I have not attempted to discuss spaces which are not completely regular and Hausdorff. Possibly Proposition 7 offers a definition of a more general type of Čech-analytic space.

- 1. Notation Write $N^{(N)}$ for $\bigcup_{k \in \mathbb{N}} N^k$, the set of all finite sequences in \mathbb{N} (including the empty sequence \emptyset). For $\sigma \in \mathbb{N}^{(N)}$ write $\bigstar(\sigma)$ for the number fof terms in σ (which is also the domain of σ , if we identify \mathbb{N} with the set of finite \mathbf{T} dinals). If σ , $\tau \in \mathbb{N}^{(N)}$ and $\alpha \in \mathbb{N}^N$, write $\sigma \subseteq \tau \subseteq \alpha$ to mean that α is an extension of τ and that τ is an extension of σ .

 If $\alpha \in \mathbb{N}^N$, $\sigma \in \mathbb{N}^{(N)}$, $n \in \mathbb{N}$ write $\alpha \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$, $\sigma \mid n = \langle \alpha(i) \rangle_{i < n} \in \mathbb{N}^{(N)}$
- 2. <u>Definition</u> A completely regular Hausdorff space A is <u>Čech-analytic</u> if there is a compact Hausdorff space Z and a set $R \subseteq \mathbb{N}^N \times \mathbb{Z}$ such that R is expressible as the intersection of a closed set with a G_δ set and A is homeomorphic to $\pi_2[R] \subseteq \mathbb{Z}$.
- 3. <u>Proposition</u> If X is a compact Hausdorff space and $A \subseteq X$ is a max Cechanalytic set, then there is a set $R \subseteq \mathbb{N}^N \times X$ such that R is expressible as the intersection of a closed set with a G set and $A = \pi_2[R]$.

<u>proof</u> We know that there is a compact Hausdorff space Z , a set $S \subseteq \mathbb{N}^N \times \mathbb{Z}$ which is expressible as the intersection of a closed set with a G_δ set, and a homeomorphism $f: A \to \pi_2[S]$. Suppose that $S = V \cap \bigcap_{n \in \mathbb{N}} W_n$ where V is closed and each W_n is

open. Set

$$T = \overline{\{(\alpha,t) : \alpha \in N^{\frac{N}{\nu}}, t \in A, (\alpha,f(t)) \in S\}} \subseteq N^{\frac{N}{\nu}} \times X$$

$$U_{n} = \{U \text{ (u. : } \underline{u}\underline{u}\underline{c} N^{\frac{N}{\nu}} \times X \text{ open, } \exists \text{ open } \underline{w}\underline{c} N^{\frac{N}{\nu}} \times Z, \overline{w}\underline{c}\underline{w}_{n}, f_{1}^{-1}[\underline{w}] = \underline{u}\underline{c}(N^{\frac{N}{\nu}} \times A)\}$$

where $f_1(\alpha,t) = (\alpha,f(t))$ for every $\alpha \in \mathbb{N}^{\mathbb{N}}$, $t \in A$. Set $R = \mathbb{T} \cap \bigcap_{n \in \mathbb{N}} \mathbb{U}_n$. I claim that $R = \{x \in \mathbb{N} \times \mathbb{R} \times$

 $(\underline{i}\underline{i}) \quad \text{If } (\alpha,\underline{t}) \in \mathbb{R} \text{ , then for each } n \in \underline{\mathbb{N}} \text{ we have } (\alpha,t) \in \underline{\mathbb{U}}_n \text{ , so there}$ $\text{As are open } \underline{\mathbb{W}}_n^{\underline{N}} \times Z \text{ , } \underline{\mathbb{U}}_n^{\underline{N}} \times Z \text{ , } \underline{\mathbb{U}}_n^{\underline{N}} \times X \text{ such that } (\alpha,t) \in \underline{\mathbb{U}}_n^{\underline{N}} \text{ , } f_1^{-1}[\underline{\mathbb{W}}_n^{\underline{N}}] =$ $\underline{\mathbb{U}}_n^{\underline{N}} \wedge (\underline{\mathbb{N}}_n^{\underline{N}} \times A) \text{ , and } \underline{\mathbb{W}}_n^{\underline{N}} \subseteq \underline{\mathbb{W}}_n \text{ . Now for each } n \in \underline{\mathbb{N}} \text{ , neighbourhood } G \text{ of } t$ $\underline{\mathbb{N}}_n^{\underline{N}} \times A \text{ , set}$

$$C_{iG}^{n} = \{ (\beta, f(u)) : \beta | n = \alpha | n, u \in A \land G \} \land \bigcap_{i \leq n} W_{i}^{i} \land S ,$$

$$D_G^n = \{ (\beta, u) : \beta | n = \alpha | n , u \in \mathbb{R} G \} \wedge \bigcap_{i \le n} U_i^i \wedge f_1^{-1}[S] .$$

Then $C_G^n = f_1[D_{\bullet G}^n]$. Because D_G^n is the intersection of a neighbourhood of (α,t) with $f_1^{-1}[S]$, and $(\alpha,t) \in T$, no D_G^n is empty and no C_G^n is empty. Consequently there is a $v \in \bigcap_{n,G} \pi_2[C_G^n] \subseteq Z$, and $(\alpha,v) \in \bigcap_{n,G} C_G^n$. But now $(\alpha,v) \in \overline{S} \cap \bigcap_{n \in \mathbb{N}} \overline{W_n} \subseteq V \cap \bigcap_{n \in \mathbb{N}} W_n = S$. So $v \in \pi_2[S] = f[A]$. As $v \in \overline{f[A \cap G]}$ for every neighbourhood G of t in X, add f is a homeopmorphism between A and f[A], we must have v = f(t). So $(\alpha,f(t)) \in S$.

Npw A = $f^{-1}[\pi_2[S]] = \pi_2[f_1^{-1}[S]] = \pi_2[R]$, and R is expressible as the intersection of a closed set with a G_δ set.

- 4. Theorem (a) Axecumbaters The product of a countable family of Čechanalytic spaces is Čechanalytic.
- (b) If X is a completely regular Hausdorff space, the set of Čechanalytic subspaces of X is closed under the Souslin operation.
- (c) If A is a Čech-analytic space, every Borel subset of A is Čech-analytic.
- (d) If X and Y are completely regular Hausdorff spaces of which Y is Souslin, and A \subseteq X \times Y is Čech-analytic, then $\pi_1[A] \subseteq$ X is Čech-analytic.
- proof (a) kain $A_{n/n-N}$ be a sequence of Sech-analytic spaces (the case \widehat{Tar}_{finite}) productive spaces (the case \widehat{Tar}_{finite}) proof (a) kain $A_{n/n-N}$ be a countable family of Cech-analytic spaces. For each $i \in \mathbf{II}$ express A_i as $\pi_2[R_i]$ where R_i is a subset of $N^N \times Z_i$ expressible as the intersection of a closed set with a G_i set, \widehat{Tar}_i being a compact Hausdorff space. Then \widehat{Tar}_i may be identified with $\pi_2[R]$ in $\widehat{Tar}_i = Z$, where $R = \widehat{Tar}_{i \in I} R_i$ regarded as a subset of $(N^N)^I \times \widehat{Tar}_i = Z$. As R is also the intersection of a closed set with a G_i set, $\widehat{Tar}_i = Z$, is Cech-analytic.
- (b) Let $A_{\sigma \circ \bullet \bullet N}(N)$ be a family of Čech-analytics subsets of X. Embed X in its Stone-Čech compactification Z. Express each A_{σ} as $\pi_2[R_{\sigma}]$ where $R_{\sigma} \subseteq N^N \times Z$ is expressible as the intersection of a closed set and a G_{δ} set Φ (this is possible by Proposition 3). In $N^N \times (N^N)^N \times Z$ set

where $S_{\boldsymbol{\tau}} = \{ (\alpha, \beta_{\boldsymbol{\tau}}, \gamma_{\boldsymbol{e}, \boldsymbol{N}}(N), t) : \alpha | n = \boldsymbol{\tau}, (\beta_{\boldsymbol{\tau}}, t) \in R_{\boldsymbol{\tau}} \}$. For each $\boldsymbol{\tau} \in N^n$, $S_{\boldsymbol{\tau}}$ is expressible as the intersection of a closed set with a G_{δ} set; as the $S_{\boldsymbol{\tau}}$ all lie in distinct sets of a partition of $N^N \times (N^N)^N \times Z$ into open sets, $N^N \times (N^N)^N \times Z$ is also expressible as the intersection of a closed set with a G_{δ} set, and R is expressible as the intersection of a closed set with a G_{δ} set. Also

 $\pi_{2}[R] = \bigcup_{\alpha \in \mathbb{N}} \bigcap_{n \geq 1} A_{\alpha \mid n} \subseteq X \text{ and } \mathbb{N}^{\mathbb{N}} \times (\mathbb{N}^{\mathbb{N}})^{\mathbb{N}^{(\mathbb{N})}} \text{ is hoseneomorphic to } \mathbb{N}^{\mathbb{N}},$ so $\bigcup_{\alpha \in \mathbb{N}^{\mathbb{N}}} \bigcap_{n \geq 1} A_{\alpha \mid n} \text{ is Cech-analytic. As } \left\langle A_{\P} \right\rangle_{\P \in \mathbb{N}^{(\mathbb{N})}} \text{ is arbitrary, (b) is proved.}$

- (c) By (b), { B: B C A , B and A B are both Cech-analytic } is a must contain all Borel sets.
- (d) Let Z , W be compact Hausdorff spaces with $X \subseteq Z$, $Y \subseteq W$. By Proposition 3, there is a set $R \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{Z} \times W$ such that R is expressible as the intersection of a closed set with a G_{δ} set and A is the projection of R onto $Z \times W$. Since Y is Souslin, there is a continuous surjection $f: \mathbb{N}^{\mathbb{N}} \to Y$ (the case $Y = \emptyset$ is trivial). Now $S = \{ (\alpha, \beta, t) : \alpha , \beta \in \mathbb{N}^{\mathbb{N}} , t \in Z , (\alpha, t, f(\beta)) \in \mathbb{R} \}$ is expressible as the intersection of a closed set with a G_{δ} set, so its projection when in X is Čech-analytic; but this is just $\pi_1[A]$.

Cech-analytic iff it is the projection of a Borel set in $\mathbb{N}^{\mathbb{N}}$ X.

- 5. Theorem Let X be a compact Hausdorff space, A a subset of X. Then the following are equivalent:
 - (i) A is Cech-analytic;
- (ii) A is obtainable by the Souslin operation from { $E:E\subseteq X$ is either open or closed };
 - (iii) A is the projection of a Borel set in $\mathbb{N}^{\mathbb{N}} \times X$.
- proof (a)(i) \Rightarrow (ii) Let $R \subseteq N^{\frac{N}{N}} \times X$ be of the form $V \cap \bigcap_{n \in N} V_n$, where $\max_{n \in N} V$ is closed and each V_n is open, with $\pi_2[R] = A$. For each $\nabla \in N^{\frac{N}{N}}$ set $V = \{\alpha: \alpha \supseteq \nabla\} \subseteq N^{\frac{N}{N}}$. Set

 $\mathbf{G}_{\mathbf{\sigma}}^{\mathbf{n}} = \bigcup \{ \mathbf{G} : \mathbf{G} \subseteq \mathbf{X} \text{ open, } \mathbf{H} \times \mathbf{G} \subseteq \mathbf{W}_{\mathbf{n}} \} ,$ so that $\mathbf{W}_{\mathbf{n}} = \bigcup_{\mathbf{\sigma} \in \mathbb{N}} (\mathbf{N})^{\mathbf{H}} \times \mathbf{G}_{\mathbf{\sigma}}^{\mathbf{n}} .$ Set $\mathbf{F}_{\mathbf{\sigma}} = \overline{\pi_{2}[\mathbf{V} \cap (\mathbf{U}_{\mathbf{\sigma}} \times \mathbf{X})]} .$ In $\mathbf{N}^{\mathbf{N}} \times \mathbf{N}^{\mathbf{N}} \times \mathbf{X}$ consider

- (b)(ii) (i) Immediate from Theorem 4.
- $(\underline{c})(\underline{i}) = (\underline{i}\underline{i}\underline{i})$ by Proposition 3.
- (d)(iii) \Rightarrow (i) by Theorem 4, parts (a), (c) and (d). (The point is that $\mathbb{N}^{\mathbb{N}}$ is a G_{δ} set in its some *** some ** some *** some ** some *** some ** some *** so
- 5. Corollary (a) Every completely regular K-analytic space is Čech-analytic. (For if A is a completely regular K-analytic space, there is an usco-compact relation $R \subseteq \mathbb{N}^{\mathbb{N}} \times A$ with $\pi_{2}[R] = A$; now R is closed in $\mathbb{N}^{\mathbb{N}} \times \beta A$.)
- (b) Average variation as G_{δ} subset of a compact Hausdorff space); in particular, a complete metric space is Cech-analytic.

- (\underline{c}) An absolutely analytic metric space is Cech-analytic (being an F-analytic subset of its completion). In fact we have the following:
- 6. Proposition A metric space X is Cech-analytic iff X is an F-analytic subset of its completion X .

proof If X is F-analytic in \hat{X} , it is Čech-analytic, by Theorem 4, since \hat{X} is a G_{δ} set in its Stone-Čech compactification. If X is Čech-analytic, then embed \hat{X} in its Stone-Čech compactification Z. We have $X = \pi_2[R]$ where $R \subseteq N^N \times Z$ is the intersection of a closed set and a G_{δ} set. Now Z R is a subset of $N^N \times \hat{X}$ and in $N^N \times X$ is an Z set, because $N^N \times X$ is metrizable. So $\pi_2[R]$ is F-analytic in X.

- 7. Proposition Let X be a completely regular Hausdorff space. Then X is Čech-analytic iff there is a set $R \subseteq N^N \times X$ and a family sequence $\{Q_n\}_{n \in N}$ own families of open sets in $N^N \times X$ such that
 - (i) R⊆ Ug_n V n∈ N
- (ii) whenever ${\bf F}$ is a filter on ${\bf N}^{\bf N}\times X$, containing R, meeting every ${\bf Q}_n$, and such that $\pi_1[[{\bf F}]]$ converges in ${\bf N}^{\bf N}$, then ${\bf F}$ has a cluster point in R;
 - (iii) $\pi_2[R] = X$.

proof (a) If X is Čech-analytic, let $R \subseteq N^{\mathbb{N}} \times \beta X$ be such that $\pi_2[R] = X$ and R is expressible as $V \cap \bigcap_{n \in \mathbb{N}} W_n$ where each W_n is open in $N^{\mathbb{N}} \times \beta X$ and V is closed. Let $G_n = \{G \cap (N^{\mathbb{N}} \times X) : G \subseteq N^{\mathbb{N}} \times \beta X \text{ is open, } \overline{G} \subseteq W_n \}$. Then $R \subseteq U_n$ for each $n \in \mathbb{N}$. If $G \subseteq \mathbb{N}$ is a filter on $M \times X$, containing $G \subseteq \mathbb{N}$ meeting every $G \subseteq \mathbb{N}$, and $G \subseteq \mathbb{N}$ converges then $G \subseteq \mathbb{N}$ has a cluster point $G \subseteq \mathbb{N}$ and $G \subseteq \mathbb{N}$ such that $G \subseteq \mathbb{N}$ and $G \subseteq \mathbb{N}$ such that $G \subseteq \mathbb{N}$ and $G \subseteq \mathbb{N}$ so $G \subseteq \mathbb{N}$ so $G \subseteq \mathbb{N}$ satisfy (i)— $G \subseteq \mathbb{N}$ so $G \subseteq \mathbb{N}$ satisfy (i)— $G \subseteq \mathbb{N}$ so $G \subseteq \mathbb{N}$ satisfy (i)— $G \subseteq$

(b) Now suppose that there exist face R, $\{Q_n\}_{n\in\mathbb{N}}$ satisfying (i)-(iii). Embed X in its Stone-Čech compactification βX , and take $V = \overline{R}$ in $N^{\mathbb{N}} \times \beta X$. Set $W_n = \bigcup \{W : W \subseteq N^{\mathbb{N}} \mid \beta X \text{ open, } W \cap (N^{\mathbb{N}} \times X) \in Q_n \}$. I claim that $R = V \cap \bigcap_{n \in \mathbb{N}} W_n$. P($\underline{\alpha}$) As $R \subseteq \bigcup Q_n = W_n \cap (N^{\mathbb{N}} \times X)$ for each $n \in \mathbb{N}$, $R \subseteq V \cap \bigcap_{n \in \mathbb{N}} W_n$. ($\underline{\beta}$) Suppose that $(\alpha, t) \in V \cap \bigcap_{n \in \mathbb{N}} W_n$. Let be the filter on $N^{\mathbb{N}} \times X$

(WX:MXX U: U is a neighbourhood of (a,t));

RHHENDALLIA SANANA SANA

generated by { $R \wedge U : U$ is a neighbourhood of (α,t) }. (There is such a filter because $(\alpha,t) \in V = \overline{R}$.) Then $\pi_1[[\center{T}]] \to \alpha$. Also, for each $n \in \underline{N}$, there is an open $W \subseteq N^{\underline{N}} \times \beta X$ such that $(\alpha,t) \in W$ and $W \cap (N^{\underline{N}} \times X) \in \center{T}_n$; now $W \cap (N^{\underline{N}} \times X) \in \center{T}_n$. By hypothesis (ii), \center{T}_n has a cluster point in R; but because $N^{\underline{N}} \times \beta X$ is Hausdorff, this must be (α,t) , and $(\alpha,t) \in R$, as required. \center{Q}_N So R is expressible as the intersection of a closed set with a G_{δ} set and \center{T}_N X is Cech-analytic.

8. Proposition A hereditarily Lindelöf Čech-analytic space is K-analytic.

Proof Let A be a hereditarily Lindelöf Čech-analytic space embedded in a compact Hausdorff space X. Let $R \subseteq \mathbb{N}^N \times X$ be such that $\pi_2[R] = A$ and $R = V \cap \bigcap_{n \in \mathbb{N}} W_n$ where V is closed and every W_n is open. For each $n \in \mathbb{N}$, $\nabla \in \mathbb{N}^{(N)}$ let $\mathbb{N}^n = \{G: G \subseteq X \text{ a cozero set}, U_{\sigma} \times G \subseteq W_n\}$ where $U_{\sigma} = \{\alpha: \mathbb{N} \supseteq \nabla\}$. Then there is a countable $\mathbb{N}^n \subseteq \mathbb{N}^n$ such that $A \cap \mathbb{N}^n \subseteq \mathbb{N}^n \subseteq \mathbb{N}^n$. Set $W_n' = \mathbb{N}^n \subseteq \mathbb{N}^n \subseteq \mathbb{N}^n$ is K_{σ} , so $R' = V \cap \bigcap_{n \in \mathbb{N}} W_n'$ is K_{σ} analytic.

As $W_n' \subseteq W_n$ for every $n \in \mathbb{N}$, $R' \subseteq R$. But in fact R = R'. Take any $\{\alpha, t\} \in \mathbb{R}$. Then for each $n \in \mathbb{N}$ there is a cozero neighbourhood G of G and there must be an G and G such that G and G are G and G are G and G and G and G and G are G and G and G and G and G and G and G are G and G and G and G and G are G and G and G and G are G and

9. Example Theorem 4 covers many of the properties that we expect a class of "analytic" sets to have; Theorem 5 shows that (for instance) a Čech-analytic subset of a completely regular space is universally measurable and has the strong Baire property. Since any discrete space is Čech-complete, therefore Čech-analytic, we do not have the continuous image of a Čech-analytic space Čech-analytic. Nor do we have a set which is both Čech-analytic and co-Čech-analytic necessarily Boreal. Give [0,1] ists usual topology, ω_1 its discrete topology; let $X = [0,1] \times \omega_1$, so that X is a complete metric space and is G_5 in its Stone-Cech compactification βX . For each $S \in \omega_1$ let $S \in S$ a Borel set in $S \in S$. Then there is a closed set $S \in S$ $S \in S$

 $F = \{ (\alpha,t,\xi) : (\alpha,t) \in F_{\xi} \} ;$

then F is closed, so that $\pi_2[F]$ is Čech-analytic. Similarly, $X \times \pi_2[F]$ is Čech-analytic and α (and α) is Čech-analytic also). So α is both Čech-analytic and co-Čech-analytic (in both X and α). But E cannot be Borel because the α are not of bounded Borel class.

10. Example I do not know of a useful necessary and sufficient condition for a Čech-analytic space to be K-analytic. "Hereditarily Lindelöf" is sufficient (proposition 8) but not necessary; "Lindelöf" is necessary but not sufficient.

P Let X be an uncountable ** Set; adjoint one point ** A , and say that ** ANALYTIC NEW ANALYTIC SET; adjoint one point ** A , and say is countable of A A G . Now XU(A) is the union of two locally compact ** Subspaces so is Čech-analytic. ** Clearly it is Lindelöf. But it is not K-analytic because any uncountable K-analytic space has a non-eventually-constant sequence with a cluster point, which XU(A) does not have.

- 11. Example Give ω_1 its order topology. Then for a set $A\subseteq\omega_1$ the following are equivalent:
 - (i) A is Cech-analytic;
 - (ii) A is Borel;
- (iii) A is expressible as $\bigcup_{n \in \mathbb{N}} (F_n \cap G_n)$, where each F_n is closed and each G_n open;
- (iv) there is an uncountable closed set $F \subseteq \omega_1$ such that either $A \stackrel{\frown}{=} F$ of $A \wedge F = \emptyset$.

proof (i) ⇒(iv) ⇒ (iii) ⇒ (ii) ⇒(i) .

- 12. Theorem (see [1], Theorem 2.1) Let X be a first-countable completely regular Hausdorff space, A \(\subseteq X \) a Cech-analytic set which is not \(\subseteq \). Suppose either that X is \(\subseteq X \) paragompact or that A is hereditarily Lindelöf. Then there is a compact set K \(\subseteq X \) such that K \(\subseteq A \) is countable, dense in K, and has no isolated points.
- proof (a) Let Z be the Stone-Cech compactification of X; heneceforth all notions of closure, interior will be taken in Z. Let $R \subseteq \mathbb{N}^N \times \mathbb{Z}$ be a set such that $\pi_2[R] = A$ and R is expressible as $V \wedge \bigcap_{n \in \mathbb{N}} W_n$ where V is closed and every W_n is open (Paposition 3). Let \mathfrak{J} be the ∇ -ideal of subsets of A generated by $\{F: F \subseteq A, \overline{F} \wedge X \subseteq A\}$; our hypothesis that A is not $F_{\mathfrak{J}}$ in X becomes just $A \notin \mathfrak{J}$. Let \mathfrak{J} be

 $\{B: B \subseteq A, B \neq \emptyset, B \cap G \notin S \text{ whenever } G \text{ open, } B \cap G \neq \emptyset \}$.

(b) If $B \subseteq A$ and Q is a collection of open sets such that $B \cap G \in \mathcal{J}$ for every $G \in Q$, then $B \cap UQ \in \mathcal{J}$. P (i) If A is hereditarily Lindelöf, then $B \cap UQ$ is Lindelöf, so there is a countable $Q \cap Q \cap Q$ such that $B \cap UQ \cap Q \cap Q \cap Q \cap Q \cap Q \cap Q \cap Q$

(ii) If X is perfectly normal and paracompact, then $X \cap U_{\mathbb{Q}}^{\mathbb{Q}}$ is relatively $F_{\mathbb{Q}}$ in X; let $E_{\mathbb{Q}} \cap E_{\mathbb{Q}}^{\mathbb{Q}}$ be assessmental each $\mathbb{Q} \cap E_{\mathbb{Q}}^{\mathbb{Q}} \cap E_{\mathbb{Q}}^{\mathbb{Q}}$ be an $\mathbb{Q} \cap E_{\mathbb{Q}}^{\mathbb{Q}} \cap E_{\mathbb{Q}}^{\mathbb{Q}} \cap E_{\mathbb{Q}}^{\mathbb{Q}}$, there is an $\mathbb{Q} \cap E_{\mathbb{Q}}^{\mathbb{Q}} \cap E_{\mathbb{Q}}^{\mathbb{Q}} \cap E_{\mathbb{Q}}^{\mathbb{Q}}$ such that $E_{\mathbb{Q}} \cap E_{\mathbb{Q}}^{\mathbb{Q}} \cap E_{\mathbb{Q$

is a refinement of the form of

- (c) So if $B \subseteq A$ and $B \notin J$ there is a $C \subseteq B$ such that $C \in A$. Set $C = B \setminus U \{ G : G \text{ open, } B \cap G \in J \}$.
- (d) If $S \subseteq R$ and $n \in N$ and $\pi_2[S] \not\in J$, there is an $S_1 \subseteq S$ such that $\pi_2[S_1] \not\in J$ and $\overline{S_1} \subseteq W_n$. Property for $T \in N^{(N)}$ set $U_T = \{\alpha : \alpha \supseteq T\} \subseteq N^N$, $G_T = \{G : G \subseteq Z \text{ open, } \overline{U_T \times G} \subseteq W_n\}$, $G_T = \bigcup_{T \in N} G_T = \bigcup_{T \in N}$
- (e) We can now choose inductively, for $\tau \in N^{(N)}$, $\tau(\tau)$, S_{τ} , N_{τ} , t_{τ} such that, for every $\tau \in N^{(N)}$,
 - (i) $r(\sigma) \in \underline{N}^{(\underline{N})}$, $\#(r(\sigma)) = \#(\sigma) + 1$
 - (ii) if $\sigma' \subseteq \sigma$ then $\tau(\sigma') \subseteq \tau(\sigma)$
 - (iii) $S_{\mathbf{r}} \subseteq \mathbb{R} \cap (\mathbb{U}_{\mathbf{r}} \times \mathbb{Z})$, $\overline{S_{\mathbf{r}}} \subseteq \mathbb{W}_{\mathbf{r}}(\mathbf{r})$
 - (iv) if $\mathbf{q}' \subseteq \mathbf{q}$ then $S_{\mathbf{q}'} \supseteq S_{\mathbf{q}}$
 - (v) $\pi_2[S_{\mathbf{q}}] \not\in \mathbf{g}$, $\pi_2[S_{\mathbf{q}}] \subseteq N_{\mathbf{q}}$
 - (vi) $t_{\mathbf{q}} \in X \cap \overline{\pi_{\mathcal{P}}[S_{\mathbf{q}}]} \setminus A$
 - (vii) $\frac{\pi_2[S_{\bullet}]}{\pi_2[S_{\bullet}]} \wedge \frac{\pi_2[S_{\bullet}]}{\pi_2[S_{\bullet}]} = \emptyset$ if $i \neq j$
- (viii) $\left< N_{\P^\bullet i} \right>_{i \in \mathbb{N}}$ is a decreasing sequence forming a neighbourhood base for t_{\P^\bullet} .

construction Set $N_{\emptyset} = Z$. We have $A = \pi_{2}[R] = \bigcup_{\sharp(\mathfrak{C})=1} \pi_{2}[R \Lambda(U_{\mathfrak{C}} \times Z)]$; take $\mathfrak{C}(\emptyset)$ such that $\sharp(\mathfrak{C}(\emptyset)) = 1$, $\pi_{2}[R \Lambda(U_{\mathfrak{C}(\emptyset)} \times Z)] \notin \mathfrak{J}$. Let $S_{\emptyset} \subseteq R \Lambda(U_{\mathfrak{C}(\emptyset)} \times Z)$ be such that $S_{\emptyset} \subseteq W_{0}$ and $\pi_{2}[S_{\emptyset}] \notin \mathfrak{J}$ (using (d) above).

Having chosen $S_{\bullet} \subseteq R \cap (U_{\mathbf{C}(\P)} \times Z)$ such that $\pi_2[S_{\P}] \notin \mathbf{J}$, proceed as follows. Let $C \in \mathbf{A}$ be such that $C \subseteq \pi_2[S_{\P}]$ (part (c) above). Since $C \notin \mathbf{J}$, while $C \subseteq A$, we must have $X \cap \overline{C} \not\subseteq A$; choose $t_{\P} \in X \cap \overline{C} \setminus A$, so that $t_{\P} \in X \cap \overline{\pi_2[S_{\P}]} \setminus A$. Because X is first-countable, t_{\P} must have a countable of open sets base of neighbourhoods in Z; take $\left\langle N_{\P} \cap_i \right\rangle_{i \in \mathbb{N}}$ to enumerate a decreasing sequence \mathcal{L} forming such a base. Choose $\left\langle s_i \right\rangle_{i \in \mathbb{N}}$, all distinct, such that $s_i \in C \cap N_{\P} \cap_i$. Choose neighbourhoods H_i of s_i such that all the $\overline{H_i}$ are disjoint and $H_i \subseteq N_{\P} \cap_i$ for each $i \in \mathbb{N}$. Because $C \in \mathcal{A}$ and $s_i \in C \cap H_i$, we have $C \cap H_i \notin \mathcal{I}$. Also, for each $i \in \mathbb{N}$, we have

 $C \cap H_{i} \subseteq \pi_{2}[S_{\bullet}] = U_{k \in \mathbb{N}}^{\pi_{2}}[S_{\bullet} \cap (U_{\mathfrak{C}(\bullet)^{\wedge}k} \times \mathbb{Z})]$

so there must be a $k(i) \in \mathbb{N}$ such that

 $C \cap H_i \cap \pi_2[S_{\bullet} \cap (U_{\bullet(\bullet)} \cap k(i) \times Z)] \notin \emptyset$

Set $\tau(\sigma^i) = \tau(\sigma)^k(i)$. Set

 $P_{i} = S_{\mathbf{q}} \cap (U_{\mathbf{r}(\mathbf{q}^{1}i)} \times Z) \cap \pi_{2}^{-1} [C \cap H_{i}]$

so that $\pi_2[P_i] \not\in J$; choose $S_{\P^i} \subseteq P_i$ such that $\overline{S_{\P^i}} \subseteq W_{\#(\P^i)+1}$ and $\pi_2[S_{\P^i}] \not\in J$. It is easy to check that this procedure gives us (i)-(viii).

(f) Take $K = \{ t_{\mathbf{T}} : \mathbf{T} \in \mathbb{N}^{(N)} \} \subseteq \mathbb{Z}$. Then $K \setminus \{ t_{\mathbf{T}} : \mathbf{T} \in \mathbb{N}^{(N)} \} \subseteq \mathbb{A}$.

P Let $t \in K \setminus \{ t_{\mathbf{T}} : \mathbf{T} \in \mathbb{N}^{(N)} \}$. Let \mathcal{J} be an ultramfilter on $\mathbb{N}^{(N)}$ such that $t = \lim_{\mathbf{T} \to \mathbf{T}} t_{\mathbf{T}}$. Suppose, if possible, that there is an $n \in \mathbb{N}$ such that $\{\mathbf{T} : \mathbf{T} \supseteq \mathbf{T}_0\} \not\in \mathcal{J}$ for every $\mathbf{T}_0 \in \mathbb{N}^n$. Then there is a least such n, and n > 0. Let $\mathbf{T}_0 \in \mathbb{N}^{n-1}$ be such that $\{\mathbf{T} : \mathbf{T} \supseteq \mathbf{T}_0\} \in \mathcal{J}$. Of course $\{\mathbf{T}_0\} \not\in \mathcal{J}$, because $t \neq t_{\mathbf{T}_0}$. So $\{\mathbf{T} : \mathbf{T} \supseteq \mathbf{T}_0, \mathbf{T}(n) \ge m\} \in \mathcal{J}$ for every $m \in \mathbb{N}$. Now if $\mathbf{T} \supseteq \mathbf{T}_0$, $\mathbf{T}(n) = j \ge m$, $t_{\mathbf{T}_0} \in \mathbb{N}$. Now if $\mathbf{T} \supseteq \mathbf{T}_0$, $\mathbf{T}(n) = j \ge m$,

So $t \in \bigcap_{m \in \mathbb{N}} \overline{\mathbb{N}_{q_0^m}}$. But $\{ \mathbb{N}_{q_0^m} : m \in \mathbb{N} \}$ is a neighbourhood base for t_{q_0} , so $t = t_{q_0}$.

Accordingly there is for each $n \in \mathbb{N}$ a $\sigma_n \in \mathbb{N}^n$ such that $\{\sigma : \sigma \supseteq \sigma_n\}$ $\in \mathcal{F}$. There must now be an $\alpha \in \mathbb{N}^n$ such that $\sigma_n = \alpha | n$ for every $n \in \mathbb{N}$.

As just above, we have $t_{\sigma} \in \overline{\tau_2[S_{\alpha}|n]}$ whenever $\sigma \supseteq \alpha | n$, so that $t \in \overline{\tau_2[S_{\alpha}|n]}$ for every $n \in \mathbb{N}$.

Now let # be the fileter on $\mathbb{N}^{\mathbb{N}} \times \mathbb{Z}$ generated by

 $\{S_{\alpha \mid n} : n \in \mathbb{N} \} \cup \{\mathbb{N}^{\mathbb{N}} \times G : G \text{ is a neighbourhood of } t \}$.

We have $U_{\boldsymbol{\tau}(\alpha|n)} \times Z \supseteq S_{\alpha|n} \in \mathcal{H}$ for each $n \in \mathbb{N}$. But the conditions (ii) and of the extra track pathesis in the conditions (iii) and of $\boldsymbol{\tau}(\alpha|n) \subseteq \beta$ for every $n \in \mathbb{N}$. Now $\pi_1[[\mathbb{Z}]] \to \beta$, so that $\mathcal{H} \to (\beta,t)$. As $R \in \mathcal{H}$, $(\beta,t) \in \overline{R} \subseteq V$. Also, for each $n \in \mathbb{N}$, $\overline{S_{\alpha|n}} \subseteq W_n$, so that $(\beta,t) \in W_n$. Thus $(\beta,t) \in V \cap \bigcap_{n \in \mathbb{N}} W_n$ and $(\beta,t) \in \mathbb{R}$ and $(\beta,t) \in A$, as required. \mathbf{Q}

- (g) It follows that $K \subseteq X$; as K is closed in Z, K is compact. We have $K \setminus A = \{ t_{\mathbf{T}} : \mathbf{T} \in \mathbb{N}^{\binom{N}{2}} \}$ countable and dense in K. Also, because $t_{\mathbf{T} \setminus i} \in \overline{\pi_2[S_{\mathbf{T} \setminus i}]} \subseteq \overline{N_{\mathbf{T} \setminus i}}$ for each \mathbf{T} , i we have $\lim_{i \to \infty} t_{\mathbf{T} \setminus i} = t_{\mathbf{T}}$ for each \mathbf{T} , and $K \setminus A$ is without isolated points. (Note that all the $t_{\mathbf{T} \cap i}$ are distinct, by (vii) of (e).)
 - 13. Applications Cases in which the hypotheses are satisfied include:
- (a) X any metrizable space, $A\subseteq X$ an absolutely analytic set (because now perfectly normal and X is breeditarily paracompact).
- (b) X a firstweentable perfectly normal space Hausdorff pspace, $A \subseteq X$ a K-analytic set. In this case I have to show that A is hereditarily Lindelöf. But $A \cap F$ is K-analytic, therefore Lindelöf, for every closed $F \subseteq X$, and therefore for every $F_{\neg f}$ set $F \subseteq X$; and open sets in X are $F_{\neg f}$. (This is the case given in [1]. Observe that actually any Lindelöf Čech-analytic set A will do.)

14. Remarks The main value of Theorem 12 seems to be that $K \cap A$ cannot be an F_{\bullet} set (because K is not the union of countably many nowhere dense closed sets). In [1] some further remarks on the structure of K are given.

15xxxxRxabken

- References 1. J.E.Jayne & C.A.Rogers, "Borel isomorphisms at the first level, I",

 Mathematika 26 (1979) 125-156.
- 2. Z.Frolik, "The concept of non-separable analytic set", pp. 449-461 of Topology (ed. A.Csaszar), North-Holland, 1980 (Colloq. Math. Soc. Janos Bolyai 23).