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1 Proposition There is a family 〈Fα〉α∈On \{0} such that

for each non-zero α ∈ On, Fα is a positive linear functional from ℓ∞(α) to R and Fα(χα) = 1,
whenever α is the ordinal sum β + γ where γ > 0, Fα(〈zξ〉ξ<α) = Fγ(〈zβ+η〉η<γ) for every

〈zξ〉ξ<α ∈ ℓ∞(α).

proof Induce on α.
When β ≤ α ∈ On write α − β for that ordinal such that β + (α − β) = α, and set Tαβ(〈zξ〉ξ<α) =

〈zβ+η〉η<α−β when 〈zξ〉ξ<α ∈ ℓ∞(α). Observe that if γ ≤ β ≤ α then γ + (β − γ) + (α − β) = α,
α− β = (α− γ)− (β − γ) and Tα−γ,β−γTαγ = Tαβ . Our target is to arrange that Fα = Fα−βTαβ whenever
β < α.

Start If α = 1 set F (z) = z0.

Inductive step to an ordinal which is not indecomposable Suppose that γ ≤ β < α < γ + α.
Then

Fα−βTαβ = Fα−βTα−γ,β−γTαγ

= F(α−γ)−(β−γ)Tα−γ,β−γTαγ = Fα−γTαγ

by the inductive hypothesis. We therefore can (and must) take Fα = Fα−βTαβ whenever β < α < β + α.
We now find that if γ < α = γ + α, there is a δ such that δ < α < δ + α, and if we set β = γ + δ we have
γ < β < α and

Fα = Fα−βTαβ = F(α−γ)−(β−γ)Tα−γ,β−γTαγ

= Fα−δTαδTαγ = FαTαγ = Fα−γTαγ .

So we have Fα = Fα−γTαγ for every γ < α, as demanded by the inductive hypothesis.

Inductive step to an indecomposable ordinal Suppose that α ≥ ω is an indecomposable ordinal.
Recall that every ordinal is expressible as a finite sum

β0 + β1 + . . .+ βm

of non-zero indecomposable ordinals (allowing the empty string with sum 0), and that this expression is
unique if we insist that βi+1 ≤ βi for i < n. Moreover, if we say that for two expressions of this type we
write

(β0 + β1 + . . .+ βm)⊕ (γ0 + . . .+ γn) = δ0 + . . .+ δm+n+1

where the δk enumerate the βi and γj , with repetitions, in descending order (so that

#({k : δk = α}) = #({i : βi = α}) + #({j : γj = α})

for every α), then On, with ⊕, is an abelian semigroup. Note that we always have β + γ ≤ β ⊕ γ.
Because α is indecomposable, it is a subgroup of On. As an abelian semigroup, it is amenable, and there

is a positive linear functional Fα : ℓ∞(α) → R such that Fα(χα) = 1 and FαSγ = Fα for every γ < α, where

Sγ(〈zξ〉ξ<α) = 〈zγ⊕ξ〉ξ<α

whenever 〈zξ〉ξ<α ∈ ℓ∞(α). I need to show that FαTαγ = Fα for every γ < α.

case 1 Suppose that α is a successor indecomposable, that is, is the ordinal product βω for an inde-
composable β. Then βn+ ξ = βn⊕ ξ for every n ∈ N and ξ < α, so Sβn = Tα,βn for every n. If γ < α there
is an m ∈ N such that βm ≤ γ < β(m+ 1) and γ + ξ = βm+ ξ whenever β ≤ ξ < α. But this means that
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SβTαγ = SβTα,βm = SβSβm = Sβ(m+1)

and

FαTαγ = FαSβTαγ = FαSβ(m+1) = Fα.

case 2 Suppose that α is a limit of indecomposables. Take any γ < α. Let β be an indecomposable
ordinal such that γ < β < α. Then γ + β = β so γ + ξ = ξ for every ξ ≥ β and SβTαγ = Sβ , so that

FαTαγ = FαSβTαγ = FαSβ = Fα.

Thus in either case we have the required property for Fα and the induction can proceed.
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