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The density algebra
D.H.FREMLIN

University of Essex, Colchester, England

This note extends remarks in FREMLIN 03, §491.

1 Order-continuity properties of density

1A The context (For general definitions, see FREMLIN 02, FREMLIN 03 and FREMLIN 08?.) For
A C N let d*(A) = limsup,,_, %#(A N n) be its upper asymptotic density. Write Z for the density ideal
{A : d*(A) = 0}, 3 for the density algebra PN/Z. We have a strictly positive submeasure d* on 3 defined
by setting d*(A*) = d*(A) for A C N (FREMLIN 03, 4911I).

1B More definitions (a) A Boolean algebra 2 is weakly (), k)-distributive if whenever (A¢)e<y is
a family of partitions of unity in 2, all of size at most x, then there is a partition C' of unity in 2 such that
{a:a € A¢, anc # 0} is finite for every ¢ € C' and £ < A (KOPPELBERG 89, 14.23).

1C Theorem (a) Suppose that A C 3 is non-empty and downwards-directed, and #(A) < p. Then A
has a lower bound ¢ such that d*(c) = inf,c 4 d*(a).
(b) If {an)nen is a non-decreasing sequence in 3, there is an a € 3 such that a, C a for every n € N and

d*(a) = SUp,en d*(ay).
(c) d* : 3 — [0,1] is order-continuous on the left, in the sense that if A C 3 is non-empty and upwards-
directed and has supremum b, then d*(b) = sup,¢ 4 d*(a).

proof (a) Let A C PN be a downwards-directed set, of cardinal less than p, such that A = {I*: [ € A}.
Set v = infuea d*(a) = infre 4 d*(I). Let P be the family of triples (K, n,I) where K Cn € N and I € A;
say that (K,n,I) < (K',n/,I')ifn<n/, K=K Nn, I’ CIand K'\I Cn. Then < is a partial order
on P. If (K,n,I) € P and J € A is included in I, then (K,n,I) < (K,n,J); so P is o-centered upwards.
If I € Athen Q; = {(K,n,I') : I' C I} is cofinal with P. If m € N then @, = {(K,n,I) : n > m,
%#(K Nn) >~ —2"™} is cofinal with P. So there is an upwards-directed R C P meeting every @ and
every Q' . Setting J = | J{K : (K,n,I) € R}, c = J*, d*J >~ and J\ I is finite for every I € A, so d*c =~
and ¢ C a for every a € A.

(b) Let (I,)nen be a non-decreasing sequence in PN such that a, = I, for every n, and set v =
sup,en d*(an) = sup,en d*(I,). Let (k,)nen be a strictly increasing sequence such that #(I, N'm) <
(v +27")m whenever m > ky, and set I = {J,,cy In N kny1 \ kn, ¢ = I°*. Then I, \ I is finite so a, C c for
every n. If k, <m < kny1, #UINm) < #(I, Nm) < (y+27")m, so d*(I) < v and d*(c) < .

(c) ? Suppose, if possible, otherwise.

(i) Set v = d*(b), v/ = sup,e4d*(a) and € = (y —7') > 0. Let J C N be such that J* = b, and
set A={I:1CN,I* e A}, so that A is upwards-directed. Let (ny)ren be a sequence in N such that
N1 > knyg and #(J Nng) > (v — €)ng, for every k. Set nj = |eny |, so that #(J Nng \ ny,) > (v — 2€)ny
for every k, limy_, oo Z—;“ =€ and limy_, nn—k =0. For I CN, K € [N]“ set

k k41

. 1 . 1
B(K,I) =limsup,_, n—k#(I Nng \ ng,) = lim, SUPReK\n n—k#(f Nng \ n);

for K € [N]¥, set a(K) = supye4 B(K, I).

(ii) Choose (K, )ren, (I)ren inductively, as follows. Ko = N. Given K., let I, € A be such that
B(K,, I.) > a(K,) —27"; as A is upwards-directed, we can arrange that I. O I,,_1 if > 0. Given K, and
I, set

Koy ={k:ke K, #(I, Nng \n},) > a(K,) —27"},
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so that K. C K, is infinite and the induction continues.

(iii) Looking back at the proof of (b), we see that there is an L C N such that I, \ L is finite for every
r and d*(L) < sup,cyd*(I;) <+'. Now we can find a strictly increasing sequence (k(r))ren such that

k‘(?") € Kr—i-l) #(L N nk(r)) < (7/ + €)nk(r)
for every r € N. Set C' = (J \ L) N U, en(nx(r) \n;C(T)). Then, for each r,

#(C Nngy) = (v = 260050y — (V + )Nir) = Mgy
and d*(C) > 0. As C C J, we have 0 # C* C b. There must therefore be an a € A such that anC* # 0,
and an I € A such that d*(C'N1I) > 0;set D =CnNI andn=1d*(D) > 0.

(iv) For every ro € N there is an r > ro such that #(D N 1) \n;(rﬂ)) > 2nengr41)- B We may
suppose that rq is so large that an_l > ny and 317n§€+1 —ny > 2neng41 for every k > k(rg). Then there is a
least n > ny(r)41 such that #(D Nn) > 3nn. Let r > ro be such that ny,y <n < ngyry. As D C C does
not meet n;c(rﬂ) \ N(ry, 1> n;c(rﬂ). Now

#(D N ng(ry1) \ Mrgny) = #(D N 0) — nggry
> 377n;€(r+1) — Ng(r41)—1 = 27767”L1c(7~+1)~ Q

(v) Let s € N be such that 27° < ne. Then B(Ks, DUI,) > a(K,). P Given rg € N, let r; > max(s, 7o)
be such that I, \ L C nﬁﬁ(m). Then there is an 7 > ry such that #(D N ng, \n;c(r)) > 2neny(y. On the
other hand, k(r) € Kry1 C Kop1 50 #(Ls Mgy \ 1) 2 a(Ks) —27% and as DN L =0, DN I\ ny,y is
empty. We therefore have k(r) € K, and

#(D U L) Mgy \ i) = #(D N gy \ ) + F#(Ls 0 Mgy \ 1)
> 2neng ) + ((Ks) = 27 %) gy = (a(Ks) +ne)niy)-
Since this happens for infinitely many r, S(Ks, D U 1) > oK) + ne. Q
However, there must be an I’ € A including I, U I, so that 5(K,,I') > B(Ks, DU I;) > a(K;); contra-

dicting the definition of a(K). X
This contradiction proves the result.

1D Proposition 3 is weakly (o, co)-distributive.
proof Let (4,)nen be a sequence of partitions of unity in 3. For each n € N let AY be
{b:be€3, {a:ac A, anb# 0} is finite},

so that A7, is an order-dense ideal of 3. Then [, .y A;, is order-dense. B Suppose that b € 3 is non-zero.
Choose (bp)nen inductively, as follows. by = b. Given that d*(b,) > 1d*(b), A% N[0,b,] is upwards-directed
and has supremum b,,; by 1Cc, there is a b, € A% N [0,b,] such that d*(b,41) > $d*(b). Continue.

At the end of the induction, 1Ca tells us that there is an a € 3 such that a C b,, for every n and cZ*(a) > 0.
NowO0#acbandac(),n4) Q

There is therefore a partition C' of unity in 3 included in (1, oy A5, that is to say, if c € C' and n € N,
then ¢ meets only finitely many members of A,. As (A,)nen is arbitrary, 3 is weakly (o, co)-distributive
(FREMLIN 02, 316H).

1E Corollary The regular open algebra of R cannot be regularly embedded in 3.
proof RO(R) is not weakly (o, c0)-distributive (FREMLIN 02, 316J).

1F Examples (a)(i) There is a downwards-directed set A C 3 such that inf A = 0 and d*(a) = 1 for
every a € A.
(ii) There are families (a¢)¢cw,, (Ce)e<w, in 3 such that a, C ce whenever n < § < wy, d*(ce) < & for
every & < wy, but d*(¢) = 1 whenever ¢ € 3 and {€ : a¢ C ¢} is uncountable.
(b) Suppose that ¢ = wy.
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(i) There is a non-increasing family (c¢)e<y, in 3, with infimum 0, such that d*(c¢) = 1 for every &.
(ii) There is a non-decreasing family (c¢)e<q, in 3 such that d*(c¢) < 3 for every &, but d*(a) = 1 for
every upper bound a of {c¢ : £ < w1}

proof (a)(i) Set K,, = {2"(2m+1) : m € N}, I, = Uk, [F, (k+ 1!, ¢ = I3; then (¢, )nen is disjoint and
d*(cp) = 1 for every n. Set A ={a:a € 3, ¢, C afor all but finitely many n}; then A is downwards-directed,
inf A =0 and d*(a) = 0 for every a € A.

(ii) (@) For ¢ < wy, choose fe € NN, I, C N, I{ C I¢ as follows. The inductive hypothesis will be that
I, is infinite and #(I,, Nn?) < n for every n € N and n < &, and that I,, N I is finite whenever ( < n < &.
For the inductive step to &, enumerate & as (60(§,1));<4(¢). Choose f¢(i) inductively such that

feli) > 2,
fe(i) & Iy ;) whenever j < min(i, #(€)),
ifi < #(ﬁ) then fg(l) S 19(5,2’)-

Set Ig = fg[N],

I ={fe(i) i €N, i < #(E), feli) & Ije -

(B) For n € N, set
Lin)={i:n!'<i<(n+1),iiseven}, L'(n)={i:n!<i<(n+1)!,1isodd}.
For & < wy set
Ae=U{L(n) :ne IJUU{L, :ne I\ I{}, ac=A;.

(y) If K C w; is finite, then J*(supgeK ag) < 1. P Set A = Uger Ae- There is a k € N such
that Ie N1, C k for all distinct {, n € K. For n > k, AN |[nl, (n+1)![ is either L,, or L;, or empty, so
d*(supgex ag) = d*(A) is at most 5. Q

By (b), it follows that for each & < w; there is a ¢¢ € 3 such that a, C ¢ for every n < & and d*(c) < %

(6) Now suppose that ¢ € 3 is such that D = {¢ : a¢ C ¢} is uncountable. Let C' C N be such that
¢ = C"*. Take any € > 0. Then there is a k € N such that

D' ={¢: #(Ae¢Nm\ C) < em for every m > k!}
is uncountable. Let £ € D’ be such that D’ N ¢ is infinite. Then M = {i: i € N, §(§,4) € D', fe(i) > k} is
infinite. But for every ¢ € M, setting I; = fe(¢)!, I} = (fe(3) + 1)1,
AgUAgey 21\ b

So #((\ 1;) \ C) < 2€l] and #(C N1;) > Uj(1 — 2¢) — I;. As this is true for infinitely many i, d*(c) =
d*(C) =>1—2e. As € is arbitrary, d*(c) = 1.

Thus (a¢)e<w, and (ce)e<w, have the required properties.

(b) (i) Enumerate 3" = 3\ {0} as (a¢)¢<w,. Choose (c¢)e<w, inductively. ¢o = 1. Given that d*(c¢) = 1,
we can partition it into ¢, ¢ with d*(¢) = d*(¢’) = 1; take ce41 to be one of these not including ae. For

non-zero countable limit ordinals &, use (a) to see that there is a c¢ such that d*(c¢) = 1 and ¢¢ C ¢, for
every n < &. Now no ag¢ can be a lower bound for {¢, : n < wi}.

(ii) Enumerate {A: A CN, d*(A) < 1} as (A¢)ecw,. Forn e N, set L, = {i : n! <i < (n+1)!}. Let
(I¢)¢<w, be a family in PN such that I,,\ I¢ is finite and I¢ 41 \ I¢ is infinite for n < & < w;. (Cf. FREMLIN 03,
419A.) Choose (C¢)e<w, inductively, as follows. The inductive hypothesis will be that whenever ( <71 < ¢
then C, C UnEIT, L, and #(C,N L, Ni) < (i —n!) for every n € Nand i € L,, and C¢ \ C,, is finite.

Start with Cy = (). Given Cy, then set

Dep = {i i € Ly \ Ag, #(i 0 L (1 Dgy) < (i —nl)} for n € N,

Cf+1 = Cf U Un61§+1\15 Dfn
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Observe that if § = (1 — d*(A¢)) > 0, then for all n large enough we shall have # (L, \ A¢) > 6#(Ly), so
that #(Dg¢y) > $0#(Ly); consequently d*(Ceiq \ A¢) > 26 > 0.

For the inductive step to a non-zero countable limit ordinal &, let (nx)ren be a non-decreasing cofinal
sequence in &, and (ny)ren a strictly increasing sequence such that I, \ I¢ C ny and Cy, \ Cy,, ., C ng! for
every k. Set

k+1

Ce = Upen O \ 1!
Then for ny <n < ngt1, Ce N Ly, = Cy, N Ly, is appropriately thin, and is empty unless n € I¢.
Set c¢ = C¢ for each . Then <c§>5<w1 is non-decreasing, and d*(c¢) < 3 for every £. ? If a € 3 is an
upper bound for {c¢ : € <wi} and d*(a) < 1, ther is a § < wj such that a = AZ, and now ce1q1 \ a # 0. X

2 Bits & pieces

2A Lemma If a € 3 and (y¢)¢<. is any family in [0, d*(a)], there is a disjoint family (b¢)¢<, such that
be C a and d*(be) = ¢ for every £ < c.

proof Set v = d*(a). Let A C N be such that A* = a. Let (k,),en be a strictly increasing sequence such
that #(ANkpt1 \ kn) > (v — 27"k, 41 for every n. Let (Ig)e<. be an almost disjoint family of infinite
subsets of N (FREMLIN 087, 5A1Fa). Set A¢ = |J ANkpi1\kn. Then Ae C A and d*(A¢) = 7 for every
¢, and (Ag¢)e<. is almost disjoint.

Now, for £ < ¢, define B C A¢ by saying that

B: = {Z RS Ag, #(N Bg) < ’}/5%'}.

Then #(: N Be) < 1+ 7¢(i — 1) for every i € N, so d*(Bg) < 7¢. 7 If d*(B¢) < 7, let n be such that
# (B¢ N1i) < ¢4 whenever ¢ > n; then Be O A¢ \ n and d*(B¢) > v. X
So we can set be = B¢ for every .

nele

2B Progosition For any b € 3 there is a positive additive functional p on 3 such that ub = d*b
and pa < d*a for every a € 3. P Take B C N representing b. Let (k,)neny be a strictly increasing

sequence in N such that d*(B) = lim, ki#(B N k). Take a non-principal ultrafilter F on N and set

HA* = lim, . r ki#(A Nky,) for every ACN. Q

Note that u is countably additive (in the sense of FREMLIN 02, 326E), because d* is sequentially order-
continuous.

2C Proposition ¢(3,) = ¢ for every non-zero a € 3.

proof Represent a as A®. Take a strictly increasing sequence (k,)nen such that #(A N k,p1 \ kn) >
(d*(A) = 27")kpy1 for every n. Let (K¢)e<. be an almost disjoint family of infinite subsets of N. Set
ac = (AN Unng kn+1 \ kn)*. Then (ag)e<. is disjoint and d*(ag) = d*(a) for every . Q

2D Proposition PN/[N|<¢ can be regularly embedded in 3.

proof Define 7 : PN — PN by setting 74 = (J,,c4 271\ 27 Then nA € Z iff A is finite, so 7 descends
to an injective Boolean homomorphism 7 : PN/[N]* — 3. ? If 7 is not order-continuous, there is a non-
empty downwards-directed set P C PN/[N]<“ such that inf P = 0 in PN/[N]<¥ but there is a non-zero
¢ € 3 which is a lower bound for 7[P]. Set A = {A: A* € P} and let C represent ¢; then C' \ 74 € Z
for every A € A. Consider K = {n : #(C n 2"\ 2") > 1d*(C)}. This is infinite. If A € A, then
{n:#((C\wA) N2\ 27) > 1d*(C)} must be finite, so {n:n € K, AN 2"\ 2" =} must be finite
and K \ A is finite, so K* is a non-zero lower bound for P. X So 7 is a regular embedding of PN/[N]<“ in
3.

2E Corollary 3 has an (wi,w])-gap, that is, families (a¢)e<w,, (b¢)e<w, such that a, c ag C be C b,
whenever 7 < £ < w; but there is no ¢ € 3 such that as C ¢ C be for every £ < wy.
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proof Let (a¢)ecw,, (be)e<w, be an (w1, w])-gap in PN/[N]<“ (FREMLIN 84, 21L), and consider (Ta¢)¢<w,
(The)ecw,- T If ¢ € 3 is such that Tag C ¢ C @he for every &, let C' C N be such that C* = C, and consider
D ={n:#(Cn2"\2") > 271} then a¢ C D* C be in PN/[N]<¢ for every £ < w;. X

2F Proposition (a) 3 is isomorphic to the simple product 3".

(b) 3 has the o-interpolation property.
proof (a) Set A, = {2"T1(2i+1) :4i € N}, a,, = A%, € 3. Then each principal ideal 3,, is isomorphic to 3
(see FREMLIN 03, 491Xo), and the map A +— (AN A,)nen : PN — [, .y PA, descends to an isomorphism
from 3 to 3N.

(b) Let (an)nen, {(bn)nen be sequences in 3 such that a,, C b, for all m, n € N. Let (I,,)nen, (Jn)nen be
sequences in PN such that I, = sup;<,, a; and J;, = inf;<,, b; for every n € N, (I,)nen is non-decreasing and
(Jn)nen is non-increasing. Then d*(I, \ J,,) = 0 for each n. Let (r,,)nen be a strictly increasing sequence in
N such that #((I, \ Jn) Nm) < 27™m whenever m > r,; then #(((I, \ Jn) \ 7n) Nm) < 27™m for every m.
Set I =(,en(rnUJp). Then I'\ J,, Cr, is finite for every n. Next, for any n € N,

I,\1= UkeN((In \ Ji) \ 7k

Set J' = Uk<n I, \ Jg; then d*J' = 0. Set
" = Uksn((In \ Je) \ 1) =C Upsn (T \ Ji) \ k)
and
#(J"Nm) <Y oo 27km =27ty

for every m, so d*(J") < 27" and d*(I,, \ I) < 27"*!. As (I,,)nen is non-decreasing, d*(I,, \ I) = 0 for
every n. So, setting ¢ = I*, we have a, C ¢ C b, for every n.

2G Proposition For a, b € 3, set p(a,b) = d*(a Ab), so that p is a metric on 3 (FREMLIN 02, 392H").
If € C 3 is a subalgebra which is closed and has weight less than p for the metric topology of 3, then € is
order-closed.

proof Let k < p be the weight of €. Suppose that A C € is non-empty and upwards-directed and has a
supremum b in 3. Then there is a dense subset D of A of cardinal at most x; let D’ be the set of suprema of
finite subset of D. Then b is an upper bound of D’; moreover, if ¢ is any upper bound of D', then {a : a C ¢}
is topologically closed, so includes A, and ¢2b. Thus b = sup D’.
The set {b\ a:a € D’} is downwards-directed and has cardinal less than p; by 1Ca, it has a lower bound
c such that d*(c) = inf,eps d*(b\ a); but ¢ must be 0, so
0 =infaepr d*(b\a) > infaeca d*(b\ a)

and b € A C €. As A is arbitrary, € is order-closed (FREMLIN 02, 313E(a-i)).

2H Proposition Aut 3 has many involutions.

proof If a € 37, let I C N be such that I* = a. Let f : N — I be the increasing enumeration of I. Define
a bijection h : N — N by saying that h(n) =n for n € N\ I and h(f(2¢)) = f(2i + 1), h(f(2i + 1)) = f(29)
for i € N. Then d*(h[J]) = d*(J) for every J C N, so we have a Boolean automorphism 7 : 3 — 3 defined
by saying that w(J*) = (h=1[J])* for every J C N; now 7 is an involution with support a.
3 Cardinal functions

3A As the cellularity ¢(3) of 3 is ¢ = #(3) (2C), we have link(3) = d(3) = 7(3) = ¢ (FREMLIN 087,
511J).

3B Proposition The Maharam type 7(3) of 3 is at least p.
[Strengthened in 3H.]

IFormerly 393B.
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proof If D C 3 and #(D) < p, let D be the subalgebra of 3 generated by D, and € the topological closure
of © (see 2G). Then € is a subalgebra of 3, because the Boolean operations are topologically continuous
(FREMLIN 02, 392H), and w(€) < #(®) < p. So 2G tells us that € is order-closed. On the other hand,
¢ is certainly not equal to 3, because the topological density of 3 is ¢, by 2A. So 3 is not the order-closed
subalgebra of itself generated by D. As D is arbitrary, 7(3) > p.
3C Proposition The weak distributivity wdistr(3) of 3 is w;.
proof By 1D, wdistr(3) > w;. As the measure algebra %, of the usual measure on {0,1}° is regularly
embedded in 3 (FREMLIN 03, 491P), wy = wdistr(B.) > wdistr(3) (FREMLIN 087, 524Mb and 514Eb).
3D Proposition The Martin number m(3) of 3 is at least My _jinked-
proof Take k < My_linked, & family (Dg¢)e<, of order-dense subsets of 3, and de3t.
(a)(i) Let A C N be such that A* = d, and set € = 1d (A) > 0. Let (mg)ren be a sequence in N such that

#([lﬁmk) > 2emy, and and Mg > max(k,%)mk for every n; set mj, = |emy] and Ly = my \mj, for each k,

so that #(A N Ly) > e#(Ly) for every k, (Li)pen is disjoint, limy_ o % =1 - c and limg o 5 = 0.
k k
For I € Nset Cr = Uy Li; for I € [N]“ and A C N, set
i . ANL
1) (I,A) = hmsupkel’kﬁoo %,
ey #(ANLy)
O(I,A) = limper k—oo AN

if the limit is defined. Note that whenever A, B C N and I € [N]¥,

0*(I,A) =6*(I,AnCy),

0% (1, CI)—l

6*(1,A) >

0*(I,B) < (5*([ A) if B\ A is finite,

0*(I,A) > 6*(J, A) whenever J € [N]* and J \ I is finite,
there is a J € [I]“ such that 6(J, A) is defined and equal to §*(I, A),
if §(I, A) is defined then 6(J, A) is defined and equal to §(I, A) whenever J € [N]¥ and J \ I
is finite,
if 6(I, A) is defined and §*(I, BN A) =0, then 6*(I, AU B) = (I, A) + 6*(I, B).
Also, of course, A +— §*(I, A) is a submeasure, for every I € [N]“.

(ii) If A C N and I € [N]*, then

ed*(ANCy) < 6°(1,A) < T—d"(ANCy).

P(a)Let n > 0. Let ko € I be such that #(AN Lg) < (6*(1, A) + n)#(Ly) and my_1 < nmy, for every
k > ko. Take any n > my,; let k, [ be successive members of I such that my, <n < my;. If n <m] then

#ANCINn)=#ANCrNmy) < #(AN L) + mp—1
< (6°(1,A) +m#(Lk) + mp—
< (61, A) + n)mg +nmy. < (6*(1, A) + 2n)n.
If m; <n < my then

§*(1,A)+2
(LA)+2,
€

#ANCINn) <H#ANL) +my—_1 < (0*(I,A) + 2n)m; <

6+ (I,A)+2n

So in both cases 7#(14 NCrNn) < ; as 1) is arbitrary, ed* (AN Cr) < §*(1, A).
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(B) Given n > 0, let ng € N be such that #(ANCrNn) < (d*(ANCr) +n)n for every n > ng. If
k € I is such that m) > ng, then
#(AmLk) < #(Aﬂmk) < (d*(AﬁCI)—i—n)mk < d* (AﬂC;)+77
#(Le) T #(Le) T #(L) - 1—e '

As n is arbitrary, 6*(I, A) < w Q

(iii) If (A, )nen is a non-decreasing sequence of subsets of N and I € [N]¢, there is a B C N such
that B\ A, is finite for every n € N and 6*(1, B) = sup,,cy90*(1, An). P Let (kn)nen be a non-decreasing
sequence such that # (A, N L) < (6*(I, A,) 4+ 27")#(Ly) whenever k > k,,. Set B =, ey An \ M, Q

(b) Suppose that I € [N]“, > 0 and that A C PN is an upwards-directed family such that {A* : A € A}
is order-dense in 3. Then there are a J € [I]* and an A € A such that 6*(J,4) > 1 — 7. P? Otherwise,
choose (Jn)nen, (Bn)nen and (A, )nen inductively, as follows. Jy = I. Given J,,, set 3, = sup{d*(J, A4) :
Ae A, Je[J,)¥}, and choose J € [J,]Y, A, € Asuch that §*(J, 4,,) > B, —27™; as A is upwards-directed,
we may suppose that 4, D A, if n > 1. Let J,41 € [J]¥ be such that 6(J,+1,A,) is defined and equal
to 6*(J, Ay), and continue.

At the end of the induction, let J € [N]* be such that J \ J, is finite for every n € N. Observe that
5(J, A,) is defined for every n. By (a-iii), there is a B C N such that A, \ B is finite for every n and

5*(‘]73) = SUDpeN 5*(‘]5 An) < 1- UE
So 0*(J,Cy\ B) > n and d*(Cy \ B) > 0. There is therefore an A € A such that 0 # A* C (C; \ B)*. In

this case, d*(ANCy) > 0 and §*(J, A) > 0. Let n be such that 27" < §*(J, A). Let A’ € A,, be such that
A" D AUA,. Since d*(ANA,) <d*(ANB)=0,6(J,ANA,) =0 and

8 (I, A) > 6% (Jn, AU A,) > 6*(J, AU A,)
= 5(Ja An) + 6*(Ja A) > 6(Jna An) +27" > By;
contradicting the definition of 5,. XQ

(c) Suppose that I € [N]“ and that D C PN is such that {A* : A € D} is order-dense in 3 and B € D
whenever B C A € D. Then there are a K € [I]* and a disjoint sequence (A, )nen in D such that §(K, A4,,)
is defined for every n € N and > 7 ;6(K, A,) = 1. P Choose (J,)nen, (Zn)nen inductively, as follows.
Jo = 1I. Given J,, use (b) to find J € [J,]* and Z,, € [D]<¥ such that §*(J,JZ,) > 1—27"; let J,, € [J]*
be such that §(J,,JZ,) is defined and equal to §*(J,|JZ,). At the end of the induction, let J € [I]“ be
such that J \ J, is finite for every n. Then 6(J,|JZ,) is defined and greater than or equal to 1 — 27" for
every n.

Let (A} )nen be a sequence in D running over |J,cnyZn. Set A, = A} \ U,., A; for each n. Choose
(Kpn)nen such that Ko = J and K, 11 € [K,]¥ and 0(K 41, Ay) is defined for every n; let K € [J]* be such
that K \ K, is finite for every n, so that (K, A,) is defined for every n. For k € N, there is an n € N such
that {A} : i <n} D Zj. In this case,

n

D (K, A) =K, | A) = 6(K, | ] A}

i=0 i<n i<n
> 6K, JTw) =62, JTu) =1 - 27",
As k is arbitrary, Y o~ 8(K,A,) =1. Q
(d) For ¢ < k&, set
De = {A: A CN, there is some d € D¢ such that A* C d}.

Choose (I¢)e<s, (Aen)e<wnen as follows. Iy = N. Given Iz € [N]¥, where £ < &, let Ic11 and (Ag,)nen be
such that Ir1; is an infinite subset of I¢, (A¢n)nen is a disjoint sequence in De, 6(Ieq1, Aey) is defined for
every n and >~ 1 6(Ieq1, Aen) = 1; this is possible by (c). Given that £ <  is a non-zero limit ordinal and
(In))n<e is a family of infinite sets such that I,,\ I is finite whenever ¢ < n < &, then #(§) < k < My-tinked < P,
so there is an infinite I¢ such that I \ I, is finite for every n < &; continue.
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At the end of the induction, setting I = I,;, we have > >~ 1 6(I, A¢,) = 1 for every n.

(e) For k € I let v be the uniform probability measure on Li. Let F be any non-principal ultrafilter on
I, and consider the probability algebra reduced product (A, 1) = [T,e;(PLk, vi)|F) (FREMLIN 02, §328%).
For A C N, set 0(A) = (AN Lg)s; € 2A (see the construction in FREMLIN 02, 328A). Then 0 is a surjective
Boolean homomorphism, and

ﬂO(A) = limg_, 7 l/k(A N Lk) = (S(I,A)

whenever 6(I,A) is defined. For £ < k and n € N, set ape = 0(A¢n). Then (aen)nen is disjoint and
S o fagy, = 1. Set @ = 0(A), so that jia > e and a # 0.

(f)(i) There is a family (n¢)e<, in N such that {a}U{aen, : £ < k} is centered in 2. P For each £ < &, the
set Ee = {e:e € AT, e C ag, for some n} is coinitial with AT. Now the downwards Martin number of 2+
is m(RA) > Mylinkea (FREMLIN 087, 524N); so there must be a downwards-directed set R C A containing
@ and meeting every E. (FREMLIN 087, 517B, inverted). In this case, there is for each { < k a unique ng
such that ag,, includes some member of R, and {a} U {a¢n, : £ < K} is centered. Q

(ii) For each § < &, let d¢ € D¢ be such that Ag, C de. Then {d} U{de : € < K} is centered in 3. P
If K is a finite subset of x, set A= AN Neere Aene- Then 0(A) = an infeek agp, is non-zero, so

#(ANLy)

0< ﬂG(A) =limg_,r (o)

< 6°(I, A)
and d*(A) > 0, that is,
0 7& A = JI"I infgeK Aéng C JI"I infgeK d&. Q

(g) Thus we have a linked set {d} U {d¢ : £ < x} in 3 containing d and meeting every D¢. As d and
(D¢)e<y are arbitrary, m(3) > Mg linked-

3E Proposition The Freese-Nation number FN(3) of 3 is at least FN(PN) and at most max(FN*(PN),
(cfN)1), where FN*(PN) is the regular Freese-Nation number of PN, and N is the Lebesgue null ideal.

proof (a) As B, is regularly embedded in 3, FN(3) > FN(%B.) = FN(PN) (FREMLIN 087, 518C and
524N).

(b) Set x = max(FN*(PN), (cfN)T). Recall that cf Z = ¢f N' (FREMLIN 087, 526Ha); let A C Z be a
cofinal family of cardinal cf N < k, containing @). Let f : PN — [PN]<* be a Freese-Nation function. For
each a € 3, let I, C N be such that I = a, and set

gla) =Ueatl* 1€ f(IoUA)}
Because « is regular, #(g(a)) < k. If a, b € 3 and a C b, there is an A € A such that I, C I, UA. Now there
isanT € f(I,)N f(Ip UA) such that I, CT C TI,UA, and I* € g(a) Ng(b), a CI* Cb. Thus g: 3 — [3]<"
is a Freese-Nation function, and FN(3) < k.

3F Theorem The Dedekind completion 3 of 3 and the Dedekind completion (PN/[N]<*)@B, of the
free product (PN/[N]<¥) ® B, are isomorphic.

proof FARAH 06, Theorem 1.3, or FREMLIN 087, 556S.

3G Lemma Every member of (PN/[N]<“)®%, is expressible as sup,¢; a; ©b; where (a;);c1 is a partition
of unity in PN/[N]<¥ and b; € B, for each i € I.

proof

3H Proposition (3) > wdistr(PN/[N]<¥).
proof

2Later editions only; see http://www.essex.ac.uk/maths/people/fremlin/cont32.htm.
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4 Homogeneity
4A Corollary 3 is homogeneous and Aut(g) is simple.

proof PN/[N]<“ and 9B, are homogeneous, so their free product also is (FREMLIN 02, 316Q). The Dedekind

completion of a homogeneous Boolean algebra is homogeneous (FREMLIN 02, 316P). So 3 is homogeneous,
by Theorem 3F. Now FREMLIN 02, 382S tells us that Aut 3 is simple.

4B Theorem [CH] 3 is homogeneous and Aut 3 is simple.

proof If the continuum hypothesis is true, 3 is homogeneous (JUST & KRrawcCzYK 84, FARAH 03, 8.2).
Once again FREMLIN 02, 382S tells us that Aut 3 is simple.

4C Theorem [OCA + m > wy] (a) Aut 3, regarded as a subgroup of Aut 3, is not ergodic.
(b) 3 is not homogeneous.
(¢) Aut 3 is not simple.

proof (a)(i) In the terminology of FARAH 00 or FREMLIN NO5, Z = Exh(v) where v is the entirely non-
pathological lower semi-continuous submeasure on N defined by setting va = sup,,~; l#(a Nn) for a C N.
- n

So by FARAH 00, 3.4.1-3.4.2 or FREMLIN NO5, 5H, every Boolean automorphism 7 : 3 — 3 is representable
by a bijective function h : A — B, where A, B C N are cofinite, in the sense that w(I*) = (h~[I])* for
every I C N.

(ii) For n € N set M, = {i : 2"° < i < 2"°+1}: note that lim,_., #(M,)/ Zm<n (M,,) = 0. Set
I'=UpenMons J = Upen Mant1, a=1* € 3, b= J*. Then d*(I), d*(J) are both 1 so a and b are non-zero.
If 7 : 3 — 3 is a Boolean automorphism such that bnmwa # 0, let h: A — B represent 7 in the sense of (a)
above. Then bnma = (J N h~L[I])*.

Set

Io={i:ie INhlJ), k(i) <i}, Jo={i:ieJnh '], h(i)<i}.
If n € Nand i € Iy N Ma,, then h=1(i) € Umen Mamy1 50 #(Io N May) <37 on #(My,). Accordingly

1
#(Mzn)

Similarly, d*(Jo) = 0. But now observe that
(J\ Jo) Nh=HI N\ Io) =0
S0

brma = (J\ Jo)* N (b= \ Io])* = 0.

(iii) So if we take d to be the supremum in 3 of f {ma : m € Aut 3}, we shall have #d = d for every
m € Aut 3, writing 7 € Aut 3 for the automorphism of 3 extending m; while d is neither 0 nor 1, since a C d
and dnb = 0. Accordingly Aut 3 does not act ergodically on 3.

(b) Taking a and b from (a), at least one of the principal ideals 34, 35, 31\ and 31\ is not isomorphic
to 3.

(c) Taking a from (a), let I <0 3 be the ideal generated by {ma : # € Aut3}. Then I is a proper ideal.
Let H be the set of those m € Aut 3 supported by members of I (definition: FREMLIN 02, 381B). Then
H < Aut 3, by FREMLIN 02, 381Eb, 381Eh and 381Ej; and H is non-trivial by Proposition 2H.

4D Proposition Let D be the set of those d € 37 such that there are regular embeddings both from 3
to the principal ideal 34 and from 34 to 3. Then D is order-dense in 3.

proof (a) Let a € 37; express a as A* where A € PN\ Z. Set I,, = {i : 2" < i < 2""!} for n € N. Then
limsup,, ., 27"#(ANI,) > 0. Let € > 0 be such that {n : #(ANT,) > 2"¢} is infinite; let (k(n)),en be a
strictly increasing sequence such that
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#(AN Iyny) > 2K e > 2+

for every n. For each n € N, let (Ay;)i<2n be a disjoint family of subsets of A N I}(,,) such that #(A,;) =
|2k =ne] > 2k(mM=n—l¢ for each i < 2". Set E = J, ey U Api and e = E* C a. Then e # 0 in 3.

(b) Define ¢ : PN — PE by setting
&I = Upen U{Ani i <27, 2" +ie I}
for I C N. Then ¢ is a Boolean homomorphism, and ¢I € Z whenever I € Z. P

<2

2 E O (L N oI) = 27K 3™ (A, 00)

ieIniy,
<27 Mg (I I,) 22X e = 2 e (1IN 1) — 0

as n — oo; and of course #(I; N ¢I) =0 if j # k(n) for every n. Q So we have a Boolean homomorphism
m: 3 — 3 defined by setting wI* = (¢I)* for every I C N.
7 is injective. I If I € PN\ Z, then the same formulae give us

lim sup 2_k(”)#(1k(n) N¢I) = limsup 2 k() Z #(Api—an)

n—oo n—oo ZGIﬂln

> lim sup Q*k(”)#(I NI, - gk(n)—n—1,

=2¢elimsup2™"#(INI,) >0

and ¢l ¢ Z. Q

m is a regular embedding. IP? Otherwise, there is a partition C' of unity in 3 such that d is not
the supremum of 7[C] in 3.. Let B C E be such that B ¢ Z and B* N7wc = 0 for every ¢ € C; let
§ > 0 be such that L = {n : #(B N I(,)) > 2¥"4} is infinite. For each n € L, set K,, = {i : i < 2",
#(BNA,,;) > 2Fm=7=151 then #(K,) > 2"~4%. So J = U,en(2"+K,) ¢ Z, and there is a ¢ € C such that
J*nc#0. Let J C J be such that J* = J* ne. Then there is an 5 > 0 such that L = {n : #(JN1,) > 2"n}
is infinite. If n € L, then

#(Ipy N BN @J) > 260 ==L (TN T,) > 2k —Lep,

But this means that BN ¢J ¢ Z and B*nc # 0. XQ

(c)(i) Set m(n) = #(ENImn)) > 2k(mM)=1¢ for each n, and let (n;)jen be an unbounded monotonic slowly
increasing sequence in N such that ng =0, n;11 < n; + 1 for every j and

— Zni <n i
ZKJ- m(n;) Zni:n n;
Let (M;);en be the partition of N such that #(M;) = m(n;) and max M; < min M;;, for each j. For each
J, let fj : Mj — E N Ij(y,) be a bijection, and set f = UjeN fj, so that f : N — F is a surjection.

For n € N, set M, = Unj:n M;, r, = min Mn; then #(Mn) = Tpa1 — Tn and lim,_, I — 0. Note

Tn41

=0.

hmj_,oo

2 S . 2k(n)
m(n) for every n, while lim,, . mn) _ 0, so lim,, ,oc — = 0.
T T

€ n n

(i) If IC Eand I € Z, then f[I] € Z. P

also that 2¢(") <

. #(I) . #(INIk(n;))

msup Sty — )
< limsup 2~ *)L(I N I, ) - limsu 29 0-2=0
= ]_)oop k(n]) j_)oop m(nj) — € - Y

As limj_, % =0, f~![I] € Z. Q So we have a Boolean homomorphism 6 : 3. — 3 defined by saying
that 6(I°*) = (f_i[l])' for every I C E.
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(iii) fIC Eand f7l[I]€ Z,then [ € Z. P

lim sup 274 (1 N Iy(ny) = limsup 2759 3(1 N Iy ,,))

1 #UNkn))) . #(f_l[f]ﬂ]\;[n)
< limsup ——2= = limsup m~——~—~>
" e ) el #(VLL)
-1
< lim sup #U O ) | T
n—oee Tnt1 Trt1—Tn

<d(fI)-1=0.Q
So 0 embeds 3. in 3.

(iv) Let J be the family of non-empty sets J of the form (J,;, M; where n; = n; for all 4, j € K. We
need to know that if B C N, then there are infinitely many J € J such that #(BNJ) > +d*(B)-(1+max J).
P Set § = %d* (B). We can suppose that § > 0. Take any n* € N such that r, < dr,11, 2k(n) < §p, for
every n > n*. Then there is an m > r,« 1 such that~#(B Nm) > 46m. Let n > n* be such that m € Mn.

case 1 If #(BNr,) > 1#(BNm), set J = M,_;. Then
#(BNJ)>2m—ry_q >20r, —rp_1 > 0r, =0(1 + max J).
case 2 Otherwise, set J = J{M; : n; =n, max M; < m}. Then
#(BNJ)>#(BNm)—#(BNr,) — 280 > 25m — 260 > §m > §(1 + max J).
As n* is arbitrary, at least one of these happens infinitely often. Q

(v) 0 is a regular embedding. PP? Otherwise, there are a partition C' of unity in 3. and a non-zero
b € 3 such that bnéfc = 0 for every ¢ € C. Express b as B* where B € PN\ Z. By (iv), there are a § > 0
and an infinite sequence (J;);en of distinct members of J such that #(B N J;) > (1 + max J;). For each
[ there is an p(I) such that J; C ]\pr(l); taking a subsequence if necessary, we may suppose that (p(1));en is
strictly increasing. For each [, let K; be such that J; = UjeK, M;; we have n; = p(l) for each j € Kj; set

51 = #(K)), so that #(.J;) = 28?0 and f[J}] C EN Li(p(1))-
For [ € N, set

. . . ) 1
V= {Z : #({j :jE€BNJ, f(_]) = ’L}) > 5581} - Em[k(p(l)).
Since f is injective on M; for each j € K,
2k(rD) 515 = 6#(J)) < 6(1 + max .Jy) < #(BNJy) < s1# (V) + 2k =155,

and #(V;) > 2¢W)§. Accordingly V = Uien Vi does not belong to Z and there is a ¢ € C such that
V*nec#0. Let V C V besuch that V* = V* nc. Then there is an 77 > 0 such that L = {I : #(Vﬁ[k(p(l))) >
2k(eM)p} is infinite. For [ € L,

#BN VN (A +max ) > #(BNFHVINTG) =#(B0F VN Lpay))

Vv

¥ 1
Ssi#(V N Lipy)) = 5050 - 28Oy

vV
N= N

ong(J1) = SOn#(B O > 26%(1 + max Jp).

1
2
But this means that BN f~'[V] ¢ Z and b fc # 0; which is impossible. X Q
(vi) Thus we have our regular embeddings in both directions, and e € D, while 0 # e Ca. As a is

arbitrary, D is order-dense, as claimed.
5 Problems

5A In ZFC, can we find a non-decreasing family (a¢)e<, in 3 such that sup, ., d*(a¢) < infyep d*(b),
where B is the set of upper bounds of {a¢ : £ < k}?
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Can it be done with Kk < m?
[By 1Cb, this cannot be done with k = w. Subject to CH, 1F(b-ii) gives such an example with £ = ¢ = w;.]

5B In ZFC, can we find a non-increasing family (ag¢)e<, in 3 such that infec, d*(a¢) > supyep d*(b),
where B is the set of lower bounds of {a¢ : { < k}?
[By 1Ca, this cannot be done with x < p. Subject to CH, 1F(b-i) gives such an example with K = ¢ = w.]

5C Can 7(3) be less than c?
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