The density algebra

D.H.FREMLIN

University of Essex, Colchester, England

This note extends remarks in FREMLIN 03, §491.

1 Order-continuity properties of density

1A The context (For general definitions, see FREMLIN 02, FREMLIN 03 and FREMLIN 08?.) For $A \subseteq \mathbb{N}$ let $d^*(A) = \limsup_{n \to \infty} \frac{1}{n} \# (A \cap n)$ be its upper asymptotic density. Write \mathcal{Z} for the density ideal $\{A : d^*(A) = 0\}, \mathfrak{Z}$ for the density algebra \mathcal{PN}/\mathcal{Z} . We have a strictly positive submeasure \bar{d}^* on \mathfrak{Z} defined by setting $\bar{d}^*(A^{\bullet}) = d^*(A)$ for $A \subseteq \mathbb{N}$ (FREMLIN 03, 491I).

1B More definitions (a) A Boolean algebra \mathfrak{A} is weakly (λ, κ) -distributive if whenever $\langle A_{\xi} \rangle_{\xi < \lambda}$ is a family of partitions of unity in \mathfrak{A} , all of size at most κ , then there is a partition C of unity in \mathfrak{A} such that $\{a : a \in A_{\xi}, a \cap c \neq 0\}$ is finite for every $c \in C$ and $\xi < \lambda$ (KOPPELBERG 89, 14.23).

1C Theorem (a) Suppose that $A \subseteq \mathfrak{Z}$ is non-empty and downwards-directed, and $\#(A) < \mathfrak{p}$. Then A has a lower bound c such that $d^*(c) = \inf_{a \in A} \overline{d}^*(a)$.

(b) If $\langle a_n \rangle_{n \in \mathbb{N}}$ is a non-decreasing sequence in \mathfrak{Z} , there is an $a \in \mathfrak{Z}$ such that $a_n \subseteq a$ for every $n \in \mathbb{N}$ and $\bar{d}^*(a) = \sup_{n \in \mathbb{N}} \bar{d}^*(a_n)$.

(c) $\bar{d}^*: \mathfrak{Z} \to [0,1]$ is order-continuous on the left, in the sense that if $A \subseteq \mathfrak{Z}$ is non-empty and upwardsdirected and has supremum b, then $\bar{d}^*(b) = \sup_{a \in A} \bar{d}^*(a)$.

proof (a) Let $\mathcal{A} \subseteq \mathcal{P}\mathbb{N}$ be a downwards-directed set, of cardinal less than \mathfrak{p} , such that $A = \{I^{\bullet} : I \in \mathcal{A}\}$. Set $\gamma = \inf_{a \in \mathcal{A}} \bar{d}^*(a) = \inf_{I \in \mathcal{A}} d^*(I)$. Let P be the family of triples (K, n, I) where $K \subseteq n \in \mathbb{N}$ and $I \in \mathcal{A}$; say that $(K, n, I) \leq (K', n', I')$ if $n \leq n', K = K' \cap n, I' \subseteq I$ and $K' \setminus I \subseteq n$. Then \leq is a partial order on P. If $(K, n, I) \in P$ and $J \in \mathcal{A}$ is included in I, then $(K, n, I) \leq (K, n, J)$; so P is σ -centered upwards. If $I \in \mathcal{A}$ then $Q_I = \{(K, n, I') : I' \subseteq I\}$ is cofinal with P. If $m \in \mathbb{N}$ then $Q'_m = \{(K, n, I) : n > m, \frac{1}{n} \# (K \cap n) \geq \gamma - 2^{-m}\}$ is cofinal with P. So there is an upwards-directed $R \subseteq P$ meeting every Q_I and every Q'_m . Setting $J = \bigcup \{K : (K, n, I) \in R\}, c = J^{\bullet}, d^*J \geq \gamma$ and $J \setminus I$ is finite for every $I \in \mathcal{A}$, so $\bar{d}^*c = \gamma$ and $c \subseteq a$ for every $a \in \mathcal{A}$.

(b) Let $\langle I_n \rangle_{n \in \mathbb{N}}$ be a non-decreasing sequence in $\mathcal{P}\mathbb{N}$ such that $a_n = I_n^{\bullet}$ for every n, and set $\gamma = \sup_{n \in \mathbb{N}} \bar{d}^*(a_n) = \sup_{n \in \mathbb{N}} d^*(I_n)$. Let $\langle k_n \rangle_{n \in \mathbb{N}}$ be a strictly increasing sequence such that $\#(I_n \cap m) \leq (\gamma + 2^{-n})m$ whenever $m \geq k_n$, and set $I = \bigcup_{n \in \mathbb{N}} I_n \cap k_{n+1} \setminus k_n$, $c = I^{\bullet}$. Then $I_n \setminus I$ is finite so $a_n \subseteq c$ for every n. If $k_n \leq m < k_{n+1}$, $\#(I \cap m) \leq \#(I_n \cap m) \leq (\gamma + 2^{-n})m$, so $d^*(I) \leq \gamma$ and $\bar{d}^*(c) \leq \gamma$.

(c) ? Suppose, if possible, otherwise.

(i) Set $\gamma = \overline{d}^*(b)$, $\gamma' = \sup_{a \in A} \overline{d}^*(a)$ and $\epsilon = \frac{1}{4}(\gamma - \gamma') > 0$. Let $J \subseteq \mathbb{N}$ be such that $J^{\bullet} = b$, and set $\mathcal{A} = \{I : I \subseteq \mathbb{N}, I^{\bullet} \in A\}$, so that \mathcal{A} is upwards-directed. Let $\langle n_k \rangle_{k \in \mathbb{N}}$ be a sequence in \mathbb{N} such that $n_{k+1} \ge kn_k$ and $\#(J \cap n_k) > (\gamma - \epsilon)n_k$ for every k. Set $n'_k = \lfloor \epsilon n_k \rfloor$, so that $\#(J \cap n_k \setminus n'_k) \ge (\gamma - 2\epsilon)n_k$ for every k, $\lim_{k \to \infty} \frac{n'_k}{n_k} = \epsilon$ and $\lim_{k \to \infty} \frac{n_k}{n_{k+1}} = 0$. For $I \subseteq \mathbb{N}, K \in [\mathbb{N}]^{\omega}$ set

$$\beta(K,I) = \limsup_{k \to K} \frac{1}{n_k} \#(I \cap n_k \setminus n'_k) = \lim_{n \to \infty} \sup_{k \in K \setminus n} \frac{1}{n_k} \#(I \cap n_k \setminus n'_k);$$

for $K \in [\mathbb{N}]^{\omega}$, set $\alpha(K) = \sup_{I \in \mathcal{A}} \beta(K, I)$.

(ii) Choose $\langle K_r \rangle_{r \in \mathbb{N}}$, $\langle I_r \rangle_{r \in \mathbb{N}}$ inductively, as follows. $K_0 = \mathbb{N}$. Given K_r , let $I_r \in \mathcal{A}$ be such that $\beta(K_r, I_r) > \alpha(K_r) - 2^{-r}$; as \mathcal{A} is upwards-directed, we can arrange that $I_r \supseteq I_{r-1}$ if r > 0. Given K_r and I_r , set

$$K_{r+1} = \{k : k \in K_r, \ \#(I_r \cap n_k \setminus n'_k) \ge \alpha(K_r) - 2^{-r}\},\$$

so that $K_{r+1} \subseteq K_r$ is infinite and the induction continues.

(iii) Looking back at the proof of (b), we see that there is an $L \subseteq \mathbb{N}$ such that $I_r \setminus L$ is finite for every r and $d^*(L) \leq \sup_{r \in \mathbb{N}} d^*(I_r) \leq \gamma'$. Now we can find a strictly increasing sequence $\langle k(r) \rangle_{r \in \mathbb{N}}$ such that

$$k(r) \in K_{r+1}, \quad #(L \cap n_{k(r)}) \le (\gamma' + \epsilon)n_{k(r)}$$

for every $r \in \mathbb{N}$. Set $C = (J \setminus L) \cap \bigcup_{r \in \mathbb{N}} (n_{k(r)} \setminus n'_{k(r)})$. Then, for each r,

$$#(C \cap n_{k(r)}) \ge (\gamma - 2\epsilon)n_{k(r)} - (\gamma' + \epsilon)n_{k(r)} \ge \epsilon n_{k(r)},$$

and $d^*(C) > 0$. As $C \subseteq J$, we have $0 \neq C^{\bullet} \subseteq b$. There must therefore be an $a \in A$ such that $a \cap C^{\bullet} \neq 0$, and an $I \in \mathcal{A}$ such that $d^*(C \cap I) > 0$; set $D = C \cap I$ and $\eta = \frac{1}{4}d^*(D) > 0$.

(iv) For every $r_0 \in \mathbb{N}$ there is an $r \geq r_0$ such that $\#(D \cap n_{k(r+1)} \setminus n'_{k(r+1)}) \geq 2\eta \epsilon n_{k(r+1)}$. **P** We may suppose that r_0 is so large that $n'_{k+1} \geq n_k$ and $3\eta n'_{k+1} - n_k \geq 2\eta \epsilon n_{k+1}$ for every $k \geq k(r_0)$. Then there is a least $n \geq n_{k(r_0)+1}$ such that $\#(D \cap n) \geq 3\eta n$. Let $r \geq r_0$ be such that $n_{k(r)} < n \leq n_{k(r+1)}$. As $D \subseteq C$ does not meet $n'_{k(r+1)} \setminus n_{k(r)}, n \geq n'_{k(r+1)}$. Now

$$#(D \cap n_{k(r+1)} \setminus n'_{k(r+1)}) \ge #(D \cap n) - n_{k(r)}$$

$$\ge 3\eta n'_{k(r+1)} - n_{k(r+1)-1} \ge 2\eta \epsilon n_{k(r+1)}. \mathbf{Q}$$

(v) Let $s \in \mathbb{N}$ be such that $2^{-s} \leq \eta \epsilon$. Then $\beta(K_s, D \cup I_s) > \alpha(K_s)$. **P** Given $r_0 \in \mathbb{N}$, let $r_1 \geq \max(s, r_0)$ be such that $I_s \setminus L \subseteq n'_{k(r_1)}$. Then there is an $r \geq r_1$ such that $\#(D \cap n_{k(r)} \setminus n'_{k(r)}) \geq 2\eta \epsilon n_{k(r)}$. On the other hand, $k(r) \in K_{r+1} \subseteq K_{s+1}$ so $\#(I_s \cap n_{k(r)} \setminus n'_{k(r)}) \geq \alpha(K_s) - 2^{-s}$; and as $D \cap L = \emptyset$, $D \cap I_s \setminus n'_{k(r)}$ is empty. We therefore have $k(r) \in K_s$ and

$$#((D \cup I_s) \cap n_{k(r)} \setminus n'_{k(r)}) = #(D \cap n_{k(r)} \setminus n'_{k(r)}) + #(I_s \cap n_{k(r)} \setminus n'_{k(r)}) \geq 2\eta \epsilon n_{k(r)} + (\alpha(K_s) - 2^{-s})n_{k(r)} \geq (\alpha(K_s) + \eta \epsilon)n_{k(r)}.$$

Since this happens for infinitely many $r, \beta(K_s, D \cup I_s) \ge \alpha(K_s) + \eta \epsilon$. **Q**

However, there must be an $I' \in \mathcal{A}$ including $I_s \cup I$, so that $\beta(K_s, I') \ge \beta(K_s, D \cup I_s) > \alpha(K_s)$; contradicting the definition of $\alpha(K_s)$.

This contradiction proves the result.

1D Proposition 3 is weakly (σ, ∞) -distributive.

proof Let $\langle A_n \rangle_{n \in \mathbb{N}}$ be a sequence of partitions of unity in \mathfrak{Z} . For each $n \in \mathbb{N}$ let A_n^* be

 $\{b: b \in \mathfrak{Z}, \{a: a \in A_n, a \cap b \neq 0\}$ is finite $\},\$

so that A_n^* is an order-dense ideal of \mathfrak{Z} . Then $\bigcap_{n\in\mathbb{N}}A_n^*$ is order-dense. **P** Suppose that $b\in\mathfrak{Z}$ is non-zero. Choose $\langle b_n \rangle_{n\in\mathbb{N}}$ inductively, as follows. $b_0 = b$. Given that $\bar{d}^*(b_n) > \frac{1}{2}\bar{d}^*(b)$, $A_n^* \cap [0, b_n]$ is upwards-directed and has supremum b_n ; by 1Cc, there is a $b_{n+1} \in A_n^* \cap [0, b_n]$ such that $\bar{d}^*(b_{n+1}) > \frac{1}{2}\bar{d}^*(b)$. Continue.

At the end of the induction, 1Ca tells us that there is an $a \in \mathfrak{Z}$ such that $a \subseteq b_n$ for every n and $\bar{d}^*(a) > 0$. Now $0 \neq a \subseteq b$ and $a \in \bigcap_{n \in \mathbb{N}} A_n^*$. **Q**

There is therefore a partition C of unity in \mathfrak{Z} included in $\bigcap_{n \in \mathbb{N}} A_n^*$, that is to say, if $c \in C$ and $n \in \mathbb{N}$, then c meets only finitely many members of A_n . As $\langle A_n \rangle_{n \in \mathbb{N}}$ is arbitrary, \mathfrak{Z} is weakly (σ, ∞) -distributive (FREMLIN 02, 316H).

1E Corollary The regular open algebra of \mathbb{R} cannot be regularly embedded in \mathfrak{Z} .

proof $\operatorname{RO}(\mathbb{R})$ is not weakly (σ, ∞) -distributive (FREMLIN 02, 316J).

1F Examples (a)(i) There is a downwards-directed set $A \subseteq \mathfrak{Z}$ such that $\inf A = 0$ and $\overline{d}^*(a) = 1$ for every $a \in A$.

(ii) There are families $\langle a_{\xi} \rangle_{\xi < \omega_1}$, $\langle c_{\xi} \rangle_{\xi < \omega_1}$ in \mathfrak{Z} such that $a_{\eta} \subseteq c_{\xi}$ whenever $\eta < \xi < \omega_1$, $\bar{d}^*(c_{\xi}) \leq \frac{1}{2}$ for every $\xi < \omega_1$, but $\bar{d}^*(c) = 1$ whenever $c \in \mathfrak{Z}$ and $\{\xi : a_{\xi} \subseteq c\}$ is uncountable.

(b) Suppose that $\mathfrak{c} = \omega_1$.

(ii) There is a non-decreasing family $\langle c_{\xi} \rangle_{\xi < \omega_1}$ in \mathfrak{Z} such that $\bar{d}^*(c_{\xi}) \leq \frac{1}{2}$ for every ξ , but $\bar{d}^*(a) = 1$ for every upper bound a of $\{c_{\xi} : \xi < \omega_1\}$.

proof (a)(i) Set $K_n = \{2^n(2m+1) : m \in \mathbb{N}\}$, $I_n = \bigcup_{k \in K_n} [k!, (k+1)![, c_n = I_n^{\bullet}; \text{then } \langle c_n \rangle_{n \in \mathbb{N}} \text{ is disjoint and } \bar{d}^*(c_n) = 1 \text{ for every } n.$ Set $A = \{a : a \in \mathfrak{Z}, c_n \subseteq a \text{ for all but finitely many } n\}$; then A is downwards-directed, inf A = 0 and $\bar{d}^*(a) = 0$ for every $a \in A$.

(ii)(α)For $\xi < \omega_1$, choose $f_{\xi} \in \mathbb{N}^{\mathbb{N}}$, $I_{\xi} \subseteq \mathbb{N}$, $I'_{\xi} \subseteq I_{\xi}$ as follows. The inductive hypothesis will be that I_{η} is infinite and $\#(I_{\eta} \cap n^2) \leq n$ for every $n \in \mathbb{N}$ and $\eta < \xi$, and that $I_{\eta} \cap I_{\zeta}$ is finite whenever $\zeta < \eta < \xi$. For the inductive step to ξ , enumerate ξ as $\langle \theta(\xi, i) \rangle_{i < \#(\xi)}$. Choose $f_{\xi}(i)$ inductively such that

 $\begin{aligned} f_{\xi}(i) &\geq i^{2}, \\ f_{\xi}(i) \notin I_{\theta(\xi,j)} \text{ whenever } j < \min(i, \#(\xi)), \\ \text{if } i < \#(\xi) \text{ then } f_{\xi}(i) \in I_{\theta(\xi,i)}. \end{aligned}$ Set $I_{\xi} = f_{\xi}[\mathbb{N}],$

$$I'_{\xi} = \{ f_{\xi}(i) : i \in \mathbb{N}, \ i < \#(\xi), \ f_{\xi}(i) \notin I'_{\theta(\xi,i)} \}.$$

 $(\boldsymbol{\beta})$ For $n \in \mathbb{N}$, set

$$L(n) = \{i : n! \le i < (n+1)!, i \text{ is even}\}, \quad L'(n) = \{i : n! \le i < (n+1)!, i \text{ is odd}\}$$

For $\xi < \omega_1$ set

$$A_{\xi} = \bigcup \{ L(n) : n \in I'_{\xi} \} \cup \bigcup \{ L'_n : n \in I_{\xi} \setminus I'_{\xi} \}, \quad a_{\xi} = A^{\bullet}_{\xi}$$

(γ) If $K \subseteq \omega_1$ is finite, then $\bar{d}^*(\sup_{\xi \in K} a_{\xi}) \leq \frac{1}{2}$. **P** Set $A = \bigcup_{\xi \in K} A_{\xi}$. There is a $k \in \mathbb{N}$ such that $I_{\xi} \cap I_{\eta} \subseteq k$ for all distinct $\xi, \eta \in K$. For $n \geq k, A \cap [n!, (n+1)!]$ is either L_n or L'_n or empty, so $\bar{d}^*(\sup_{\xi \in K} a_{\xi}) = d^*(A)$ is at most $\frac{1}{2}$. **Q**

By (b), it follows that for each $\xi < \omega_1$ there is a $c_{\xi} \in \mathfrak{Z}$ such that $a_{\eta} \subseteq c$ for every $\eta < \xi$ and $\bar{d}^*(c) \leq \frac{1}{2}$.

(δ) Now suppose that $c \in \mathfrak{Z}$ is such that $D = \{\xi : a_{\xi} \subseteq c\}$ is uncountable. Let $C \subseteq \mathbb{N}$ be such that $c = C^{\bullet}$. Take any $\epsilon > 0$. Then there is a $k \in \mathbb{N}$ such that

$$D' = \{\xi : \#(A_{\xi} \cap m \setminus C) \le \epsilon m \text{ for every } m \ge k!\}$$

is uncountable. Let $\xi \in D'$ be such that $D' \cap \xi$ is infinite. Then $M = \{i : i \in \mathbb{N}, \theta(\xi, i) \in D', f_{\xi}(i) \ge k\}$ is infinite. But for every $i \in M$, setting $l_i = f_{\xi}(i)!, l'_i = (f_{\xi}(i) + 1)!$,

$$A_{\xi} \cup A_{\theta(\xi,i)} \supseteq l'_i \setminus l_i.$$

So $\#((l'_i \setminus l_i) \setminus C) \leq 2\epsilon l'_i$ and $\#(C \cap l'_i) \geq l'_i(1 - 2\epsilon) - l_i$. As this is true for infinitely many $i, \bar{d}^*(c) = d^*(C) = \geq 1 - 2\epsilon$. As ϵ is arbitrary, $\bar{d}^*(c) = 1$.

Thus $\langle a_{\xi} \rangle_{\xi < \omega_1}$ and $\langle c_{\xi} \rangle_{\xi < \omega_1}$ have the required properties.

(b)(i) Enumerate $\mathfrak{Z}^+ = \mathfrak{Z} \setminus \{0\}$ as $\langle a_{\xi} \rangle_{\xi < \omega_1}$. Choose $\langle c_{\xi} \rangle_{\xi < \omega_1}$ inductively. $c_0 = 1$. Given that $d^*(c_{\xi}) = 1$, we can partition it into c, c' with $\overline{d}^*(c) = \overline{d}^*(c') = 1$; take $c_{\xi+1}$ to be one of these not including a_{ξ} . For non-zero countable limit ordinals ξ , use (a) to see that there is a c_{ξ} such that $\overline{d}^*(c_{\xi}) = 1$ and $c_{\xi} \subseteq c_{\eta}$ for every $\eta < \xi$. Now no a_{ξ} can be a lower bound for $\{c_{\eta} : \eta < \omega_1\}$.

(ii) Enumerate $\{A : A \subseteq \mathbb{N}, d^*(A) < 1\}$ as $\langle A_{\xi} \rangle_{\xi < \omega_1}$. For $n \in \mathbb{N}$, set $L_n = \{i : n! \le i < (n+1)!\}$. Let $\langle I_{\xi} \rangle_{\xi < \omega_1}$ be a family in $\mathcal{P}\mathbb{N}$ such that $I_{\eta} \setminus I_{\xi}$ is finite and $I_{\xi+1} \setminus I_{\xi}$ is infinite for $\eta \le \xi < \omega_1$. (Cf. FREMLIN 03, 419A.) Choose $\langle C_{\xi} \rangle_{\xi < \omega_1}$ inductively, as follows. The inductive hypothesis will be that whenever $\zeta \le \eta < \xi$ then $C_{\eta} \subseteq \bigcup_{n \in I_{\eta}} L_n$ and $\#(C_{\eta} \cap L_n \cap i) \le \frac{1}{2}(i-n!)$ for every $n \in \mathbb{N}$ and $i \in L_n$, and $C_{\zeta} \setminus C_{\eta}$ is finite.

Start with $C_0 = \emptyset$. Given C_{ξ} , then set

$$D_{\xi n} = \{i : i \in L_n \setminus A_{\xi}, \ \#(i \cap L_n \cap D_{\xi n}) \le \frac{1}{2}(i-n!)\} \text{ for } n \in \mathbb{N},$$
$$C_{\xi+1} = C_{\xi} \cup \bigcup_{n \in I_{\xi+1} \setminus I_{\xi}} D_{\xi n}.$$

D.H.FREMLIN

Observe that if $\delta = \frac{1}{2}(1 - d^*(A_{\xi})) > 0$, then for all *n* large enough we shall have $\#(L_n \setminus A_{\xi}) \ge \delta \#(L_n)$, so that $\#(D_{\xi n}) \ge \frac{1}{2}\delta \#(L_n)$; consequently $d^*(C_{\xi+1} \setminus A_{\xi}) \ge \frac{1}{2}\delta > 0$.

For the inductive step to a non-zero countable limit ordinal ξ , let $\langle \eta_k \rangle_{k \in \mathbb{N}}$ be a non-decreasing cofinal sequence in ξ , and $\langle n_k \rangle_{k \in \mathbb{N}}$ a strictly increasing sequence such that $I_{\eta_k} \setminus I_{\xi} \subseteq n_k$ and $C_{\eta_k} \setminus C_{\eta_{k+1}} \subseteq n_k!$ for every k. Set

$$C_{\xi} = \bigcup_{k \in \mathbb{N}} C_{\eta_k} \setminus n_k!.$$

Then for $n_k \leq n < n_{k+1}$, $C_{\xi} \cap L_n = C_{\eta_k} \cap L_n$ is appropriately thin, and is empty unless $n \in I_{\xi}$.

Set $c_{\xi} = C_{\xi}^{\bullet}$ for each ξ . Then $\langle c_{\xi} \rangle_{\xi < \omega_1}$ is non-decreasing, and $\bar{d}^*(c_{\xi}) \leq \frac{1}{2}$ for every ξ . ? If $a \in \mathfrak{Z}$ is an upper bound for $\{c_{\xi} : \xi < \omega_1\}$ and $\bar{d}^*(a) < 1$, ther is a $\xi < \omega_1$ such that $a = A_{\xi}^{\bullet}$, and now $c_{\xi+1} \setminus a \neq 0$. **X**

2 Bits & pieces

2A Lemma If $a \in \mathfrak{Z}$ and $\langle \gamma_{\xi} \rangle_{\xi < \mathfrak{c}}$ is any family in $[0, \bar{d}^*(a)]$, there is a disjoint family $\langle b_{\xi} \rangle_{\xi < \mathfrak{c}}$ such that $b_{\xi} \subseteq a$ and $\bar{d}^*(b_{\xi}) = \gamma_{\xi}$ for every $\xi < \mathfrak{c}$.

proof Set $\gamma = \overline{d}^*(a)$. Let $A \subseteq \mathbb{N}$ be such that $A^{\bullet} = a$. Let $\langle k_n \rangle_{n \in \mathbb{N}}$ be a strictly increasing sequence such that $\#(A \cap k_{n+1} \setminus k_n) \ge (\gamma - 2^{-n})k_{n+1}$ for every n. Let $\langle I_{\xi} \rangle_{\xi < \mathfrak{c}}$ be an almost disjoint family of infinite subsets of \mathbb{N} (FREMLIN 08?, 5A1Fa). Set $A_{\xi} = \bigcup_{n \in I_{\xi}} A \cap k_{n+1} \setminus k_n$. Then $A_{\xi} \subseteq A$ and $d^*(A_{\xi}) = \gamma$ for every ξ , and $\langle A_{\xi} \rangle_{\xi < \mathfrak{c}}$ is almost disjoint.

Now, for $\xi < \mathfrak{c}$, define $B_{\xi} \subseteq A_{\xi}$ by saying that

$$B_{\xi} = \{i : i \in A_{\xi}, \, \#(i \cap B_{\xi}) \le \gamma_{\xi}i\}.$$

Then $\#(i \cap B_{\xi}) \leq 1 + \gamma_{\xi}(i-1)$ for every $i \in \mathbb{N}$, so $d^*(B_{\xi}) \leq \gamma_{\xi}$. If $d^*(B_{\xi}) < \gamma_{\xi}$, let n be such that $\#(B_{\xi} \cap i) \leq \gamma_{\xi}i$ whenever $i \geq n$; then $B_{\xi} \supseteq A_{\xi} \setminus n$ and $d^*(B_{\xi}) \geq \gamma$.

So we can set $b_{\xi} = B_{\xi}^{\bullet}$ for every ξ .

2B Proposition For any $b \in \mathfrak{Z}$ there is a positive additive functional μ on \mathfrak{Z} such that $\mu b = \overline{d^*b}$ and $\mu a \leq \overline{d^*a}$ for every $a \in \mathfrak{Z}$. **P** Take $B \subseteq \mathbb{N}$ representing b. Let $\langle k_n \rangle_{n \in \mathbb{N}}$ be a strictly increasing sequence in \mathbb{N} such that $d^*(B) = \lim_{n \to \infty} \frac{1}{k_n} \# (B \cap k_n)$. Take a non-principal ultrafilter \mathcal{F} on \mathbb{N} and set $\mu A^{\bullet} = \lim_{n \to \mathcal{F}} \frac{1}{k_n} \# (A \cap k_n)$ for every $A \subseteq \mathbb{N}$. **Q**

Note that μ is countably additive (in the sense of FREMLIN 02, 326E), because \bar{d}^* is sequentially ordercontinuous.

2C Proposition $c(\mathfrak{Z}_a) = \mathfrak{c}$ for every non-zero $a \in \mathfrak{Z}$.

proof Represent a as A^{\bullet} . Take a strictly increasing sequence $\langle k_n \rangle_{n \in \mathbb{N}}$ such that $\#(A \cap k_{n+1} \setminus k_n) \ge (d^*(A) - 2^{-n})k_{n+1}$ for every n. Let $\langle K_{\xi} \rangle_{\xi < \mathfrak{c}}$ be an almost disjoint family of infinite subsets of \mathbb{N} . Set $a_{\xi} = (A \cap \bigcup_{n \in K_{\mathfrak{c}}} k_{n+1} \setminus k_n)^{\bullet}$. Then $\langle a_{\xi} \rangle_{\xi < \mathfrak{c}}$ is disjoint and $\bar{d}^*(a_{\xi}) = \bar{d}^*(a)$ for every ξ . **Q**

2D Proposition $\mathcal{PN}/[\mathbb{N}]^{<\omega}$ can be regularly embedded in 3.

proof Define $\pi : \mathcal{P}\mathbb{N} \to \mathcal{P}\mathbb{N}$ by setting $\pi A = \bigcup_{n \in A} 2^{n+1} \setminus 2^n$. Then $\pi A \in \mathcal{Z}$ iff A is finite, so π descends to an injective Boolean homomorphism $\overline{\pi} : \mathcal{P}\mathbb{N}/[\mathbb{N}]^{\omega} \to \mathfrak{Z}$. **?** If $\overline{\pi}$ is not order-continuous, there is a non-empty downwards-directed set $P \subseteq \mathcal{P}\mathbb{N}/[\mathbb{N}]^{<\omega}$ such that $\inf P = 0$ in $\mathcal{P}\mathbb{N}/[\mathbb{N}]^{<\omega}$ but there is a non-zero $c \in \mathfrak{Z}$ which is a lower bound for $\overline{\pi}[P]$. Set $\mathcal{A} = \{A : A^{\bullet} \in P\}$ and let C represent c; then $C \setminus \pi A \in \mathcal{Z}$ for every $A \in \mathcal{A}$. Consider $K = \{n : \#(C \cap 2^{n+1} \setminus 2^n) \ge \frac{1}{3}d^*(C)\}$. This is infinite. If $A \in \mathcal{A}$, then $\{n : \#((C \setminus \pi A) \cap 2^{n+1} \setminus 2^n) \ge \frac{1}{6}d^*(C)\}$ must be finite, so $\{n : n \in K, \pi A \cap 2^{n+1} \setminus 2^n = \emptyset\}$ must be finite and $K \setminus A$ is finite, so K^{\bullet} is a non-zero lower bound for P. \mathbb{X} So $\overline{\pi}$ is a regular embedding of $\mathcal{P}\mathbb{N}/[\mathbb{N}]^{<\omega}$ in \mathfrak{Z} .

2E Corollary \mathfrak{Z} has an (ω_1, ω_1^*) -gap, that is, families $\langle a_{\xi} \rangle_{\xi < \omega_1}$, $\langle b_{\xi} \rangle_{\xi < \omega_1}$ such that $a_{\eta} \subset a_{\xi} \subseteq b_{\xi} \subset b_{\eta}$ whenever $\eta < \xi < \omega_1$ but there is no $c \in \mathfrak{Z}$ such that $a_{\xi} \subseteq c \subseteq b_{\xi}$ for every $\xi < \omega_1$.

proof Let $\langle a_{\xi} \rangle_{\xi < \omega_1}$, $\langle b_{\xi} \rangle_{\xi < \omega_1}$ be an (ω_1, ω_1^*) -gap in $\mathcal{P}\mathbb{N}/[\mathbb{N}]^{<\omega}$ (FREMLIN 84, 21L), and consider $\langle \bar{\pi}a_{\xi} \rangle_{\xi < \omega_1}$, $\langle \bar{\pi}b_{\xi} \rangle_{\xi < \omega_1}$. **?** If $c \in \mathfrak{Z}$ is such that $\bar{\pi}a_{\xi} \subseteq c \subseteq \bar{\pi}b_{\xi}$ for every ξ , let $C \subseteq \mathbb{N}$ be such that $C^{\bullet} = C$, and consider $D = \{n : \#(C \cap 2^{n+1} \setminus 2^n) \ge 2^{n-1}\}$; then $a_{\xi} \subseteq D^{\bullet} \subseteq b_{\xi}$ in $\mathcal{P}\mathbb{N}/[\mathbb{N}]^{<\omega}$ for every $\xi < \omega_1$.

2F Proposition (a) \mathfrak{Z} is isomorphic to the simple product $\mathfrak{Z}^{\mathbb{N}}$.

(b) \mathfrak{Z} has the σ -interpolation property.

proof (a) Set $A_n = \{2^{n+1}(2i+1) : i \in \mathbb{N}\}$, $a_n = A_n^{\bullet} \in \mathfrak{Z}$. Then each principal ideal \mathfrak{Z}_{a_n} is isomorphic to \mathfrak{Z} (see FREMLIN 03, 491Xo), and the map $A \mapsto \langle A \cap A_n \rangle_{n \in \mathbb{N}} : \mathcal{P}\mathbb{N} \to \prod_{n \in \mathbb{N}} \mathcal{P}A_n$ descends to an isomorphism from \mathfrak{Z} to $\mathfrak{Z}^{\mathbb{N}}$.

(b) Let $\langle a_n \rangle_{n \in \mathbb{N}}$, $\langle b_n \rangle_{n \in \mathbb{N}}$ be sequences in \mathfrak{Z} such that $a_m \subseteq b_n$ for all $m, n \in \mathbb{N}$. Let $\langle I_n \rangle_{n \in \mathbb{N}}, \langle J_n \rangle_{n \in \mathbb{N}}$ be sequences in $\mathcal{P}\mathbb{N}$ such that $I_n^{\bullet} = \sup_{i \leq n} a_i$ and $J_n^{\bullet} = \inf_{i \leq n} b_i$ for every $n \in \mathbb{N}, \langle I_n \rangle_{n \in \mathbb{N}}$ is non-decreasing and $\langle J_n \rangle_{n \in \mathbb{N}}$ is non-increasing. Then $d^*(I_n \setminus J_n) = 0$ for each n. Let $\langle r_n \rangle_{n \in \mathbb{N}}$ be a strictly increasing sequence in \mathbb{N} such that $\#((I_n \setminus J_n) \cap m) \leq 2^{-n}m$ whenever $m \geq r_n$; then $\#(((I_n \setminus J_n) \setminus r_n) \cap m) \leq 2^{-n}m$ for every m. Set $I = \bigcap_{n \in \mathbb{N}} (r_n \cup J_n)$. Then $I \setminus J_n \subseteq r_n$ is finite for every n. Next, for any $n \in \mathbb{N}$,

$$I_n \setminus I = \bigcup_{k \in \mathbb{N}} ((I_n \setminus J_k) \setminus r_k)$$

Set $J' = \bigcup_{k < n} I_n \setminus J_k$; then $d^*J' = 0$. Set

$$J'' = \bigcup_{k \ge n} ((I_n \setminus J_k) \setminus r_k) = \subseteq \bigcup_{k \ge n} ((I_k \setminus J_k) \setminus r_k)$$

and

$$\#(J'' \cap m) \le \sum_{k=n}^{\infty} 2^{-k} m = 2^{-n+1} m$$

for every m, so $d^*(J'') \leq 2^{-n+1}$ and $d^*(I_n \setminus I) \leq 2^{-n+1}$. As $\langle I_n \rangle_{n \in \mathbb{N}}$ is non-decreasing, $d^*(I_n \setminus I) = 0$ for every n. So, setting $c = I^{\bullet}$, we have $a_n \subseteq c \subseteq b_n$ for every n.

2G Proposition For $a, b \in \mathfrak{Z}$, set $\rho(a, b) = \overline{d}^*(a \triangle b)$, so that ρ is a metric on \mathfrak{Z} (FREMLIN 02, 392H¹). If $\mathfrak{C} \subseteq \mathfrak{Z}$ is a subalgebra which is closed and has weight less than \mathfrak{p} for the metric topology of \mathfrak{Z} , then \mathfrak{C} is order-closed.

proof Let $\kappa < \mathfrak{p}$ be the weight of \mathfrak{C} . Suppose that $A \subseteq \mathfrak{C}$ is non-empty and upwards-directed and has a supremum b in \mathfrak{Z} . Then there is a dense subset D of A of cardinal at most κ ; let D' be the set of suprema of finite subset of D. Then b is an upper bound of D'; moreover, if c is any upper bound of D', then $\{a : a \subseteq c\}$ is topologically closed, so includes A, and $c \supseteq b$. Thus $b = \sup D'$.

The set $\{b \setminus a : a \in D'\}$ is downwards-directed and has cardinal less than \mathfrak{p} ; by 1Ca, it has a lower bound c such that $\overline{d}^*(c) = \inf_{a \in D'} \overline{d}^*(b \setminus a)$; but c must be 0, so

$$0 = \inf_{a \in D'} \bar{d}^*(b \setminus a) \ge \inf_{a \in A} \bar{d}^*(b \setminus a)$$

and $b \in \overline{A} \subseteq \mathfrak{C}$. As A is arbitrary, \mathfrak{C} is order-closed (FREMLIN 02, 313E(a-i)).

2H Proposition Aut 3 has many involutions.

proof If $a \in \mathfrak{Z}^+$, let $I \subseteq \mathbb{N}$ be such that $I^{\bullet} = a$. Let $f : \mathbb{N} \to I$ be the increasing enumeration of I. Define a bijection $h : \mathbb{N} \to \mathbb{N}$ by saying that h(n) = n for $n \in \mathbb{N} \setminus I$ and h(f(2i)) = f(2i+1), h(f(2i+1)) = f(2i)for $i \in \mathbb{N}$. Then $d^*(h[J]) = d^*(J)$ for every $J \subseteq \mathbb{N}$, so we have a Boolean automorphism $\pi : \mathfrak{Z} \to \mathfrak{Z}$ defined by saying that $\pi(J^{\bullet}) = (h^{-1}[J])^{\bullet}$ for every $J \subseteq \mathbb{N}$; now π is an involution with support a.

3 Cardinal functions

3A As the cellularity $c(\mathfrak{Z})$ of \mathfrak{Z} is $\mathfrak{c} = \#(\mathfrak{Z})$ (2C), we have $\operatorname{link}(\mathfrak{Z}) = d(\mathfrak{Z}) = \pi(\mathfrak{Z}) = \mathfrak{c}$ (FREMLIN 08?, 511J).

3B Proposition The Maharam type $\tau(\mathfrak{Z})$ of \mathfrak{Z} is at least \mathfrak{p} . [Strengthened in 3H.]

¹Formerly 393B.

proof If $D \subseteq \mathfrak{Z}$ and $\#(D) < \mathfrak{p}$, let \mathfrak{D} be the subalgebra of \mathfrak{Z} generated by D, and \mathfrak{C} the topological closure of \mathfrak{D} (see 2G). Then \mathfrak{C} is a subalgebra of \mathfrak{Z} , because the Boolean operations are topologically continuous (FREMLIN 02, 392H), and $w(\mathfrak{C}) \leq \#(\mathfrak{D}) < \mathfrak{p}$. So 2G tells us that \mathfrak{C} is order-closed. On the other hand, \mathfrak{C} is certainly not equal to \mathfrak{Z} , because the topological density of \mathfrak{Z} is \mathfrak{c} , by 2A. So \mathfrak{Z} is not the order-closed subalgebra of itself generated by D. As D is arbitrary, $\tau(\mathfrak{Z}) \geq \mathfrak{p}$.

3C Proposition The weak distributivity wdistr(\mathfrak{Z}) of \mathfrak{Z} is ω_1 .

proof By 1D, wdistr(\mathfrak{Z}) $\geq \omega_1$. As the measure algebra $\mathfrak{B}_{\mathfrak{c}}$ of the usual measure on $\{0,1\}^{\mathfrak{c}}$ is regularly embedded in \mathfrak{Z} (FREMLIN 03, 491P), $\omega_1 = \text{wdistr}(\mathfrak{B}_c) \geq \text{wdistr}(\mathfrak{Z})$ (FREMLIN 08?, 524Mb and 514Eb).

3D Proposition The Martin number $\mathfrak{m}(\mathfrak{Z})$ of \mathfrak{Z} is at least $\mathfrak{m}_{\sigma\text{-linked}}$.

proof Take $\kappa < \mathfrak{m}_{\sigma-\text{linked}}$, a family $\langle D_{\xi} \rangle_{\xi < \kappa}$ of order-dense subsets of \mathfrak{Z} , and $\tilde{d} \in \mathfrak{Z}^+$.

(a)(i) Let $\tilde{A} \subseteq \mathbb{N}$ be such that $\tilde{A}^{\bullet} = \tilde{d}$, and set $\epsilon = \frac{1}{3}\bar{d}^*(\tilde{A}) > 0$. Let $\langle m_k \rangle_{k \in \mathbb{N}}$ be a sequence in \mathbb{N} such that $\#(\tilde{A} \cap m_k) \ge 2\epsilon m_k$ and and $m_{k+1} \ge \max(k, \frac{1}{\epsilon})m_k$ for every n; set $m'_k = \lfloor \epsilon m_k \rfloor$ and $L_k = m_k \setminus m'_k$ for each k, so that $\#(\tilde{A} \cap L_k) \ge \epsilon \#(L_k)$ for every k, $\langle L_k \rangle_{k \in \mathbb{N}}$ is disjoint, $\lim_{k \to \infty} \frac{\#(L_k)}{m_k} = 1 - \epsilon$ and $\lim_{k \to \infty} \frac{m_{k-1}}{\#(L_k)} = 0$. For $I \subseteq \mathbb{N}$ set $C_I = \bigcup_{k \in I} L_k$; for $I \in [\mathbb{N}]^{\omega}$ and $A \subseteq \mathbb{N}$, set

$$\delta^*(I,A) = \limsup_{k \in I, k \to \infty} \frac{\#(A \cap L_k)}{\#(L_k)},$$

$$\delta(I, A) = \lim_{k \in I, k \to \infty} \frac{\#(A \cap L_k)}{\#(L_k)}$$

if the limit is defined. Note that whenever $A, B \subseteq \mathbb{N}$ and $I \in [\mathbb{N}]^{\omega}$,

 $\delta^*(I, A) = \delta^*(I, A \cap C_I),$ $\delta^*(I, C_I) = 1,$ $\delta^*(I, \tilde{A}) \ge \epsilon,$ $\delta^*(I, B) \le \delta^*(I, A) \text{ if } B \setminus A \text{ is finite},$ $\delta^*(I, A) \ge \delta^*(J, A) \text{ whenever } J \in [\mathbb{N}]^{\omega} \text{ and } J \setminus I \text{ is finite},$ there is a $J \in [I]^{\omega}$ such that $\delta(J, A)$ is defined and equal to $\delta^*(I, A),$ if $\delta(I, A)$ is defined then $\delta(J, A)$ is defined and equal to $\delta(I, A)$ whenever $J \in [\mathbb{N}]^{\omega}$ and $J \setminus I$ is finite, is finite,

if $\delta(I, A)$ is defined and $\delta^*(I, B \cap A) = 0$, then $\delta^*(I, A \cup B) = \delta(I, A) + \delta^*(I, B)$. Also, of course, $A \mapsto \delta^*(I, A)$ is a submeasure, for every $I \in [\mathbb{N}]^{\omega}$.

(ii) If $A \subseteq \mathbb{N}$ and $I \in [\mathbb{N}]^{\omega}$, then

$$\epsilon d^*(A \cap C_I) \le \delta^*(I, A) \le \frac{1}{1-\epsilon} d^*(A \cap C_I).$$

 $\mathbf{P}(\boldsymbol{\alpha})$ Let $\eta > 0$. Let $k_0 \in I$ be such that $\#(A \cap L_k) \leq (\delta^*(I, A) + \eta) \#(L_k)$ and $m_{k-1} \leq \eta m_k$ for every $k \geq k_0$. Take any $n > m_{k_0}$; let k, l be successive members of I such that $m_k < n \leq m_l$. If $n \leq m'_l$ then

$$#(A \cap C_I \cap n) = #(A \cap C_I \cap m_k) \le #(A \cap L_k) + m_{k-1} \le (\delta^*(I, A) + \eta) #(L_k) + m_{k-1} \le (\delta^*(I, A) + \eta) m_k + \eta m_k \le (\delta^*(I, A) + 2\eta) n.$$

If $m'_l < n \le m_l$ then

$$#(A \cap C_I \cap n) \le #(A \cap L_l) + m_{l-1} \le (\delta^*(I, A) + 2\eta)m_l \le \frac{\delta^*(I, A) + 2\eta}{\epsilon}n$$

So in both cases $\frac{1}{n} \# (A \cap C_I \cap n) \le \frac{\delta^*(I,A) + 2\eta}{\epsilon}$; as η is arbitrary, $\epsilon d^*(A \cap C_I) \le \delta^*(I,A)$.

(β) Given $\eta > 0$, let $n_0 \in \mathbb{N}$ be such that $\#(A \cap C_I \cap n) \leq (d^*(A \cap C_I) + \eta)n$ for every $n \geq n_0$. If $k \in I$ is such that $m'_k \geq n_0$, then

$$\frac{\#(A \cap L_k)}{\#(L_k)} \le \frac{\#(A \cap m_k)}{\#(L_k)} \le \frac{(d^*(A \cap C_I) + \eta)m_k}{\#(L_k)} \le \frac{d^*(A \cap C_I) + \eta}{1 - \epsilon}.$$

As η is arbitrary, $\delta^*(I, A) \leq \frac{d^*(A \cap C_I)}{1 - \epsilon}$. **Q**

(iii) If $\langle A_n \rangle_{n \in \mathbb{N}}$ is a non-decreasing sequence of subsets of \mathbb{N} and $I \in [\mathbb{N}]^{\omega}$, there is a $B \subseteq \mathbb{N}$ such that $B \setminus A_n$ is finite for every $n \in \mathbb{N}$ and $\delta^*(I, B) = \sup_{n \in \mathbb{N}} \delta^*(I, A_n)$. **P** Let $\langle k_n \rangle_{n \in \mathbb{N}}$ be a non-decreasing sequence such that $\#(A_n \cap L_k) \leq (\delta^*(I, A_n) + 2^{-n}) \#(L_k)$ whenever $k \geq k_n$. Set $B = \bigcup_{n \in \mathbb{N}} A_n \setminus m_{k_n}$. **Q**

(b) Suppose that $I \in [\mathbb{N}]^{\omega}$, $\eta > 0$ and that $\mathcal{A} \subseteq \mathcal{P}\mathbb{N}$ is an upwards-directed family such that $\{A^{\bullet} : A \in \mathcal{A}\}$ is order-dense in **3**. Then there are a $J \in [I]^{\omega}$ and an $A \in \mathcal{A}$ such that $\delta^*(J, A) \ge 1 - \eta$. **P?** Otherwise, choose $\langle J_n \rangle_{n \in \mathbb{N}}$, $\langle \beta_n \rangle_{n \in \mathbb{N}}$ and $\langle A_n \rangle_{n \in \mathbb{N}}$ inductively, as follows. $J_0 = I$. Given J_n , set $\beta_n = \sup\{\delta^*(J, A) : A \in \mathcal{A}, J \in [J_n]^{\omega}\}$, and choose $J \in [J_n]^{\omega}$, $A_n \in \mathcal{A}$ such that $\delta^*(J, A_n) \ge \beta_n - 2^{-n}$; as \mathcal{A} is upwards-directed, we may suppose that $A_n \supseteq A_{n-1}$ if $n \ge 1$. Let $J_{n+1} \in [J]^{\omega}$ be such that $\delta(J_{n+1}, A_n)$ is defined and equal to $\delta^*(J, A_n)$, and continue.

At the end of the induction, let $J \in [\mathbb{N}]^{\omega}$ be such that $J \setminus J_n$ is finite for every $n \in \mathbb{N}$. Observe that $\delta(J, A_n)$ is defined for every n. By (a-iii), there is a $B \subseteq \mathbb{N}$ such that $A_n \setminus B$ is finite for every n and

$$\delta^*(J, B) = \sup_{n \in \mathbb{N}} \delta^*(J, A_n) \le 1 - \eta.$$

So $\delta^*(J, C_J \setminus B) \ge \eta$ and $d^*(C_J \setminus B) > 0$. There is therefore an $A \in \mathcal{A}$ such that $0 \ne A^{\bullet} \subseteq (C_J \setminus B)^{\bullet}$. In this case, $d^*(A \cap C_J) > 0$ and $\delta^*(J, A) > 0$. Let n be such that $2^{-n} < \delta^*(J, A)$. Let $A' \in \mathcal{A}_n$ be such that $A' \supseteq A \cup A_n$. Since $d^*(A \cap A_n) \le d^*(A \cap B) = 0$, $\delta^*(J, A \cap A_n) = 0$ and

$$\delta^*(J_n, A') \ge \delta^*(J_n, A \cup A_n) \ge \delta^*(J, A \cup A_n)$$
$$= \delta(J, A_n) + \delta^*(J, A) > \delta(J_n, A_n) + 2^{-n} \ge \beta_n;$$

contradicting the definition of β_n . **XQ**

(c) Suppose that $I \in [\mathbb{N}]^{\omega}$ and that $\mathcal{D} \subseteq \mathcal{P}\mathbb{N}$ is such that $\{A^{\bullet} : A \in \mathcal{D}\}$ is order-dense in \mathfrak{Z} and $B \in \mathcal{D}$ whenever $B \subseteq A \in \mathcal{D}$. Then there are a $K \in [I]^{\omega}$ and a disjoint sequence $\langle A_n \rangle_{n \in \mathbb{N}}$ in \mathcal{D} such that $\delta(K, A_n)$ is defined for every $n \in \mathbb{N}$ and $\sum_{n=0}^{\infty} \delta(K, A_n) = 1$. **P** Choose $\langle J_n \rangle_{n \in \mathbb{N}}$, $\langle \mathcal{I}_n \rangle_{n \in \mathbb{N}}$ inductively, as follows. $J_0 = I$. Given J_n , use (b) to find $J \in [J_n]^{\omega}$ and $\mathcal{I}_n \in [\mathcal{D}]^{<\omega}$ such that $\delta^*(J, \bigcup \mathcal{I}_n) \ge 1 - 2^{-n}$; let $J_n \in [J]^{\omega}$ be such that $\delta(J_n, \bigcup \mathcal{I}_n)$ is defined and equal to $\delta^*(J, \bigcup \mathcal{I}_n)$. At the end of the induction, let $J \in [I]^{\omega}$ be such that $J \setminus J_n$ is finite for every n. Then $\delta(J, \bigcup \mathcal{I}_n)$ is defined and greater than or equal to $1 - 2^{-n}$ for every n.

Let $\langle A'_n \rangle_{n \in \mathbb{N}}$ be a sequence in \mathcal{D} running over $\bigcup_{n \in \mathbb{N}} \mathcal{I}_n$. Set $A_n = A'_n \setminus \bigcup_{i < n} A'_i$ for each n. Choose $\langle K_n \rangle_{n \in \mathbb{N}}$ such that $K_0 = J$ and $K_{n+1} \in [K_n]^{\omega}$ and $\delta(K_{n+1}, A_n)$ is defined for every n; let $K \in [J]^{\omega}$ be such that $K \setminus K_n$ is finite for every n, so that $\delta(K, A_n)$ is defined for every n. For $k \in \mathbb{N}$, there is an $n \in \mathbb{N}$ such that $\{A'_i : i \leq n\} \supseteq \mathcal{I}_k$. In this case,

$$\sum_{i=0}^{k} \delta(K, A_i) = \delta(K, \bigcup_{i \le n} A_i) = \delta(K, \bigcup_{i \le n} A'_i)$$
$$\geq \delta(K, \bigcup \mathcal{I}_k) = \delta(J, \bigcup \mathcal{I}_k) \ge 1 - 2^{-k}.$$

As k is arbitrary, $\sum_{n=0}^{\infty} \delta(K, A_m) = 1$. **Q**

(d) For $\xi < \kappa$, set

$$\mathcal{D}_{\xi} = \{A : A \subseteq \mathbb{N}, \text{ there is some } d \in D_{\xi} \text{ such that } A^{\bullet} \subseteq d\}.$$

Choose $\langle I_{\xi} \rangle_{\xi \leq \kappa}$, $\langle A_{\xi n} \rangle_{\xi < \kappa, n \in \mathbb{N}}$ as follows. $I_0 = \mathbb{N}$. Given $I_{\xi} \in [\mathbb{N}]^{\omega}$, where $\xi < \kappa$, let $I_{\xi+1}$ and $\langle A_{\xi n} \rangle_{n \in \mathbb{N}}$ be such that $I_{\xi+1}$ is an infinite subset of I_{ξ} , $\langle A_{\xi n} \rangle_{n \in \mathbb{N}}$ is a disjoint sequence in \mathcal{D}_{ξ} , $\delta(I_{\xi+1}, A_{\xi n})$ is defined for every n and $\sum_{n=0}^{\infty} \delta(I_{\xi+1}, A_{\xi n}) = 1$; this is possible by (c). Given that $\xi \leq \kappa$ is a non-zero limit ordinal and $\langle I_{\eta} \rangle_{\eta < \xi}$ is a family of infinite sets such that $I_{\eta} \setminus I_{\zeta}$ is finite whenever $\zeta \leq \eta < \xi$, then $\#(\xi) \leq \kappa < \mathfrak{m}_{\sigma-\text{linked}} \leq \mathfrak{p}$, so there is an infinite I_{ξ} such that $I_{\xi} \setminus I_{\eta}$ is finite for every $\eta < \xi$; continue.

7

At the end of the induction, setting $I = I_{\kappa}$, we have $\sum_{n=0}^{\infty} \delta(I, A_{\xi n}) = 1$ for every n.

(e) For $k \in I$ let ν_k be the uniform probability measure on L_k . Let \mathcal{F} be any non-principal ultrafilter on I, and consider the probability algebra reduced product $(\mathfrak{A}, \bar{\mu}) = \prod_{k \in I} (\mathcal{P}L_k, \nu_k) |\mathcal{F})$ (FREMLIN 02, §328²). For $A \subseteq \mathbb{N}$, set $\theta(A) = \langle A \cap L_k \rangle_{k \in I}^{\bullet} \in \mathfrak{A}$ (see the construction in FREMLIN 02, 328A). Then θ is a surjective Boolean homomorphism, and

$$\bar{\mu}\theta(A) = \lim_{k \to \mathcal{F}} \nu_k(A \cap L_k) = \delta(I, A)$$

whenever $\delta(I, A)$ is defined. For $\xi < \kappa$ and $n \in \mathbb{N}$, set $a_{n\xi} = \theta(A_{\xi n})$. Then $\langle a_{\xi n} \rangle_{n \in \mathbb{N}}$ is disjoint and $\sum_{n=0}^{\infty} \bar{\mu} a_{\xi n} = 1$. Set $\tilde{a} = \theta(\tilde{A})$, so that $\bar{\mu}\tilde{a} \ge \epsilon$ and $\tilde{a} \ne 0$.

(f)(i) There is a family $\langle n_{\xi} \rangle_{\xi < \kappa}$ in \mathbb{N} such that $\{\tilde{a}\} \cup \{a_{\xi n_{\xi}} : \xi < \kappa\}$ is centered in \mathfrak{A} . **P** For each $\xi < \kappa$, the set $E_{\xi} = \{e : e \in \mathfrak{A}^+, e \subseteq a_{\xi n} \text{ for some } n\}$ is coinitial with \mathfrak{A}^+ . Now the downwards Martin number of \mathfrak{A}^+ is $\mathfrak{m}(\mathfrak{A}) \geq \mathfrak{m}_{\sigma\text{-linked}}$ (FREMLIN 08?, 524N), so there must be a downwards-directed set $R \subseteq \mathfrak{A}^+$ containing \tilde{a} and meeting every E_{ξ} (FREMLIN 08?, 517B, inverted). In this case, there is for each $\xi < \kappa$ a unique n_{ξ} such that $a_{\xi n_{\xi}}$ includes some member of R, and $\{\tilde{a}\} \cup \{a_{\xi n_{\xi}} : \xi < \kappa\}$ is centered. **Q**

(ii) For each $\xi < \kappa$, let $d_{\xi} \in D_{\xi}$ be such that $A_{\xi n_{\xi}}^{\bullet} \subseteq d_{\xi}$. Then $\{\tilde{d}\} \cup \{d_{\xi} : \xi < \kappa\}$ is centered in \mathfrak{Z} . **P** If K is a finite subset of κ , set $A = \tilde{A} \cap \bigcap_{\xi \in K} A_{\xi n_{\xi}}$. Then $\theta(A) = \tilde{a} \cap \inf_{\xi \in K} a_{\xi n_{\xi}}$ is non-zero, so

$$0 < \bar{\mu}\theta(A) = \lim_{k \to \mathcal{F}} \frac{\#(A \cap L_k)}{\#(L_k)} \le \delta^*(I, A)$$

and $d^*(A) > 0$, that is,

$$0 \neq A^{\bullet} = \tilde{d} \cap \inf_{\xi \in K} A^{\bullet}_{\xi n_{\xi}} \subseteq \tilde{d} \cap \inf_{\xi \in K} d_{\xi}. \mathbf{Q}$$

(g) Thus we have a linked set $\{\tilde{d}\} \cup \{d_{\xi} : \xi < \kappa\}$ in \mathfrak{Z} containing \tilde{d} and meeting every D_{ξ} . As \tilde{d} and $\langle D_{\xi} \rangle_{\xi < \kappa}$ are arbitrary, $\mathfrak{m}(\mathfrak{Z}) \geq \mathfrak{m}_{\sigma\text{-linked}}$.

3E Proposition The Freese-Nation number $FN(\mathfrak{Z})$ of \mathfrak{Z} is at least $FN(\mathcal{PN})$ and at most $max(FN^*(\mathcal{PN}), (cf \mathcal{N})^+)$, where $FN^*(\mathcal{PN})$ is the regular Freese-Nation number of \mathcal{PN} , and \mathcal{N} is the Lebesgue null ideal.

proof (a) As $\mathfrak{B}_{\mathfrak{c}}$ is regularly embedded in \mathfrak{Z} , $FN(\mathfrak{Z}) \geq FN(\mathfrak{B}_{\mathfrak{c}}) = FN(\mathcal{PN})$ (FREMLIN 08?, 518C and 524N).

(b) Set $\kappa = \max(\mathrm{FN}^*(\mathcal{PN}), (\mathrm{cf}\mathcal{N})^+)$. Recall that $\mathrm{cf}\mathcal{Z} = \mathrm{cf}\mathcal{N}$ (FREMLIN 08?, 526Ha); let $\mathcal{A} \subseteq \mathcal{Z}$ be a cofinal family of cardinal $\mathrm{cf}\mathcal{N} < \kappa$, containing \emptyset . Let $f : \mathcal{PN} \to [\mathcal{PN}]^{<\kappa}$ be a Freese-Nation function. For each $a \in \mathfrak{Z}$, let $I_a \subseteq \mathbb{N}$ be such that $I_a^{\bullet} = a$, and set

$$\mathbf{v}(a) = \bigcup_{A \in \mathcal{A}} \{ I^{\bullet} : I \in f(I_a \cup A) \}$$

Because κ is regular, $\#(g(a)) < \kappa$. If $a, b \in \mathfrak{Z}$ and $a \subseteq b$, there is an $A \in \mathcal{A}$ such that $I_a \subseteq I_b \cup A$. Now there is an $I \in f(I_a) \cap f(I_b \cup A)$ such that $I_a \subseteq I \subseteq I_b \cup A$, and $I^{\bullet} \in g(a) \cap g(b)$, $a \subseteq I^{\bullet} \subseteq b$. Thus $g : \mathfrak{Z} \to [\mathfrak{Z}]^{<\kappa}$ is a Freese-Nation function, and $\operatorname{FN}(\mathfrak{Z}) \leq \kappa$.

3F Theorem The Dedekind completion $\hat{\mathfrak{Z}}$ of \mathfrak{Z} and the Dedekind completion $(\mathcal{P}\mathbb{N}/[\mathbb{N}]^{<\omega})\widehat{\otimes}\mathfrak{B}_{\mathfrak{c}}$ of the free product $(\mathcal{P}\mathbb{N}/[\mathbb{N}]^{<\omega})\otimes\mathfrak{B}_{\mathfrak{c}}$ are isomorphic.

proof FARAH 06, Theorem 1.3, or FREMLIN 08?, 556S.

3G Lemma Every member of $(\mathcal{PN}/[\mathbb{N}]^{<\omega})\widehat{\otimes}\mathfrak{B}_{\mathfrak{c}}$ is expressible as $\sup_{i\in I} a_i \otimes b_i$ where $\langle a_i \rangle_{i\in I}$ is a partition of unity in $\mathcal{PN}/[\mathbb{N}]^{<\omega}$ and $b_i \in \mathfrak{B}_{\mathfrak{c}}$ for each $i \in I$.

proof

3H Proposition $\tau(\widehat{\mathfrak{Z}}) \geq \operatorname{wdistr}(\mathcal{PN}/[\mathbb{N}]^{<\omega}).$

proof

²Later editions only; see http://www.essex.ac.uk/maths/people/fremlin/cont32.htm.

4 Homogeneity

4A Corollary $\widehat{\mathfrak{Z}}$ is homogeneous and Aut $(\widehat{\mathfrak{Z}})$ is simple.

proof $\mathcal{PN}/[\mathbb{N}]^{<\omega}$ and $\mathfrak{B}_{\mathfrak{c}}$ are homogeneous, so their free product also is (FREMLIN 02, 316Q). The Dedekind completion of a homogeneous Boolean algebra is homogeneous (FREMLIN 02, 316P). So $\hat{\mathfrak{Z}}$ is homogeneous, by Theorem 3F. Now FREMLIN 02, 382S tells us that Aut \mathfrak{Z} is simple.

4B Theorem [CH] \mathfrak{Z} is homogeneous and Aut \mathfrak{Z} is simple.

proof If the continuum hypothesis is true, \mathfrak{Z} is homogeneous (JUST & KRAWCZYK 84, FARAH 03, 8.2). Once again FREMLIN 02, 382S tells us that Aut \mathfrak{Z} is simple.

4C Theorem [OCA + $\mathfrak{m} > \omega_1$] (a) Aut \mathfrak{Z} , regarded as a subgroup of Aut \mathfrak{Z} , is not ergodic.

- (b) **3** is not homogeneous.
- (c) Aut 3 is not simple.

proof (a)(i) In the terminology of FARAH 00 or FREMLIN N05, $\mathcal{Z} = \text{Exh}(\nu)$ where ν is the entirely nonpathological lower semi-continuous submeasure on \mathbb{N} defined by setting $\nu a = \sup_{n \ge 1} \frac{1}{n} \#(a \cap n)$ for $a \subseteq \mathbb{N}$. So by FARAH 00, 3.4.1-3.4.2 or FREMLIN N05, 5H, every Boolean automorphism $\pi : \mathfrak{Z} \to \mathfrak{Z}$ is representable by a bijective function $h : A \to B$, where $A, B \subseteq \mathbb{N}$ are cofinite, in the sense that $\pi(I^{\bullet}) = (h^{-1}[I])^{\bullet}$ for every $I \subseteq \mathbb{N}$.

(ii) For $n \in \mathbb{N}$ set $M_n = \{i : 2^{n^2} \le i < 2^{n^2+1}\}$; note that $\lim_{n \to \infty} \#(M_n) / \sum_{m < n} \#(M_m) = 0$. Set $I = \bigcup_{n \in \mathbb{N}} M_{2n}, J = \bigcup_{n \in \mathbb{N}} M_{2n+1}, a = I^{\bullet} \in \mathfrak{Z}, b = J^{\bullet}$. Then $d^*(I), d^*(J)$ are both $\frac{1}{2}$ so a and b are non-zero. If $\pi : \mathfrak{Z} \to \mathfrak{Z}$ is a Boolean automorphism such that $b \cap \pi a \neq 0$, let $h : A \to B$ represent π in the sense of (a) above. Then $b \cap \pi a = (J \cap h^{-1}[I])^{\bullet}$.

Set

$$I_0 = \{i : i \in I \cap h[J], h^{-1}(i) < i\}, \quad J_0 = \{i : i \in J \cap h^{-1}[I], h(i) < i\}.$$

If $n \in \mathbb{N}$ and $i \in I_0 \cap M_{2n}$, then $h^{-1}(i) \in \bigcup_{m < n} M_{2m+1}$ so $\#(I_0 \cap M_{2n}) \leq \sum_{m < 2n} \#(M_m)$. Accordingly

$$d^*(I_0) \le \limsup_{n \to \infty} \frac{1}{\#(M_{2n})} \#(B \cap h[J] \cap M_{2n}) = 0.$$

Similarly, $d^*(J_0) = 0$. But now observe that

$$(J \setminus J_0) \cap h^{-1}[I \setminus I_0] = \emptyset$$

 \mathbf{SO}

$$b \cap \pi a = (J \setminus J_0)^{\bullet} \cap (h^{-1}[I \setminus I_0])^{\bullet} = 0.$$

(iii) So if we take d to be the supremum in $\hat{\mathfrak{Z}}$ of $\{\pi a : \pi \in \operatorname{Aut} \mathfrak{Z}\}\)$, we shall have $\hat{\pi}d = d$ for every $\pi \in \operatorname{Aut} \mathfrak{Z}$, writing $\hat{\pi} \in \operatorname{Aut} \hat{\mathfrak{Z}}\)$ for the automorphism of $\hat{\mathfrak{Z}}\)$ extending π ; while d is neither 0 nor 1, since $a \subseteq d$ and $d \cap b = 0$. Accordingly Aut \mathfrak{Z} does not act ergodically on $\hat{\mathfrak{Z}}$.

(b) Taking a and b from (a), at least one of the principal ideals \mathfrak{Z}_a , \mathfrak{Z}_b , $\mathfrak{Z}_{1\setminus a}$ and $\mathfrak{Z}_{1\setminus b}$ is not isomorphic to \mathfrak{Z} .

(c) Taking a from (a), let $I \triangleleft \mathfrak{Z}$ be the ideal generated by $\{\pi a : \pi \in \operatorname{Aut} \mathfrak{Z}\}$. Then I is a proper ideal. Let H be the set of those $\pi \in \operatorname{Aut} \mathfrak{Z}$ supported by members of I (definition: FREMLIN 02, 381B). Then $H \triangleleft \operatorname{Aut} \mathfrak{Z}$, by FREMLIN 02, 381Eb, 381Eh and 381Ej; and H is non-trivial by Proposition 2H.

4D Proposition Let *D* be the set of those $d \in \mathfrak{Z}^+$ such that there are regular embeddings both from \mathfrak{Z} to the principal ideal \mathfrak{Z}_d and from \mathfrak{Z}_d to \mathfrak{Z} . Then *D* is order-dense in \mathfrak{Z} .

proof (a) Let $a \in \mathfrak{Z}^+$; express a as A^{\bullet} where $A \in \mathcal{P}\mathbb{N} \setminus \mathcal{Z}$. Set $I_n = \{i : 2^n \leq i < 2^{n+1}\}$ for $n \in \mathbb{N}$. Then $\limsup_{n \to \infty} 2^{-n} \# (A \cap I_n) > 0$. Let $\epsilon > 0$ be such that $\{n : \# (A \cap I_n) \geq 2^n \epsilon\}$ is infinite; let $\langle k(n) \rangle_{n \in \mathbb{N}}$ be a strictly increasing sequence such that

10

$$\#(A \cap I_{k(n)}) \ge 2^{k(n)} \epsilon \ge 2^{n+1}$$

for every *n*. For each $n \in \mathbb{N}$, let $\langle A_{ni} \rangle_{i < 2^n}$ be a disjoint family of subsets of $A \cap I_{k(n)}$ such that $\#(A_{ni}) = \lfloor 2^{k(n)-n} \epsilon \rfloor \ge 2^{k(n)-n-1} \epsilon$ for each $i < 2^n$. Set $E = \bigcup_{n \in \mathbb{N}} \bigcup_{i < 2^n} A_{ni}$ and $e = E^{\bullet} \subseteq a$. Then $e \neq 0$ in \mathfrak{Z} .

(b) Define $\phi : \mathcal{PN} \to \mathcal{PE}$ by setting

$$\phi I = \bigcup_{n \in \mathbb{N}} \bigcup \{ A_{ni} : i < 2^n, \, 2^n + i \in I \}$$

for $I \subseteq \mathbb{N}$. Then ϕ is a Boolean homomorphism, and $\phi I \in \mathcal{Z}$ whenever $I \in \mathcal{Z}$. **P**

$$2^{-k(n)} \# (I_{k(n)} \cap \phi I) = 2^{-k(n)} \sum_{i \in I \cap I_n} \# (A_{n,i-2^n})$$
$$\leq 2^{-k(n)} \# (I \cap I_n) \cdot 2^{k(n)-n} \epsilon = 2^{-n} \epsilon \# (I \cap I_n) \to 0$$

as $n \to \infty$; and of course $\#(I_j \cap \phi I) = 0$ if $j \neq k(n)$ for every n. **Q** So we have a Boolean homomorphism $\pi : \mathfrak{Z} \to \mathfrak{Z}_e$ defined by setting $\pi I^{\bullet} = (\phi I)^{\bullet}$ for every $I \subseteq \mathbb{N}$.

 π is injective. **P** If $I \in \mathcal{PN} \setminus \mathcal{Z}$, then the same formulae give us

$$\begin{split} \limsup_{n \to \infty} 2^{-k(n)} \#(I_{k(n)} \cap \phi I) &= \limsup_{n \to \infty} 2^{-k(n)} \sum_{i \in I \cap I_n} \#(A_{n,i-2^n}) \\ &\geq \limsup_{n \to \infty} 2^{-k(n)} \#(I \cap I_n) \cdot 2^{k(n)-n-1} \epsilon \\ &= 2\epsilon \limsup_{n \to \infty} 2^{-n} \#(I \cap I_n) > 0 \end{split}$$

and $\phi I \notin \mathcal{Z}$. **Q**

 π is a regular embedding. **P?** Otherwise, there is a partition C of unity in \mathfrak{Z} such that d is not the supremum of $\pi[C]$ in \mathfrak{Z}_e . Let $B \subseteq E$ be such that $B \notin \mathbb{Z}$ and $B^{\bullet} \cap \pi c = 0$ for every $c \in C$; let $\delta > 0$ be such that $L = \{n : \#(B \cap I_{k(n)}) \ge 2^{k(n)}\delta\}$ is infinite. For each $n \in L$, set $K_n = \{i : i < 2^n, \#(B \cap A_{ni}) \ge 2^{k(n)-n-1}\delta\}$; then $\#(K_n) \ge 2^n \cdot \frac{\delta}{4\epsilon}$. So $J = \bigcup_{n \in \mathbb{N}} (2^n + K_n) \notin \mathbb{Z}$, and there is a $c \in C$ such that $J^{\bullet} \cap c \neq 0$. Let $\tilde{J} \subseteq J$ be such that $\tilde{J}^{\bullet} = J^{\bullet} \cap c$. Then there is an $\eta > 0$ such that $\tilde{L} = \{n : \#(\tilde{J} \cap I_n) \ge 2^n \eta\}$ is infinite. If $n \in L$, then

$$#(I_{k(n)} \cap B \cap \phi \tilde{J}) \ge 2^{k(n)-n-1}\delta \cdot #(\tilde{J} \cap I_n) \ge 2^{k(n)-1}\delta\eta.$$

But this means that $B \cap \phi \tilde{J} \notin \mathcal{Z}$ and $B^{\bullet} \cap c \neq 0$. **XQ**

(c)(i) Set $m(n) = \#(E \cap I_{k(n)}) \ge 2^{k(n)-1}\epsilon$ for each n, and let $\langle n_j \rangle_{j \in \mathbb{N}}$ be an unbounded monotonic slowly increasing sequence in \mathbb{N} such that $n_0 = 0$, $n_{j+1} \le n_j + 1$ for every j and

$$\lim_{j \to \infty} \frac{m(n_j)}{\sum_{i < j} m(n_i)} = \lim_{n \to \infty} \frac{\sum_{n_i < n} n_i}{\sum_{n_i = n} n_i} = 0.$$

Let $\langle M_j \rangle_{j \in \mathbb{N}}$ be the partition of \mathbb{N} such that $\#(M_j) = m(n_j)$ and $\max M_j < \min M_{j+1}$ for each j. For each j, let $f_j : M_j \to E \cap I_{k(n_j)}$ be a bijection, and set $f = \bigcup_{j \in \mathbb{N}} f_j$, so that $f : \mathbb{N} \to E$ is a surjection.

For $n \in \mathbb{N}$, set $\tilde{M}_n = \bigcup_{n_j=n} M_j$, $r_n = \min \tilde{M}_n$; then $\#(\tilde{M}_n) = r_{n+1} - r_n$ and $\lim_{n \to \infty} \frac{r_n}{r_{n+1}} = 0$. Note also that $2^{k(n)} \leq \frac{2m(n)}{\epsilon}$ for every n, while $\lim_{n \to \infty} \frac{m(n)}{r_n} = 0$, so $\lim_{n \to \infty} \frac{2^{k(n)}}{r_n} = 0$.

(ii) If $I \subseteq E$ and $I \in \mathbb{Z}$, then $f^{-1}[I] \in \mathbb{Z}$.

$$\limsup_{j \to \infty} \frac{\#(f^{-1}[I])}{\#(M_j)} = \limsup_{j \to \infty} \frac{\#(I \cap I_{k(n_j)})}{m(n_j)}$$
$$\leq \limsup_{j \to \infty} 2^{-k(n_j)} \#(I \cap I_{k(n_j)}) \cdot \limsup_{j \to \infty} \frac{2^{k(n_j)}}{m(n_j)} \leq 0 \cdot \frac{2}{\epsilon} = 0.$$

As $\lim_{j\to\infty} \frac{\#(M_j)}{\min M_j} = 0$, $f^{-1}[I] \in \mathbb{Z}$. **Q** So we have a Boolean homomorphism $\theta : \mathfrak{Z}_e \to \mathfrak{Z}$ defined by saying that $\theta(I^{\bullet}) = (f^{-1}[I])^{\bullet}$ for every $I \subseteq E$.

(iii) If $I \subseteq E$ and $f^{-1}[I] \in \mathbb{Z}$, then $I \in \mathbb{Z}$.

$$\lim_{n \to \infty} \sup 2^{-k(n)} \# (I \cap I_{k(n)}) = \limsup_{j \to \infty} 2^{-k(n_j)} \# (I \cap I_{k(n_j)})$$
$$\leq \limsup_{j \to \infty} \frac{\# (I \cap I_{k(n_j)})}{m(n_j)} = \limsup_{n \to \infty} \frac{\# (f^{-1}[I] \cap \tilde{M}_n)}{\# (\tilde{M}_n)}$$
$$\leq \limsup_{n \to \infty} \frac{\# (f^{-1}[I] \cap r_{n+1})}{r_{n+1}} \cdot \frac{r_{n+1}}{r_{n+1} - r_n}$$
$$\leq d^* (f^{-1}[I]) \cdot 1 = 0. \mathbf{Q}$$

So θ embeds \mathfrak{Z}_e in \mathfrak{Z} .

(iv) Let \mathcal{J} be the family of non-empty sets J of the form $\bigcup_{i \in K} M_i$ where $n_i = n_j$ for all $i, j \in K$. We need to know that if $B \subseteq \mathbb{N}$, then there are infinitely many $J \in \mathcal{J}$ such that $\#(B \cap J) \ge \frac{1}{5}d^*(B) \cdot (1 + \max J)$. **P** Set $\delta = \frac{1}{5}d^*(B)$. We can suppose that $\delta > 0$. Take any $n^* \in \mathbb{N}$ such that $r_n \le \delta r_{n+1}, 2^{k(n)} \le \delta r_n$ for every $n \ge n^*$. Then there is an $m \ge r_{n^*+1}$ such that $\#(B \cap m) \ge 4\delta m$. Let $n > n^*$ be such that $m \in \tilde{M}_n$. **case 1** If $\#(B \cap r_n) \ge \frac{1}{2}\#(B \cap m)$, set $J = \tilde{M}_{n-1}$. Then

$$#(B \cap J) \ge 2\delta m - r_{n-1} \ge 2\delta r_n - r_{n-1} \ge \delta r_n = \delta(1 + \max J).$$

case 2 Otherwise, set $J = \bigcup \{M_j : n_j = n, \max M_j < m\}$. Then

$$\#(B \cap J) \ge \#(B \cap m) - \#(B \cap r_n) - 2^{k(n)} \ge 2\delta m - 2^{k(n)} \ge \delta m \ge \delta(1 + \max J)$$

As n^* is arbitrary, at least one of these happens infinitely often. **Q**

(v) θ is a regular embedding. **P?** Otherwise, there are a partition C of unity in \mathfrak{Z}_e and a non-zero $b \in \mathfrak{Z}$ such that $b \cap \theta c = 0$ for every $c \in C$. Express b as B^{\bullet} where $B \in \mathcal{P}\mathbb{N} \setminus \mathcal{Z}$. By (iv), there are a $\delta > 0$ and an infinite sequence $\langle J_l \rangle_{l \in \mathbb{N}}$ of distinct members of \mathcal{J} such that $\#(B \cap J_l) \geq \delta(1 + \max J_l)$. For each l there is an p(l) such that $J_l \subseteq \tilde{M}_{p(l)}$; taking a subsequence if necessary, we may suppose that $\langle p(l) \rangle_{l \in \mathbb{N}}$ is strictly increasing. For each l, let K_l be such that $J_l = \bigcup_{j \in K_l} M_j$; we have $n_j = p(l)$ for each $j \in K_l$; set $s_l = \#(K_l)$, so that $\#(J_l) = 2^{k(p(l))} s_l$ and $f[J_l] \subseteq E \cap I_{k(p(l))}$.

For $l \in \mathbb{N}$, set

$$V_l = \{i : \#(\{j : j \in B \cap J_l, f(j) = i\}) \ge \frac{1}{2}\delta s_l\} \subseteq E \cap I_{k(p(l))}.$$

Since f is injective on M_j for each $j \in K_l$,

$$2^{k(p(l))}s_l\delta = \delta \#(J_l) \le \delta(1 + \max J_l) \le \#(B \cap J_l) \le s_l \#(V_l) + 2^{k(p(l))-1}\delta s_l$$

and $\#(V_l) \geq 2^{k(p(l))}\delta$. Accordingly $V = \bigcup_{l \in \mathbb{N}} V_l$ does not belong to \mathcal{Z} and there is a $c \in C$ such that $V^{\bullet} \cap c \neq 0$. Let $\tilde{V} \subseteq V$ be such that $\tilde{V}^{\bullet} = V^{\bullet} \cap c$. Then there is an $\eta > 0$ such that $\tilde{L} = \{l : \#(\tilde{V} \cap I_{k(p(l))}) \geq 2^{k(p(l))}\eta\}$ is infinite. For $l \in \tilde{L}$,

$$\begin{aligned} \#(B \cap f^{-1}[\tilde{V}] \cap (1 + \max J_l)) &\geq \#(B \cap f^{-1}[\tilde{V}] \cap J_l) = \#(B \cap f^{-1}[\tilde{V} \cap I_{k(p(l))}]) \\ &\geq \frac{1}{2} \delta s_l \#(\tilde{V} \cap I_{k(p(l))}) \geq \frac{1}{2} \delta s_l \cdot 2^{k(p(l))} \eta \\ &\geq \frac{1}{2} \delta \eta \#(J_l) \geq \frac{1}{2} \delta \eta \#(B \cap J_l) \geq \frac{1}{2} \delta^2 \eta (1 + \max J_l). \end{aligned}$$

But this means that $B \cap f^{-1}[\tilde{V}] \notin \mathbb{Z}$ and $b \cap \theta c \neq 0$; which is impossible. **XQ**

(vi) Thus we have our regular embeddings in both directions, and $e \in D$, while $0 \neq e \subseteq a$. As a is arbitrary, D is order-dense, as claimed.

5 Problems

5A In ZFC, can we find a non-decreasing family $\langle a_{\xi} \rangle_{\xi < \kappa}$ in \mathfrak{Z} such that $\sup_{\xi < \kappa} \bar{d}^*(a_{\xi}) < \inf_{b \in B} \bar{d}^*(b)$, where *B* is the set of upper bounds of $\{a_{\xi} : \xi < \kappa\}$?

D.H.FREMLIN

Can it be done with $\kappa < \mathfrak{m}$?

[By 1Cb, this cannot be done with $\kappa = \omega$. Subject to CH, 1F(b-ii) gives such an example with $\kappa = \mathfrak{c} = \omega_1$.]

5B In ZFC, can we find a non-increasing family $\langle a_{\xi} \rangle_{\xi < \kappa}$ in \mathfrak{Z} such that $\inf_{\xi < \kappa} \bar{d}^*(a_{\xi}) > \sup_{b \in B} \bar{d}^*(b)$, where *B* is the set of lower bounds of $\{a_{\xi} : \xi < \kappa\}$?

[By 1Ca, this cannot be done with $\kappa < \mathfrak{p}$. Subject to CH, 1F(b-i) gives such an example with $\kappa = \mathfrak{c} = \omega_1$.]

5C Can $\tau(\mathfrak{Z})$ be less than \mathfrak{c} ?

References

Farah I. [00] Analytic Quotients. Mem. Amer. Math. Soc. 148 (2000).

Farah I. [03] 'How many algebras $\mathcal{P}(\mathbb{N})/\mathcal{I}$ are there?', Illinois J. Math. 46 (2003) 999-1033; http://www.math.yorku.ca/~ifarah/preprints.html.

Farah I. [06] 'Analytic Hausdorff gaps II: the density zero ideal', Israel J. Math. 154 (2006) 235-246.

Fremlin D.H. [84] Consequences of Martin's Axiom. Cambridge U.P., 1984.

Fremlin D.H. [02] Measure Theory, Vol. 3: Measure Algebras. Torres Fremlin, 2002.

Fremlin D.H. [03] Measure Theory, Vol. 4: Topological Measure Spaces. Torres Fremlin, 2003.

Fremlin D.H. [08?] Measure Theory, Vol. 5: Set-theoretic Measure Theory, in preparation. Draft available via http://www.essex.ac.uk/maths/staff/fremlin/mt.htm. Note that paragraph references are subject to fluctuation.

Fremlin D.H. [n05] 'Notes on Farah's "Analytic Quotients"', note of 19.7.05 (http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm).

Just W. & Krawczyk A. [84] 'On certain Boolean algebras $\mathcal{P}(\omega)/I$ ', Trans. Amer. Math. Soc. 285 (1984) 411-429.

Koppelberg S. [89] General Theory of Boolean Algebras, vol. 1 of MONK 89.

Monk J.D. [89] (ed.) Handbook of Boolean Algebra. North-Holland, 1989.