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CHAPTER 2

The d-dimensional Brownian motion

Introduction and summary

In this chapter we introduce the d-dimensional Brownlan mo-
tlon, assuming as known the 1-dimensional Brownian motion starting
at 0. Then we consider Markov times in more detail than is ab-
solutely necessary, in the hope that this will better the under-
standing of this important notilon. Strong Markov property is proved

and a few applications considered.

81. The d-dimensicnal Brownian motion

As proved, for instance in [3] pp. 12~16, there is a real
valued stochastic process E(t), 0zt <w (on some probability
space), such that £(t} is continuous, E£(0) = 0 and with the

finite dimensional distributions

P[E(ti)E E;y 1sign]
(1}
= IE P'(t1,0,da1}JE p'(tz-—t.l,a.i,dazl...JE Pt ~t, qea ,.da)
i 2 »
where D <t, < <t 1{t,a,db) = 1‘ (—(b"a)z‘db a
1S e n' p - = ToE exp ) an

2t
Eyr..-+E, are Borel subsets of the real line. See also pp. 5-8

of [5] for another proof of this fact.
Now let us define the d-dimensional Brownian motion. There

is a probability space (Q,IB,P) and a d-dimensional stochastic
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process Xit) = (X1(t),...,Xdlt)) such that X1( 3 4

{ )v
are J.ndepenéent stochastic PIUCEEEES and each is a <oy of 5

d
Let W be the space of continuous paths t + wit) ER t>0.

Io
In W CODElder the smallest Borel field B which makes all
th coo Borel field
e pordinate maps measur able: B is the smallest e

le for all
1ative to which all the maps W = w(t) are measurable
re

t20. The map

a
? a€R
13w —-P—*x?__{w) =a+xt(w)EW, R

y medsur hle and nduces 9]:0ba iii ¥ P on { Y-
i1s clearl L= a. 1 < b t 5 W.B

rea~
(Ww,B ,P aER , X} is called the standard path space
2,587 £ 2 P I

' , ply, the standard d-dimen—

i i im
lization of the Brownlan motion, or &

X is now the coordinate mapping

aional Brownian motion, where £

of the path space W:

"t“") = xle,w) = wit)

on is a collectien of individual

2er? knitted

The standard Brownian moti
esses, each starting at a point

this is the so-called {simple}

stechastic proc

together in a certain manner:

Markov property.

N (x(t,) EE ]
kzm
(2)
- ;d.K )r
= J ...] p(t1,a,dxj)p(t2-t1,x1,dx2) B
E1 Em

whers E E ar B el ubsets of R and 0<t1<t2<.‘.<t r
ar 5
KRR (=]

iso have
and plt,a,db) = Pa[x(t) gdb]l. We a

mz1,

g) = P, (w+ta € B)
(3) Pa( ) 0

B
P (-wEB) = P__(B), BED, .

(4) I pa(x(o) =a) - 1_' .

',

RN
Ea(B) is to be thought of as the chance that the event BEER

occurs for the Brownian path starting at a € g9, (2) is easy
to verify using (1).

In general, amn event BE€ B_ depends on an infinite set of
parameter values t. However, certain statements which are true
for all events depending on finitely many parameters also hold
for all events in B_. We will counter several examples in the

sequel. The following theorem will be found useful in reaching

such a conclusion.

Theorem 1. Let H be a vector space of bounded real valued
functions defined on a set X, which c¢ontains the constant 1,
is closed under uniform convergence, and is such that for every
increasing uniformly bounded sequence fn of non-negative func-
tions fn €H, the function f = linlan H. Let C be a subset
cf H, closed under multiplication. Then the space H contains
all bounded functions measurable with respect to the Borel field

generated by the elements of C.

Proof. 1If f1""’fn €C any polynomial in f1""’fn be~
longs to H. The conditions on H together with Stone-weierstrass
Theorem imply that for any continuous function ¢ on RT,
m(fi"“’fn) EH. H 1is closed under uniformly bounded increasing
limits; since H contains constants, it is closed under uniform-
ly bounded decreasing limits. The set of ¢ on R" for which
w(f1,...,fn)5 H, wcontains the bounded continuous functions and is
closed under uniformly bhounded monotone limits. It therefore con—
tains all bounded Borel measurahle functions. We leave the rest of

the proof to the reader.




We dedoce

As a first example of the way Theorem 1 is used, let us

d : (6) Polx(tts) €A 1BI1 = P ) (x{t) €A)
show that Ea[f] is a-measurable on R for each bounded B -
: o = P s th 1 - field _
measurable function £. The set of such functions clearly sa- ; where B, g[x(t1), 1 =8l is & smalles orel fie gene
. - . : a s f < .
tiesfies the conditions of Theorem 1 and contains the multipli- f rated by the variahles x(t1), ;58
i i : That (5) implies (6) is an example of the use of Theorem 1.
i - ed functions depending on
cative class of B measurable bound
finitely many parameters, l.e. functions £ of the form £{w) =
wix, (w} ,%. (W)}, where y 1is bounded and meazutable on Markov property
t L

1 n £ -
R™ . By Theorem 1 it contains all B -measurable bounded func Markov property has several different expressions which are

tions. all equivalent but each has some technical advantage. We will be

The reader will notice that sometimes we need to conclude concerned with the standard dimensional Brownian motion. Before

the joint measurability of some stochastic processes. The fol- discussing Markov property, let us introduce maps W - W:

d ful.
lowing theorem will be found use the shift operators Qt (tg(ﬂ defined by Qtw(s) =y (5+L),
s5<0,

‘ be a stochastic process, te€[0,=}.
Thegrem 2. Let Xit,w) the stopming operator . .

w{s at}, s >0, so that oW

£ efined b wix) =
i ight con =} Y a (x)
If X({t,w) is measurable in w for each t, and 1s rig t 4d

¢

TRLLES

w.
tinuous i + for each w, then X(t,w) 1is measurable in the

E It is easy to verify that both are measurahle maps of {w,B_)
pair (t,w). :

inte (W,B_}. We leave it to the reader to verify the following

fined b fact:
The seguence xn(t,w) of stochastic processes defi Yy

. The smaillest Borel field B,
+ i i= re s -
X (£,w) =X(——in1,w): el <ty i=0.1.2,

relative to which o, 1is

3 of measurable is precisely the Borel field of events depend-
for n=1,2,... are jointly measurable and ing on the sample path up to time +t, i.e. Ettg(ﬂ;:sét)=
) a the least Borel field relative o which all maps w -+ w(s)
mE (£ = X(Ew). 2.e.d. | ' T
l;m X le ! : are measurable for all ss<t.

With the help of (2}, it is seen that The standard Brownian motion has the Markov property:

. 2 ) = [[ plt-t_yx(t ), bidb: 0 (x(t) EEI] )
= Pali(e) €37, 0,005 €8 = Fal ] P kgu . (1) 2 (6'a) np) = B[P, (Bl Aep, mep
= E_[P Ix(t-t ) €A : N {xf )EEK)E :-:: _
a X(tm) m k< B ] Pa[BE1A |Es] = Px (A), AEB, .

i s
ty <ty <. .. <k <t




(8) B [Goo, - Tl = E (B, (G) «F] (apply (8) with s=t_ ,. t=g% [ and a=x(w)). Now
t

1 =B, (@

Theorem 1 takes over.

B [Goo, | B

for any G,F respectively bounde@ B_- and gt-measurable fuanc—

tions.
{9) E,[f(x (6w) |B]] = Exs(f"‘t”
s d ;
for any bounded Borel-measurable function f on R, ) §2. Strong Markov property
That (7) and (8) are equivalent is general measure theory. The Brownian motion also starts afresh at certain random

{9) is a particular case of (8) and (9) is equivalent to equa- : times, such as the hitting time

tion (6). Let us show that (9) implies (B8). Use induction and ;
T, = inflt>0; x(t) €)), U is an open set ih R

suppose G has the form
{= 4w if =x(t) never hits U},

= e ol (WD),
G (w) f1(xt1(W)) m 1 instead of a constant time +:

a [ S are bounded Borel meas-
where t.l <t2 PN <tm and 17 £ | Ea[f(xS(BTw)} I gT] ] EXT[f(xs)]-
urable functions on pd. G oGt(w) = f1(xt1+t(W})"'%nhﬂ%ﬁt“ﬂ)' :
And This property was familiar and extensively used to derive

II

m B deep results by, for example, P. L&vy. The complete statement
E G (x ) |B E[nf(x |8 +t133] j
al FL e 4 (St t+t 1 . . .

1 i o of this feature of the Brownian motion, however, was discovered
m-1 '

= a[ﬁ £, U;i+t a[f(x 1Bﬁ¢4+t]!gt] ] by Hunt and Dynkin independently in the early 1950's.
- : A random variable T: W -+ [0,=] is said to be a2 Markov time
{since n £, (xt +t is B +t-measuxable)
. m-1 (or stopping time) if
= s
=E[nf.{x )E (F (% _ Ip
iV TR mt 3y iz
2l 4 i o m e t {w: T(w) <t} €B, tzo0.
ince E[£ (x ] -E (£, . W
feinee [ t“+t| e }%+qu t fa-1 The hitting time T3 is a Markov time since
o { 3]
= E [Hf.(x B by ] (T <t) = U (%, €U) €B,.
T ti Xtm‘1 m : u r rational < t -
{(by induction assurption applied W G4 where :
= D ; A tant ti T = t is trivi
Gpiw) = £, (xt1 Wi e . E g W) }Ext w) (fm(xtm— "l : constant time is trivially a Markov time, but a
-1

last exit time such as sup{t £1: x(t) =0) is not.

n
E [}Tf.(x )]
el 178y




Define B to be the class of sets BEB, such that

T+

BN (T<E) €B,, tz0.

§T+ is a Borel algebra and (T <t} E§T+ for each tz0. ET+

is to be thought of as measuring the Brownian path up to time

t = T+ heacuse

Bp, = N Blx(ta (T+e)): t201.
e>0

We shall show this a little later.

Dynkin~Hunt's statement of the strong Markov property is
that, conditional on the present position x(T), the future path
X (E+T), tz0, is a standard Brownian motion starting at x(T),
and this Brownian motion is independent of By

Before going into precise mathematical statements, let us
note some facts. By Theorem 2, §1, x(t,w) is measurable in
the pair (t,w). Hence for any non-negative measurable function
b on W, the function =x(b{w),w) is measurable. In particular
for a Markov time T, He ig measurable. We already defined the
shift operators Dt and stopping operators o, for all tz0.

QT and % make sanse {if T <=} and are easily seen to be meas-

urable maps on W into W.

Theorem 1. The Rrownian motion has the strong Markov property:
{1) Ea[Gc@T: Bn(r<=}] = Ea[Ex(T) (Gl: BA (T<m) ]

for all bounded gm-measurable functions G and all BE §T+'

Proof. We need only prove (1) for functions G of the form

Glw) = £q(={t)] co- B txlEg) )y

whare f?,...,fm are continuous bounded functioﬁs on Rd.

Once we do this, Theorem 1, §1, takes over.

Define a seque pi i
quence (of stopping times) Tn as follows:

T, (W}

-1 . - h
k2 if (k-1)2 " <r k2™, k21,

@ if T = =,

Noting the following facts {we leave the proofs to the readar):

i) Glaw) = lian(GT W}
n

ii) Ea[G] is a continuous function of a

iii} B =k2™") = -2 "~
}OBNT, =k2™T) = BN ((k-1)2 "2 T<k2 )E By, k27

for al
all BEET+,

we write

Ea{G o G)T: BN {Tws) ]

lim EaEG 0By : BN (T<=)]

n-= n

]

1i 3 : -
. [k£1EaIG° Okz-n® BT =k2 n”]

) i-oi:kLEa[Ex(kZ‘n) {6}: BN (Tn = %277

{this is the simple Markov property)

- 1imEa[Ex(Tn) (G): BN (T <w)]

[a
Ea {Ex(T){G): Bni{T<ew)],

This proves the theorem.

(1) is eguivalent to

(2} D =
E,lG00p | Byl = By () (®)

Pa - almost everywhere on the set (T <w).




Corollary 3. Let {B;, i€I! be a collection of sets in
Proceeding as in Exercise 3, we can show that

gt. If 8 = igIBiegm, then BEEt.
- -1 BEB
Pa[eT1A) 0B I x(T)1 = P8, A | x(THIP (B | x(T)), =
sen , almost everywhere on the set {T<wm) . Indeed, from the above proposition
=T+
! -1 -1
) ; = a_'{B) = U, o] '(B,) = U,B, = B
Stated otherwise, this means that conditional on x(T), the motion ; t i %y l) 1By
%(T+t) is independent of B, - ? Introduce the Borel fields By ,:
B = 01 B, tz0.
st s>t ° -
Markov times An immediate corollary of Corollary 3 is
Recall the definition of the stapping operator &:
: Corcllary 4, Let (B 1 €I} be a collection (not necessaril
o wis) = wit AS): t,s z 0. 5 == ==n- i’ ¥
countable) of sets in Et+ . If B= U Bi €EB , then B E§t+'
3 3 tant property: i€x1
o has the following importan
t .
(3} c,ﬁt[mtx,\rl = av. : Our definition of a Markov time can be rewritten as:
llowin roposition ; .
he reader will presently see the use of the fo 1B - (Tgt) €EB,, €20
in the study of Markov tlmes.
Proposition 5. Let T: W— [0,=] bhe B _-measurable. Than
proposition 2. BeB, if and only if T is a Markov time iff
it e S H
B = a—1(8)
£ (T=t) €EB . tzo0.
Indeed T=t) = U [T=5) and Corollary 4 takes over.
i B is the smallest Borel field (Ts¢) 5<t( n ¥
Proof is immediate: Since B 2
relative to which ay ig measurable, there exists a set A€B,
Using Proposition 5, it is a simple matter to check that the
such that
-1 class of Markov times is closed under the operations:
B =a (A) - - = _—
-l = -1 — T, A T T, v T
We have o '(B) = ap'ay' (@) = o’ (d) = B from (3}. L L
Tn + T, Tn + T
T'I + T2

T1 + Tz(BT}w) .




Consider, as an example, the proof that § = 'I‘.I +T2{BT w} is a
1
Markov time whenever T1, TZ are. First S5 is B_-measurable.

And

(s=¢t) = u (T1ar)ﬂ(T2(9r)=5).
r,s
rt+g=t

Now note that for all r,5,5;1 (A} €B rie)+ for all AEp_, (first
prove that 9;1 (A) €B .. for all AE€B. for all r,sz0). Thus

(5§=t) €B and the proof is complete.

t+
Before examining Markov times Ffurther, let us introduce strict

stopping times:

A non-negative function T <= is a strict Markov time if for

all tz0,

Clearly every strict Markov time is alsc a Markov time; if T is
a Markov time, T+e is a strict Markov time for all e >0. 1In
particular, every Markov time is a limit of a decreasing sequence

of strict Markov times.

We can easily show (cf. Proposition 5) that a non-negative

measurable function T <+= is a strict Markov time iff (T=t}€ gt

for all t>0.

For a strict Markov time T, +the Borel field ET is defined

as the Borel field of all sets B EB_ such that

Bn(Tét)Egt for all tz0.

If T<§ are (strict) Markov times and BE€By, (EBp), we have
BN(S<t) =BN(T<t)N(S<¢t) €B,

(Bn(Sst) =Bn(Tgt) 0 (Sst) €8,

for all t i.2. !
20, i.e BEE5+ (BEBS). Thus g,r_,_cgs_I_ [%:ES]'
Using this, it ig simple t0 show that if & Sequence of Markow

times Tn decreases to a Markov time T,

B, = NB§B

=1+ n _Tn+
and

B = N B .

=T+ E>0_T+E

(Note that T+e isg a strict Markov time for all E. >0.)

Suppose T is a Markov time. ‘then

{(T=t) E=Bt+c§s for all ss>¢,
i.e

_‘] _

g {T=t) = (T=¢) for all s>t¢,
i.e.

Tw) = £ implies T(asw) =t for all sgs>¢t.
Thus
{4) T{w) = T(aT+Ew) for ali =0,

Similarly for a strict Markov time T wa can verify
(5) T{w) = Tlagw) .
A little more careful analysis leads to Galmarino's charac-

terization of Markov and strict MarXov times.

Galmarino's Theorem. A pon-neqative Borel function T =

is a Markov time {a strict Markov time) iff

Gw = DLV, Tw <t implies Tw = Tv.

(U’tw FoaVy Twgt implies Tw = Tv) .




2.14
Froof. If A B,. WwER, aW = oV imply VEA.
[This is bacause A = u': (A).) Thus if T is a Markov time,

[T < t) Egt. Therefore T(w} <t, AW = v imply T(v) <t-
Hence T{v) = T{utv) = T(utw) = T(w).

Conversely, suppose T has the above property. Then
{(T<t) €B, and a: (T<t) = (T<t), i.e. (T<t)ER,.

Galmarino's theorem gives us a nice intuitive idea of what

a Markov time really is.

We will now look more closely at the Borel fields B, and

B {for strict Markav times). First let T be a strict Markov

time. By definition BEBy iff
BA(Tgt) €By

for all t0. This can also be defined as

BEB

oo

and
Bﬂ(T=s)E§s for ail s20.

NMow we claim that BEB, iff BEp, and
B = =1 {B) .-
{6} ay -
If B = u,?l (B} and BEB_, we get
- -1 B
Bn(T=s) = ap (B)N(T=8) = o] (B) N{T=s) €By

since a;1(E)E1_33, and (T =5) €B;- Thus BE By Conversely,

if BEBT, for all s

BN (T=s)€ Esf

u;1(B) niT=s) = Ba(T=s)[a] (T=5) = (T=s)].

Taking union over all s, we get

Ute ' B)n(T=5)) = B
. .

ap'(B) = B,

g -
For any A€B_, B = & (A) has the property nT1 (B} = B. We

thus see that Bp is the smallest Borel field relative to which

o is measurable, i.e.
ET = Bi{x(saT), sz0).

If T is a Markov time, T+e¢ is a strict Markov time for all

>0 and B = N B . Thus
=T+ E>O_T+E
7 B i —
{7) E§T+ iff BEB_ and B o= uT+E(B) for all e>0.
And

Bp, = N Bix(sa (T+c)), s >0},
e>0 -

If é.l and éz are Borel fields, we denote by .1__;1 V‘Bz the least

Borel field containing }_\1 and Az.

Proposition 6. If T 1s a Markaov time,

v B[1

gw

Bry (Taw) ¥ {E4T), £20].

If T d& a strict Markow time,

{ilexd

p VBIT oy X (E4T), £ 2 0]

B
Ze

whare

= 1 if T<=

;
T<m=
(T<=) 0 if T=w.




Proof. We need only show that for every ¢, x(£) is

measurable relative €0 Bp, vg[1T<m)x(t+T), tz0],

Xt} = 2l gy + 20N T gy -

We can rewrite {7) in the form: a B,-measurable function £

is §T+—measurable iff
flw) = f(nT+Ew) for all e>0.

We then see that x(t)t(Tat) is ET+-measurable {use {4)}. And

Lmo ] oxlE- GeD2THDT G sn g <FD)
S g2 et

x(tH(Tcﬂ =

i i i - le and
The indicator function in the above sum 1is §T+ measurab

n

x(t - (k=102 " +T)

T (rea=nk)

is B[1(T )x(t+T), t > 01-measurable, and we are done.
= <o =

One important consequence of the Strong Markov Property is

Proposition 7. Bp, is trivial, i.e. AE€By, implies
e e

d
Pa(A) =0 or 1, vyacR .

~1 = . = .
Indead: Pa[A] = Pa[A;A] = Pa[(ﬂ0 (A)ysR] = Ea[Px{O) (A) 3A] Pa(i‘\) Pa(m

since ©p is the identity and P_[x(0) =13 = 1.

Since for any Markov time T, the set (T =0} Egm_, we see

that Pa[T:=D] =1 ar 0.

and

Ile:]

More generally we can show that for any &30, N

differs from a set in

[I[e]

B , are equivalent: every set in B.,

at mast in a set of measure zero, i.e.- the completion of gt

and §t+ with respact to Pa for any, a are identical. To
see this, we use Proposition 6. 'This proposition implies that

the set of functions of the form
f{utw)g(Gtw),

with £, g bounded gmumeasurable functions. generate the Borel

field B_. We have

Elfloy)g@ ) | B, = £@)E, ) (@) = B [£(e)g(0)|B,I.
The validity of this for all £, g implies
E [F|B 1= E [FiB,]

for all bounded B ~measurable functions F, i.e. B and B
are equivalent.

More generally for a strict Markov time T, B and B

=T T+
are equivalent where 2T+ is the intersection of the Borel fields
§T+(1/n)' We leave the proof of this as an exercise.

We have the following simple extension of the strong Markov

property: the time dependent strong Markov property:

Theorem q. Let F{s,w} be bounded and measurable in {5,w).

Then

Ea[F(T‘aI‘) |%} = Ex(T) EF(S'W)]EFT on the set (T <o),

If F(s,w) has the form E(s)gi{w), +the above is a consequence

of the strong Markov property. Now one uses the usual procedures.




Let us look at a particular case of the generalized strong

Markov property. Lekt T be a Markov time and
pa(ds,db) = Pa(TEds, XTEdb},
i.e. uy is the joint distribution of (T,xT). Then

(8} Pa[xtEE] = pa{xtEE, T>t]+[[0 - Pb(xt_SEE}Ha(dsdb).

when T 1Ls the first passage time, this is known as the "first

passage time relation®. For the proof we let

F(S,w) = 1[D't](5)1E(xt_S(w))-

Then F(T,GTW) = 1[0'1:] (T{W))'\E(xt(w)) so that

Pa[xtEE, Tgt]l = Ea[F(T,HT)]

]

Ea[ExT(F(S'W))5=T]

J[D,t]de?

which is what we set out to show. Let us look at applications.

1t

L%y _g € Blu, (dsdb)

AEglications
Consider the 1-dimensional Brownian motion, a0 and E

a Borel subset of {0,=) and define the Markov time T by

T = tnflt: xt==0} = w if there is no such E.

Then we have

p_(x, EE, T>t) J {p(t,a,b) -plt,a,~b)}db
a'e B

where

1 -y 2/2e
V2t

P(t:xry)

Vdistribution of T:

Since Xy = D if T <=, we get from the first passage time

relation

P_( = ¢

a xtEE) = Pa(xtEE, T=t) -I-L:'Po(xt_5 EE)ua(ds)
where ua(ds) = Pa(T €ds) and (using -E instead of E)

t
Pa(xtE—E) = Pa{xt E-E,T>t]+ JUPU (xt-s E-R) pa(ds) .

Now Ec [D,%) s0 Fy cannot belong to -E if T>t, 1i.e.
Pa['xt €-E, T>t] = 0. Also PD(xt-—s E-B} = Po{xt_s €EE}). The

last two equalities thus lmply
P Iz €E, Trt] = Pa[xtEE] -Pa[xtE—E].

This is what we set out to show. Taking E = (0,=), we get the

- . _ (x-a)?‘ {x+a) z
P[T>t]=J -—-—{e i _ . 2t }
@ 0 VRt B dx-

I

a 2
__2 J Rt /thx

— P .
= ollx, 1 <al

In particular, we see that Pa[T'CW] = 1 and that

2
@ a w -x /2t

E (T) = I P [T >tlat = 2[ dxj e Tt mw.
o] 0 V2Tt

As another application, consider the d-dimensional Brownian

motion. Equation {B8) is clearly eguivalent to

Ea[f(xt)] = EaEf(xt): T>t] +J a Eb(f(xt_s) Ju (@sdb) .

{0,t]*R

Let FE(h) = h5. Take a=0. We have

e

2
i

E [£ixg)] = lbll® +d-s.




Let T be the exit time through a sphere of radius vr:

T = ipnf{t: !IxtH »>r} = o if no such t exists.

We get

At = B[£(x): T>t] +J bl 2 +d(t-s) Ty, (dsdb) .
Q T [D,thRd 0

Since *op is clearly on the surface of the sphere IIbII2 z rz,

we get

= . 2 -7
d-t = EglE(x): P>e]+r” +d Ejle-T: T g ],

d-tPp[T> ] +dE)[T: Tgt] = Eoiilxtllzz T>t] o < r2+r? = 2r?

since T> t, IIxtl|2<r2. Letting t-= , we see that tPO[T>t]

is bounded, i.e. PD[T <m] = 1. Then letting t-= , we see
2
that ED[T] <@, Finally t-ow gives ED[T] = %T . Thus the

first exit time through a sphere of radius r has expectation

2

d

We note a fundamental property of the d-dimensional Brownian

motion: If T is the exit time from a sphere of radius «r,

centre zero, then X, is uniformly distributed on the surface

T
of the sphere. To prove this, note that for any rotation @
and aenrd
p_[0x_ €E,, 1gign]l =P _, [x, €E,, 1<ix<n]
a Tty 1 =" = o la "y i =" =

showing that Xy and Gxt have the same finite dimensional dis-
tributions relative to PO' Therefore Hp and OxT have the
same distribution and this means that x,; is uniformly distributed

on the surface of the sphere.

Exercises
1. Show that @1 and @4 Aare measurable.
2. Show that @, generates the Borel field B.: the
smallest field relative to which ¢, 1s measurable is B
3. show that the Borwnian motion has no memory (the past
and future are independent given the present):
P L6 'A) (a7 ") Ix, 1= B_L[(67Ta) %,]P. [a” B Ix]
ah @ t t a- Py Al = lP,lay "Blxg
for all A, B€BR .
=wm
Hint. If F and G are bounded B _-measurable functions,
B [FoQ *Goa. k] = B la ooy E[Foe, |B1]x.]

=Ea[G0ct-Ex (F) | =1

t £ t

]

Ext(f"} Ea[GDat } xt]

E [F o0, [%]-E [Goa, |x].

| =

t t

4. To prove 'Theorem 1, §2, it is gufficient to show that

Ea[f(xT+t);A NI(T <=m) ] = Ea[Ext{f(xt)] AN (T <) ]

1
a€ER, AEET-}.' 0=fz1, fEC(R1) t2>0.

Hint. Use induction as in the case of simple Markov property.
5.
(Ty <T3) €Bp , -

Hink. [Ty <Ty) n(Ty <t) = U (L, =s) N (s<T,)}].
s<t




6. Show that for a strict Markov time T, ET and §T+

are equivalent where

By, = 2§T+‘I1Tﬁ {E: En(Tgt) EByys tz0}.

Hint. Use Proposition 6, §2.

7. Show that for any bounded B_-measurable function £
E [£(Bgw) | Boyg ] = Y(9 W)
where

Yiw) = E (£ |B,](w.
Hint. First let £ have the form

£.(x, ) ... £ {x g {x
17, n' Tt TS tn-H) cengplx )

with t -:...e_tn(t+5<tﬂ <...<tm.

1 +1

8. Tet S be a strict Markov time and T a Markov time
such that T :x8. There exists a Bg«x B _-measurable function

T(w1,w2) on WxW such that

a) Tlw) = 8(w) +T(w,0gw)

b) T(w,"} is a Markov time for each fixed w.

Solution. According to Proposition 6, §2, the map
W -+ (usw,asw) € WxW, Bg = B,

defined on the set (5 <) generates the Borel field gm

restricted to [S ¢w). Thus there exists a ES xgzrmeasurable

function T(w1,w2} such that
T(w) -~ S(w) = T(asw,esw} if  §(w) <o,

By redefining f(w.ﬁ,wz)

we do ili
not change a} or the Bg x B,~measurability. This we do.
Since 7T is gs x B -measurable,
T(wywy) = ?{usw1,w2) .

Fix w,. We must show that

(w2=T(w1,w2) =+t) Egu for all us>t

v

T(wy,wy) =t  Aff T(wq,auwz) = g,

Vﬁefine w and w' by

wiv) = w,{v), v<s
w(v+s) = w,(v), v>0
wr

= Surs (g -

Clearly S{w} = S(w1} =5{w'). We have

t = Towyy) = Tlagu w,) ="f(usw,85w} = T{w} ~S{w}.
Thus
T{w) = S(w) +t <5(w) +u.
Hence
T{w') = T(w) = S{w} ++ = S5(w') +t,

l.e8.

T(asw',asw') = t,
i.e.

T(usw1,uuw2) = t
since o w' = a

== if S(w-l) = o pr if w2(0) #w1(5),



g, Show that for any €. Fst<=, the conditional pro-

i i i igts a func-—
bability of B given by B, exists, i.e. there exlsts

=
tion P{w,B) such that
1}y Pi{w,B} 1is Et—measurable for all BE€B_.

2) P(w,B) is a probability measure for all wEMW.

1) P(w,B) = 15(W) if BEB, .-

4) For any a, BEBt, REB_

E_[P(w,A}): B} = p_iBNA].

Solution. Consider the map
(%) w o+ (atw,ﬂtw) € WxW.

By Proposition 6, §2, the least Borel algebra relative to which

this map is measurable is precisely B_.- Let i be the subset

of WxW satisfying

(w.l,wz} eEQ Aff Wy S G W wz(U) = v, (t).

Then the map (*) maps W onto G; indeed, if (w1,w2) €9,

define wtEW by

i

wis) = w,{s), sSZit

wi{t+s) wz(sl, s20.

Also it is clear that @ is a measurable subset aof WxW. It

follows that given BEB there exists a unigue B (measurable}

=0 such that

B = {w: (utw,etw) e B}.

For 2ach WwWeEW define

e 1. 1 N‘
B, = {w': (a,w,w') €El}.

Then Bwegm. Finally put

Pw,B) = Py (B}

We note that it BEB,, then B =0 If wtB, Bw={w':w'(0}=

wit})} 1if w€B. Thus

P(w,B) = P . (B)) = Popy V'3 W (0) =w(e)

= TB-

Thus 3) is verified. 1) and 2) we leave to the reader. 4) is

verified by looking first on sets determined by time points

S S <sn§t<t+t1 L <t+tm and then generalizing. Thus

let A be the set

{w: x_ EA

s i’ lzgign, x €C., 1=<j<m}.
i . S 4=

Then Kcn is the set

(w1,w2) such that Wy = ut(w.l)

w, (0} = wi{t), wols;) ea,, 1cign,
wzttj) ECj, 1zjgm.
It follows that
A, =0 1f wi§B, = (xs'ieai, Tgicn)
= 132 if WEB.l
where
B2 = {w': w'(tj) ECj, 153 zm}.

Ang if BEB,

Ea[P(w.A): B] = Ea[Px(t) (132): B, ng] = Pa[@? (8,) na, nB = Pa[AnB]

since G?(B )} NB, = A, 0.E.D.




i, If R,5 are Markov times, then Riag) 2 min(R,S) REFERENCTES

and R(uq) is a Markov time.

Hint. For s>t, B =2(Tzt) = (T(a ) gt) for any Markov 1. Breiman, L., Probability, Addison - Wesley (1968)
time T, by Proposition 2, §2. Using this,
2. Doob, F. L., BStochastic processes, John Wiley (1853)
{Rlag) &) = U {Rla ) gt, S=5) UiRzt, 8>t), ; 3. TIto, K. and McKean, Jr., H. P., Diffusion processes and
sgt ‘ their sample paths, Springer {1965
which gives both the assertations. ' i
] ? 4. Lamperti, J., Probability, Benjamin Inc. (1966)

5. McKean, Jr., H. P,, Stochastic integral, John Wiley (1968)

11. For any set A, let

T

inflt: tza0, xtEA]

w if no such t.

Show that T 1is a strict Markov time if A is closed and

noet a strict Markov time if A 1is open.

Hint. Use (5), §2.

12. Let D be a bounded open subset of R and T the
exit time frem D:

T o= dinfit: t>0, XtED]:

the infimum over an empty set being always = by definition.

Shaw that
el
supEa[e 1 <= for scme ¢ >0.
agh
Hint. Let wp(t} = supPa[T >t]. Using Markov property,

acD
show that w(t+s) < wit)p(s). So if m(to) <1 Ffor one tO'

wlt) = Ke—tA for some K, A > 0. By considering a ball con-

taining D, it is seen that supEa[T] <em, which implies
agD

wity) <1 for large ty-




