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In this note I discuss the relationships between ten cardinal numbers lying

between wy and € , related to category and measure. I learnt this material

from J. Cichoh : (University of WrocYaw), who was closely involved with its evolu-

tion into its present form.

The principal results are encapsulated in the diagram of § 1 ; this is

interpreted in §§ 2-3 and proved in §§ 4-17.
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2.DEFINITIONS. (a) 4 is the ideal of Lebesgue negligible subsets of R :.# is

the ideal of meagre subsets of R .

(b) For F = # or S = A,
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nin{#(®) : €c 7, UFY _~}

add(¥) =

(the additivity of the ideal .7 ) ;
cov(?) = min{#(@) : &c 7, ug= E} ;
non( 4 = min{#(A) : AcR, A¢g 7} .

(¢) For any partially ordered set P ,

A*(P) min{#(Q) : Q € P 1is cofinal with P} ,

A, (P) = min{#(Q) : Q C P 1is coinitial with P} ,

Thus if #F =_# of 7 =_4,

A* (P = minl#(® : 7= UpegPE} -

*
(d) For £ , g € EE say that f < g (" g eventually dominates f ") if

{n : gln) < £(n)} 1is finite. Now
N

. *
b=nmin{#B) : BN ,Fg €N ,£< g V£ecBn},
*
d=min{#® :DcN ,vEeW 3gen, £ <* g

A .

- 3. 'INTERPRETATION OF THE DIAGRAM. The cardinals increase (not necessarily strictly)

from south-west to north-east ; thus
*
w, < add(ff < addf <h<A<A U < ...,
but nothing is said about the relative sizes of d and non(s"). The two closed

curves, indicated by lines of dashes, represent the further known relations
y

add(#) = min(h, covi#)) , A*(,/{) = max( 3, non(#) .
4. PROPOSITION. (a) w, < add#] . (b) A U< I .

Proof (a) This says just that Lebesgue measure is countably additive.
(b) This is because & N 4" is cofinal with A", where @ is the algebra of Borel

subsets of R, and #(@ =1 .

5. PROPOSITION. For # = #Hor F =4,

(@) add(#) < cov() , (b) non(#) < A'(7) .

Proof (a) This is because RE¢7 . (b) Let & < .7 be a cofinal set of cardinal

* .
A (# ; for each E € & choose o € RNE ; then {ocE t:EEL d 7.
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6. LOCALIZATION. I write

F={s8:85cHxN, #j: ({,j)es}<i Vient.
*
For fEN ,ScNXN Iurite £C § if

{i:i€ey, (1,£(1)) ¢ s}

is finite.

7. LEMMA. There are functions f+> ?f : EE +4" and E > R R 5? such that

*
f € R, whenever V,cE .

E f

Proof. Write

F=is:scNxN,#i: LD Est<nivien .

~

Let up_ be Lebesgue measure. Take any p_-independent double sequence < Gi' >

L L j "i,j€EN
of open subsets of J]0,1[ such that ”LGij = 1/(i.+1)2 for all i,j € N . For

each f € Ng set

t =
Ve = Men Vise®iLE(h)
Because X

'€ . ~
i€§PLGi,f(i) < o Vf A4". For each E €_4" choose a compact non—empty

. set KE < 10,1[NE which is "supporting", i.e. such that uL(KE N U) > 0 whenever

U is an open set meetin . Enumerate as < UE > a base for the relative
P g n

n€N
topology of KE which does not contain ¢ . Set

AE,n,i) = {j :Uincij =@} Vin€y.
Then

0 < pLUfii i (lo,10~e; )

ien Tiea(e,n, i) L
because the Gij are independent subsets of the probability space ]0,1[ ; that is,
1 .
0 < HJ’-EE(1 WZ) #(A(E,n,l)) ,

and ziEN #(A(E,n,i))/(i+1)2 < o, Let k(E,n) € N be sﬁch that
#AE,n, D) < G+ 2%T for 1> Kk@E,n) . set

Ré = UnEN{(i’j) : 1 >k(E,;n) , j€AE,n,i)} .

It is easy to see that Ré € éﬁ .
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Now suppose that f € 'I;{E' and E €_4 " and V% < E . Then

KE n ”neg Ui_?_nGi,f(i) =0

by Baire's theorem, there are m , n EE such that

v, 0 UisnCi,e) T ¢

Thus f£(i) € A(E,n,i) for every i >m , and (i,f(i)) € Ré for every
*
i > max(m,k(E,n)) ; so that f < Ré .
This, in effect, proves the lemma with % in place of 52 . To convert

1
et
to .%,s

L(n) = {i

ien, @n?<i< @k

EL (n) N

and let Gn : N be in injection, for each n € N . For E € ./, set

RE=Un€N{(i,j) :i€L(n) ,3hEN R

h(i) = j and (n,en(h)) € Ré} ;

then Ry € .5; because R;: € & . For f € 'I;I;N' set V. = Vé where g(n) = en(f TL(n))

* .
for each n€ N . If V. CE then g¢< Ré » i.e. there is an m € N such that

£
(n,G.n(f P L)) € Ré for every n > m ; now (i,f(i)) € RE for every i > (m+1)2 .

%
so f < RE

8. LEMMA. Let U c R be a non-empty open set, and n € N . Then there 1s a countable
family 2" of open subsets of U such that (i) every dense open subset of R

ineludes some member of ¥~ (i) ni<nVi # 0 whenever UysernsV, € 7.

Proof. Let < Un > enumerate a countable base for the relative topology of U ,

&

not containing @ , and closed under finite unions. For k €N, set

{n:n>k ,UnnniEIUi#Q! whenever I c k + 1

Ay
and niEIUi # ¢} .

Set
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(i) If G 1is a dense open subset of B , then (because ,{Un :n €N} is closed

under finite unions) Ak meets {n : Url < G} for every k€ N ; so we can choose

<m, >, inductively such that
1 1<n

U €6 Vi<n, m €A Vi<n.
m, — - i+ m,

Now GD2U, U0 €97.
- 1<nmi

(ii) If Vo""’Vn € 7, express each Vj as where

Yicnln(s, 1)

m(j,i+1) € Am for i < n ; re-order the Vj if necessary so that

GG,1)
m(i,i) < m(j,1i) if i<j<n . In this case

m(i+1,i+1) € Am Vi<n

Gi+1,1) < 2nd,1)

and (inducing on k )

niﬁkUm(i,i) #¢ Vk <n.

So

n >N, . .
jgnvj > JgnUm(J,J) 0,

as required.

9. LEMMA. There are functions Fw»r 9z :J/—>EI!: and Sr> .WS PG M such that
- ‘

F c Wy whenever gpS 5.

Proof. Let < Un >n enumerate a countable base for the topology of R, not

€N

containing @ . For each n € N, construct Vn from Un and n as in Lemma 8.

Let < V(n,m) >m€N enumerate % .

~

F F
For F € # express F .as UneNHn where < Hn >n€§

sequence of nowhere dense sets, and choose 8p * N > N such that Hz n V(n,g.F(n)) =0

~

is an increasing

for each n € N (using (i) of Lemma 8). For S € .50*” set

Wo = RN

s = 2> Men’mon" (m, 1)es (1) -

Because

¢ #

r‘(m, i)ESV(m’ i) ¢ Um

for every m€ N, U V(m,i) 1is dense for each n € N, and W, € 7.

mZnn(m, i)€es
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* .
1f gp S S there in an n such that (m,ng(m)) € S for every m > n_ ; now

U >nn(m,i)€SV(-m’i) < Um>nv(m’gF(m))

does not meet fo for any nZno s S0 W, 2F .

S

* *
10. COROLLARY. There are functions Fr> Ve ¢ M+ N and E ~+ WE N> M such

: * *
that F C W, whenever V,CSE .

Proof. Compose the functions of Lemma 7 and 9.

11. THEOREM. (a) add(#] < add(#) . (b) A (@ < 0 (i .

* %
Proof. Take V_ , WE from Corollary 10.

(a) If Fc # and #(F < add(4)y , then

*
E = qu;LF €4,
*
so U.¥c WE €A .
* *
(b) Let & .4 " be a cofinal subset with #(&) = A (47); then {WE : Eegl

is cofinal with # .

12, LEMMA. There are functions fr> Cf : EE > M and Fv— hF s M NIV;I! such that

*
< hF whenever C,CF .

f

Proof. (a) Give &N the compact metrizable topology obtained by identifying it
with {0,1}'1:1' . Then the set ['Ii]w of infinite subsets of N is a dense G6 sub-
set of &N with dense complement, so is homeomorphic to R~NQ ([6], § 36.1I,
Theorem 3). Let ® : RNQ * ['I;I’]w be a homeomorphism.

(b) If Hc [E]w is nowhere dense and n€ N , there are an m > n and

a set I Sm>n such that
w
HN{a:a€[N] ,aNm~n=1I}=¢.

w w ., . .
To see this, observe that a > aAJ : [N]” > [N]” is a self-inverse homeormorphism

for every finite J <N , so that

H={adJ:a€H,Jcn}
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is a finite union of nowhere dense sets and is nowhere dense. Consequently there

are an m > n and an IO_C_m such that
I?ﬂ{a:aﬂm=10}=0.

Take Io = I~n and see that if a Nm~n = I there is a J ©n such that
(aldJ) Nm = I, so that ag¢H.
(c) For f € QN' define T(n) =n + maxi<2nf(i) for each n € N , so that

f 1is strictly increasing. Set

c. = {o:a €RNQ, ®(o) 2 FINl},

. . . w
so that Cf is the inverse image of a compact nowhere dense subset of [N]" ,

and is nowhere dense in R>Q , therefore nowhere dense in R .
(d) For F €4 1let < Hi >n€N be an increasing sequence of nowhere dense
w . . .
subsets of [Nl such that UnENHfl = (D[F\g] . Using (b) , choose inductively

F
< h.F(n) >n€£ and < In >n€§ such that

hF(O) =0,

hp(a+1) > ho(@) , I € h (a+) Sh (@)

Hfl nNnfa:an hF(n+1)\hF(n) = IrFx} =¢

for every n € N .

(e) If now fE'I:IJN‘f,FEMand C. SF, set

f

F w
€NIn € [N] .

~

a = f£[N] UUn

As a> ?'['Ij‘]. . tp-1(a) € Cf € F , and there is an r such that a € Hi ; now
an hF(n+1)\h.F(n) # Ifl for every n > r , so
FIN) N b (@+)Nh(@) #0 Vo>,

~ *
Consequently f(k) < hF(k+r+1) for every k € N, and f < h, .

13. PROPOSITION. (a) addt) <t . (b) d < A'() .




a meagre F_ set I—LFEF.AS #(# < cov#) , there is an & € RN\U

Proof. (a) If B SNNE and #(B) < add(#) , set F = Upepls 1o Lemma 12, and see
* ' : ‘ ‘
that £ < h‘F for every f € B .

*
(b) Let FC .# be a cofinal set with #(AH =N (#) ; set D=+{h

F:F€ﬁ};

*
then for every f£ ENI?*I\! there is an h € D with f < h .

14. PROPOSITION. (a) min(t, covl#)) < addi#) . (b) max(R, non(#)) > N7/

Proof. Enumerate Q as < q > oo - For 0 €R, f€ 'I:I:N' set

2

= _,—f(n) -f(n)
Waf =R nnG'Ig‘UmZn]w-q‘n 2 ,a+qn+2 Ledt.

If H 1is an Fo set and 0 € R~N(H + Q) , there is a gENN:g' such that staf

is an

%
whenever g < f . To see this, express H as U H where < Hn >n€N

n€§ n

increasing sequence of closed sets, and choose g such that
—,8(n) -g(n) _
BN ](x+qn 2 ,0+q +2 [ =¢gVneEN.

(a) 1If 37'5./{ and #(% < min(h, cov(#) , then choose for each F €%

re Fqeq Pt Y -
*
Next, for each F € %, there is a 8y € EN' such that H.F c Waf whenever &p L f.

*
But as #(%H <hv , there is an fE'I:I‘E such that gFi f for every F €. %,

and now UFE Wocf €A,

(b) Let ACR, DS NY be such that

In

#(A) = non(#) , AQ#,
#D) = 2, vgeW 3f€n, g< £

Set :7= {Waf t: 0 €A, f €D} ; then every meagre Fc set is included in some

member of %, so & 1is cofinal with # , and
*
A (M < #(&) < max(nonf),d) .
15. PROPOSITION. (a) cov(#) < non(4) . (b) cov4] < noni#) .

Proof. There is a comeagre E €.# (take E = R~ wOf in Proposition 14, where

f(n) = n for every n € N .
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(a) Take A SR such that #(A) = non{#) and A ¢ .#. Then (A+B) NE # ¢
for every B E€R , so.E—A=,Ig i.e. {E-0a: 0 €4} isa cover of R by
negligible sets, and covf/t/)"i #(A) = non{®) .

(b) Similarly, using RNE €.# in place of E €47,
16. PROPOSITION. (a) h< noni#) . (b) 3 > coviM) .

Proof. Let ¢ : 'Ij;g' + RNQ be a homeomorphism ([6], § 36.II, Theorem 3).

(a) Let A SR be a non-meagre set of cardinal non(#). Set B = tp_‘1 [al < NR .

~

As ANQ .4, there is mno K, subset of R>Q including ANQ , and there is

no K0 subset of 'I:I;Ii including B . But

M =1{f: f< g}

K.
is K0 in AN,E' for every g E’lj‘y' . So there is no g with f < g for every

f€B,and h< #(B) = non(#) .

(b) Let D SE'N' be a cofinal set of cardinal . Then

Kﬁ.

{(D[Mg] : g €D}l U {Q}S./// is a cover of R, so covi#) < #(% =1 .
17. PROPOSITION. hi .
Proof. Evident.

18. REMARK. I have deliberately organized this proof in such a way as to emphasiez
the symmetry of the diagram about its centre. I should note like to suggest, however,

that there is anything definitive about this apparent symmetry.

19. ON THE POSSIBLE VALUES OF THESE CARDINALS. (a) If we suppose that € = Wy

1 (ﬁz to the ten cardinals.

I understand from J. Cichofl and A.W. Miller that models have been found for all

4] [H [H

then the diagram allows 23 assignments of the values w

but the following :
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"l 2] [H]

(In the patterns above, 0 stands for w1 and @ stands for wz)

(b) Apart from the restrictions on the relative magnitudes of the ten
cardinals encoded in the diagram, there are restrictions on their cofinalities,
as follows.

(i) If 7 1is either # or 54”, then add(#) must be regular. Moreover,
both cf(non(#) and cf(A*(iﬁ) must be at least add(# . (For the latter,
suppose that cf(A*(fﬁ) = A . Then there is a cofinal &< .7 expressible as
U€<A8% where #(82) < A*(}O for each & < X . For each £ < X let E
a member of _# not included in gny member of %% . Then U€<>\EE
belong to .# . A similar technique shows that cf(non(#) > add(#).) The same .

£ be

does not

ideas can be used to show that I 1is regular and that cf(d) >h (see also
20e below).

(ii) Another restriction appears as follows : if ¥ is either # or 4,
and if cov(? = A*(}O =K , then cf(k) > non(#) . To see this, observe that
under these conditions each EE in the argument of the last paragraph can be
taken to be a singleton.

(iii) It follows that every cardinal in the diagram has uncountable cofina-
by Konig's

lity except perhaps cov#) and cov(#) . (Of course cf(T) > w,

theorem). A.W. Miller has shown ([8]) that cf(covi#)) > W, -
I see no reason to believe that this list of restrictions on cofinalities

is complete.

20. ALTERNATIVE DEFINITIONS OF THE CARDINALS. (a) The cardinal add{#7 can be

characterized as

Kl
, Vs€& I f€B,f¢ s} .

2%2

min {#(B) : B ¢

This result is essentially due to [1]; the arguments are given in [3]

(b) The cardinal cov(# can be characterized as the largest cardinal «

with the property that
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whenever P is a non-empty countable partially ordered
set and & 1is a family of cofinal subsets of P with
#@) < k , there is an upwards~directed subset of P
which meets every member of &
See [8] or [4].
(c) The cardinal A*LIT‘ can be characterized in any of the following ways.
1) 1t is
min‘[#(&”?:yg%,VfEE‘R HSE.?,fE*S} .

(ii) It is A*(Z£>47 » where I is the algebra of Lebesgue measurable

L
sets.
(iii) It is A*(AL\~{O}) , where AL = ZL/,J” is the Lebesgue measure

algebra.

See [2].

(_(_1_) A*.,(l) = A*@\M where .é’ is the algebra of subsets of R with the
Baire property. (Note however that A*((é%h?)\\{O}) =w) .

(e) Let % be the o0-ideal of subsets of Eg generated by the compact
sets ; then h = add(%¥) = non(%) and A = cov(P = A*C%? . Other characteriza-

tions of B are given in [5].

21. SOURCES. The oldest results here are those of F. Rothberger ;

covi#) < non(#J and covis) < non(# are given in [12], and h < non(# is

given in [13]. For the next forty years it was widely supposed that the relationéhip
between # and 4~ was essentially symmetrical, though I understand that K. Kunen
conjectured in the 1970s that add{#) < add{#) . The fact that min(h, cov(#)) £ add(#)
is implicit in [14]; A.W. Miller ([7]) made it explicit; and observed that they

are in fact equal. Miller also found that add(A?.S h ; and began work on the
opposite corner of the diagram with 2 S.A*LIT ([91) ; but the results which

made the diagram planar, add{#) < add(#) and A*(Aﬂ_g A*CAT s, were due indepen-
dently to T. Bartoszyfiski ([1]) and J. Raisonnier & J. Stern ([11]) . Both

relied on the essential idea of Lemma 7. The arguments of Lemma 8-9 were given to

me by J. Pawlikowski ([10]) . Lemma 12 is based on ideas in [7].
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22. PROBLEMS. (a) Can cov{(4J have countable cofinality ? (See [8]).

(b) Are any of the configurations of 19a impossible ?
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If 1 were re-yriting this now I should use cf(Al) , cf(Af) in place of
AN, AN .
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