Version of 19.3.16

Symmetry and measurability

D.H.FREMLIN & J.MALA

University of Essex, Colchester, England

University of West Hungary, Sopron, Hungary

1 Proposition Let X be a set, Σ a σ -algebra of subsets of X and W a member of $\Sigma \widehat{\otimes} \Sigma$. Then $W = W^{-1}$ iff W is in the σ -algebra of subsets of X^2 generated by $\{E^2 : E \in \Sigma\}$.

Remark Following FREMLIN 00 and FREMLIN 01 we write $\Sigma \widehat{\otimes} \Sigma$ for the σ -algebra of subsets of X^2 generated by $\{E \times F : E, F \in \Sigma\}$ and W^{-1} for $\{(y, x) : (x, y) \in W\}$.

proof (a) Write \mathcal{W} for the σ -algebra of subsets of X^2 generated by $\{E^2 : E \in \Sigma\}$. Because $\{W : W^{-1} = W\}$ is a σ -algebra of subsets of X^2 containing A^2 for every $A \subseteq X$, $W^{-1} = W$ for every $W \in \mathcal{W}$.

(b) Suppose that $E, F \in \Sigma$ and $E \cap F = \emptyset$.

(i) For every $W \in \Sigma \widehat{\otimes} \Sigma$ there is a $W_1 \in W$ such that $W_1 \cap (E \times F) = W \cap (E \times F)$. **P** Consider the set

 $\mathcal{V} = \{ V : V \subseteq X^2 \text{ and there is a } W_1 \in \mathcal{W} \text{ such that } V \cap (E \times F) = W_1 \cap (E \times F) \}.$

Then \mathcal{V} is a σ -algebra of subsets of X. If $G, H \in \Sigma$ set

$$W_1 = ((G \cap E) \cup (H \cap F))^2 \setminus ((G \cap E)^2 \cup (H \cap F)^2) \in \mathcal{W}$$

and observe that

$$W_1 \cap (E \times F) = (G \cap E) \times (H \cap F) = (G \times H) \cap (E \times F).$$

So $G \times H \in \mathcal{V}$. As G and H are arbitrary, $\mathcal{V} \supseteq \Sigma \widehat{\otimes} \Sigma$. **Q**

(ii) If
$$W \in \Sigma \widehat{\otimes} \Sigma$$
 and $W = W^{-1}$ then $W \cap ((E \times F) \cup (F \times E)) \in \mathcal{W}$. **P** Observe first that
 $(E \times F) \cup (F \times E) = (E \cup F)^2 \setminus (E^2 \cup F^2) \in \mathcal{W}$.

Now (i) tells us that there is a $W_1 \in \mathcal{W}$ such that $W_1 \cap (E \times F) = W \cap (E \times F)$. So

$$W \cap (F \times E) = W^{-1} \cap (F \times E) = (W \cap (E \times F))^{-1}$$

= $(W_1 \cap (E \times F))^{-1} = W_1^{-1} \cap (F \times E) = W_1 \cap (F \times E)$

and

$$W \cap ((E \times F) \cup (F \times E)) = W_1 \cap ((E \times F) \cup (F \times E)) \in \mathcal{W}.$$
 Q

(c) Now take any $W \in \Sigma \widehat{\otimes} \Sigma$ such that $W = W^{-1}$. Then there is a sequence $\langle H_n \rangle_{n \in \mathbb{N}}$ in Σ such that $W \in T \widehat{\otimes} T$ where T is the σ -subalgebra of Σ generated by $\langle H_n \rangle_{n \in \mathbb{N}}$.

(i) For each $n \in \mathbb{N}$ let T_n be the finite subalgebra of T generated by $\{H_i : i < n\}$. Let \mathcal{A}_n be the set of atoms of T_n , and set $V_n = \bigcup_{A \in \mathcal{A}_n} A^2$. By (b-ii), $W \cap ((A \times A') \cup (A' \times A)) \in \mathcal{W}$ whenever $A, A' \in \mathcal{A}_n$ are distinct. So

$$W \setminus V_n = \bigcup_{A,A' \in \mathcal{A}_n, A \neq A'} W \cap ((A \times A') \cup (A' \times A))$$

belongs to \mathcal{W} . Setting $V = \bigcap_{n \in \mathbb{N}} V_n$. $W \setminus V = \bigcup_{n \in \mathbb{N}} W \setminus V_n$ belongs to \mathcal{W} .

(ii) $V = \bigcap_{E \in \mathbb{T}} E^2 \cup (X \setminus E)^2$. **P** (α) Take any $(x, y) \in V$. If $i \in \mathbb{N}$ then $(x, y) \in V_{i+1}$ and $x \in H_i$ iff $y \in H_i$, since any atom of T_{i+1} is either included in H_i or disjoint from H_i . Now

$$\{E : E \in \mathcal{T}, (x, y) \in E^2 \cup (X \setminus E)^2\}$$

is a σ -subalgebra of T containing H_i for every i, so is the whole of T, and $(x, y) \in \bigcap_{E \in \mathbb{T}} E^2 \cup (X \setminus E)^2$. (β) Conversely, if $(x, y) \in X^2 \setminus V$, there are $A, A' \in \mathbb{T}$ such that $A \cap A' = \emptyset$ and $(x, y) \in A \times A'$, so that $(x, y) \notin A^2 \cup (X \setminus A)^2$. **Q**

(iii) The map $x \mapsto (x, x) : X \to X^2$ is $(T, T \widehat{\otimes} T)$ -measurable, so $E = \{x : (x, x) \in W\}$ belongs to T. Now $W \cap V = (E \times E) \cap V$. **P** For $(x, y) \in V$,

$$\begin{array}{l} (x,y)\in E\times E \iff x\in E \text{ and } y\in E \\ \iff x\in E \\ \iff (x,x)\in W \\ \iff x\in W[\{x\}] \\ \iff y\in W[\{x\}] \end{array}$$

(because the map $z \mapsto (x, z) : X \to X^2$ is $(T, T \widehat{\otimes} T)$ -measurable, so $W[\{x\}] = \{z : (x, z) \in W \text{ belongs to } T)$ $\iff (x, y) \in W. \mathbf{Q}$

So $W \cap V \in \mathcal{W}$. Putting this together with (i) just above, $W \in \mathcal{W}$.

(iv) Thus we see that $W \in \mathcal{W}$ whenever $W \in \Sigma \widehat{\otimes} \Sigma$ and $W = W^{-1}$, and the proof is complete.

2 Remark The natural question arises: if $W \subseteq X^3$ belongs to $\Sigma \widehat{\otimes} \Sigma \widehat{\otimes} \Sigma$ and is fully symmetric in the sense that if $(x, y, z) \in W$ then (y, z, x), (z, x, y), (x, z, y), (y, x, z), (z, y, x) all belong to W, does W belong to the σ -algebra generated by $\{E^3 : E \in \Sigma\}$? This is certainly not the case, even if $X = \{0, 1\}$ and $\Sigma = \mathcal{P}X$; consider $W = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$. We do not know if there is any other interesting way of generating the σ -algebra of fully symmetric measurable sets.

3 Theorem Let X be a set, G a finite group, and • an action of G on X. Let C be an algebra of subsets of X such that $g \cdot C \in C$ whenever $g \in G$, $C \in C$. Write \mathcal{D} for $\{C : C \in C, g \cdot C = C \text{ for every } g \in G\}$. If E belongs to the σ -algebra of sets generated by C and $g \cdot E = E$ for every $g \in G$, then E belongs to the σ -algebra generated by \mathcal{D} .

proof (a) Consider first the case in which C is countable. Write W_0 for the σ -algebra generated by \mathcal{D} .

(i) For $x, y \in X$ say that $x \sim y$ if $\{C : x \in C \in C\} = \{C : y \in C \in C\}$. Then \sim is an equivalence relation on X. If $x \sim y$ and $g \in G$, then

$$\{C : g \bullet x \in C \in \mathcal{C}\} = \{g^{-1} \bullet C : x \in C \in \mathcal{C}\} = \{g^{-1} \bullet C : y \in C \in \mathcal{C}\}$$

(because $g^{-1} \bullet C \in \mathcal{C}$ for every $C \in \mathcal{C}$)
$$= \{C : g \bullet y \in C \in \mathcal{C}\},\$$

so $g \bullet x \sim g \bullet y$. It follows that if $x, y \in X$ and $g \in G$, then $g \bullet x \sim g \bullet y$ iff $x \sim y$.

Note that if $x, y \in X$ and $x \not\sim y$, there is a $C \in \mathcal{C}$ such that $x \in C$ and $y \notin C$, because $X \setminus C \in \mathcal{C}$ for every $C \in \mathcal{C}$.

(ii) For $x \in X$, set $H_x = \{h : h \in G, h \cdot x \sim x\}$, so that H_x is a subgroup of G. Then there is a $C \in C$ such that $x \in C$, $H_y \subseteq H_x$ for every $y \in C$ and $h \cdot C = C$ for every $h \in H_x$. **P** For $g \in G \setminus H_x$, $g^{-1} \notin H_x$ so we can choose $C_g \in C$ be such that $x \in C_g$ and $g^{-1} \cdot x \notin C_g$. Set $C' = X \cap \bigcap_{g \in G \setminus H_x} (C_g \setminus g \cdot C_g)$. Then $x \in C' \in C$. If $y \in C'$ and $g \in G \setminus H_x$, then $g \cdot y \in g \cdot C_g$, $g \cdot y \notin C_g$, $g \cdot y \neq y$ and $g \notin H_y$. So $H_y \subseteq H_x$. Now set $C = \bigcap_{h \in H_x} h \cdot C'$; then $C \in C$, $h \cdot C' = C'$ for every $h \in H_x$, $H_y \subseteq H_x$ for every $y \in C'$, and $x \in C$ because $x \in C'$ and $x \sim h \cdot x$ for every $h \in H_x$. **Q**

(iii) For $n \in \mathbb{N}$, set $V_n = \{x : \#(H_x) = n\}$. Then $g \cdot V_n = V_n$ for every $g \in G$. **P** If $x \in V_n$, then

Measure Theory

$$H_{g \bullet x} = \{h : h \bullet g \bullet x \sim g \bullet x\} = \{h : g^{-1} \bullet h \bullet g \bullet x \sim x\}$$
$$= \{h : (g^{-1}hg) \bullet x \sim x\} = \{h : g^{-1}hg \in H_x\} = gH_xg^{-1},$$

so $#(H_{g \bullet x}) = #(H_x) = n$ and $g \bullet x \in V_n$. **Q**

(iv) If $n \in \mathbb{N}$ and $x \in \bigcup_{i \leq n} V_i$, there is a $D \in \mathcal{D}$ such that $x \in D \subseteq \bigcup_{i \leq n} V_i$. **P** By (ii), there is a $C \in \mathcal{C}$ such that $x \in C$ and $\#(H_y) \leq \#(H_x) \leq n$ for every $y \in C$. By (iii), $\#(H_{g \bullet y}) \leq n$ } whenever $y \in C$ and $g \in G$. So if we set $D = \bigcup_{g \in G} g \bullet C$, we have $D \subseteq \bigcup_{i \leq n} V_i$ and $x \in D \in \mathcal{D}$. **Q** Because \mathcal{C} is countable, $\bigcup_{i \leq n} V_i \in \mathcal{W}_0$. As this is true for every $n, V_n \in \mathcal{W}_0$ for every n.

(v) Now suppose that $n \in \mathbb{N}$ and $x \in V_n$. Let C be a set as in (ii) above. If $B \in \mathcal{C}$ there is a $D \in \mathcal{D}$ such that $C \cap V_n \cap B = C \cap V_n \cap D$. **P** If $y \in C \cap V_n$, then $H_y \subseteq H_x$, but $\#(H_y) = \#(H_x)$, so $H_y = H_x$ and $g \cdot y \sim y$ for every $g \in H_x$. Now $D = \bigcup_{g \in G} g \cdot (B \cap C)$ belongs to \mathcal{D} and $C \cap V_n \cap D = C \cap V'_n \cap B$, because if $y \in C \cap V_n \cap D$ there is a $g \in G$ such that $g^{-1} \cdot y \in B \cap C$; in this case, $y \in C \cap (g^{-1} \cdot C)$, so $g \in H_x = H_y$, $y \sim g^{-1} \cdot y \in B$ and $y \in B$. **Q**

Of course the set $\bigcup_{W \in \mathcal{W}_0} \{E : C \cap V_n \cap W = C \cap V_n \cap E\}$ is a σ -algebra of sets, because \mathcal{W}_0 is; and we have just seen that it includes \mathcal{C} .

(vi) Now suppose that E is in the σ -algebra generated by C and that $g \cdot E = E$ for every $g \in G$. Take any $x \in E$. Then there are an $n \in \mathbb{N}$ and $D \in \mathcal{D}$ such that $x \in D \cap V_n$ and $D \cap V_n \cap E \in \mathcal{W}_0$. **P** Set $n = \#(H_x)$ so that $x \in V_n$. By (v), there are a $C \in C$ and $W \in \mathcal{W}_0$ such that $C \cap V_n \cap W = C \cap V_n \cap E$. Set $D = \bigcup_{a \in G} g \cdot C$. Since V_n , W and E are all invariant under the action of G,

$$D \cap V_n \cap E = \bigcup_{g \in G} (g \bullet C) \cap V_n \cap E = \bigcup_{g \in G} (g \bullet C) \cap (g \bullet V_n) \cap (g \bullet E)$$
$$= \bigcup_{g \in G} g \bullet (C \cap V_n \cap E) = \bigcup_{g \in G} g \bullet (C \cap V_n \cap W) = D \cap V_n \cap W \in \mathcal{W}_0. \mathbf{Q}$$

As x is arbitrary, we see that

$$E = \bigcup \{ D \cap V_n \cap W : D \in \mathcal{D}, n \in \mathbb{N}, D \cap V_n \cap W \in \mathcal{W}_0 \}.$$

As \mathcal{D} is countable, E is a countable union of members of \mathcal{W}_0 and itself belongs to \mathcal{W}_0 . As E is arbitrary, we have the result, at least if \mathcal{C} is countable.

(b) For the general case, take E in the σ -algebra generated by C such that $g \cdot E = E$ for every $g \in G$. Then there is a countable set $C_0 \subseteq C$ such that E is in the σ -algebra generated by C_0 . Let C' be the smallest family of sets such that

 $\mathcal{C}_0 \subseteq \mathcal{C}',$

 $C \cap C', X \setminus C, g \bullet C \in \mathcal{C}'$ whenever $C, C' \in \mathcal{C}'$ and $g \in G$.

Then \mathcal{C}' is a countable algebra of subsets of X. Set $\mathcal{D}' = \{D : D \in \mathcal{C}', g \bullet D = D \text{ for every } g \in G\}$. By (a), E belongs to the σ -algebra generated by \mathcal{D}' , so certainly belongs to the σ -algebra generated by \mathcal{D} . Thus we have the result in the general case.

References

Fremlin D.H. [00] Measure Theory, Vol. 1: The Irreducible Minimum. Torres Fremlin, 2000 (http://www.lulu.com/com/ Fremlin D.H. [01] Measure Theory, Vol. 2: Broad Foundations. Torres Fremlin, 2001 (http://www.lulu.com/content/