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§1 optional sampling, inequalities, and convergence

We will not be heeding too much martingaleltheory. What little
is done is to make the notes more complete. In the following we
assume given a fixed probability space (g,3B,P). All og-fields

considered are sub-g-fields of 3. In some of the examples some

knowledge of the relevant concepts is needed.

Let FU'FT"" be a (finite or infinite) sequence of o-
Fields and XD'X1"" a sequence of random variables. {xi} is
said tc be adapted to Fooif X; is F;-measurable. An integer
valuad (possibly =) random variable T is called a stopping time
relative to Fi if (T=1i) EFi for all 4. For a stopping time
T, the 0-field FT consists of the events A for which
An (T =1) EF, for all i. 1If FyeFy=... is increasing and
T>5 are stopping times FT:JFS; if F; are decreasing and

1‘35 are stopping times FT::FS. These are easily verified.

Until further notice F; will be an incrgasing sequence of 0O~

fields.

A sequence {xi} of random variables having expectations

and adapted to [Fi} is called a super martingalie if

(1) E[X; ,IF; 1%, 1=0,1,2,...,




{-%.} is a super martingale, and a martingale

a sub—-martingale if
if both {x,} and (-x;} are super martingales. Thus for a sub-
i
] le
martingale the ineguality in {1) is reversad and for a martinga

: . . vlat
the inequality in (1} is actually an equality. The expression le

i i ted to
{Xi} be a super martingale” will mean that {xi} is adap

(F.}, X have expectations and {Xi} is a super martingale. A
i i

i i i X, are non-negative.
super martingale is called non-negative if all i

A X =0,
Denoting by 4, the difference X;-X; 4 and defining X_; '
(1) says that the conditional expectation of 4, given F; is

i = i a, <b,
less or equal to zero. Therafore if aU-bo and for ix1, a; <b;

are bounded and Fi;1 measurable

(2) Efa,d,] z Efb;d, 1.

we get

e a super martingale. If
Proposition 1. Let {X;,1z0} b P

30=b0 and for 121, aigbi

then for any N

are bounded Fi_1—measurabla functions

N N
(3) E[gbidilgE[gaidi)

where d; =X, —%; 4 and X_,=0.

Suppose now T<S5 are stopping times. Taking ai==1ndicator

of (T21i) <bi=indicator of (§2»i} we get from (3)

Corollary 2. (Optional sampling Theorem) . Let {xi,ig 0}

be a super martingale. If T <5 are stopping times then for any N

‘) Elfp:T <N] 2 E[X5:8 <N] + B[¥:T <N < 8]

In case of a martingale there is equality in (4}.

Remark. There is a simplie way of getting a more general
conditional inequality from (4). For A.EFT let TA be the stopping
time which is T on A and infinite ortherwise. Similarly SA.

An application of (4) to these stopping times leads to the said
conditional form of (4). This is clearly a general trick and it is
useful to make a note of it. For some applications of the optional
sampling theorem see Karlin-Taylor [1]. p.p. 263-273.

If Xi is non-negative, the last term in {(4) may be omitted.
Letting N tend to infinity we obtain by monotone converge theorem
EIX P> E[xsl where we put X_=0. This already implies that a
non-negative super martingale converges almost surely. See Exercises
4 and 5.

The case of a decreasing sequence of o-fields is equally
important. Suppose F0:3F1:=P2... is a decreasing sequence of
o-fields. A super martingale relative to F, will be a sequence
XO’X1"" where X, is F -measurable, has expectation and

E[XnIPn+!] <X Exactly as before we obtain an analogue of

n+1"

Corellary 2: If T <35 are stopping times for any N
(5) EEXT:TsN]sE[XS:SSN]+E[X.N:‘I‘§N<S]

We now give another famous inequality of Doob originally proved

to establish the martingale convergence theorem. Before we do this,

however we must establish some notation.
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= i obtain
Taking a, EG-—bD in (3} we

(6) (s—T)E{U(N)) fﬁiWN“T) ]

Wow if (F ,n<0} is decreasing the o-fields ¢

n &€
ilncreasing for n <M.

N=n
The following Corollary is thus clear from
{6) as N tends to infinity.

Corollary 3. (Doob's upcrossing inequality). Let Xn be

a4 super martingale relative a monctone sequence of

o-fields. If
u

is the number of upcrossing of [ys,s} by the sequence Xn

(s-v)E[Y] < sup E[[XD—YI]
N

In particular the number of upcrossings is finite with probability 1

provided [Xn} is L1—bounded i.e. supE[ anI l<m,

b3d
As a simple corollary we have the Ffamous

Theorem 4. (Martingale convergence theorem). Let xn be

L'-bounded super martingale relative o a monotone sequence of
g—-fields. Then

an

liuan exists almost surely.

Proof. 1If Z=limsupxn and Y=liminfxn then lE’[:L.isz_l exists] =1
1ff PlYy<y<s<Z}l=0

for all rationals vy <s. Since the event
(Y<y<s<%) implies an infinite number of upcrossings of [y,s]

by the sequence [Xn} the result is clear from Corollary 3. Q.e.d.
There are many applications of the martingale convergence

theorem. For a nice accountof these we refer to Chapter VIII of
Meyer [2].

then



Example 1. consider the probability space [0,1} with the
lebesgue measure. Let Fn==the field generated by the sets Aj o =
(1270, (14127, £50,10 2. "1, F eF .4 and UF, generates
the Borel field in {0,1). Let m bea probability measure on
{p,1). fut X, = gznm(Ai'n)Ai'n, where A; o denotes also the
indicator function of the set Ai,n Xn is a martingale relative
to F and is L1—nounded. ¥ =1im X, axists almost everywhere by
Theorem 4.

For any k>0 let B, = {sup xn5k]. Let us show that on
By, m=vydx, where dx is the 1ebesgue measure. If D:.|_={}(j <k,3sil
then m(Di) =J xidx. on Di,}(ifk so that hy dominated convergence,

m(Bk)= EB Ydx. iOn the other hand for any BREF, and all i=>n,
m(A)==JVK?dx so that by Fatou, m{A) 3I vdx. ‘Thus m=Ydx on
(EUP)%]ﬁuﬁ = UBy; because X, convergeﬁ almost everywhere this
SEE has probabiltity 1- The measure m-¥dx sits on a set of measure
zeroc, sc it is singutar. We have obtained Lebesgue's decomposition:

m=vds +s, where S is singular.

The following example assumes some acquaintence with some

relevant concepis.

Example 2. Let D be a bounded domain in Rd and let us
show that a positive harmonic function in p which is extreme among
positive harmonic functions in D cannot be bounded. Let u be a
pounded positive harmenic function in B Let Dn be open relatively
compact subseis of D increasing to D. Xt will denote the
grownian motion in Rd and Tn,T the exit times from Dn and
D respectively. u(KT ) is then a hounded martingale relative

n
to Pa and B (the stopped porei fields) for every aen. If

T

n
F=limsupulX; ), lim u(Ey, Y} =T, p_-almost everywhere for each
n T

a€El by Theorem 4.

ula) = Ea[u{xTn)] = Ea[FJ.

Let f< be contin
0 < ous on R™. The functions B u{X )
[ ( I\ ]

dre harmonic i (
in Dn and converge. The limit v=E [F(X )Ii‘]n is
. T

positive harmonic in D Fo =
! - r the same reason w=E 1
P wf q
LLO=£) (X ) F]

is positive harmonic in D and u=4%2v+ 52w For 0<f<}
. < it

hat q . =N u is not extreme.
is clear t 2V ¢anhnot be equal to u 1 enme

If in Exal:lple o 1s SJ.ngulaJ: relative to Lebesgua measure,

Y must vanish alimost everywhere.

1

Iin partlculax X cannot converge
in L. Therefora L

convergence 1s not implied by Theorem 4

Definition. A fa
Def on mily (X,} of random variables is called

uniformly integrable if

(7} 3 : i
E[IXiI.IXiI >N] is uniformly small

rovided i
P H 1is large enough. For an equivalent defintion see

Exercise 6.

Propgsition 5. Let
ysition 5 {Xn} be a sequence of random variables.

Suppose that imX =
llnlkn-x almost everywhere or just in probability

Then X tends i Ty
" nds to X in L iff {Xn} is uniformly integrable.

Proof. W i i
: e will be brief. Suppose (X } jg uniformiy int bl
ntegrable,

This im iges 1y partlcular tl B X 1 Y -
18] 1at | 1_‘! 5 uniforml bounded




gy Fatou X is integrable. xn truncated at N tends to X

truncated at W almost everywhere and in L by dominated conver—

gence. The rest is uniformly small by {7) for large enough N.

The other direction is equally simple. Q.e.d.

fas 1
In view of the above Proposition we can say: L -—convergence

obtains in Theorem 4 iff {Xn} is uniformly inteqrable.

It is easy tc sse that any one of the following implies uniform

integrability of a family {xi}:

X, are bounded by a integrable function.

The p-th moment of xi is uniformly

bounded for scme p>1.

There is a random variable X with finite

expectation such that each Xi is the

conditional expectation (relative to scme

g-field) of X.
Super martingales relative ta increasing and decreasing sequences

of g-fields are not conpletely similar as the following simple

proposition shows. We shall also be using this proposition in the

next section.

Proposition 5. Let X, be a super martingale relative to a

decreasing sequence of g—fields Fn‘ Then X, is uniformly inte-

grable iff supE{xn}<an

Proof. E{Xn} is increasing with n. Aand if m>n, Yn,m =

- 0 = - X tends to zero as
X Elx 1F 120. Also E[Yn,m] E[X,] Elx ] 5

n<m tend to lnflnity. We have if A= (IK | >J\)
- ; T m
E H
{ixml A] <E[Y ,l'l’l] +E[]E(xanm)E:A] <E[Yn’_m:]+ EE IXnI:A]

EIYn,m] is small if n is large enough, uniformly in m>n.
P{A) will be small for large A, if we show that {x-} is L1—
™
bounded i.e. j
nded i.e. if sup E[Jxm|]< =  and then the last quantity in the
above inegquality will also be small unjiformly in m>n. Now
E[X :X : - i
[ 0¥y <U]~5E[xm'xm < 0] so that E[Xm] is bounded by E[lxoll.
Hence sup E[Xm] < = {5 equivalent to saying that {Xm} 15 11
bounded. Q d
.e.d.
The following "maximal" inequality extends the well known

Kolmogorov inequality.

Lemm . =
a 6 Let Xn, n=0,1,2,... be a non-negative sub~martingale.

Then for any a>0

{8) aP(sup Xi:_va) 5snup E[xn].

Proof. =mi : = i
Put T mln{n.xnza), T=w if there is no such n.
Take S== 4in Corollary 2 and remember that we now have a sub-

martingale: For any N

E[XT:T5N} 5E[XN:T§N]
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Hint. Civen 0O <a<b define the sequences T,, S of
—_— i

Since XTZa, if T <= the above inequality implies that

stopping times by +
(9} sP{T <N) <E{X T <N]

T, = inf{n: Xn<a}

{8) is a consequence of (9), because the sat (sup xiga) is the 51 = inf{n: n>T % »bl

: 1 n
same as the set (T <=). R.e.d.

and inductively
T ,q = inflm: m>s , X <al

gxercises to §1 : = i .

: S 4q = inE{m: m>T .., X, >b}

1. if Xi and Y, are super martingales so is Xi-i-Yi. If
the infimum over an g .
X, is a martingale 1X;} is & sub-martingale. If X; is a non< mpty set being always defined =. Then
‘T
n58,5Theqr Ty <= implies X, <a and 5, <= dimplies Xg >b
5 .

negative suh-martingale so is XE, pxl. _ n
And n

Hint. Holders inegquality.
A =0 = _ .
{5, <=) Ty <=) = (lim inf X; <a <b < 1im sup X;)

2. A super martingale X, is called L1—bounded 1£ sup E[lxil ] <m,
i . Finall
Show that a martingale is the difference of two non-negative martin- y bPLs; <=} fEExsi] SE[X, ] caP[T, <=]. Let i tend to =
i

1 to conclude bP({A) <aPF(A).

gales iff it is L -pounded.
. 1 . _ 5
int. Suppose X; 1S L bounded. For n fixed, ¥p = ; 5. an L'-bounded super martingale converges almost surely
Bl I1X i i i b
[ p+n| an} dominates IXn% and increases with p. Then
Hint. Use Exercises 3 and 4.

¥ =1im¥Y is a martingale.
n p.n

3. Show that a super martingale is the difference of two non-nega- 6. Show that uniform integrabili - .
grability of a family {Xu} is equivalent

£0 the two conditions: a}E[IX_ |]
o

tive super martingales iEf it is L1-bounded. . .
is uniformly bounded and, b} to

every e >{ there co ;
Hint. If X; is a 1) -pounded super martingale, for fixed n, rresponds a &>0 such that P(A) <§ implies
Bint | E .

leai.ﬂf <e for all o. If the probability space is non-atonic

YP n=E[xn+p|Fn} is decreasing in p, 1is dominated by ¥, -
the first condition follows from the second.

¥ = 1im Yp n is a Ll—bounded martingale., Now use Exercise 2.
r

Hint. Under ceondition a) forlarge #, by Chebyschev PI[|X |>N]
—_— o

4. If X, is a non~negative super martingale then 1imX, exists iz uniformly small. Therefore by condition b} we get 7). If th
. are

almost everywhere.




i of a

atoms, for e=1 we can write the space as a unlon

are no f
i ch that
finite number of sets each of which has probability <6 su
ini
e sets <1 Zfor all a.

the integral of Ixul on each of thes <

Hence condition a) is automatic.

7. L mart L X )] orml Lnteqrable iff these exists
a inga e [ ) s unifor Y

¥ such that xn=E[xan].

Hint, Let X = linlxn.

n
i is said to "converge
8 Let F be a sequence of ag-fields. F_
- n

i = i nGg =F= o-field gene-
to a o-field F, written 1nnFn-F if NG,

= g-fi enerated by Uur and
rated by UH, where G = g field g m

e E[XIF]
ta .
H =nF vor integrable X, E[XIF ] converges in L
o m"
m>n
-f1 d x
9 Let F be an increasing sequence of o-fields an n
‘ n

re @w€L, and
integrable random variables such that [anfip whe 1

Fr_= o-field

= Sure}.y . Then 1lim¥ =E b ] ere
iim X X almost [ F wh
P
Y F nd Y = [X | 1. 1t ho Q
geneIated b u a E F A simi lar resu ds for

a decreasing seguence of g-fields.

10 Let F and G be g-fields. F and G are said to be con—
. 1=

- able X and
ditionally independent given FnG 1f for all F-measur

hat F
G-measurahle ¥, BIXYIFNG] =e[XIF N G]-E[YIF nGl. Show t
all 2z
and € are donditionally independent given FnGg iff for '

g[ElzIFlIG] =E[E[ZIG]IF].

i f g-fields. For stop
3 an increasing segquence O
1. Let F be

rules T,5 ¥ and Fs are conditionally independent given FT g*
ror
T Al
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§2. Continuous parameter

Let F(t),0st<= be an increasing family of o-fields.

Assume also that the family is right continuous:

F(t) = N F{s)
s>t

As in the discrete case a family X(t}

is called a super martingale if X(t} is F(t)~measurable and

E[X(£)IF(s)] < X(s} s<t,

a sub-martingale if =-X{t} is a super martingale and a martingale

if it is both sub and supez.

A super martingale is called right continuous if for almost

all w, t-+X(t} 4is right continuous.

A stopping time T 1is a non-negative random variable such
that

(T<t} €F{t) £for all t.

Each stopping time T 4is the limit of a decreasing sequence of

descrete stopping times: Define Tn by
(1) Too= (1413277 if 127P << (is1) 27D
= w if T = m

It is easy to check that Tn are stopping times and decrease tgo T.

Thus if X(+} is right continuous X(T) 4is a random variable

forTany stopping time T.

of integrable random variables
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For a stopping time T the g-fieid F(T) is defined by:
F(T) = {A:AN{T<t) EF(t} Tfor all t}.

Then, if T <8, Fi{T)<F(S) and if ¥{+*) 1s right continuous.
r -

¥{F) is F({(T)-measurable.

The right continuity of the o-fields F(t} implies that

i T decrease
F(T ) decreases to F(T} whenever the stopping times a
n

to T.

Al) the above statements are easily proved. We will not do

this here because the

and the proofs in the general case are essentially the same.

Proposition 1. (optional sampiing theorem) . Let X(t) be

a right continuous super martingale. If T<5 are bounded stopping

times then

(2) E[X(T)] > £[%(S5) ]

and there is eguality in case of a martingale.

Proof £ T and S are descrete, this is just Corollary 2,

§1; {(4), §1 is simply another way af writing (2} 1£ 5 <N. Now
is i e2s to T.
SuUppose Tn is as in (1) and decreas

i r martingale relative
X(Tn) tends to X(T). That X(Tn] is a supe g

g - lds follows from {2}
to the decreasing sequence F(Tn) of o-fields

7.
(for Gescrete stopping times) and the remark after Corcllary 2, §

iti , 81 applies and we can
Since E[X(T )] <E[x(0}], Proposition 5 §1 app

i 1 a.d.
conclude that X(T ) tends to ¥{T) din L . Q

y are done for the Brownian motion in Chapter 2

By the right continuity

Corgllaxy 2. Let X(t} be a non-negative right continuous

sub~martingale. Then for any a0,

aPlsep X(t) > al <sup B[x(t)].
t t

Proof is exactly as that of Lemma &, §1.

We shall use the following simple proposition in Example Zz
below.

Propogsition 3. Let X(t} be a martingale such that
IX(t) | <Mt for som constant M. If T is a stoppingtime such

that E[T] <= then E[X(T}] = EfX(0)].

Procf. T <o almost everywhere. Apply (2} with S5=0 and
Tan, instead of T. The variables X(Tan) tend to X{T) and

are bounded by the integrable function M.T. and dominated canverges

can be used to conclude the proof.

In the example below a knowledye of relevant terms will be

assumed.

Example 1. This example illustrates a simple application of
S el
the martingale convergence theorem to excessive functions. We will

show that if f and g are excessive (see §1, Chapter 5} so is

h=fag.

Let Xt be the Brownian motion (or any standard Markov process}.

We claim that if tn is a sequence decreasing ta zero then

(3) P lim£(X, ) = £(a)] = 1.
n




Indeed, for any positive number A, f(xt } AR bheing a non-negative

bhounded super martingale relative toc a decreasing segquence of

g-Fields converges almost everywhere and in L1. lnnf(xt )
n

exists almost everywhere, which by the zerao one law must be a con-—

thus

stant, say B.

By L*—convergence of f(Xt ) AA
n

il

1imE_[£(X, )12 1imE, [£ (xtn) A Al

£(a)

BaR>E_ TE(X) A Al

because the last quantity is a decreasing function of t. Letting

A tend to infinity and t tend to zerc we get (3}.
If f and g are excessive and h=fag then for all ¢t.

Ea[h(xf}] <h{a). From {3) as t, decreases to zero h{X, }  tends
. n

to h(a) and so an appeal te Fatou shows that h 1is indeed exsessive-

Example 2. Let u be twice contipuously differentiable in

R and suppose that Au is pounded, A dencting Laplacian. If

X denotes Braownian motion
t
(4) u(Xt} -u(XD) - %Joau(xs)ds

is a martingale relative to Pa, for any ag€ Rd. To see this

denote by p the heat Kernel plt,x) z(zfrt)_d”2 éxpf—|x$2l2t),

which satisiies

kAp = o3P \

Then
2 _ .8
FEU*P (b, ) = usp(t, +)
= uxkAp = LAusp

which when integrated leads to

t
E_[u(xtJI—u(-) = %E.[J ﬂu(xs]ds]
0

(4) follows easily from Markov property and the last identity

Proposition 3 now implies:

If T is a stoppi i 1
pping time such that Ea[T] <= then

T
Ea[u(XT)]-u(a) = %Ea[J du(X_)ds]
8]

This is known as. Dynkins formula. More on this in Chapter 4
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CHAPTER 2

The d-dimensional Brownian motion

Introduction and summary

In this chapter we lniroduce the d-dimensional Brownian mo-
tion, assuming as known the 1-dimensional Brownian motion starting
at 0. Then we consider Markov times in more detail than is ab-
solutely necessary, in the hope that this will better the under-
standing of this important notion. Sitrong Markov property is proved

and a few applications considered.

§1. The d-dimensional Brownian motion

As proved, for instance in [3] pp. 12-16, there is a real
valued stochastic process E(t}, O0cgt<ewo (on some probability
space), such that E£(t) is continuous, E(0} = 0 and with the

finite dimensional distributions

PLE(t,) € By, Tgign]
()
- L: P’ (t1,0,da1)JE B* (- £ ,a,,d2) JE Pt -t .2 da)
1 2 A

.2
where 0<t,<...<t ,  p'{t,a,db) —)‘bzi} db and

- 1 -
Ve o°P !
E1""’En are Borel subsets of the real line. See also pp. 5-8

of [5] for another procf of this fact.
Now let us define the d-dimensional Brownian motion. There

is a probability space (Q,1B,P) and a d-dimensional stochastic




