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The Lebesgue density theorem in separable metric spaces

D.H.Fremlin

University of Essex, Colchester, England

Proposition Let X be a separable metrizable space and µ a locally finite quasi-Radon measure on X.
Then there is a metric ρ on X, compatible with its topology, such that for every measurable E ⊆ X there
is a negligible set F such that

limδ↓0
µ(E∩B(x,δ))

µB(x,δ)
= 1

for every x ∈ E \ F , where B(x, δ) = {y : ρ(x, y) ≤ δ}.

proof (a) Since X is Lindelöf and µ is locally finite, there is a sequence of open sets of finite measure
covering X. It follows at once that µ is σ-finite; and since µ is inner regular with respect to the closed sets,
it is also outer regular with respect to the open sets (Fremlin 03, 412Wb).

Let A be the family of subsets of X with negligible boundaries; then A is an algebra of subsets of X (the
‘Jordan algebra’ of (X,µ)). Because µ is complete and measures every open set, it measures every member
of A. Let A be the family of finite partitions of X into sets belonging to A. For A, A′ ∈ A say that A 4 A′

if A refines A′, that is, every member of A is included in some member of A′. Then 4 is a partial order on
A under which A is downwards-directed (because if A, A′ ∈ A then {A ∩ A′ : A ∈ A, A′ ∈ A′} belongs to
A). If f : X → R is a bounded continuous function, then {γ : µf−1[{γ}] > 0} must be countable, and for
all but countably many γ the sets {x : f(x) < γ} and {x : f(x) ≤ γ} belong to A. So for any ǫ > 0 there is
an A ∈ A such that f [A] has diameter at most ǫ for every A ∈ A.

BecauseX is second-countable and completely regular, there is a sequence 〈fn〉n∈N of continuous functions
from X to [0, 1] such that whenever G ⊆ X is open and x ∈ G there is an n ∈ N such that fn(x) = 1 and
fn(y) = 0 for y ∈ X \G.

(b) Choose families 〈An〉n∈N, 〈gnA〉n∈N,A∈An
, 〈Hn〉n∈N and 〈Fn〉n∈N as follows. Start with A0 = {X}

and F0 = ∅. Given that Fn is a finite family of continuous functions from X to [0, 1] and that An ∈ A, let
Hn be an open set, including

⋃

A∈An

∂A, of measure at most 2−n min{µA : A ∈ An, µA > 0}. Then A \Hn

is closed and A ∪Hn is open for every A ∈ An. Because X is normal, we can choose 〈gnA〉A∈An
such that

each gnA is a continuous function from X to [0, 1], gnA(x) = 1 for x ∈ A\Hn and gnA(x) = 0 for x /∈ A∪Hn.
Set Fn+1 = Fn ∪ {fn} ∪ {gnA : A ∈ An}. Because A is downwards-directed there is a An+1 ∈ A, refining
An, such that diam f [A] ≤ 2−n for every f ∈ Fn+1 ∪ {fn+1} and A ∈ An+1. Continue.

(c) Define ρ : X ×X → [0, 1] by setting

ρ(x, y) = supn∈N maxf∈Fn+1
min(2−n, |f(x)− f(y)|)

for x, y ∈ X. Then ρ is a metric on X, defining its topology. PPP Directly from the form of its definition
we see that ρ is a pseudometric. If G ⊆ X is open and x ∈ G, there is an n ∈ N such that fn(x) = 1 and
f [X \G] = {0}; now fn ∈ Fn+1 so ρ(x, y) ≥ min(2−n, |fn(x)− fn(y)|) ≥ 2−n for every y ∈ X \G. So every
open set is ρ-open; it follows at once that ρ is a metric. If G ⊆ X is ρ-open and x ∈ G, there is an n ≥ 1
such that B(x, 2−n) ⊆ G. But

B(x, 2−n) = {y : max f∈Fn
min(2−n+1, |f(x)− f(y)|) ≤ 2−n}

⊇ {y : |f(x)− f(y) < 2−n for every f ∈ Fn}

is a neighbourhood of x, so G is a neighbourhood of x. Thus every ρ-open set is open and ρ is compatible
with the given topology on X. QQQ

(d) Suppose that n ≥ 1, A ∈ An and x ∈ A \Hn.

(i) If y ∈ A \ Hn, then gnA(x) = gnA(y) = 1 and gnA′(x) = gnA′(y) = 0 for every A′ ∈ An \ {A};
also |f(x) − f(y)| ≤ 2−n−1 for every f ∈ Fn ∪ {fn}. But this means that |f(x) − f(y)| ≤ 2−n−1 for every
f ∈ Fn+1, so that ρ(x, y) ≤ 2−n−1.
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(ii) If y ∈ A′ \Hn where A′ ∈ An \{A}, then |gnA(x)−gnA(y)| = 1 while gnA ∈ Fn+1 so ρ(x, y) ≥ 2−n.

(iii) So if 2−n−1 ≤ δ < 2−n then A \Hn ⊆ B(x, δ) ⊆ A ∪Hn. Consequently µ(B(x, δ)△A) ≤ 2−nµA
if µA > 0.

(e) Set A∗ =
⋃

n∈N
An. Because 〈An〉n∈N is a sequence of partitions, each refining the previous one, A∗

is well-capped in the sense that every non-empty subset of A∗ has a maximal element. Consequently, if
I ⊆ A∗ and J is the set of maximal elements of I,

⋃

I =
⋃

J ; moreover, since for any two members of A∗

either they are disjoint or one is included in another, J is a disjoint family.

(f) Set

H =
⋂

n∈N

⋃

m≥n Hm ∪
⋃

{A : A ∈ A∗, µA = 0}.

Then H is negligible. If x ∈ X \H and δ > 0, there is an n ≥ 1 such that 2−n ≤ δ and x /∈ Hn; now there is
an A ∈ An containing x and B(x, δ) ⊇ An \Hn has measure at least (1− 2−n)µA > 0. On the other hand,
there is an open set of finite measure containing x, so B(x, δ) must have finite measure for all sufficiently
small δ. Accordingly we can speak of

lim infδ↓0
µ(E∩B(x,δ))

µB(x,δ)

whenever x ∈ X \H and E ∈ domµ.

(g) Let E ⊆ X be a measurable set of finite measure, γ < 1 and ǫ > 0; set γ′ = 1

2
(1 + γ) and

E′ = {x : x ∈ E \H, lim infδ↓0
µ(E∩B(x,δ))

µB(x,δ)
< γ}.

Now we have an open set G ⊇ E′ such that µG ≤ ǫ + µ∗E′. Consider I = {A : A ∈ A∗, A ⊆ G,
µ∗(E ∩A) ≤ γ′µA}. Then E′ ⊆

⋃

I. PPP Take x ∈ E′. There are i, n ∈ N such that

fi(x) = 1, fi(y) = 0 for every y ∈ X \G,

n > i, γ(1 + 2−n) ≤ γ′, x /∈
⋃

m≥n Hm.

Now there are an m > n and a δ ∈
[

2−m−1, 2−m
[

such that µ(E ∩ B(x, δ)) ≤ γµB(x, δ). In this case, if A
is the member of Am including x, µA > 0 (because x /∈ H) so µ(A△B(x, δ)) ≤ 2−mµA, by (d-iii). We also
know that fi ∈ Fm−1 so diam fi[A] ≤ 2−m < 1 and A ⊆ G. Now

µ(E ∩A) ≤ γµB(x, δ) + 2−mµA ≤ γ(µA+ 2−mµA) + 2−mµA

≤ (γ + 2−n)µA ≤ γ′µA.

So A ∈ I and x ∈
⋃

I. QQQ
Let J be the set of maximal members of I; then J is disjoint and E′ ⊆

⋃

J , by (e) above. So

µ∗E′ ≤ µ(E ∩
⋃

J ) =
∑

A∈J

µ(E ∩A)

≤ γ′
∑

A∈A

µA ≤ γ′µG ≤ γ′(µ∗E′ + ǫ).

At this point, recall that ǫ > 0 was arbitrary, so µ∗E′ ≤ γ′µ∗E′ and µ∗E′ = 0.
Thus we see that

{x : x ∈ E \H, lim infδ↓0
µ(E∩B(x,δ))

µB(x,δ)
< γ}

is negligible. And γ < 1 was arbitrary, so

{x : x ∈ E \H, lim infδ↓0
µ(E∩B(x,δ))

µB(x,δ)
< 1}

is negligible. As H is negligible,

limδ↓0
µ(E∩B(x,δ))

µB(x,δ)
= 1
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for almost every x ∈ E.

(h) Thus ρ has the declared property for measurable sets E of finite measure. But suppose now that
E ⊆ X is any measurable set. As noted in (a), there is a sequence 〈Gn〉n∈N of open sets of finite measure
covering X. Now (g) tells us that, for each n,

limδ↓0
µ(E∩Gn∩B(x,δ))

µB(x,δ)
= 1 for almost every x ∈ E ∩Gn,

that is,

limδ↓0
µ(E∩B(x,δ))

µB(x,δ)
= 1 for almost every x ∈ E ∩Gn.

So in fact we have

limδ↓0
µ(E∩B(x,δ))

µB(x,δ)
= 1 for almost every x ∈ E ∩

⋃

n∈N
Gn,

that is,

limδ↓0
µ(E∩B(x,δ))

µB(x,δ)
= 1 for almost every x ∈ E,

which is what we wanted to know.

Question Suppose that X is Čech-complete, that is, there is some metric on X, defining its topology,
with respect to which X is complete. Can we find ρ, as above, also making X complete? Note that the
metric above is for practical purposes totally bounded. What if X = [0, 1] \Q ∼= NN?

Acknowledgement Question by B.Weiss, email 21.9.16.
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