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1 Proposition Let X be a set, Σ a σ-algebra of subsets of X and W a member of Σ⊗̂Σ. Then W = W−1

iff W is in the σ-algebra of subsets of X2 generated by {E2 : E ∈ Σ}.

Remark Following Fremlin 00 and Fremlin 01 we write Σ⊗̂Σ for the σ-algebra of subsets ofX2 generated
by {E × F : E, F ∈ Σ} and W−1 for {(y, x) : (x, y) ∈ W}.

proof (a) Write W for the σ-algebra of subsets of X2 generated by {E2 : E ∈ Σ}. Because {W : W−1 = W}
is a σ-algebra of subsets of X2 containing A2 for every A ⊆ X, W−1 = W for every W ∈ W.

(b) Suppose that E, F ∈ Σ and E ∩ F = ∅.

(i) For every W ∈ Σ⊗̂Σ there is a W1 ∈ W such that W1 ∩ (E × F ) = W ∩ (E × F ). PPP Consider the
set

V = {V : V ⊆ X2 and there is a W1 ∈ W such that V ∩ (E × F ) = W1 ∩ (E × F )}.

Then V is a σ-algebra of subsets of X. If G, H ∈ Σ set

W1 = ((G ∩ E) ∪ (H ∩ F ))2 \ ((G ∩ E)2 ∪ (H ∩ F )2) ∈ W

and observe that

W1 ∩ (E × F ) = (G ∩ E)× (H ∩ F ) = (G×H) ∩ (E × F ).

So G×H ∈ V. As G and H are arbitrary, V ⊇ Σ⊗̂Σ. QQQ

(ii) If W ∈ Σ⊗̂Σ and W = W−1 then W ∩ ((E × F ) ∪ (F × E)) ∈ W. PPP Observe first that

(E × F ) ∪ (F × E) = (E ∪ F )2 \ (E2 ∪ F 2) ∈ W.

Now (i) tells us that there is a W1 ∈ W such that W1 ∩ (E × F ) = W ∩ (E × F ). So

W ∩ (F × E) = W−1 ∩ (F × E) = (W ∩ (E × F ))−1

= (W1 ∩ (E × F ))−1 = W−1
1 ∩ (F × E) = W1 ∩ (F × E)

and

W ∩ ((E × F ) ∪ (F × E)) = W1 ∩ ((E × F ) ∪ (F × E)) ∈ W. QQQ

(c) Now take any W ∈ Σ⊗̂Σ such that W = W−1. Then there is a sequence 〈Hn〉n∈N in Σ such that
W ∈ T⊗̂T where T is the σ-subalgebra of Σ generated by 〈Hn〉n∈N.

(i) For each n ∈ N let Tn be the finite subalgebra of T generated by {Hi : i < n}. Let An be the set
of atoms of Tn, and set Vn =

⋃
A∈An

A2. By (b-ii), W ∩ ((A × A′) ∪ (A′ × A)) ∈ W whenever A, A′ ∈ An

are distinct. So

W \ Vn =
⋃

A,A′∈An,A 6=A′ W ∩ ((A×A′) ∪ (A′ ×A))

belongs to W. Setting V =
⋂

n∈N
Vn. W \ V =

⋃
n∈N

W \ Vn belongs to W.

(ii) V =
⋂

E∈T
E2 ∪ (X \ E)2. PPP (α) Take any (x, y) ∈ V . If i ∈ N then (x, y) ∈ Vi+1 and x ∈ Hi iff

y ∈ Hi, since any atom of Ti+1 is either included in Hi or disjoint from Hi. Now

{E : E ∈ T, (x, y) ∈ E2 ∪ (X \ E)2}
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is a σ-subalgebra of T containing Hi for every i, so is the whole of T, and (x, y) ∈
⋂

E∈T
E2 ∪ (X \ E)2.

(β) Conversely, if (x, y) ∈ X2 \ V , there are A, A′ ∈ T such that A ∩ A′ = ∅ and (x, y) ∈ A × A′, so that
(x, y) /∈ A2 ∪ (X \A)2. QQQ

(iii) The map x 7→ (x, x) : X → X2 is (T,T⊗̂T)-measurable, so E = {x : (x, x) ∈ W} belongs to T.
Now W ∩ V = (E × E) ∩ V . PPP For (x, y) ∈ V ,

(x, y) ∈ E × E ⇐⇒ x ∈ E and y ∈ E

⇐⇒ x ∈ E

⇐⇒ (x, x) ∈ W

⇐⇒ x ∈ W [{x}]

⇐⇒ y ∈ W [{x}]

(because the map z 7→ (x, z) : X → X2 is (T,T⊗̂T)-measurable, so W [{x}] = {z : (x, z) ∈ W belongs to T)

⇐⇒ (x, y) ∈ W. QQQ

So W ∩ V ∈ W. Putting this together with (i) just above, W ∈ W.

(iv) Thus we see that W ∈ W whenever W ∈ Σ⊗̂Σ and W = W−1, and the proof is complete.

2 Remark The natural question arises: if W ⊆ X3 belongs to Σ⊗̂Σ⊗̂Σ and is fully symmetric in the
sense that if (x, y, z) ∈ W then (y, z, x), (z, x, y), (x, z, y), (y, x, z), (z, y, x) all belong to W , does W belong
to the σ-algebra generated by {E3 : E ∈ Σ}? This is certainly not the case, even if X = {0, 1} and Σ = PX;
consider W = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. We do not know if there is any other interesting way of generating
the σ-algebra of fully symmetric measurable sets.

3 Theorem Let X be a set, G a finite group, and • an action of G on X. Let C be an algebra of subsets
of X such that g•C ∈ C whenever g ∈ G, C ∈ C. Write D for {C : C ∈ C, g•C = C for every g ∈ G}. If
E belongs to the σ-algebra of sets generated by C and g•E = E for every g ∈ G, then E belongs to the
σ-algebra generated by D.

proof (a) Consider first the case in which C is countable. Write W0 for the σ-algebra generated by D.

(i) For x, y ∈ X say that x ∼ y if {C : x ∈ C ∈ C} = {C : y ∈ C ∈ C}. Then ∼ is an equivalence
relation on X. If x ∼ y and g ∈ G, then

{C : g•x ∈ C ∈ C} = {g−1
•C : x ∈ C ∈ C} = {g−1

•C : y ∈ C ∈ C}

(because g−1
•C ∈ C for every C ∈ C)

= {C : g•y ∈ C ∈ C},

so g•x ∼ g•y. It follows that if x, y ∈ X and g ∈ G, then g•x ∼ g•y iff x ∼ y.
Note that if x, y ∈ X and x 6∼ y, there is a C ∈ C such that x ∈ C and y /∈ C, because X \ C ∈ C for

every C ∈ C.

(ii) For x ∈ X, set Hx = {h : h ∈ G, h•x ∼ x}, so that Hx is a subgroup of G. Then there is a C ∈ C
such that x ∈ C, Hy ⊆ Hx for every y ∈ C and h•C = C for every h ∈ Hx. PPP For g ∈ G \Hx, g

−1 /∈ Hx

so we can choose Cg ∈ C be such that x ∈ Cg and g−1
•x /∈ Cg. Set C ′ = X ∩

⋂
g∈G\Hx

(Cg \ g•Cg). Then

x ∈ C ′ ∈ C. If y ∈ C ′ and g ∈ G \ Hx, then g•y ∈ g•Cg, g•y /∈ Cg, g•y 6∼ y and g /∈ Hy. So Hy ⊆ Hx.
Now set C =

⋂
h∈Hx

h•C ′; then C ∈ C, h•C ′ = C ′ for every h ∈ Hx, Hy ⊆ Hx for every y ∈ C ′, and x ∈ C

because x ∈ C ′ and x ∼ h•x for every h ∈ Hx. QQQ

(iii) For n ∈ N, set Vn = {x : #(Hx) = n}. Then g•Vn = Vn for every g ∈ G. PPP If x ∈ Vn, then
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Hg•x = {h : h•g•x ∼ g•x} = {h : g−1
•h•g•x ∼ x}

= {h : (g−1hg)•x ∼ x} = {h : g−1hg ∈ Hx} = gHxg
−1,

so #(Hg•x) = #(Hx) = n and g•x ∈ Vn. QQQ

(iv) If n ∈ N and x ∈
⋃

i≤n Vi, there is a D ∈ D such that x ∈ D ⊆
⋃

i≤n Vi. PPP By (ii), there is a

C ∈ C such that x ∈ C and #(Hy) ≤ #(Hx) ≤ n for every y ∈ C. By (iii), #(Hg•y) ≤ n} whenever y ∈ C
and g ∈ G. So if we set D =

⋃
g∈G g•C, we have D ⊆

⋃
i≤n Vi and x ∈ D ∈ D. QQQ Because C is countable,⋃

i≤n Vi ∈ W0. As this is true for every n, Vn ∈ W0 for every n.

(v) Now suppose that n ∈ N and x ∈ Vn. Let C be a set as in (ii) above. If B ∈ C there is a D ∈ D
such that C ∩Vn ∩B = C ∩Vn ∩D. PPP If y ∈ C ∩Vn, then Hy ⊆ Hx, but #(Hy) = #(Hx), so Hy = Hx and
g•y ∼ y for every g ∈ Hx. Now D =

⋃
g∈G g•(B ∩ C) belongs to D and C ∩ Vn ∩D = C ∩ V ′

n ∩ B, because

if y ∈ C ∩ Vn ∩D there is a g ∈ G such that g−1
•y ∈ B ∩C; in this case, y ∈ C ∩ (g−1

•C), so g ∈ Hx = Hy,
y ∼ g−1

•y ∈ B and y ∈ B. QQQ
Of course the set

⋃
W∈W0

{E : C ∩ Vn ∩W = C ∩ Vn ∩ E} is a σ-algebra of sets, because W0 is; and we
have just seen that it includes C.

(vi) Now suppose that E is in the σ-algebra generated by C and that g•E = E for every g ∈ G. Take
any x ∈ E. Then there are an n ∈ N and D ∈ D such that x ∈ D ∩ Vn and D ∩ Vn ∩ E ∈ W0. PPP Set
n = #(Hx) so that x ∈ Vn. By (v), there are a C ∈ C and W ∈ W0 such that C ∩ Vn ∩W = C ∩ Vn ∩ E.
Set D =

⋃
g∈G g•C. Since Vn, W and E are all invariant under the action of G,

D ∩ Vn ∩ E =
⋃

g∈G

(g•C) ∩ Vn ∩ E =
⋃

g∈G

(g•C) ∩ (g•Vn) ∩ (g•E)

=
⋃

g∈G

g•(C ∩ Vn ∩ E) =
⋃

g∈G

g•(C ∩ Vn ∩W ) = D ∩ Vn ∩W ∈ W0. QQQ

As x is arbitrary, we see that

E =
⋃
{D ∩ Vn ∩W : D ∈ D, n ∈ N, D ∩ Vn ∩W ∈ W0}.

As D is countable, E is a countable union of members of W0 and itself belongs to W0. As E is arbitrary,
we have the result, at least if C is countable.

(b) For the general case, take E in the σ-algebra generated by C such that g•E = E for every g ∈ G.
Then there is a countable set C0 ⊆ C such that E is in the σ-algebra generated by C0. Let C

′ be the smallest
family of sets such that

C0 ⊆ C′,

C ∩ C ′, X \ C, g•C ∈ C′ whenever C, C ′ ∈ C′ and g ∈ G.

Then C′ is a countable algebra of subsets of X. Set D′ = {D : D ∈ C′, g•D = D for every g ∈ G}. By (a),
E belongs to the σ-algebra generated by D′, so certainly belongs to the σ-algebra generated by D. Thus we
have the result in the general case.
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