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1 Theorem Let X be a set, x an infinite cardinal and (R¢)e<, a family of equivalence relations on X.
Suppose that
whenever z € X and J C k is infinite there is a finite set I C J such that #({y : (z,y) € Re V
£el}) <k
Then we have a family (X¢)e<x, covering X, such that X is a transversal for R for every ¢ < k.

proof (a) For an equivalence relation R on X and a subset A of X, I will say that A is R-free if (x,y) ¢ R
for all distinct points z, y of A. So a transversal for R is just a maximal R-free set.

(b)(i) I will say that a subset A of X is well-filled if
whenever I C k is finite, (z¢)eer is a family of points of A, and #({y : (z¢,y) € Re V§ € I}) <,
then {y: (z¢,y) € ReVE € I} C A
Observe that
if A is an upwards-directed family of well-filled subsets of X, then |J.A is well-filled;
the intersection of any non-empty family of well-filled subsets of X is well-filled;
if B C X there is a well-filled subset A of X, including B, with #(A) < max(k, #(B)).

(ii) If C C X is well-filled, there is a non-decreasing family (Ba)a<#(c) of well-filled subsets of C,
covering C, such that #(B,) < max(x, #(a)) for every a < #(C) and By = Uz, Bs for every limit
ordinal a < A. P Enumerate C as (Ta)a<x(c) and take B, to be the smallest well-filled set including
{zg: B <a}l. Q

(iii) If ¢ C X is well-filled and z € X \ C, then J = {{ : { <k, Jy € C, (z,y) € Re} is finite. P?
Otherwise, there is a finite I C J such that D = {y : (z,y) € R¢ V { € I} has cardinal at most k. For each
& € I choose z¢ € C such that (z,2¢) € Re. Then D = {y : (z¢,y) € Re V& € I'}. As C is supposed to be
well-filled, D C C. But z € D\ C. XQ

(d) If C € X and g : C — Pk is a function, I will say that a g-splitting of C' is a function f : C — &
such that f(z) ¢ g(x) for every z € C and f~'[{¢}] is Re¢-free for every £ < k.

(e) (The key.) Suppose that A is a cardinal, C' C X is a well-filled set, #(C) =X and g : C — [k]<“ is a
function. Then there is a g-splitting function f: C' — . I Induce on A.

(i) If X < k, enumerate C' as (x,),<x and choose (f(n))n<x inductively such that f(n) € &\ (g(z,) U
{f(¢) : ¢ < n}) for each n; now set C¢ = {x,} if f(n) =& and C¢ = 0 if there is no such 7.

(ii) For the inductive step to A > &, (b-ii) tells us that there will be a non-decreasing family (Bga)a<x
of well-filled subsets of C, covering C, such that #(B,) < max(x, #(«)) for every a < A and B, = U, Bs
for every limit ordinal @ < A. For each a < A and = € B, set

Jgo(x) = g(x) if © € B,,
=g(x) U{¢:3y € Ba, (z,y) € Re¢} otherwise.

By (b-iil), go(z) is finite for every x € B,. Also #(Bs+1) < A. By the inductive hypothesis, there is a
go-splitting fo : Bat1 — K.

Define f : C' — & by setting f(x) = fo(z) whenever o < X and © € Byy1 \ Bo. Then f(x) never belongs
to g(x) because f, () never belongs to g(x). Next, if 2, y € C are distinct and f(z) = f(y) = £ then there
are o, B < X such that z € Byy1 \ By and y € Bgy1 \ Bs. Now

— if o = B we have fo(z) = fo(y) = € so (x,y) ¢ Re because f, is splitting;
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— if 8 < o then y € B, while § ¢ go(x) so (z,y) ¢ Re;
—— and similarly (z,y) ¢ Re if o < .
As x, y are arbitrary f is g-splitting and the induction continues. Q

(f) Applying (e) with C = X and g(x) = 0 for every z € X, we see that there is a splitting f : X — &.
Now take X¢ to be a maximal Re-free set including f~1[{¢}] for each £ to get the required covering of X
by transversals.

2 Corollary Let 7 > 1 be an integer, and (V,)nen a sequence of linear subspaces of R" such that
{n : x € V,} is finite for every non-zero x € R". Then R" can be covered by a sequence (X, )nen of sets
such that #(X,, N (2 +V,,)) =1 for every n € N and z € R".

proof Set R, = {(z,y) :v —y €V, } forn € N. If z € R" and J C N is infinite, then [, ; V,, = {0} so
there is a finite set I C J such that (), .; Vi, = {0} and #({y : (z,y) € R, ¥ n € I}) = 1. So Theorem 1
gives the result.

Remark This is a fractional extension of the main result in DAVIES 63, proved by the same method.

3 Theorem If n € N and ¢ > w,, then whenever Vj,...,V,, C R? are lines and A, ..., A, cover R?
there must be an i < n and an z € R? such that A; N (z 4+ V;) is uncountable.

proof In fact I seek to show, by induction on m, that whenever w,, < ¢ and Vj,...,V,, € R? are lines
there is a set A C R? of cardinal wWm+1 such that whenever D is a countable cover of A there is a D € D
such that for every i < m there is an 2 € R? such that D N (z + V;) is uncountable.

To start the induction, given m = 0 and a line Vj, just take A € [Vp]“t. For the inductive step to m > 1,
take lines Vp, ..., V,,. By the inductive hypothesis, there is a set B € [R?]“m such that whenever D is a
countable cover of B there is a D € D such that for every i < m there is an x € R? such that DN (z +V;) is
uncountable. Observe that the same is true for y+ B for every y € R2. Because ¢ > w,,, we can find a family
(Ye)e<wpis 0 Viy such that (ye + B)ecw,,, is disjoint. Set A =,  ve+ B. Then #(A) = wm1.

Let D be a countable cover of A. Set

D'={D:D €D, DN (x+V,) is countable for every z € R?}

If D e D and z € B, then {¢ :  + y¢ € D} must be countable. There is therefore a & < wy,+1 such that
z+ye ¢ UD for any x € B, that is, (ye + B)NUD' = 0. So ye + B C D" where D” = D\ D'. Now
there must be a D € D" such that for every i < m there is an x € R? such that DN (z + V;) is uncountable.
But now we see that there is also an x € R? such that D N (z + V,;,) is uncountable. As D is arbitrary, the
induction proceeds.

m—+1

4 Theorem Suppose that n € N and there is a Sierpiniski subset of R (FREMLIN 08, 537A) of cardinal
Wni1- Then whenever Vj,...,V, C R? are lines, D is a countable family of subsets of R? and |JD has
non-zero inner Lebesgue measure, there must be a D € D such that for every i < n there is an x € R? such
that D N (z 4+ V;) has non-zero one-dimensional Hausdorff outer measure.

Remark Of course ‘one-dimensional Hausdorff measure’ on a line V' C R? is just the copy of one-dimensional
Lebesgue measure under any isometry between R and V' (FREMLIN 01, §264).

proof Write py, for two-dimensional Lebesgue measure and pg for one-dimensional Hausdorff measure on
R2.

() fV C R? is a line, there is a set A C R? of cardinal w; such that whenever D is a countable family
of subsets of R? and puz(A\ |JD) = 0, there are a D € D and an = € R? such that uj,(V N (x + D)) > 0.
P Let W C R? be a line orthogonal to V. For D C R?, write
CD)={z:zeW, uiy;(Vn(z+ D)) >0}

Note that — : V x W — R2 is an isomorphism between the product measure tr1 X p, on V- x W and
wr, (see FREMLIN 01, 251N). Let B C V, B" C W be sets of cardinal w; which are not pgi-negligible,
and set A = B — B’. Then B’ C C(A), so C(A) is not pgi-negligible. On the other hand, if E C R? is
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pr-negligible, g C(E) = 0, by Fubini’s theorem. Now if D is countable and A’ = AN{JD is pr-negligible,
Upen C(D) 2 C(A)\ C(A’) so there is a D € D such that C(D) is not empty. Q

(b) If m < mn and Vp,...,V,, C R? are lines, there is a set A C R? of cardinal w,, 1 such that whenever
D is a countable family of subsets of R? and pur(A\ D) = 0, there is a D € D such that for every i <n
there is an z € R? such that p%, (D N (z +V;)) > 0. P For m = 0 this is (a) above. For the inductive step
to m when 1 < m < n, take lines Vp, ..., V,,. By the inductive hypothesis, there is a set B € [R?]“» such
that whenever D is countable and pr (B \ |JD) = 0 there is a D € D such that for every i < m there is an
x € R? such that ul, (DN (z+V;)) > 0. Observe that y + B will have the same property for every y € R2.
Now we have a jur1-Sierpinski subset C' of V,,, with cardinal wy,11. Choose a family (y¢)¢<w,,,, in C such
that (ye + B)e<w,,., is disjoint. Set A=, . ve+ B. Then #(A) = wni1.

Let D be a countable family of sets such that pz(A\ JD) =0. Set

D' ={D:DeD, ug (DN (x+ Vy)) =0 for every € R?}

If D€ D' and z € B, then pug1(Vim N (D —2)) =0s0 {£ :x+y: € D} = {{: ye € D — z} must be
countable. So there is a & < wy,41 such that  + ye ¢ UD' for any = € B, that is, (ye + B)NnUD' = 0.
So (ye + B) \UD" is pr-negligible, where D" = D \ D’. Now there must be a D € D” such that for every
i < m there is an x € R? such that pgi(D N (2 +V;)) > 0. But now we see that there is also an z € R?
such that pg1(D N (x + Vi) > 0. As D is arbitrary, the induction proceeds. Q

(c) Now suppose that D is a countable family of subsets of R? and |JD has non-zero inner Lebesgue
measure. Let E C |JD be such that ur, E > 0. Set Q@ = Q x Q. Then @ is a topologically dense subset of
R? so E — F meets ) whenever ' C R? and p} F > 0 (FREMLIN 03, 443D) and E + @ is ur-conegligible.
Set D' = {D+¢q: q € Q}; then D’ is countable and | JD’ is pp-conegligible. By (b), with m = n, there are a
D’ € D' such that for every i < n there is an z; € R? such that uj, (D' N (z; +V;)) > 0. Let ¢ € Q be such
that D = D’ — ¢ belongs to D; then u};, (D N ((x; —q) + Vi) > 0 for every i. So we have an appropriate D.

5 Corollary Suppose that n € N and there is a Sierpinski subset of R with cardinal w,41. Then whenever
Vo,...,V, are lines in R2, there is an extension of Lebesgue measure ;7 on R? to a measure A such that
AD = 0 whenever D C R? and there is an i < n such that ugi (DN (x+V;)) = 0 for pr-almost every z € R2.

proof For i < n, set
D; ={D:D CR? pyi(DN(z+V;)) =0 for every x € R?}.

Now there is a measure A on R?, extending pr, such that AD = 0 for every D € Ui<n Di- P77 Otherwise,
there is a countable set D C |J,,, D; such that x5 (D) > 0 (FREMLIN 03, 417A). But this is impossible,
by Theorem 4. XQ -

If now we have i < n and a set D C R? such that pug1(D N (z + V;)) = 0 for pr-almost every x € R?,
consider C = {z : z € R?, p3, (DN (2 +V;)) > 0}. Then A\C = p,C = 0. But if we set D’ = D\ C then
w1 (D' N (x4 V;)) =0 for every € R? so AD' = 0 and AD = 0. Thus we have a suitable .

6 Corollary Suppose that there is a Sierpiniski subset of R of cardinal w,. Then there is a finitely
additive extension A of Lebesgue measure on R? such that AD = 0 whenever V C R? is a line and D C R?
is such that pg1(D N (z +V)) =0 for almost every z € R2.

Remark Here \ will be a functional from an algebra T of subsets of R? to [0, oo] such that A(AUB) = NMA+\B
whenever A, B € T are disjoint.
For circumstances in which there are large Sierpinski sets, see FREMLIN 08, 544G and 552E.

proof Let V be the set of lines in R2. For V € V), set
Dy ={D:D CR? ug1(DN(z+V)) =0 for almost every x € R?}.

Corollary 5 tells us that for each finite Z C V we have a (countably) additive Az extending uy such that
AzD = 0 for every D € |Jy, oy Dy. Write Xz for dom Az, and set

)\:/ZD =AzD for D € X7,
= 0 for other D C R2.
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Let F be an ultrafilter on [V]<“ containing {Z : V € Z € [V]<¥} for every V € V, and set
T = Uxer Nzex ¥z,
AD = limz_, 7 A, D in [0, o] for every D € T.

Then T is an algebra of subsets of R? including dom pz, U Dy for every V € V, and because + : [0,00] x
[0,00] — [0,00] is continuous, A is additive. Since every A} extends py, so does A; and since A;D = 0
whenever V € 7 and D € Dy, A is zero on | Jy,y, Dy, as required.
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