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1 Theorem Let X be a set, κ an infinite cardinal and 〈Rξ〉ξ<κ a family of equivalence relations on X.
Suppose that

whenever x ∈ X and J ⊆ κ is infinite there is a finite set I ⊆ J such that #({y : (x, y) ∈ Rξ ∀
ξ ∈ I}) ≤ κ.

Then we have a family 〈Xξ〉ξ<κ, covering X, such that Xξ is a transversal for Rξ for every ξ < κ.

proof (a) For an equivalence relation R on X and a subset A of X, I will say that A is R-free if (x, y) /∈ R
for all distinct points x, y of A. So a transversal for R is just a maximal R-free set.

(b)(i) I will say that a subset A of X is well-filled if

whenever I ⊆ κ is finite, 〈xξ〉ξ∈I is a family of points of A, and #({y : (xξ, y) ∈ Rξ ∀ ξ ∈ I}) ≤ κ,
then {y : (xξ, y) ∈ Rξ ∀ ξ ∈ I} ⊆ A.

Observe that

if A is an upwards-directed family of well-filled subsets of X, then
⋃
A is well-filled;

the intersection of any non-empty family of well-filled subsets of X is well-filled;

if B ⊆ X there is a well-filled subset A of X, including B, with #(A) ≤ max(κ,#(B)).

(ii) If C ⊆ X is well-filled, there is a non-decreasing family 〈Bα〉α≤#(C) of well-filled subsets of C,
covering C, such that #(Bα) ≤ max(κ,#(α)) for every α ≤ #(C) and Bα =

⋃
β<α Bβ for every limit

ordinal α ≤ λ. PPP Enumerate C as 〈xα〉α<#(C) and take Bα to be the smallest well-filled set including
{xβ : β < α}. QQQ

(iii) If C ⊆ X is well-filled and x ∈ X \ C, then J = {ξ : ξ < κ, ∃ y ∈ C, (x, y) ∈ Rξ} is finite. PPP???
Otherwise, there is a finite I ⊆ J such that D = {y : (x, y) ∈ Rξ ∀ ξ ∈ I} has cardinal at most κ. For each
ξ ∈ I choose zξ ∈ C such that (x, zξ) ∈ Rξ. Then D = {y : (zξ, y) ∈ Rξ ∀ ξ ∈ I}. As C is supposed to be
well-filled, D ⊆ C. But x ∈ D \ C. XXXQQQ

(d) If C ⊆ X and g : C → Pκ is a function, I will say that a g-splitting of C is a function f : C → κ
such that f(x) /∈ g(x) for every x ∈ C and f−1[{ξ}] is Rξ-free for every ξ < κ.

(e) (The key.) Suppose that λ is a cardinal, C ⊆ X is a well-filled set, #(C) = λ and g : C → [κ]<ω is a
function. Then there is a g-splitting function f : C → κ. PPP Induce on λ.

(i) If λ ≤ κ, enumerate C as 〈xη〉η<λ and choose 〈f(η)〉η<λ inductively such that f(η) ∈ κ \ (g(xη) ∪
{f(ζ) : ζ < η}) for each η; now set Cξ = {xη} if f(η) = ξ and Cξ = ∅ if there is no such η.

(ii) For the inductive step to λ > κ, (b-ii) tells us that there will be a non-decreasing family 〈Bα〉α≤λ

of well-filled subsets of C, covering C, such that #(Bα) ≤ max(κ,#(α)) for every α ≤ λ and Bα =
⋃

β<α Bβ

for every limit ordinal α ≤ λ. For each α < λ and x ∈ Bα+1 set

gα(x) = g(x) if x ∈ Bα,

= g(x) ∪ {ξ : ∃ y ∈ Bα, (x, y) ∈ Rξ} otherwise.

By (b-iii), gα(x) is finite for every x ∈ Bα. Also #(Bα+1) < λ. By the inductive hypothesis, there is a
gα-splitting fα : Bα+1 → κ.

Define f : C → κ by setting f(x) = fα(x) whenever α < λ and x ∈ Bα+1 \Bα. Then f(x) never belongs
to g(x) because fα(x) never belongs to g(x). Next, if x, y ∈ C are distinct and f(x) = f(y) = ξ then there
are α, β < λ such that x ∈ Bα+1 \Bα and y ∈ Bβ+1 \Bβ . Now

—– if α = β we have fα(x) = fα(y) = ξ so (x, y) /∈ Rξ because fα is splitting;
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—– if β < α then y ∈ Bα while ξ /∈ gα(x) so (x, y) /∈ Rξ;

—– and similarly (x, y) /∈ Rξ if α < β.

As x, y are arbitrary f is g-splitting and the induction continues. QQQ

(f) Applying (e) with C = X and g(x) = ∅ for every x ∈ X, we see that there is a splitting f : X → κ.
Now take Xξ to be a maximal Rξ-free set including f−1[{ξ}] for each ξ to get the required covering of X
by transversals.

2 Corollary Let r ≥ 1 be an integer, and 〈Vn〉n∈N a sequence of linear subspaces of Rr such that
{n : x ∈ Vn} is finite for every non-zero x ∈ Rr. Then Rr can be covered by a sequence 〈Xn〉n∈N of sets
such that #(Xn ∩ (z + Vn)) = 1 for every n ∈ N and z ∈ Rr.

proof Set Rn = {(x, y) : x − y ∈ Vn} for n ∈ N. If x ∈ Rr and J ⊆ N is infinite, then
⋂

n∈J Vn = {0} so
there is a finite set I ⊆ J such that

⋂
n∈I Vn = {0} and #({y : (x, y) ∈ Rn ∀ n ∈ I}) = 1. So Theorem 1

gives the result.

Remark This is a fractional extension of the main result in Davies 63, proved by the same method.

3 Theorem If n ∈ N and c > ωn, then whenever V0, . . . , Vn ⊆ R2 are lines and A0, . . . , An cover R2

there must be an i ≤ n and an x ∈ R2 such that Ai ∩ (x+ Vi) is uncountable.

proof In fact I seek to show, by induction on m, that whenever ωm < c and V0, . . . , Vm ⊆ R2 are lines
there is a set A ⊆ R2 of cardinal ωm+1 such that whenever D is a countable cover of A there is a D ∈ D
such that for every i ≤ m there is an x ∈ R2 such that D ∩ (x+ Vi) is uncountable.

To start the induction, given m = 0 and a line V0, just take A ∈ [V0]
ω1 . For the inductive step to m > 1,

take lines V0, . . . , Vm. By the inductive hypothesis, there is a set B ∈ [R2]ωm such that whenever D is a
countable cover of B there is a D ∈ D such that for every i < m there is an x ∈ R2 such that D∩ (x+Vi) is
uncountable. Observe that the same is true for y+B for every y ∈ R2. Because c > ωm, we can find a family
〈yξ〉ξ<ωm+1

in Vm such that 〈yξ +B〉ξ<ωm+1
is disjoint. Set A =

⋃
ξ<ωm+1

yξ +B. Then #(A) = ωm+1.

Let D be a countable cover of A. Set

D′ = {D : D ∈ D, D ∩ (x+ Vm) is countable for every x ∈ R2}

If D ∈ D′ and x ∈ B, then {ξ : x + yξ ∈ D} must be countable. There is therefore a ξ < ωm+1 such that
x + yξ /∈

⋃
D′ for any x ∈ B, that is, (yξ + B) ∩

⋃
D′ = ∅. So yξ + B ⊆

⋃
D′′ where D′′ = D \ D′. Now

there must be a D ∈ D′′ such that for every i < m there is an x ∈ R2 such that D∩ (x+Vi) is uncountable.
But now we see that there is also an x ∈ R2 such that D ∩ (x+ Vm) is uncountable. As D is arbitrary, the
induction proceeds.

4 Theorem Suppose that n ∈ N and there is a Sierpiński subset of R (Fremlin 08, 537A) of cardinal
ωn+1. Then whenever V0, . . . , Vn ⊆ R2 are lines, D is a countable family of subsets of R2 and

⋃
D has

non-zero inner Lebesgue measure, there must be a D ∈ D such that for every i ≤ n there is an x ∈ R2 such
that D ∩ (x+ Vi) has non-zero one-dimensional Hausdorff outer measure.

Remark Of course ‘one-dimensional Hausdorff measure’ on a line V ⊆ R2 is just the copy of one-dimensional
Lebesgue measure under any isometry between R and V (Fremlin 01, §264).

proof Write µL for two-dimensional Lebesgue measure and µH1 for one-dimensional Hausdorff measure on
R2.

(a) If V ⊆ R2 is a line, there is a set A ⊆ R2 of cardinal ω1 such that whenever D is a countable family
of subsets of R2 and µL(A \

⋃
D) = 0, there are a D ∈ D and an x ∈ R2 such that µ∗

H1(V ∩ (x+D)) > 0.
PPP Let W ⊆ R2 be a line orthogonal to V . For D ⊆ R2, write

C(D) = {x : x ∈ W , µ∗
H1(V ∩ (x+D)) > 0}.

Note that − : V × W → R2 is an isomorphism between the product measure µH1 × µH1
on V × W and

µL (see Fremlin 01, 251N). Let B ⊆ V , B′ ⊆ W be sets of cardinal ω1 which are not µH1-negligible,
and set A = B − B′. Then B′ ⊆ C(A), so C(A) is not µH1-negligible. On the other hand, if E ⊆ R2 is
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µL-negligible, µH1C(E) = 0, by Fubini’s theorem. Now if D is countable and A′ = A∩
⋃
D is µL-negligible,⋃

D∈D C(D) ⊇ C(A) \ C(A′) so there is a D ∈ D such that C(D) is not empty. QQQ

(b) If m ≤ n and V0, . . . , Vm ⊆ R2 are lines, there is a set A ⊆ R2 of cardinal ωm+1 such that whenever
D is a countable family of subsets of R2 and µL(A \

⋃
D) = 0, there is a D ∈ D such that for every i ≤ n

there is an x ∈ R2 such that µ∗
H1(D ∩ (x+ Vi)) > 0. PPP For m = 0 this is (a) above. For the inductive step

to m when 1 ≤ m ≤ n, take lines V0, . . . , Vm. By the inductive hypothesis, there is a set B ∈ [R2]ωm such
that whenever D is countable and µL(B \

⋃
D) = 0 there is a D ∈ D such that for every i < m there is an

x ∈ R2 such that µ∗
H1(D ∩ (x+ Vi)) > 0. Observe that y+B will have the same property for every y ∈ R2.

Now we have a µH1-Sierpiński subset C of Vm with cardinal ωm+1. Choose a family 〈yξ〉ξ<ωm+1
in C such

that 〈yξ +B〉ξ<ωm+1
is disjoint. Set A =

⋃
ξ<ωm+1

yξ +B. Then #(A) = ωm+1.

Let D be a countable family of sets such that µL(A \
⋃
D) = 0. Set

D′ = {D : D ∈ D, µH1(D ∩ (x+ Vm)) = 0 for every x ∈ R2}

If D ∈ D′ and x ∈ B, then µH1(Vm ∩ (D − x)) = 0 so {ξ : x + yξ ∈ D} = {ξ : yξ ∈ D − x} must be
countable. So there is a ξ < ωm+1 such that x + yξ /∈

⋃
D′ for any x ∈ B, that is, (yξ + B) ∩

⋃
D′ = ∅.

So (yξ + B) \
⋃

D′′ is µL-negligible, where D′′ = D \ D′. Now there must be a D ∈ D′′ such that for every
i < m there is an x ∈ R2 such that µH1(D ∩ (x + Vi)) > 0. But now we see that there is also an x ∈ R2

such that µH1(D ∩ (x+ Vm)) > 0. As D is arbitrary, the induction proceeds. QQQ

(c) Now suppose that D is a countable family of subsets of R2 and
⋃
D has non-zero inner Lebesgue

measure. Let E ⊆
⋃

D be such that µLE > 0. Set Q = Q × Q. Then Q is a topologically dense subset of
R2 so E − F meets Q whenever F ⊆ R2 and µ∗

LF > 0 (Fremlin 03, 443D) and E +Q is µL-conegligible.
Set D′ = {D+ q : q ∈ Q}; then D′ is countable and

⋃
D′ is µL-conegligible. By (b), with m = n, there are a

D′ ∈ D′ such that for every i ≤ n there is an xi ∈ R2 such that µ∗
H1(D

′ ∩ (xi + Vi)) > 0. Let q ∈ Q be such
that D = D′ − q belongs to D; then µ∗

H1(D ∩ ((xi − q) + Vi)) > 0 for every i. So we have an appropriate D.

5 Corollary Suppose that n ∈ N and there is a Sierpiński subset of R with cardinal ωn+1. Then whenever
V0, . . . , Vn are lines in R2, there is an extension of Lebesgue measure µL on R2 to a measure λ such that
λD = 0 whenever D ⊆ R2 and there is an i ≤ n such that µH1(D∩(x+Vi)) = 0 for µL-almost every x ∈ R2.

proof For i ≤ n, set

Di = {D : D ⊆ R2, µH1(D ∩ (x+ Vi)) = 0 for every x ∈ R2}.

Now there is a measure λ on R2, extending µL, such that λD = 0 for every D ∈
⋃

i≤n Di. PPP??? Otherwise,

there is a countable set D ⊆
⋃

i≤n Di such that µ∗
L(
⋃
D) > 0 (Fremlin 03, 417A). But this is impossible,

by Theorem 4. XXXQQQ
If now we have i ≤ n and a set D ⊆ R2 such that µH1(D ∩ (x + Vi)) = 0 for µL-almost every x ∈ R2,

consider C = {z : z ∈ R2, µ∗
H1(D ∩ (z + Vi)) > 0}. Then λC = µLC = 0. But if we set D′ = D \ C then

µH1(D
′ ∩ (x+ Vi)) = 0 for every x ∈ R2 so λD′ = 0 and λD = 0. Thus we have a suitable λ.

6 Corollary Suppose that there is a Sierpiński subset of R of cardinal ωω. Then there is a finitely
additive extension λ of Lebesgue measure on R2 such that λD = 0 whenever V ⊆ R2 is a line and D ⊆ R2

is such that µH1(D ∩ (x+ V )) = 0 for almost every x ∈ R2.

RemarkHere λ will be a functional from an algebra T of subsets of R2 to [0,∞] such that λ(A∪B) = λA+λB
whenever A, B ∈ T are disjoint.

For circumstances in which there are large Sierpiński sets, see Fremlin 08, 544G and 552E.

proof Let V be the set of lines in R2. For V ∈ V, set

DV = {D : D ⊆ R2, µH1(D ∩ (x+ V )) = 0 for almost every x ∈ R2}.

Corollary 5 tells us that for each finite I ⊆ V we have a (countably) additive λI extending µL such that
λID = 0 for every D ∈

⋃
V ∈I DV . Write ΣI for domλI , and set

λ′
ID = λID for D ∈ ΣI ,

= 0 for other D ⊆ R2.
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Let F be an ultrafilter on [V]<ω containing {I : V ∈ I ∈ [V]<ω} for every V ∈ V, and set

T =
⋃

K∈F

⋂
I∈K ΣI ,

λD = limI→F λ′
ID in [0,∞] for every D ∈ T.

Then T is an algebra of subsets of R2 including domµL ∪ DV for every V ∈ V, and because + : [0,∞] ×
[0,∞] → [0,∞] is continuous, λ is additive. Since every λ′

I extends µL, so does λ; and since λ′
ID = 0

whenever V ∈ I and D ∈ DV , λ is zero on
⋃

V ∈V DV , as required.
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