Séminaire Initiation à l'Analyse G. CHOQUET, M. ROGALSKI, J. SAINT RAYMOND 25e année, 1985/86, n° 9, 5 p.

9 Janvier 1986

FAMILIES OF RANDOM TRIPLES

D. FREMLIN

I discuss some problems in combinatorial measure theory arising from work of P. Erdös and A. Hajnal ([1]).

1. <u>DEFINITION</u>: Let θ , λ , κ be cardinals, $1 \le \theta \le \lambda \le \kappa$, and $u \in [0,1]$.

$$([\kappa]^{\theta}, u) \Rightarrow [\lambda]^{\theta}$$

 $if \ for \ every \ family \ \ \stackrel{\ell}{\leftarrow}_I^{>} \ \ of \ measurable \ subsets \ of \ [0,1] \ such \ that$ $\mu E_I \ge u \ \ for \ every \ \ I \in [\kappa]^\theta \ , \ where \ \ \mu \ \ is \ Lebesgue \ measure, \ there \ is$ $a \ \ K \in [\kappa]^\lambda \ \ such \ that \ \ \cap \ \ E_I \ne \emptyset \ .$ $I \in [K]^\theta$

2. The case $\theta = 1$, λ countable is simple. We see easily that $([\kappa]^1, u) \Rightarrow [\lambda]^1$ iff for every family $\langle E_{\xi} \rangle$ of measurable set of measure $\geqslant u$, there is a $K \in [\kappa]^{\lambda}$ such that $\bigcap E_{\xi} \neq \emptyset$, that is to say, there is an $s \in [0,1]$ such

that
$$\#(\{\xi:s\in E_{\xi}\}) > \lambda$$
. So if $1 \le \lambda \le \min(\kappa,\omega)$, $([\kappa]^1,u) \Rightarrow [\lambda]^1$ iff either (α) κ is finite and $\lambda < \kappa u + 1$ or (β) κ is infinite and $u > 0$.

3. The case θ = 2 , λ countable, κ infinite has been resolved.

If
$$2 \le \lambda \le \omega \le \kappa$$
, $([\kappa]^2, \mathbf{u}) \Rightarrow [\lambda]^2$ iff

either (a)
$$\lambda < \kappa = \omega$$
, $u > \frac{\lambda-2}{\lambda-1}$ ([1], [2])

or (
$$\beta$$
) $\kappa > \omega$, $u > 0$

or
$$(\gamma)$$
 $\kappa = \omega$, $u = 1$.

The case principally of interest to us here is when $\theta = 3$. The remaining results of this note are proved in [3].

 $\frac{4. \text{ LEMMA}}{|} : \text{ If } 1 < k < r < \omega \text{ and } u \in [0,1] \text{ and } ([\omega]^2, u) \Rightarrow [r]^k \text{, then there}$ $| \text{ are a } u' < u \text{ and an } m < \omega \text{ such that } ([m]^2, u') \Rightarrow [r]^k \text{.}$

Proof: A compactness argument; see [3], Lemma 2.

5. PROPOSITION: If $1 \le k \le r < \omega \le \kappa$ and $u \in [0,1]$ and $([\kappa^+]^{k+1}, u) \Rightarrow [r+1]^{k+1}$ then $([\kappa]^k, u) \Rightarrow [r]^k$.

Proof: The contrapositive is a straighforward construction; see [3], Proposition 3.

6. THEOREM: If
$$1 \le k \le r < \omega$$
 and $u \in [0,1]$, then

(a) if
$$([\omega]^k, u) \Rightarrow [r]^k$$
 then $([\omega_1]^{k+1}, u) \Rightarrow [r+1]^{k+1}$ and
$$([x^+]^{k+2}, u) \Rightarrow [r+2]^{k+2};$$
(b) if $\kappa \geqslant x$ and $([\kappa^+]^k, u) \Rightarrow [r]^k$ then $([(2^k)^+]^{k+1}, u) \Rightarrow [r+1]^{k+1}$.

(b) if
$$\kappa \geqslant \mathbb{E}$$
 and $([\kappa^{\dagger}]^k, u) \Rightarrow [r]^k$ then $([(2^{\kappa})^{\dagger}]^{k+1}, u) \Rightarrow [r+1]^{k+1}$

Proof: This is more complicated; it uses the ideas of the Erdös-Rado Steppingup Lemma. See [3], Theorem 5.

- 7. PROPOSITION : $(\underline{\alpha})$ $([\omega]^3, \frac{5}{6}) \neq [4]^3$.
 - $(\underline{b}) \quad ([\omega_1]^3, u) \Rightarrow [4]^3 \quad iff \quad u > \frac{1}{2} .$ $(\underline{o}) \quad ([\underline{x}]^3, \frac{1}{4}) \not \Rightarrow [4]^3 .$ $(\underline{d}) \quad ([\underline{x}^+]^3, u) \Rightarrow [4]^3 \quad iff \quad u > 0 .$

<u>Proof</u>: (a) Let $X = \{0,1,2\}^{\omega}$ and let v be the standard measure on X. For $I = \{i, j, k\} \in [\omega]^3$ set

 $E_{I} = \{x : x \in X, either x(i), x(j), x(k) are all different$ or $x(i) + x(j) + x(k) = 1 \mod 3$.

Then $vE_I = \frac{5}{9}$ for every I but $\int_{T \in [K]^3} E_I = \emptyset$ for every $K \in [\omega]^4$. Since

- (X,ν) is isomorphic to $([0,1],\mu)$, this shows that $([\omega]^3,\frac{5}{9}) \nleftrightarrow [4]^3$.
- (b) Use Prop. 5 (with $\kappa = \omega$, r = 3, k = 2), Theorem 6a (with r = 3, k = 2) and 3α (with $\lambda = 3$).
- (c) Let X be $\{0,1\}^{\omega}$ and ν the standard measure on X . Let \leq be the lexicographic ordering of X and + the group operation on X, identified with z_{∞}^{ω} . If $I = \{x, y, z\} \in [X]^3$, where x < y < z in X, set

$$E_{T} = \{w : w \in X , w + x < w + y , w + z < w + y\}$$
.

Then $vE_I = \frac{1}{2}$ if there is an n such that $x \mid n = y \mid n = z \mid n$ while $x(n) = z(n) \neq y(n)$, and $\frac{1}{4}$ otherwise. But if x < y < z < t in X, then $E_{\{x,y,z\}} \cap E_{\{y,z,t\}} = \emptyset$. So $\bigcap_{\tau \in [v]^3} E_{\underline{I}} = \emptyset$ whenever $K \in [X]^4$.

(d) Use 2β and 6a (with r=2, k=1).

8. REMARKS AND PROBLEMS : (a) Is there a $u > \frac{5}{9}$ such that $([\omega]^3, u) \not\longrightarrow [4]^3$?

By analogy with the results of [2], it is possible that this comes to the same thing as asking :

are there an integer $p \ge 1$ and a set $H \subseteq p^3$ such that $\#(H) > 5p^3/9$ and for every $f: 4 \rightarrow p$ there is an

$$I = \{i,j,k\} \in [4]^3$$
 such that $(f(i),f(j),f(k)) \notin H$?

The point is that such a p, H could be used to construct an example along the lines of 7a, which can be got by taking p=3,

$$H = \{(i,j,k) : either i, j, k \text{ are all different}$$

or $i+j+k=1 \mod 3\}$.

In [1] and [2] a large variety of similar problems, in two rather than three dimensions, are reduced to similar combinatorial questions.

(b) Is it consistent to suppose that $([\mathfrak{C}]^3, \frac{1}{2}) \Rightarrow [4]^3$ or that $([\omega_2]^3, \frac{1}{2}) \Rightarrow [4]^3$?

The example of 7c seems somehow less economical than that of 7a, so there may be room for improvement in it.

9. ACKNOWLEDGEMENTS: Prop. 7b is an answer to a question of P. Erdös. Prop. 7a was known to Erdös; I understand it to be due to P. Turan.

[1] ERDOS P., HAJNAL A.,

- Some remarks on set theory IX. Combinatorial problems in measure theory and set theory", Michigan Math. J. 11 (1964) 107-127.

[2] FREMLIN D.H., TALAGRAND M.

- Subgraphs of random graphs
Trans. Amer. Math. Soc. 291 (1985) 551-582.

[3] D.H. FREMLIN

- Families of random triples Note of 12.7.85, privately circulated from University of Essex, Colchester, England.

D. FREMLIN

Doct. Lect.

Dept. of Math.

University of Essex

COLCHESTER Essex

England U.K.