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For notation see FREMLIN 03.
1. Theorem R, with the right-facing Sorgenfrey topology, is not a Prokhorov space.
proof The proof follows the argument of FREMLIN 03, 4398, itself based on PREISS 73.

(a) Write ¥ for the usual topology on [0, 1] and & for the subspace topology on [0, 1] when R is given the
right-facing Sorgenfrey topology.

Note first that a subset K of [0, 1] is &-compact iff it is T-closed and well-capped, that is, every non-empty
subset of K has a greatest member, that is, there is no strictly increasing sequence in K. P (i) If (z,,)nen
is a strictly increasing sequence in K, set & = sup,,cy Zn; then {[z,1]} U {[0,z,[ : n € N} is a cover of K
by members of & with no finite subcover. (ii) If K is not T-closed then it cannot be &-compact because
G is finer than ¥. (iii) If K is T-closed and well-capped and G C & covers K, set A = {z : z € [0,1],
K N[0, x] is covered by finitely many members of G}. Then 0 € A so ¢ = sup A is defined in [0, 1]. Because
K is well-capped, there must be a ¢ < ¢ such that K N]c’,¢[ = 0; now there is an x € AN, c]. (a) If
¢ € K then there is a G € G containing c¢. If y is such that [¢,y] C G, then K N[0,y] C (K N[0,z]) UG is
covered by finitely many members of G so y € A and y < ¢; but this means, first, that ¢ € A, and, second,
that ¢ = 1. So in this case 1 € A and K is covered by finitely many members of G. (8) If ¢ ¢ K then
KN[0,cl=KnN[0,z] soce A. T If ¢ < 1 then there is a y € ¢, 1] such that [¢,y] N K = 0, in which case
K N[0,y = KN[0,z] and y € A, which is impossible. X So in this case also 1 = ¢ € A and G has a finite
subcover. Q

It follows that all G-compact sets are countable.

(b) There is a non-decreasing sequence (Xj)gen of non-empty G-compact subsets of [0, 1] such that
(i) whenever k € N, z € X, and § > 0, then Xyy; N[z, z + J] is infinite,
(i) setting X = |Jjcny Xk, there is no strictly increasing sequence in X with supremum in X,
(iii) & and ¥ agree on X.

P I give an inductive construction of the sets Xy, together with functions gy : X — ]0, 00, as follows.
Set Xy = {0} and ¢o(0) = 1. Given that X C [0, 1] is G-compact and contains 0 and that g : X — 10, 00|
is such that < y—gr(y) whenever z < y in X}, of course Xy, is T-closed. Let Z be the set of T-components
of [0,1] \ Xj; then each member of 7}, is an open interval with endpoints in X U {1}. For each J € T
choose a strictly decreasing sequence (x;;)jen in J with infimum inf J and such that if supJ < 1 then
xzjo <supJ —g(supJ). Set Xpi1 = X U{ay; 1 J €Iy, j € N} If A C Xpyq \ Xk is non-empty, consider
J={J:J eIy, ANJ # B}; since min J € Xy, for every J € J, there is a J € J with greatest minumum,
and if now j € N is minimal subject to x;; € A, we have x;; = max A. It follows that every non-empty
subset of X1 has a greatest element. On the other hand, X} is T-closed because every strictly decreasing
sequence in Xy11 has infimum in Xj. So Xii1 is G-compact. Now set gr11(z) = gr(x) for every x € X
and for J € Ty, i € N set

1
gr1(2s) = 5 (€ = Trit1)-

Finally, if x < y in Xj41, then
— ifx, y € Xy we have x <y — gk(y) =y — gr+1(y);
— ify € X and = ¢ Xj then © = zj; for some J € Zy and i € N; if supJ = y then
< 2jo <y —gr(y) =y — grt1(y); otherwise, sup J € Xy and x < supJ <y — gr11(y);
— ify ¢ Xy then y =xy; for some J € I and i € N, and z < zj,41 <y — gr+1(y)-
Continue.
(i) follows directly from the construction. As for (i), g = U,y gx is a strictly positive real-valued function

on X and z < g(y) whenever & < y in X, so no strictly increasing sequence in X can have supremum in X.
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Finally, both & and ¥ are first-countable, any sequence in R has a subsequence which is either non-increasing
or non-decreasing, a non-increasing sequence in [0, 1] converges to its infimum for both & and ¥, and there
is no strictly increasing sequence in X with a supremum in X; so a sequence in X with a %-limit in X has
a G-limit and the two topologies agree on X. Q

(c) For z € R and A C R set
f(xv A) = innyAﬂ]foo,:r] r =Yy, p(xv A) = innyA |$ - y|
counting inf () as co. If (ex)ren is any sequence in ]0,00[, and F C [0,1] is a countable T-closed set, then
there is an 2* € X \ F such that f(z*, Xi) < ¢ for every k € N. P We can suppose that limy_,~ e = 0.

Define (Hy)ren inductively, as follows. Hy = R. Given Hy, set Hii1 = Hy N{x : f(z, Xk N Hg) < ex}.
Observe that X N Hy C Hiy1 C Hy and that Hy is G-open, for every k. At the same time,

Hyp1 = (X 0 Hy) U ((He \ Xi) " Uyexonm, 19y + €xl)s

because every X, is T-closed and therefore T-Gg, we see that every Hy will be T-Gg.

Consequently, £ = (1, oy Hy, is a T-Gs subset of R, while X}, N H, C E for every k. In particular, £ N X
includes Xg and is not empty. Next, for each k, p(x, EN Xy) < f(z, EN Xy) < € for every x € Hp 1 and
therefore for every x € E; accordingly £ N X is T-dense in F.

Moreover, if x € EN X, there is a k € N such that © € X; we must have © € Hy41. By the construction
in (b), there is a strictly decreasing sequence in Xy 1 with infimum z, and this sequence will eventually lie
in Hy1q because Hy 1 is G-open.

So every T-neighbourhood of x contains infinitely many points of Hi41 N Xiy1 € ENX. Thus ENX
has no ¥-isolated points; it follows that E has no T-isolated points. By 4A2Mc and 4A2Me of FREMLIN 03,
FE is uncountable.

There is therefore a point z € E\ F. Let m € N be such that p(z, F) > €, forevery y € F. As z € Hp 11,
there is an * € H,, N X,, such that a* < 2z < 2" + ¢, so z* ¢ F. Let k € N. If £ > m then certainly
fl@*, X)) =0 <ep. Ik <mthen a* € Hiqq so f(a*, Xy) < f(a*, H, N Xi) < €x. Thus we have a suitable
. Q

(d) For n, k € N set

Gin ={x:2€[0,1]\ Xy, p(z, X,,) > 27F}.
Then Gy, is a T-open subset of [0, 1].

(e)(i) Write A; for the set of T-Radon probability measures p on [0,1] such that uGp, < 27" for all
k, n € N. Then A; is a narrowly closed subset of the set Pr([0,1],%) of T-Radon probability measures on
[0, 1], which is itself narrowly compact (FREMLIN 03, 437R(f-ii)).

(ii) p([0,1]\ X) =0 for every p € A;. P Let K C [0,1] \ X be T-compact, and n € N. Then K and
X,, are disjoint T-compact sets, so there is some k € N such that |z —y| > 27 for every z € X,, and y € K.
In this case K C G, so pK < 27", As n is arbitrary, pK = 0; as K is arbitrary, x([0,1]\ X) =0. Q

(iii) Write Az for the set of T-Radon probability measures p on X such that pu(Gg, N X) < 27" for all
k, n € N. By FREMLIN 03, 437Nb, the set Pr(X,¥) of -Radon probability measures on X, with its narrow
topology, is homeomorphic to the subset D of Pr([0,1], %) consisting of T-Radon measures p on [0, 1] such
that u([0,1]\ X) = 0; and a homeomorphism from D to Pr(X,¥) is given by taking u € D to the subspace
measure gy on X. Now Ay = {ux : p € Ay}, so Ag is compact in Pr(X, %) for the narrow topology.

(iv) Because & and ¥ agree on X, we can think of Ay as the set of G-Radon probability measures p
on X such that pu(Gr, N X) < 27" for all k, n € N, and it is compact in Pg(X, &) for the narrow topology.

(v) Repeating the argument of (ii)-(iii) with & instead of ¥, we now see that Pg (X, &) is homeomorphic
to the set of &-Radon measures p on [0, 1] such that p([0,1] \ X) = 0, and that A is homeomorphic to the
set A of &-Radon measures p on [0, 1] such that uG, < 27" for all k, n € N. So again we have a narrowly
compact set of measures.

(f) A, regarded as a subset of Pr([0,1],&), is not uniformly tight. ¥ Let K C [0,1] be &-compact.
Consider the set C' of those w € [0,1][% such that w(z) = 0 for every z € K, > zepyw(e) <1 and
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Y veq,, w(x) <277 for all k, n € N. Then C' is a compact subset of [0, 101, If D C C is any non-empty
upwards-directed set, then sup D, taken in [0, 1}[0’1], belongs to C. By Zorn’s Lemma, C' has a maximal
member w say. 7 Suppose, if possible, that > _ w(x) =~ < 1. For each n € N, let L,, C X be a finite
set such that ZmeLn w(z) > v—2"""1 and m, € N such that L, C X,, . Because K is countable and
T-closed, (c) tells us that there is an «* € X \ K such that f(z*, X,,) < 27™n for every n € N. Let € N be
such that 2* € X, and v+ 27" <1, and set w'(z*) = w(z*) + 27", w'(z) = w(z) for every z € [0,1] \ {z*}.
Then certainly w’ € [0,1]/%' and >sep W (@) <1 Ifk, n € Nand 2% ¢ Gy, then

Yeca,, W) =Y cq,, w(x) <27
If z* € Ggp, then n < r and

27k < p(z*, X,,) < f(z*, X,,) <27,
so my, < k and L,, C X; and

Ywec, W) < Xacpanx, W) € X, wx) <2777

EzeGkn ,wl(x) S 2—71,—1 + 92— S 2—n.

Thus w’ € C and w was not maximal. X

Accordingly er[m] w(z) = 1 and the point-supported measure p defined by w is a probability measure
on [0,1]. By the definition of C, u € A and u([0,1] \ K) = 1. As K is arbitrary, A cannot be uniformly
tight. Q

(g) Thus A witnesses that [0, 1], with the topology &, is not a Prokhorov space. Since [0, 1] is a closed
subset of R with the right-facing Sorgenfrey topology, the latter is not a Prokhorov space (FREMLIN 03,
437VD).

2. Remark This gives an answer to Problem 12.15 in WHEELER 83.!

Because the argument above so closely follows Preiss’ proof that Q is not a Prokhorov space, and noting
that it uses a set X which is homeomorphic to Q (being countable and without isolated points), it’s natural
to ask whether the result here can be derived directly from Preiss’. However, at least the simplest approach
fails.

3. Proposition Give R its right-facing Sorgenfrey topology. Then Q is not homeomorphic to a closed
subset of RY.

proof (a) Let f : Q — RN be a continuous function; write f, for its nth coordinate, so that f(q) =
(fn(q))nen for g € Q. Let (r,)nen be an enumeration of Q. Note that if g : Q — R is continuous and ¢ € Q,
then ¢ € int{q’ : g(¢') > q}, because g~![[q, oo[] is open.

(b) Choose open sets Uy, V,,, W,,, G,, C Q and points ¢/,, ¢, € Q inductively, as follows. Uy = Q. Given
U,, let V,, C U, be a non-empty open set such that r, ¢ V, and f, is bounded below on V,,. Given V,,,
then if there is a non-empty open subset of V,, on which f,, is constant, take such a set for W,,; otherwise,
set W,, = V,,. Let ¢}, be any point of W,,. Let G,, C W, be an open neighbourhood of ¢/, such that
fulq) > fn(q,) whenever ¢ € G,,. Now take ¢, € G, \ {¢,} such that f;(¢,) # f;(q),) for any j < n such
that {¢ : ¢ € Gy, fj(q) = fj(q},)} has empty interior. Set U,1 = {q : ¢ € Gy, fj(q) < fj(gn) whenever
j <nand f(q),) < fj(gn)}, and continue.

(c) At the end of the induction, (g,)nen can have no limit in Q because ¢, € V; whenever j < n and
r; ¢ V. On the other hand, if j € N then (f;j(¢s))n>; is non-increasing. P If f; is constant on W;, this is
immediate, because ¢, € W; for n > j. Otherwise, for any n > j, {q : ¢ € Gy, f;(q¢) = f;(¢,)} has empty
interior, so f](q%) < fj(qn)ﬂ fj(q) < fj(Qn) for every 4 € Up+1 and fj(QnJrl) < fj(QTL)- Q

At the same time we know that (f;(¢n))nen is bounded below in R because f; is bounded below on V;.
So lim,, 00 f;(gn) = inf,>; f;(gn) is defined in R. Accordingly lim, . f(g,) is defined in RY. But this
means either that f[Q] is not closed in RY or that f is not a homeomorphism between Q and f[Q].

1T am indebted to J.Pachl for the reference.
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4. Proposition Let X be a compact metrizable space and K a family of compact subsets of X such
that #(K) is less than cov M = Mcountable, the least cardinal of any cover of R by meager sets (FREMLIN
08, 522S). Then X \ |J K is Prokhorov.

proof (a) Let U be a countable base for the topology of X which is closed under finite unions. Write Y for
X\UK. Let A C Pr(Y) be a narrowly compact set. Let € > 0.

(b) For an open set G C X, set
0(G) = sup,e n(GNY).

Then 0 is a submeasure, order-continuous on the left (FREMLIN 02, 392A and 386Yb), because G — u(GNY')
is for every pp € A. Set V= {U : U € U, O(U) < €}, ordered by C. For K € K, set Vg ={V : V €V,
K C V}. Then Vg is cofinal with V. P Take any V € V. As X \ K is open in X, it is a Prokhorov space
(FREMLIN 03, 437Vc), and it includes Y. Let A’ C Pr(X \ K) be the set of extensions of members of A to
Radon probability measures on X \ K, as in FREMLIN 03, 437Nb, so that A’ is narrowly compact. There
is therefore a compact set L C X \ K such that v((X \ K)\ L) < (e — 6(V)) for every v € A/, that is,
p(Y \L) < 3(e = 0(V)) for every pu € A, that is, (X \ L) < (e — (V). Next, there is a U € U such
that K C U C X \ L because K is compact, L is closed and U is a base for the topology of X; and now
VuUeld, KCVUU and 0(VUU) <O(V)+0(U) <€, s0 wehave VCVUU € Vg. Q

(c) Because #(K) < Mcountable and V is countable, there is an upwards-directed subset W of V meeting
every Vi (FREMLIN 08, 517B). Set H = [JW; then H D |JK. So L = X \ H is a compact set included in
Y, while

H(Y \ L) < 0(H) = supge 06 < ¢
for every € A. As A and € are arbitrary, Y is a Prokhorov space.

5. Proposition For a cardinal k, Q is embeddable in R” as a closed subset iff x is at least 0, the
cofinality of NV,

proof (a) Suppose there is a function f : Q — R* such that f[Q] is closed in R* and f is a homeomorphism
between Q and its image. For £ < k, ¢ € Q set fe(q) = f(q)(£), so that fe : Q — R is continuous. Set

Ge =U{U : U C R is open, f¢[UNQ] is bounded in R}.

Then G¢ is open and Q € G¢. Now Q = (., G¢. PT Otherwise, take x € [, G¢ \ Q. Let F be an
ultrafilter on Q containing U N Q for every neighbourhood U of z. For £ < &, f¢[[F]] is an ultrafilter on
R; because x € G, fe[[F]] contains a bounded set and is convergent. Accordingly f[[F]] converges in R",
and the limit must belong to f[Q]. It is therefore of the form f(g) for some ¢ € Q. But as x # ¢ there is a
neighbourhood V of ¢ such that x ¢ V, Q\ V € F and f(q) € f[Q\ V]; which is impossible because f is
supposed to be a homeomorphism between Q and f[Q]. XQ

Consequently {[-n,n]\ Ge¢ : n € N, £ < k} is a cover of R\ Q by at most max(w, k) compact sets. But
R\ Q is homeomorphic to N N and every compact subset of NN has an upper bound in N¥. Sod < max(w, K);
as 0 is uncountable, 0 < k.

(b) Now suppose that x > 0. Using the same ideas as in the last part of (a) above, we have a family
(K¢)e<w of compact sets with union R\ Q. Set G¢ =R\ K¢ for each &, so that Q =, G¢. This means
that Q will be homeomorphic to

Q={zr:z¢€ H§<N Ge, z(§) = x(n) for all £, n < K},

which is a closed subset of []._, Ge.

Next note that, for any £ < k, G¢ is homeomorphic to a closed subset of R?2. P G¢ has a partition
into countably many non-empty open intervals; topologically it is the direct sum of these intervals, and
each is homeomorphic to R; consequently G¢ is homeomorphic to R x I for some countable set I, and is
homeomorphic to a closed subset of R2. @ Consequently Hg < G¢ is homeomorphic to a closed subset of
(R?)*. But this means that Q & @Q is homeomorphic to a closed subset of (R?)* = R*.

6. Corollary R is not a Prokhorov space.
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proof A closed subset of a Prokhorov space is Prokhorov (FREMLIN 03, 437Vb) and Q is not Prokhorov,
by Preiss’ theorem.

7. Problem Is it relatively consistent with ZFC to suppose that R“* is a Prokhorov space?
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