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MEASURABLE, FUNCTTONS AND ATMOST CONTINUOUS FUNCTTCNS
D.H.Fremlin

I show that if (¥,p) is a Radon measure space and Y is a metric
space, then a function fram X to Y d4s y-measurable iff it is
almost continucus (= Tusin measurable). I discuss other eases in
which measurable functions are almost continuous.

Introduction., A “fopological measwre space is a quadruple
(X,L,E,1) wvhere (X,I,u) is a measure space and & is a topology
on X such that L CZI (i.e. every open set is measurable). If
(¥,®) 1is another topological space, I shall say that a function
f:X+Y is measurable (corresponding to '"Borel p-measurable! in
[14]) if f_l[GI €L forevery G €& , and almost continuous
{corresponding to "Iusin p-measurable" in [14], or "p-measurable" in
[1b]) if whenever E € & and a < uf there is an F & I such that
FCE,W>a and fly is continuous.

The known cases in which these concepbs are related to each
other seem to be the following.

(@) If (X,I,n) is complefe (i.e. BEEL ,E=0 and FCE
imply that F € I } and Llocally determined (i.e. if ACX is such
that ANE €L whenever E €I and B <o0 , then A€ and
MA=sup{ WE : E€L ,ECA, uE <%0 } ), then, for any topological
gpace Y , every almost confinuous function from ¥ to Y will be
measurable; this follows directly from the definitions. Observe (i)
that this is a condition on X alone (ii)} that it can always be
satisfied by suitably adjusting p (see [4], 6472-b) (iii) that, on
the definitions T use, the cordition is almost necessary as well as

Part of the work of this paper was done during a visit to Japan
supported by the United Kingdam Science Research Council and Hokkeido
University

0025-2611/81/0033/0387/503.60
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sufficient. I will use the abbreviation c.£.d. for "complete and
locally determined".

() In the other direction, we have the following fundamental
result: if p dis imner regular for the closed sets of finite
measure and (& has a countable base, then every measurable function
from ¥ to Y dis almest continuous. (I say that a measure Y on
a set X is .iwner regufan for a class K, of subsets of X if
WE = sup{ \F : Fe€InMX ,PCE} forevery E€L , where I Iis
the domain of u .) Proofs of this result may be found in [14],

p. 26, Theorem 5 and [la], §5, no. 5, Théorgme U; the hypotheses
there are more restrictive but it is easy to see that the sams

arguments apply.

{c) One possible generalization of this is given in [114] s P-
129, Theorem 14: if u is inner regular for the closed sets of
finite measure, and Y is Souslin (i.e. a Housdorff continuous image
of a Polish space), then every measurable function from ¥ to ¥ is
almost continuous. 'The condition on ¥ can be relaxed, without
changing the proof, to: Y is Hausdorf? and Radon (i.e. every finite
Borel messure on Y is inner regular for the compact sets) and the
compact sets of Y are metrizable.

(@) I shall follow [4] in seying that a Radon measwre space
is a c.1.d. topological mezsure space (X,&,E,u) such that (i) u
is irmer regular for the compact sets (ii) L is Hausdorsf (iii)
every paint of ¥ has a neiphbourhood of finite measure. (From the
viewpoint of [1Y] or [1b], I should be interpreted as the algsbra
of p-measursble sets.) Naw (a) end (b} together show that if
(X,&,Z,1) is a Radon measure space and (¥Y,&) is a separabj.e
metrizable space, then a function £ : X+ Y is measurable iff it is
almost continuous. The main new result of this paper (Theorem 2B}
is that this remains true for non-separable Y .

(e) BSubject to special axioms, rather strongsr results are
already lmown. (1) If there are no measurable cardinals, then all
metric spaces are Radon, so we can apply (e), thus greatly weakening
the hypotheses required for X . {ii) If there are no 2-valued
measurable cardinals, then the arguments can be shortened and
generalized to topological measure spaces (¥,L,0,1) such that
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iz imner regular for the closed sets of finite measure and (X,Z,}J.)
is "perfect"; see 2E below.

(£} If we consider the question of further generalizations,
there are two obvious directions in which to move. (i} We can ask,
given scme class ¥ of topological measure spaces, which
topological spaces Y will have the property that if X € X and
£f: X—=+Y is measurable, then f is almost continucus. (ii)
Assuming the existence of measurable eardinals, we can ask which
topological measure spaces X will have the property that every
measurable function from X to a metric space will be almost
continuous. I give examples and partial results related to these
questions in §3.

1. Preliminary results

I begin with a description of some of the more or less well-
known facts about topological measure spaces that I wish to call upon,
with an easy, but useful, new resuit on Redon probability spaces (1D).

14 Hyperstonean spaces, Among the technical devices I need the

following is particularly important. Iet (X,I,u) be any measure
space of finite magnitude (i.e. X < oo ). Then its measure
algsbra W=IL/{E : 1E = 0} is a Dedekind complete Boolean
algebra, so can be identified with the glgebra of clopen sets of an
extrematly disconnected compact Hausdorff space Z . For L€ 3Z

let £ be the clopen set in % corresponding with the image E' of
E in Bl ., Then there is a unique Radon messure § on Z such
that {if = uE for every B €I . (See [9], p. 120, Theorem 3.)

T shall eall (Z,71) the hypenstonean space of (X,u) .

1B Measure algebrs embeddings, inverse-measure-preserving

functions., Iet (X,I,u) and (Y,T,v} be measure spaces with
measure algebras (ol R é respectively; I shall again write u , v
for the induced functionals on oL , £ . Afunetion £ :X-+Y is
inverse-measune-preserving it f‘—l[F] €% and uf‘_l[}i‘] = vwF for
every FE T . In this case [ pgives rise tcamp ¢ : ;@'4—?.7(
given by &(P) = (f‘l[F])' for every F €T , and $ can be
regarded as embedding Jj in 7 . Conversely, we have the
following important result,
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1C THEOREM. Let (X,E,u) bes a complete measure space and
(Y,&8,T,v) a Redon measure space. Write M, f& for their
‘megasure algebras; suppose that pX = vy <8 , and let ¢ : 45- + 2?(_
be a measure-preserving embedding. Then ¢ is-induced by some

inverse-measure-preserving f : X+ Y .

proof. Apply [6], Theorem 1 to the map Fw ¢(F") : T+ . 1In [6],
it is shown only that f_l[F] €L for Borel sets F LY ; but since
every nmember of T 1is sandwiched between two Borel sets of the same
measure, and (X,E,u) is complete, it follows at once that f is

inverse-measure-preserving in the sense I use here.

1D If we pui this together with Maharam's representation theorem
for measure algebras we obtain the following corcllary.

PROPOSITION, Iet ({X,%,E,u) be a Hadon probability space. Then
there is & cardinal k and an inverse-measure-preserving function
£ {0,11° + X , where {0,1}* is given its usual Radon measure
(i.e. the product measure for which each coordinate takes the values
0 , 1 with equal probability 31 }.

proof’ . By Theorem IC, it is enough to find an embedaing of the
measure algebra UL of X into the measure algebra ;S—K of {0,11*
for some x . But this is easy to construct from Maharam's
decomposition of UL into a countable number of pieces each
iscmorphic, up to a scalar multiple of the measure, to some "&(nc 3
taldng each piece of TL to be the measure algebra of {ui}x{o,l}g'(i),
where the {ui} are atoms with measures sunming to 1 , we can embed

T into the measure algebra of {('.l,l}H:'f{Cl,l}|< where « = supia-c{i) .
(3=e [9], §18 for a precise statement, with proof, of Mzharam's

theorem. )
REMARK . Ar altermative proof can be got frem the main thecrem of [10].
18 Finally, T spell out a well-lnown result on measure spaces

which are diffuse di.e. such that if pE > O there is a measurable
set FCE such that v >0, p(E\F)>0.

PROPCSTTION . Iet  (X,I,u) be a diffuse measure space af finite
magnitude. Then there is an inverse-measure-preserving function

f:X- [O,uX] where the interval [O,uX] is given Lebesgue measure.
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2., The main results
The key idea of this section is Lemma 2A; the rest 1s made up

of eagy corollaries.

2A IEMMA. Iet (X,&,f,u) be a Radon measure space of finite
magnitude and (xL o7 2 partition of X which is completely
measurable i.e. such that |) X €I forevery ACT . Then
==z

ceT™EL -
proof. I suppose rather that there is an example in which

(1) WX > I g ¥X
and seek to derive a contradiction. The first half of the
argument proceeds through a series of reducticns which will be
faniliar to anyone who has studied the famous measurable cardinal

problem.

(a) We may of course suppose that I dis of the least possible
cardinal for which such an (X, ,Z,t) and <XL>LEI can be found,
and that T is itself a cardinal (= initisl ordinal) k . In this
case we find that

(i) If % is a disjoint family of subsets of x and
7“:(&%) < Kk and u(UEEAXE) =0 v Ae 5% 3 then
W(Uge pa¥e) = 0 -

P et v be Upeugfe @d, for each A €, set Y, = UEEAXE ;
then <YA e is a completely measurable partifion of Y, s0

(because #(I) is minimal) oY = ZAEA uy, = o . (The point is that
Y , with the induced topology and measure, is a Radon measure space.)

Q@

(b} Wext, we can suppose that
(i) V Acx, H(UEEAXE) is either 0 or u¥.

P Consider the measure v on Kk glven by

VA = uUgeX) ¥V ACk .
? Suppose, if possible, that v is diffuse. 'Then by 1E there is
an inverse-measure-preserving function g : k =+ [O,\JK] = [O,p}{} .
Define f : X + [0,uX] by saying that f(t) = g(g) if t € XE .
Then f is also inverse-measure-preserving; in particular, it is
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measurable.  Because [0,uX] is a separable metric space, f is
almost continucus., Tt follows that the measure uf—'l s defined on
T={E: f_l[E:[ €LY} by (l-lf“l)(E) = u(f“l[E]) for every E€ T ,
is a Radon measure ([I4], p. 32, Theorem B); as it agrees with
iebesgue measure on the compact sets, it must actually be Iebesgue
measure; but ufl i defined on every subset of [0,uX] , while
lebesgue measure is nob. X

Consequently there must be an atom for v , i.e. aset AcCk
such that VA >0 and vB =0 or vA for every BCA.
Repeating the argument above for measurable subsets of X , we see
that k must be & countable undon of atoms., As vk = X >
Zrey = ZEEK\){E} . at least one of the afr,oms A for v must be
such that VA > I, w{E} . Set X' = UEEAXE . Then (XE)EEA is
a completely measurable partition of X' ; wX' > EEEAUX ; and if
BCA, then w(UgepX) = VB is either WA=1uX' or O. OF
course #(A) € k so #(A) must be actually equal to k and,
replacing X by X' and re-emmerating <XE>EEA » we obtain an
exarple in which (i)-(iii) all hold. @

{c) Thirdly, we may suppose that, for some cardinal X ,
(dv) &, L.Z,n) is {D,l}k with its usual measure.

P Hormalizing the measure, we may obviously take uX tobe 1 .
By Proposition 1D, there is a ) and an inverse-measure-preserving

f: {O,l}}\ +¥: now (f_l[XE] is a completely measurable

Eek
partition of {O,l})L still satisfying (1)-(iii). Q

(d) We are now in a position to move towards the d11, using a

standard measurable-cardinal argument. Assume that we have (i)-(iv).

et F be
{a:2ck, U(UEEAXE} =1} .
Then F is a filter on k which is an ultrafilter by {iii) and is
closed under intersections of fewer than Kk members, by (ii). Of
caurse Kk > 5\30 » 80 that « is 2-valued-measurable; by Ulam's
theorem ([3], chap. 6, Theorem 1.2) « > e .
For each £ <k, H(UHE‘EXH) =1 . Now the measure of {0,1}*

is completion negufar i.e. imner regular for the closed Gy sets (see

e.g. [2], Theorem 3). So there is a closed Gy set € C UH.ZEXI'] _
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MNIE) .

with uCE >0 ;3 now CE can be regarded as C!x{0,1}
some countable T(E) C A and non-empty Cé - {O,l}I(g) ; choose
tE = Cé .

Consider

Jo= Ume, o T(E) = (L :ter,{&:ve(e) e F).
Note first that J is countable. P ? If not, there is a set
KCJT with #(X) = ¥y ; now

0 = {E:KCIBY Y = Ngle:tensd)r e F,
because #(K) € ¢ < k ; which is impossible. ¥ @ So

A= 1e:3gTIE@ )} = Ngde:ter®l e F .

For EE& A , let sy = tE'J € 10,1 . s #({0,11") ¢ «
<k , there is an se{O,l}J such that Bz{E:EEA,s€=S}
€ “F (for otherwise @ = ﬂs{ E : sg # 5 1 would have to belong to
F ).
Now chaose <C(E)>E < inductively, as follows. Given
(LY o st T = U IEmINT . Tren #3E) <« , 50
B(E) = {n:I(mNJE)=01}
= Megptn: Léxm} e 7,
and there is a Z(E) € BABE)A[E,x[ .  Thus we shall have
L@ENATEM) =3, bl =5
vhenever £ #n dn x . Accordingly there is a t € ¥ such that
oy = %@ Y E<x
and t & CC(E} < UTPC(E)XH c Un?«’EXn for every £ < k ; which is
impossible, as <XE>£ e is supposed to be a pavtition of X .
Here at last is the required contradiction.

oB THEOREM. If X is a Radon measure space and Y is a metric

space, then a function f : X+ Y is measurable iff it is almost

continuous.

proof, (&) Of course (by the definition I am using of "Radon"
measure space) X is c.l.d.; so if f dis almost conbinuous it is
measurable.

(b) It will be enough to consider the case in which o< o ;
for if the restricticn of [ to every set of finite measure is
almost conbinuous, £ will be almost continuous.

(c) Now take X to be of finite magnitude, and f weasurable.
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In this case, for any € > 0 , there is a locally finite cover of Y
by open sets of diameter < £ , by A.H.Stone's theorem; < E>E <k
erumerate such a caver. Writing By = GE\UH<EGT‘| , we see that
<EE>E <k is a partition of lY such that the union of any subfamily
is GG . Consequently <f [EE] >E < is a com%:l‘letely measurable
partition of X . By lemma 2A, WX = Z <Pt [EE] and there is a

countable A k such that uX = ]J(UEEA 1[EE]) .

(d) Accordingly we can find, for each n €N, a Borel set
B, CY suchthat 1X = uf‘dl[Bn] and B can be covered by

= . -1
countably many sets of radius ¢ 27 . Setting X, = ﬂnE_I\lf [Bn]
WX, = uX and £{x] 1is separable. Consequently the restriction of
f to XO is almost conbinuous and f is almost continuous.

2C COROLLARY. Let X be a Radon measure space.

(a) If Y is ametric space and f : X+ Y 1s measurable and
if Y=L G:6¢CY open, uf_l[G] < 00 } , then there iz a Radon
;asure on Y for which f is inverse-measure-preserving.

(b) If <Y neN is a sequence of metrie spaces with product

, and if f.‘ H S Y is measurable for each n € N , then

t o= (f‘ (t))neN X+ Y is measurable.
(c) 1If s is g metrizable linear topological space, then the
set of measurable functions from X to Y isa linear subspsce of

Vo

proof. A1l of these are true for almost continuous functions without
the metrizability hypothesis on ¥ ([14], p. 31; [1b], 62, no. 3,
Proposition 4; [la], §5, no. 3, Théor@me 1 & Corollaire 3).

2D COROLLARY. If X is a Radon measure sSpace in which every
subset is measurable, then the measure on X consists entirely of

singletons.

proof, Apply Lemma 2A to the partitions of compact subsebs of X
into singletons.

°F REMARKS,(a) Let us say that a measure space (X,I,n) has the
completely measurable partition property, or c.mp.p., if, for any
campletely measurable partition \X, ) .t of X,
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uE = ELEI !J(EF\XL) ¥ E€L.
Thus Lemm= 28 becomes: every Radon measure space of finjte magnitude
(and hence every Radon measure space) has the c.m.p.p. The content
of Theorem 2B is in effect that if & semi-finite topelogical measure
space has the c.m.p.p., and every measurable function to a
separable metric space is almost continuous, then every measurable
function to any metric space is almost continucus. (A measure space
{(X,1) is semi-finite if y is imner regular for the sets of
finite measure.} Moreover, 2C clearly applies to any c¢.l.d. measure
space with the c.m.p.p.; we can avoid using the auxxiliary notion of
almost continuity by observing that 2C applies to arbitrary measure
gpaces of finmite magnitude if all the Y_n » ¥ are separable mstric
spaces. (Strictly spealdng, we need A complete in 2G(a).)

(b) There are great simplifications to be made if we assume
that there are no measwrable cardinals, i.e. that Corollary 2D
applies to all measure spaces of finite magnitude. In this case,
every semi-finite measure space has the c.m.p.p.; in Lemma 24, we
have only to congider the measure v on I given by vA =
u(L)L EIXL) for every AC I . Consequently 2B applies to any
topological measure space in which the measure is inner regular for
the closed sets, and 2C applies to any c.l.d. measurs space. (See

[15].)

(c) If we assume only that there are no 2-valued measurable
cardinals, then we can still dispense with parts (e¢) and (d) of the
proof of Lemma 24, and see that a c.1.d. measure space {X,I,un) will
have the e.m.p.p. if it is perfeet (i.e. whenever f : X+ R is
measurable, the measure uf_l with domain { E : f_le] €L} is
immer regular for the compact sets), for this is the essential
property of Radon measure spaces reguired in part (b) of the proof.

This is done in [8] , Theorem 2.5.

{d} Taldng up the idea of (c), it is plain that even if there
are 2-valued measurable cardinals, then the conditions on X
suggested in (c¢) will suffice if we require also that H#(X) is
smaller than the least 2-valued measurable cardinal; as the latter
must be unthinkably large, this is 1lilkely to cover any X arising
in ordinary applications.
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(e) Collecting these together, we see that a c.l.d. topolopical
measure space (X,4.,Z.n) will have the property that every measurable
function from ¥ to a metric space Y dis almost conbinucus if

gither (X,Z,I,u)} is a Radon measure space;

or (¥,Z,u) is perfect, 1 is inner regular for the closed sets
of finite measure, and #(X) is less than any 2-valued measurable
cardinal;

or ¥ is imner regular for the closed sets of [inite measure,
there is no real-valued measurable cardinal, and #{X) is less than
any 2-valued measurable cardinal.

In 3B I shali give a further case, based on an entirely
different argument.

%. TFurther elaborations

Following the program suggested in {f) of the Imtroduction, I
seek further specizl cases and examples.

3A Quasi-Radon measure spaces. It will be helpful to use the
following idea fram [4]. A quasi-Radon measure space is a c.l.d.
topological measure space (X,7,%,H)} such that (i) p is inner
regular for the closed sets (ii} if {} - L is upwards-d:!rectgd,
then u(U{%) = SUbgeg G (iii) if uE > 0 then there is an open
set G such that p@ < o0 and p(EnG) > 0. Some of the basic

properties of these spaces are set out in [Ll]; those of principal
interest to us here are (a) every Radon measure space is quasi-Radon
([4], 73B) (b) if (X,&,L,n) is a guasi-Radon measure space and

Y CX is any set, then (Y,ECY,ZY,LIY) is a quasi-Radon measure
space, where IY is the induced topology on Y , )IY =
{ENY:E€L 1}, and uYF=i_ni‘{uE:EEE,E2F} for every
FEL, . {Crucial for (b) arve the facts that quasi-Radon measure
spaces are decomposable, and that if in a quasi-Radon measure space
we have an upwards-directed family q_ of open sets, then

u(EnU% ) = supge u(EMG) for every measurable set E ; see [4],
728 and 72Gd. For general facts concerming subspaces, see [5] s 89.)
Thus quasi-Radon measure spaces arise fairly nabturaily as non-
measurable subspaces of Radon measure spaces, just as Radon measure
spaces arise ag measurable subspaces of compact Hausdorff spaces.
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In my first result, however, I shall be dealing with second-
countable quasi-Radon measure spaces, where the topolcgical structure
is merely a matter of notational convenience, since if can be
described in terms of a seguence of measurable sets. The argument
here is lifted directly from (12]; I spell it out as I am
generalizing it in a new direction.

%8 PROPOSITICN. Let (X,&,I,u} be a second-countable guasi-
Radon measure space. Then X has the c.m.p.p.

proof (a) As X is locally determined, and every subspace of X is
also a second-countable guasi-Radon measure space, it will be enough
to consider the case in which pX <o . In this case u will be
outer regular for the cpen sets (i.e. 1 = inf{ ud : G open, GDE}
for every E€ L ).

(b) The essential idea is this: if (Y,PY,v) is any measure
space of finite magnitude in which every set is measurable, and
ACX>Y issuchthat A =1t : (,u)€eAlt€L forevery uey,
then A is measurable for the ordinary completed product measure
uxv on XxY . {P Enurerate as <Gn>neN a base for L . Iet
p be the usuzl product cuter measure ocn X x ¥ . ILet > 0.

Hor each u &€ Y , there is &n open set Hu 2 % such that !.!HLl S
WA, +E; set I(u)={n:GngHu} . Set Dn:{u:neI(u)}
and H=1{ (t,u) : t€H )= Unean*Dn . Then H dis uxv-
measurable because every Drl is v-measurable. s}

ph & (wvw)(H) = quuU(du) € quuv(du) + EVY
the last integral exists because v is defined on every subset of
Y. As e isarbitrary, pA< [uAv(du) . Similarly,

p({I=¥INA) ¢ fu(X\Au)v(du) . So pA+ p((XYINAL) € XY and A
mist be measurable for the measure derived from p viz., uxv . Q

{c) Consequently, if <XE>E < is a completely measurable
partition of X , where g is a cardinal, and uX > 0 , we can

define v on g by writing vi = u(U for ACk , and

pea’s)
consider

[ (5,8) 1 t € Unsgxn} < Xxk .
By (b), this is a measurable set; applying Fubini's theorem to it in
each direction we obtain

fu(UnsEXn)u(dg) = fo([h(t)e[Dulas)
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where hi(t) = £ for t& XE .~ From this it is plain that
u(UMan) >0 for some &£ < K.

(g_) Now the arsmuments used at the beginning of the proof of 2A
show that X has the c.m.p.p.

3C Thus the results of §2 apply to some quasi-Hadon measure
spaces as well as to all Radon measure spaces. But they do not
apply (in the presence of measurable cardinals) to all quasi-Radon
measure spaces, or even to all subspaces of Raden probability spaces,
as the following example shows.

Example. Assume that there is a set I and a measure v defined on
every subset of T , such that vi =1 and vig} = 0 for every
EEI. Iet (Z,9) be the hyperstonean space of (I,PI,v) . By
1D gbove, the eanonical isomorphism between the measure algebras of
Z and of I dis generated bj an inverse-measure-preserving function
£:I+7,s0that wTart[f]) =0 forevery JCI.

et A/ be {J7:J3CT,vw=01},andset W= [o,z}”xz
with the product measure p (each copy of [0,1] being given
Iebesgue measure). Then p is completion regular ([2], Theorem 3).

For EETI , let XEQW ba

{(6,0E) : ¥ aeA,60) =1 <> £enl.
Set X = UEEf(E . I claim that X , with the subspace measure
described in 34 above, has <XE>E&I as a completely measurable
partition, and that ]JXX =1>0-= XEEI”X‘XE .
I have to check the following points.

(1) <X£>EEI is a partition of X because, if £ and n are
distinet members of I , then G({£}) = 1 whenever (t,u) € X_ ,
while t({£}) < 1 whenever (t,u) € X 80 XEan =@ .

(i) MK =1 because X meets every set in W of positive
measure. @ Take any ECW with ME > O ; Decause ¥ is
completion regular, there 1s a closed Gg set FCE with W >0.
Let vb C A be a countable set such that F is expressible as
P X [0,1}‘”\"4“ , where F'C [0,1]’4’>< 7 ,and set B= Ud e N .
Now v(INB) =1, so I\B must meet £ -[H] whenever OH >0 ,
and f[I\B] must have outer measure 1 in Z ; consequently
[O,l["'v’x f[INB] has outer measure 1 in W , znd meets F in
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(s,7(E)) say, where s(A) <1 for every A€ and £ € INB.
Take % € [0,1]' such that

ta) =s(A) ¥V aedd,

tA) =1 & E€a, ¥ ae N,
Then (t|}$ LP(EY) = (SI‘A LE(E)Y so (5,f(E)) € P ; also (t,F(E))

EXE,SD X meets F and X meets E . Q)

{(iii) To ses that <XE>EGI is completely measurable in X ,
let JCT beanyseb. Then A=Jar [i] eV, set Fy
[0,1]'”'* 3. Nowif E€&J amd (t,u) e X\Fy , we have u
g7 .50 £€h amd t(A) =1. Tws UgX\F;C
{ (t,u) : t{A) =1} , which has measwre 0 in W . Similarly

ENFP\Ugers = Ugeng®eFr = Ugens®e\ng

has zero measure. So p(xn(FJAUEEJXE)) =0 and UEEJXE is
equivalent in ¥ to the measurable set XnFy .

n

(&)

(iv) Firally, uxXE gul (E,u) s t({E}) =11 =0, for each
LEel.

This completes the proof that X does not have the c.m.p.p.
To see that it does not have the property of Theorem 2B, take
g X+ I given by g(t,u) = £ whenever (t,u) € XE . If I is
given the discrete topology, g cannot be conbimuous on any set
FC X of positive measure, because if it were then
{ Fn g-l[J] : JCTI finite } would be an upwards-directed family
of relatively open sets of mero measure covering F ; but the
induced measure on F has to be guasi-Radon, so this is impossible.

2D Remarks. I should like now to turn to the other part of the
program in (f) of the introduction. If ¥ is any topological
measire space of finite magnitude, we can write %D(X) for the
class of topological spaces Y such that every measurable funecticn
from X to Y is almost contiruous. It is clear that %0 is
always closed under countable products and subspaces; that ZP
contains {0,1} iff it contains all separable metric spaces iff it
conbains all Souslin spaces iff it is closed under countable discrete
unions; and that ‘lf is closed under arbitrary discrete unions
whenever X has the c.m.p.p., sufficient conditions for which are set
out in 2E(e). Judieious use of these facts will produce many "new"
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pairs ¥ , ¥ such that every measurable f : X+ Y dis almost
continuous; but they seem mostly to be of little impartance. The
parriers to finding new examples among familiar spaces are indicated
by the following example. Take X to be [0,1} with the usual
topology and Lebespue measure, take ¥ to be [0,1] with the half-
open-interval topology generated by { Yn[o,8[ : @< B}, and £
the identity map. 'Then f is measurable but is not continuous on
any uncountzble set. As Y is camletely regular, it can be
embedded in compact Hausdorff spaces, e.g. the split interval I
{i.e. [O,l] #{-,+] with the compact Hausdorff order topology derived
from its lexicographic orderding}. Now I'" is a Hadon hereditarily
Lindeldf hereditarily separable campzct Hausdorf{f space. Thus most
of the obvicus approximations to metrizability are insufficient to
ensure membership of 'g([o,l]) .  However, subject to special
axioms, I have found a few cases; I describe one which depends on
Martin's Axiom and another which depends on the Generalized Continuum
Hypothesis,

3F PROPOSITION. Assume that Mertin's Axiom is true. Then far
#(I) < ¢ , a function f : [0,1] +~ ]tO,l]E is measurable iff it is

almost continuous iff all the coordinate functionals f‘g : [0,1] -+
[O,l] are measurable, where E € T .

proof. Clearly the only thing we need to check is that if every fE
ig measurable then f is almost continuous. T use the technique of
[11], 84, Theorem 1. TIet € > O and let g be the set of open
subsets of [0,1] of measure < e , ordered by C . Then if $HC
\‘g_ is uncountable, there are distinet G , HE& # such that GuH
€ g , because Ll([D,l}) is separable (see [11], p. 168). For
each £ €I let {ég ={0:06¢e€ g . fEl [O,l]\(_} is car-ltlnuous 1 ,
then qg is upwards-cofinal in ég, . By Martin's axiom, there is
an upwards-directed & < @ which meets every gg . Set H-=

; i i €I
(U¥h ; then H< e and fE'[O,l]\H 1s-cont1r-1uous for ev?ry E s
i.e. f| [031]\1_1 is continuous. As £ dis arbitrary, f is almost
continueus.
Hemarks. What I have really shown here is that if X is a quasi-

Badon measure space with a separable measure algebra, and if Martin's
axiom is true, then ‘?Zf(x) is closed under products of fewer than e
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members.  Note that [0,1]® never belongs to ?5’([0,1]) as 10
embeds into [O,l:[a" . Moreover, if X has non-separable measure
algebra, then ‘g’(}{) will not normally be closed under products
of 5\’1 factors, as the next example shows.

3F Example. Set X = [0,1]7 with its usual Radon measure (the
product of Lebesgue measure on each factor), where I is any
uncountable zet. Then there is a measurable funetion £ : X+ X
which is not almost continuous. P oset £{E)(E) = £(E) ir
0<t(E) <1, 1-+t(E) otherwise, for t = <t(E)>EEI € X . Then
pf M [E] exists = |E for every measurable cylinder set in X ,
therefore for every Baire set R cX. Because 1 is completion
regular, f{ I1s inverse-measure-preserving, therefore measurable.
But f is not continuous on any non-empty Baire set of X , so
carmot be almost continuous. Q

I conclude with another theorem on general Radon mgasure

gpaces.

3G THEOREM. Assume the Generalized Continuum Hypothesis. If
(X, &,Z,1) is a Radon measure space and L is an ordinal, every

measurable function £ : X+ L 1is almost continuous.

proof.{a) Observe that

(i) as usual, it will be enough to consider the case WX < o0 ;
(ii) it will be enough to show that if pX > 0 , there is a
£ < ¢ such that uf_l[{E}] >0 ; for then, if pX <00 , an
exhaustion argument will give a countable A< 7 such that uf—l [A]
= X , and now the restriction of £ to f C[A] is almost
continuous, sc that f 1is almost conbinuous.

(b) S0 I take O < pX <0 and seek to show, by induction on
L , that if f : X+ ¢ 1is measurable there iz a E < r such that
uful[{g}] > 0. '"Most" cases are easy. (i) For countable ¢ the
reswlt is trivial. (ii) If g=n+1 then sither uf [[{n}] > O
or uf_l[n] > 0 and (using the inductive hypothesis on the
restriction of f to f_l[n] )} there is a £ <n such that
]Jf—}'[{E}] >0 . (iii) If [ dis a limit ordinal for which g =

ef(z) < ¢ , let <r; be a strictly increasing family in ¢ with

/M<K
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supremm £ . Define g :Z+xkx by g{€) =minin: E< cn} H
then g is continuous so gf is measurable. By the inductive
hypothesis, there is an 1 < k such that 0 < l-l(gf)_l[{n}] £

wet [?;n+l] . Now apply the inductive hypothesis again to see that
there is a £ ¢ ¢ such that Mf-}‘[{E}] >0 .

(c) We are thus left with the case in which £ is an
meountable regular cardinal; as we are assuming GCH, we have
rze and 2% =z" .  Observe that we may take X = 1 and also,
using Proposition 1D again, we may suppose that X = {Cl,II.]rI for some
set I . ILet F be the filter of closed urbounded sets in ¢ ;
emmerate ‘F as <V£>&;<A , where A = 2t = C+ . For U,Ve
F say UC,  V if #O\W<z. IX*ACT ad #H) sz,
there is a U € °F such that UL,  V for every vesd ;

consequently we can choose <UE>E < induetively in F such that

< A,
UE gess Un whenever n < £ and UE gess VE for every £

(d) From this point to the end of the proof let us suppose, if
possible, that we have ui‘_l[{E}] =0 for every £ < T ; hy the
inductive hypothesis, we have uf"l [F,’] =0 forevery £E<. It
follows that ui‘"l[V] =1 forevery VEF. P1Ir ved,
gnumerate V 1Iin ascending order as BE>E<E . Write AE =
]ag,egﬂ[ for easch E< g . Then

= {GO}U{AE :E<r louliv
is a partition of £ such that UW® is Borel for every B C & .
So { f_l[A] :8ed ) is a comletely measurable partition of X ,
arnd by Lemma 2A
1= e ]+ np e A ¢ uiTV] s w V] . Q

{e) Write E for the set of conegligible Baire sets in X ;
as 1 is completion regular and pf‘_l[ig\E] =1 foreach E<i ,
we can choose H, € E such that H C £ i[AE] . Note that each
Hy Tactorizes through 10,1}V for some countable J CI. HNow
there is 2 KC I with 4#(K) £ ¢ such that every HE factorizes
through {0,13% and whenever Ve F , TCINK and #(1) s ¢
there is an E € § factorizing through {D,I}I\J
P? Otherwise, choose Wn e F, KmcI, Jn ¢ INKD
inductively, for n < w ., as follows. K(0) dis to be such that
every H, factars through 10,1150) ang #(x(0)) <z . Given
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K(n) , choose W_€ F and J(n) CINK(N) such that #(I(n)) € ¢
and there is no E € £ factorizing through {O,l}I\J(n) with
ng—l[wn] . For n>0,set K@) = X0 UE“nJ(E) ; then we
shall always have #(¥(n)) € £ , so that the induction will proceed.
Now there is a W €& “F such that W gess wﬂ for every
n<w ,ad ufo[W] =1, sothereisan E€ £ suchthat EC
£f1[W] . There is a countable J ¢ I such that E factors through
{0,1}‘:r ; now the J(n) are disjoint, so there is an 1 < oy such
that Ind{n) =@ . We have W\W11 C& forsome £ <g, sothat

£ ] 2 £ WA, 2QENH, . But EnH, € & and factors through
(0,0 X Q

(f) Teke a suitable KL I as in (e) above. For E < X , take
UE from (c). Choose Ellg € £ , countable J(E) € I inductively for
£ < 4 such that
Eggf‘ul[Ug] s EE factors through {O,l}J(E) 2
JE N (U LI (MNK) = 0
for each £ < A .
We can regard {0,130 as {0,0% x {0,117 § 1et
Hng be the corresponding factor measures. For each £ < A there
is a Baire set BE - {O,l}K such that uK(BE) =1 and
uI\K{u : (t,u)EEE} =1 Y tEBE
Since £ 2 ¢ , the collection of Baire sets of 10,1} has cardinal <
L ; sSo there must bea B {C),l}K such that
A= {E:E<),B =B])
has cardinal A .
(g) Consider ¥ = ngeAEg . Then p*¥ =1. P For t €B,
fu: Gwerl? = N lu: Gwek .
Since {u : {t,u) € EE 1 faectors through {D,l}J(E)\K and the
JEWNK are disjoint,

pf\K(nm‘;EA{ u: (t,u) € By h o= -ITEGA”I\I{{ u: (t,u) e By }
1.

Of course MKB =1, 50
* . -
T G ‘ﬁJI\K{ u: (tu) €Y hyfde) = 1. e

(h) Consequently Y & f"l[g] for any £ <, and H#(£[Y]) =
¥ . 'There is therefore a V € °F such that #(F[Y]\V) = ¢ .
Let n <X besuchthat V=7 ;5 let £ € An[n,A[ , so that
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Up Gogg V 5 then ve have [yl g Ug . But YCE C f—l[Ug] .
This contradiction shows that uf—l[{E}] >0 forsome E<C,

so that the induction continues.

ZH Problems. The following guestions are left open by the work
above.

() Let X be a subspace of a Radon measure space such that
every subset of X is measurable for the induced quasi-Radon measure.
Does the measure on X have to cansist of point masses?  (This
problem arises only if we assume the existence of a real-valued
measurable cardingl; 2-valued measurable cardinals are irrelevant
because an atom in a TD quasi-Radon measure space must be a point
TR, )

(b} Does Theorem 3G really require GCH? ¥or all T lmow, 1t is
true independently of special axiems. If X = [0,1] , € = w, then
of course much weaker axioms are sufficient (e.g. Martin's Axiom, or
the Definable Forcing Axdom of van Douwen and Fleissner):; but even
in this case I have no proof in ZFC alone.
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