University of Essex

Department of Mathematics Wivenhoe Park Colchester CO4 3SQ

Tel: Colchester 44144 (STD Code 020 6) Telegraphic address: University Colchester Telex: 98440 (UNILIB COLCHSTR)

Two new versions of MA

1. The axioms Consider the statements

$$\begin{split} & \mathbb{P}_{\downarrow}(\kappa) : \text{ If } \lambda \leq \kappa \text{ and } \langle A_{\underline{\lambda}} \rangle_{\underline{\zeta} < \lambda} \text{ is a family of infinite subsets of} \\ & \mathbb{N} \text{ such that } A_{\underline{\zeta} \setminus A_{\gamma}} \text{ is finite whenever } \gamma \leq \underline{\zeta} < \lambda \text{ , then there} \\ & \text{ is an infinite } I \subseteq \underline{\mathbb{N}} \text{ such that } I \setminus A_{\underline{\zeta}} \text{ is finite for every} \\ & \underline{\zeta} < \lambda \text{ .} \end{split}$$

L(κ): If P is an upwards-ccc partially ordered set and $\#(P) \leq \kappa$ then P is \neg -centered upwards.

H⁺: If P is an uncountable upwards-ccc partially ordered set then it has an uncountable upwards-directed subset.

Then we have $MA(\kappa) \bigoplus L(\kappa) + \kappa < \beta$; $\kappa < \beta \Longrightarrow P_{\downarrow}(\kappa)$; $P_{\downarrow}(\omega_1) \Longrightarrow \omega < \beta$; and $MA(\omega_1) \Longrightarrow H^+$ ([1], 141 and 411).

2. Lemma If $P_{\downarrow}(\kappa)$ is true, then whenever $F \subseteq \mathbb{N}^{\mathbb{N}}$ and $\#(F) \leq \kappa$ there is a $g \in \mathbb{N}^{\mathbb{N}}$ such that $\{n : f(n) > g(n)\}$ is finite for every $f \in F$.

proof Use the method of [1], the 14B.

3. <u>Theorem</u> $MA(ik) \iff L(ik) + P_i(ik)$.

<u>proof</u> We have only to show that $L(\kappa) + P_{\downarrow}(\kappa) \Longrightarrow \kappa < p$. ? If this is false, then we want shall have $L(p) + P_{\downarrow}(p)$.

from D.H.Fremlin

such that $\#(\mathcal{A}) = p$, \mathcal{A}_{o} is infinite for every finite $\mathcal{A}_{o} \subseteq \mathcal{A}$, but there is no infinite $I \subseteq \mathbb{N}$ such that $I \setminus A$ is finite for every $A \in \mathcal{A}$. Enumerate \mathcal{A} as $\langle A_{\mathcal{A}} \rangle_{<\mathcal{P}}$. Let \mathcal{D} be $\{\mathcal{A}_{O} : \mathcal{A}_{O} : \mathcal{A}_{O} \in [\mathcal{A}_{O}]^{<\omega}\}$. Then we can construct inductively a family $\langle B_{\mathcal{B}} \rangle_{<\mathcal{P}}$ of infinite subsets of \mathbb{N} such that

 $\begin{array}{l} B_{\xi} \cap D \quad \text{is infinite} \quad \forall \quad \xi$

as follows. (i) Start by setting $B_0 = N$. (ii) For the inductive step to a successor ordingal $\xi + 1$, set $B_{\xi+1} = B_{\xi} \wedge A_{\xi}$. (iii) For the inductive step to a limit ordinal ξ of countable **candinality** cofinality, take a sequence $\langle \xi(n) \rangle_{n \in \mathbb{N}}$ in ξ increasing to ξ . Then $B_{\xi}(n) \wedge_{i \leq n} B_{\xi}(i)$ is finite for each $n \in \mathbb{N}$, so $D \wedge \bigwedge_{i \leq n} B_{\xi}(i)$ is infinite for each $n \in \mathbb{N}$, $D \in \mathcal{O}$, by the inductive hypothesis; so for $D \in \mathcal{O}$ we can define $f_D : \mathbb{N} \to \mathbb{N}$ by writing $f_D(n) =$ $\min(D \wedge \bigwedge_{i \leq n} B_{\xi}(i) \wedge n)$ for each $n \in \mathbb{N}$. By Lemma 2, there is an $f \in \mathbb{N}^{\mathbb{N}}$ such that $\{n : f(n) \leq f_D(n)\}$ is finite for each **new** $D \in \mathcal{O}$. Set

 $B_{\xi} = \bigcap_{n \in \mathbb{N}} (B_{\xi(n)} \cup f(n)) \subseteq \mathbb{N}.$

Then $B_{\xi} \setminus B_{\xi(n)}$ is finite for each $n \in \mathbb{N}$, so $B_{\xi} \setminus B_{\gamma}$ is finite for each $\gamma < \xi$. If $D \in \mathbb{Q}$ and $m \in \mathbb{N}$ there is a $k \ge m$ such that $f(n) > f_D(n)$ $\forall n \ge k$; now $f_D(k) \in \bigcap_{i \le k} B_{\xi(i)}$, while for $n \ge k$ we have $f_D(k) \le f_D(n) < f(n)$. It follows that $f_D(k) \in B_{\xi}$; but also $f_D(k) \in D \setminus k \subseteq D \setminus m$. As m is arbitrary, $D \cap B_{\xi}$ is infinite; as D is arbitrary, the inductive hypothesis is satisfied by B_{ξ} .

(iv) For the inductive step to a limit ordinal ξ of uncountable cofinality, enumerate \mathcal{D} as $\langle D_{\alpha} \rangle_{\alpha < \beta}$. Construct inductively $\langle E_{\alpha\beta} \rangle_{\alpha \leq \beta < \beta}$ and $\langle F_{\alpha} \rangle_{\alpha < \beta}$ so that

as follows. **Karkx Skark** Given $\langle E_{\alpha\beta} \rangle_{\alpha \leq \beta < \gamma}$, where $\gamma < \mu$, then by **p** $P_{\downarrow}(\mu)$ and the inductive hypotheses (I_{1}) , (I_{3}) there is **ARXEMPERATE For** each $\alpha < \gamma$ an infinite $E'_{\alpha\gamma}$ such that $E'_{\alpha\gamma} > E_{\alpha\beta}$ is finite for each $\beta < \gamma$. Next, because $\max(\xi, \gamma) < \mu$, we can apply [1], 21A to find a**RXEMPERATE** set F_{γ} such that $F_{\gamma} > B_{\eta}$ is finite for $\eta < \xi$, $F_{\gamma} \wedge E'_{\alpha\gamma}$ is infinite for $\alpha < \gamma$, and $F_{\gamma} \wedge D_{\gamma}$ is infinite. (This works because $E'_{\alpha\gamma} > B_{\gamma} \leq (E'_{\alpha\gamma} > E_{\alpha\alpha}) \cup (F_{\alpha} > B_{\gamma})$ is finite for $\alpha < \gamma$, $\eta < \xi$.) Now set $E_{\alpha\gamma} = E'_{\alpha\gamma} \wedge F_{\gamma}$ for $\alpha < \gamma$ and $E_{\gamma\gamma} = F_{\gamma} \wedge D_{\gamma}$, and see that the induction continues.

Having got hold of these, use $P_{\downarrow}(\eta)$ to choose infinite sets G_{α} skuch that $G_{\alpha} \stackrel{E}{=} B_{\beta}$ is finite whenever $\alpha \leq \beta < \beta$. Observe that $G_{\alpha} \stackrel{B}{=} B_{\beta}$ is finite whenever $\alpha < \beta$, $\beta < \xi$.

Let

$$\mathbb{R} = \{ I \Delta \bigcap_{j \in J} B_{j} : I \in [\mathbb{N}]^{<\omega}, \emptyset \neq J \in [\mathbb{R}]^{<\omega} \}, \\
\mathbb{Q} = \{ I \Delta \bigcup_{\alpha \in J} G_{\alpha} : I \in [\mathbb{N}]^{<\omega}, \emptyset \neq J \in [\mathbb{P}]^{<\omega} \}.$$

EXAMPLE Let P be the set { (B,G) : B $\in \mathbb{R}$, G $\in \mathbb{G}$, B \supseteq G } ordered by saying that (B,G) \leq (B',H') if B' \subseteq B and G \subseteq G'. Then P **EXAMPLE ANSKER XECONDITION OF CONTRACT AND AN ADDRESS AND AN ADDRESS ADDRESS**

-3-

In this case, since $G_{\alpha} \setminus F_{\gamma} \subseteq G_{\alpha} \setminus E_{\alpha\gamma}$ is finite for every $\alpha < \gamma$, $H_{\zeta} \setminus F_{\gamma}$ is finite for every $\zeta < \omega_{1}$; while at the same time $F_{\gamma} \setminus B_{\gamma}$ is finite for every $\gamma < \xi$, so $F_{\gamma} \setminus C_{\zeta}$ is finite for every $\zeta < \omega_{1}$. We can therefore find an uncountable $Z \subseteq \omega_{1}$ such that

$$F_{\gamma} \setminus C_{\zeta} = F_{\gamma} \setminus C_{\beta}$$
, $H_{\zeta} \setminus F_{\gamma} = H_{\beta} \setminus F_{\gamma}$ $\forall \beta$, $\zeta \in \mathbb{Z}$.

At the same time, $\#(P) \leq \mu$. So by L(p) P is expressible as $\bigcup_{n \in \mathbb{N}} P_n$ where each P_n is upwards-centered in P. For each $n \in \mathbb{N}$ set

 $C_n = \bigcap \{ C : (C,H) \in P_n \}, H_n = \bigcup \{ H : (C,H) \in P_n \},$ so that $H \subseteq H_n \subseteq C_n \subseteq C$ whenever $(C,H) \in P_n$. Set

 $I = \{n : n \in \mathbb{N}, \exists \gamma < \xi, C_n \mid B_{\gamma} \text{ is infinite} \}, \\ \xi_n = \min\{\gamma : \gamma < \xi, C_n \mid B_{\gamma} \text{ is infinite} \} \forall n \in I.$

As $cf(\xi) > \omega$, $\zeta = \sup_{n \in \mathbb{N}} \zeta_n < \xi$. As $\xi < \beta$, there is a B_{ξ} such that $B_{\xi} \setminus B_{\gamma}$ is finite for each $\gamma < \xi$ and $H_n \setminus B_{\xi}$ is finite for each \mathbf{x} $n \in \mathbf{x} \in \mathbb{N} \setminus \mathbb{I}$ ([1], 21A again, or otherwise).

Let $\alpha < \beta$. Then $(B_{\zeta+1}, G_{\alpha} \cap B_{\zeta+1}) \in P$, so $(B_{\zeta+1}, G_{\alpha} \cap B_{\zeta+1}) \in P_n$ for some $n \in \mathbb{N}$. As $C_n \subseteq B_{\zeta+1}$, $C_n \setminus B_{\gamma}$ is finite for every $\gamma \leq \zeta$; so $n \in \mathbb{N} \setminus I$. Accordingly

 $G_{\alpha} \setminus B_{\xi} \subseteq (G_{\alpha} \setminus B_{\xi+1}) \cup (H_{n} \setminus B_{\xi})$

is finite, and $D_{\alpha} \setminus B_{\xi}$ is infinite, because $G_{\alpha} \setminus D_{\alpha} \subseteq G_{\alpha} \setminus E_{\alpha}$ is finite. Thus the induction continuens.

Having got the $\langle B_{\xi} \rangle_{\xi < \beta}$, use $P_{\downarrow}(\beta)$ to construct an infinite set B such that $B \setminus B_{\xi}$ is finite for each $\xi < \beta$, and observe that $B \setminus A$ is finite for every $A \in \mathcal{A}$; contradicting the choice of \mathcal{A} .

-4-

4. <u>Theorem</u> $H^+ \iff MA(\omega_1)$.

(This is a partial order because s(p,0) = p for every p.) Now \widetilde{P} is upwards-ccc. \widehat{P} Note first that H^+ implies that every ccc partially ordered set satisfies Knaster's condition, so that P^{n+1} is upwards-ccc for every $n \in \mathbb{N}$; and secondly that (p_0, \ldots, p_m) and (q_0, \ldots, q_m) have a common upper bound in \widetilde{P} iff every pair $\{p_i, q_i\}$ is bounded above in P. \widehat{Q} Also, $\#(\widetilde{P}) = \omega_1$. So by H^+ there is an uncountable upwardsdirected $\widetilde{R} \subseteq \widetilde{P}$. Observe that, for any $\xi < \omega_1$,

$$\{(\mathbf{p}_0,\ldots,\mathbf{p}_n): \max_{i \leq n} f(\mathbf{p}_i) \leq \xi\}$$

is countable; so

 $\sup\{ f(p_i) : (p_0, \dots, p_n) \in \mathbb{R} , i \leq n \} = \omega_1 .$ Algso, for any $\tilde{q} \in \tilde{P}$, $\{ \tilde{p} : \tilde{p} \leq \tilde{q} \}$ is finite, **2** so $\tilde{\mathbb{R}}$ can have no greatest member.

Set $P_k = \{ p_k : (p_0, \dots, p_m) \in \tilde{R}, m \ge k \}$. Because \tilde{R} is upwardsdirected in \tilde{P} , each P_k is upwards-directed in P. Now $\bigcup_{k \in N} P_k = P$. Let $p \in P$. Let $(p_0, \dots, p_m) \in R$ be such that $\max_{i \le m} f(p_i) \ge f(p)$. Let $i \le m$ be such that $f(p_i) \ge f(p)$, and $j \in N$ such that $p = s(p_i, j)$. As \tilde{R} has no greatest member we can find $\tilde{r}_0, \dots, \tilde{r}_{j+1} \in \tilde{R}$ such that $(p_0, \dots, p_m) < \tilde{r}_0 < \dots < \tilde{r}_{j+1}$. Expressing each \tilde{r}_1 as $(q_{10}, \dots, q_{1n_1})$, we see that $m < n_0 < \dots < n_j$ so that $j \le n_j$; also there is an $s \le n_j$ such that $p_i = s(p_i, 0) = q_{sjs}$; and now $p = s(q_{js}, j) = q_{j+1,k} \in P_k$ for some $k \le n_{j+1}$.

-5-

'jo' jn, i+1,k p∈P_k Q This proves $L(\omega_1)$. Q

-6-

(b) $H^{+} \Longrightarrow P_{\downarrow}(\omega_{1}) \cdot P_{\downarrow}(\omega$

 $Q_{C} = \{ I : W(\bigcap_{\xi \in I} A_{\xi}, \#(I)) = C \}$

and observe that Q_C is upwards-dimensional centered in P. Q

By H^+ , P has an uncountable upwards-directed subset R. Consider $K = \bigcup R$, $A = \bigcap_{i \in K} A_i \cdot K$ is uncountable so $A \setminus A_i$ is finite for every $\xi < \omega_1$. Now let $m \in \mathbb{N}$. As R is upwards-directed, there is an $I \in \mathbb{R}$ with $\#(I) \ge m$; let $C = W(\bigcap_{\xi \in I} A_{\xi}, \#(I))$ so that $\#(C) \ge m$. If $\xi \in K$ then there is a $J \in \mathbb{R}$ such that $I \le J$ and $\xi \in J$; in which case $C \subseteq \bigcap_{i \in J} A_i \subseteq A_i$. Thus $C \subseteq A$, and $\#(A) \ge m$. As m is arbitrary, A is infinite, as required by $P_{\perp}(\omega_1)$.

(c) Now the theorem follows from the remarks in $\{1 \text{ above.}$

Reference 1. D.H.Fremlin, Consequences of Martin's Axiom, to be published by Cambridge U.P.

<u>Problems</u> (<u>a</u>) Does $P_{\psi}(\kappa)$ imply $\kappa < p$ for $\kappa > \omega_1$? (<u>b</u>) Does $L(\omega_1)$ imply $MA(\omega_1)$?

Note added 8.6.82

5. Lemma If $L(\kappa)$ is true, and P is an upwards-ccc partially ordered set, and $A \subseteq P$ has cardinal $\leq \kappa$, then there is a sequence $\langle P_n \rangle_{n \in \mathbb{N}}$ of upwards-centered subsets of P such that $A \subseteq \bigcup_{n \in \mathbb{N}} P_n$.

proof Set $A_0 = A$. Given $A_n \subseteq P$ with $\#(A_n) \leq \kappa$, let A_{n+1} be xa subset of P such that $A_n \subseteq A_{n+1}$, $\#(A_{n+1}) \leq \kappa$, and every finite subset of A_n which has an upper bound in P has an upper bound in A_{n+1} . Set P' = $\bigcup_{n \in \mathbb{N}} A_n$. Then P' is upwards-ccc and has cardinal $\leq \kappa$, so by $L(\kappa)$ is expressible as $\bigcup_{n \in \mathbb{N}} P_n$ where each P_n is upwards-centered in P' i.e. is upwards-centered in P. Now $A \subseteq \bigcup_{n \in \mathbb{N}} P_n$.

6. Theorem $L(\kappa) + [2 > \omega] \Rightarrow MA(\kappa)$.

proof (a) Assume L(K). If A ≤ $({}^{1}(\underline{N}))$ and $(A) \le \kappa$ there is a z ∈ $({}^{1})$ such that { i : $|x(\underline{i})| > z(\underline{i})$ } is finite for each x ∈ A. P Set P = { y : y ∈ $({}^{1})^{+}$, $\sum_{\underline{i} \in \underline{N}} y(\underline{i}) < 1$ }. Then P satisfies Knaster's condition upwards ([1], 33C). For each x ∈ A choose a $y_{\underline{x}} \in P$ such that { i : $|x(\underline{i})| > y_{\underline{x}}(\underline{i})$ } is finite. By Lemma 5, there is a sequence $\langle P_n \rangle_{n \in \underline{N}}$ of upwards-centered sets in P covering { $y_{\underline{x}} : x \in A$ }. We can suppose that each P_n is non-empty. Set $z_n(\underline{i}) = \sup\{y(\underline{i}) : y \in P_n\}$ for each $n \in \underline{N}$. Then $\sum_{\underline{i} \in \underline{N}} z_n(\underline{i}) \le 1$ for each $n \in \underline{N}$. Now there is a $z \in ({}^{1})^{+}$ such that { i : $z_n(\underline{i}) > z(\underline{i})$ } is finite for each $n \in \underline{N}$.

(b) Assume L(K). If $A \subseteq \mathbb{N}^{\mathbb{N}}$ and $\#(A) \leq \kappa$ there is a $g \in \mathbb{N}^{\mathbb{N}}$ such that { i : f(i) > g(i) } is finite for each $f \in A$. **P** For $f \in A$, define $f^*(n) = \max_{i \leq n} f(i) + n$ for each $n \in \mathbb{N}$, and $w_f \in c_o(\mathbb{N})$ by

$$w_f(i) = 1$$
 if $i < f^*(0)$
= 2^{-n} if $f^*(n) < i < f^*(n+1)$.

Now set $x_f(n) = w_f(n) - w_f(n+1)$ for each $n \in \mathbb{N}$ so that $x_f \in \ell^1$. By (a), there is a $z \in (\ell^1)^+$ such that $\{i : x_f(i) > z(i)\}$ is finite for each $f \in A$. Set $w v(n) = \sum_{i \ge n} z(i) + 2^{-n}$ for each $n \in \mathbb{N}$, so that $v \in c_0$ and $\{n : w_f(n) > v(n)\}$ is finite for each $f \in A$. Define $g \in \mathbb{N}^{\mathbb{N}}$ by saying

 $g(n) = max\{ i : v(i) \ge 2^{-n} \}$.

Now if $f \in A$ there is an $m \in \mathbb{N}$ such that $w_f(i) \leq v(i)$ for every $i \geq m$. In this case, if $n \geq m$, where $f^*(n) \geq n \geq m$, so

 $2^{-n} = w_f(f^*(n)) \le v(f^*(n))$ and $f^*(n) \le g(n)$. So this g serves.

(c) ? Suppose that $L(\kappa) + \tilde{\omega}_{i} < \mathfrak{p}$ is true but $MA(\kappa)$ is false. In this case $\kappa \geq \mathfrak{p}$, and $L(\mathfrak{p})$ is true. By Theorem 3, $P_{i}(\mathfrak{p})$ must be false. Let $\langle A_{\xi} \rangle_{\xi < \mathfrak{p}}$ be a family of infinite subsets of N such that $A_{\xi} \setminus A_{\eta}$ is finite whenever $\eta < \xi < \mathfrak{p}$, and there is no infinite $A \subseteq \mathbb{N}$ such that $A \setminus A_{\xi}$ is finite for every $\xi < \mathfrak{p}$. For each $\xi < \mathfrak{p}$ let f_{ξ} be the increasing enumeration of A_{ξ} . By (b), there is a $g \in \mathbb{N}^{\mathbb{N}}$ such that $\{i : f_{\xi}(2i) + 1 > g(i)\}$ is finite for each $\xi < \mathfrak{p}$. We can take g to be increasing. Set

 $P = \{ B : B \subseteq \underline{\mathbb{N}}, \#(B \land g(n)) \ge n \quad \forall n \in \underline{\mathbb{N}},$

 $\exists \xi < \beta$, $A_{\xi} \setminus B$ is finite }.

Then P is downwards-ccc. P Let $R \subseteq P$, $\#(R) = \omega_1$. Then as we know that \mathfrak{g} is regular ([1], 219) and we are hypothesizing that $\mathfrak{g} > \omega_1$, we have $\mathrm{cf}(\mathfrak{g}) > \omega_1$. Consequently there is a $\zeta < \mathfrak{g}$ such that $A_{\zeta} \setminus B$ is finite for every $B \in \mathbb{R}$. Now there is an $n \in \mathbb{N}$ such that $\{B: B \in \mathbb{R}, A_{\zeta} \setminus B \leq n\}$ is uncountable. Let $m \in \mathbb{N}$ be such that $\mathfrak{f}_{\zeta}(2\mathfrak{i}) + \mathfrak{1} \leq \mathfrak{g}(\mathfrak{i})$ for every $\mathfrak{i} \geq m$ i.e. $\#(A \cap \mathfrak{g}(\mathfrak{i})) \geq 2\mathfrak{i}$ for every $\mathfrak{i} \geq m$ and $\#(A \cap \mathfrak{g}(\mathfrak{i}) \setminus n) \geq \mathfrak{i}$ for every $\mathfrak{i} \geq \max(\mathfrak{m}, \mathfrak{n})$.

in the second second

Next, let $I \subseteq g(\max(m,n))$ be such that $\mathbb{R}'' = \{B : B \in \mathbb{R}, B \land g(\max(m,n)) = I\}$ is uncountable. Consider $C = I \cup (A_{\zeta} \setminus n)$. We see that $A_{\zeta} \setminus C$ is finite. Also, for $i \leq \max(m,n)$, $\#(C \land g(i)) \geq \#(I \land g(i)) = \#(B_{O} \land g(i)) \geq i$, where B_{O} is any member of \mathbb{R}'' ; while for $i > \max(m,n)$, $\#(C \land g(i)) \geq \#(A_{\zeta} \land g(i) \setminus n) \geq i$. So $C \in P$. And $C \subseteq B$ for every $B \in \mathbb{R}''$, so \mathbb{R}'' is surely dwonwards-linked.

For each $\xi < \mathfrak{p}$, there is a $B_{\xi} \in P$ such that $B_{\xi} \setminus A_{\xi}$ is finite. **P** Take $B_{\xi} = A_{\xi} \cup g(m)$ where m is such that $f_{\xi}(2i) + 1 \leq g(i)$ for every $i \geq m \cdot Q$ By Lemma 5, there is a sequence $\langle P_n \rangle_{n \in \mathbb{N}}$ of x downwards-centered subsets of P covering $\{B_{\xi} : \xi < \mathfrak{p}\}$. As $cf(\mathfrak{p}) > \omega$, there is an $n \in \mathbb{N}$ such that $D = \{\xi : B_{\xi} \in P_n\}$ is cofinal in \mathfrak{p} . Examine $C = \bigcap P_n$. If $Q \subseteq P_n$ is finite then $\#(\bigcap Q \cap g(m))$ $\geq m$ for every $m \in \mathbb{N}$, because Q has a lower bound in P. So $\#(C \cap g(m)) \geq m$ for every $m \in \mathbb{N}$, and C is infinite. On the other hand, $C \subseteq B_{\xi}$ for every $\xi \in D$, so $C \setminus A_{\xi}$ is finite for every $\xi \in D$, and $C \setminus A_{\xi}$ is finite for every $\xi < \mathfrak{p}$ because D is cofinal in \mathfrak{p} . But such a C is not supposed to exist.

This proves the result.

7. The principle H Consider the statement

 H: If P is an uncountable pupwards-ccc partially ordered set then P has an uncountable upwards-centered subset.
 Clearly H⁺⇒ H g and L(ω₁) ⇒ H.

8. Lemma Assume H. Then if P is an uncountable upwards-ccc partially ordered set and $A \subseteq P$ is uncountable, there is an uncountable upwards-centered $R \subseteq A$.

proof Apply H to { I : I \in [A]^{< ω}, I has an upper bound in P }.

9. Theorem $H \iff L(\omega_1)$.

<u>proof</u> I have only to show that $H \Rightarrow L(\omega_1)$. Assume H, and let P be an upwards-ccc partially ordered set of cardinal ω_1 . Enumerate P as $\langle p_E \rangle_{E < \omega_1}$.

Let X be the set of finite up-antichains in P. Define \leq on X by saying that $I \leq J$ if for every $p \in I$ there is a $q \in J$ such that $p \leq q$. Then \leq is a partial order on X. Let $Z \subseteq X^{\mathbb{N}}$ be the set of sequences $\langle I_n \rangle_{n \in \mathbb{N}}$ such that $\#(I_n) \leq n$ for every $n \in \mathbb{N}$ and $\sup_{n \in \mathbb{N}} \#(I_n) < \infty$. Order Z by saying that $\langle I_n \rangle_{n \in \mathbb{N}} \leq \langle J_n \rangle_{n \in \mathbb{N}}$ if $I_n \leq J_n$ for every $n \in \mathbb{N}$. Then Z is upwards-ccc. If If $R \subseteq Z$ is uncountable, then there is an $m \in \mathbb{N}$ such that

 $R_{1} = \left\{ \left\langle I_{n} \right\rangle_{n \in \mathbb{N}} : \left\langle I_{n} \right\rangle_{n \in \mathbb{N}} \in \mathbb{R} , \quad \#(I_{n}) \leq m \quad \forall \quad n \in \mathbb{N} \right\}$

is uncountable. Now observe that P satisfies Knaster's condition upwards, by Lemma 8. It follows easily that $X \wedge [P]^{\leq n}$ satisfies Knaster's condition upwards for each $n \in \mathbb{N}$. Consequently there is an uncountable $\mathbb{R}_2 \subseteq \mathbb{R}$ such that if $\langle I_n \rangle_{n \in \mathbb{N}}$ and $\langle J_n \rangle_{n \in \mathbb{N}}$ belong to \mathbb{R}_2 , then for each n < 2m there is a $\mathbb{K}_n \in X \wedge [P]^{\leq n}$ which is a common uppwer bound of I_n and J_n . However, if we now take, for $n \geq 2m$, a **minimul** set $\mathbb{K}_n \subseteq \mathbb{P}$ of minimal size such that for every $p \in I_n \cup J_n$ there is a $q \in \mathbb{K}_n$ with $q \geq p$, we see that $\mathbb{K}_n \in X \wedge \mathbb{P}[P]^{\leq 2m}$. Hence $\langle \mathbb{K}_n \rangle_{n \in \mathbb{N}} \in \mathbb{Z}$ and is a common upper bound for $\langle I_n \rangle_{n \in \mathbb{N}}$ and $\langle J_n \rangle_{n \in \mathbb{N}}$. \mathbb{Q} For each $\xi < \omega_1$ there is an $\langle \mathbb{I}_n^{\xi} \rangle_{n \in \mathbb{N}} \in \mathbb{Z}$ such that $\bigcup_{n \in \mathbb{N}} \mathbb{I}_n^{\xi} \supseteq \{p_1 : \gamma \leq \xi\}$. By Lemma 8, there is an uncountable $C \subseteq \omega_1$ such that $\{\langle \mathbb{I}_n^{\xi} \rangle_{n \in \mathbb{N}} : \xi \in \mathbb{C}\}$ is upwards-centered in Z.

-10-

For each $L \in [C]^{\langle \omega \rangle}$ and $n \in \mathbb{N}$, let $J_{Ln} \in X \wedge [P]^{\leq n}$ be an upper bound of $\{I_n^{\xi} : \xi \in C\}$ in X. Enumerate J_{Ln} as $\langle q_{Lni} \rangle_{i < m(L,n)} \cdot \underset{Cnoose}{\text{Define}} f_{Ln\xi} : I_n^{\xi} \to m(L,n)$ so that $p \leq q_{Lnf_{Ln\xi}}(p)$ whenever $\xi \in L \in [C]^{\langle \omega \rangle}$ and $p \in I_n^{\xi}$. Let \mathcal{F} be an ultrafilter on $[C]^{\langle \omega \rangle}$ such that $\{L : \xi \in L \notin \in [C]^{\langle \omega \rangle}\} \in \mathcal{F}$ whenever $\xi \in C$. Set $f_{n\xi}(p) = \lim_{L \to \mathfrak{F}} f_{Ln\xi}(p) < n$ for every $\xi \in C$ and $p \in I_n^{\xi}$. Now set $P_{nl} = \bigcup_{\xi \in C} \{p : p \in I_n^{\xi}, f_{n\xi}(p) = 1\}$, for $1 < n \in \mathbb{N}$. Then each P_{nl} is upwards-centered. (p) If $L \in [C]^{\langle \omega \rangle}$ and $A = \bigcup_{\xi \in L} \{p : p \in I_n^{\xi}, f_{n\xi}(p) = 1\}$, then there is an $M \in [C]^{\langle \omega \rangle}$ such that $M \supseteq L$ and $f_{n\xi}(p) = f_{Mn\xi}(p)$ whenever $\xi \in L$ and $p \in I_n$; in which case q_{Mnl} is an upper bound of $A \cdot (p)$ Also

 $\bigcup_{1 \le n \in \mathbb{N}^P n 1} = \bigcup_{\xi \in C, n \in \mathbb{N}^I n} \supseteq \bigcup_{\xi \in C} \{p_{j} : j \le \xi\} = P.$ So P is \Im -centered upwards, as required.

10. Remark added 12.12.84 P.Nyikos has pointed out that Theorem 9 implies that $m > \odot_1$ is equivalent to the principle Δ of K.Kunen & F.D.Tall, "Between Martin's Axiom and Souslin's hypothesis", Fund. Math. 102 (1979) 173-181.

11. <u>Remark added 25.11.85</u> S.Todorčević & B.Veličković ("MA and precalibers of ccc posets", note of August 1985) have shown that there is a ccc poset of cardinal \pounds (the least cardinal for which $P_1(\clubsuit)$ is false) with no centred subset of cardinal \pounds . Consequently $1 > \omega_1 \implies \pounds > \omega_1 \implies \pounds > \omega_1 \implies \pounds > \omega_1$. It follows at that 1 = 40 and that $H \iff 100$. (Here $1 \implies 100$ is the least cardinal for which $L(\kappa)$ is false.)