FUNDAMENTA
MATHEMATICAE
165 (2000)

Universally Kuratowski—Ulam spaces
by

David Fremlin (Colchester), Tomasz Natkaniec (Gdansk) and
Ireneusz Recltaw (Gdarsk)

Abstract. We introduce the notions of Kuratowski-Ulam pairs of topological spaces
and universally Kuratowski—Ulam space. A pair (X,Y) of topological spaces is called a
Kuratowski-Ulam pair if the Kuratowski-Ulam Theorem holds in X x Y. A space Y is
called a universally Kuratowski-Ulam (uK-U) space if (X,Y") is a Kuratowski-Ulam pair
for every space X. Obviously, every meager in itself space is uK-U. Moreover, it is known
that every space with a countable 7-basis is uK—U. We prove the following:

¢ every dyadic space (in fact, any continuous image of any product of separable metriz-
able spaces) is uK-U (so there are uK-U Baire spaces which do not have countable 7-
bases);

e every Baire uK-U space is ccc.

1. Kuratowski—~Ulam pairs. We use standard set-theoretical notions.
In particular, ordinal numbers will be identified with the set of their pre-
decessors and cardinal numbers with the initial ordinals. For a set A and
a cardinal k, [A]<* is the family of all subsets of A with cardinality less
than «. Similarly we define the families [A]* and [A]=F.

The symbols X, Y, Z denote topological spaces, M(X) denotes the
family of all meager subsets in X. For E C X x Y and z € X, E, denotes
the z-section of E, etc.

A family U of non-empty open subsets of X is called a pseudo-basis
(m-basis for short) of X if every non-empty open set W in X contains a
U € U. A topological space X is k-cc if there is no family of size x of
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open, pairwise disjoint sets in X. Note that the ccc property is the same as
w1-CC.
For a given space X we will use the following two cardinals:

add(M(X)) = min {|D| D MX) & D¢ M(X)},
7m(X) = min{|U| : U is a w-basis for X}.

A pair of topological spaces (X,Y) is called a Kuratowski-Ulam pair
(briefly, K-U pair) if the Kuratowski-Ulam theorem holds in X x Y:

K-U: IHEeM(XxY), then{zeX:E, M(Y)} € M(X).

Kuratowski and Ulam proved that (X,Y") is a K-U pair whenever n(Y) <
add(M(X)). (See, e.g., [KK] or [JO, Theorem 15.1, p. 56]. For applications
of this method for Ellentuck topologies generated by filters see [IR].) Thus
any pair (X,Y), where Y is a topological space with a countable 7-basis, is
a K-U pair. This fact suggests the consideration of the following property
of topological spaces.

DEFINITION 1. A topological space Y is called a universally Kuratowski-
Ulam space (uK-U space for short) if (X, Y") is a K-U pair for any topological
space X.

Thus, by the Kuratowski—Ulam theorem, every space Y with a countable
m-basis is a uK-U space. Note also that every space Y meager in itself is
uK-U.

The scheme of this paper is the following. First we show that there are
uK-U Baire spaces without countable 7-basis. Next we prove that every
Baire uK-U space satisfies the ccc condition and give some examples of Baire
ccc spaces which are not uK—U. We finish with descriptions of properties of
the class of uK-U spaces.

THEOREM 1. If S is a dense subspace of 2%, Z a regular topological space
and f : S — Z a continuous surjection, then Z is a uK-U space.

Fix the following notation. By ¢ we denote the family of all functions
¢ : A — 2 where A € [k]<“. There is a canonical isomorphism U between
the family & and the family U of all basic open sets in 2": U(p) = {y € 2" :
¢ C y}. Note that if ¢ C 9, p,¢ € &, then U(yp) C U(p). We say that a
set U C S is basic open in S if U = U N S for some basic open set U cC 2.
We say that a set A C 2" is determined by a set of coordinates T C k if
A= {ye€2°:y|lr € A*} for some A* C 27. By cl(A), int(A) we denote the
closure and interior of A in the space 2*, and by clg(A), intg(A) the closure
and interior of A in S.

We will use the following lemma:
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LEMMA 1. If W C S is a regular open set then it is a countable union
of basic open sets in S.

Proof. Note that S, as a dense subspace of 2%, has the ccc property.
Thus we can find a sequence (Bj)n<, of basic open sets in 2% such that
S N Upcy Bn is a dense subset of W. Each B, is determined by 7, €
[k]<“. Consider 7 = {J,, ., 7a € [k]=*. Then cl(W) = cl(U,,, Bn) is de-
termined by 7. Therefore int(cl(W)) is determined by 7, so it is expressible
as |J, <., Un, where U, are basic open sets in 2*.

Now consider U = SN, ., Un. Observe that W = intg(clg(W)) =
SNint(cl(W)),soW =U. u

COROLLARY 1. If V is a non-meager open set in Z, then there exists a
basic open set W C S such that f[W] is non-meager and f[W]C V.

new

Proof. Because Z is regular, there exists a non-meager open V' such
that clz(V’) C V. In fact, for each z € V there is an open set V, such that
x €V, € clz(Vy) C V. If all V, are meager then by the Banach Category
Theorem [JO, Theorem 16.1, p. 62}, V = {J, V; is meager, a contradiction.

Put Wy = f~1[V'] and Wy = intg(cls(Wp)). Note that W is regular
open in S and V' C f[W;] C V. By Lemma 1, W1 is a countable union of
basic open sets in S, so the image of one of them is non-meager. n

Proof of Theorem 1. Let X be any topological space and £ C X x Z be
a nowhere dense closed set.

Let P be the set of all pairs (G,I) where G is an open set in X and
I € [k]<“. Define a relation < on P by (H,J) < (G, I) if

e HC Gand J DI, and
o if W C § is a basic open set determined by I then either
— Hx fIW|CE,or
— there exists W' C W, a basic open set determined by J, and an
open set U C Z such that f(W']C U and (H xU)NE = 0.

CLAIM. For any (G,I) € P and any non-empty open set Go C G there
exists (H,J) € P such that (H,J) < (G,I) and H C Gy.

In fact, let [I| = n and {W; : 0 < ¢ < 2"} be the finite sequence of
all basic open sets determined by I. For each ¢ < 2" consider two cases. If
Gi—1 X f]Wi] C E, set G; = G;_1 and J; = J;—1. (Here Jo = I.) Otherwise
find W/} C W;, a basic open set in S determined by J;, and open sets U; C Z,
G; C Gi—1 with f[W/] C U; and (G; x U;) N E = 0. Finally, set H = Gan

Now choose inductively a sequence P, C P such that

e Po = {(X,0)}.
o If (H,J),(H',J') are distinct members of P, then H N H' = 0.
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e For (H,J) € Pny1 there exists (G, I) € Pp such that (H,J) < (G, I).
¢ P,41 is a maximal family which satisfies the conditions above.

Then all the G* = J{H : (H,J) € Pn} are open and dense, so [},, G
is comeager in X.

Take any z € ()<, Grn- We have to prove that E, is meager. It is suf-
ficient to prove that for any non-meager open set V C Z there exists a
non-empty open set Vo C V with E; NVp = 0.

Fix a non-meager open set V C Z. By Corollary 1 there exists a basic
open set Wy C S such that f{Wp] C V is non-meager. Assume that Wy is
determined by J € [k]<¥. For z there is a sequence ((Hp,Jn))n such that
for each n,

L4 (Hm Jn) € Pn;
sz c Hy;
L4 (Hn—}—h Jn—i—l) < (HnaJn), s0 Jn4+1 D JIn-

Since J is finite, there exists n with Jop1 NJ = Jp N J. Note that J,
determines a finite partition of S. Since f[Wj] is non-meager, there exists
an open basic set W determined by J,, such that f[W N W) is not meager.
Since E is nowhere dense, H, 11X f[W] ¢ E. Therefore there exists W' cw,
a basic open set of S determined by Jn+1, and an open set U C Z such that
(Hpy1 x UYNE =0 and f[W'] C U. Now W' N Wy # 0,50 FIW' NWy] #0
and UNV # 0. We have £ € Hp41 and (Hopix (UNV)NE = ®, so
(UNVYNE;=0.m»

In particular, for every cardinal  the space 2% is uK-U.

COROLLARY 2. There ezists a uK-U Baire space Y without a countable
7 -basis.

Proof. Consider Y = 2¢1. By Theorem 1, Y is a uK-U space. On the
other hand, it is well known that 7(Y") = wi. In fact, let {Un : n < w} be a
sequence of basic open sets in Y. For each n there exists A, € [w1]<¥ and
¢n + Ay, — 2 such that Up = U(pn). Then A = |J An is countable. Choose
o € w \Aand take V = {y € Y : y(@) = 1}. Then V is open in Y and
no U, is contained in V. Thus {Uy, : n € w} is not a m-basis for Y. =

A compact space X is said to be dyadic if it is a continuous image of the
space 2~ for some cardinal « (cf. [RE, p. 285]). Thus Theorem 1 implies the
following.

COROLLARY 3. Every dyadic space is uK-U. »

A topological space X is said to be quasi-dyadic if it is a continuous
image of the Tikhonov product [], Xa of a family {Xq : a < &} of metric
separable spaces (see [FG]).

THEOREM 2. Every regular quasi-dyadic space is uK-U.
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Proof. We start with the following lemma.

LEMMA 2. Every metric separable space is a continuous image of a dense
subset of the space 2.

Proof. This is a consequence of the fact that every metric separable
space is homeomorphic to a subspace of the Hilbert cube I¥ (see e.g. [AK,
Theorem 4.14, p. 22]) and that I* is a continuous image of 2*. Thus every
metric separable space is a continuous image of some subspace of 2¢. On
the other hand, it is easy to prove that every subset of a Cantor set is a
continuous image of a dense subset of 2*. u

To complete the proof of Theorem 2, assume that Y is a regular space,
Xa, @ < K, are metric separable spaces, and f : [[ock Xa — Y is a con-
tinuous surjection. For every a < k there exists a continuous surjection
fa : Aq — Xo, where A, is a dense subspace of 2¢. Then the set IL. <x A
is dense in 2*% and f o [],, fa is a continuous surjection from [Mocr Aa
onto Y. By Theorem 1, Y is a uK-U space. »

THEOREM 3. Assume that X is a non-meager space, Y is a Baire space
and (X,Y) is a K-U pair. Then Y is add(M(X))-cc.

Proof. Suppose that k = add(M(X)) and B = {B, : a < k} is a family
of open, non-empty, pairwise disjoint sets in Y. Let A = {4, : a < k} be a
family of nowhere dense sets in X with |J.A ¢ M(X). Define W Cc X x Y,
W = Uq<x Aa X Ba. Note that W is nowhere dense in X x Y. In fact, fix a
basic open set U x V and consider two cases. If Vo = V' \ cly (U, <xBa) #0
then U x 1} is open and disjoint from W. Otherwise Vj = 0. Then VNBy, #0
for some a < &, so for an open, non-empty set U’ ¢ U \ A, we find that
U’ x (V N By) is a non-empty open set disjoint from W.

On the other hand,

{z: We g M(Y)} = J A ¢ M(X)
thus (X,Y) is not a K-U pair. =

REMARK. There exist completely regular spaces X non-meager in them-
selves with add(M(X)) = w;. In fact, it is well known that X = 2% has
this property. (All sets Ey = {x € X : z(£) =0 for ¢ > a} are closed and
nowhere dense in X, but |J, <wy Ba & M(X). Another example: the space
(w”,74) from Example 1 below; see [LR).)

Thus we have the following.
COROLLARY 4. Every Baire uK-U space satisfies the ccc condition. m

Now we will show that the assumption of ccc for a Baire space Y is not
sufficient to make it uK-U.
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For s € w<¥ and f € w* with s C f define
(s,f)={g9€w”:sCgand f <g}

Note that the family of such pairs forms a basis for a ccc topology 74 on
w®. Tt is known that (w*,74) is a completely regular, Baire space (see [ER]).
Moreover, let 7 denote the standard topology on w®. For f,g € w® the
symbol f <* g means that the set {n € w: f(n) > g(n)} is finite.

EXAMPLE 1. ((w¥, 7), (w?, 74)) and ((w*,7q), (w*,7q)) are not K-U pairs.
Proof. Define W = {(f,g) € (w*)?: f <* g}.
CLAIM 1. W is meager in the topologies Tq X Tq and T X Tq4.

Put W, = {(f,9) € w¥ X w” : Vi>n f(k) < g(k)}. We will verify that all
W.,, are nowhere dense in the topology 74 x 74. Let (s, f) x (r, h) be a basic
set. Fix k > n such that k ¢ dom(s) U dom(r). Choose s1,r1 € w<“ such
that s C s1, 7 C ry, s1(k) > ri(k), s1 > fldom(s1), and 71 > h|dom(ry). Let
f1 be any extension of s; with f; > f and h; be any extension of 7y with
hi > h. Then (s1, f1) X (r1,h1) C (s, f) x (r, h). Observe that e(k) > g(k)
for each (e, g) € (s1, f1) X (r1, h1). Thus (s1, f1) x (r1, 1) "Wy, =0, so W,
is nowhere dense, and consequently W is meager in the topology 74 X 74.

Similarly we can prove that W is meager in the topology 7 X 74.

CLAIM 2. Wy & M(1g) for each f € w®.

Note that Wy = {h : f <* h}. Fix a basic set (s,g) and define g1 € w”
such that gy (i) = h(i) if ¢ € dom(s) and g1(i) = max(h(i), f(7)) otherwise.
Then (s,g1) C (s,9) N Wy. Therefore Wy is comeager in the topology 74. =

COROLLARY 5. The space (w*,74) is not a uK-U space. m

We also have another better known example of a ccc space which is not
uK-U. Let d denote the density topology on the real line. Recall that (R, d)
is a Baire space with the ccc property, and A C R is d-nowhere dense iff it
is d-meager iff m(A) = 0. Here m denotes the Lebesgue measure. (The basic
properties of this topology are described in [JO]. See also [FT] for more
details.)

EXAMPLE 2. For X = (R,d) the pair (X, X) is not a K-U pair.
Proof. Consider
A={(sy) s—y¢ Q.

As is easily seen, both A and its complement are d x d-dense (this is a con-
sequence of Steinhaus’ Theorem [HS]|, see also [AL]). Moreover, A is a Gs
subset of the plane with full Lebesgue measure, so it contains a closed set E
(in Euclidean topology so also in d x d topology) with positive measure. The
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set E is nowhere dense in (R%,d x d) and, by Fubini’s Theorem,
{r:E; ¢ M(d)} ={z: m(E;) >0} ¢ M(d). =

2. Properties of the class of uK—U spaces. In this section we present
more results and problems about uK-U spaces. We omit some proofs because
they are standard.

PROPERTY 1. The product of finitely many uK-U spaces is also a uK-U
space.

Proof. Assume that Y and Z are uK—U spaces, X is a topological space
and E is a closed nowhere dense subset of X XY x Z. Let E' = {(z,y) €
X xY : Egy & M(Z)}. Then E' € M(X xY). Since (X,Y) is a K-U
pair, we have {z € X : (E'); € M(Y)} € M(X).

Now observe that if E, ¢ M(Y x Z) then (E'), ¢ M(Y). In fact,

Er ={(y,2): (z,9,2) € E} ={(y,2) : 2 € B}
and this set is closed. Then int(E;) ¢ M(Y x Z), and by the Banach Cate-
gory Theorem, there exists an open set UxV C E, withUxV & M(Y x Z).
Therefore U ¢ M(Y), V ¢ M(Z), and

Uc{y: (Ez)y g M(Z2)} & M(Y),
S0
Thus
{zeX B, g MY XxZ)}}C{zreX:(E)gMY)}e M(X). n

PROPERTY 2. The product of countably many uK-U spaces is a uK-U
space.

Proof. Suppose that {Y,}n<. are uK-U spaces, X is any topological
space and W C X x [],., Y is a dense open set. Put m,(x,y) = (z,y|n)
for n < w (that is, m, is the natural projection from X x [], ¥, onto X x
[l Y:). Let Wy, = m,[W]; then W, is a dense open set in X x [],_, Y.
Because finite products of uK-U spaces are uK-U (cf. Property 1), {z € X :
(Wh)z is dense} is comeager for every n, so H = {z € X : (W,), is dense
for every n} is comeager in X.

Now, if there is an x € H such that W, is not dense in [, _ Yy, there
are n < w and non-empty open sets G; C Y; for ¢ < n such that W, does
not meet [, Gi X [[;>, Yi. But then (W), does meet [],_,, G;, which is
impossible. »

<n

Applications. Recall that the product X x Y of Baire spaces may be
non-Baire. (Some conditions for X and Y which imply that X x Y is a
Baire space are described in [HMC].) Note that if X and Y are Baire spaces
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and (X,Y) is a K-U pair, then X xY is a Baire space. Similarly, the product
X xY of a Baire space X and a uK-U Baire space Y is a Baire space.

REMARK. Property 2 leads to the natural problem whether the product
of any family of uK-U spaces is always uK—U. This problem has been solved
recently by D. Fremlin [DF] in the affirmative.

PROPERTY 3. Any open subspace of a uK-U space is itself uK-U. w

PROPERTY 4. If Yy is a dense subspace of a uK-U space Y, then it is
also a uK-U space. u

PROPERTY 5. Assume that Yy is a subspace of a uK-U space Y such that
Yo C inty (cly(Yp)). Then Yy is also a uK-U space. m

EXAMPLE 3. There exists a subspace Yy of a uK-U space Y which fails
to be a uK-U space.

Proof. Take Yy to be the discrete space of size wi. As Yy has weight
w1, it embeds into Y = [0, 1]“? (see e.g. [RE, Theorem 2.3.11, p. 113]). By
Theorem 2, Y is uK~U, but Y} is not ccc, so it is not uK-U, by Corollary 4. =

We say that a set A C X is nowhere meagerin a space X if UNA ¢ M(X)
for every open, non-meager set U C X.

PROPERTY 6. Suppose that Yy is a uK-U dense subspace of a space Y.
If Yy is nowhere meager in'Y then Y is a uK-U space. m

The assumption about Yy cannot be omitted.
EXAMPLE 4. There exists a non-uK-U space Y with a dense uK-U sub-
space Yy.

Proof. Let Y be any complete dense-in-itself metric space which is non-
ccc. By Corollary 4, Y is not uK-U space. For every n > 0 choose a discrete
set Y, C Y which forms a 1-net in Y. Then Yy = Un>0 Y, is dense in Y,
dense in itself and meager in itself. Thus Y is a uK-U space. =

PROPERTY 7. Suppose that {Y; : i <w} is a sequence of uK-U subspaces
of a topological space Y. Then |J;Y; is also a uK-U space. m

COROLLARY 6. The topological sum of countably many uK-U spaces is a
uK-U space. u

EXAMPLE 5. The topological sum of uncountably many uK-U spaces may
fail to be a uK-U space.

Proof. Let Y be a discrete space of size w;. Then Y is not ccc, so it is
not a uK-U space. On the other hand, every singleton is a uK-U space. u

PRrROPERTY 8. The homeomorphic image of a uK-U space is also a uK-U
space. m
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PROPERTY 9. The image of a uK-U Baire space under a continuous open
function is a uK-U space. u

Note that any space Y is a continuous image of the space Y x Q meager
in itself. Thus any Y is a continuous image of a uK-U space.

REMARK. The results above lead to the problem whether any continuous
image of a uK-U Baire space is also uK-U. This problem has recently been
solved by D. Fremlin [DF] in the negative.

References

[AL] R. Anantharaman and J. P. Lee, Planar sets whose complements do not con-
tain a dense set of lines, Real Anal. Exchange 11 (1985-86), 168-179.
[RE] R. Engelking, General Topology, PWN, Warszawa, 1976.
[FG] D.H.FremlinandS. Grekas, Products of completion regular measures, Fund.
Math. 147 (1995), 27-37.
[DF] D. H. Fremlin, Universally Kuratowski-Ulam spaces, preprint.
[HMC] R. C. Haworth and R. C. McCoy, Baire spaces, Dissertationes Math. 141
(1977).
[AK] A.S.Kechris, Classical Descriptive Set Theory, Springer, Berlin, 1995.
[KK] K. Kuratowski, Topologie I, PWN, Warszawa, 1958.
[ER] G. Labedzki and M. Repicky, Hechler reals, J. Symbolic Logic 60 (1995),
444-458.
[JO] J. Oxtoby, Measure and Category, Springer, 1980.
[IR] I Rectaw, Fubini properties for o-centered o-ideals, Topology Appl., to appear.
[FT] F.D. Tall, The density topology, Pacific Math. J. 62 (1976), 275-284.
[HS] H. Steinhaus, Sur les distances des points des ensembles de mesure positive,
Fund. Math. 1 (1920), 99-104.

Mathematics Department Department of Mathematics
University of Essex Gdaiisk University
Colchester CO4 3SQ, England Wita Stwosza 57
E-mail: fremdh@essex.ac.uk 80-952 Gdarisk, Poland

E-mail: mattn@ksinet.univ.gda.pl
reclaw@ksinet.univ.gda.pl

Received 6 Decemnber 1999;
in revised form 19 June 2000




