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Illanes’s ω-resolvability theorem

D.H.Fremlin

University of Essex, Colchester, England

I write out a proof of the principal theorem of Illanes 96, there credited to E.K.van Douwen.

1 Density algebras

1A Definitions (a) A density structure is a pair (A,G) where

A is a Boolean algebra,
G is a Dedekind complete order-closed subalgebra of A,
supA is defined in A whenever A ⊆ A is such that upr(a,G) ∩ upr(b,G) = 0 for all distinct a,

b ∈ A.

[Here upr(a,G) = min{g : a ⊆ g ∈ G}, as in Fremlin 12, 313S.]

(b) Suppose that (A,G) is a density structure, a ∈ A and κ is a cardinal.

(i) a is κ-resolvable if there is a disjoint family 〈aξ〉ξ<κ such that aξ ⊆ a and upr(aξ,G) = upr(a,G)
for every ξ < κ.

(ii) a is resolvable if it is 2-resolvable.

1B Lemma Let (A,G) be a density structure and κ a cardinal.
(a) If a ∈ A is κ-resolvable then a ∩ g is κ-resolvable for every g ∈ G.
(b) If a ∈ A and C ⊆ G, then a ∩ supC is κ-resolvable iff a ∩ g is κ-resolvable for every g ∈ C.
(c) If a ∈ A is not resolvable, there is a g0 ∈ G such that a ∩ g0 is a relative atom over G (definition:

Fremlin 12, 331A).

proof (a) There is a disjoint 〈aξ〉ξ<κ such that aξ ⊆ a and upr(aξ,G) = upr(a,G) for every ξ < κ; now
〈aξ ∩ g〉ξ<κ is disjoint, aξ ∩ g ⊆ a ∩ g and

upr(aξ ∩ g,G) = upr(aξ,G) ∩ g = upr(a,G) ∩ g = upr(a ∩ g,G)

for every ξ, by Fremlin 12, 313Sc.

(b) If a ∩ supC is κ-resolvable, then a ∩ g = (a ∩ supC) ∩ g is κ-resolvable for every g ∈ C, by (a). If
a ∩ g is κ-resolvable for every g ∈ C, let D be a maximal disjoint subset of {g : g ∈ G, g ⊆ g′ for some
g′ ∈ C}. For g ∈ D, a ∩ g is κ-resolvable, by (a) again; let 〈agξ〉ξ<κ be a disjoint family such that agξ ⊆ a ∩ g
and upr(agξ,G) = upr(a ∩ g,G) for every ξ < κ. By the last clause in the definition 1Aa, aξ = supg∈D agξ
is defined for every ξ < κ. Now 〈aξ〉ξ<κ is disjoint and if ξ < κ then aξ ⊆ a ∩ supC and

upr(aξ,G) = sup
g∈D

upr(agξ,G)

(Fremlin 12, 313Sb)

= sup
g∈D

upr(a ∩ g,G) = sup
g∈D

upr(a,G) ∩ g

= upr(a,G) ∩ supD = upr(a,G) ∩ supC

(because D is maximal, so supD = supC)

= upr(a ∩ supC,G).

Thus a is κ-resolvable.

(c) Set C = {g : g ∈ G, a ∩ g is resolvable} and g0 = 1 \ supC. By (b), a ∩ supC is resolvable, so
a 6⊆ supC and a ∩ g0 6= 0. If b ⊆ a ∩ g0, consider g = upr(b,G) ∩ upr(a \ b,G). Then upr(a ∩ g ∩ b,G) =
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upr(a,G) ∩ g and upr(a ∩ g \ b,G) = upr(a \ b,G) ∩ g are both equal to g, so their union upr(a ∩ g,G) is
also equal to g. and a ∩ g is resolvable. Thus g ∈ C; but g ⊆ upr(b,G) ⊆ g0, so g = 0. Accordingly
(a \ b) ∩ upr(b,G) = 0. But this means that b = a ∩ g0 ∩ upr(b,G) belongs to {a ∩ g0 ∩ g′ : g′ ∈ G}. As b is
arbitrary, a ∩ g0 is a relative atom over G.

1C Lemma Let (A,G) be a density structure, a ∈ A and d ⊆ a a relative atom over G. If n ∈ N and a
is (n+ 1)-resolvable then a \ d is n-resolvable. If a is resolvable, upr(a \ d,G) = upr(a,G).

proof (a) Let a0, . . . , an be disjoint and such that ai ⊆ a and upr(ai,G) = upr(a,G) for every i ≤ n. For
each i ≤ n, let gi ∈ G be such that d ∩ ai = d ∩ gi; we can suppose that gi ⊆ upr(a,G). If i 6= j then
aj ∩ gi ⊆ a ∩ gi \ d and

upr(aj ∩ gi,G) = upr(aj ,G) ∩ gi = upr(a,G) ∩ gi

⊇ upr(a ∩ gi \ d,G) ⊇ upr(aj ∩ gi,G),

so 〈aj ∩ gi〉j≤n,j 6=i witnesses that a ∩ gi \ d is n-resolvable. And setting g = 1 \ supi≤n gi, ai ∩ g ∩ d = 0 for
every i, so 〈ai ∩ g〉i<n witnesses that a ∩ g \ d is n-resolvable. By 1Bb, a \ d is n-resolvable.

(b) Now suppose that a is resolvable. Then we can repeat the argument above with n = 1, observing
that d ∩ g0 ∩ a1 = d ∩ g1 ∩ a0 = 0. In this case, upr(a \ d,G) includes both upr(a1 ∩ g0,G) = upr(a,G) ∩ g0
and upr(a0 ∩ g1,G) = upr(a,G) ∩ g1 and upr(a0 ∩ g,G) = upr(a,G) ∩ g. So upr(a \ d,G) = upr(a,G).

1D Lemma Let (A,G) be a density structure. Suppose that a ∈ A is n-resolvable for every n ∈ N. Then
there is a d∗ ⊆ a such that upr(d∗,G) = upr(a \ d∗,G) = upr(a,G) and a \ d∗ is n-resolvable for every n ∈ N.

proof (a) Suppose that d ⊆ a is a relative atom over G. By 1C, upr(a \ d,G) = upr(a,G) and a \ d is
n-resolvable for every n ∈ N.

(b) Suppose that g ∈ G is such that d is resolvable whenever d ⊆ a ∩ g and upr(d,G) = upr(a ∩ g,G).
Then there is a d ⊆ a ∩ g such that upr(d,G) = upr(a ∩ g,G) and a \ d is n-resolvable for every n ∈ N. PPP
Choose a non-increasing 〈dn〉n∈N such that d0 = a ∩ g and

upr(dn+1,G) = upr(dn \ dn+1,G) = upr(dn,G) = upr(a ∩ g,G)

for every n. Take d = d0 \ d1. QQQ

(c) Let C be the set of those g ∈ G such that there is a d ⊆ a ∩ g with upr(d,G) = upr(a ∩ g \ d,G) =
upr(a ∩ g,G) and a \ d is n-resolvable for every n ∈ N. Then C is a π-base for G. PPP Take g0 ∈ G \ {0}. If d
is resolvable whenever d ⊆ a ∩ g0 and upr(d,G) = upr(a ∩ g0,G), then (b) tells us that g0 ∈ C. Otherwise,
let d ⊆ a ∩ g0 be such that upr(d,G) = upr(a ∩ g0,G) and d is not resolvable. By 1Bc, there is a g ∈ G such
that d ∩ g is a relative atom over G; as d ⊆ g0 we can take it that g ⊆ g0. Now upr(d ∩ g,G) = upr(a ∩ g,G),
while upr(a ∩ g \ d,G) = upr(a ∩ g,G) and a ∩ g \ d is n-reducible for every n ∈ N, by 1C. So g ∈ C. As g0
is arbitrary, C is a π-base. QQQ

(d) Let D ⊆ C be a maximal disjoint set. Then supD = 1. For g ∈ D, let dg ⊆ a ∩ g be such
that upr(dg,G) = upr(a ∩ g,G) = upr(a ∩ g \ dg,G) and a ∩ g \ dg is n-resolvable for every n ∈ N. Set
d∗ = supg∈D dg. Then

upr(d∗,G) = supg∈D upr(a,G) ∩ g = upr(a,G)

and

upr(a \ d∗,G) = supg∈D upr(a \ dg,G) ∩ g = upr(a,G).

Next, a ∩ g \ d∗ = a ∩ g \ dg is n-resolvable whenever n ∈ N and g ∈ D; by 1Bb, a \ d∗ is n-resolvable
whenever n ∈ N, as required.

1E Theorem Let (A,G) be a density structure. If a ∈ A is n-resolvable for every n ∈ N, it is ω-resolvable.

proof Choose 〈am〉m∈N inductively, as follows. Given that supi<m ai ⊆ a and a \ supi<m ai is n-resolvable
for every n ∈ N, use 1D to find am ⊆ a \ supi<m ai such that
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upr(am,G) = upr(a \ supi≤m ai,G) = upr(a \ supi<m ai,G)

and a \ supi≤m ai is n-resolvable for every n. Then 〈am〉m∈N is disjoint and

upr(am,G) = upr(a \ supi<m ai,G) = upr(a,G)

for every m, so a is ω-reducible.

2 Topological spaces

2A Proposition Let X be a topological space. Write Nwd for the ideal of nowhere dense subsets of X
and A for the quotient Boolean algebra PX/Nwd. Set G = {G• : G ⊆ X is open} ⊆ A.

(a) (A,G) is a density structure.
(b) A subset A of X is dense iff upr(A•,G) = 1.

proof (a) Since the union of two open sets is again open, G is closed under ∪ . If G ⊆ X is open, then
G \G is nowhere dense, so

1 \G• = 1 \G
•

= (X \G)• ∈ G.

Thus G is closed under complementation. Also 0 = ∅• ∈ G, so G is a subalgebra of A (Fremlin 12, 312B).
If C ⊆ G then supC is defined in A and belongs to G. PPP Set G = {G : G ⊆ X is open, G• ∈ C} and

g = (
⋃
G)•. Then g is an upper bound of {G• : G ∈ G} = C. If a ∈ A is an upper bound of C, express it as

A• where A ⊆ X. Then (G \ A)• = G• \ a = 0, that is, G \ A is nowhere dense, for every G ∈ G. But this
implies that (

⋃
G) \A is nowhere dense and g ⊆ a. Thus g = supC in A, while g ∈ G. QQQ It follows that G

is order-closed in A (Fremlin 12, 313Ea) and also that G is Dedekind complete.
Now suppose that A ⊆ A is such that 〈upr(a,G)〉a∈A is disjoint. For each a ∈ A, take an open set Ga ⊆ X

such that upr(a,G) = G•

a; then Ga ∩Gb is nowhere dense, therefore empty, whenever a and b are distinct.
For each a ∈ A let Ba ⊆ Ga be such that B•

a = a. Set B =
⋃

a∈A Ba. Then B• is an upper bound of A in
A. If c is any upper bound of A, and c = C• where C ⊆ X, then Ga ∩ B \ C = Ba \ C is nowhere dense
for every a ∈ A, so B \ C = (

⋃
a∈A Ga) ∩ B \ C is nowhere dense, and B• ⊆ c; accordingly supA = B• is

defined in A. Thus all the conditions of 1Aa are satisfied.

(b)

A is dense ⇐⇒ A ∩G /∈ Nwd for every non-empty open G ⊆ X

⇐⇒ A•

∩ g 6= 0 for every non-zero g ∈ G

⇐⇒ upr(A•,G) = 1.

2B Theorem (Illanes 96, Theorem 5) Let X be a topological space such that for every n ∈ N there is
a disjoint family 〈Di〉i<n of dense subsets of X. Then there is a disjoint sequence 〈Dn〉n∈N of dense subsets.

proof Take A and G as in 2A. For any n ∈ N, we have a disjoint family 〈Di〉i<n of dense sets; now 〈D•

i 〉i<n

is a disjoint family in A such that upr(D•

i ,G) = 1 for every i < n, by 2Ab. Thus 1 ∈ A is n-resolvable for
every n ∈ N. By Theorem 1E, 1 is ω-resolvable and we have a disjoint sequence 〈dn〉n∈N in A such that
upr(dn,G) = 1 for every n. Choose Bn ⊆ X such that B•

n = dn for n ∈ N, and set Dn = Bn \
⋃

i<n Bi; then
upr(D•

n,G) = upr(dn,G) = 1 for each n, while 〈Dn〉n∈N is disjoint. By 2Ab in the other direction, every Dn

is dense in X, so we have a suitable sequence.

In §1 I gave a formula for ‘κ-resolvable’ element of A for arbitrary cardinals κ. In Illanes 96 there is a
corresponding definition for κ-resolvable topological space. For κ ≤ ω the construction in 2A makes these
definitions match comfortably, so that Illanes’s theorem can be deduced from 1E above. For uncountable κ
we can expect to meet cases in which 1 ∈ A is κ-resolvable but X does not have a disjoint family of κ dense
sets.

3 Proto-decomposable spaces

I adapt an idea from Fremlin 87.

3A Definition I will say that a weakly proto-decomposable space is a quadruple (X, E , I,U) where
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X is a set,
E is an algebra of subsets of X,
I is an ideal of subsets of X,
E ∩ I is cofinal with I,
U ⊆ E

and whenever V ⊆ U is disjoint then
⋃

V ∈ Σ,
if 〈AV 〉V ∈V is a family in I such that AV ⊆ V for every V ∈ V, then

⋃
V ∈V AV ∈ I,

if E ∈ E and E \
⋃
V /∈ I, then there is a non-empty U ∈ U such that U ∩

⋃
V = ∅ and

U \ E ∈ I.

Remark I am following the definition of ‘proto-decomposable measurable space with negligibles’ in Fremlin

87, 1Bh, except that I no longer assume that E is a σ-algebra or that I is a σ-ideal. In particular, we have
the examples 1G, 6Bf and 7C in Fremlin 87, in which, respectively,

—– E is a σ-algebra of subsets of X, I is a σ-ideal of subsets of X such that E ∩ I is cofinal
with I and is ω1-saturated in E , and U = E \ I;

—– (X, E , µ) is a complete strictly localizable measure space, I is the ideal of negligible sets,
and U is the family of measurable sets of non-zero finite measure;

—– (X,U) is a topological space, E is the algebra of sets with the Baire property and I is the
ideal of meager sets.

3B Theorem Let (X, E , I,U) be a weakly proto-decomposable space. Set A = PX/I and G = {E• :
E ∈ E} ⊆ A. Then (A,G) is a density structure.

proof (a) Because E is a subalgebra of PX, G is a subalgebra of A. If C ⊆ G, then supC is defined in A

and belongs to G. PPP Let V ⊆ U be a maximal disjoint set such that for every V ∈ V there is a g ∈ C such
that V • ⊆ g, and consider G =

⋃
V. Then G ∈ E so G• ∈ G. If g ∈ C there is an E ∈ E such that E• = g.

By the maximality of V there is no non-empty U ∈ U such that U ∩G = ∅ and U \E ∈ I, so E \G ∈ I and
g ⊆ G•. Thus G• is an upper bound of C. If a ∈ A is an upper bound of C, express a as A• where A ⊆ X. If
V ∈ V, there is a g ∈ C such that V • = g ⊆ a, so V \A ∈ I; consequently (

⋃
V) \A =

⋃
V ∈V V \A belongs

to I and G• ⊆ a. Accordingly supC = G• is defined and belongs to G. QQQ
ThusG is a Dedekind complete order-closed subalgebra of A. Now suppose that C ⊆ A and upr(a,G) ∩ upr(b,G) =

0 whenever a, b ∈ C are distinct. Let V ⊆ U be a maximal disjoint family such that for every V ∈ V there
is an a ∈ C such that V • ⊆ upr(a,G). For each V ∈ V choose aV ∈ C such that V • ⊆ upr(aV ,G) and
AV ⊆ V such that A•

V = aV ∩ V •. Set A =
⋃

V ∈V AV .
??? If A• is not an upper bound of C, there is a b ∈ C such that b′ = b \A• is not 0. Let E ∈ E be such

that E• = upr(b′,G) ⊆ upr(b,G). By the maximality of V, E \
⋃

V ∈ I. So there is a B ⊆ E ∩
⋃
V such

that B• = b′. As B /∈ I, there must be a V ∈ V such that B ∩ V /∈ I, that is, b′ ∩ upr(aV ,G) 6= 0, in which
case b ∩ upr(aV ,G) 6= 0; but this means that b = aV and

A•

V = aV ∩ V • ⊇ b′ ∩ V • = (B ∩ V )•,

which is non-zero and disjoint from A•, even though AV ⊆ A. XXX So A• is an upper bound of C.
On the other hand, if d is any upper bound of C, A• ⊆ d. PPP Let D ⊆ X be such that D• = d. For V ∈ V,

(V ∩A \D)• = (AV \D)• ⊆ aV \ d = 0,

so V ∩A \D ∈ I; because V ⊆ U is disjoint and A ⊆
⋃
V, A \D ∈ I and A• ⊆ d. QQQ

Thus A• is the least upper bound of C. As C is arbitary, the third clause of 1Aa is satisfied and (A,G)
is a density structure.

3C Corollary Let (X,Σ, µ) be a strictly localizable measure space. If for every n ∈ N there is a disjoint
family 〈Di〉i<n of subsets of full outer measure, then there is a disjoint sequence of sets of full outer measure.

proof Completing the measure leaves it strictly localizable (Fremlin 16, 212G), and does not change the
family of sets of full outer measure (Fremlin 16, 212Eb), so we may suppose that µ is complete. In this
case, we have a proto-decomposable space (X,Σ, I,U), as noted in 3A, and the associated density structure
(A,G) as in 3B. If D ⊆ X then, just as in 2Ab,
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D has full outer measure ⇐⇒ D ∩ E /∈ I for every E ∈ Σ \ I

⇐⇒ upr(D•,G) = 1,

so we can read the conclusion off from Theorem 1E, just as in 2B.
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