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ABSTRACT
I discuss the topological properties of metric spaces of finite one-dimensional Hausdorff measure.

Introduction

Let (X, p) be a metric space. Define u, = uj ,: PX — [0, =] by writing

pp(A) = sup inf {2 diam,(A;): Ac U A, c X, diam,(4;)<é6 Vie N}
6>0 ieN ieN

for each Ac X, the one-dimensional Hausdorff outer measure on X. If
pp(X) <o, I will say that X is of finite length. In this paper I seek to investigate
the topological properties of metric spaces of finite length, concentrating on
connected spaces. The basis of the work is the fact that a space X of finite length
is a ‘finite cut space’, that is, its topology has a base consisting of sets with finite
boundary (corresponding to the ‘regular curves’ of [22]). (See 1C below.) This is
already enough to prove some remarkable properties; for instance, if X is
connected then it is locally connected (2A-2B), and if it is connected and a Borel
set in its metric completion then it is path-connected (3G). I then set out to
develop a structure theory for spaces of finite length, showing how the measure
theory associated with the outer measure u, connects with the topology (§ 4). A
striking result from this part of the theory is in 4I: if C ¢ X is connected and
us(C) is finite, then C is actually p,-measurable and p,(C\C)=0. In § 5, I show
that metric spaces of finite length can be embedded homeomorphically in ‘good’
spaces of finite length, indeed, as subspaces of compact connected spaces of finite
length in R* (5H). I end the paper with topological characterizations of finite
length in general separable metric spaces which extend some of those given for
continua in [6].

1. Basic definitions and results

I list the fundamental known facts on which I shall rely.

1A. Length. Let (X, p) be a metric space, and define u, by the formula in the
Introduction, interpreting inf & as o, so that u;(A) =« if A is non-separable.

(a) pp is a metric outer measure [7, p. 7]. The associated measure p, defined by
Carathéodory’s method [7, p. 3] is defined on a o-algebra including the o-algebra
of Borel sets [7,p.6]. For any Ac X there is a G5 set E2>A such that
po(E) = p3(A) [7,p. 8], so that u, is outer regular for the Gs sets. If Ec X is
po-measurable and p,(E) < then u,(E) =sup{u,(F): F cE, Fis closed in X}
(7, p. 8].
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(b) f Yc X is any set and o= p | Y X Y is the induced metric on Y, then u;
is the restriction of u; to ?Y.

(c) If X =R and p is the usual metric of R then u; is Lebesgue outer measure
on R and u, is Lebesgue measure [7, p. 12].

(d) If F'c X is an arc (i.e., a homeomorphic image of [0, 1]), then u,(T) is just
the length of T [7, p. 29].

(e) If (Y, o) is another metric space and f: X —Y is Lipschitz-1 (that is,
o(f(x), f(x))<p(x,x') for all x, x'€X), then p3(f[A])<u,(A) for every
AcX[1,p.10].

(f) If (Y, o) is another metric space and f: X — Y is Lipschitz-1, then

B30 = [ 4G IDio(a).

(See [6, Theorem 1; 3, Theorem; 8, p. 176]. In this formula, interpret ‘#*(I)’ as
#(I) e N if I is finite, and as « if [ is infinite, and “[* h(y)u,(dy)’ as the infimum
of the integrals [ g(y)u,(dy) as g runs over the u,-measurable functions from Y
to [0, ®] such that g(y)=h(y) for everyy € Y.)

1B. Finite cut spaces. Let (X, ¥) be a topological space. For A c X write A
for A\int A, the boundary of A. I will say that (X, ¥) is a finite cut space if

9={G: Geg, 4G is finite}

is a base for . (In this paper I will reserve the symbol ¥ for this context.) Note
that if G and H belong to ¥ so do G N H, G U H and X\G (because the sets with
finite boundary form a subalgebra of ?X containing the closures and interiors of
its members).

Compact metrizable connected finite cut spaces are treated in [22], where they
are called ‘regular continua’.

1C. The essential link between 1A and 1B is the following long-known result.

PROPOSITION. A metric space of finite length is a finite cut space.

Proof. [6, § 3, Corollary].

2. Finite cut spaces

In this section I give an account of the elementary properties of finite cut
spaces. I am concerned primarily with separable metric spaces; but where an
argument applies more generally I allow weaker hypotheses. From the point of
view of this paper, the most important fact is 2A: connected Hausdorff finite cut
spaces are locally connected. Most of the other results amount to saying that
finite cut spaces are well-behaved in various ways; thus 2E-2G show that
components are regularly arranged, while 2H-2J do the same for path-
components. The technical result 2F(a) will be very useful later.

2A. THEOREM. A connected Hausdorff finite cut space is locally connected.

Proof. Let X be a connected Hausdorff finite cut space, x a point of X, U a
neighbourhood of x, C the component of U containing x; I have to show that C is
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a neighbourhood of x. If U = X then C = X and the result is trivial. Otherwise, let
G, be an open set with finite boundary containing x and included in U. Because X
is Hausdorff, there is a neighbourhood V of x, included in G,, with V N 3G, = @.
Let G, be an open set with finite boundary containing x and included in V; then
Gl c U.

Let % be the algebra of relatively open-and-closed subsets of G,. If E, E' €
and EN 3G, = E' N 3G, then EAE' c G, so EAE' is both open and closed in X;
because X is connected and G,c U# X, EAE'=J and E=E'.

Because 9G,; is finite, € must also be finite. Its atoms therefore constitute a
finite partition of G, into closed connected sets. Let C, be the atom of &
containing x; then C,N G, is open, so C, must be a neighbourhood of x; also
Coc C, so Cis also a neighbourhood of x, as required.

REMARK. For metric spaces, this result is given in [14b, § 51.IV, Theorem 1]

2B. CoROLLARY. A connected metric space of finite length is locally connected.

2C. It is convenient to collect here some very elementary facts about finite cut
spaces.

LeMMA. Let X be a finite cut space.

(a) Any subspace of X, with the subspace topology, is a finite cut space.

(b) If X is Hausdorff, it is regular.

(c) If X is separable and metrizable then it has at most countably many
non-singleton components.

Proof. (a) If Yc X and Gg X, then 3,(GNY), the boundary of GNY
taken in Y, is a subset of 3,G.

(b) Take x € X and a neighbourhood U of x. Then there is an open set G with
finite boundary such that x € G ¢ U. Now, because X is Hausdorff, there is a
neighbourhood V of x such that V< G and VNaG=@. So V c U.

(c). Let % be a countable base for the topology consisting of open sets with
finite boundary, and let D be the countable set | Jyes OH; then every non-
singleton component of X must meet D.

2D. CoroLLARY. If X is a connected Hausdorff finite cut space then
9 ={G: G c X is open and connected, 3G is finite}
is a base for the topology of X.
Proof. If x € X and U is a neighbourhood of x, take an open set H with finite
boundary such that x € H ¢ H c U (using 2C(b)); let G be the component of H

containing x. By 2A, G is open. Moreover, G is relatively closed in H, so
3G < JH is finite.

2E. THEOREM. Let X be a Lindelof Hausdorff finite cut space. If C is a
component of X and F is a closed subset of X disjoint from C, there is an
open-and-closed subset of X separating C from F.
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Proof. Let us write C* for the intersection of all the open-and-closed subsets of
X including C. Let ¢ be the family of open sets with finite boundaries.

(a) If Ge9 and GNC*=(, there is an open-and-closed subset W of X
separating C* from G. For there is surely an open-and-closed set W, such that
C* c W, and 3G N W, =T; now try W = W\G = W,\G.

(b) If E is a closed subset of X disjoint from C*, then there is an
open-and-closed subset W of X separating C* from E. For let # be

{G: Ge%, either GNC*=T or GNE=).

Because X is regular (2C), # is an open cover of X; because X is Lindelof, there
is a sequence (H,),n in & covering X. Now we can find increasing sequences
(U, nens (Vadnen in 9 such that

(U,uCc*»N(V,UE)=@, 38U,cC* H,cU, UV,

for every n e N. To see this, start with Uy = Vo= . Given U, and V,, use (a) of
this proof to find an open-and-closed set W, o C* such that W, NV, =& and
W, N (8H,\C*) = and, if H, N C* =, then W,NH, =J. Try

Un+l = Un 1% (Hn N Wn)r Vn+1 = Vn U (Hn\Un+l)'

A straightforward calculation checks that this works.

On completing the induction, set W =,y U,; W is open-and-closed because
its complement is |_J,n V,,, and of course C* < W c X\E.

(c) It follows that C* is connected. For if G and H are open sets in X with
C*cGUH, C*NGNH=, then C*NG=C*\H and C*NH are disjoint
closed sets. Being regular and Lindeldf, X is normal [14, § 14.1, Theorem 1], so
there are disjoint open sets G,, H, with C*NG cG,, C*NHc H,; so that
C* c G,UH,. Applying (b) with E=X\(G,U H,), we can find an open-and-
closed W with C* =« W c G, U H,. In this case W N G, and W N H, are open-and-
closed, so one includes C and the other is disjoint from C*. Thus one of C* N G,
C*N H is empty. As G, H are arbitrary, C* is connected.

(d) Accordingly C = C* and (b) gives the result.

2F. CoroOLLARY. Let (X, X) be a Lindeldf Hausdorff finite cut space. Write §
for the family of open sets with finite boundary.
(a) The family

9*={G: G €%, 3G lies within one component of G}

is a base for X; in fact, every member of 4 has a finite partition into members
of ¢*.

(b)-If E, F are closed subsets of X such that no component of X meets both E
and F, then E and F can be separated by an open-and-closed set.

Proof. (a) Take any Ge % If G= then G e ¥* and we have finished.

Otherwise, let C,, ..., C; be the components of G meeting 3G. Applying
Theorem 2E to G, we have a partition W,,..., W, of G into relatively
open-and-closed sets such that C; ¢ W, for each i. Set G; = G N W, for each i; then
G,, ..., G, is a partition of G into open sets, and G; = W,, so 3G, =W\G c C; c
G. for each i, and each G; belongs to 4*.

(b) By the theorem, each component of X can be separated by an open-and-
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closed set from at least one of E, F. Consequently,
W ={W:. Wis open and closed, WNE = or W N F =}

is an open cover of X. Let (W,),.n be a sequence in W covering X. Set
W,=W\Ui<, W for each neN; then (W,),.n is a disjoint cover of X by
members of W. Set W= {W,: neN, ENW,#J}; then W is open-and-
closed and Ec W c X\F.

Remark. Note that if X is connected then G is connected for every G € 4*.

2G. ProrosiTION. Let X be a Hausdorff finite cut space. Then
R ={(x, y): x, y belong to the same component of X}
is closed in X X X.

Proof. Take (x, y) € R. If x = y then of course (x, y)€R. If x #y, take an open
set G with finite boundary such that x € G and y ¢ G. Then (x, y) belongs to the
closure of R N (G x (X\G)); but this is included in

UJ{C x C: Cis a component of X meeting 3G},
which is a closed subset of R, so again (x, y) € R.

2H. ProrosiTioN. Let X be a Hausdorff first-countable finite cut space. Then
O ={(x, y): x, y belong to the same path-component of X}
is closed in X X X.

Proof. Let x, y be distinct points of X such that (x, y) € 9. Choose decreasing
sequences (G,),en, (H,).en Of oOpen sets with finite boundaries such that
GoNHy=J and {G,: neN}, {H,: neN} are bases of neighbourhoods of x, y
respectively. For each n e N there is a continuous function y,: [0, 1]— X such
that y,(0) € G, and y,(1) € H,, because Q meets G, X H,. For k <n set

bk = inf{t: Yn(t) ¢ Gk}) Anie = Yn(tnk) € aGk’
Unk = SUP{u: Yn(u) ¢ Hk}r bnk = Yn(unk) € aHk
Let & be any non-principal ultrafilter on N; because 3G, dH, are finite,
a, = lim Quks bk = lim bnk
n—% n—%
are defined in 3G,, dH, for each k. Moreover, there are paths o, v, T, in X such

that

0, runs from ay,, to a, within G,
y runs from a; to by,
1, runs from b, to b, within H,

for every k € N, obtained by taking appropriate pieces of appropriate y,. Putting
these together, one sees that

Y =(x)"...m0"00 Y T T ()

is a path from x to y, so (x, y) € Q.
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2I. CoroLLARY. If X is a 'Hausdorjf first-countable finite cut space then
(a) path-components of X are closed;
(b) if X is path-connected it is locally path-connected.

Proof. (a) This is immediate from 2H.

(b) If G is an open set with finite boundary, then every path-component of G
must meet 3G, so G has only finitely many path-components, which are all
closed, by (a). Now if x € G, one of the path-components of G is a path-
connected neighbourhood of x included in G. As X is regular, this shows that X is
locally path-connected.

2J. ProrosiTiON. Let X be a metrizable finite cut space and o = 0. Let Q,, be the
set of pairs (x,y) € X X X such that for every B> « there is a path of length at
most B from x to y in X. Then Q, is a closed set in X X X.

Proof. The argument follows that of 2H. As before, take distinct x, y such that
(x,y) € Q.. Fix £€>0. Take (G,)nens (Hy)nen and (¥,)nen as before, but this
time require also that the length of each path y, is at most a + & Writing
lh(y | [t, u]) for the length of the path defined by y | [¢, u], take the paths o, ¥,
7, such that

lh(oy) < 27%e + lim (v, IMtak+1, takl)s
n—%

Ih(y) < &+ lim (| [, o).

Ih(7,) = 27%e + lin}y 1h(y, I [Unks U r+1]))-

In this case we shall have
Ih(y*)= D Ih(g,) + 1h(y) + D, lh(z,) <S¢ + lim lh(y,) < & + 6¢.
keN keN n—%

As ¢ is arbitrary, (x, y) € Q..

3. Connected metrizable finite cut spaces

This section is devoted to the properties of connected metric finite cut spaces.
By 2A they are locally connected, and I begin with a survey of simple facts about
connected, locally connected metric spaces (3A-3C). Then I give some straight-
forward results about finite cut spaces (3D-3F) before ending the section with
one of the principal theorems of this paper (3G), a striking sufficient condition for
a finite cut space to be path-connected.

3A. LEMMA. Let Z be a complete metric space and X a connected, locally
connected Gy set in Z. Then X is path-connected.

Proof. This is the Mazurkiewicz—Moore—Menger theorem [2, 10.3.10].

3B. LeMMA. Let (X, p) be a connected, locally connected metric space with
diam,,(X) <.
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(a) There is a metric o on X, equivalent to p, given by the formula
o(x, y) = inf{diam,(C): C c X is connected and x, y € C}.

(b) Write X, for the completion of X with respect to a, and & for the metric of
X, ; then the sets

Ux(x, @)= {y: ye X, o(y, x) < a},
Ux(w, @)={y: ye X, o(y, w)<a},
U(w, )= {v: veX,, o(v, w)< a}

are connected whenever x e X, we X,, a>0.

(c) X, is connected, locally connected and path-connected.

(d) If G is a regular open subset of X, (that is, the interior of a closed subset of
X,), then the boundary 3G of G in X, is a subset of 3x(G N X), the closure in X,
of the boundary 3x(GNX)of GNX in X.

(e) If G is a connected open subset of X,, then G N X is connected.

Proof. Most of this must be standard, but I sketch the arguments.

(a) ois a metric because p is a metric and X is connected and diam,(X) <; o
is equivalent to p because X is locally connected.

(b) First,

Ux(x, )= {C: Cc X is connected, x € C, diam,(C) < a}
is connected. Now
Ux(w, @) = {Ux(z, @ — 8(z, w)): z€ X, 8(z, w)<3a}

is connected. Because it is dense in U(w, a), so is the latter.
(c) By (b), X, is connected and locally connected. So X, is path-connected by
A.

(d) Suppose, if possible, otherwise; take wedG\Ix(GNX). Set a=
0(w, 9x(G N X)) >0. Then Ux(w, @) is a connected subset of X meeting both G
and X\G (because w € G =G NX,\G and X is dense in X,) but not meeting
9x(G N X); which is impossible.

(e) Suppose, if possible, otherwise. Then G N X can be partitioned into two
non-empty relatively open sets H,, H, < X. Set V =int H,, taken in X’a, so that V
is a regular open subset of X, and Hyc V N X c H,N X. Because G is connected
and meets both V and X,\V, it meets 3V; by (d), G meets 3x(V N X) < dxHy;
but of course this is not so.

ReMARK. Of course the hypothesis ‘diam,(X) <’ is nearly irrelevant, being
used only to ensure that o(x, y) is always finite.

3C. Lemma. Let (X, p) be a connected, locally connected, separable metrizable
space. Write

Br(X) = {x: there is an open connected G < X such that G\{x} is not connected}.

Then Br(X) is a K, set in X (that is, a countable union of compact sets).
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Proof. (a) Let p be a metric, defining the topology of X, such that
diam, (X) <. Construct o as in 3B. Consider

Bro(X) = {x: X\{x} is not connected}.

Let D c X be a countable dense set. For each pair y, z of points of D let K,, be
the intersection of all the closed connected subsets of X, containing both y and z.
Because X, is path-connected, one of these closed connected sets will be
compact, and K|, is also compact. Set

BO=U{Ky2\{y; Z}I y’ZGD};

then B, is a K,, subset of X,,.

If x € Bro(X), then X\{x} is not connected, so X,\{x} is not connected (by (e)
above), and has at least two components, which must meet D; take y, ze D
belonging to different components of X,\{x}. Of course every connected subset
of X, containing both y and z must also contain x, so x € K,.. As x is arbitrary,
this shows that Bry(X) c B,.

If w € By, take y, z € D such that w € K,,\{y, z}. Then X, \{w} includes no arc
from y to z, so cannot be path-connected; but it is surely a locally connected G,
subset of X,, so cannot be connected. Accordingly its dense subset X\{w}
cannot be connected. Thus w € Bry(X); as w is arbitrary, Bry(X) is equal to B,
and is a K|, set.

(b) Now let % be any countable base for the topology of X consisting of
connected open sets. By (a),

B = {x: 3U € U such that U\{x} is not connected}

is a K, set in X. Of course B c Br(X). But also, if x € Br(X), let G be a
connected open subset of X such that G\{x} is not connected. Let G', G" be
disjoint non-empty open sets with union G\{x}, and let U e U be such that
x € Uc G. Because G is connected, x e G' N G”, so that UNG’, UN G" form a
partition of U\{x} into non-empty open sets, and x € B.

Thus Br(X) =B is a K, set.

ReMARk. Compare (22, Theorem II1.5.3 and elsewhere]. Br(X) is the set of
‘local separating points’ in X [21].

3D. LemMa. Let (X, p) be a connected metric finite cut space with diam,(X) <
o, Let o be the metric on X defined as in 3B. Then there is a G5 subset W of
X,, including X, which is a finite cut space.

Proof. Let H c X be an open subset of X with finite boundary 9xH in X. Set
V =int H, taken in X,,. Then 3V c 3yH = xH, by 3B(d), so oV is finite.
So if we write

W,=U{V: VcX, is open, diamy(V) <27", 3V is finite},
we see that X c W, for each n e N, and the G5 set W =), W, is a finite cut

space, as required.

3E. THEOREM. A connected metrizable finite cut space is separable.
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Proof. Let (X, p) be a connected metric finite cut space.

(a) Consider first the case in which X is path-connected. Suppose, if possible,
that X is not separable. Let £ >0 be such that there is an uncountable set A ¢ X
with p(a, a') > ¢ for all distinct a, a’ € A. Fix x,€ X and for eachae A let T, be a
path from x, to a. Set

% ={G: G cXis open, 3G is finite, diam(G) < €}.
For n e N set
W, ={x: x € X, 3G € ¢, such that p(x, X\G)>27"}.

Then (W, ), is an increasing sequence of open sets covering X, so there is an
n e N such that A’ = {a: ae A, ', c W,} is uncountable.

For each x € W, choose G, € ¥, such that p(x, X\G,) >27". Choose a sequence
(%, ) ken Of finite subsets of ¢, by the rule

#={Gy}, His1={G.: xeW,NU{SH: He ¥,}}

for each k. Set # = U ien #, U=\ #. Then ¥ is a countable family of sets of
diameter less than g, so there must be some a € A'\U.

Of course x, € U. Take z to be the first point of I', not belonging to U. Let w be
a point on I, strictly preceding z in I, such that p(x, z) <27" for every x lying
between w and z in I',. Then w € U so there are k € N, H € #, such that w € H.
Now z ¢ H so there is a point x of 3H lying between w and z in I',. Observe that
xel,c W, Butnow p(z, x)<27"so z € G, € ¥, ,,; which is impossible.

Thus X must be separable if it is path-connected.

(b) For the general case, we may replace p by an equivalent bounded metric
p'. Because X is locally connected (2A) we may now form a metric o from p’ by
the method of 3B. Take the Gs set W< X, as in 3D. Then W is connected
(because X is dense in W) and locally connected (by 2A again) and therefore
path-connected (by 3A). Applying (a), we find that W is separable so that X is
also separable.

3F. LEMMA. Let (X, T) be a separable metrizable finite cut space. Write
9$={G: GeZ, oG is finite},
%*={G: G €%, 3G lies within one component of G}.

Then there is a sequence U ) xen Of finite subsets of 4* such that
(i) Uo={X};

(ii) for each k € N, U, is disjoint and \ U, is dense in X;

(i) if j<k, Ue U and V € U, then either Vc U or VN U =J;

(iv) if x e H € T then there is a k € N such that

Fux)=U(D: Ue%, xe T} c H;

(v) Fi(x) is a neighbourhood of x for every x € X, k e N;

(Vi) if 0 is a pseudometric on X and o(U, V)>0 whenever keN, U, V € %,
and UNV =, then the topology ¥, defined by o includes <.
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Proof. By definition, ¥ is a base for the topology of X; let (G;);cn run over a
subset of ¢ which is still a base for the topology. Choose (% ),.n inductively as
follows: U, = {X}; given %, set

ou,'(={UﬂGkZ Ue ouk}U{U\Gk: eruk}.

Then %, is disjoint and %; c . By 2E(a) we can find a finite disjoint family
Uy 1 < 9* such that every member of %, is a union of members of U,.,,. It is
easy to see that this process produces a sequence satisfying (i)—(v).

As for (vi), given x € H € ¥, take j <k e N such that

F(x)cint F(x)c F(x)c H.

Set 6 =min{o(U, V): U, Ve, UNV=2}>0. If o(y, x)<$é, take U,V e
%, such that xe U, y e V; then o(UNV)<bso UNV #P. Now U c F(x) so
VNint F(x)#@ and V N F(x) #J. But we have V c V' for some V'e %, in
which case V' N F(x) #J and Ve F(x); thus y € F(x) c H.

This shows that H o {y: o(y, x) <&} is a neighbourhood of x in &,. As x and
H are arbitrary, T c I,,.

3G. THEOREM. Let X be a connected metrizable finite cut space which is
(homeomorphic to) a Borel subset of a complete metric space. Then X is
path-connected.

Proof. The argument will depend on Martin’s theorem that Borel games are
determined [15, 16]. As often happens with arguments of this kind, there seems
to be a choice between letting the details swamp the ideas, and leaving rather a
lot of work to the reader. What I aim to do is to set up an infinite game with
Borel payoff set in which a winning strategy for Player I leads to a path in X and a
winning strategy for Player II would lead to a decomposition of X into
open-and-closed sets.

Of course we know already that X is separable, by 3E. It is convenient to note
at once that, for a metric space, the property of being a Borel set in its
completion is a topological one [14, § 35.IV]. So we may take any metric p on X
defining its topology and X will be a Borel set in the corresponding completion
X,. 1 choose to take for p a totally bounded metric [14, § 22.1I, Corollary 1a}, so
that X’p will be compact. In the discussion below, topological notions such as
closure and boundary are to be taken in X unless otherwise indicated. For A c X,
I will write A~ for the closure of A in i"p, so that A (the closure of A in X) is just
XNA~.

Now take any two distinct points x, y of X and a sequence (% );en as in 3F
above, with the associated family (F;(z))«en zex- Note that G must be connected
for every G € 4* (see the remark following 2E). Now set

Dy ={x,y}UU{3U: Ue U} = {x, y} U (XU %),

so that each D, is a finite set and D, c D, , for each k e N.
By a (1, k)-chain from d to d' I shall mean a finite chain of the form

(dO) Ul: dl: UZ: ooy Um: dm)

where dy=d, d,,...,d,=d’ are distinct points of Dy, U, ..., U, are (not
necessarily distinct) members of U, and d;_,, d; both belong to U; for 1<i<m.
I will say that such a chain is covered by a set Fif U;c Ffor 1<i<k.



SPACES OF FINITE LENGTH 459

Now to describe the game. Player I must begin with the move

(x, X, y),

the unique (I, 0)-chain from x to y. Given that Player I has played, for his kth
move, a (I, kK — 1)-chain (dy, Uy, ..., U,, d,,), Player II must reply by choosing
one of the links (d;_,, U,, d;) from the chain. Player I must now, for his (k + 1)st
move, choose a (I, k)-chain from d;_, to d; which is covered by T;. (Such a chain
always exists because U, is connected and {U: U e %, U c U} is a finite family
of open sets with union dense in U,.)

For any particular play p of the game, write V,(p) for the open set, belonging
to %, in the link chosen by Player II for his (k + 1)st move in that play. Observe
that Vo(p) = X and that V,.,(p) < Vi(p) for every k. Now Player I wins the play
p if Mken Vi(p) # ; otherwise Player II wins.

Let P be the set of all plays in the game, and give it its natural metrizable
topology. To see that the set P, of plays won by Player I is a Borel set in P, note
first that if z € (\cen Vi(p) and H is any neighbourhood of z in X, then there is a
k € N such that F.(z) ¢ H; in particular, V,(p) c H. This means that if p € P, then
inf, . diam, (Vi(p)) = 0. Of course,

P'= {p: p € P, inf diam,(V,.(p)) = 0}
keN
is a G5 set in P. Next, for any p € P’, we have a w, € X, given by
{WP} = m Vk(p)~)
keN

and the map p—w,: P'— X, is continuous. Because X is a Borel set in
X,, Bb={p: peP’, w,e X} is a Borel set in P.

It follows by Martin’s theorem that either Player I or Player II has a winning
strategy. Before tracing the consequences of this dichotomy, I make the following
observation. If Q < P is any closed set, write

W)= N U{Vi(@)" geQ}eX..

Then we have also
w(©@)=U{N W@ ge0}

For suppose that w e W(Q). Then we can find g, € Q such that w € V,(q,)™ for
each k e N. Let g € Q be any cluster point of (g, )«n (here we need to note that
there are only finitely many moves available to a player at any particular point in
the game, so that P is compact); then for any k € N there is an i = k such that the
plays q; and g agree down to Player II's (k + 1)st move, so that we Vi(¢;)"
Vi(q:)” =Vi(q)". Thus w € Vien Vi(q) ™.

Now let us look at what it means for one of the players to have a winning
strategy. The idea of the game is that when Player I offers a chain
(do, U, ..., U, d,,) he is claiming that there is a path from d, to d,, through the
intervening sets and points U;, d; in that order; while when Player II responds
with the link (d;-,, U, d;) he is claiming that such a path will be defective in that
link. I have to show that a strategy for either player will in some sense be
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sufficiently continuous to ensure that his claims can be assembled to form a path
or a disconnection of X.

Case 1. Suppose that Player I has a winning strategy. Let P{ c P, be the set of
all plays in which Player I follows his strategy; then Py is a closed set in P. For
each k € N consider

Ce=U{Vi(p)™: pePr}.

This is a connected subset of X containing both x and y. For if
(do, Uy, ..., U,, d,,) is the (k +1)st move by Player I in any play p € P{, then
every link (d;_,, U;, d;) is a possible response by Player II, so U;” c C, for every i.
Also, every U, is connected so every U; is connected. This means that if
(d, U, d’) is the kth move by Player II in p, then d and d’ belong to the same
component of C,. An easy induction on k now shows that every C, is connected.
Consequently,
W(PH)= C;
keN
is a compact connected subset of X, because (C ).y is a decreasing sequence
of compact connected sets. But also

W(P;')=U[’QN Vi(p)™: pep;*}={w,,: pePllcX.

So x and y both belong to a connected compact subset C = W(P}) of X. By 2A,
C is locally connected; by 3A, it is path-connected; so x and y are joined by a
path in C which is also a path in X.

Case 2. Now suppose, if possible, that Player II has a winning strategy. Let
Pji < P\P, be the set of plays in which Player II follows his strategy; again, Py is
closed in P. Define an equivalence relation on D =|_Jn Dy by writing d ~d' if
either d = d’ or there is a finite chain

d=d0) Ul: dlx ey Umr dm =d'

where for 1 <i<m we have U, € U =Uyen W, di-1 € U, d; € U;, and no play in
P{; has (d;_y, U;, d;) for any of Player II's moves.

Let us investigate the relation ~. First, note that if p € PJ; then (MNien Vi(p) =
@, that is, X N[ en Vi(p)™ =3, so X NW(P}) =. Let z be any point of X.
Then there is a k € N such that z ¢ U {V,.(p)™: p € P};}; because 4, is finite,
there is a connected open neighbourhood H of z which does not meet V,(p) for
any p € Py}; in which case any two members of D N H must be equivalent for ~.
It follows at once that

{int C: Cis an equivalence class in D for ~}

is a disjoint cover of X by open sets. As X is supposed to be connected, we find
that D is itself the sole equivalence class for ~.
In particular, x ~y. Take a finite chain

X =d0) Ul) dl: eeey Umt dm =y

witnessing this, with all the d; distinct. Player I can use this chain to mark out a
play, compatible with Player II’s strategy, as follows. He must of course start with
(x, X, y), to which Player II must respond (x, X, y). Now, given that Player II's
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kth move was of the form (d,, V, d;) where r<s, U,,,U ... UU,cV, and
d; ¢ D, _, if r <i<s, then Player I examines those d;, for r <i <s, which belong
to D,. He will be able to use all of these to form the unique (I, k)-chain with links
of the form (d;, U, d;) where U;,; U ... UU,c U c V. He takes such a chain for
his (k + 1)st move. Now sooner or later this will lead to Player II being
confronted with a (I, k)-chain in which all the links are of the form (d;_,, U, d;).
But the d;, U; were chosen among those links which he has renounced for any
move; and his strategy breaks down.

So Player II does not have a winning strategy, Player I does have a winning
strategy, and there is a path from x to y in X. As x and y are arbitrary, X is
path-connected.

3H. ReMARKs. In 4M below I give an example of a connected finite cut
subspace of R? which is not path-connected. Under special axioms the hypothesis
‘X is Borel in its completion’ can be materially relaxed, since X and P; are of
virtually the same type by the criteria of descriptive set theory, and it appears
consistent to suppose that there are many more determined games than the Borel
games (see [18, Chapter 6]). Note that R. L. Moore, building on a construction of
B. Knaster, gave an example of a connected locally connected K, subset of the
plane which is not pathwise connected ([17, 13]; see also [11; § 3-8]); thus in 3G
we really need to know that X is a finite cut space.

4. Connected spaces of finite length

I turn now to the special properties of spaces of finite length. By 1C, we can
use all the results of §§2-3. But we have in addition some remarkable
interactions between the length measure and the topology which lead us to an
effective structure theory for these spaces.

The starting point is M. Bognar’s theorem that a connected set must have the
same length as its closure (4A(c)). Next, the length measure on a connected set
defines an intrinsic distance (4B) which has a variety of useful properties
(4C-4F). The ‘structure theorem’ is 4G—4H; it gives an effective description of
connected spaces of finite length enabling us to draw 41-4L as straightforward
corollaries. I end with an example (4M) of a connected space of finite length
which is not path-connected; the example seems to demand the ideas of 4G.

4A. ProrosiTiON. Let (X, p) be a metric space and C c X a connected set.
(a) u,(C)=diam,(C).

(b) If uy(C) < then C is totally bounded.

(c) In any case, p,(C)= puy(C).

Proof. (a) If xe C, then y—p(y,x): X—R is a Lipschitz-1 map onto an
interval I of R; writing A for Lebesgue measure, we have

sup p(y, x)=Al<puy(C)

by 1A(e); as x is arbitrary, diam,(C) < u;(C).
(b) If x e C and 0< € <sup,.c p(y, x), then

_yrp(y,x): CNU, €)= [0, ¢
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is surjective; where U(x, €)= {y: p(y, x) < e}. Consequently (as in (a))
ua(CNU(x, e))=e.

But note also that the open sets U(x, €) are p,-measurable (see 1A(a)).
Consequently, if x,, ..., x, are points of C which are at least a distance 2¢ apart,
so that the balls U(x;, €) are disjoint,

uHO)= T pAC N U, €)),
and n + 1< u,(C)/e. As ¢ is arbitrary, C must be totally bounded.

(c) (This is the main theorem of [1]; but I give a shorter proof.) We may
suppose that u;(C) < and that C# . Fix ¢>0. Let E 2 C be a G; set such
that u,(E)=p;(C) and Fc E a closed set such that u,(F)= u,(E)— ¢ (see
1A(a)), so that u (C\F) <e.

Take neN and set G,={y: p(y, F)<2™"}. Take any & belonging to
]0, min(e, 27")]. Let {x;);; be a maximal family in C\G, subject to the condition
that p(x;, x;) =20 if i #j. I claim that #(I) < /6. To see this, we may of course
suppose that #(I)=2. For each iel, set C;={x: xeC, p(x, x;)<d}; then
C;# C, so the Lipschitz-1 function x — p(x, x;) takes all values in ]0, 6[ on C;,
and p;(C;) = 6. As in the proof of (b), we get

s#()< 3 uiC)=m(J C) <mc\p) <e,

which is what I said.

Now set B;={x: p(x,x;))<28} for each iel; we have diam,(B;)<46
for each i, and C\G, € Uces B;, Lic;diam,(B;) <4#(I) <4e. As 4 is arbitrary,
#,(C\G,) <4e. As n is arbitrary, u,(C\F) <4¢ and

o (C) < p,(F) +4e<p,(E) +4e = u3(C) + 4e.
As ¢ is arbitrary, pu,(C) = u}(C).

Remark. For a stronger form of (c), see Corollary 41 below.
4B. We now have a result paralleling 3B above.

THeEOREM. Let (X, p) be a connected metric space of finite length. Define
o: X X X— R by setting

o(x, y) =inf{u;(C): Cc X is connected, x, y € C}.
Then o is a metric on X, equivalent to p, and p; = ;.

Proof. (a) Of course o is a pseudometric, and o(x, y) = p(x, y) for all x, y, so
o is a metric. If x € X and £ >0, let U be an open p-neighbourhood of x such that
po(U)<e. Let V be the component of U containing x; by 2A above, V is a
neighbourhood of x, and o(x, y) < u,(V) < € for every y € V. This shows that o is
p-continuous and defines the same topology on X.

(b) Because p <o, u,(A)=<puj(A) for every A c X. On the other hand, given
AcXand o> pupy(A) and 6 >0, set

% ={G: G =X s open, 3G is finite, u,(G) < 4}.

Then ¥ is a base for the topology of X. Let (G,),.n be a sequence in ¥;
covering X, and set H, = G,\U;, G; for each i <n; then every H, belongs to %;
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and D =X\U,en H, €Unen G, is countable. Because every H, is p,-
measurable, Y,cnpp(ANH,)=pu,(A\D)=pu;(A)<a. Choose open sets H,
such that AN H, c H, < H, for each n and ¥,y 4,(H,) < a. Let % be the set of
components of |,y H,; then each member of  is open, so ¥ is countable, and
also every member H of # must be included in some H,, so diam,(H)<
u,(H)<9d. Now #'=H U {{x}: xe D} is a countable cover of A by sets of
o-diameter at most 8, and

Y diam,(H) = HEW diam,(H) < HEW pu,(H) = % u,(Hy) < .

Hed'

As & is arbitrary, u5(A) < a; as A and « are arbitrary, ug <, and pj = u;.

ReMARK. The move from p to ¢ evidently corresponds to re-parametrizing an
arc by its arc-length distance. For compact X this is due to [5].

4C. DeriNiTiONs. Let (X, p) be a metric space.
(a) I say that (X, p) has the almost geodesic property if

p(x, y) =inf{u,(C): Cc X is connected, x, y € C}

for all x, y € X. Observe that if o is constructed by the process of 4B then (X, o)
necessarily has the almost geodesic property.

(b) A geodesic in X is an arc I' such that the length of I' (necessarily equal to
©o(I), see 1A(d)) is precisely the distance between the two endpoints of I'. Note
that any subarc of a geodesic is again a geodesic.

(c) I say that (X, p) has the geodesic property if for any distinct x, y € X there
is a geodesic with endpoints x, y.

ReMark. For compact X, the geodesic and almost geodesic properties (which
by 4D below coincide) correspond to p being ‘convex’ in the sense of [5].

4D. ProrosiTioN. If (X, p) is a compact metric space with a dense subset Y
which has the almost geodesic property then X has the geodesic property.

Proof. Let x, y be distinct points of X. Let (x,)ncn, {¥n)nen b€ sequences in Y
converging to x, y respectively. For each n € N let C, be a connected subset of Y,
containing x, and y,, with uz(C,)< p(x,, y,)+27". Then C, is a compact
connected subset of X with u,(C,) = u;(C,) < p(x,, y.) +27", by 4A(c).

By 3.16-3.19 of [7], there is a compact connected set C < X, a cluster point of
(C, ) nen for the Hausdorff metric on the space of closed subsets of X, containing
both x and y and with u,(C) <liminf,_. u,(C,) = p(x, y). (The arguments of [7]
are cast for subsets of R"; but of course they apply equally well in any compact
metric space. See also 5C below.) Now by 2B and 3A, C is path-connected, so
there is an arc I’ ¢ C joining x and y; the length of I" is u,(T) (by 1A(d)) and must
be exactly p(x, y).

4E. CoroLLARY. If (X, p) is a connected metric space of finite length and o is
constructed as in 4B, then the completion of (X, o) has the geodesic property.

Proof. Because p,(X)= p,(X) <, (X, o) is totally bounded (4A(b)) and its
completion is compact; now 4D gives the result.
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4F. LemMma. Let (X, 0) be a metric space with the almost geodesic property, and
(X,, 0) its completion. Then (X,, 0) has all the properties of 3B(b)—(c) above.

Proof. These properties were all deduced from the first, that Uy(x, ) is
connected for every x € X, & > 0. But in the present context

Ux(x, a)=J{C: Cc Xis connected, x € C, u,(C)<a},

so it is surely connected.

4G. THEOREM. Let (X, p) be a connected metric space of finite length. Set

Br(X) = {x: there is a connected open set G c X such that
G\{x} is not connected}.

Then Br(X) is a K, subset of X and p,(X\Br(X))=0.

Proof. By 2B and 3C, Br(X) is a K, set, so is u,-measurable. To find
Ho(Br(x)), first take o to be the metric on X defined by the formula in 4B, so that
pp =y and u, = pu,. Let (X,, ) be the completion of (X, o), so that (X,, 8) is
a compact connected metric space of finite length with the geodesic property
(4E).

Now let D ¢ X be a countable dense set and for each pair y, z of distinct points
in D choose a geodesic I'y, from y to z in X,. Set

Y=U({T,.;: y,zeD,y+#z};

then (ignoring the trivial case in which D is a singleton) Y is a dense connected
subset of X, so we have

1a(Y) = pa(X,) = u3(X) = po(X) = p,(X),

using 4A(c) twice.

The point is that if T is any geodesic in X, then us(I\Br(X)) = 0. To see this,
let u and v be the endpoints of T, and take £ >0. Let V oT be an open set in X,
such that u3(V\I') < €. Define h: X — T by saying that h(x) is that point of T for
which o(u, h(x)) = min(o(u, x), o(u, v)), for each x € X. Then h is Lipschitz-1,
so us(h[V\I']) <¢, by 1A(e). Set A=h[V\['JU {u, v}. Take any w e '\A. Let
6 >0 be such that V; = {w": &(w’, w) <8} c V. Then

{w: w eV, h(w)=w}={w},

so V;\{w} is not connected and its dense subset (X N V;)\{w} is not connected.

But (as remarked in 4F) X NV, is a connected open set in X, so w € Br(X). Thus

INA cBr(X), and u3(I\Br(X)) < u3(A) < e&. As ¢ is arbitrary, us(I\Br(X)) =0.
Because Y is a countable union of geodesics, u;(Y\Br(X)) =0 and

Ho(X\BE(X)) = 11, (X\Br(X)) = (X \Br(X))
< (X, \Br(X)) = u5(Y\Br(X)) =0,
as claimed.

4H. ReMARKS. The theorem 4G, as stated, is sufficient for the corollaries
below. But to gain a mental picture of these spaces, it seems useful to look at the
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set YgX’a of the proof. This is a countable union of arcs, each of which has
almost all its points (as measured by u,, which along the arc is the natural copy of
Lebesgue measure) in X, and indeed almost all these points are ‘local separating
points’ in X, disconnecting some open set. The proof of 3C gives us just a little
more: if % is any base for the topology of X, then each local separating point of
X disconnects some (component of some) member of %. If we think of Y as a
countable union of arcs of which any two intersect at most in an endpoint of one
of them (see [7,3.13-3.14]), we get the kind of picture arising in Example 4M.

41. CoroLLARY. Let (X, p) be a metric space and C = X a connected set with
1y(C) <. Then C is p,-measurable and pu,(C\C) = 0.

Proof. Applying 4G to (C, p | C?) we see that there is a K, set Bc C
with u,(C\B) =0; now B is u,-measurable so C also is. Accordingly 4A(c) tells
us that u,(C\C)=0.

4]. CoroLLARY. Let (X, p) be a metric space and C = X a connected set with
u;(C)<°°. Then C is a ‘regular 1-set’, that is, it is p,-measurable and, writing
U, @) ={y: p(y, x)<a}, we have

. wp(CNUKX, o) .. u(CNU(x, o))
lim =lim — =
«l0 2« «lo diam,(C N U(x, a))

for u,-almost all x € C.

Proof. We may suppose that X is complete. In this case Cis compact (4A(b)),
so the arguments of [7, § 3.2] tell us that C is a regular 1-set. But as u,(C\C) =0,
it follows at once that C is a regular 1-set.

4K. CoroLLARY. Let (X, p) be a connected metric space of finite length. Then
U, is inner regular for the compact sets, that is, is a Radon measure in the sense

of [9].

Proof. Because p, is certainly inner regular for the closed sets (1A(a)), 4G
shows that it will be inner regular for the K, sets, and therefore for the compact
sets.

4L. CoroLLARY. Let (X, p) be a metric space of finite length, (Y, ¢) any metric
space, and f: X —Y a Lipschitz-1 function. If E c X is p,-measurable and lies
entirely within one component of X, then

y=#YENf[{y}]): Y>NU{x)
is p,~-measurable.
Proof. We may of course suppose that X is itself connected. By 4K there is an

increasing sequence (K, ),n of compact subsets of E with lim,_... u,(E\K,) =0.
Let % be a countable base for the topology of X. Set

g () =#*(K.Nf[{y}), g =#*ENf{y}]D



466 D. H. FREMLIN
foryeY, neN. Then {y: g.,(y)=k} is just
{y: AU, ..., Uy € U such that U,N U; =D Vi+#j, y ef[K, N U] Vi},

so is K, and u,-measurable, for every n, k € N. Thus each g, is u,-measurable.
Now

{y: g(y)¢§gggn(y)}§f[E U K,.]

is u,-negligible because f is Lipschitz-1 and E\U,n K, is p,-negligible (1A(e)).
So g is also u,-measurable.

4M. ExampLE. There is a subspace X of R?, with p%(X) <, where p is the
usual metric of R?, such that X is connected but not path-connected.

Proof. (a) Construct sequences (s;);en, (S;)ien such that

soeR?,

S, is the circle centre s; radius 27,

§; € I<'Slifl>0’

S; N {s;: jeN}is dense in §;,
for every ieN. Set Y=J,nS;; then Y is a connected subset of R? and
u,(Y)=4x <o Set Z=Y; then Z is a compact connected subset of R? and
1o(Z) = p,(Y) <, by 4A(c).

Consider B =Br(Z), in the notation of 3C and 4G. Then u,(B) = u,(Z). Let
A = Z\B be a Bernstein set in Z\B (that is, such that A and (Z\B)\A meet every
uncountable Borel subset of Z\B). Try X =BUA. Then Bc X = Z so u,(X)
exists and is finite.

(b) Suppose, if possible, that X is not connected. Then there are disjoint
relatively open sets G, H< Z such that X c GUH and X NG, X N H are not
empty and G = Z\H. Examine 3G = G\G c Z. As this is disjoint from X it meets
neither B nor A. But it is compact so it must be countable. Also it is not empty
(because Z is connected) so it must have an isolated point z say. Because Z is
locally connected (2B), z has a connected neighbourhood U such that UN oG =
{z}. Then U meets both G and H and U\{z} c G U H so U\{z} is not connected
and z € Br(Z) = B, which is absurd.

(c) Suppose, if possible, that X includes some arc . Then I'\B is a Borel
subset of Z included in A, so must be countable; because B is K, there must be
an arc I';cI'NB. Recall that by the argument of 3C, B =Br(z) may be
constructed as |_yeq Bro(U) where 4 is a countable base for the topology of Z
consisting of sets with finite boundary; again because every Bry(U) is K, there
must be a U € ¥ and an arc I’ c I, N Bry(V).

Next observe that there is an arc I'; = I, which is a subarc of a closed Jordan
curve S c U. For there is surely a j € N such that u,(I',N §;) > 0.

(i) If S; and I'; share any arc, then this arc will contain infinitely many points s;,
and there will be circles S; € U which meet I', twice or more, so that consecutive
points of I', along S; will serve as endpoints of I';.

(i) If S; and ', do not share any arc, then S\I'; must have infinitely many
components; all but finitely many of these must lie within U, so that the
endpoints of one of them will serve as endpoints of I';.
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The set U\I'; is an open set in the locally connected space Z, so has only
countably many components. For each component C of U\I';, C is relatively
open in Z and relatively closed in U\I';, but cannot be relatively closed in U,
because U is connected; so C N T3 # . There is therefore a countable set D = I's
such that C N D # @ for every component C of U\I';. Let z be any point of I';\D,
and examine the components of U\{z}. If C is a component of U\{z}, then
either S\{z} cC or (S\{z})NC =(; but the latter is impossible, because it
would force C to be a component of U\, in which case C N D would have to be
non-empty, so that C would meet S\{z}. So in fact U\{z} has only one
component, and z ¢ Bry(U); but U was chosen with T, so that ', ¢ Bry(U).

Thus we have a contradiction, resolvable only by abandoning the idea that
there is an arc ' c X.

(d) Assembling (a)—(c) we see that X has the required properties.

S. Embedding theorems

I give some results to show that spaces which are topologically of finite length
can be expressed as subsets of ‘good’ spaces.

5A. Lemma. Let (X, p) be a non-empty metric space of finite length. Then there
are a metric o on X and a sequence (C,),.n of components of X such that

0 is equivalent to p;

Unen C,, is dense in X;

anl O(Cn’ Ui<n Cl) <

po(C,) = u,C, for each n e N.

Proof. If X has only finitely many components, this is trivial; so suppose
otherwise.

(a) Take 9, 9* and (U )xen from 3F. Set U =Upen U, D = Uyea OU. Then
there is a family (¢ ) ycq such that

ty € U for every U € U;

if U, VeWUand UcV and t, € U then t, =1ty;

if Ue U and 83U # J then ¢, € 3U.
For we may choose {t,)yca, for each k in turn, taking care that

if UeU, VeU_, UcVandt, eUthenty,=t,;

if U € U, and either k =0 or t, ¢ U, where V is the member of U, _, including

U, and if UN D # @, then t, € UN D is taken to minimise

min{j: AW € U;, t, € W},

if ¢, cannot be chosen by either of these rules (so that, in particular, 3U = ),

any ty € U is taken.
It is straightforward to check that this construction works.

(b) Now let € be the set of components of X containing some f,. Then
Y=U%2{ty: UeU} is dense, so 4 must be infinite. We may enumerate € as
(C,)nen in such a way that for each k € N the set

{l AU e Oltk, ty € C,}
is of the form {i: i <n} for some n. (The point is that

{tU: Ue ollk} c {tU: Ue ouk.,.]}
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for each k.) In this case we find that, for each Ue U, neN,
tyeC, & n=min{i: C;NU+#Q},

since if C;NU+#Q either C;N3U#J, so that t,eC;, or C;c U, so that if
ty € C;either ty=ty, and i=n, or V ¢ U;<, ¥, and i >n.

Observe in particular that ty € C,,.

We need also to know that if U € % and t, € C, then U N C, is connected. For
if U+ then AU lies within a single component C of U and t, € dU, so
UcCcC, and C,N U =C is connected; while if 3U =& then C,c U and
C,N U= C, is connected.

(c) For each n=1, choose U,, U,, s, and s, as follows. Take the first k such
that C, N {ty: Ue U} # D, and take U, € ¥, such that ¢, € C,; sets, =1ty ; now
observe that k >0 because n >0, so that we may take U, to be the member of
Uy -, including U,, and set s, =1,.. I seek a metric o, equivalent to p, such that
0(S,, s,)<27" foreachn=1.

(d) Set

R= U (Cx C)U{(sn s1): n=1}U{(sn, 50): n=1},

so that R is a symmetric subset of Y X Y. Observe that if Ue % and C, is the
component of X containing ¢, and x € U\C,, (x, y) € R then y € U. For we know
that dUcC,. If x and y belong to the same C,, then C,N3U=O so
y € C,, c U. Otherwise, we have {x, y} = {s,,, 5,,} for some m. Now if V is any
member of % such that t, e U\C,, then t, e VN U, so VNU#J and either
VcU or VoU,; but the latter is impossible, because t, #t,, so V cU.
Accordingly, if x =s,, = ty,_ € U\C,, then U, cUso U,,c Uandy =s,,= ty, € U;
while if x =5, =1y, € U\C, then U,,c U,,cUand y =5, € U.
(e) Define 6: Y X Y — [0, =] by setting

0(x, y) =inf{p,(C): C < X is connected, x, y € C}
if x and y belong to the same C,,,
0(s,, s;)=0(s,,s,)=2""
ifn=1, and
B(x,y) =

if (x, y) € (Y X Y)\R. Note that 6 } C, X C, is a metric on each C,, as in 4B. Now
define 0,: Y X Y— [0, ] by setting

oo(x, y) = inf{Z 0(x;, Xi1): X0y ooy X, €Y, X0=2X, X, =y}.
i<n
Of course ay(x, z) < go(x, y) + 0o(y, z) for all x, y, z €Y.
(f) f Ue U and y e UNC,, then

Uo(tu, y)s 2 ﬂp(l-jn C,) + z {Z-i: 1 Sl$m, Si,y S,( € 0};

the proof is a simple induction on m. For we know that if ¢, € C, then we must
have m=n, and either m=n and oy(ty, y) <0(ty, y) <u,(UNC,), because
UNC, is connected, as remarked in (b), or m>n and C,, c U, so that s,, € U,
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s, e UNUicn C; (see (d)) and, using the inductive hypothesis to bound
oo(ty, Sim), We have

OO(tUr y) = OO(tU: S,:,,) + e(s:m sm) + e(sm: .Y)
<O u0NC)+2 {27 1<i<m,s;,s;e U} +27™ +p,C,,

i<m

=> u,(ONC)+ 2 {27 1<i<m,s, s e U).

ism

Consequently
diam, (UNY) <2<yp(l7) +2 {27 i=1,s5,s] € (7}).

(g) In particular, o(tx, y)<w for every y €Y, and o, is finite-valued, and
therefore a pseudometric. Also every point of X has neighbourhoods intersecting
Y in sets of arbitrarily small o,-diameter. For given x € X, €>0 there is a
neighbourhood G of x such that

ps(G)+ 2 {27 5,5, € G} <¢;

now there is a k € N such that F(x)= G. If x € 3U for some Ue€ U, then xeY
and oy(x, y) <2¢ for every y € F,(x) NY, so diam,(F.(x) N Y) <4¢e. Otherwise,
F(x) = U for that U € %, containing x, so diam, (F(x) N Y)<2e.

(h) If x, yeC, for some neN, then o(x,y)=6(x,y). For of course
oo(x, y) < 6(x, y). On the other hand, if x =x,, ..., x,,, =y is a chain from x to y
inY, and if T;_,, O(x;, x;41) <, so that (x;_,, x;) € R for each i, then either every
x; € C, so that ¥; ., 0(x;, x;.1) = 0(x, y) (because 8 | C2 is a metric), or there are
first and last j, k such that x;¢ C,, x, ¢ C,. But in this case x;_; =x,,,€C,,
because the linkages between different components of Y formed by the pairs
(> Sr) yield no cycles. So

2 0(x;, x;11) = 0(x, x;—1) + O(xp 41, y) = 6(x, y).
i<m
As Xxo, ..., X,, are arbitrary, oy(x, y) = 6(x, y) and the two are equal.
@) Let U, V € U be such that UNV =@. Then oo(TNY, VNY)>0. To see

this, let C, be the component of X containing ¢, and C,, the component
containing ¢,. Set

d=min({27, 2"} U {p(x, y): x€dU, y e 3V})>0.

Now let xg, ..., x, be points of Y such that x, € U x,eVand ¥, 6(x;, X;41) <o,
Of course (x, 1 X) €R for 1<i<n. Take j, k to be first and last such that
X1 ¢ U and x,_, ¢ V. Then by (d) we must have x; € Cy, x4 € C,,.

If l =m, then

2 0(x;, xi41) = Uo(xj: Xe) = G(xj, Xk),
i<n

by (h) above. But also any connected set containing both x; and x, must meet
both dU and 3V so must have p-diameter at least 6, and 6(x;, x;) =, so that
Licn 0(xi, Xi41) = 6.
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If [#m, we must have at least one of the jumps (s, s;), (.., S.n) appearing

among the pairs (x;_y, x;) for j <i <k; so in this case
2 0(x;, xi01) =min(6(s, 51), 6(5,m, 5m)) = .
i<n

Because xo, ..., x, are arbitrary, we have oo(UNY, VNY)=86>0, as
required.

(j) From (f) we see that there is a unique extension of o, to a pseudometric o
on X which is continuous with respect to p; that is, the topology &, defined by o
is included in the original topology &,. But now observe that if Ue % then UNY
is dense in U. Accordingly, o(U, V)= 0(UNY, VNY)>0 whenever U, V € U
and UNV =, by (i). By (vi) of 3F, £, Z,.

(k) Thus o is equivalent to p. We already know that |,y C, is dense in X.
Next,

> O(C,., ’% C,.) < 05, sp)< D, 27" <,

n=1 n=1 n=1

Finally, o agrees with 8 on each C,; but by 4B it follows that ug agrees with uj
on each C,, so that u,(C,) = u,(C,).

5B. THEOREM. Let (X, p) be a metric space of finite length. Then X is
homeomorphic to a subset of a compact connected metric space of finite length.

Proof. We may of course suppose that X #JJ. By SA, we may find a metric ¢
on X, equivalent to p, and a sequence (C,),n Of components in X such that
Unen Ca is dense, L,z 0(Cy, Uicn CG) < and u,(C,) = u,(C,) for each n.
Choose (s,)n=1, {(Sn)n=1 such that s, € C, and s, €<, C; for each n=1 and
Y.s10(s,, s,) <. Take W to be X U|,=-, I, where each T, is a new arc drawn
from s, to s,. Let T be a metric on W, extending o, and giving length o(s,, s,) to
eachT,. If we set Y' = U en Co U Un=1 T, then Y is a dense connected subset
of W and

p(Y') = Z ko (Cp) + 2 0(Sn, Sn)

nz=1

_z“p(c)"-za(sm )<°°
n=1
By 4A(c), (W) <. So (W, 7) is totally bounded (4A(b)) and its completion
(W,, t) is compact; moreover, uy(W,) < by 4A(c) agam and W, is connected
because it has a dense connected subspace Y'. Thus W, is a compact connected
metric space of finite length in which X is homeomorphically embedded.

5C. The next lemma seems interesting enough to be worth giving in greater
generality and precision than is quite needed here. It complements Theorem 3.18
of [7].

LEmMMA. Let (X, p) be a metric space, Y = X. Suppose that o =0 is such that
whenever ¥ is a finite family of open sets in X, all meeting Y, there is a connected
set C c X, meeting every member of ¥, such that p,(C) < a. Then py(Y)< a.



SPACES OF FINITE LENGTH 471

Proof. We may suppose that X is complete and that Y #(J. Now Y is totally
bounded. For given £>0, let (y;);.; be a maximal family in Y such that
p(yi, ;) =2¢ whenever i#j. Then for any 6€]0, ¢, finite JcI, we may
consider # = {U(y;, 8): i eJ}, writing U(y, y)={x: xe X, p(x,y)<y}. If Cis
any connected subset of X meeting every member of , then (unless J is a
singleton) uy(CNU(y;, €))=¢€~ d for each ieJ; so uy(C)=#(J)(e — 6). But
we are supposing that such a C can always be found with p,(C) < a, so we get
#(J) <max(1, a/(¢ — 6)). Because J and 6 are arbitrary, #(I) <max(l, a/¢).
Because ¢ is arbitrary, Y is totally bounded.

Now let 6 >0. Set n=6/(1+3a6™")> 0. Let ¥ be a finite open cover of Y by
sets of diameter at most 7, all meeting Y. Then there is a connected set C c X,
meeting every member of %, with u,(C) < a. We know that u,(C) < a (4A(c))
so that C is a finite cut space (1C) and locally connected (2A) and pathwise
connected (3A). Accordingly there is a tree F ¢ C meeting every member of ¥
(as in the proof of 3.18 in [7]). Now we may express F as |_;<; F; where

diam,(F)<¢6 for each i<k,
_Zc diam, (F) < p,(F) < Mp(C) sa,
k<1+386'u,(F)<1+3a8™!
[7, Lemma 3.17]. Set

E;={y: p(y, E)<2n}
for each i <k. Then
.L<JkE,-={y: p(y, F)<2n}oU#2Y,
diam,(E;) < diam,(F) + 4n <56 for all i <k,
Y, diam,(E;) <d4nk + >, diam,(F) <4n(1+3ad™") + a = o + 44.
i<k i<k

As 4 is arbitrary, u,(Y) < a, as claimed.

5D. Lemma. Let (X, o) be a compact metric space of finite length with the
geodesic property and A ¢ X a non-empty finite set. Then we may find a connected
compact K c X and a Lipschitz-1 function g: X — K such that

(i) AcK,
(ii) g(x) =x for every x € K,

(iii) g7 [{a}] ={a)} for everya€c A,
(iv) po-almost every point of K has an open neighbourhood in K homeomor-
phic to the open interval 10, 1[.

Proof. If #(X) =<1, this is trivial; so let us suppose that diam,(X) > 0.

(a) First note that there is a countable compact set F < X such that whenever
aceA, xeX\{a} there is a yeF with o(x,y)<o(a, y). To see this, set
¥, = diam,(X)/(V2)" for each neN, and choose for each aeA, neN an
®n € |Yn+1, ¥a] such that F,, = {x: o(a, x) = a,,} is finite; such an «,, will always
exist by 1A(e). Set F=AUU,canen Fon; then F is countable and compact
because A is finite. If a € A, x € X\{a}, let n be such that y,,, < o(x, a) <7y,. Let



472 D. H. FREMLIN

I" be a geodesic from a to x, and let y be the point of I such that o(a, y) = &, .+,
Then yeF and o(a,x)<7v,=2y,,,<20(a, y), while also (because T is a
geodesic) o(a, y) + o(y, x) = o(a, x); so a(x, y) < o(a, y).

(b) Consider the family & of all Lipschitz-1 functions f: X — X such that
f(y) =y for every y € F. Then ® is a compact subset of the space of all continuous
functions from X to itself with the topology of uniform convergence, and
composition is continuous on ®; moreover, the map f+— f[X] is a continuous
function from @ to the space # of compact subsets of X with the Hausdorff
metric. Because composition is continuous on @, the set ®, of idempotent
functions (i.e., functions such that fof =f) is closed in ®. Accordingly,
{f[X]): f € Do} is a compact set in ¥ and must have a minimal member K take
g € ®, with g[X] = K. Observe that if a € A and x € X\{a}, there is a y € F which
is nearer to x than to a; but g(y) =y, so y is also nearer to g(x) than to a, and
g(x) #a. Thus g~ '[{a}] = {a} for every a € A.

(c) I have still to prove (iv). If x and y are distinct points of K, there is a
geodesic I from x to y in X. But because g is Lipschitz-1 and g(x) =x, g(y) =y,
g['] must be a geodesic from x to y in K. Thus K has the geodesic property.
Being separable, it has a dense connected subset Y which is a countable union of
geodesics (as in the proof of 4G), and u,(Y) = u,(K) by 4A(c). Thus u,-almost
every member of K lies on a geodesic in K.

(d) Now let T be any geodesic in K, and £€>0. Let V be an open
neighbourhood of T' in X such that u,(V\I')<e and 3V is finite. (The first
condition is satisfied by any neighbourhood small enough, and the second is
achievable because X is a finite cut space and I' is compact.) Take x,, x, to be the
endpoints of I and let ~: X —T be the Lipschitz-1 function defined by saying
that

h(x)eI, o(h(x), xo) = min(o(x, xo), o(x;, xo)) for every x € X.

Then u,(h[V\I'])<e and h[F] is countable so there is an open set H 2
A[(V\[)UF]U {xo, x;} with p,(H)<e The components of HNT are all
intervals in ', with lengths totalling at most &. Let E be the union of all those
components of H NI which meet A[FUJV]U {xo, x,}; because FUJIV is
compact, E is a finite union of connected sets, and u,(E) = p,(E) < u,(H) <e.

(e) Let y be any point of I'\E. The component J of I'\E containing y is an
interval in T; let y,, y, € E be its endpoints. Note that neither belongs to H, so
that V N~ [{y:;}] = {y:} for both i; also 3V Nh~'[J] =, so

VAR TI=V ™' T U {yo, yi 1= (VORI U {30, y1}-

Examine W=V N h~'[J]. Because J is relatively open in I, W is open in X;
and W < V NA™'{7]= W U {yo, y.}. Thus 8W = {yo, ).
(f) We may therefore define g,: X — K by setting

_[&(x) if g(x) e X\W,
8= {Fet) et

and g, will be continuous. In fact, g, will be Lipschitz-1, because g and 4 and heg
are Lipschitz-1 and X has the geodesic property, so that if z €g '[X\W],
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z' eg~'[W] then

o(z, 2') = 0(g(2), 8(z"))
= min(0(g(2), yo) + 0(yo, 8(z")), 0(g(2), y1) + a(y1, 8(z")))
= min(0o(g1(2), yo) + (yo, 81(2")), 0(81(2), 1) + 0(, 81(2")))
= 0(8:(2), 8:(z")).

Furthermore, g, is idempotent. For if x € g~'[X\W], then g,(x) = g(x) e X\W,
s0 g(g1(x)) =g(x) e X\W and gi(x) =g(x) =g,(x). While if xeg™'[W], then
g1(x) = h(g(x)) eT = K, 50 g,(x) =g(g:1(x)) = h(g(g1(x))) and gi(x) = g,(x).

Finally, if x € F, then g(x)=x¢ W, because JNh[F]=T, so FNW =0,
Putting these together, we have g, € ®,. Also, g,[X] < K. By the choice of K, we
must have g,[X]= K. Now consider KNW. If xe KNW then g(x)=xeW so
gi(x) =h(x) eT; but also g;(x)=x, because g, is idempotent. Thus KNW cT
and J=TNW=KNW is a relatively open set in K, containing y, and
homeomorphic to ]0, 1[.

(g) Thus if we write M for the set of points in K which have relatively
open neighbourhoods in K homeomorphic to ]0,1[, we see that I\Ec M
and ui(M\M)<u,(E)<e As ¢ is arbitrary, u,(I\M)=0; as T is arbitrary,
uo(K\M) = 0.

This completes the proof.

SE. LEMMA. Let (X, p) be a compact connected metric space of finite length and
B = R? an open ball. Suppose that I c X is a finite set and h: [— 3B an injection.
Let €>0. Then we can find f, {B;);n such that

(i) f: X— B is a continuous function;
(i) f~'[8B]) =1 and f extends h;
(iil) each B; is an open ball included in B;
(iv) B,NB;=( for i #j;
(v) Liendiam(B;) <¢;
(vi) for every i eN, f~'[B] is connected, diam,(f"'[B;])< ¢ and f~'[3B}] is
finite;
(vii) f 1 X\f 7 '[Uien Bi] is injective;
(viii) f[X]\Uien B; can be covered by finitely many straight-line segments, none
perpendicular to any axis of R>.

Proof. (a) The result is trivial if #(X) <1; so let us suppose henceforth that X
has more than one point.

Let o be the metric on X constructed by the method of 4B. Then (X, o) has the
geodesic property (4E). Note that p<o. Let 8 be such that 0<§=<1ig,
6 <diam,(X) and 8 < o(x, x') for all distinct x, x' € I.

(b) Let A c X be a finite set, with diam,(A) > &, such that I c A, o(x, A) <6
for every x € X, and any connected set C including A has u,(X\C) <4 (using
5C). Let K, g be obtained from X, 0, A as in Lemma 5D. Then K =g[X] is
connected, so u,(X\K) < 4. Because g is Lipschitz-1, u,(g[X\K]) <8 (1A(e)).
Write

M = {x: x € K, x has an open neighbourhood in K homeomorphic to 10, 1[},
so that u,(K\M) = 0. Fix on a countable dense set D c K and a point d, € D.
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(c) Let G be a relatively open subset of K, including
(K\M)Ug[X\K]uD U,
and with u,(G) < é. Set
H=\J{V: V cKis relatively open in K, u,(V\G) =0}.

Then H is relatively open in K, u,(H) = u,(G)<4, and V c H whenever V c K
is relatively open and u,(V\H) =0.

(d) Because K is locally connected (2A), the components of H are relatively
open in K. If x, x' are distinct points of I, then o(x, x') > 6 = u,(H) = diam,(C)
for each component C of H, so x and x’ must belong to distinct components of H.
Enumerate I as (x;);<,.. Because K\M is compact, it is covered by finitely many
components of H; enumerate the components of H meeting (K\M) U I U {d,} as
(H;);<, where n=n' and x; € H; for i <n’.

Choose open balls B;< B, for i<n, such that their closures are disjoint,
diam(B;) <2~"~'¢ for each i, and for i <n’ the ball B; is internally tangent to B at
h(x;) € 3B.

(e) Now consider K' = K\, H;. This is a compact subset of M, so each of
its points lies in a relatively open subset of K homeomorphic to ]0, 1[, and there
is a finite cover (E;);<,, of K' by relatively opeh subsets of K\{d,}
homeomorphic to ]0, 1[. Observe that the union of two such sets cannot be
homeomorphic to the unit circle §', because it would then be a proper
open-and-closed subset of K. Consequently, if two of the E; meet, their union is
also homeomorphic to ]0, 1[, so we may take it that the E; are disjoint. If C is any
connected relatively open subset of K, and j <m, then E; N C is either an open
interval in E; or the union of two open intervals, one at each end of E;. In any
case, dx(E; N C), the boundary of E; N C in K, is finite. So

Cc U 3k(E;NC)
j<m

is finite for every component C of H.

(f) If Cy, C, are distinct components of H then their closures are disjoint. For
otherwise there is a point x € 9xCyN 3xC,. Now x € E; for some j<m and
CoN E;, C; N E; must include open intervals in E; abutting at x. Thus x belongs to
an open interval V c E; such that V\(C,U C,) = {x}. But now V is relatively
open in K and u,(V\H) =0 so that x € V < H, which is absurd.

(g) SetJ =;<, 9¢H;. Then J is finite, and each point of J belongs to dxH, for
exactly one i <n. We may therefore choose a function h,: J U I— B such that A,
extends h, h, is injective and h,(x) € BN 3B; whenever x € xH;. (Of course
INi=@.)

Examine K'=Uj<m E\Ui<, H; again. Each E\U,;., H; is a finite disjoint
union of arcs with endpoints in J, so we may express K' as |_J;.,; ', where the T,
are disjoint arcs. For each k </ let u,, u; € J be the endpoints of I',. Choose a
disjoint family (A, )., of polygonal arcs in B\\_,-, B; such that, for each k,

(i) the endpoints of A, are h,(u,), hi(u;),
(ii) no line segment of A, is perpendicular to any axis in R?,
(iii) Ax NUicn B; = {h1(we), hy(ur)} precisely;
there is room for these because all the B; are disjoint (and we have three
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dimensions to move in). Note that as p,(H)< é <diam,(A)<diam,(K) <
us(K), we surely have [ > 0.

(h) Now enumerate the components of H\;-, H; as (H,);.,. (They must be
infinite in number because D c H is dense in K and p,(H) < p,(K) = u,(H),
while u,(C) = u,(C) for every component C of H, by 4A(c).) For each i =n, H,
is an open interval in exactly one I';; let us define k(i) by taking H; c Ciay. Lety,,
y: be the endpoints of H; in I';;; note that the y;, y; are all distinct from each
other and from the u,, u;, by (f).

Assign in turn, for each i = n, an open ball B; ¢ B and points z;, z; € B in such
a way that

(®) z;, z; are distinct points of Az, belonging to the interior of one of the
straight-line segments constituting Az, and B, is the open ball with these
points as a diameter;

(B) B,NB;=B,NA =D for j<i, k<l, k#k(i);

(Y) BiN Agy is precisely the closed line segment with endpoints z;, z;;

(®) if n<j<iand k = k(i) = k(j), then h(w), z, z|, z;, z;, h(uy) are distinct
and appear in the same order along A as uy, y;, y;, y;, ¥, Ux appear along
| P

(¢) diam(B,)<2"""'e.

Moreover, take care to do this in such a way that A, N ;. B; is dense in A, for
each k </; this will be possible because I', N, H; is dense in T, for each k.

(i) Set K"=K\H; then {y;: i=n}U {y;: i=n} is dense in K", and there is a
unique continuous injection h,: K"UI— B such that hy(y;) = z; and hy(y)) =z}
for every i =n, hy(u,) = hi(u:) and hy(u;) = h,(u;) for every k <I, and hy(x;) =
h(x;) for every i <n'. Observe that h,[',\\H] = A;\U;n B; for every k<I, so
that h5'[0B] = 1.

(j) By Tietze’s theorem, there is for each ieN a continuous ¢;: H,— B;
extending h, | H; and such that ¢;'[8B;]=h;'[3B;]=3H;U (H;NI). Now we
have a common extension ¢ = h, U,y ¢;: K— B, which is continuous because
h, and all the ¢; are continuous and lim,_,.. diam(B;) =0.

Examine the function ¢. We see that

¢~'[6B] =1 and ¢ extends h;

¢~'[B;)=H; for each i e N;

¢~'[6B;]= 6H; U (H;NI) for each i e N;

¢~ '[B]=H\I for each i e N;

¢ | K"UI = h, is injective;

¢[K]\Ui<n B; c Uk« Ac UA[I]. _

(k) We need to know that g~'[H;] < X is connected for every i € N; this is
because dxH; Ng[X\K] =, so that g~'[H;] = H,Ug~'[H,]. But of course any
component C of g~'[H;] must be open in X (because X is of finite length, so is
locally connected, and g~'[H;] is open), so CNH 23C+#@. Thus every
component of g~'[H;] meets H;; because H,; is connected, so is g~ '[H;].

Note also that g[X\K] < H\I, because I c A, so g~ '[{x}]={x} for each x € I.

(1) Now set f = ¢g: X — B. We see that

(i) fis continuous;

(ii) f7'[6B] =g '[{] =1 and f extends h, because g(x)=x for x e I;
(iii) each B, is an open ball included in B;
(iv) B;N B; for i #j;
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(v) Liendiam(B)) < X;n27 e =¢;
(vi) (a) for each i e N, f~![B;] =g '[H] is connected;
(B) for eachieN,
diam, (f~'{B,]) < diam, (g ~'{A])
< po(g T [H]) < po(Hy) + uo(X\K) <26 < 5¢;
(y) for each i eN, f~'[8B;] =g '[(H; N I) U 8H;] = (H; N I) U 8H; is fin-
ite, because g[X\K] does not meet 0H U I
(vii) f 1 XV Uien Bl =f | (X\g ' [H)UI=F | K"UI = h, is injective;
(viii) fIXNUien Bi € Uk<i Ax Uh[I] can be covered by finitely many line
segments, none perpendicular to any axis.
Thus the lemma is proved.

SF. As in 5C, I give a lemma in a form which goes a little further than is
absolutely necessary.

LeEMMA. Let Y c R” be a connected set, where n = 1. Write p for the Euclidean
metric of R". Then

w(Y)< X | #*({y: y()) = o)) oy,
i<nJ%
where [, h(@)da is the supremum of the integrals [ g(«)da as g runs over the
Borel measurable functions with g(«) < h(«) for every a e R.

Proof. (a) For any A c R", set .

YA) =D | #*{a: a€A,a(i)=a})de

i<nJ%

Observe that Yy(AUA')=y(A)+y(A') if ANA'=. I wish to prove that
(V) < W(Y).

(b) Suppose first that AcR" is connected, aeA, 6>0 and that
A ¢ U(a, 6)={x: p(x,a)<b}. Then y(AN U(a, 6))=06. For let n>0, and
consider the sets E; = m;[A N U(a, 8)] for each i <n, where m;: R"— R is the ith
coordinate map. Let C; be the component of E; containing 7;(a). Then there is an
interval J; o C; such that neither endpoint of J; belongs to E; and A(J;) < A(C;)) + 7,
where we write A for Lebesgue linear measure. Set V =("\,., 7~ '[/;]. Then
VNANU(a, 6) is relatively open-and-closed in AN U(a, 6); because A is
connected and not included in U(a, 8), there must be a point

xeVNANU(a, 6)N3aU(a, 6).

But now m;(x) € J; for each i, so

8 =p(a, x)< 2, |m(a) — m(x)| < 2, A(J)

i<n i<n

<nn+ D, AJ(E)<nn+ y(ANU(a, 5)).

i<n

As 7 is arbitrary, we have the result.
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(c) We may suppose that y(Y) <. In this case p,(Y) <. For let  >0; let
(¥:)ies be @ maximal family in Y subject to the requirement that p(y;, y;) =24 for
i #j, and consider y(Y N U(y;, 8)) for each i. We have

v(Y)= 2, Y(Y NU(y, 6))=6#(I),

at least if #(I)>1, and #(I) <max(1, 6 'y(Y)). Now Y c U<, U(y;, 28) and
Lierdiam, U(y;, 20) <46#(I) <4 max(é, ¢(Y)), while diam(U(y;, 26)) <46 for
each i. As d is arbitrary, u,(Y) <4y(Y).

(d) To remove the constant 4, we may argue as follows. Consider the compact
connected set Y. We have u,(Y\Y) =0 (4]), so that

A{a: #*({y: yeY,y()=a)) ##* ({y: y e ¥, y(i) = a})}) < A(m[T\Y]) =0

for each i, and ¢(Y) = y(Y). Now consider any arc I' ¢ R", with endpoints a, b.
Then surely y(I)= X, |a(i) — b(i)| = p(a, b). Breaking I up into subarcs, we
see at once that y(T) is greater than or equal to the length of ', which is just
#,(T) (LA(d)). But now, given 8 >0, we can find a tree F c Y, a finite union of
arcs, with p,(F)= p,(Y) — §; so that

Y(Y) = y(Y) = Y(F) = pp(F) = p,(Y) = 6.
As ¢ is arbitrary, u,(Y) < y¢(Y).
5G. LEMMA. Let Y = R" be a compact connected set. Suppose that for each

i<n the set {y: yeY, y(i)=a} is finite for almost all « €eR. Then Y is
homeomorphic to a subset of R" of finite length.

Proof. We may suppose that Y c|[0,1]". For each i<n, set g(a)=

#*({y: yeV, y(i)=a}). Then g; is measurable (because Y is compact), and
finite almost everywhere, by hypothesis. Define ¢;: [0, 1]— [0, 1] by setting

o) = [ 1+ ap

for each a € [0, 1]. Define ¢: [0, 1]"— [0, 1]" by setting ¢(y) = (P:(y(i)) )i, for
each y € [0, 1]". Then ¢[Y] is homeomorphic to Y, and

f #*({z: ze¢[Y), z(i))=a})da<1
for each i. By 5F, ¢[Y] has finite length.

ReMARrk. The hypotheses of this lemma can be significantly relaxed.

SH. TueoreM. Let (X, p) be a metric space of finite length. Then it is
homeomorphic to a subspace of some compact connected subspace of R* of finite
length.

Proof. In view of 5B, it will be enough to consider the case in which X is itself

compact and connected.
(a) The first step is to construct sequences (A, ),cn, (B.)nen such that, for
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every n e N,
(i) h,, is a continuous function from X to R3,
(i) B, is a family of open balls in R* with disjoint closures,
(i) &, '[B] is connected and h;'[8B] is finite, for every B € %,,
(iv) h, | X\h; [ B,] is injective,

(v) h,[X]\U B, can be covered by finitely many line segments, none
perpendicular to any axis of R?,

(vi) U Br1cU B,
(vii) h,, agrees with h, on X\h;'[U %,],
(viii) h,},[B]=h;"[B] for every B € B,,
(ix) lim,_. ¥ {diam(B): B el ,=, %8,} =0,
(x) lim,_...supzcq, diam,(h;'(B])=0.

Construction. Start with B, an open ball of diameter 1; set %, = {B,} and let
ho: X — B, be any continuous function.
Given h, and %A,, let B, be a member of %, with maximal diameter. Set
X,=h;'[B,], I, =h;'[8B,]. By Lemma SE, we can find (B,;);c, f, such that
() f,: X,— B, is a continuous function;
(B) f:'[8B,]) =1, and f, extends h, | I,;
(y) each B,; is an open ball included in B,;
() BuNB,j=Dif i #j;
(€) Liendiam(B,)<27"71;
(%) for each i €N, f;[B,;] is connected, diam,(f;'[B,;]) <27" and f '[3B..] is
finite;
(n) ﬁl r Xn\f;I[UiEN Bni] iS injCCtive; .
(0) f.[X,]\Uien Bni can be covered by finitely many line segments, none
perpendicular to any axis of R>.
Now set

%n*—l = (%n\{Bn}) U {Bni: l € N}3

h, . (x) =f,(x) forxeX,, =h,(x) if xe X\X,.
It is easy to check that this construction of (h,),.n and (B,).n achieves
(i)-(viii). For (ix), observe that if we set B=\J,n B, = {Bo} U {B,;: n, i €N},

then ¥ z.g diam(B) <2; consequently {B,: n € N} must be the whole of %, so
that

> {diam(B): BeU %,} = > diam(B,)—0

r=n
as n— », As for (x), given £ >0, let n € N be such that 27" < ¢. Then

» diamp(hillﬁl)sgw po(h'[B]) < pp(X) <,

Be®B,

so #={B: Be®,, diam,(h;'(B])>¢} is finite. Let m=n be such that
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o < {B,: r<m}. Then
U B, c(B\NL)U{B,;: r=n,ieN},

rzm

so diam,(h;'[B]) < € whenever r =m and B € %,. (Note that it is a consequence
of (i)—(viii) that h;'[B] = h;'[B] whenever r=n and B € %,.)

(b) Now (vii)-(ix) show that (h,),.y is a uniformly convergent sequence of
functions; let & be its limit, so that h: X —R> is continuous. If neN and
xe X\h;[U B.], then h,(x) =h,(x) for every r=n, so h(x) = h,(x); while if
Be B, and x € h;'[B], then h,(x) € B for every r=n, so h(x) e B. Accordingly
we have h[X|\UJ {B: B € %,} c h,[X]\ %, covered by a finite number of line
segments, none perpendicular to any axis. Now take any i <3. Let n;: R*—> R be
the ith coordinate map, and write A for Lebesgue measure. Because

> {A(m[ﬁ]): Bel %,} <> {diam(B): Be U %,}—>O
r=n r=n

as n—», we see that for almost every o€ R there is an neN such that
a ¢ {m[B]: BeB,}. But for any such «, A[X]N x;'[{a}] must be finite,
being covered by finitely many line segments not parallel to the ith axis, so each
meeting 77 '[{@}] in at most one point.

Thus Lemma 5G tells us that A[X] is homeomorphic to a subspace of R* of
finite length.

(c) Finally, A is injective. To see this, take any distinct points x, y € X. Let
n €N be such that diam, (h;'[B]) < p(x, y) for every B € %,. Let us examine four
possible cases.

(«) If neither h,(x) nor A,(y) belongs to | %, then we have h(x) =h,(x) #
h.(y) = h(y), using Condition (a)(iv) above.

(B) If h,(x)¢\U%B, and h,(y)eBe%B, then yeh;'[B], so x¢h;'[B] and
h(x)=h,(x) ¢ B, h(y) € B; so h(x) # h(y).

(y) Similarly, if ,(x) e U %, and h,(y) ¢ U %, then h(x)# h(y).

(8) Finally, if h,(x) € B € B, and h,(y) € B' € B, then B#B', so BNB' =
and h(x) € B must be different from h(y) € B'.

Thus h(x) # h(y) in all cases; as x and y are arbitrary, 4 is injective. Because X

is supposed to be compact, it follows that X is homeomorphic to h[X], and
therefore to some subspace of R> of finite length.

5I. REMARks. Note that any separable metrizable finite cut space must be
homeomorphic to some subspace of R?, by Hurewicz’s theorem [12, Theorem
V.3]. The extra work above, answering a question of [6, p. 140], seems necessary
to show that if we start with a space of finite length, we can finish with a space of
finite length for the usual metric of R>.

In both 5B and SH, I offer constructions for new equivalent metrics still giving
finite length to a space. It is natural to pause for a moment to consider the
relationship between u, and p, if o and p are equivalent metrics on the same
space X both giving it finite length. Even if X =[0, 1], it is possible for u, and u,
to be mutually orthogonal as measures. So we may ask: given a metric space
(X, p) of finite length, can it be embedded in a space (Y, o) of finite length, in
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such a way that p, and y, [ X are mutually absolutely continuous (or even more
closely related), and Y is compact, or connected, or R>?

6. Topological characterizations of finite length

In [21,4,10,6], some remarkable characterizations of compact connected
spaces of finite length are given. Here I show that many of their formulations are
sufficient to describe metric spaces of finite length even without assuming
connectedness or compactness.

6A. DErFINITION. A topological space (X, £) is topologically of finite length if
there is a metric p on X, defining the topology ¥, for which p(X) <.

RemMarks. Of course a space which is topologically of finite length has to be
metrizable, and moreover has to be separable, as remarked in 1A. We know also
that it must be a finite cut space (1C). So generally in this section I shall be
dealing with separable metrizable finite cut spaces.

6B. THEOREM. Let (X, X) be a separable metrizable finite cut space. Then the

following are equivalent:

(a) X is topologically of finite length;

(b) for each pair x, y of distinct points of X there is a finite family X,, of perfect
non-empty subsets of X such that every connected subset of X containing
both x and y includes some member of ¥,,;

(c) for each pair x, y of distinct points of X there is a finite family oA,, of subsets
of X such that no countable compact subset of X includes any member of
s, and every closed connected subset of X containing both x and y does
include some member of A,,;

(d) for each pair x, y of distinct points of X there is a continuous function
f: X— R such that

{a: f(x)<a<f(y), f'[{a}] is finite}

is uncountable.

Scheme of proof. It is obvious that (b) implies (c); the proof will therefore be
given in three parts 6C, 6E and 6F below, showing respectively that (a)=> (b),
that (c)=>(a) and that (a)=>(d)=>(c). In between is a lemma (6D) which is
supposed to clarify the difference between (b) and (c), which is actually very
small.

6C. Proof of 6B (a)=>(b). Let p be a metric on X defining ¥ and with
pp(X) <. Let x and y be distinct points of X. If they belong to different
components of X take X, =& and stop. Otherwise let C be the component of X
containing them. Let  be the set of connected relatively open subsets of C with
finite boundaries in C; then ¥ is a base for the topology of C (see 2C). Define
f: C—>R by setting f(z)=p(z, x) for each z € C; then f is Lipschitz-1. For
H e %, define g;: R—NU {»} by setting g,(a) =#*(H Nf'[{a}]) for each
a € R; then g is measurable for Lebesgue measure A (4L) and finite almost
everywhere (1A(f)). Let % c & be a countable base for the topology of C. Then
there is a perfect set K < ]0, p(x, y)[ such that A(K) >0, gy [ K is continuous for
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every U e %, and g¢ | K is constant and finite. Suppose that gc(a) = n for every
« € K. Of course n =1 because f[C] 2 [0, p(x, y)].

Fix ay€ K such that A(KN[ap— 6, ap+ 6]) >0 for every 6 >0. Enumerate
' [{ao}] as {x:)i<,. Take a disjoint family (U;),, in % such that x; € U; for each
i. Then gy (ap) =1 for each i; because g, [ K is continuous, there is a >0 such
that gy (a) =1 for every i<n, e K'=KN[apy—J, ay+ 6]. We may suppose
also that 6 is so small that |a,—f(z)| > 6 for every z € U<, 9U; U {x, y} (the
boundaries being taken in C).

Set E; = U;Nf~'[K'] for each i <n. Then each E; is a Borel subset of X and
fIE]=K’ so p,(E;)=A(K')>0. Recall that u, | ?C is inner regular for the
compact sets (4K), so there is for each i a perfect set K; c E; with u,(K;) > 0.

Suppose, if possible, that there is a connected set C’' ¢ X, containing both x
and y, but not including any K;. Take z; € K;\C' for each i <n, and examine

V={z: zeC\E) U,~,f(z)<a'(,}UU {z: ze U, f(z)<f(z)},

W={z: zeC\U U,~,f(z)>a0}UU {z: ze U, f(z)>f(z)}.

Then V and W are relatively open in C, because if z € dU; then either
f(z) <min(ay, f(z;)) or f(z)>max(ay, f(z)). Also VUW =C\{z;: i<n}C’,
VW=, xeVNC' and y e WNC'. Of course this is impossible, because C’
is supposed to be connected.

Thus any connected subset of X containing both x and y must include some K,
and we can set X, = {K;: i <n} to witness (b).

6D. LEMMA. Let X be a connected, locally connected metric space. Suppose
that Ay, ... , A, are subsets of X which are not relatively compact in X. Then for
any distinct x, y € X there is a closed connected C c X such that x, y € C but
A; ¢ C for every i<n.

Proof. We may suppose that X is a dense subset of a locally connected
complete metric space (X,, &) constructed as in 3B. For each i <n let (a;)jen be
a sequence in A; with no cluster point in X. Let F, be the set of cluster points of
(a;)jen in X,, and set F =, F; = X,\X. Then X,\F is connected and locally
connected, so by the Mazurkiewicz—Moore~Menger theorem (3A) it is path-
connected and there is a path I' < X, \F from x to y. For each i <n there must be
a j(i) e N such that a; ;) ¢ T', because F;NI'=(J and I is compact. Because X’a is
locally connected, there is a connected open set W c X, such that Tc W and
a; iy # W for each i <n. By 3B(e), W N X is connected, so C=XNWNXis a
relatively closed connected subset of X not containing any a; ), so not including
any A;, while of course it contains x and y.

6E. Proof of 6B (c)=>(a). Now let us assume that (X, ¥) satisfies Condition
(c), and seek a metric p defining T for which u;(X) <.

(a) Write % for the set of uncountable compact subsets of X. For distinct x,
y € X write

H,=HN{A: Aesd,).
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If Cc X is a closed connected set containing both x and y, then C is locally
connected (2A), so we can apply 6D to C and

A={A: Aed,, AcC, A¢ X}

to find a closed connected C’ < C not including any member of &, but containing
both x and y; now C' must include some A € 4,,, in which case Ae #,, and
A c C. Thus every closed connected set containing both x and y must include
some member of .

(b) Take 9, 9*, (Ui )ien and (Fe(X))xexxen as in Lemma 3F above. Write

Ou=kLg\loak’ Dk=U{8U Ue %k},

& =U{¥,: x,yeD, x#y}, iS=kUN %,

Then € is countable, so there is a family (74 ) g Of strictly positive real numbers
such that ¥ x.¢ nx <1. For each K € &, there is a subset of K homeomorphic to
{0, 1}", so there is an atomless Radon probability ux on X with u,(K)=1. Set
U= YXkeg Mxix- Then p is an atomless Radon measure on X, uX <1, and
uK = ngx >0 for every K € €.

(c) For U € U set

v(U)=u(0) +inf{g,: keN, Ue U},
where &, = 1/(k + #(%,)) for each k e N. For x, y € X set

p(x, y) =inf{z v(U): neN, U, ..., U, e U,
= xe(-JO,ye(_],,,l_J;ﬂl.-/,-+,¢®Vi<n}.
Then
0=p(x, y) <v(X)<2,
p(x,2)<p(x,y)+p(y,z) forallx,y, zeX.

(d) If xeX and €>0, let G be an open neighbourhood of x such that
u(G) < e. Let k = ¢ be such that F(x) ¢ G. Then F,(x) is a neighbourhood of x
and if y € F,.(x) there is a U € 9 such that x, y both belong to U, so that

¥ 1
plx, y)<v(U)<p(U) + &< pu(G) + <2e

As x and ¢ are arbitrary, p is a continuous pseudometric, and the topology ¥,
defined by p is no larger than ¥.
(e) Let k eN. Set

6, =min({¢;: i<k}U{nk: Ke%})>0.

Then p(V,, V,) = 6, whenever V,, V, are members of U, with VNV, =@. For
suppose, if possible, otherwise. Then there must be a finite chain U, ..., U, € %
such that UyN Vo=@, U, NV, #Q, U;NU,,,+D fori<n and L., v(U;) < §,.
Take such a chain of minimal length. Observe that for i<n, j<k we have
v(U;) < 6, < ¢ so U; must belong to some %, for r > k. So Vo Uy and V, ¢ U,.
On the other hand, we cannot have U,c V;, or U, c V,, because n is minimal. So
in fact UyNVy= and U,N V,#J; similarly, U, NV, # . The same
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argument shows that, because U, ¢ U, and U, ¢ U;, 3U; N 3V, # O for each
i <n, if n>0. However, all the U; are supposed to belong to ¢*, so each U, has a
component C; including 8U;. The union C =, C; is now a connected subset of
Ui<n U; meeting both 8V, and aV;; take xe CN 3V, ye CN3V,. Then C is a
closed connected set, so by (a) above includes some member K of ¥,,. In this
case K € &, so

<nesu(K)y<su(C)< Z MUAES g v(U) < éy,

which is impossible.
This shows that p(V,, V;) = §,, as claimed. By (vi) of 3F, £ T,, so T=T,.
(f) Finally, take any 6>0. Because every px is atomless with compact
support,
lim sup{ux(U): Ue U} =0

for every K € €. It follows that
lim sup{u(U): Ue %} =0.
k—»00

Let k be such that k =1/6 and u(U) < 6 for every U € U,. Then
diam,(U) < v(U) < u(0) + &, <26

for every U € %U,. Moreover,

> diam, (D) < 2 w(0) + & = u(X) + #(U)ex <2,

UeUy Ue
because u is atomless, so u(U)=pu(U) for every Ue %, As & is arbitrary,
pp(X) <2< So pis a metric witnessing (a).

6F. Proof of 6B(a)=> (d)=> (c). For (a)=>(d), take a metric p witnessing (a),
and set f(z)=p(z,x) for ze X; by 1A(f), f'[{a}] is finite for almost all
a €0, p(y, )[=1f(x), F(¥)I.

Now assume (d); I have to show that (c) is true. The argument for this is mostly
in 6C. If x and y do not belong to the same component C of X, take &,, = and
stop. Otherwise, take # and % as in 6C, and a continuous function f: X —> R
such that

Bo={a: f(x)<a<f(y), f '[{a}] is finite}
is uncountable. Let n € N be such that

={a: aeBy, #(f'[{a}])=n}

is uncountable; of course n =1 because f[C] o B,. For each a € B, there is a
disjoint family (U;),<, in % such that U; meets f ~'[{a}] for each i; because B, is
uncountable and % is countable, there is a fixed family (U;);., in U such that

B,={a: aeB,, UNf '[{«}]#D Vi<n}

is uncountable. Take &, € B, such that B, N [ay— 8, ay+ 8] is uncountable for
every 6 >0. Fix 6 >0 such that |, — f(z)| > 8 for every z € {x, y} U U<, 3cU,,
taking the boundaries in C, as in 6C. Write B; = B, N [a, — 0, ay + 6.

Set E; = U, N f~'[Bs] for each i < n. Then, just as in 6C, every connected set C’
containing both x and y must include some E;. So we may take &, = {E;: i <n}.
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6G. CorOLLARY. Let X be a separable metrizable finite cut space.

(a) If every component of X is topologically of finite length, so is X.

(b) If there is a finite-to-one continuous function from X to a space which is
topologically of finite length, then X is topologically of finite length.

Proof. (a) This is immediate from the criteria 6B(b) or 6B(c).

(b) We may suppose that there is a finite-to-one continuous function ¢: X —
Y where (Y, 0) is a metric space of finite length. If x and y are distinct points of
X, take a neighbourhood U of x, with finite boundary, such that U does not
contain either y or any point of ¢ '[{¢(x)}] other than x. Then &=
min{o(¢(x), $(z)): ze dU}>0. Define f: X—>R by setting f(z)=
min(d, o(¢(x), ¢(z))) for ze U, f(z) =06 if ze X\U. Then by 1A(f) there are
uncountably many a € ]f(x), f(y)[ =0, [ such that {w: we Y, o(w, ¢(x)) = a}
is finite, and for any such a we shall have f~'[{«}] finite. Thus f witnesses
6B(d) for x and y. As x and y are arbitrary, X is topologically of finite length.

6H. REmaRks. It is now easy to see that the conditions (A), (B), (C) of [6,
Theorem 3], are equivalent for all separable metric spaces. To bring their
conditions (D) and (E) into play we should add the phrase ‘of which X, is
compact’ to the phrase ‘given any two disjoint closed subsets X, X, in X”.

6I. Using Theorem 5B we can add another, elementary, characterization of
finite length.

ProposiTION. A topological space X is topologically of finite length if and only if
there are a metric ¢ on X defining its topology, a bounded set AcR and a
surjection from A onto X which is Lipschitz-1 for o and the usual metric of A.

Proof. (a) Suppose that X is topologically of finite length. We may express X
as a subset of a compact connected metric space (Z, p) of finite length, by 5B.
Now there is a Lipschitz-1 surjection f: [0,2u,(Z)]—>Z. Set A=f""[X],
o=p | X% then 0, A and f | A witness the condition.

(b) If X satisfies the condition then uj(X)<A*(A) <«, by 1A(c) and 1A(e);
so X is topologically of finite length.

ConcLuDING REMARKS. The obvious challenge left open here is to find some
appropriate extension of these ideas to two- and higher-dimensional Hausdorff
measure. The difficulties are likely to be immense; see for instance [20]. By and
large, the results of §1 generalize (see [6,7]); if X has finite d-dimensional
Hausdorff measure, its topology has a base consisting of sets whose boundaries
have finite (d —1)-dimensional measure. When we come to connectedness,
however, it is not clear what we should aim to do. The standard examples of
connected spaces which are not locally connected, etc., can be embedded as
bounded sets of R? of zero two-dimensional measure; and we can have a dense
connected subset of R” of zero two-dimensional measure, so that 4A dies. It may
be that some m-dimensional analogue of connectedness (see, for example,
[11, §§ 4-9]) is relevant here.

When we come to §§ 5-6, a number of direct questions present themselves. For
instance, following 6B(d), we can ask the following:
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Let (X, p) be a separable metric space, and suppose that for each x € X, open G
containing x, there is a continuous function f: X — R such that f(x) =0, f(y) =1
for every y € X\G, and {a: a€]0, 1{, u ,(f~'[{@}]) <} is uncountable. Does
it follow that there is an equivalent metric o on X such that p, ., ,(X) <®?

(Here I write p, , for k-dimensional Hausdorff measure.) Or, following 5B and
SH, we can ask:

If (X, p) is a metric space of finite k-dimensional Hausdorff measure, is it
necessarily homeomorphic to a subspace of a compact metric space, or of R**1,
of finite k-dimensional measure?

Finally, I gave 6] above as a foundation for asking:

If (X, p) is a metric space of finite k-dimensional Hausdorff measure, can we
find an equivalent metric o on X, a bounded set A = R* and a surjection from A
onto X which is Lipschitz-1 for o and the usual metric of A?

Added in proof (November 1991). 1 have shown that if (X, p) is any metric
space of finite length, there is an f: X — R> such that f is a homeomorphism
between X and f[X] and u}f[A]=pu,A for every Ac X, where t is the
Euclidean metric of R>. The proof is in University of Essex Research Reports
91-22 and 91-25, titled respectively ‘Embedding spaces of finite length in
continua’ and ‘Embedding spaces of finite length in R¥.
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