{N}} U_{i \geq n}^G G_{i,f(i)}$$
.

Because $\Sigma_{i \in N} \mu_L G_{i,f(i)} < \infty$, $V_f^* \in \mathscr{N}$. For each $E \in \mathscr{N}$ choose a compact non-empty set $K_E \subseteq [0,1[\setminus E \text{ which is "supporting", i.e. such that } \mu_L(K_E \cap U) > 0$ whenever U is an open set meeting K_E . Enumerate as $\{U_n^E\}_{n \in N}$ a base for the relative topology of K_E which does not contain \emptyset . Set

$$A(E,n,i) = \{j : v_n^E \cap G_{ij} = \emptyset\} \ \forall \ i,n \in N$$

Then

$$0 < \mu_{\text{L}} \mathbf{U}_{\text{n}}^{\text{E}} \leq \mathbf{II}_{\mathbf{i} \in \mathbf{N}} \mathbf{II}_{\mathbf{j} \in \mathbf{A}(\mathbf{E}, \mathbf{n}, \mathbf{i})} \mu_{\text{L}}(\mathbf{l}0, \mathbf{1I} \setminus \mathbf{G}_{\mathbf{i}\mathbf{j}})$$

because the G_{ij} are independent subsets of the probability space]0,1[; that is,

$$0 < \prod_{i \in \mathbb{N}} (1 - \frac{1}{(i+1)} 2) \#(A(E,n,i))$$
,

and $\Sigma_{i\in \mathbb{N}}$ $\#(A(E,n,i))/(i+1)^2 < \infty$. Let $k(E,n) \in \mathbb{N}$ be such that $\#(A(E,n,i)) \le (i+1)^2/2^{n+1}$ for $i \ge k(E,n)$. Set

$$R_{E}^{!} = U_{n \in N} \{(i,j) : i \ge k(E,n), j \in A(E,n,i)\}$$
.

It is easy to see that $R_E^{\dagger} \in \mathcal{S}_1$.

Now suppose that $f\in \c N^{\c N}$ and $E\in \ensuremath{\mathscr{N}}$ and $V_f^{\:\raisebox{3.5pt}{\text{!`}}}\subseteq E$. Then

$$K_{E} \cap \bigcap_{n \in \mathbb{N}} \bigcup_{i \geq n} G_{i,f(i)} = \emptyset$$
;

by Baire's theorem, there are m , n $\in \mathbb{N}$ such that

$$v_n^E \cap v_{i \geq m}^{G} G_{i,f(i)} = \emptyset$$
.

Thus $f(i) \in A(E,n,i)$ for every $i \ge m$, and $(i,f(i)) \in R_E^{\bullet}$ for every $i \ge \max(m,k(E,n))$; so that $f \subseteq R_E^{\bullet}$.

This, in effect, proves the lemma with \mathscr{S}_1 in place of \mathscr{S}_0 . To convert to \mathscr{S}_0 , set

$$L(n) = \{i : i \in \mathbb{N}, (n+1)^2 \le i < (n+2)^2\}$$

and let $\theta_n: N^{L(n)} \to N$ be in injection, for each $n \in N$. For $E \in \mathcal{N}$, set

$$R_{E} = \bigcup_{n \in \mathbb{N}} \{(i,j) : i \in L(n), \exists h \in \mathbb{N}^{L(n)}, h(i) = j \text{ and } (n,\theta_{n}(h)) \in R_{E}^{\dagger}\};$$

then $R_E \in \mathcal{S}_0$ because $R_E^{\bullet} \in \mathcal{S}_1$. For $f \in \mathbb{N}^{\mathbb{N}}$ set $V_f = V_g^{\bullet}$ where $g(n) = \theta_n(f \upharpoonright L(n))$ for each $n \in \mathbb{N}$. If $V_f \subseteq E$ then $g \subseteq R_E^{\bullet}$, i.e. there is an $m \in \mathbb{N}$ such that $(n, \theta_n(f \upharpoonright L(n))) \in R_E^{\bullet}$ for every $n \ge m$; now $(i, f(i)) \in R_E$ for every $i \ge (m+1)^2$, so $f \subseteq R_E^{\bullet}$.

8. <u>LEMMA.</u> Let $U \subseteq R$ be a non-empty open set, and $n \in \mathbb{N}$. Then there is a countable family $\mathscr V$ of open subsets of U such that (i) every dense open subset of R includes some member of $\mathscr V$ (ii) $\cap_{i \le n} V_i \neq \emptyset$ whenever $V_0, \dots, V_n \in \mathscr V$.

<u>Proof.</u> Let $\langle U_n \rangle_{n \in \mathbb{N}}$ enumerate a countable base for the relative topology of U, not containing \emptyset , and closed under finite unions. For $k \in \mathbb{N}$, set

$$A_k = \{n : n > k , U_n \cap \cap_{i \in I} U_i \neq \emptyset \text{ whenever } I \subseteq k + 1 \}$$

and $\bigcap_{i \in I} U_i \neq \emptyset \}$.

Set

$$\mathscr{Y} = \{ \bigcup_{\underline{i} \leq n} \mathbb{U}_{\underline{m}_{\underline{i}}} : m_{\underline{o}} \in \mathbb{N} , m_{\underline{i}+1} \in A_{\underline{m}_{\underline{i}}} \forall i < n \} .$$

(i) If G is a dense open subset of R, then (because $\{U_n:n\in\mathbb{N}\}$ is closed under finite unions) A_k meets $\{n:U_n\subseteq G\}$ for every $k\in\mathbb{N}$; so we can choose $\{m_i\}_{i\leq n}$ inductively such that

$$U_{m_{i}} \subseteq G \quad \forall i \leq n , m_{i+1} \in A_{m_{i}} \quad \forall i < n .$$

Now $G \supseteq U_{i \le n} U_{m_i} \in \mathscr{V}$.

 $\underbrace{(\text{ii})}_{} \text{ If } V_o, \ldots, V_n \in \mathscr{V}, \text{ express each } V_j \text{ as } \bigcup_{\substack{i \leq n \\ m(j,i)}} U_{m(j,i)} \text{ where } \\ m(j,i+1) \in A_{m(j,i)} \text{ for } i < n \text{ ; re-order the } V_j \text{ if necessary so that } \\ m(i,i) \leq m(j,i) \text{ if } i \leq j \leq n \text{ . In this case }$

$$m(i+1,i+1) \in A_{m(i+1,i)} \subseteq A_{m(i,i)} \forall i < n$$

and (inducing on k)

$$\bigcap_{i \le k} U_{m(i,i)} \neq \emptyset \quad \forall \ k \le n .$$

So

$$\bigcap_{j \leq n} V_j \stackrel{\supseteq}{=} \bigcap_{j \leq n} U_{m(j,j)} \neq \emptyset ,$$

as required.

9. <u>LEMMA</u>. There are functions $F \mapsto g_F : \mathcal{M} \to \mathbb{N}^N$ and $S \mapsto W_S : \mathcal{G} \to \mathcal{M}$ such that $F \subseteq W_S$ whenever $g_F \subseteq S$.

<u>Proof.</u> Let $\langle U_n \rangle_{n \in \mathbb{N}}$ enumerate a countable base for the topology of \mathbb{R} , not containing \emptyset . For each $n \in \mathbb{N}$, construct \mathscr{V}_n from U_n and n as in Lemma 8. Let $\langle V(n,m) \rangle_{m \in \mathbb{N}}$ enumerate \mathscr{V}_n .

For $F \in \mathcal{M}$ express F as $\bigcup_{n \in \mathbb{N}} H^F$ where $\langle H^F_n \rangle_{n \in \mathbb{N}}$ is an increasing sequence of nowhere dense sets, and choose $g_F : \mathbb{N} \to \mathbb{N}$ such that $H^F_n \cap V(n, g_F(n)) = \emptyset$ for each $n \in \mathbb{N}$ (using (i) of Lemma 8). For $S \in \mathcal{S}$ set

$$W_{S} = \underset{\sim}{\mathbb{R}} \setminus \bigcap_{n \in \mathbb{N}} \bigcup_{m \geq n} \bigcap_{(m, i) \in S} V(m, i) .$$

Because

$$\emptyset \neq \bigcap_{(m,i) \in S} V(m,i) \subseteq U_m$$

for every $m \in \mathbb{N}$, $U_{m \ge n} \cap (m, i) \in S^{V(m, i)}$ is dense for each $n \in \mathbb{N}$, and $W_S \in \mathcal{M}$.

If $g_F \subseteq S$ there in an n_o such that $(m, g_F(m)) \in S$ for every $m \ge n_o$; now

$$\mathsf{U}_{\mathsf{m}>\mathsf{n}} \mathsf{\cap}_{(\mathsf{m},\mathsf{i}) \in \mathsf{S}} \mathsf{V}(\mathsf{m},\mathsf{i}) \subseteq \mathsf{U}_{\mathsf{m}>\mathsf{n}} \mathsf{V}(\mathsf{m},\mathsf{g}_{\mathsf{F}}(\mathsf{m}))$$

does not meet $\begin{picture}(0,0) \put(0,0){\line(0,0){120}} \put(0,0){\$

10. <u>COROLLARY</u>. There are functions $F \mapsto V_F^* : \mathcal{M} + \mathcal{N}$ and $E + W_E^* : \mathcal{N} + \mathcal{M}$ such that $F \subseteq W_E^*$ whenever $V_F^* \subseteq E$.

Proof. Compose the functions of Lemma 7 and 9.

11. THEOREM. (a) $add(N) \leq add(N)$. (b) $\Delta^*(N) \leq \Delta^*(N)$.

<u>Proof.</u> Take V_F^* , W_E^* from Corollary 10.

(a) If $\mathscr{F} \subseteq \mathscr{M}$ and $\mathscr{H}(\mathscr{F})$ < add (N), then

$$E = U_{F} \mathcal{Y}_{F}^{*} \in \mathcal{N},$$

so $\bigcup \mathscr{F} \subseteq W_{E}^{*} \in \mathscr{M}$.

- (b) Let $\mathscr{E}\subseteq\mathscr{N}$ be a cofinal subset with $\#(\mathscr{E})=\Delta^{\bigstar}(\mathscr{N});$ then $\{W_{\underline{E}}^{\bigstar}:\ \underline{E}\in\mathscr{E}\}$ is cofinal with \mathscr{M} .
- 12. <u>LEMMA</u>. There are functions $f \mapsto C_f : \stackrel{\mathbb{N}}{\sim} \mathcal{M}$ and $F \mapsto h_F : \mathcal{M} \rightarrow \stackrel{\mathbb{N}}{\sim}$ such that $f \leq h_F$ whenever $C_f \subseteq F$.
- <u>Proof.</u> (a) Give $\mathscr{P}_{\mathbb{N}}$ the compact metrizable topology obtained by identifying it with $\{0,1\}^{\mathbb{N}}$. Then the set $\left[\mathbb{N}\right]^{\omega}$ of infinite subsets of \mathbb{N} is a dense G_{δ} subset of $\mathscr{P}_{\mathbb{N}}$ with dense complement, so is homeomorphic to $\mathbb{R} \setminus \mathbb{Q}$ ([6], § 36.II, Theorem 3). Let $\phi: \mathbb{R} \setminus \mathbb{Q} \to \left[\mathbb{N}\right]^{\omega}$ be a homeomorphism.
- (b) If $H \subseteq [N]^{\omega}$ is nowhere dense and $n \in N$, there are an m > n and a set $I \subseteq m \setminus n$ such that

$$H \cap \{a : a \in [N]^{\omega}, a \cap m \setminus n = I\} = \emptyset$$
.

To see this, observe that $a \to a \triangle J$: $\left[\underbrace{N} \right]^{\omega} \to \left[\underbrace{N} \right]^{\omega}$ is a self-inverse homeormorphism for every finite $J \subseteq \underbrace{N}$, so that

$$\widetilde{H} = \{a \Delta J : a \in H, J \subseteq n\}$$

is a finite union of nowhere dense sets and is nowhere dense. Consequently there are an m>n and an $I_0\subseteq m$ such that

$$\widetilde{H} \cap \{a : a \cap m = I_o\} = \emptyset$$
.

Take $I_0 = I \setminus n$ and see that if $a \cap m \setminus n = I$ there is a $J \subseteq n$ such that $(a \triangle J) \cap m = I_0$, so that $a \notin H$.

(c) For $f \in \mathbb{N}^{\frac{N}{N}}$ define $\widetilde{f}(n) = n + \max_{i \le 2n} f(i)$ for each $n \in \mathbb{N}$, so that f is strictly increasing. Set

$$C_f = \{\alpha : \alpha \in \mathbb{R} \setminus \mathbb{Q}, \phi(\alpha) \supseteq \widetilde{f}[N]\}$$
,

so that C_f is the inverse image of a compact nowhere dense subset of $\left[N\atop N\right]^\omega$, and is nowhere dense in $R \setminus Q$, therefore nowhere dense in R.

$$h_{_{\mathbf{F}}}(0) = 0 ,$$

$$h_F^{(n+1)} > h_F^{(n)}$$
, $I_n^F \subseteq h_F^{(n+1)} \setminus h_F^{(n)}$,

$$H_n^F \cap \{a : a \cap h_F(n+1) \setminus h_F(n) = I_n^F\} = \emptyset$$

for every $n \in N$.

 (\underline{e}) If now $f \in \underline{N}^{\underline{N}}$, $F \in \mathcal{M}$ and $C_f \subseteq F$, set

$$\mathtt{a} = \widetilde{\mathtt{f}}[\underline{\mathtt{N}}] \ \mathtt{U} \ \mathtt{U}_{n \in \mathtt{N}} \mathtt{I}_{n}^{\mathtt{F}} \in \left[\mathtt{N}\right]^{\omega} \ .$$

As $a \supseteq \widetilde{f}[N]$, $\phi^{-1}(a) \in C_f \subseteq F$, and there is an r such that $a \in H_r^F$; now $a \cap h_F(n+1) \setminus h_F(n) \neq I_n^F$ for every $n \ge r$, so

$$\widetilde{f}[N] \cap h_{F}(n+1) \setminus h_{F}(n) \neq \emptyset \quad \forall n \geq r$$
.

Consequently $\widetilde{f}(k) < h_{\widetilde{F}}(k+r+1)$ for every $k \in N$, and $f \leq h_{\widetilde{F}}$.

13. PROPOSITION. (\underline{a}) add $(M) \leq h$. (b) $h \leq \Delta^*(M)$.

- <u>Proof.</u> (a) If $B \subseteq \mathbb{N}^{\mathbb{N}}$ and $\#(B) < \operatorname{add}(\mathbb{M})$, set $F = U_{f \in B}C_{f}$ in Lemma 12, and see that $f \leq h_{F}$ for every $f \in B$.
- (b) Let $\mathscr{F}\subseteq \mathscr{M}$ be a cofinal set with $\mathscr{H}(\mathscr{F})=\Delta^{\bigstar}(\mathscr{M})$; set $D=\{h_F:F\in\mathscr{F}\}$; then for every $f\in \mathbb{N}^{\mathbb{N}}$ there is an $h\in D$ with $f\leq^{\bigstar}h$.
- 14. PROPOSITION. (a) $min(\hat{t}, cov(M)) \leq add(M)$. (b) $max(\hat{t}, non(M)) \geq \Delta^*(M)$.

<u>Proof.</u> Enumerate Q as $<q_n>_{n\in\mathbb{N}}$. For $\alpha\in\mathbb{R}$, $f\in\mathbb{N}^{\mathbb{N}}$ set

$$W_{\alpha f} = \mathbb{R} \setminus \bigcap_{n \in \mathbb{N}} \bigcup_{m \ge n}]_{\alpha + q_n - 2^{-f(n)}}, \alpha + q_n + 2^{-f(n)} [\in \mathcal{M}.$$

If H is an F_{σ} set and $\alpha \in R \setminus (H + Q)$, there is a $g \in \mathbb{N}^{N}$ such that $H \subseteq W_{\alpha f}$ whenever $g \leq^* f$. To see this, express H as $U_{n \in \mathbb{N}} H_n$ where $\langle H_n \rangle_{n \in \mathbb{N}}$ is an increasing sequence of closed sets, and choose g such that

$$H_n \cap]\alpha + q_n - 2^{-g(n)}, \alpha + q_n + 2^{-g(n)}[= \emptyset \forall n \in \mathbb{N}.$$

- (a) If $\mathscr{F} \subseteq \mathscr{M}$ and $\mathscr{H}(\mathscr{F}) < \min(\mathfrak{h}, \operatorname{cov}(\mathscr{M}))$, then choose for each $F \in \mathscr{F}$ a meagre $F_{\mathcal{O}}$ set $H_{F} \supseteq F$. As $\mathscr{H}(\mathscr{F}) < \operatorname{cov}(\mathscr{M})$, there is an $\alpha \in \mathbb{R} \setminus \bigcup_{F \in \mathscr{F}, q \in \mathbb{Q}} (H_{F} + q)$. Next, for each $F \in \mathscr{F}$, there is a $g_{F} \in \mathbb{N}^{\mathbb{N}}$ such that $H_{F} \subseteq W_{\alpha f}$ whenever $g_{F} \leq^{*} f$. But as $\mathscr{H}(\mathscr{F}) < \mathfrak{h}$, there is an $f \in \mathbb{N}^{\mathbb{N}}$ such that $g_{F} \leq^{*} f$ for every $F \in \mathscr{F}$, and now $U\mathscr{F} \subseteq W_{\alpha f} \in \mathscr{M}$.
 - (b) Let $A \subseteq \mathbb{R}$, $D \subseteq \mathbb{N}^{\mathbb{N}}$ be such that

$$\#(A) = non(\mathcal{M})$$
, $A \notin \mathcal{M}$,

$$\#(D) = \hat{n}, \forall g \in N^{\tilde{N}} \exists f \in D, g \leq^* f$$
.

Set $\mathcal{F} = \{W_{\alpha f} : \alpha \in A, f \in D\}$; then every meagre F_{α} set is included in some member of \mathcal{F} , so \mathcal{F} is cofinal with \mathcal{M} , and

$$\Delta^*(\mathcal{M}) \leq \#(\mathcal{F}) \leq \max(\text{non}(\mathcal{M}), \hat{\mathfrak{n}})$$
.

15. PROPOSITION. (a) $cov(\mathcal{M}) \leq non(\mathcal{N})$. (b) $cov(\mathcal{N}) \leq non(\mathcal{M})$.

<u>Proof.</u> There is a comeagre $E \in \mathcal{N}$ (take $E = R \setminus W_{Of}$ in Proposition 14, where f(n) = n for every $n \in N$).

- (a) Take $A \subseteq \mathbb{R}$ such that $\#(A) = \operatorname{non}(\mathbb{M})$ and $A \not\in \mathbb{M}$. Then $(A + \beta) \cap E \neq \emptyset$ for every $\beta \in \mathbb{R}$, so $E A = \mathbb{R}$ i.e. $\{E \alpha : \alpha \in A\}$ is a cover of \mathbb{R} by negligible sets, and $\operatorname{cov}(\mathbb{M}) \leq \#(A) = \operatorname{non}(\mathbb{M})$.
 - (b) Similarly, using $\mathbb{R} \setminus \mathbb{E} \in \mathcal{M}$ in place of $\mathbb{E} \in \mathcal{N}$.
- 16. PROPOSITION. (a) $\mathfrak{h} \leq non(M)$. (b) $\mathfrak{h} \geq cov(M)$.

<u>Proof.</u> Let $\phi: \mathbb{N}^{\mathbb{N}} \to \mathbb{R} \setminus \mathbb{Q}$ be a homeomorphism ([6], § 36.II, Theorem 3).

(a) Let $A \subseteq \mathbb{R}$ be a non-meagre set of cardinal $\operatorname{non}(\mathscr{M})$. Set $B = \phi^{-1}[A] \subseteq \mathbb{N}^{\mathbb{N}}$. As $A \searrow \mathscr{M}$, there is no $K_{\mathcal{O}}$ subset of $\mathbb{R} \searrow \mathbb{Q}$ including $A \searrow \mathbb{Q}$, and there is no $K_{\mathcal{O}}$ subset of $\mathbb{N}^{\mathbb{N}}$ including B. But

$$M_g = \{f : f \leq g\}$$

is K_{σ} in N^{N} for every $g \in N^{N}$. So there is no g with $f \leq g$ for every $f \in B$, and $h \leq \#(B) = \text{non}(M)$.

- $(\underline{b}) \ \ \text{Let} \ \ D \subseteq \underline{\mathbb{N}}^{\underline{N}} \ \ \text{be a cofinal set of cardinal } \underline{\mathfrak{N}} \ \ . \ \ \text{Then}$ $\mathscr{F} = \{\phi[\underline{M}_g] : g \in D\} \cup \{Q\} \subseteq \mathscr{M} \ \ \text{is a cover of} \ \ \underline{\mathbb{R}} \ \ , \ \text{so} \ \ \text{cov}(\mathscr{M}) \leq \#(\mathscr{F}) = \underline{\mathfrak{N}} \ .$
- 17. PROPOSITION. h < h.

Proof. Evident.

- 18. <u>REMARK</u>. I have deliberately organized this proof in such a way as to emphasiez the symmetry of the diagram about its centre. I should note like to suggest, however, that there is anything definitive about this apparent symmetry.
- 19. ON THE POSSIBLE VALUES OF THESE CARDINALS. (a) If we suppose that $\mathbf{C} = \boldsymbol{\omega}_2$ then the diagram allows 23 assignments of the values $\boldsymbol{\omega}_1$, $\boldsymbol{\omega}_2$ to the ten cardinals. I understand from J. Cichon and A.W. Miller that models have been found for all but the following:

(In the patterns above, 0 stands for ω_1 and \bullet stands for ω_2) .

- (b) Apart from the restrictions on the relative magnitudes of the ten cardinals encoded in the diagram, there are restrictions on their cofinalities, as follows.
- (i) If \mathscr{I} is either \mathscr{M} or \mathscr{N} , then $\operatorname{add}(\mathscr{I})$ must be regular. Moreover, both $\operatorname{cf}(\operatorname{non}(\mathscr{I}))$ and $\operatorname{cf}(\Delta^*(\mathscr{I}))$ must be at least $\operatorname{add}(\mathscr{I})$. (For the latter, suppose that $\operatorname{cf}(\Delta^*(\mathscr{I})) = \lambda$. Then there is a cofinal $\mathscr{E} \subseteq \mathscr{I}$ expressible as $\bigcup_{\xi < \lambda} \mathscr{E}_{\xi}$ where $\#(\mathscr{E}_{\xi}) < \Delta^*(\mathscr{I})$ for each $\xi < \lambda$. For each $\xi < \lambda$ let E_{ξ} be a member of \mathscr{I} not included in any member of \mathscr{E}_{ξ} . Then $\bigcup_{\xi < \lambda} E_{\xi}$ does not belong to \mathscr{I} . A similar technique shows that $\operatorname{cf}(\operatorname{non}(\mathscr{I})) \geq \operatorname{add}(\mathscr{I})$.) The same ideas can be used to show that h is regular and that $\operatorname{cf}(h) > h$ (see also 20e below).
- (ii) Another restriction appears as follows: if $\mathscr I$ is either $\mathscr M$ or $\mathscr N$, and if $\operatorname{cov}(\mathscr I) = \Delta^*(\mathscr I) = \kappa$, then $\operatorname{cf}(\kappa) \geq \operatorname{non}(\mathscr I)$. To see this, observe that under these conditions each E_ξ in the argument of the last paragraph can be taken to be a singleton.
- (iii) It follows that every cardinal in the diagram has uncountable cofinality except perhaps cov(M) and cov(N). (Of course $cf(\mathbf{E}) \geq \omega_1$ by König's theorem). A.W. Miller has shown ([8]) that $cf(cov(M)) \geq \omega_1$.

I see no reason to believe that this list of restrictions on cofinalities is complete.

20. ALTERNATIVE DEFINITIONS OF THE CARDINALS. (a) The cardinal add(N) can be characterized as

min {#(B) :
$$B \subseteq N^{N}$$
, $\forall S \in \mathcal{S}_{O} \exists f \in B, f \not\subseteq^{*} S$ }.

This result is essentially due to [1]; the arguments are given in [3] .

 (\underline{b}) The cardinal $\operatorname{cov}(M)$ can be characterized as the largest cardinal κ with the property that

whenever P is a non-empty countable partially ordered set and $\mathcal Q$ is a family of cofinal subsets of P with $\#(\mathcal Q)$ < κ , there is an upwards-directed subset of P which meets every member of $\mathcal Q$.

See [8] or [4].

- (c) The cardinal $\Delta^*(\mathcal{N})$ can be characterized in any of the following ways.
 - (i) It is

min $\{\#(\mathcal{S}): \mathcal{S}\subseteq \mathcal{S}, \forall f \in \mathbb{N}^{\mathbb{N}} \exists s \in \mathcal{S}, f \subseteq^* s\}$

- (\underline{ii}) It is $\Delta_{f x}(\Sigma_{f L})$, where $\Sigma_{f L}$ is the algebra of Lebesgue measurable sets.
- (iii) It is $\Delta_{\star}(A_L \setminus \{0\})$, where $A_L = \Sigma_L / \mathcal{N}$ is the Lebesgue measure algebra.

See [2].

- $(\underline{d}) \quad \Delta^{\bigstar}(\mathscr{M}) = \Delta_{\bigstar}(\widehat{\mathscr{M}}) \quad \text{where } \widehat{\mathscr{R}} \quad \text{is the algebra of subsets of } \underset{\sim}{\mathbb{R}} \quad \text{with the}$ Baire property. (Note however that $\Delta_{\bigstar}((\widehat{\mathscr{R}}(\mathscr{M}) \setminus \{0\}) = \omega) \quad .$
- (e) Let $\mathscr K$ be the σ -ideal of subsets of N^{N} generated by the compact sets; then $h = \operatorname{add}(\mathscr K) = \operatorname{non}(\mathscr K)$ and $h = \operatorname{cov}(\mathscr K) = \Delta^*(\mathscr K)$. Other characterizations of h are given in [5].
- 21. SOURCES. The oldest results here are those of F. Rothberger; $\operatorname{cov}(M) \leq \operatorname{non}(N)$ and $\operatorname{cov}(N) \leq \operatorname{non}(M)$ are given in [12], and $\mathfrak{h} \leq \operatorname{non}(M)$ is given in [13]. For the next forty years it was widely supposed that the relationship between M and N was essentially symmetrical, though I understand that K. Kunen conjectured in the 1970s that $\operatorname{add}(N) \leq \operatorname{add}(M)$. The fact that $\min(\mathfrak{h}, \operatorname{cov}(M)) \leq \operatorname{add}(M)$ is implicit in [14]; A.W. Miller ([7]) made it explicit, and observed that they are in fact equal. Miller also found that $\operatorname{add}(N) \leq \mathfrak{h}$, and began work on the opposite corner of the diagram with $\mathfrak{h} \leq \Delta^*(N)$ ([9]); but the results which made the diagram planar, $\operatorname{add}(N) \leq \operatorname{add}(M)$ and $\Delta^*(M) \leq \Delta^*(N)$, were due independently to T. Bartoszyński ([1]) and J. Raisonnier & J. Stern ([11]) . Both relied on the essential idea of Lemma 7. The arguments of Lemma 8-9 were given to me by J. Pawlikowski ([10]) . Lemma 12 is based on ideas in [7].

- 22. PROBLEMS. (a) Can cov(1) have countable cofinality? (See [8]).
 - (b) Are any of the configurations of 19a impossible?

REFERENCES

- [1] BARTOSZYŃSKI T.
 - "Additivity of measure implies additivity of category". Trans. Amer. Math. Soc. 281 (1984) 209-213.
- [2] CICHOŃ J., KAMBURELIS T & PAWLIKOWSKI J.
 - "On dense subsets of the measure algebra". Proc. Amer. Math. Soc.
- [3] FREMLIN D.H.
 - "On the additivity and base-numbers of Radon measures". Submitted to Mathematika.
- [4] FREMLIN D.H. & SHELAH S.
 - "On partitions of the real line" Israël J. Math. 32 (1979) 299-304.
- [5] HECHLER S.H.
 - "On a ubiquitous cardinal". Proc. Amer. Math. Soc. 52 (1975) 348-355.
- [6] KURATOWSKI K.
 - "Topology". Academic, 1966.
- [7] MILLER A.W.
 - "Some properties of measure and category". Trans. Amer. Math. Soc. 266 (1981) 93-114.
- [8] MILLER A.W.
 - "The Baire category theorem and cardinals of countable cofinality".
 J. Symbolic Logic 47 (1982) 275-288.
- [9] MILLER A.W.
 - Additivity of measure implies dominating reals". Proc. Amer. Math. Soc.
- [10] PAWLIKOWSKI J.
 - Letter of 8 March 1984.

[11] RAISONNIER J. & STERN J.

- "The strength of measurability hypotheses". Preprint.

[12] ROTHBERGER F.

- "Eine Äquivalenz zwischen der Kontinuumhypothese und der Existenz der Lusinschen und Sierpińskischen Mengen". Fund. Math. 30 (1938) 215-217.

[13] ROTHBERGER F.

- "Sur les familles indénombrables de suites de nombres naturels et les problèmes concernant la propriété C" . Proc. Cambridge Phil. Soc. 37 (1941) 109-126.

[14] TRUSS J.

- "Sets having calibre K ".

pp. 595-612 in Logic Colloquium 76 (eds R.O. Gandy & J.M.E. Hyland),
North-Holland, 1977.

D.H. FREMLIN
D. Lect.
Department of Mathematics
UNIVERSITY OF ESSEX
COLCHESTER Essex
England U.K.

University of Essex

Department of Mathematics Wivenhoe Park Colchester CO4 3SQ

from D.H.Fremlin

Tel: Colchester 44144 (STD Code 020 6) Telegraphic address: University Colchester Telex: 98440 (UNILIB COLCHSTR)

Postscript (7.9.90) to "Cichon's Diagram"

If I were re-mriting this now I should use cf(\mathcal{M}), cf(\mathcal{N}) in place of $\Delta^*(\mathcal{M})$, $\Delta^*(\mathcal{N})$.

References to this paper should note that the "Seminaire Choquet-Rogalski-St Raymond" was held **%**at the Université Pierre et Marie Curie, Paris.

The full references for [3], [11] are

D.H.Fremlin, "On the additivity and cofinality of Radon measures", Mathematika 31 (1984) 323-335.

J.Raisonnier & J.Stern, "The strength of measurability hypotheses", Isrmael J. Math. 50 (1985) 337-349.

I understand from J.Ihoda (letter of 20.10.87) that he and S.Shelah have shown the consistency of all the six diagrams of pp. 5-10 and 5-11.

T.Bartoszyński, "On covering of real line by null sets", Pacific J.Math. 131 (1988) 1-12, has shown that if $cof(\mathcal{N}) \leq \mathfrak{Z}$ then $cf(cof(\mathcal{N})) > \omega$ (see 22a).

I develop the idea of Lemma 9 in my paper "The partially ordered sets of measure theory and Tukey's ordering", submitted to Dissertationes Math., 1989.

Further work along the lines of this note and of [3] may be found in my article "Measure Algebras" in the Handbook of Boolean Algebra, (ed. J.Monk), North-Holland, 1989.

The full reference for [2] is

J.Cichoń, T.Kamburelis & J.Pawlikowski, "On dense subsets of the measure algebra", Proc. Amer. Math. Soc. 94 (1985) 142-146.

The Ihoda-Shelah work has been written up as

T.Bartoszyński, H.Judah & S.Shelah, "The Cichoń diagram", preprint, 1989.