University of Essex

Department of Mathematics Wivenhoe Park Colchester CO4 3SQ

from D.H.Fremlin

Tel: Colchester 44144 (STD Code 020 6) Telegraphic address: University Colchester Telex: 98440 (UNILIB COLCHSTR)

Families of random triples

(version of Note of 12 Jauly 1985 30.11.88)

1. Definitions Let κ , λ and θ be cardinals, with $1 \le \theta \le \lambda \le \kappa$. Let $u \in [0,1]$. Say that

 $(\kappa, \mathbf{u}) \Rightarrow [\lambda]^{\theta}$

if: whenever $\langle E_I \rangle_{I \in [\kappa]} \vartheta$ is a family of Lebesgue measurable subsets of [0,1] such that $\mu E_I \geq u$ for every $I \in [\kappa]^{\vartheta}$, then there is a $K \in [\kappa]^{\vartheta}$ such that $\bigcap_{I \in [K]} \vartheta E_I \neq \emptyset$.

Remark Observe that [0,1] can be replaced by any isomorphic measure atomless space; in particular, by any Radon probability on a Polish space.

2. Lemma If $1 \le k \le r \in \mathbb{N}$ and $u \in [0,1]$ and $(\omega,u) \Rightarrow [r]^k$, then there are u' < u and $m \in \mathbb{N}$ such that $(m,u') \Rightarrow [r]^k$.

 $\mu(\bigcap_{\mathbf{I}\in[K]}{}^{k}F_{\mathbf{I}}) = \lim_{m\to\infty}\mu(\bigcap_{\mathbf{I}\in[K]}{}^{k}E_{\mathbf{I}}^{m}) = 0 \quad \forall \quad K\in[N]^{r}.$ Because each $F_{\mathbf{I}}$ is open, it follows that $\bigcap_{\mathbf{I}\in[K]}{}^{k}F_{\mathbf{I}} = \emptyset$ whenever $K\in[N]^{r}$, so that $(\kappa,u) \not\Rightarrow[r]^{k}$.

remark This result was a precursor of Theorem 3Da of [2].

3. Proposition If $1 \le k \le r < \omega \le \kappa$ and $u \in [0,1]$ and $(\kappa^+, u) \Rightarrow [r+1]^{k+1}$ then $(\kappa, u) \Rightarrow [r]^k$.

proof I prove the contrapositive. Suppose that $(\kappa, u) \not \Rightarrow [r]^k$. Let $\langle E(I) \rangle_{I \in [\kappa]^k}$ be a family of sets of measure $\geq u$ such that $\bigcap_{I \in [K]^k} E(I) = \emptyset$ for every $K \in [\kappa]^r$. For $\alpha < \kappa^+$ let $f_\alpha : \alpha \to \kappa$ be an injection. For $J \in [\kappa^+]^{k+1}$ set $F_J = E(f_\alpha[J \cap \alpha])$ where $\alpha = \max J$. Then $\bigwedge F_J \geq u$ for every $J \in [\kappa^+]^{k+1}$. Suppose $K \in [\kappa^+]^{r+1}$. Set $\alpha = \max K$. Then

because $f_{\alpha}[K \cap \alpha] \in [\kappa]^r$. So $(F_J)_{J \in [\kappa^+]^{r+1}}$ wimetnesses that $(\kappa^+, u) \not\Rightarrow [r+1]^{k+1}$.

that $(m) \gg \lceil m \rceil^k$ and that $\binom{m}{1/1} \in [\omega_1]^m$ for m > 0. By Lemma 1 there is m > 0. By Lemma 1 there is m > 0.

- 4. <u>Lemma</u> (a) Let κ be an infinite cardinal and μ . If $\psi: [(2^{\kappa})^+]^{<\omega} \to \kappa$ is any function, there is a set $A \subseteq (2^{\kappa})^+$, of order type κ^+ , **EMER** and a function $\psi: [A]^{<\kappa} \to \kappa$ such that $\psi(I \cup \{\xi\}) = \psi(I)$ whenever $I \in [A]^{<\omega}$ and $\max I < \xi \in A$.
- $(\underline{b}) \text{ is any functions,}$ there is an infinite set $B \subseteq \omega_1$ and a function $\psi : [B]^{<\omega} \setminus \mathbb{N}$ such that $\psi(J \cup \{\xi\}) = \psi(J)$ whenever $J \in [B]^{<\omega}$ and $\max J < \xi \in B$.
- (c) Let χ : If $\varphi: [x^+]^{<\omega} \to \mathbb{N}$ is any function, there is an infinite set $B \subseteq x^+$ such and a function $\chi: [B]^{<\omega} \to \mathbb{N}$ such that $\varphi(K \cup \{\xi, \gamma\}) = \chi(K)$ whenever $K \in [B]^{<\omega}$, ξ , $\gamma \in B$ and max $K < \xi < \gamma$.
- proof (a) Let $\langle \xi_{\kappa} \rangle_{\kappa \leftarrow k}^+$ be a strictly increasing family in $(2^{\kappa})^+$ such that whenever $C \subseteq \zeta_{\kappa}$, $\#(C) \le \kappa$, and $\zeta_{\kappa} \le \beta < (2^{\kappa})^+$ there is a γ such that $\zeta_{\kappa} \le \gamma < \zeta_{\kappa+1}$ and $(\varphi(J \cup \{\beta\})) = \varphi(J \cup \{\gamma\})$ for every $J \in [C]^{<\omega}$; this is possible beause there are make at most 2^{κ} functions from $[C]^{<\omega}$ to κ for each C. Set $\zeta = \sup_{\zeta \in \kappa} \zeta_{\kappa}^+$ ζ_{κ}^- . Now choose a strictly increasing family $(\alpha_{\kappa})_{\kappa \leftarrow k}$ such that $\zeta_{\kappa} \le \alpha_{\kappa} < \zeta_{\kappa+1}$ and $(\varphi(J \cup \{\zeta\})) = (\varphi(J \cup \{\alpha_{\kappa}\}))$ for every $J \in [\{\alpha_{\kappa} : \gamma < \xi_{\kappa}\}]^{<\omega}$, for each $\zeta < \kappa^+$. Set $\Lambda = \{\alpha_{\kappa} : \xi < \kappa^+\}$, $(\varphi(J \cup \{\zeta\})) = (\varphi(J \cup \{\zeta\}))$ for $(\zeta \in [\zeta])$ for

(c) Put (a) (with $\kappa = 3$) and (b) together.

Note This lemma is due to P.Erdos & R.Rado.

- 5. Theorem Suppose that $1 \le k \le r \in \mathbb{N}$ and that $u \in [0,1]$.
- (a) If $(\omega, u) \Rightarrow [r]^k$ then $(\omega_1, u) \Rightarrow [r+1]^{k+1}$ and $(c^+, u) \Rightarrow [r+2]^{k+2}$.
 - (b) If $k \ge C$ and $(k^+, u) \Rightarrow [r]^k$ then $((2^k)^+, u) \Rightarrow [r+1]^{k+1}$.
- $\underline{\text{proof}}$ (a) Let $m \ge r$ and $\delta > 0$ be such that $(m, u m^2 \delta) \Longrightarrow [r]^k$

(Lemma 1). Let $mathbb{H}$ be a countable family of measurable sets such that for every measurable $E \subseteq [0,1]$ there is an $H \in \mathbb{H}$ such that $\mu(E\Delta H) \leq \delta$.

(i) If $\langle E_I \rangle_{I \in [\omega_1]}^{k+1}$ is a family of measurable sets of measure $\geq u$, choose for each $I \in [\omega_1]^{k+1}$ an $H_I \in \mathcal{H}$ such that $\mu(E_I \Delta H_I)$ $\leq \delta$. By 4b there is an inefinite $B \subseteq \omega_1$ and a function $\chi: [B]^k \to \mathcal{H}$ such that $H_{J \cup \{\xi\}} = \chi(J)$ whenever $J \in [B]^k$ and $\max J < \xi \in B$. Let $C \subseteq B$ be a set of size m and take any $\gamma \in B$ with $\max C < \gamma$. Set

 $F_{J} = \bigcap \{ E_{J \cup \{\xi\}} : \xi \in C \cup \{\zeta\} , \max J < \xi \} \forall J \in [C]^{k} .$

Then

$$\mathcal{F}^{(F_J \Delta E_{J \cup \{\zeta\}})} \leq \sum_{m \ge J} \langle \xi \in C \cup \{\zeta\} \rangle^{\mu(E_{J \cup \{\xi\}} \Delta \mathcal{X}^{(J)})}$$

$$\leq (m+1-k)\delta,$$

so $\mu F_J \ge u$ - mo for each $J \in [C]^k$. Because $(m, u - m^2 \delta) \Longrightarrow [r]^k$, there is a $K \in [C]^r$ such that $\bigcap_{J \in [K]} {}_k F_J \ne \emptyset$. Now $\bigcap_{I \in [L]} {}_{k+1} E_I \ne \emptyset$, where $L = K \cup \{\zeta\} \in [\omega_1]^{r+1}$. As $\langle E_I \rangle_{I \in [\omega_1]}^{k+1}$

is arbitrary, $(\omega_1, u) \Rightarrow [r+1]^{k+1}$.

 $(\underline{i}\underline{i}) \quad \text{If} \quad \langle E_I \rangle_{I \in [C^+]^{k+2}} \quad \text{is a family of measurable sets of measure} \\ \geq u \text{, then for each } I \in [C^+]^{k+2} \quad \text{choose } H_I \in \mathbb{R} \quad \text{such that} \\ \mu(E_I \Delta H_I) \leq \delta \quad \text{By 4c, there is an infinite } B \subseteq C^+ \quad \text{and a function} \\ \chi: [B]^k \to \mathcal{H} \quad \text{such that } H_{KO}(\xi, \eta) \quad \cong \chi(K) \quad \text{whenever } K \in [B]^k \text{,} \\ \xi, \eta \in B \quad \text{and } \max K < \xi < \eta \text{.} \quad \text{Take } C \in [B]^m \text{, } \zeta, \theta \in B \\ \text{such that } \max C < \zeta < \theta \text{.} \quad \text{For } K \in [C]^k \quad \text{set} \\ \end{cases}$

 $F_{K} = \bigcap \{ E_{K \cup \{\xi, \gamma\}} : \xi, \gamma \in C \cup \{(, \theta) \text{, max } K < \xi < \gamma \} .$ Then $\mu F_{K} \ge u - m^{2} \delta$ for each $K \in [C]^{k}$ so there is an $L \in [C]^{r}$ such that $\bigcap_{K \in [L]} {}_{k}F_{K} \ne \emptyset$. In this case $\bigcap_{I \in [M]} {}_{k+2}E_{I} \ne \emptyset$ where $M = L \cup \{(, \theta)\} \in [C^{+}]^{r+2}$. As $\langle E_{I} \rangle_{I \in [C^{+}]} {}_{k+2}$ is arbitrary, $\langle C^{+}, u \rangle \Rightarrow [r+2]^{k+2}$.

 $(\underline{b}) \quad \text{If } \left\langle E_{I/I \in [(2^K)^+]}k+1 \right. \text{ is any family of measurable sets, all } \\ \textbf{knewnxform of measure} \geq u \text{ , then for each } I \in [(2^K)^+]^{k+1} \text{ choose a} \\ \text{Borel set } F_I \subseteq E_I \text{ of the same measure. As there are only } C \leq \kappa \\ \text{Borel sets, there is an } A \subseteq (2^K)^+ \text{ , of order type } \kappa^+ \text{ , snewnxkhark} \\ \text{and a family } \left\langle G_J \right\rangle_{J \in [A]^K} \text{ such that } \\ F_{J \cup \{\xi\}} = G_J \text{ whenever } J \in [A]^K \text{ and max } J < \xi \in A \text{ . Because} \\ (\kappa^+, u) \Rightarrow [r]^k \text{ , there is a set } C \in [A]^r \text{ such that } \\ \bigwedge_{J \in [C]} kG_{IJ} \neq \emptyset \text{ . Take any } \gamma \in A \text{ such that } \gamma > \max C \text{ and set} \\ K = C \cup \{\gamma\} \text{ ; then } \bigwedge_{I \in [K]} k+1^E_I \neq \emptyset \text{ .} \\ \end{cases}$

- 6. Proposition (a) $(\omega, \frac{5}{9}) \neq [4]^3$.
 - (\underline{b}) $(\omega_1, u) \Rightarrow [4]^3$ iff $u > \frac{1}{2}$.
 - (\underline{c}) $(\underline{c},\frac{1}{4}) \neq [4]^3$.
 - (\underline{d}) $(\underline{c}^{\dagger}, \underline{u}) \Rightarrow [4]^{3}$ iff $\underline{u} > 0$.
- (b) By Prop. 3 and Theorem 5a, $(\omega_1, u) \Rightarrow [4]^3$ iff $(\omega, u) \Rightarrow [3]^2$. But #this happens iff $u > \frac{1}{2}$ ([1], Theorem 1, or [2], 3G).
- (c) Let $X = \{0,1\}^{\frac{N}{n}}$ and let ν be the usual Radon measure on X. Let \leq be the lexigographic ordering of X and let + be the natural group operation (identifying each factor $\{0,1\}$ with the cyclic group Z_2). Let $\varphi: \mathbb{C} \to X$ be any injection. If $I \in [\mathbb{C}]^3$, express I as $\{\xi, \gamma, \zeta\}$ where $\xi < \gamma < \zeta$, and set

$$\begin{split} E_{\underline{I}} &= \{ \ x : x \in X \ , \ x + \ \phi(\xi) < x + \ \phi(\gamma) \ , \ x + \ \phi(\zeta) < x + \ \phi(\eta) \ \} \ . \end{split}$$
 Then $\forall E_{\underline{I}} \geq \frac{1}{4}$ for each $\underline{I} \in [\sigma]^3$ but $\bigcap_{\underline{I} \in [K]} \underline{J} E_{\underline{I}} = \emptyset$ if $\underline{K} \in [\sigma]^4$.

(d) By Theorem 5a, $(c^{+}, u) \rightarrow [4]^{3}$ whenever $(\omega, u) \rightarrow [2]^{1}$; which is true whenever u > 0. And of course $(c^{+}, 0) \neq [4]^{3}$.

- 7. Problems (a) Find inf{ $u : (\omega, u) \Rightarrow [4]^3$ }. (The methods of [32] are presumably relevant.)
- (b) Is it consistent to suppose that $(\alpha, \frac{1}{2}) \Rightarrow [4]^3$? or that $(\omega_2, \frac{1}{2}) \neq [4]^3$?
- References [1] P.ERdos & A.Hajnal, "Some remarks on set theory, IX.

 Combinatorial problems in measure theory and set theory",

 Mich. Math. J. 11 (1964) 107-127.
- [2] D.H.Fremlin & M.Talagrand, "Subgraphs of random graphs?, Trans.

 Amer. Math. Soc. 291 (1985) 551-582.
- 8. Note added 6.4.87 (in response to a question of J. Steprans): For finite λ , the definition in §1 can be re-written: whenever $\langle E_I \rangle_{I \in [\kappa]} \theta$ is a family of Lebesgue measurable subsets of [0,1] such that $\mu E_I \geq u$ for every $I \in [\kappa]^{\theta}$, then there is a $K \in [\kappa]^{\lambda}$ such that $\mu (\bigcap_{I \in [K]} \theta E_I) > 0$. (Because we can replace the E_I by $\phi(E_I)$ where ϕ is ϕ a multiplicative lifting for Lebesgue measure.)

Jeluma (added 11.11.88) Let X be a set with $n \ge 2$ elements, $J \subseteq [X]^3$ a set such that $[K]^3 \not = J$ for every $K \in [X]^4$; then $\#(J) \le n(n-1)(2n-3)/18$.

proof For $J \in [X]^2$ set $a_J = \#(J : J \subseteq I \in \mathcal{G})$. Then $\sum_{J \in [X]^2} a_J = 3m$ where m = #(J). Also, if $I \in \mathcal{G}$, then

 $\sum_{J \in [I]^{2}} a_{J} \leq 2n - 3$ use writing $A_{J} = \{k : J \cup \{k\} \in \}$

because writing $A_J = \{ k : J \cup \{k\} \in J \}$ then $\int_{J \in [I]} 2^A A_J$ must be empty so $\int_{J \in [I]} 2^A A_J = I \setminus J$ has just one member for each $J \in [I]^2$, and 2(n-3)+3=2n-3.

Supplement 30.11188

I add a note to integrate the above with the work of [3].

- 9. <u>Definition</u> If $1 \le k \le r \le s \in \mathbb{N}$, write $T^*(k,r,s)$ for $\max\{ \#(\mathring{\lambda}) : \mathring{\lambda} \subseteq [s]^k, [K]^k \notin \mathring{\lambda} \ \forall \ K \in [s]^r \}$.
- 10. Lemma If $1 \le k \le r \le s \in \mathbb{N}$, then $(s,u) \Rightarrow [r]^k$ iff $u > T^*(k,r,s)/\binom{s}{k}$.
- $\begin{array}{lll} \underline{\mathrm{proof}} \ (\underline{a}) & \text{If} & u > T^*(k,r,s)/\binom{s}{k} & \text{and} & \underbrace{E_I}_{I \in [s]^k} & \text{is a family of measurable} \\ & \text{subsets of } [0,1] & \text{all of measure } \geq u \text{ , then there must be a } \underbrace{\mathsf{max}} \ t \in [0,1] \\ & \text{such that} & \underbrace{\lambda}_t = \{\ I : t E_I\ \} & \text{has cardinal at least } \binom{s}{k}u > T^*(k,r,s) \ ; \\ & \text{in which case there is a } K \in [s]^r & \text{such that } [K]^k \subseteq \mathring{\lambda}_t & \text{i.e.} \\ & t \in \bigcap_{I \in \Gamma K \cap k} E_I \end{array}.$
- (b) Fix $\angle \subseteq [s]^k$, of caredinal $T^*(k,r,s)$, such that $[K]^k \not\subseteq A$ for every $K \in [s]^r$. Let F be the set of all bijections from s to s and let $\varphi: [0,1] \to F$ be a function such that $\varphi \varphi^{-1}[\{f\}] = \frac{1}{s!}$ for every $f \in F$. For $I \in [s]^k$ set

$$\begin{split} & E_{\mathrm{I}} = \{\ t: \ \phi(t)[\mathrm{I}] \in \ \&\ \}\ ; \\ & \text{then } \mu^{\mathrm{E}}_{\mathrm{I}} = \#(\ \&\)/\binom{s}{k} \ \text{ for each } \mathrm{I}\ . \quad \text{If } \mathrm{K} \in [\mathrm{s}]^{\mathrm{r}}\ , \ t \in [\mathrm{0,1}]\ \text{ then} \\ & \text{there is a } \mathrm{J} \in [\phi(t)\ [\mathrm{K}]]^{\mathrm{k}} \ \&\ \text{so that } t \notin \mathrm{E}_{\mathrm{I}} \ \text{where } \mathrm{I} = \phi(t)^{-1}[\mathrm{J}] \\ & \in [\mathrm{K}]^{\mathrm{k}}\ . \quad \text{Thus } \left\langle \mathrm{E}_{\mathrm{I}} \right\rangle_{\mathrm{I} \in [\mathrm{s}]^{\mathrm{k}}} \ \text{witnesses that } (\mathrm{s,u}) \not \Rightarrow [\mathrm{r}]^{\mathrm{k}} \ \text{where } \mathrm{u} = \\ & \mathrm{T}^*(\mathrm{k,r,s})/\binom{s}{\mathrm{k}} \ . \end{split}$$

11. Lemma kax If $0 \le k \le 2$ s + k $\le n \in \mathbb{N}$ then

$$(\underline{a}) \sum_{i=0}^{k} {n-2k \choose n-i-s} {k \choose i} {n-i \choose k-i} = {n-k \choose s-k} {s \choose k}$$

$$(\underline{b}) \sum_{i=0}^{k} {\binom{n-2k}{n-i-s}} {\binom{k}{i}}^2 / {\binom{n}{i}} = {\binom{n-k}{s-k}}^2 / {\binom{n}{s}}$$

$$(\underline{a}) \sum_{i=0}^{k} \binom{n-2k}{n-i-s} \binom{k}{i} \binom{n-i}{k-i} = \binom{n-k}{s-k} \binom{s}{k}$$

$$(\underline{b}) \sum_{i=0}^{k} \binom{n-2k}{n-i-s} \binom{k}{i}^2 / \binom{n}{i} = \binom{n-k}{s-k}^2 / \binom{n}{s}.$$

$$\underline{Note} \binom{n}{i} = (\underline{n})^i \text{ is to be taken as 0 if } i < 0 \text{ or } i > n.$$

proof (for completemness; these are "standard" facts)

(a) Set
$$p = \sum_{i=0}^{k} {n-2k \choose n-i-s} {k \choose i} {n-i \choose k-i} {n-k \choose k} = \sum_{i=0}^{k} {n-k \choose k} {k \choose i} {n-2k \choose k-i} {n-i \choose k-i}$$

$$= \sum_{i=0}^{k} \# (\{ (J,K,L,M) : K \in [n \setminus k]^k , M \in [K]^i , k \subseteq L \in [n]^s , K \cap L = K \setminus M , M \subseteq J \in [n]^k \})$$

$$= \sum_{i=0}^{k} \# (\{ (J,K,L) : K \in [n \setminus k]^k , k \subseteq L \in [n]^s , K \setminus L \subseteq J \in [n]^k \})$$

$$= {n-k \choose s-k} p'$$

where

$$p' = \#(\{(J,K) : K \in [n \setminus k]^k, K \setminus s \subseteq J \in [n]^k\}.$$

Similarly, if we write

then $q = {n-k \choose s-k}q^{s}$ where

$$q' = \#(\{(J,K) : K \in [n \nmid k]^k, J \in [s]^k\})$$
.

I claim that p' = q'. To see this, it will be enough to check that for every D n s ,

$$#(\{(J,K):J\in[n]^k,K\in[n\setminus k]^k,D\subseteq K\setminus J\})$$

$$= #(\{(J,K):J\in[n]^k,K\in[n\setminus k]^k,D\subseteq J\}).$$

But if #(D) = i then these quantities are, respectively,

$$\binom{n-i}{k}\binom{n-k-i}{k-i} = \frac{(n-i)!(n-k-i)!}{k!(n-k-i)!(k-i)!(n-2k)!}$$

and

$$\binom{n-i}{k-i}\binom{n-k}{k} = \frac{(n-i)!(n-k)!}{(n-k)!(k-i)!(n-2k)!k!}$$

which of course are equal. So p' = q' and p = q and (a) is proved.

(b) Now (b) follows at once on multiplying both sides of (a)

$$\binom{n-i}{k-i}\binom{n-k}{s-k}/\binom{n}{s}\binom{s}{k} = \frac{(n-i)!(n-k)!s!(n-s)!k!(s-k)!}{(k-i)!(n-k)!(s-k)!(n-s)!n!s!} \binom{k}{i}/\binom{n}{i}.$$

12. Theorem If
$$1 \le k \le r \le m$$
 $s \le s + k \le n \in \mathbb{N}$ then
$$T^*(k,r,n) \le \frac{\binom{n-k}{s-k}T^*(k,r,s) - \binom{n-2k}{s-k}}{\binom{n-k}{s-k}^2/\binom{n}{s} - \binom{n-2k}{s-k}/\binom{n}{k}}.$$

 $m = \#(\slashed{\lambda})$ and for $H \in [n]^S$ set $X_H = \#\{S: H \supseteq S \in \slashed{\lambda}\}$. For $i \le k$ set

$$a_i = \#(\{ (I,J) : I, J \in \&, \#(I \cap J) = i \}),$$

$$b_i = \#(\{ (L,I,J) : I, J \in \&, L \in [I \cap J]^i \}).$$

Then

$$b_{i} = \sum_{j=i}^{k} {j \choose i} a_{j} = \sum_{j=i}^{k} {j \choose j-i} a_{i}$$

SO

$$\sum_{i=0}^{k} {n-2k \choose i+s-2k} b_{i} = \sum_{i \leq j \leq k} {n-2k \choose i+s-2k} {j \choose i} a_{j} = \sum_{i \leq j} {n-2k \choose n-s-i} {j \choose i} a_{j}$$

$$= \sum_{i \leq j} {n-2k+j \choose i+s-2k} a_{j}$$

$$= (\{(I,J,H) : I, J \in \mathcal{S}, I \cup J \subseteq H \in [n]^{5}\})$$

$$= \sum_{i \leq j} {n-2k+j \choose i+s-2k} a_{j}$$

$$= \sum_{i \leq j} {n-2k+j \choose i+s-2k} a_{j}$$

$$= \sum_{i \leq j} {n-2k-j \choose i+s-2k} a_{j}$$

$$= \sum_{i \leq j} {n-2k-j \choose i+s-2k} a_{j}$$

Now $b_k = m$ and for i < k

$$b_{i} = \sum_{I \in [n]^{i}} (\#(\{I : L \subseteq I \in \&\}))^{2}$$

$$\geq (\sum_{I \in [n]^{i}} \#\{I : L \subseteq I \in \&\})^{2}/\binom{n}{i} \quad \text{(by Cauchy's inequality)}$$

$$= (\#\{(L,I) : I \in \&\}, L \in [I]^{i} \})^{2}/\binom{n}{i}$$

$$= m^{2}\binom{k}{i}^{2}/\binom{n}{i}.$$

$$\sum_{\mathbf{H} \in [n]^{s}} x_{\mathbf{H}}^{2} \geq \sum_{i=0}^{k-1} {n-2k \choose i+s-2k} m^{2} {k \choose i}^{2} / {n \choose i} + m {n-2k \choose s-k}.$$

Now suppose that $[K]^k \not\subset X$ for every $K \in [n]^r$. In this case $\#(X \cap [L]^k) \leq T^*(k,r,s)$ for every $L \in [n]^s$ i.e. $X_H \leq T^*(k,r,s)$ for every $H \in [n]^s$. But in that case

$$\sum_{H \in [n]^S} X_H^2 \leq T^*(k,r,s) \sum_{H \in [n]^S} X_H$$

$$= T^*(k,r,s) \# \{ (I,H) : I \in X , I \subseteq H \in [n]^S \}$$

$$= T^*(k,r,s) m \binom{n-k}{s-k} .$$

So

$$T^{*}(k,r,s) \quad \binom{n-k}{s-k} \geq \binom{n-2k}{s-k} + \sum_{i=0}^{k-1} \binom{n-2k}{i+s-2k} m^{-i} \binom{k}{i}^{2} / \binom{n}{i}$$

$$= \binom{n-2k}{s-k} + m^{-i} \binom{n-k}{s-k}^{2} / \binom{n}{s} - m^{-i} \binom{n-2k}{s-k} / \binom{n}{k}$$

by Lemma 11(b). Turning this into an inequality of the form $m \leq \dots$ we have the required result.

Remark This is taken directly from [3] .

13. Gorollary If
$$1 \le k \le r \le 2 \le s$$
 and $s \ge 2 \le s$ and s

then $(\omega, u) \Rightarrow [r]^k$.

Proof An elementary computation shows that

$$\lim_{n\to\infty} \frac{\binom{n-k}{s-k}T^*(k,r,s) - \binom{n-2k}{s-k}}{\binom{n-k}{s-k}^2/\binom{n}{s} - \binom{n-2k}{s-k}/\binom{n}{k}} + \binom{n}{k} = \frac{T^*(k,r,s) - 1}{\binom{s}{k} - 1}$$

so there is some n such that $u > T^*(k,r,n)/\binom{n}{k}$ and $(n,u) \Rightarrow [r]^k$, so of course $(\omega,u) \Rightarrow [r]^k$.

14. Corollary If
$$u > \frac{7}{11}$$
 then $(u, u) \Rightarrow [4]^3$.

proof As reported in [3], T*(3,4,8) = 36.

Remark added 16.12.88 My own calculations confirm that T*(3,4,8) = 36.

Reference [3] D. de Caen, "A note on the probabilistic approach to Turan's problem", J. Combinatorial Theory (b) 34 (1983) 340-349.