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1. The axioms Consider the statements
PJ/(K) : If N<« and / A{:>,:<X is a family of infinite subsets of
N such that Aé\ A," is finite whenever "IP < £ < A , then there
is an infinite I<_ N such that I\A: is finite for every
E<N.
L(k) : If P is an upwards-ccc partially ordered set and -#(P) < K
then P is <-centered upwards.
B : 1f P is an uncountable upwards-ccc partially ordered set
then it has an uncountable upwards-directed subset.

Then we have MA(K)&D L(K) + K<{; R<y ’;E)PL(K) ; P_‘L(w,‘) = B, <f;

D R
and MA(w,) =H" ([1], 14K and 41¥).

2. Lemma If PJ'(“) is true, then whenever Fgﬁm and FH(F) < «

there is a ge EN- such that { n : f(n) > g(n) } is finite for every

feF.

proof Use the method of [1], 2t 4R

3. Theorem MA(K)ESL(w) + P-J,(K) "

is false, then we wZB shall have L(§) + P‘L(JJ)W
Rty et L Dbe a family of subsets of N

proof We have only to show that L(x) + PL(K) = K<f. 2 If this
\
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such that #(A) = £ %0 is infinite for every finite %og A,
but there is no infinite IZC N such that INA is finite for every
Aedh . Enumerate ﬁ% as <13.§>§<}3 . Let %) be (f\ﬁso
g 4 34{‘0 < [9%30{) } . Then we can construct inductively a family <B<>§<I’j
of infinite subsets of N such that

B¢ND is infinite ¥ £ <f, De O;

BQ\B,N is finite \/ 1 <€£<g;

B, She ¥ £<§,
as follows. (i) Start by setting B =N . (ii) For the inductive

step to a successor ordingal §+ 1, set = B f\A< (iii) For

§ +1
the inductive step to a limit ordinal & of countable maxRimakikyy
cofinality, take a sequenge <§(n)>n€§ in § increasing to i' .

Then B € (n )\/\Y is finite for each ne N, so D”ﬂigntfi)

i<n §(1)
is infinite for each n € E sy D& ) » by the inductive hypothesis;
so for D& «) we can define f, : N+ N by writing fD(n) =

min(DA /D \'n) for each ne N . By Lemma 2, there is an f QﬂH

ignt(i)
such that { n: f(n) < f(n) } 1is finite for each me D e O . Set
Bg = ﬂnﬁE(Bg(n)‘Jf(n)) Q_:; ’l\i .

Then Bg\ B§(n) is finite for each n & E y SO B§\ B7 is finite for
each »‘\ < . If De ) and m € N there is a k > m such that f(n)>fD(n)
v V n>k ; now fD(k) € {\ing€(i) , while for n> k we
have fD(k) < fD(n) < f(n) . It follows that fD(k) 3 B§ ; but also
fD(k) € DNk D\m . As m is arbitrary, DNBg 1is infinite; as D
is arbitrary, the inductive hypothesis is satisfied by B< .

(iv) For the inductive step to a limit ordinal { of uncountable

cofinality, enumerate ()L) as < \

alp
and <a>a<'\ﬁ so that

Construct inductively <Ea.B\/0L<B< R
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E . 1is infinite V a<B<y; (1)
E, <D VY a<g; (1,)
EaY\ E g is finite if a <B <y < g (13)

Fg 2 UQxSBEaB ; FB\B,] is finite if B<§ , ) <K (@

as follows. fxXxxSkaxk Given \/EaB Ja<p<y

E P‘l(l:d) and the inductive hypotheses (I,]), (13) there is mmecknfinike

» where y < i, then by

% for each o <y an infinite E!' such that E' \ E is finite
oy oy op

for each B <y . Next, because max({,y) < fi, we can apply [1], 21A
to find amxkmfinkk® set FY such that FY\B] is finite for vb<§ 3
F nEg' is infinite for a <y , and F ND is infinite. (This

Y oy Y Y

v 1 \\ B : :nd
works because Ea.Y\B < (an\ E JOEN 7) is finite for a <y ,

1

= Rt
1 < £ .) Now set EaY = ch.Y

see that the induction continues.

F for < nd E =F D nd
Ny BRY = vy Ty My 0 @

Having got hold of these, use Pl(;yl) to choose infinite sets Ga.

sguch that Ga\ Ea is finite whenever a < B < J . Obsergxve that

B
G\ B,,) is finite whenever o <, ) <K o
Let
R = IA(‘\»,‘:,JJB__7 ¥ I e[y]«&’ 47 e [€]<b'la} ,
G = (1aQ), 0, :1e®, ghiem ).

saxkhak Let P be the set { (B,G) : Be N , GC-;@ y BDDG } ordered

]

by saying that (B,G) < (B',H') if B'(CB and GCG' . Then P

BakXRRiE XK RABRE R BXERRA XK X B R X HPNARREXXBX XXX XX AKERXHpNARKRERXY satisfies
Knaster's condition upwards. @ Note first that since we have P\L(ﬁ)
and not P(§) , P> LS,‘ ; as f is regular ([311, 210), cf(gp) > 031
If therefore <(C§,H§)>§< o, is any family in P , there isa vy < Jd

such that every Hg belongs to { IA Uo.éJGa :Ie [N]<w s BAJ e [Y]<Q} .




.
In this case, since Ga\ FYC_:;Ga\EaY is finite for every a <y ,

Hg'\ FY is finite for every { < w, ; while at the same time FY\B

L 1

is finite for every ”b <g , so FY\ Cg is finite for every (; < (.»31 :

We can therefore find an uncountable 2 43, such that

F NG =FN\Cy » HN\F = H\F VB ,tez.
NawxxZxxisxupnardsxzenkexedxinxxR Now { (C(-,H() : LeZ) is upwards-
centered in P . @

At the same time, H(P) < f# - Soby L({l) P is expressible as

U P where each P is upwards-centered in P . For each né&€ N

n@l\\i n n ~
set

c =(Mc:(H®eP }, H = U{E: (CHeP )

n : : n’ ' "n : ‘ "n ’
so that HCH CC CC whenever (C,H) € P . Set

I = {n: neN ,3/’<§ 5 Cn\B7 is infinite } ,

‘(;n = min{ .‘] ) <&, Cn\B’] is infinite } ¥ ne I .

{ = R ¢ - . d .

As cf) >w, C = supm:_ﬁgn <€ . as < § . there is a Bg such that
B§\ B.,' is finite for each "I) <§ and Hn\B{ is finite for each =
n € ’N\I ([1], 21A again, or otherwise).

Let a < {i. Then (B§+1,GaﬂBS+1) € P, so (BS+1,GanB§+1) €P

for some n(—.,I;I " As CnCB

= ¢+ Cn\BA

1

is finite for every &) Sg :
S0 ne,E\I 5 Accordingly
G, \Be < (Ga\BgH)U(Hn\B?;)
is finite, and D \B§ is infinite, because G \D <_ G \ E is finite.
o s a o= a o

Thus the induction continuesms.

Having got the <B{>{<F , use P%(Jﬂ) to construct an infinite set
B such that B\ Bg is finite for each { < \}1 , and observe that B\ A
is finite for every A & ﬂ. ; contradicting the choice of ﬁu . x

This contradiction proves the theorem.
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L. Theorem H'&n MA((;)1) .

proof (a) H = L(LC},‘) . @ Assume H', and let P be an upwards-ccc
partially ordered set of cardinal uC),l . Let £ : P~ 1,\31 be a

Injection, and for p € P choose a sequence <s(p,n)>neN running over

{ q: f(q) < £(p) } , with s(p,0) = p , andiebhesmatpymissaikmddstinorei
Let P be ‘L)méNPn'Fl , ordered by saying W;‘
(po,...,pm) < (qo,...,qn) iff m<n, p, <q vV i £ W
and V i<m, j<m 4 k<n, s(pi,j) = q -

(This is a partial order because s(p,0) = p for every p .) Now
P is upwards-ccc. @ Note first that H' implies that every ccc partially
ordered set satisfies Knaster's condition, so that Pn+1 is upwards-ccc for
every ne N ; and secondly that (po,...,pm) and (qp,...,qm) have a
common upper bound in P iff every pair {pi,qi} is bounded above in P .
Q Also, 4b(P) = L3, « 8o by H' there is an uncountable upwards-
directed ﬁ(____; . Observe that, for any & < sz,‘ "

{ (po,...,pn) 3 maxiSnf(pi) <&}

is countable; so

sup{ f(pi) : (po,...,pn) €¢R,i<n} = @1 .
Almso, for any G €P, (5 : P < q} is finite, #& so R can have no
greates member.
Set P = { P, : (po,...,pm) €R,m>k)} . Because R is upwards-
~ne
directed in P , each Pk is upwards-directed in P . Now k’?(eNPk = P .
Let pe P. Let (po,....pm) € R be such that maxi<mf(pi) > -F(P') >

Let i <m be such that f(p,) > f(p) , and je N such that p = s(p;,j) -

As 'ﬁ has no greatest member we can find ;o e Fj+1 e§ such that
A~ ~ " ~
(po,...,pm) <r < ...< Tipq * Expressing each T, as (qlo""’qlnl) §
we see that m<n < ...< nj so that j < n'j ; also there is an s < n‘_j
. = .,0) = s = . 2J) = q. I ‘
such that p, s(pl, ) dgis 3 and now p S(qu,J) q3+1’kc P for

some kgnj_” 5 @
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This proves L(u"),l) . Q

+ . + /. \
(b) H = P\I'(u.,‘) . p Assume H , and let <_A§./§;<LQ1 be a family
of infinite subsets of N such that Ag\ A'ﬂ is finite for t] <€< Q’I .
) ‘ ‘
For A €[N~ ,neN set WAn) ={i:ieh, #Ani)<n) . Let
(%)
P be Ew1]< ordered by saying that I <J if ICJ and

w(f\{eIAg,#(I)) = [\?{GJAQ . (Conveniltonally take $<dJ W JeP.)

<ed

Then P is S-centered upwards. P For Ce [/Ii] set
Q = (I: W(ﬁgeIA{,f{F(I)) =C )
and observe that QC is upwards-siemskmdcentered in P . @
By H+, P has an uncountable upwards-directed subset R . Consider
K=\JR, A= m{eKA{ . K is uncountable so A\Ag is finite for

every § < 2 Now let me N . As R 1is upwards-directed, there

1 .
isan I eR with #(I)>m; let C = w([}{elAi,#(I)) so that
¥(C)>m. If £eK then there isa J € R such that I<J and

€ € J ; in which case Cc [ QJA'P
As m is arbitrary, A is infinite, as required by PI
v

CAc . Thus CCA, and 4(A) 2m .

) . @

(_(_:_) Now the theorem follows from the remarks in §1 above.

Reference 1. D.H.Fremlin, Consequences of Martin's Axiom, to be published

by Cambridge U.P.

Problems (a) Does P¢(K) imply k<f for « > uﬁ),l ?

(b) Does L(w,]) imply MA(LQ,]) 2




Note added 8.6.82

5., Lemma If L(kK) is true, and P is an upwards-ccc partially
ordered set, and AC P has cardinal < K , then there is a sequence

<Pn/ne.13 of upwards-centered subsets of P such that AC Un(-}fpn

proof Set A =A . Given A CP with #(An) <® ,let A . be
xa subset of P such that A C A, , #(Anﬂ) < k , and every finite

subset of An which has an upper bound in P has an upper bound in An+‘l

Set P' = UneNAn . Then P' is upwards-ccc and has cardinal < kK , so

by L(X) 1is expressible as UneNPn where each P is upwards-centered

. s . y .
in P' i.e. is upwards-centered in P . Now AC un‘ﬁpn .

6. Theorem L(®) + 1<|>O,=-5MA('A) .

proof (a) Assume L(K) . If AL 61(12) and 4h(A) < « there is a

ze € suchthat { i : |x€i)| > z(i) } is finite for each x € A .

P Set P={y:ye/( et : ZieNy(i) <1} . Then P satisfies
Knaster's condition upwards ([1], 33C). For each x € A choose a V, € P
such that { i : |x(i)] >y (i) } is finite. By lemma 5, there is a
sequence <Pn>neN of upwards-centered sets in P covering { Ve t X €A} .
We can suppose t;;at each P~ is non-empty. Set zn(i) = sup{ y(i) : y € P }
for each n € N . Then ZieNzn(i) <1 for each ne N . Now there is

a ze (€)Y such that (i : z (i) > z(i) } is finite for each ne N .

This =z works.@

(b) Assume L(K) . If AQ‘I_\IIE and #(A) <k there is a gey}\1

such that { i : £(i) > g(i) } 1is finite for each f e A . p For

. . _ A
fe A, define f*(n) = maxiSnf(l) +n for each neXN, and w;, € co(ljj_)
by
we(i) = 1 if i< £+(0)
= 27" if £*(n) < i< f*(n+1) .
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Now set xf(n) = wf(n) -wf(n+1) for each n€& N so that X; € (l .
By (a), there is a 2z € (f’:‘)+ such that { i : xf(i) > z(i) } is finite

for each f€ A . Set mwv(n) = 2 nz(i) + 2™ for each n € N, so

i>
that v € c  and {n: wf(n) > v(n) } is finite for each fe& A .
Define g e ﬁu by saying

g(n) = max{ i : v(i) > 27"} .

Now if f € A there is an me N such that w_(i) < v(i) for every i >m .
~ f —_ —_—

In this case, if n>m , W f*(n) >n>m, so
2™ = we(f*(n)) < v(£*(n))

and f*(n) < g(n) . So this g serves. Q

(c) ? Suppose that L(k) + W< B is true but MA(%) 1is false.
In this case Ailintajpestany K > (I , and L(f) is true. By
Theorem 3, P¢(\F) must be false. Let <A€><<]q be a family of infinite

subsets of N such that Ag\A is finite whwnever ‘1 < § <$ , and there

1
is no infinite AC N such that AN\ Ag 1is finite for every { <{. For
each g < 38 let fg be the increasing enumeration of A§ . By (v),
there is a g € lﬂ_ri such that { i : f§(21’.) + 1> g(i) } is finite for
each §<1J . @8 Ve can take g to be increasing. Set

P = {B:BCN, HBngn))>n Y nel,

d £ <@, A\B is finite ) .

Then P is downwards-ccc. @ Let R<P, 4R) = w, . Then as
we know that { 1is regular (£13, 21:) and we are hypothesizing that

>« , ve have cf(p) > W, . Consequently there is a § <@ such

1
that AS\B is finite for every B € R . Now there is an n € N such
that { B: BeR, AS\B €n} is uncountable. Let me& N be such

that fe(2i) + 1< g(i) for every i>m i.e. H(ANgH) > 21 for

every i>m and (A Ag(i)\n) > i for every i > max(m,n) .
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Next, let I < g(max(m,n)) be such that R" = { B: BeR ,
BNg(max(m,n)) = I } is'uncountable. Consider C = IL(A¢\n) .
We see that As\\C is finite. Also, for i < max(m,n) ,
:ﬂ.(Cr\g(i)) > (Ing(i)) = #(Bong(i)) > i, where B is any m@mber of
R" ; while for i > max(m,n) , H(Cng(i)) Z#(Asng(i)\n) > i
So CeP. And CC B for every Be R", so R" is surely dwonwards-
linked.

For each & <§ , there is a By€ P such that By\Ag is finite.
\P Take By = A Og(m) where m is such that f£g(2i) + 1< g(i) for
every i>m . Q By Lemma 5, there is a sequence <P’>n€,l\l of ®
downwards-centered subsets of P covering { B§ $ { <&Zl} . As
cf@) > W, there is an n 6,13 such that D = {§ - B{e Pn } is cofinal
in @ . Examine C=/)P . If QCP_ is finite then H#(1Qngm)
2 m for every me€ N , because Q has a lower bound in P . So
#(CNg(m) >m for every me N , and C is infinite. On the other
hand, CC B§ for every £ € D, so C\Ag is finite for every ge 5 I
and C\Ag is finite for every {<1:J because D is cofinal in P -
But such a C is not supposed to exist. x

This proves the result.

7. The principle H Consider the statement

H: If P is an uncountable pupwards-ccc partially ordered set
then P has an uncountable upwards-centered subset.

Clearly H' =D H & and L(i».“»,‘) SH .

8. Lemma Assume H . Then if P is an uncountable upwards-ccc
partially ordered set and AC P is uncountable, there is an uncountable

upwards-centered R C A .
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proof Apply H to { I :1I ¢ [A]<l~> » 1 has an upper bound in P} .

9. Theorem H& L(O1) :

proof I have only to show that H =9 L(«>_) . Assume H , and let

1
P be an upwards-ccc partially ordered set of cardinal 031 . Enumerate
AR
P as \p{/§<w1 .
Let X be the set of finite up-antichains in P . Define <
on X by saying that I < J if for every p& I there isa q& J
such that p < q . Then < is a partial order on X . Let Z gXN
be the set of sequences In> such that #(I ) <n for every né€ N
and supnéy #(In) <00 . Order Z by saying that <In> e _< n>neN
if InSJn for every ne& N . Then 2 is upwards-ccc.
R¢ 72 1is uncountable, then there is an m & N such that
By = {<In>n€1§ :<In>nelj ¢k, #a)<n ¥ nen)
is uncountable. Now observe that P satisfies Knaster's condition
upwards, by Lemma 8. It follows easily that X/\[P]Sn satisfies
Knaster's condition upwards for each ne& N . Consequently there is
: P |
an uncountable R2_<_ R such that if <Ir>ne_l\1 and \Jn/ne}j belong to

R then for each n < 2m there is a Kn € Xr\,[P]S-n which is a common

2 ?

uppwer bound of Ir\ and Jn . However, if we now take, for n > 2m ,
a m¥wimaX set Kn§ P of minimal size such that for every p e Inan

there is a q € Kn with q > p , we see that Kn € Xnﬁ[P]sam . Hence

. : P Y < \
<Kn>ne}}§ € 2 and is a common upper bound for \In/neNﬁ_ and Jn/n(ﬁ ” @

" : /E\ .
For each { < w,] there is an \In/n{}ﬂ ¢« Z such that

{ * .
Un&NIn 2L p : 1 2 £} . By Lemma 8, there is an uncountable

c< LJ1 such that ‘\I%/neN § € C} is upwards-centered in % .
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For each L €& [C]<"U and n€ N, let J n (X/\[P]sn be an

L
upper bound of { Ii :£€C) in X . Enumerate Ji, 28
g e -
<ani>i<m(L1n) : gﬁgggg an{ ' In m(L,n) so that p Sanf

Ln§(p)
whenever g,e L e_[C]<°b and p G,Ii. 5 Let E; be an ultrafilter
on [C]<m such that { L : { eLie [C]<(~ } € T whenever { e C .

e - £
Set fng(p) = th—»g ani(p) <n for every £ € C and pe I -

= 5 . & - ’
Now set Pnl_Ugecip.pe,In,fng(p)_l},for l1<nel .

. <

Then each Pnl is upwards-centered. " If L € [C] and
, ' et _ . <
A = (“%elﬁ P:p &'Ii.' fn{(p) =11} , then there is an M € [C]
such that MD L and fni(p) = ang(p) whenever £ € L and p € I

in which case is an upper bound of A .4:} Also

GMn1
ul(neNPnl = L){&C,neljln 2 U{QC{ P,’ :V} £§ } = P.

So P 1is QQ=centered upwards, as required.

10. Remark ,dded 12.12.84 P.Nyikos has pointed out Fhat Theorem 9

implies that M > wo is equivalent to the principle A of

1
K.Kunen & F.D.Tall, "Between Martin's Axiom and Souslin's hypothesis',

Fund. Math. 102 (1979) 173-181.

11. Remark added 25.11.85 S.Todorcevic & B.Velickovic ("MA and precalibers

of cce posets", note of August 1985) have shown that there is a ccc poset of

%8
cardinal % (the least cardinal for which P,(#£) 4is false) with no centred

subset of cardinal % . Consequently 1, > ME‘I =) £> \J1 =) 1> ~21 .
It follows ak that 1 = %1l and that H&E®> ol, . (Here | %is the

1
least cardinal for which L(x) is false.)



