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The density algebra

D.H.Fremlin

University of Essex, Colchester, England

This note extends remarks in Fremlin 03, §491.

1 Order-continuity properties of density

1A The context (For general definitions, see Fremlin 02, Fremlin 03 and Fremlin 08?.) For
A ⊆ N let d∗(A) = lim supn→∞

1
n
#(A ∩ n) be its upper asymptotic density. Write Z for the density ideal

{A : d∗(A) = 0}, Z for the density algebra PN/Z. We have a strictly positive submeasure d̄∗ on Z defined
by setting d̄∗(A•) = d∗(A) for A ⊆ N (Fremlin 03, 491I).

1B More definitions (a) A Boolean algebra A is weakly (λ, κ)-distributive if whenever 〈Aξ〉ξ<λ is
a family of partitions of unity in A, all of size at most κ, then there is a partition C of unity in A such that
{a : a ∈ Aξ, a ∩ c 6= 0} is finite for every c ∈ C and ξ < λ (Koppelberg 89, 14.23).

1C Theorem (a) Suppose that A ⊆ Z is non-empty and downwards-directed, and #(A) < p. Then A
has a lower bound c such that d∗(c) = infa∈A d̄∗(a).

(b) If 〈an〉n∈N is a non-decreasing sequence in Z, there is an a ∈ Z such that an ⊆ a for every n ∈ N and
d̄∗(a) = supn∈N d̄∗(an).

(c) d̄∗ : Z → [0, 1] is order-continuous on the left, in the sense that if A ⊆ Z is non-empty and upwards-
directed and has supremum b, then d̄∗(b) = supa∈A d̄∗(a).

proof (a) Let A ⊆ PN be a downwards-directed set, of cardinal less than p, such that A = {I• : I ∈ A}.
Set γ = infa∈A d̄∗(a) = infI∈A d∗(I). Let P be the family of triples (K,n, I) where K ⊆ n ∈ N and I ∈ A;
say that (K,n, I) ≤ (K ′, n′, I ′) if n ≤ n′, K = K ′ ∩ n, I ′ ⊆ I and K ′ \ I ⊆ n. Then ≤ is a partial order
on P . If (K,n, I) ∈ P and J ∈ A is included in I, then (K,n, I) ≤ (K,n, J); so P is σ-centered upwards.
If I ∈ A then QI = {(K,n, I ′) : I ′ ⊆ I} is cofinal with P . If m ∈ N then Q′

m = {(K,n, I) : n > m,
1
n
#(K ∩ n) ≥ γ − 2−m} is cofinal with P . So there is an upwards-directed R ⊆ P meeting every QI and

every Q′
m. Setting J =

⋃
{K : (K,n, I) ∈ R}, c = J•, d∗J ≥ γ and J \ I is finite for every I ∈ A, so d̄∗c = γ

and c ⊆ a for every a ∈ A.

(b) Let 〈In〉n∈N be a non-decreasing sequence in PN such that an = I•

n for every n, and set γ =
supn∈N d̄∗(an) = supn∈N d∗(In). Let 〈kn〉n∈N be a strictly increasing sequence such that #(In ∩ m) ≤
(γ + 2−n)m whenever m ≥ kn, and set I =

⋃
n∈N

In ∩ kn+1 \ kn, c = I•. Then In \ I is finite so an ⊆ c for

every n. If kn ≤ m < kn+1, #(I ∩ m) ≤ #(In ∩ m) ≤ (γ + 2−n)m, so d∗(I) ≤ γ and d̄∗(c) ≤ γ.

(c) ??? Suppose, if possible, otherwise.

(i) Set γ = d̄∗(b), γ′ = supa∈A d̄∗(a) and ǫ = 1
4 (γ − γ′) > 0. Let J ⊆ N be such that J• = b, and

set A = {I : I ⊆ N, I• ∈ A}, so that A is upwards-directed. Let 〈nk〉k∈N be a sequence in N such that
nk+1 ≥ knk and #(J ∩ nk) > (γ − ǫ)nk for every k. Set n′

k = ⌊ǫnk⌋, so that #(J ∩ nk \ n′
k) ≥ (γ − 2ǫ)nk

for every k, limk→∞
n′

k

nk

= ǫ and limk→∞
nk

nk+1

= 0. For I ⊆ N, K ∈ [N]ω set

β(K, I) = lim supk→K
1

nk

#(I ∩ nk \ n′
k) = limn→∞ supk∈K\n

1

nk

#(I ∩ nk \ n′
k);

for K ∈ [N]ω, set α(K) = supI∈A β(K, I).

(ii) Choose 〈Kr〉r∈N, 〈Ir〉r∈N inductively, as follows. K0 = N. Given Kr, let Ir ∈ A be such that
β(Kr, Ir) > α(Kr) − 2−r; as A is upwards-directed, we can arrange that Ir ⊇ Ir−1 if r > 0. Given Kr and
Ir, set

Kr+1 = {k : k ∈ Kr, #(Ir ∩ nk \ n′
k) ≥ α(Kr) − 2−r},
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so that Kr+1 ⊆ Kr is infinite and the induction continues.

(iii) Looking back at the proof of (b), we see that there is an L ⊆ N such that Ir \L is finite for every
r and d∗(L) ≤ supr∈N d∗(Ir) ≤ γ′. Now we can find a strictly increasing sequence 〈k(r)〉r∈N such that

k(r) ∈ Kr+1, #(L ∩ nk(r)) ≤ (γ′ + ǫ)nk(r)

for every r ∈ N. Set C = (J \ L) ∩
⋃

r∈N
(nk(r) \ n′

k(r)). Then, for each r,

#(C ∩ nk(r)) ≥ (γ − 2ǫ)nk(r) − (γ′ + ǫ)nk(r) ≥ ǫnk(r),

and d∗(C) > 0. As C ⊆ J , we have 0 6= C• ⊆ b. There must therefore be an a ∈ A such that a ∩ C• 6= 0,
and an I ∈ A such that d∗(C ∩ I) > 0; set D = C ∩ I and η = 1

4d∗(D) > 0.

(iv) For every r0 ∈ N there is an r ≥ r0 such that #(D ∩ nk(r+1) \ n′
k(r+1)) ≥ 2ηǫnk(r+1). PPP We may

suppose that r0 is so large that n′
k+1 ≥ nk and 3ηn′

k+1 − nk ≥ 2ηǫnk+1 for every k ≥ k(r0). Then there is a
least n ≥ nk(r0)+1 such that #(D ∩ n) ≥ 3ηn. Let r ≥ r0 be such that nk(r) < n ≤ nk(r+1). As D ⊆ C does
not meet n′

k(r+1) \ nk(r), n ≥ n′
k(r+1). Now

#(D ∩ nk(r+1) \ n′
k(r+1)) ≥ #(D ∩ n) − nk(r)

≥ 3ηn′
k(r+1) − nk(r+1)−1 ≥ 2ηǫnk(r+1). QQQ

(v) Let s ∈ N be such that 2−s ≤ ηǫ. Then β(Ks,D∪Is) > α(Ks). PPP Given r0 ∈ N, let r1 ≥ max(s, r0)
be such that Is \ L ⊆ n′

k(r1)
. Then there is an r ≥ r1 such that #(D ∩ nk(r) \ n′

k(r)) ≥ 2ηǫnk(r). On the

other hand, k(r) ∈ Kr+1 ⊆ Ks+1 so #(Is ∩ nk(r) \ n′
k(r)) ≥ α(Ks)− 2−s; and as D ∩L = ∅, D ∩ Is \ n′

k(r) is

empty. We therefore have k(r) ∈ Ks and

#((D ∪ Is) ∩ nk(r) \ n′
k(r)) = #(D ∩ nk(r) \ n′

k(r)) + #(Is ∩ nk(r) \ n′
k(r))

≥ 2ηǫnk(r) + (α(Ks) − 2−s)nk(r) ≥ (α(Ks) + ηǫ)nk(r).

Since this happens for infinitely many r, β(Ks,D ∪ Is) ≥ α(Ks) + ηǫ. QQQ
However, there must be an I ′ ∈ A including Is ∪ I, so that β(Ks, I

′) ≥ β(Ks,D ∪ Is) > α(Ks); contra-
dicting the definition of α(Ks). XXX

This contradiction proves the result.

1D Proposition Z is weakly (σ,∞)-distributive.

proof Let 〈An〉n∈N be a sequence of partitions of unity in Z. For each n ∈ N let A∗
n be

{b : b ∈ Z, {a : a ∈ An, a ∩ b 6= 0} is finite},

so that A∗
n is an order-dense ideal of Z. Then

⋂
n∈N

A∗
n is order-dense. PPP Suppose that b ∈ Z is non-zero.

Choose 〈bn〉n∈N inductively, as follows. b0 = b. Given that d̄∗(bn) > 1
2 d̄∗(b), A∗

n ∩ [0, bn] is upwards-directed

and has supremum bn; by 1Cc, there is a bn+1 ∈ A∗
n ∩ [0, bn] such that d̄∗(bn+1) > 1

2 d̄∗(b). Continue.

At the end of the induction, 1Ca tells us that there is an a ∈ Z such that a ⊆ bn for every n and d̄∗(a) > 0.
Now 0 6= a ⊆ b and a ∈

⋂
n∈N

A∗
n. QQQ

There is therefore a partition C of unity in Z included in
⋂

n∈N
A∗

n, that is to say, if c ∈ C and n ∈ N,
then c meets only finitely many members of An. As 〈An〉n∈N is arbitrary, Z is weakly (σ,∞)-distributive
(Fremlin 02, 316H).

1E Corollary The regular open algebra of R cannot be regularly embedded in Z.

proof RO(R) is not weakly (σ,∞)-distributive (Fremlin 02, 316J).

1F Examples (a)(i) There is a downwards-directed set A ⊆ Z such that inf A = 0 and d̄∗(a) = 1 for
every a ∈ A.

(ii) There are families 〈aξ〉ξ<ω1
, 〈cξ〉ξ<ω1

in Z such that aη ⊆ cξ whenever η < ξ < ω1, d̄∗(cξ) ≤
1
2 for

every ξ < ω1, but d̄∗(c) = 1 whenever c ∈ Z and {ξ : aξ ⊆ c} is uncountable.
(b) Suppose that c = ω1.
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(i) There is a non-increasing family 〈cξ〉ξ<ω1
in Z, with infimum 0, such that d̄∗(cξ) = 1 for every ξ.

(ii) There is a non-decreasing family 〈cξ〉ξ<ω1
in Z such that d̄∗(cξ) ≤

1
2 for every ξ, but d̄∗(a) = 1 for

every upper bound a of {cξ : ξ < ω1}.

proof (a)(i) Set Kn = {2n(2m+1) : m ∈ N}, In =
⋃

k∈Kn
[k!, (k + 1)![, cn = I•

n; then 〈cn〉n∈N is disjoint and

d̄∗(cn) = 1 for every n. Set A = {a : a ∈ Z, cn ⊆ a for all but finitely many n}; then A is downwards-directed,
inf A = 0 and d̄∗(a) = 0 for every a ∈ A.

(ii)(ααα)For ξ < ω1, choose fξ ∈ N
N, Iξ ⊆ N, I ′ξ ⊆ Iξ as follows. The inductive hypothesis will be that

Iη is infinite and #(Iη ∩ n2) ≤ n for every n ∈ N and η < ξ, and that Iη ∩ Iζ is finite whenever ζ < η < ξ.
For the inductive step to ξ, enumerate ξ as 〈θ(ξ, i)〉i<#(ξ). Choose fξ(i) inductively such that

fξ(i) ≥ i2,
fξ(i) /∈ Iθ(ξ,j) whenever j < min(i,#(ξ)),

if i < #(ξ) then fξ(i) ∈ Iθ(ξ,i).

Set Iξ = fξ[N],

I ′ξ = {fξ(i) : i ∈ N, i < #(ξ), fξ(i) /∈ I ′θ(ξ,i)}.

(βββ) For n ∈ N, set

L(n) = {i : n! ≤ i < (n + 1)!, i is even}, L′(n) = {i : n! ≤ i < (n + 1)!, i is odd}.

For ξ < ω1 set

Aξ =
⋃
{L(n) : n ∈ I ′ξ} ∪

⋃
{L′

n : n ∈ Iξ \ I ′ξ}, aξ = A•

ξ.

(γγγ) If K ⊆ ω1 is finite, then d̄∗(supξ∈K aξ) ≤ 1
2 . PPP Set A =

⋃
ξ∈K Aξ. There is a k ∈ N such

that Iξ ∩ Iη ⊆ k for all distinct ξ, η ∈ K. For n ≥ k, A ∩ [n!, (n + 1)![ is either Ln or L′
n or empty, so

d̄∗(supξ∈K aξ) = d∗(A) is at most 1
2 . QQQ

By (b), it follows that for each ξ < ω1 there is a cξ ∈ Z such that aη ⊆ c for every η < ξ and d̄∗(c) ≤ 1
2 .

(δδδ) Now suppose that c ∈ Z is such that D = {ξ : aξ ⊆ c} is uncountable. Let C ⊆ N be such that
c = C•. Take any ǫ > 0. Then there is a k ∈ N such that

D′ = {ξ : #(Aξ ∩ m \ C) ≤ ǫm for every m ≥ k!}

is uncountable. Let ξ ∈ D′ be such that D′ ∩ ξ is infinite. Then M = {i : i ∈ N, θ(ξ, i) ∈ D′, fξ(i) ≥ k} is
infinite. But for every i ∈ M , setting li = fξ(i)!, l′i = (fξ(i) + 1)!,

Aξ ∪ Aθ(ξ,i) ⊇ l′i \ li.

So #((l′i \ li) \ C) ≤ 2ǫl′i and #(C ∩ l′i) ≥ l′i(1 − 2ǫ) − li. As this is true for infinitely many i, d̄∗(c) =
d∗(C) =≥ 1 − 2ǫ. As ǫ is arbitrary, d̄∗(c) = 1.

Thus 〈aξ〉ξ<ω1
and 〈cξ〉ξ<ω1

have the required properties.

(b)(i) Enumerate Z+ = Z \ {0} as 〈aξ〉ξ<ω1
. Choose 〈cξ〉ξ<ω1

inductively. c0 = 1. Given that d∗(cξ) = 1,
we can partition it into c, c′ with d̄∗(c) = d̄∗(c′) = 1; take cξ+1 to be one of these not including aξ. For
non-zero countable limit ordinals ξ, use (a) to see that there is a cξ such that d̄∗(cξ) = 1 and cξ ⊆ cη for
every η < ξ. Now no aξ can be a lower bound for {cη : η < ω1}.

(ii) Enumerate {A : A ⊆ N, d∗(A) < 1} as 〈Aξ〉ξ<ω1
. For n ∈ N, set Ln = {i : n! ≤ i < (n + 1)!}. Let

〈Iξ〉ξ<ω1
be a family in PN such that Iη \Iξ is finite and Iξ+1\Iξ is infinite for η ≤ ξ < ω1. (Cf. Fremlin 03,

419A.) Choose 〈Cξ〉ξ<ω1
inductively, as follows. The inductive hypothesis will be that whenever ζ ≤ η < ξ

then Cη ⊆
⋃

n∈Iη
Ln and #(Cη ∩ Ln ∩ i) ≤ 1

2 (i − n!) for every n ∈ N and i ∈ Ln, and Cζ \ Cη is finite.

Start with C0 = ∅. Given Cξ, then set

Dξn = {i : i ∈ Ln \ Aξ, #(i ∩ Ln ∩ Dξn) ≤
1

2
(i − n!)} for n ∈ N,

Cξ+1 = Cξ ∪
⋃

n∈Iξ+1\Iξ
Dξn.

D.H.Fremlin
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Observe that if δ = 1
2 (1 − d∗(Aξ)) > 0, then for all n large enough we shall have #(Ln \ Aξ) ≥ δ#(Ln), so

that #(Dξn) ≥ 1
2δ#(Ln); consequently d∗(Cξ+1 \ Aξ) ≥

1
2δ > 0.

For the inductive step to a non-zero countable limit ordinal ξ, let 〈ηk〉k∈N be a non-decreasing cofinal
sequence in ξ, and 〈nk〉k∈N a strictly increasing sequence such that Iηk

\ Iξ ⊆ nk and Cηk
\ Cηk+1

⊆ nk! for
every k. Set

Cξ =
⋃

k∈N
Cηk

\ nk!.

Then for nk ≤ n < nk+1, Cξ ∩ Ln = Cηk
∩ Ln is appropriately thin, and is empty unless n ∈ Iξ.

Set cξ = C•

ξ for each ξ. Then 〈cξ〉ξ<ω1
is non-decreasing, and d̄∗(cξ) ≤ 1

2 for every ξ. ??? If a ∈ Z is an

upper bound for {cξ : ξ < ω1} and d̄∗(a) < 1, ther is a ξ < ω1 such that a = A•

ξ, and now cξ+1 \ a 6= 0. XXX

2 Bits & pieces

2A Lemma If a ∈ Z and 〈γξ〉ξ<c is any family in [0, d̄∗(a)], there is a disjoint family 〈bξ〉ξ<c such that
bξ ⊆ a and d̄∗(bξ) = γξ for every ξ < c.

proof Set γ = d̄∗(a). Let A ⊆ N be such that A• = a. Let 〈kn〉n∈N be a strictly increasing sequence such
that #(A ∩ kn+1 \ kn) ≥ (γ − 2−n)kn+1 for every n. Let 〈Iξ〉ξ<c be an almost disjoint family of infinite
subsets of N (Fremlin 08?, 5A1Fa). Set Aξ =

⋃
n∈Iξ

A∩kn+1 \kn. Then Aξ ⊆ A and d∗(Aξ) = γ for every

ξ, and 〈Aξ〉ξ<c is almost disjoint.
Now, for ξ < c, define Bξ ⊆ Aξ by saying that

Bξ = {i : i ∈ Aξ, #(i ∩ Bξ) ≤ γξi}.

Then #(i ∩ Bξ) ≤ 1 + γξ(i − 1) for every i ∈ N, so d∗(Bξ) ≤ γξ. ??? If d∗(Bξ) < γξ, let n be such that
#(Bξ ∩ i) ≤ γξi whenever i ≥ n; then Bξ ⊇ Aξ \ n and d∗(Bξ) ≥ γ. XXX

So we can set bξ = B•

ξ for every ξ.

2B Proposition For any b ∈ Z there is a positive additive functional µ on Z such that µb = d̄∗b
and µa ≤ d̄∗a for every a ∈ Z. PPP Take B ⊆ N representing b. Let 〈kn〉n∈N be a strictly increasing

sequence in N such that d∗(B) = limn→∞
1

kn

#(B ∩ kn). Take a non-principal ultrafilter F on N and set

µA• = limn→F
1

kn

#(A ∩ kn) for every A ⊆ N. QQQ

Note that µ is countably additive (in the sense of Fremlin 02, 326E), because d̄∗ is sequentially order-
continuous.

2C Proposition c(Za) = c for every non-zero a ∈ Z.

proof Represent a as A•. Take a strictly increasing sequence 〈kn〉n∈N such that #(A ∩ kn+1 \ kn) ≥
(d∗(A) − 2−n)kn+1 for every n. Let 〈Kξ〉ξ<c be an almost disjoint family of infinite subsets of N. Set
aξ = (A ∩

⋃
n∈Kξ

kn+1 \ kn)•. Then 〈aξ〉ξ<c is disjoint and d̄∗(aξ) = d̄∗(a) for every ξ. QQQ

2D Proposition PN/[N]<ω can be regularly embedded in Z.

proof Define π : PN → PN by setting πA =
⋃

n∈A 2n+1 \ 2n. Then πA ∈ Z iff A is finite, so π descends
to an injective Boolean homomorphism π̄ : PN/[N]ω → Z. ??? If π̄ is not order-continuous, there is a non-
empty downwards-directed set P ⊆ PN/[N]<ω such that inf P = 0 in PN/[N]<ω but there is a non-zero
c ∈ Z which is a lower bound for π̄[P ]. Set A = {A : A• ∈ P} and let C represent c; then C \ πA ∈ Z
for every A ∈ A. Consider K = {n : #(C ∩ 2n+1 \ 2n) ≥ 1

3d∗(C)}. This is infinite. If A ∈ A, then

{n : #((C \ πA) ∩ 2n+1 \ 2n) ≥ 1
6d∗(C)} must be finite, so {n : n ∈ K, πA ∩ 2n+1 \ 2n = ∅} must be finite

and K \A is finite, so K• is a non-zero lower bound for P . XXX So π̄ is a regular embedding of PN/[N]<ω in
Z.

2E Corollary Z has an (ω1, ω
∗
1)-gap, that is, families 〈aξ〉ξ<ω1

, 〈bξ〉ξ<ω1
such that aη ⊂ aξ ⊆ bξ ⊂ bη

whenever η < ξ < ω1 but there is no c ∈ Z such that aξ ⊆ c ⊆ bξ for every ξ < ω1.
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proof Let 〈aξ〉ξ<ω1
, 〈bξ〉ξ<ω1

be an (ω1, ω
∗
1)-gap in PN/[N]<ω (Fremlin 84, 21L), and consider 〈π̄aξ〉ξ<ω1

,
〈π̄bξ〉ξ<ω1

. ??? If c ∈ Z is such that π̄aξ ⊆ c ⊆ π̄bξ for every ξ, let C ⊆ N be such that C• = C, and consider
D = {n : #(C ∩ 2n+1 \ 2n) ≥ 2n−1}; then aξ ⊆ D• ⊆ bξ in PN/[N]<ω for every ξ < ω1. XXX

2F Proposition (a) Z is isomorphic to the simple product ZN.
(b) Z has the σ-interpolation property.

proof (a) Set An = {2n+1(2i + 1) : i ∈ N}, an = A•

n ∈ Z. Then each principal ideal Zan
is isomorphic to Z

(see Fremlin 03, 491Xo), and the map A 7→ 〈A ∩ An〉n∈N : PN →
∏

n∈N
PAn descends to an isomorphism

from Z to ZN.

(b) Let 〈an〉n∈N, 〈bn〉n∈N be sequences in Z such that am ⊆ bn for all m, n ∈ N. Let 〈In〉n∈N, 〈Jn〉n∈N be
sequences in PN such that I•

n = supi≤n ai and J•

n = infi≤n bi for every n ∈ N, 〈In〉n∈N is non-decreasing and
〈Jn〉n∈N is non-increasing. Then d∗(In \ Jn) = 0 for each n. Let 〈rn〉n∈N be a strictly increasing sequence in
N such that #((In \ Jn)∩m) ≤ 2−nm whenever m ≥ rn; then #(((In \ Jn) \ rn)∩m) ≤ 2−nm for every m.
Set I =

⋂
n∈N

(rn ∪ Jn). Then I \ Jn ⊆ rn is finite for every n. Next, for any n ∈ N,

In \ I =
⋃

k∈N
((In \ Jk) \ rk.

Set J ′ =
⋃

k<n In \ Jk; then d∗J ′ = 0. Set

J ′′ =
⋃

k≥n((In \ Jk) \ rk) =⊆
⋃

k≥n((Ik \ Jk) \ rk)

and

#(J ′′ ∩ m) ≤
∑∞

k=n 2−km = 2−n+1m

for every m, so d∗(J ′′) ≤ 2−n+1 and d∗(In \ I) ≤ 2−n+1. As 〈In〉n∈N is non-decreasing, d∗(In \ I) = 0 for
every n. So, setting c = I•, we have an ⊆ c ⊆ bn for every n.

2G Proposition For a, b ∈ Z, set ρ(a, b) = d̄∗(a △ b), so that ρ is a metric on Z (Fremlin 02, 392H1).
If C ⊆ Z is a subalgebra which is closed and has weight less than p for the metric topology of Z, then C is
order-closed.

proof Let κ < p be the weight of C. Suppose that A ⊆ C is non-empty and upwards-directed and has a
supremum b in Z. Then there is a dense subset D of A of cardinal at most κ; let D′ be the set of suprema of
finite subset of D. Then b is an upper bound of D′; moreover, if c is any upper bound of D′, then {a : a ⊆ c}
is topologically closed, so includes A, and c ⊇ b. Thus b = supD′.

The set {b \ a : a ∈ D′} is downwards-directed and has cardinal less than p; by 1Ca, it has a lower bound
c such that d̄∗(c) = infa∈D′ d̄∗(b \ a); but c must be 0, so

0 = infa∈D′ d̄∗(b \ a) ≥ infa∈A d̄∗(b \ a)

and b ∈ A ⊆ C. As A is arbitrary, C is order-closed (Fremlin 02, 313E(a-i)).

2H Proposition AutZ has many involutions.

proof If a ∈ Z+, let I ⊆ N be such that I• = a. Let f : N → I be the increasing enumeration of I. Define
a bijection h : N → N by saying that h(n) = n for n ∈ N \ I and h(f(2i)) = f(2i + 1), h(f(2i + 1)) = f(2i)
for i ∈ N. Then d∗(h[J ]) = d∗(J) for every J ⊆ N, so we have a Boolean automorphism π : Z → Z defined
by saying that π(J•) = (h−1[J ])• for every J ⊆ N; now π is an involution with support a.

3 Cardinal functions

3A As the cellularity c(Z) of Z is c = #(Z) (2C), we have link(Z) = d(Z) = π(Z) = c (Fremlin 08?,
511J).

3B Proposition The Maharam type τ(Z) of Z is at least p.
[Strengthened in 3H.]

1Formerly 393B.
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proof If D ⊆ Z and #(D) < p, let D be the subalgebra of Z generated by D, and C the topological closure
of D (see 2G). Then C is a subalgebra of Z, because the Boolean operations are topologically continuous
(Fremlin 02, 392H), and w(C) ≤ #(D) < p. So 2G tells us that C is order-closed. On the other hand,
C is certainly not equal to Z, because the topological density of Z is c, by 2A. So Z is not the order-closed
subalgebra of itself generated by D. As D is arbitrary, τ(Z) ≥ p.

3C Proposition The weak distributivity wdistr(Z) of Z is ω1.

proof By 1D, wdistr(Z) ≥ ω1. As the measure algebra Bc of the usual measure on {0, 1}c is regularly
embedded in Z (Fremlin 03, 491P), ω1 = wdistr(Bc) ≥ wdistr(Z) (Fremlin 08?, 524Mb and 514Eb).

3D Proposition The Martin number m(Z) of Z is at least mσ-linked.

proof Take κ < mσ-linked, a family 〈Dξ〉ξ<κ of order-dense subsets of Z, and d̃ ∈ Z+.

(a)(i) Let Ã ⊆ N be such that Ã• = d̃, and set ǫ = 1
3 d̄∗(Ã) > 0. Let 〈mk〉k∈N be a sequence in N such that

#(Ã∩mk) ≥ 2ǫmk and and mk+1 ≥ max(k,
1

ǫ
)mk for every n; set m′

k = ⌊ǫmk⌋ and Lk = mk \m′
k for each k,

so that #(Ã∩Lk) ≥ ǫ#(Lk) for every k, 〈Lk〉k∈N is disjoint, limk→∞
#(Lk)

mk

= 1− ǫ and limk→∞
mk−1

#(Lk)
= 0.

For I ⊆ N set CI =
⋃

k∈I Lk; for I ∈ [N]ω and A ⊆ N, set

δ∗(I,A) = lim supk∈I,k→∞
#(A∩Lk)

#(Lk)
,

δ(I,A) = limk∈I,k→∞
#(A∩Lk)

#(Lk)

if the limit is defined. Note that whenever A, B ⊆ N and I ∈ [N]ω,

δ∗(I,A) = δ∗(I,A ∩ CI),
δ∗(I, CI) = 1,

δ∗(I, Ã) ≥ ǫ,
δ∗(I,B) ≤ δ∗(I,A) if B \ A is finite,
δ∗(I,A) ≥ δ∗(J,A) whenever J ∈ [N]ω and J \ I is finite,
there is a J ∈ [I]ω such that δ(J,A) is defined and equal to δ∗(I,A),
if δ(I,A) is defined then δ(J,A) is defined and equal to δ(I,A) whenever J ∈ [N]ω and J \ I

is finite,
if δ(I,A) is defined and δ∗(I,B ∩ A) = 0, then δ∗(I,A ∪ B) = δ(I,A) + δ∗(I,B).

Also, of course, A 7→ δ∗(I,A) is a submeasure, for every I ∈ [N]ω.

(ii) If A ⊆ N and I ∈ [N]ω, then

ǫd∗(A ∩ CI) ≤ δ∗(I,A) ≤
1

1−ǫ
d∗(A ∩ CI).

PPP(ααα)Let η > 0. Let k0 ∈ I be such that #(A ∩ Lk) ≤ (δ∗(I,A) + η)#(Lk) and mk−1 ≤ ηmk for every
k ≥ k0. Take any n > mk0

; let k, l be successive members of I such that mk < n ≤ ml. If n ≤ m′
l then

#(A ∩ CI ∩ n) = #(A ∩ CI ∩ mk) ≤ #(A ∩ Lk) + mk−1

≤ (δ∗(I,A) + η)#(Lk) + mk−1

≤ (δ∗(I,A) + η)mk + ηmk ≤ (δ∗(I,A) + 2η)n.

If m′
l < n ≤ ml then

#(A ∩ CI ∩ n) ≤ #(A ∩ Ll) + ml−1 ≤ (δ∗(I,A) + 2η)ml ≤
δ∗(I,A)+2η

ǫ
n.

So in both cases
1

n
#(A ∩ CI ∩ n) ≤

δ∗(I,A)+2η

ǫ
; as η is arbitrary, ǫd∗(A ∩ CI) ≤ δ∗(I,A).

Measure Theory
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(βββ) Given η > 0, let n0 ∈ N be such that #(A ∩ CI ∩ n) ≤ (d∗(A ∩ CI) + η)n for every n ≥ n0. If
k ∈ I is such that m′

k ≥ n0, then

#(A∩Lk)

#(Lk)
≤

#(A∩mk)

#(Lk)
≤

(d∗(A∩CI)+η)mk

#(Lk)
≤

d∗(A∩CI)+η

1−ǫ
.

As η is arbitrary, δ∗(I,A) ≤
d∗(A∩CI)

1−ǫ
. QQQ

(iii) If 〈An〉n∈N is a non-decreasing sequence of subsets of N and I ∈ [N]ω, there is a B ⊆ N such
that B \ An is finite for every n ∈ N and δ∗(I,B) = supn∈N δ∗(I,An). PPP Let 〈kn〉n∈N be a non-decreasing
sequence such that #(An ∩ Lk) ≤ (δ∗(I,An) + 2−n)#(Lk) whenever k ≥ kn. Set B =

⋃
n∈N

An \ mkn
. QQQ

(b) Suppose that I ∈ [N]ω, η > 0 and that A ⊆ PN is an upwards-directed family such that {A• : A ∈ A}
is order-dense in Z. Then there are a J ∈ [I]ω and an A ∈ A such that δ∗(J,A) ≥ 1 − η. PPP??? Otherwise,
choose 〈Jn〉n∈N, 〈βn〉n∈N and 〈An〉n∈N inductively, as follows. J0 = I. Given Jn, set βn = sup{δ∗(J,A) :
A ∈ A, J ∈ [Jn]ω}, and choose J ∈ [Jn]ω, An ∈ A such that δ∗(J,An) ≥ βn−2−n; as A is upwards-directed,
we may suppose that An ⊇ An−1 if n ≥ 1. Let Jn+1 ∈ [J ]ω be such that δ(Jn+1, An) is defined and equal
to δ∗(J,An), and continue.

At the end of the induction, let J ∈ [N]ω be such that J \ Jn is finite for every n ∈ N. Observe that
δ(J,An) is defined for every n. By (a-iii), there is a B ⊆ N such that An \ B is finite for every n and

δ∗(J,B) = supn∈N δ∗(J,An) ≤ 1 − η.

So δ∗(J,CJ \ B) ≥ η and d∗(CJ \ B) > 0. There is therefore an A ∈ A such that 0 6= A• ⊆ (CJ \ B)•. In
this case, d∗(A ∩ CJ ) > 0 and δ∗(J,A) > 0. Let n be such that 2−n < δ∗(J,A). Let A′ ∈ An be such that
A′ ⊇ A ∪ An. Since d∗(A ∩ An) ≤ d∗(A ∩ B) = 0, δ∗(J,A ∩ An) = 0 and

δ∗(Jn, A′) ≥ δ∗(Jn, A ∪ An) ≥ δ∗(J,A ∪ An)

= δ(J,An) + δ∗(J,A) > δ(Jn, An) + 2−n ≥ βn;

contradicting the definition of βn. XXXQQQ

(c) Suppose that I ∈ [N]ω and that D ⊆ PN is such that {A• : A ∈ D} is order-dense in Z and B ∈ D
whenever B ⊆ A ∈ D. Then there are a K ∈ [I]ω and a disjoint sequence 〈An〉n∈N in D such that δ(K,An)
is defined for every n ∈ N and

∑∞
n=0 δ(K,An) = 1. PPP Choose 〈Jn〉n∈N, 〈In〉n∈N inductively, as follows.

J0 = I. Given Jn, use (b) to find J ∈ [Jn]ω and In ∈ [D]<ω such that δ∗(J,
⋃

In) ≥ 1 − 2−n; let Jn ∈ [J ]ω

be such that δ(Jn,
⋃

In) is defined and equal to δ∗(J,
⋃

In). At the end of the induction, let J ∈ [I]ω be
such that J \ Jn is finite for every n. Then δ(J,

⋃
In) is defined and greater than or equal to 1 − 2−n for

every n.
Let 〈A′

n〉n∈N be a sequence in D running over
⋃

n∈N
In. Set An = A′

n \
⋃

i<n A′
i for each n. Choose

〈Kn〉n∈N such that K0 = J and Kn+1 ∈ [Kn]ω and δ(Kn+1, An) is defined for every n; let K ∈ [J ]ω be such
that K \ Kn is finite for every n, so that δ(K,An) is defined for every n. For k ∈ N, there is an n ∈ N such
that {A′

i : i ≤ n} ⊇ Ik. In this case,

n∑

i=0

δ(K,Ai) = δ(K,
⋃

i≤n

Ai) = δ(K,
⋃

i≤n

A′
i)

≥ δ(K,
⋃

Ik) = δ(J,
⋃

Ik) ≥ 1 − 2−k.

As k is arbitrary,
∑∞

n=0 δ(K,Am) = 1. QQQ

(d) For ξ < κ, set

Dξ = {A : A ⊆ N, there is some d ∈ Dξ such that A• ⊆ d}.

Choose 〈Iξ〉ξ≤κ, 〈Aξn〉ξ<κ,n∈N as follows. I0 = N. Given Iξ ∈ [N]ω, where ξ < κ, let Iξ+1 and 〈Aξn〉n∈N be
such that Iξ+1 is an infinite subset of Iξ, 〈Aξn〉n∈N is a disjoint sequence in Dξ, δ(Iξ+1, Aξn) is defined for
every n and

∑∞
n=0 δ(Iξ+1, Aξn) = 1; this is possible by (c). Given that ξ ≤ κ is a non-zero limit ordinal and

〈Iη〉η<ξ is a family of infinite sets such that Iη\Iζ is finite whenever ζ ≤ η < ξ, then #(ξ) ≤ κ < mσ-linked ≤ p,
so there is an infinite Iξ such that Iξ \ Iη is finite for every η < ξ; continue.

D.H.Fremlin
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At the end of the induction, setting I = Iκ, we have
∑∞

n=0 δ(I,Aξn) = 1 for every n.

(e) For k ∈ I let νk be the uniform probability measure on Lk. Let F be any non-principal ultrafilter on
I, and consider the probability algebra reduced product (A, µ̄) =

∏
k∈I(PLk, νk)|F) (Fremlin 02, §3282).

For A ⊆ N, set θ(A) = 〈A∩Lk〉
•

k∈I ∈ A (see the construction in Fremlin 02, 328A). Then θ is a surjective
Boolean homomorphism, and

µ̄θ(A) = limk→F νk(A ∩ Lk) = δ(I,A)

whenever δ(I,A) is defined. For ξ < κ and n ∈ N, set anξ = θ(Aξn). Then 〈aξn〉n∈N is disjoint and∑∞
n=0 µ̄aξn = 1. Set ã = θ(Ã), so that µ̄ã ≥ ǫ and ã 6= 0.

(f)(i) There is a family 〈nξ〉ξ<κ in N such that {ã}∪{aξnξ
: ξ < κ} is centered in A. PPP For each ξ < κ, the

set Eξ = {e : e ∈ A+, e ⊆ aξn for some n} is coinitial with A+. Now the downwards Martin number of A+

is m(A) ≥ mσ-linked (Fremlin 08?, 524N), so there must be a downwards-directed set R ⊆ A+ containing
ã and meeting every Eξ (Fremlin 08?, 517B, inverted). In this case, there is for each ξ < κ a unique nξ

such that aξnξ
includes some member of R, and {ã} ∪ {aξnξ

: ξ < κ} is centered. QQQ

(ii) For each ξ < κ, let dξ ∈ Dξ be such that A•

ξnξ
⊆ dξ. Then {d̃} ∪ {dξ : ξ < κ} is centered in Z. PPP

If K is a finite subset of κ, set A = Ã ∩
⋂

ξ∈K Aξnξ
. Then θ(A) = ã ∩ infξ∈K aξnξ

is non-zero, so

0 < µ̄θ(A) = limk→F
#(A∩Lk)

#(Lk)
≤ δ∗(I,A)

and d∗(A) > 0, that is,

0 6= A• = d̃ ∩ infξ∈K A•

ξnξ
⊆ d̃ ∩ infξ∈K dξ. QQQ

(g) Thus we have a linked set {d̃} ∪ {dξ : ξ < κ} in Z containing d̃ and meeting every Dξ. As d̃ and
〈Dξ〉ξ<κ are arbitrary, m(Z) ≥ mσ-linked.

3E Proposition The Freese-Nation number FN(Z) of Z is at least FN(PN) and at most max(FN∗(PN),
(cfN )+), where FN∗(PN) is the regular Freese-Nation number of PN, and N is the Lebesgue null ideal.

proof (a) As Bc is regularly embedded in Z, FN(Z) ≥ FN(Bc ) = FN(PN) (Fremlin 08?, 518C and
524N).

(b) Set κ = max(FN∗(PN), (cfN )+). Recall that cfZ = cfN (Fremlin 08?, 526Ha); let A ⊆ Z be a
cofinal family of cardinal cfN < κ, containing ∅. Let f : PN → [PN]<κ be a Freese-Nation function. For
each a ∈ Z, let Ia ⊆ N be such that I•

a = a, and set

g(a) =
⋃

A∈A{I
• : I ∈ f(Ia ∪ A)}

Because κ is regular, #(g(a)) < κ. If a, b ∈ Z and a ⊆ b, there is an A ∈ A such that Ia ⊆ Ib ∪A. Now there
is an I ∈ f(Ia) ∩ f(Ib ∪ A) such that Ia ⊆ I ⊆ Ib ∪ A, and I• ∈ g(a) ∩ g(b), a ⊆ I• ⊆ b. Thus g : Z → [Z]<κ

is a Freese-Nation function, and FN(Z) ≤ κ.

3F Theorem The Dedekind completion Ẑ of Z and the Dedekind completion (PN/[N]<ω)⊗̂Bc of the
free product (PN/[N]<ω) ⊗ Bc are isomorphic.

proof Farah 06, Theorem 1.3, or Fremlin 08?, 556S.

3G Lemma Every member of (PN/[N]<ω)⊗̂Bc is expressible as supi∈I ai⊗bi where 〈ai〉i∈I is a partition
of unity in PN/[N]<ω and bi ∈ Bc for each i ∈ I.

proof

3H Proposition τ(Ẑ) ≥ wdistr(PN/[N]<ω).

proof

2Later editions only; see http://www.essex.ac.uk/maths/people/fremlin/cont32.htm.
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4 Homogeneity

4A Corollary Ẑ is homogeneous and Aut(Ẑ) is simple.

proof PN/[N]<ω and Bc are homogeneous, so their free product also is (Fremlin 02, 316Q). The Dedekind

completion of a homogeneous Boolean algebra is homogeneous (Fremlin 02, 316P). So Ẑ is homogeneous,
by Theorem 3F. Now Fremlin 02, 382S tells us that AutZ is simple.

4B Theorem [CH] Z is homogeneous and AutZ is simple.

proof If the continuum hypothesis is true, Z is homogeneous (Just & Krawczyk 84, Farah 03, 8.2).
Once again Fremlin 02, 382S tells us that AutZ is simple.

4C Theorem [OCA + m > ω1] (a) AutZ, regarded as a subgroup of Aut Ẑ, is not ergodic.
(b) Z is not homogeneous.
(c) AutZ is not simple.

proof (a)(i) In the terminology of Farah 00 or Fremlin n05, Z = Exh(ν) where ν is the entirely non-

pathological lower semi-continuous submeasure on N defined by setting νa = supn≥1
1

n
#(a ∩ n) for a ⊆ N.

So by Farah 00, 3.4.1-3.4.2 or Fremlin n05, 5H, every Boolean automorphism π : Z → Z is representable
by a bijective function h : A → B, where A, B ⊆ N are cofinite, in the sense that π(I•) = (h−1[I])• for
every I ⊆ N.

(ii) For n ∈ N set Mn = {i : 2n2

≤ i < 2n2+1}; note that limn→∞ #(Mn)/
∑

m<n #(Mm) = 0. Set

I =
⋃

n∈N
M2n, J =

⋃
n∈N

M2n+1, a = I• ∈ Z, b = J•. Then d∗(I), d∗(J) are both 1
2 so a and b are non-zero.

If π : Z → Z is a Boolean automorphism such that b ∩ πa 6= 0, let h : A → B represent π in the sense of (a)
above. Then b ∩ πa = (J ∩ h−1[I])•.

Set

I0 = {i : i ∈ I ∩ h[J ], h−1(i) < i}, J0 = {i : i ∈ J ∩ h−1[I], h(i) < i}.

If n ∈ N and i ∈ I0 ∩ M2n, then h−1(i) ∈
⋃

m<n M2m+1 so #(I0 ∩ M2n) ≤
∑

m<2n #(Mm). Accordingly

d∗(I0) ≤ lim supn→∞
1

#(M2n)
#(B ∩ h[J ] ∩ M2n) = 0.

Similarly, d∗(J0) = 0. But now observe that

(J \ J0) ∩ h−1[I \ I0] = ∅

so

b ∩ πa = (J \ J0)
• ∩ (h−1[I \ I0])

• = 0.

(iii) So if we take d to be the supremum in Ẑ of {πa : π ∈ AutZ}, we shall have π̂d = d for every

π ∈ AutZ, writing π̂ ∈ Aut Ẑ for the automorphism of Ẑ extending π; while d is neither 0 nor 1, since a ⊆ d

and d ∩ b = 0. Accordingly AutZ does not act ergodically on Ẑ.

(b) Taking a and b from (a), at least one of the principal ideals Za, Zb, Z1\a and Z1\b is not isomorphic
to Z.

(c) Taking a from (a), let I ⊳ Z be the ideal generated by {πa : π ∈ AutZ}. Then I is a proper ideal.
Let H be the set of those π ∈ AutZ supported by members of I (definition: Fremlin 02, 381B). Then
H ⊳ AutZ, by Fremlin 02, 381Eb, 381Eh and 381Ej; and H is non-trivial by Proposition 2H.

4D Proposition Let D be the set of those d ∈ Z+ such that there are regular embeddings both from Z

to the principal ideal Zd and from Zd to Z. Then D is order-dense in Z.

proof (a) Let a ∈ Z+; express a as A• where A ∈ PN \ Z. Set In = {i : 2n ≤ i < 2n+1} for n ∈ N. Then
lim supn→∞ 2−n#(A ∩ In) > 0. Let ǫ > 0 be such that {n : #(A ∩ In) ≥ 2nǫ} is infinite; let 〈k(n)〉n∈N be a
strictly increasing sequence such that

D.H.Fremlin
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#(A ∩ Ik(n)) ≥ 2k(n)ǫ ≥ 2n+1

for every n. For each n ∈ N, let 〈Ani〉i<2n be a disjoint family of subsets of A ∩ Ik(n) such that #(Ani) =

⌊2k(n)−nǫ⌋ ≥ 2k(n)−n−1ǫ for each i < 2n. Set E =
⋃

n∈N

⋃
i<2n Ani and e = E• ⊆ a. Then e 6= 0 in Z.

(b) Define φ : PN → PE by setting

φI =
⋃

n∈N

⋃
{Ani : i < 2n, 2n + i ∈ I}

for I ⊆ N. Then φ is a Boolean homomorphism, and φI ∈ Z whenever I ∈ Z. PPP

2−k(n)#(Ik(n) ∩ φI) = 2−k(n)
∑

i∈I∩In

#(An,i−2n)

≤ 2−k(n)#(I ∩ In) · 2k(n)−nǫ = 2−nǫ#(I ∩ In) → 0

as n → ∞; and of course #(Ij ∩ φI) = 0 if j 6= k(n) for every n. QQQ So we have a Boolean homomorphism
π : Z → Ze defined by setting πI• = (φI)• for every I ⊆ N.

π is injective. PPP If I ∈ PN \ Z, then the same formulae give us

lim sup
n→∞

2−k(n)#(Ik(n) ∩ φI) = lim sup
n→∞

2−k(n)
∑

i∈I∩In

#(An,i−2n)

≥ lim sup
n→∞

2−k(n)#(I ∩ In) · 2k(n)−n−1ǫ

= 2ǫ lim sup
n→∞

2−n#(I ∩ In) > 0

and φI /∈ Z. QQQ
π is a regular embedding. PPP??? Otherwise, there is a partition C of unity in Z such that d is not

the supremum of π[C] in Ze. Let B ⊆ E be such that B /∈ Z and B• ∩ πc = 0 for every c ∈ C; let
δ > 0 be such that L = {n : #(B ∩ Ik(n)) ≥ 2k(n)δ} is infinite. For each n ∈ L, set Kn = {i : i < 2n,

#(B∩Ani) ≥ 2k(n)−n−1δ}; then #(Kn) ≥ 2n ·
δ

4ǫ
. So J =

⋃
n∈N

(2n+Kn) /∈ Z, and there is a c ∈ C such that

J• ∩ c 6= 0. Let J̃ ⊆ J be such that J̃• = J• ∩ c. Then there is an η > 0 such that L̃ = {n : #(J̃ ∩In) ≥ 2nη}
is infinite. If n ∈ L, then

#(Ik(n) ∩ B ∩ φJ̃) ≥ 2k(n)−n−1δ · #(J̃ ∩ In) ≥ 2k(n)−1δη.

But this means that B ∩ φJ̃ /∈ Z and B• ∩ c 6= 0. XXXQQQ

(c)(i) Set m(n) = #(E∩Ik(n)) ≥ 2k(n)−1ǫ for each n, and let 〈nj〉j∈N be an unbounded monotonic slowly
increasing sequence in N such that n0 = 0, nj+1 ≤ nj + 1 for every j and

limj→∞
m(nj)∑
i<j

m(ni)
= limn→∞

∑
ni<n

ni

∑
ni=n

ni

= 0.

Let 〈Mj〉j∈N be the partition of N such that #(Mj) = m(nj) and max Mj < min Mj+1 for each j. For each
j, let fj : Mj → E ∩ Ik(nj) be a bijection, and set f =

⋃
j∈N

fj , so that f : N → E is a surjection.

For n ∈ N, set M̃n =
⋃

nj=n Mj , rn = min M̃n; then #(M̃n) = rn+1 − rn and limn→∞
rn

rn+1

= 0. Note

also that 2k(n) ≤
2m(n)

ǫ
for every n, while limn→∞

m(n)

rn

= 0, so limn→∞
2k(n)

rn

= 0.

(ii) If I ⊆ E and I ∈ Z, then f−1[I] ∈ Z. PPP

lim sup
j→∞

#(f−1[I])

#(Mj)
= lim sup

j→∞

#(I∩Ik(nj))

m(nj)

≤ lim sup
j→∞

2−k(nj)#(I ∩ Ik(nj)) · lim sup
j→∞

2k(nj)

m(nj)
≤ 0 ·

2

ǫ
= 0.

As limj→∞
#(Mj)

min Mj

= 0, f−1[I] ∈ Z. QQQ So we have a Boolean homomorphism θ : Ze → Z defined by saying

that θ(I•) = (f−1[I])• for every I ⊆ E.
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(iii) If I ⊆ E and f−1[I] ∈ Z, then I ∈ Z. PPP

lim sup
n→∞

2−k(n)#(I ∩ Ik(n)) = lim sup
j→∞

2−k(nj)#(I ∩ Ik(nj))

≤ lim sup
j→∞

#(I∩Ik(nj))

m(nj)
= lim sup

n→∞

#(f−1[I]∩M̃n)

#(M̃n)

≤ lim sup
n→∞

#(f−1[I]∩rn+1)

rn+1

·
rn+1

rn+1−rn

≤ d∗(f−1[I]) · 1 = 0. QQQ

So θ embeds Ze in Z.

(iv) Let J be the family of non-empty sets J of the form
⋃

i∈K Mi where ni = nj for all i, j ∈ K. We

need to know that if B ⊆ N, then there are infinitely many J ∈ J such that #(B∩J) ≥ 1
5d∗(B) ·(1+max J).

PPP Set δ = 1
5d∗(B). We can suppose that δ > 0. Take any n∗ ∈ N such that rn ≤ δrn+1, 2k(n) ≤ δrn for

every n ≥ n∗. Then there is an m ≥ rn∗+1 such that #(B ∩ m) ≥ 4δm. Let n > n∗ be such that m ∈ M̃n.

case 1 If #(B ∩ rn) ≥ 1
2#(B ∩ m), set J = M̃n−1. Then

#(B ∩ J) ≥ 2δm − rn−1 ≥ 2δrn − rn−1 ≥ δrn = δ(1 + max J).

case 2 Otherwise, set J =
⋃
{Mj : nj = n, max Mj < m}. Then

#(B ∩ J) ≥ #(B ∩ m) − #(B ∩ rn) − 2k(n) ≥ 2δm − 2k(n) ≥ δm ≥ δ(1 + max J).

As n∗ is arbitrary, at least one of these happens infinitely often. QQQ

(v) θ is a regular embedding. PPP??? Otherwise, there are a partition C of unity in Ze and a non-zero
b ∈ Z such that b ∩ θc = 0 for every c ∈ C. Express b as B• where B ∈ PN \ Z. By (iv), there are a δ > 0
and an infinite sequence 〈Jl〉l∈N of distinct members of J such that #(B ∩ Jl) ≥ δ(1 + max Jl). For each

l there is an p(l) such that Jl ⊆ M̃p(l); taking a subsequence if necessary, we may suppose that 〈p(l)〉l∈N is
strictly increasing. For each l, let Kl be such that Jl =

⋃
j∈Kl

Mj ; we have nj = p(l) for each j ∈ Kl; set

sl = #(Kl), so that #(Jl) = 2k(p(l))sl and f [Jl] ⊆ E ∩ Ik(p(l)).
For l ∈ N, set

Vl = {i : #({j : j ∈ B ∩ Jl, f(j) = i}) ≥
1

2
δsl} ⊆ E ∩ Ik(p(l)).

Since f is injective on Mj for each j ∈ Kl,

2k(p(l))slδ = δ#(Jl) ≤ δ(1 + max Jl) ≤ #(B ∩ Jl) ≤ sl#(Vl) + 2k(p(l))−1δsl

and #(Vl) ≥ 2k(p(l))δ. Accordingly V =
⋃

l∈N
Vl does not belong to Z and there is a c ∈ C such that

V • ∩ c 6= 0. Let Ṽ ⊆ V be such that Ṽ • = V • ∩ c. Then there is an η > 0 such that L̃ = {l : #(Ṽ ∩Ik(p(l))) ≥

2k(p(l))η} is infinite. For l ∈ L̃,

#(B ∩ f−1[Ṽ ] ∩ (1 + max Jl)) ≥ #(B ∩ f−1[Ṽ ] ∩ Jl) = #(B ∩ f−1[Ṽ ∩ Ik(p(l))])

≥
1

2
δsl#(Ṽ ∩ Ik(p(l))) ≥

1

2
δsl · 2

k(p(l))η

≥
1

2
δη#(Jl) ≥

1

2
δη#(B ∩ Jl) ≥

1

2
δ2η(1 + max Jl).

But this means that B ∩ f−1[Ṽ ] /∈ Z and b ∩ θc 6= 0; which is impossible. XXXQQQ

(vi) Thus we have our regular embeddings in both directions, and e ∈ D, while 0 6= e ⊆ a. As a is
arbitrary, D is order-dense, as claimed.

5 Problems

5A In ZFC, can we find a non-decreasing family 〈aξ〉ξ<κ in Z such that supξ<κ d̄∗(aξ) < infb∈B d̄∗(b),
where B is the set of upper bounds of {aξ : ξ < κ}?

D.H.Fremlin
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Can it be done with κ < m?
[By 1Cb, this cannot be done with κ = ω. Subject to CH, 1F(b-ii) gives such an example with κ = c = ω1.]

5B In ZFC, can we find a non-increasing family 〈aξ〉ξ<κ in Z such that infξ<κ d̄∗(aξ) > supb∈B d̄∗(b),
where B is the set of lower bounds of {aξ : ξ < κ}?

[By 1Ca, this cannot be done with κ < p. Subject to CH, 1F(b-i) gives such an example with κ = c = ω1.]

5C Can τ(Z) be less than c?
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