Covering with transversals and extensions of Lebesgue measure

D.H.FREMLIN

University of Essex, Colchester, England

1 Theorem Let X be a set, κ an infinite cardinal and $\langle R_{\xi} \rangle_{\xi < \kappa}$ a family of equivalence relations on X. Suppose that

whenever $x \in X$ and $J \subseteq \kappa$ is infinite there is a finite set $I \subseteq J$ such that $\#(\{y : (x, y) \in R_{\xi} \forall \xi \in I\}) \leq \kappa$.

Then we have a family $\langle X_{\xi} \rangle_{\xi < \kappa}$, covering X, such that X_{ξ} is a transversal for R_{ξ} for every $\xi < \kappa$.

proof (a) For an equivalence relation R on X and a subset A of X, I will say that A is R-free if $(x, y) \notin R$ for all distinct points x, y of A. So a transversal for R is just a maximal R-free set.

 $(\mathbf{b})(\mathbf{i})$ I will say that a subset A of X is well-filled if

whenever $I \subseteq \kappa$ is finite, $\langle x_{\xi} \rangle_{\xi \in I}$ is a family of points of A, and $\#(\{y : (x_{\xi}, y) \in R_{\xi} \forall \xi \in I\}) \leq \kappa$, then $\{y : (x_{\xi}, y) \in R_{\xi} \forall \xi \in I\} \subseteq A$.

Observe that

if \mathcal{A} is an upwards-directed family of well-filled subsets of X, then $\bigcup \mathcal{A}$ is well-filled;

the intersection of any non-empty family of well-filled subsets of X is well-filled;

if $B \subseteq X$ there is a well-filled subset A of X, including B, with $\#(A) \leq \max(\kappa, \#(B))$.

(ii) If $C \subseteq X$ is well-filled, there is a non-decreasing family $\langle B_{\alpha} \rangle_{\alpha \leq \#(C)}$ of well-filled subsets of C, covering C, such that $\#(B_{\alpha}) \leq \max(\kappa, \#(\alpha))$ for every $\alpha \leq \#(C)$ and $B_{\alpha} = \bigcup_{\beta < \alpha} B_{\beta}$ for every limit ordinal $\alpha \leq \lambda$. **P** Enumerate C as $\langle x_{\alpha} \rangle_{\alpha < \#(C)}$ and take B_{α} to be the smallest well-filled set including $\{x_{\beta} : \beta < \alpha\}$. **Q**

(iii) If $C \subseteq X$ is well-filled and $x \in X \setminus C$, then $J = \{\xi : \xi < \kappa, \exists y \in C, (x, y) \in R_{\xi}\}$ is finite. **P?** Otherwise, there is a finite $I \subseteq J$ such that $D = \{y : (x, y) \in R_{\xi} \forall \xi \in I\}$ has cardinal at most κ . For each $\xi \in I$ choose $z_{\xi} \in C$ such that $(x, z_{\xi}) \in R_{\xi}$. Then $D = \{y : (z_{\xi}, y) \in R_{\xi} \forall \xi \in I\}$. As C is supposed to be well-filled, $D \subseteq C$. But $x \in D \setminus C$. **XQ**

(d) If $C \subseteq X$ and $g: C \to \mathcal{P}\kappa$ is a function, I will say that a *g*-splitting of *C* is a function $f: C \to \kappa$ such that $f(x) \notin g(x)$ for every $x \in C$ and $f^{-1}[\{\xi\}]$ is R_{ξ} -free for every $\xi < \kappa$.

(e) (The key.) Suppose that λ is a cardinal, $C \subseteq X$ is a well-filled set, $\#(C) = \lambda$ and $g: C \to [\kappa]^{<\omega}$ is a function. Then there is a g-splitting function $f: C \to \kappa$. **P** Induce on λ .

(i) If $\lambda \leq \kappa$, enumerate C as $\langle x_{\eta} \rangle_{\eta < \lambda}$ and choose $\langle f(\eta) \rangle_{\eta < \lambda}$ inductively such that $f(\eta) \in \kappa \setminus (g(x_{\eta}) \cup \{f(\zeta) : \zeta < \eta\})$ for each η ; now set $C_{\xi} = \{x_{\eta}\}$ if $f(\eta) = \xi$ and $C_{\xi} = \emptyset$ if there is no such η .

(ii) For the inductive step to $\lambda > \kappa$, (b-ii) tells us that there will be a non-decreasing family $\langle B_{\alpha} \rangle_{\alpha \leq \lambda}$ of well-filled subsets of C, covering C, such that $\#(B_{\alpha}) \leq \max(\kappa, \#(\alpha))$ for every $\alpha \leq \lambda$ and $B_{\alpha} = \bigcup_{\beta < \alpha} B_{\beta}$ for every limit ordinal $\alpha \leq \lambda$. For each $\alpha < \lambda$ and $x \in B_{\alpha+1}$ set

$$g_{\alpha}(x) = g(x) \text{ if } x \in B_{\alpha},$$

= $g(x) \cup \{\xi : \exists y \in B_{\alpha}, (x, y) \in R_{\xi}\} \text{ otherwise.}$

By (b-iii), $g_{\alpha}(x)$ is finite for every $x \in B_{\alpha}$. Also $\#(B_{\alpha+1}) < \lambda$. By the inductive hypothesis, there is a g_{α} -splitting $f_{\alpha}: B_{\alpha+1} \to \kappa$.

Define $f: C \to \kappa$ by setting $f(x) = f_{\alpha}(x)$ whenever $\alpha < \lambda$ and $x \in B_{\alpha+1} \setminus B_{\alpha}$. Then f(x) never belongs to g(x) because $f_{\alpha}(x)$ never belongs to g(x). Next, if $x, y \in C$ are distinct and $f(x) = f(y) = \xi$ then there are $\alpha, \beta < \lambda$ such that $x \in B_{\alpha+1} \setminus B_{\alpha}$ and $y \in B_{\beta+1} \setminus B_{\beta}$. Now

— if $\alpha = \beta$ we have $f_{\alpha}(x) = f_{\alpha}(y) = \xi$ so $(x, y) \notin R_{\xi}$ because f_{α} is splitting;

— if $\beta < \alpha$ then $y \in B_{\alpha}$ while $\xi \notin g_{\alpha}(x)$ so $(x, y) \notin R_{\xi}$;

— and similarly $(x, y) \notin R_{\xi}$ if $\alpha < \beta$.

As x, y are arbitrary f is g-splitting and the induction continues. \mathbf{Q}

(f) Applying (e) with C = X and $g(x) = \emptyset$ for every $x \in X$, we see that there is a splitting $f: X \to \kappa$. Now take X_{ξ} to be a maximal R_{ξ} -free set including $f^{-1}[\{\xi\}]$ for each ξ to get the required covering of X by transversals.

2 Corollary Let $r \geq 1$ be an integer, and $\langle V_n \rangle_{n \in \mathbb{N}}$ a sequence of linear subspaces of \mathbb{R}^r such that $\{n: x \in V_n\}$ is finite for every non-zero $x \in \mathbb{R}^r$. Then \mathbb{R}^r can be covered by a sequence $\langle X_n \rangle_{n \in \mathbb{N}}$ of sets such that $\#(X_n \cap (z+V_n)) = 1$ for every $n \in \mathbb{N}$ and $z \in \mathbb{R}^r$.

proof Set $R_n = \{(x, y) : x - y \in V_n\}$ for $n \in \mathbb{N}$. If $x \in \mathbb{R}^r$ and $J \subseteq \mathbb{N}$ is infinite, then $\bigcap_{n \in J} V_n = \{0\}$ so there is a finite set $I \subseteq J$ such that $\bigcap_{n \in I} V_n = \{0\}$ and $\#(\{y : (x, y) \in R_n \forall n \in I\}) = 1$. So Theorem 1 gives the result.

Remark This is a fractional extension of the main result in DAVIES 63, proved by the same method.

3 Theorem If $n \in \mathbb{N}$ and $\mathfrak{c} > \omega_n$, then whenever $V_0, \ldots, V_n \subseteq \mathbb{R}^2$ are lines and A_0, \ldots, A_n cover \mathbb{R}^2 there must be an $i \leq n$ and an $x \in \mathbb{R}^2$ such that $A_i \cap (x + V_i)$ is uncountable.

proof In fact I seek to show, by induction on m, that whenever $\omega_m < \mathfrak{c}$ and $V_0, \ldots, V_m \subseteq \mathbb{R}^2$ are lines there is a set $A \subseteq \mathbb{R}^2$ of cardinal ω_{m+1} such that whenever \mathcal{D} is a countable cover of A there is a $D \in \mathcal{D}$ such that for every $i \leq m$ there is an $x \in \mathbb{R}^2$ such that $D \cap (x + V_i)$ is uncountable.

To start the induction, given m = 0 and a line V_0 , just take $A \in [V_0]^{\omega_1}$. For the inductive step to m > 1, take lines V_0, \ldots, V_m . By the inductive hypothesis, there is a set $B \in [\mathbb{R}^2]^{\omega_m}$ such that whenever \mathcal{D} is a countable cover of B there is a $D \in \mathcal{D}$ such that for every i < m there is an $x \in \mathbb{R}^2$ such that $D \cap (x + V_i)$ is uncountable. Observe that the same is true for y + B for every $y \in \mathbb{R}^2$. Because $\mathfrak{c} > \omega_m$, we can find a family $\langle y_{\xi} \rangle_{\xi < \omega_{m+1}}$ in V_m such that $\langle y_{\xi} + B \rangle_{\xi < \omega_{m+1}}$ is disjoint. Set $A = \bigcup_{\xi < \omega_{m+1}} y_{\xi} + B$. Then $\#(A) = \omega_{m+1}$.

Let \mathcal{D} be a countable cover of A. Set

$$\mathcal{D}' = \{D : D \in \mathcal{D}, D \cap (x + V_m) \text{ is countable for every } x \in \mathbb{R}^2\}$$

If $D \in \mathcal{D}'$ and $x \in B$, then $\{\xi : x + y_{\xi} \in D\}$ must be countable. There is therefore a $\xi < \omega_{m+1}$ such that $x + y_{\xi} \notin \bigcup \mathcal{D}'$ for any $x \in B$, that is, $(y_{\xi} + B) \cap \bigcup \mathcal{D}' = \emptyset$. So $y_{\xi} + B \subseteq \bigcup \mathcal{D}''$ where $\mathcal{D}'' = \mathcal{D} \setminus \mathcal{D}'$. Now there must be a $D \in \mathcal{D}''$ such that for every i < m there is an $x \in \mathbb{R}^2$ such that $D \cap (x + V_i)$ is uncountable. But now we see that there is also an $x \in \mathbb{R}^2$ such that $D \cap (x + V_m)$ is uncountable. As \mathcal{D} is arbitrary, the induction proceeds.

4 Theorem Suppose that $n \in \mathbb{N}$ and there is a Sierpiński subset of \mathbb{R} (FREMLIN 08, 537A) of cardinal ω_{n+1} . Then whenever $V_0, \ldots, V_n \subseteq \mathbb{R}^2$ are lines, \mathcal{D} is a countable family of subsets of \mathbb{R}^2 and $\bigcup \mathcal{D}$ has non-zero inner Lebesgue measure, there must be a $D \in \mathcal{D}$ such that for every $i \leq n$ there is an $x \in \mathbb{R}^2$ such that $D \cap (x + V_i)$ has non-zero one-dimensional Hausdorff outer measure.

Remark Of course 'one-dimensional Hausdorff measure' on a line $V \subseteq \mathbb{R}^2$ is just the copy of one-dimensional Lebesgue measure under any isometry between \mathbb{R} and V (FREMLIN 01, §264).

proof Write μ_L for two-dimensional Lebesgue measure and μ_{H1} for one-dimensional Hausdorff measure on \mathbb{R}^2 .

(a) If $V \subseteq \mathbb{R}^2$ is a line, there is a set $A \subseteq \mathbb{R}^2$ of cardinal ω_1 such that whenever \mathcal{D} is a countable family of subsets of \mathbb{R}^2 and $\mu_L(A \setminus \bigcup \mathcal{D}) = 0$, there are a $D \in \mathcal{D}$ and an $x \in \mathbb{R}^2$ such that $\mu_{H_1}^*(V \cap (x+D)) > 0$. **P** Let $W \subseteq \mathbb{R}^2$ be a line orthogonal to V. For $D \subseteq \mathbb{R}^2$, write

$$C(D) = \{x : x \in W, \, \mu_{H_1}^*(V \cap (x+D)) > 0\}$$

Note that $-: V \times W \to \mathbb{R}^2$ is an isomorphism between the product measure $\mu_{H1} \times \mu_{H_1}$ on $V \times W$ and μ_L (see FREMLIN 01, 251N). Let $B \subseteq V, B' \subseteq W$ be sets of cardinal ω_1 which are not μ_{H1} -negligible, and set A = B - B'. Then $B' \subseteq C(A)$, so C(A) is not μ_{H_1} -negligible. On the other hand, if $E \subseteq \mathbb{R}^2$ is

Measure Theory

 μ_L -negligible, $\mu_{H1}C(E) = 0$, by Fubini's theorem. Now if \mathcal{D} is countable and $A' = A \cap \bigcup \mathcal{D}$ is μ_L -negligible, $\bigcup_{D \in \mathcal{D}} C(D) \supseteq C(A) \setminus C(A')$ so there is a $D \in \mathcal{D}$ such that C(D) is not empty. **Q**

(b) If $m \leq n$ and $V_0, \ldots, V_m \subseteq \mathbb{R}^2$ are lines, there is a set $A \subseteq \mathbb{R}^2$ of cardinal ω_{m+1} such that whenever \mathcal{D} is a countable family of subsets of \mathbb{R}^2 and $\mu_L(A \setminus \bigcup \mathcal{D}) = 0$, there is a $D \in \mathcal{D}$ such that for every $i \leq n$ there is an $x \in \mathbb{R}^2$ such that $\mu_{H_1}^*(D \cap (x + V_i)) > 0$. **P** For m = 0 this is (a) above. For the inductive step to m when $1 \leq m \leq n$, take lines V_0, \ldots, V_m . By the inductive hypothesis, there is a set $B \in [\mathbb{R}^2]^{\omega_m}$ such that whenever \mathcal{D} is countable and $\mu_L(B \setminus \bigcup \mathcal{D}) = 0$ there is a $D \in \mathcal{D}$ such that for every i < m there is an $x \in \mathbb{R}^2$ such that $\mu_{H_1}^*(D \cap (x + V_i)) > 0$. Observe that y + B will have the same property for every $y \in \mathbb{R}^2$. Now we have a μ_{H_1} -Sierpiński subset C of V_m with cardinal ω_{m+1} . Choose a family $\langle y_{\xi} \rangle_{\xi < \omega_{m+1}}$ in C such that $\langle y_{\xi} + B \rangle_{\xi < \omega_{m+1}}$ is disjoint. Set $A = \bigcup_{\xi < \omega_{m+1}} y_{\xi} + B$. Then $\#(A) = \omega_{m+1}$.

Let \mathcal{D} be a countable family of sets such that $\mu_L(A \setminus \bigcup \mathcal{D}) = 0$. Set

$$\mathcal{D}' = \{D : D \in \mathcal{D}, \mu_{H_1}(D \cap (x + V_m)) = 0 \text{ for every } x \in \mathbb{R}^2\}$$

If $D \in \mathcal{D}'$ and $x \in B$, then $\mu_{H1}(V_m \cap (D-x)) = 0$ so $\{\xi : x + y_{\xi} \in D\} = \{\xi : y_{\xi} \in D - x\}$ must be countable. So there is a $\xi < \omega_{m+1}$ such that $x + y_{\xi} \notin \bigcup \mathcal{D}'$ for any $x \in B$, that is, $(y_{\xi} + B) \cap \bigcup \mathcal{D}' = \emptyset$. So $(y_{\xi} + B) \setminus \bigcup \mathcal{D}''$ is μ_L -negligible, where $\mathcal{D}'' = \mathcal{D} \setminus \mathcal{D}'$. Now there must be a $D \in \mathcal{D}''$ such that for every i < m there is an $x \in \mathbb{R}^2$ such that $\mu_{H1}(D \cap (x + V_i)) > 0$. But now we see that there is also an $x \in \mathbb{R}^2$ such that $\mu_{H1}(D \cap (x + V_i)) > 0$. As \mathcal{D} is arbitrary, the induction proceeds. **Q**

(c) Now suppose that \mathcal{D} is a countable family of subsets of \mathbb{R}^2 and $\bigcup \mathcal{D}$ has non-zero inner Lebesgue measure. Let $E \subseteq \bigcup \mathcal{D}$ be such that $\mu_L E > 0$. Set $Q = \mathbb{Q} \times \mathbb{Q}$. Then Q is a topologically dense subset of \mathbb{R}^2 so E - F meets Q whenever $F \subseteq \mathbb{R}^2$ and $\mu_L^* F > 0$ (FREMLIN 03, 443D) and E + Q is μ_L -conegligible. Set $\mathcal{D}' = \{D + q : q \in Q\}$; then \mathcal{D}' is countable and $\bigcup \mathcal{D}'$ is μ_L -conegligible. By (b), with m = n, there are a $D' \in \mathcal{D}'$ such that for every $i \leq n$ there is an $x_i \in \mathbb{R}^2$ such that $\mu_{H_1}(D' \cap (x_i + V_i)) > 0$. Let $q \in Q$ be such that D = D' - q belongs to \mathcal{D} ; then $\mu_{H_1}^*(D \cap ((x_i - q) + V_i)) > 0$ for every i. So we have an appropriate D.

5 Corollary Suppose that $n \in \mathbb{N}$ and there is a Sierpiński subset of \mathbb{R} with cardinal ω_{n+1} . Then whenever V_0, \ldots, V_n are lines in \mathbb{R}^2 , there is an extension of Lebesgue measure μ_L on \mathbb{R}^2 to a measure λ such that $\lambda D = 0$ whenever $D \subseteq \mathbb{R}^2$ and there is an $i \leq n$ such that $\mu_{H_1}(D \cap (x+V_i)) = 0$ for μ_L -almost every $x \in \mathbb{R}^2$.

proof For $i \leq n$, set

$$\mathcal{D}_i = \{ D : D \subseteq \mathbb{R}^2, \, \mu_{H1}(D \cap (x + V_i)) = 0 \text{ for every } x \in \mathbb{R}^2 \}.$$

Now there is a measure λ on \mathbb{R}^2 , extending μ_L , such that $\lambda D = 0$ for every $D \in \bigcup_{i \leq n} \mathcal{D}_i$. **P?** Otherwise, there is a countable set $\mathcal{D} \subseteq \bigcup_{i \leq n} \mathcal{D}_i$ such that $\mu_L^*(\bigcup \mathcal{D}) > 0$ (FREMLIN 03, 417A). But this is impossible, by Theorem 4. **XQ**

If now we have $i \leq n$ and a set $D \subseteq \mathbb{R}^2$ such that $\mu_{H_1}(D \cap (x + V_i)) = 0$ for μ_L -almost every $x \in \mathbb{R}^2$, consider $C = \{z : z \in \mathbb{R}^2, \ \mu_{H_1}^*(D \cap (z + V_i)) > 0\}$. Then $\lambda C = \mu_L C = 0$. But if we set $D' = D \setminus C$ then $\mu_{H_1}(D' \cap (x + V_i)) = 0$ for every $x \in \mathbb{R}^2$ so $\lambda D' = 0$ and $\lambda D = 0$. Thus we have a suitable λ .

6 Corollary Suppose that there is a Sierpiński subset of \mathbb{R} of cardinal ω_{ω} . Then there is a finitely additive extension λ of Lebesgue measure on \mathbb{R}^2 such that $\lambda D = 0$ whenever $V \subseteq \mathbb{R}^2$ is a line and $D \subseteq \mathbb{R}^2$ is such that $\mu_{H_1}(D \cap (x+V)) = 0$ for almost every $x \in \mathbb{R}^2$.

Remark Here λ will be a functional from an algebra T of subsets of \mathbb{R}^2 to $[0, \infty]$ such that $\lambda(A \cup B) = \lambda A + \lambda B$ whenever $A, B \in T$ are disjoint.

For circumstances in which there are large Sierpiński sets, see FREMLIN 08, 544G and 552E.

proof Let \mathcal{V} be the set of lines in \mathbb{R}^2 . For $V \in \mathcal{V}$, set

$$\mathcal{D}_V = \{D : D \subseteq \mathbb{R}^2, \mu_{H1}(D \cap (x+V)) = 0 \text{ for almost every } x \in \mathbb{R}^2\}$$

Corollary 5 tells us that for each finite $\mathcal{I} \subseteq \mathcal{V}$ we have a (countably) additive $\lambda_{\mathcal{I}}$ extending μ_L such that $\lambda_{\mathcal{I}} D = 0$ for every $D \in \bigcup_{V \in \mathcal{I}} D_V$. Write $\Sigma_{\mathcal{I}}$ for dom $\lambda_{\mathcal{I}}$, and set

$$\lambda'_{\mathcal{I}} D = \lambda_{\mathcal{I}} D \text{ for } D \in \Sigma_{\mathcal{I}},$$
$$= 0 \text{ for other } D \subseteq \mathbb{R}^2$$

D.H.FREMLIN

Let \mathcal{F} be an ultrafilter on $[\mathcal{V}]^{<\omega}$ containing $\{\mathcal{I}: V \in \mathcal{I} \in [\mathcal{V}]^{<\omega}\}$ for every $V \in \mathcal{V}$, and set

$$T = \bigcup_{\mathcal{K} \in \mathcal{F}} \bigcap_{\mathcal{I} \in \mathcal{K}} \Sigma_{\mathcal{I}},$$

$$\lambda D = \lim_{\mathcal{I} \to \mathcal{F}} \lambda'_{\mathcal{I}} D \text{ in } [0, \infty] \text{ for every } D \in \mathcal{T}.$$

Then T is an algebra of subsets of \mathbb{R}^2 including dom $\mu_L \cup \mathcal{D}_V$ for every $V \in \mathcal{V}$, and because $+ : [0, \infty] \times [0, \infty] \to [0, \infty]$ is continuous, λ is additive. Since every $\lambda'_{\mathcal{I}}$ extends μ_L , so does λ ; and since $\lambda'_{\mathcal{I}}D = 0$ whenever $V \in \mathcal{I}$ and $D \in \mathcal{D}_V$, λ is zero on $\bigcup_{V \in \mathcal{V}} \mathcal{D}_V$, as required.

Acknowledgement Correspondence with Alan Sokal.

References

Davies R.O. [63] 'Covering the plane with denumerably many curves', J. London Math. Soc. 38 (1963) 433-438.

Fremlin D.H. [01] Measure Theory, Vol. 2: Broad Foundations. Torres Fremlin, 2001 (http://www.lulu.com/content/8005793).

Fremlin D.H. [03] Measure Theory, Vol. 4: Topological Measure Spaces. Torres Fremlin, 2003 (http://www.lulu.com/shop/david-fremlin/measure-theory-4-i/hardcover/product-21260956.html, http://www.lulu.com/shop/david-fremlin/measure-theory-4-ii/hardcover/product-21247268.html).

Fremlin D.H. [08] *Measure Theory, Vol. 5: Set-theoretic Measure Theory.* Torres Fremlin, 2008 (http://www.lulu.com/shop/david-fremlin/measure-theory-5-i/hardcover/product-22032430.html, http://www.lulu.com/shop/david-fremlin/measure-theory-5-ii/hardcover/product-22032397.html).