On Prokhorov spaces

D.H.FREMLIN

University of Essex, Colchester, England

For notation see FREMLIN 03.

1. Theorem \mathbb{R} , with the right-facing Sorgenfrey topology, is not a Prokhorov space.

proof The proof follows the argument of FREMLIN 03, 439S, itself based on PREISS 73.

(a) Write \mathfrak{T} for the usual topology on [0, 1] and \mathfrak{S} for the subspace topology on [0, 1] when \mathbb{R} is given the right-facing Sorgenfrey topology.

Note first that a subset K of [0, 1] is \mathfrak{S} -compact iff it is \mathfrak{T} -closed and well-capped, that is, every non-empty subset of K has a greatest member, that is, there is no strictly increasing sequence in K. \mathbf{P} (i) If $\langle x_n \rangle_{n \in \mathbb{N}}$ is a strictly increasing sequence in K, set $x = \sup_{n \in \mathbb{N}} x_n$; then $\{[x, 1]\} \cup \{[0, x_n[: n \in \mathbb{N}\} \text{ is a cover of } K$ by members of \mathfrak{S} with no finite subcover. (ii) If K is not \mathfrak{T} -closed then it cannot be \mathfrak{S} -compact because \mathfrak{S} is finer than \mathfrak{T} . (iii) If K is \mathfrak{T} -closed and well-capped and $\mathcal{G} \subseteq \mathfrak{S}$ covers K, set $A = \{x : x \in [0, 1], K \cap [0, x] \text{ is covered by finitely many members of <math>\mathcal{G}\}$. Then $0 \in A$ so $c = \sup A$ is defined in [0, 1]. Because K is well-capped, there must be a c' < c such that $K \cap]c', c[=\emptyset]$; now there is an $x \in A \cap]c', c]$. (α) If $c \in K$ then there is a $G \in \mathcal{G}$ containing c. If y is such that $[c, y] \subseteq G$, then $K \cap [0, y] \subseteq (K \cap [0, x]) \cup G$ is covered by finitely many members of \mathcal{G} so $y \in A$ and $y \leq c$; but this means, first, that $c \in A$, and, second, that c = 1. So in this case $1 \in A$ and K is covered by finitely many members of \mathcal{G} so $y \in A$ and $y \leq c$; but this means of \mathcal{G} . (β) If $c \notin K$ then $K \cap [0, c] = K \cap [0, x]$ so $c \in A$. **?** If c < 1 then there is a $y \in]c, 1]$ such that $[c, y] \cap K = \emptyset$, in which case $K \cap [0, y] = K \cap [0, x]$ and $y \in A$, which is impossible. \mathbf{X} So in this case also $1 = c \in A$ and \mathcal{G} has a finite subcover. \mathbf{Q}

It follows that all \mathfrak{S} -compact sets are countable.

- (b) There is a non-decreasing sequence $\langle X_k \rangle_{k \in \mathbb{N}}$ of non-empty \mathfrak{S} -compact subsets of [0, 1] such that
 - (i) whenever $k \in \mathbb{N}$, $x \in X_k$ and $\delta > 0$, then $X_{k+1} \cap [x, x+\delta]$ is infinite,
 - (ii) setting $X = \bigcup_{k \in \mathbb{N}} X_k$, there is no strictly increasing sequence in X with supremum in X,
 - (iii) \mathfrak{S} and \mathfrak{T} agree on X.

P I give an inductive construction of the sets X_k , together with functions $g_k : X_k \to]0, \infty[$, as follows. Set $X_0 = \{0\}$ and $g_0(0) = 1$. Given that $X_k \subseteq [0, 1[$ is \mathfrak{S} -compact and contains 0 and that $g_k : X_k \to]0, \infty[$ is such that $x < y - g_k(y)$ whenever x < y in X_k , of course X_k is \mathfrak{T} -closed. Let \mathcal{I}_k be the set of \mathfrak{T} -components of $[0, 1[\setminus X_k;$ then each member of \mathcal{I}_k is an open interval with endpoints in $X_k \cup \{1\}$. For each $J \in \mathcal{I}_k$ choose a strictly decreasing sequence $\langle x_{Jj} \rangle_{j \in \mathbb{N}}$ in J with infimum inf J and such that if $\sup J < 1$ then $x_{j0} < \sup J - g(\sup J)$. Set $X_{k+1} = X_k \cup \{x_{Jj} : J \in \mathcal{I}_k, j \in \mathbb{N}\}$. If $A \subseteq X_{k+1} \setminus X_k$ is non-empty, consider $\mathcal{J} = \{J : J \in \mathcal{I}_k, A \cap J \neq \emptyset\}$; since min $J \in X_k$ for every $J \in \mathcal{J}$, there is a $J \in \mathcal{J}$ with greatest minumum, and if now $j \in \mathbb{N}$ is minimal subject to $x_{Jj} \in A$, we have $x_{Jj} = \max A$. It follows that every non-empty subset of X_{k+1} has a greatest element. On the other hand, X_{k+1} is \mathfrak{T} -closed because every strictly decreasing sequence in X_{k+1} has infimum in X_k . So X_{k+1} is \mathfrak{S} -compact. Now set $g_{k+1}(x) = g_k(x)$ for every $x \in X_k$ and for $J \in \mathcal{I}_k, i \in \mathbb{N}$ set

$$g_{k+1}(x_{J_i}) = \frac{1}{2}(x_{J_i} - x_{J,i+1}).$$

Finally, if x < y in X_{k+1} , then

 $\begin{array}{l} & -- \text{ if } x, y \in X_k \text{ we have } x < y - g_k(y) = y - g_{k+1}(y); \\ & -- \text{ if } y \in X_k \text{ and } x \notin X_k \text{ then } x = x_{Ji} \text{ for some } J \in \mathcal{I}_k \text{ and } i \in \mathbb{N}; \text{ if } \sup J = y \text{ then } \\ & x \le x_{j0} < y - g_k(y) = y - g_{k+1}(y); \text{ otherwise, } \sup J \in X_k \text{ and } x < \sup J < y - g_{k+1}(y); \\ & \text{ if } y \notin Y \text{ then } y = x \text{ for some } J \in \mathcal{I} \text{ and } i \in \mathbb{N} \text{ and } x \le x_{j} = x \text{ for some } J \in \mathcal{I} \text{ and } i \in \mathbb{N} \text{ and } x < x_{j} = x \text{ for some } J \in \mathcal{I} \text{ and } i \in \mathbb{N} \text{ and } x < x_{j} = x \text{ for some } J \in \mathcal{I} \text{ and } x \in \mathbb{N} \text{ for } x = x \text{ for some } J \in \mathcal{I} \text{ and } x \in \mathbb{N} \text{ and } x \in \mathbb{N} \text{ and } x \in \mathbb{N} \text{ for } x = x \text{ for some } J \in \mathcal{I} \text{ and } x \in \mathbb{N} \text{ for } x = x \text{ for } x \in \mathbb{N} \text{ and } x \in \mathbb{N} \text{ and } x \in \mathbb{N} \text{ for } x = x \text{ for } x \in \mathbb{N} \text{ and } x \in \mathbb{N} \text{ for } x \in \mathbb{N} \text{ and } x \in \mathbb{N} \text{ for } x \in \mathbb{N} \text{ for } x \in \mathbb{N} \text{ and } x \in \mathbb{N} \text{ for } x \in \mathbb{N} \text{ fo } x \in \mathbb{N} \text{ for } x \in \mathbb{N} \text{ fo } x \in \mathbb{N} \text{ fo } x$

— if $y \notin X_k$ then $y = x_{Ji}$ for some $J \in \mathcal{I}_k$ and $i \in \mathbb{N}$, and $x \le x_{J,i+1} < y - g_{k+1}(y)$.

Continue.

(i) follows directly from the construction. As for (ii), $g = \bigcup_{k \in \mathbb{N}} g_k$ is a strictly positive real-valued function on X and x < g(y) whenever x < y in X, so no strictly increasing sequence in X can have supremum in X. Finally, both \mathfrak{S} and \mathfrak{T} are first-countable, any sequence in \mathbb{R} has a subsequence which is either non-increasing or non-decreasing, a non-increasing sequence in [0, 1] converges to its infimum for both \mathfrak{S} and \mathfrak{T} , and there is no strictly increasing sequence in X with a supremum in X; so a sequence in X with a \mathfrak{T} -limit in X has a \mathfrak{S} -limit and the two topologies agree on X. \mathbf{Q}

(c) For $x \in \mathbb{R}$ and $A \subseteq \mathbb{R}$ set

$$f(x,A) = \inf_{y \in A \cap [-\infty,x]} x - y, \quad \rho(x,A) = \inf_{y \in A} |x - y|$$

counting $\inf \emptyset$ as ∞ . If $\langle \epsilon_k \rangle_{k \in \mathbb{N}}$ is any sequence in $]0, \infty[$, and $F \subseteq [0,1]$ is a countable \mathfrak{T} -closed set, then there is an $x^* \in X \setminus F$ such that $f(x^*, X_k) < \epsilon_k$ for every $k \in \mathbb{N}$. **P** We can suppose that $\lim_{k \to \infty} \epsilon_k = 0$. Define $\langle H_k \rangle_{k \in \mathbb{N}}$ inductively, as follows. $H_0 = \mathbb{R}$. Given H_k , set $H_{k+1} = H_k \cap \{x : f(x, X_k \cap H_k) < \epsilon_k\}$. Observe that $X_k \cap H_k \subseteq H_{k+1} \subseteq H_k$ and that H_k is \mathfrak{S} -open, for every k. At the same time,

$$H_{k+1} = (X_k \cap H_k) \cup ((H_k \setminus X_k) \cap \bigcup_{y \in X_k \cap H_k}]y, y + \epsilon_k[);$$

because every X_k is \mathfrak{T} -closed and therefore \mathfrak{T} - \mathbf{G}_{δ} , we see that every H_k will be \mathfrak{T} - \mathbf{G}_{δ} .

Consequently, $E = \bigcap_{k \in \mathbb{N}} H_k$ is a \mathfrak{T} -G $_\delta$ subset of \mathbb{R} , while $X_k \cap H_k \subseteq E$ for every k. In particular, $E \cap X$ includes X_0 and is not empty. Next, for each k, $\rho(x, E \cap X_k) \leq f(x, E \cap X_k) < \epsilon_k$ for every $x \in H_{k+1}$ and therefore for every $x \in E$; accordingly $E \cap X$ is \mathfrak{T} -dense in E.

Moreover, if $x \in E \cap X$, there is a $k \in \mathbb{N}$ such that $x \in X_k$; we must have $x \in H_{k+1}$. By the construction in (b), there is a strictly decreasing sequence in X_{k+1} with infimum x, and this sequence will eventually lie in H_{k+1} because H_{k+1} is \mathfrak{S} -open.

So every \mathfrak{T} -neighbourhood of x contains infinitely many points of $H_{k+1} \cap X_{k+1} \subseteq E \cap X$. Thus $E \cap X$ has no \mathfrak{T} -isolated points; it follows that E has no \mathfrak{T} -isolated points. By 4A2Mc and 4A2Me of FREMLIN 03, E is uncountable.

There is therefore a point $z \in E \setminus F$. Let $m \in \mathbb{N}$ be such that $\rho(z, F) \ge \epsilon_m$ for every $y \in F$. As $z \in H_{m+1}$, there is an $x^* \in H_m \cap X_m$ such that $x^* \le z < x^* + \epsilon_m$, so $x^* \notin F$. Let $k \in \mathbb{N}$. If $k \ge m$ then certainly $f(x^*, X_k) = 0 < \epsilon_k$. If k < m then $x^* \in H_{k+1}$ so $f(x^*, X_k) \le f(x^*, H_k \cap X_k) < \epsilon_k$. Thus we have a suitable x^* . **Q**

(d) For $n, k \in \mathbb{N}$ set

$$G_{kn} = \{x : x \in [0,1] \setminus X_k, \, \rho(x,X_n) > 2^{-k}\}.$$

Then G_{kn} is a \mathfrak{T} -open subset of [0, 1].

(e)(i) Write A_1 for the set of \mathfrak{T} -Radon probability measures μ on [0,1] such that $\mu G_{kn} \leq 2^{-n}$ for all $k, n \in \mathbb{N}$. Then A_1 is a narrowly closed subset of the set $P_{\mathrm{R}}([0,1],\mathfrak{T})$ of \mathfrak{T} -Radon probability measures on [0,1], which is itself narrowly compact (FREMLIN 03, 437R(f-ii)).

(ii) $\mu([0,1] \setminus X) = 0$ for every $\mu \in A_1$. **P** Let $K \subseteq [0,1] \setminus X$ be \mathfrak{T} -compact, and $n \in \mathbb{N}$. Then K and X_n are disjoint \mathfrak{T} -compact sets, so there is some $k \in \mathbb{N}$ such that $|x - y| > 2^{-k}$ for every $x \in X_n$ and $y \in K$. In this case $K \subseteq G_{kn}$ so $\mu K \leq 2^{-n}$. As n is arbitrary, $\mu K = 0$; as K is arbitrary, $\mu([0,1] \setminus X) = 0$. **Q**

(iii) Write A_2 for the set of \mathfrak{T} -Radon probability measures μ on X such that $\mu(G_{kn} \cap X) \leq 2^{-n}$ for all $k, n \in \mathbb{N}$. By FREMLIN 03, 437Nb, the set $P_{\mathbb{R}}(X,\mathfrak{T})$ of \mathfrak{T} -Radon probability measures on X, with its narrow topology, is homeomorphic to the subset D of $P_{\mathbb{R}}([0,1],\mathfrak{T})$ consisting of \mathfrak{T} -Radon measures μ on [0,1] such that $\mu([0,1] \setminus X) = 0$; and a homeomorphism from D to $P_{\mathbb{R}}(X,\mathfrak{T})$ is given by taking $\mu \in D$ to the subspace measure μ_X on X. Now $A_2 = \{\mu_X : \mu \in A_1\}$, so A_2 is compact in $P_{\mathbb{R}}(X,\mathfrak{T})$ for the narrow topology.

(iv) Because \mathfrak{S} and \mathfrak{T} agree on X, we can think of A_2 as the set of \mathfrak{S} -Radon probability measures μ on X such that $\mu(G_{kn} \cap X) \leq 2^{-n}$ for all $k, n \in \mathbb{N}$, and it is compact in $P_{\mathrm{R}}(X,\mathfrak{S})$ for the narrow topology.

(v) Repeating the argument of (ii)-(iii) with \mathfrak{S} instead of \mathfrak{T} , we now see that $P_{\mathrm{R}}(X,\mathfrak{S})$ is homeomorphic to the set of \mathfrak{S} -Radon measures μ on [0,1] such that $\mu([0,1] \setminus X) = 0$, and that A_2 is homeomorphic to the set A of \mathfrak{S} -Radon measures μ on [0,1] such that $\mu G_{kn} \leq 2^{-n}$ for all $k, n \in \mathbb{N}$. So again we have a narrowly compact set of measures.

(f) A, regarded as a subset of $P_{\mathbf{R}}([0,1],\mathfrak{S})$, is not uniformly tight. **P** Let $K \subseteq [0,1]$ be \mathfrak{S} -compact. Consider the set C of those $w \in [0,1]^{[0,1]}$ such that w(x) = 0 for every $x \in K$, $\sum_{x \in [0,1]} w(x) \leq 1$ and

Measure Theory

 $\sum_{x \in G_{kn}} w(x) \leq 2^{-n} \text{ for all } k, n \in \mathbb{N}. \text{ Then } C \text{ is a compact subset of } [0,1]^{[0,1]}. \text{ If } D \subseteq C \text{ is any non-empty upwards-directed set, then sup } D, \text{ taken in } [0,1]^{[0,1]}, \text{ belongs to } C. \text{ By Zorn's Lemma, } C \text{ has a maximal member } w \text{ say. } \mathbf{?} \text{ Suppose, if possible, that } \sum_{x \in X} w(x) = \gamma < 1. \text{ For each } n \in \mathbb{N}, \text{ let } L_n \subseteq X \text{ be a finite set such that } \sum_{x \in L_n} w(x) \geq \gamma - 2^{-n-1}, \text{ and } m_n \in \mathbb{N} \text{ such that } L_n \subseteq X_{m_n}. \text{ Because } K \text{ is countable and } \mathfrak{T}\text{-closed, (c) tells us that there is an } x^* \in X \setminus K \text{ such that } f(x^*, X_n) < 2^{-m_n} \text{ for every } n \in \mathbb{N}. \text{ Let } r \in \mathbb{N} \text{ be such that } x^* \in X_r \text{ and } \gamma + 2^{-r} \leq 1, \text{ and set } w'(x^*) = w(x^*) + 2^{-r}, w'(x) = w(x) \text{ for every } x \in [0,1] \setminus \{x^*\}. \text{ Then certainly } w' \in [0,1]^{[0,1]} \text{ and } \sum_{x \in [0,1]} w'(x) \leq 1. \text{ If } k, n \in \mathbb{N} \text{ and } x^* \notin G_{kn}, \text{ then } M \text{ and } x^* \notin G_{kn}, \text{ then } M \text{ and } X^* \notin G_{kn}, \text{ then } M \text{ and } X^* \notin G_{kn}, \text{ then } M \text{ and } X^* \notin G_{kn}, \text{ then } M \text{ and } X^* \notin G_{kn}, \text{ then } M \text{ and } X^* \notin G_{kn}, \text{ then } M \text{ and } X^* \notin G_{kn}, \text{ then } M \text{ and } X^* \notin G_{kn}, \text{ then } M \text{ and } X^* \notin G_{kn}, \text{ then } M \text{ and } X^* \notin G_{kn}, \text{ then } M \text{ and } X^* \notin G_{kn}, \text{ then } M \text{ and } X^* \notin G_{kn}, \text{ then } M \text{ and } X^* \notin G_{kn}, \text{ then } M \text{ and } X^* \notin G_{kn}, \text{ and } X^* \oplus G_{kn}, \text{ and } X \text{ and } X^* \oplus G_{kn}, \text{ and$

$$\sum_{x \in G_{kn}} w'(x) = \sum_{x \in G_{kn}} w(x) \le 2^{-n}.$$

If $x^* \in G_{kn}$, then n < r and

$$2^{-k} < \rho(x^*, X_n) \le f(x^*, X_n) < 2^{-m_n},$$

so $m_n < k$ and $L_n \subseteq X_k$ and

$$\sum_{x \in G_{kn}} w(x) \le \sum_{x \in [0,1] \setminus X_k} w(x) \le \sum_{x \in [0,1] \setminus L_n} w(x) \le 2^{-n-1},$$
$$\sum_{x \in G_{kn}} w'(x) \le 2^{-n-1} + 2^{-r} \le 2^{-n}.$$

Thus $w' \in C$ and w was not maximal. **X**

Accordingly $\sum_{x \in [0,1]} w(x) = 1$ and the point-supported measure μ defined by w is a probability measure on [0,1]. By the definition of C, $\mu \in A$ and $\mu([0,1] \setminus K) = 1$. As K is arbitrary, A cannot be uniformly tight. **Q**

(g) Thus A witnesses that [0,1], with the topology \mathfrak{S} , is not a Prokhorov space. Since [0,1] is a closed subset of \mathbb{R} with the right-facing Sorgenfrey topology, the latter is not a Prokhorov space (FREMLIN 03, 437Vb).

2. Remark This gives an answer to Problem 12.15 in WHEELER 83.¹

Because the argument above so closely follows Preiss' proof that \mathbb{Q} is not a Prokhorov space, and noting that it uses a set X which is homeomorphic to \mathbb{Q} (being countable and without isolated points), it's natural to ask whether the result here can be derived directly from Preiss'. However, at least the simplest approach fails.

3. Proposition Give \mathbb{R} its right-facing Sorgenfrey topology. Then \mathbb{Q} is not homeomorphic to a closed subset of $\mathbb{R}^{\mathbb{N}}$.

proof (a) Let $f : \mathbb{Q} \to \mathbb{R}^{\mathbb{N}}$ be a continuous function; write f_n for its *n*th coordinate, so that $f(q) = \langle f_n(q) \rangle_{n \in \mathbb{N}}$ for $q \in \mathbb{Q}$. Let $\langle r_n \rangle_{n \in \mathbb{N}}$ be an enumeration of \mathbb{Q} . Note that if $g : \mathbb{Q} \to \mathbb{R}$ is continuous and $q \in \mathbb{Q}$, then $q \in \inf\{q' : g(q') \ge q\}$, because $g^{-1}[[q, \infty[]]$ is open.

(b) Choose open sets $U_n, V_n, W_n, G_n \subseteq \mathbb{Q}$ and points $q'_n, q_n \in \mathbb{Q}$ inductively, as follows. $U_0 = \mathbb{Q}$. Given U_n , let $V_n \subseteq U_n$ be a non-empty open set such that $r_n \notin \overline{V}_n$ and f_n is bounded below on V_n . Given V_n , then if there is a non-empty open subset of V_n on which f_n is constant, take such a set for W_n ; otherwise, set $W_n = V_n$. Let q'_n be any point of W_n . Let $G_n \subseteq W_n$ be an open neighbourhood of q'_n such that $f_n(q) \ge f_n(q'_n)$ whenever $q \in G_n$. Now take $q_n \in G_n \setminus \{q'_n\}$ such that $f_j(q_n) \ne f_j(q'_n)$ for any $j \le n$ such that $\{q : q \in G_n, f_j(q) = f_j(q'_n)\}$ has empty interior. Set $U_{n+1} = \{q : q \in G_n, f_j(q) < f_j(q_n)\}$ whenever $j \le n$ and $f_j(q'_n) < f_j(q_n)\}$, and continue.

(c) At the end of the induction, $\langle q_n \rangle_{n \in \mathbb{N}}$ can have no limit in \mathbb{Q} because $q_n \in V_j$ whenever $j \leq n$ and $r_j \notin \overline{V}_j$. On the other hand, if $j \in \mathbb{N}$ then $\langle f_j(q_n) \rangle_{n \geq j}$ is non-increasing. **P** If f_j is constant on W_j , this is immediate, because $q_n \in W_j$ for $n \geq j$. Otherwise, for any $n \geq j$, $\{q : q \in G_n, f_j(q) = f_j(q'_n)\}$ has empty interior, so $f_j(q'_n) < f_j(q_n), f_j(q) < f_j(q_n)$ for every $q \in U_{n+1}$ and $f_j(q_{n+1}) < f_j(q_n)$. **Q**

At the same time we know that $\langle f_j(q_n) \rangle_{n \in \mathbb{N}}$ is bounded below in \mathbb{R} because f_j is bounded below on V_j . So $\lim_{n\to\infty} f_j(q_n) = \inf_{n\geq j} f_j(q_n)$ is defined in \mathbb{R} . Accordingly $\lim_{n\to\infty} f(q_n)$ is defined in $\mathbb{R}^{\mathbb{N}}$. But this means either that $f[\mathbb{Q}]$ is not closed in $\mathbb{R}^{\mathbb{N}}$ or that f is not a homeomorphism between \mathbb{Q} and $f[\mathbb{Q}]$.

¹I am indebted to J.Pachl for the reference.

4. Proposition Let X be a compact metrizable space and \mathcal{K} a family of compact subsets of X such that $\#(\mathcal{K})$ is less than $\operatorname{cov} \mathcal{M} = \mathfrak{m}_{\text{countable}}$, the least cardinal of any cover of \mathbb{R} by meager sets (FREMLIN 08, 522S). Then $X \setminus \bigcup \mathcal{K}$ is Prokhorov.

proof (a) Let \mathcal{U} be a countable base for the topology of X which is closed under finite unions. Write Y for $X \setminus \bigcup \mathcal{K}$. Let $A \subseteq P_{\mathbf{R}}(Y)$ be a narrowly compact set. Let $\epsilon > 0$.

(b) For an open set $G \subseteq X$, set

$$\theta(G) = \sup_{\mu \in A} \mu(G \cap Y).$$

Then θ is a submeasure, order-continuous on the left (FREMLIN 02, 392A and 386Yb), because $G \mapsto \mu(G \cap Y)$ is for every $\mu \in A$. Set $\mathcal{V} = \{U : U \in \mathcal{U}, \theta(U) < \epsilon\}$, ordered by \subseteq . For $K \in \mathcal{K}$, set $\mathcal{V}_K = \{V : V \in \mathcal{V}, K \subseteq V\}$. Then \mathcal{V}_K is cofinal with \mathcal{V} . **P** Take any $V \in \mathcal{V}$. As $X \setminus K$ is open in X, it is a Prokhorov space (FREMLIN 03, 437Vc), and it includes Y. Let $A' \subseteq P_{\mathrm{R}}(X \setminus K)$ be the set of extensions of members of A to Radon probability measures on $X \setminus K$, as in FREMLIN 03, 437Nb, so that A' is narrowly compact. There is therefore a compact set $L \subseteq X \setminus K$ such that $\nu((X \setminus K) \setminus L) \leq \frac{1}{2}(\epsilon - \theta(V))$ for every $\nu \in A'$, that is, $\mu(Y \setminus L) \leq \frac{1}{2}(\epsilon - \theta(V))$ for every $\mu \in A$, that is, $\theta(X \setminus L) \leq \frac{1}{2}(\epsilon - \theta(V))$. Next, there is a $U \in \mathcal{U}$ such that $K \subseteq U \subseteq X \setminus L$ because K is compact, L is closed and \mathcal{U} is a base for the topology of X; and now $V \cup U \in \mathcal{U}, K \subseteq V \cup U$ and $\theta(V \cup U) \leq \theta(V) + \theta(U) < \epsilon$, so we have $V \subseteq V \cup U \in \mathcal{V}_K$. **Q**

(c) Because $\#(\mathcal{K}) < \mathfrak{m}_{\text{countable}}$ and \mathcal{V} is countable, there is an upwards-directed subset \mathcal{W} of \mathcal{V} meeting every \mathcal{V}_K (FREMLIN 08, 517B). Set $H = \bigcup \mathcal{W}$; then $H \supseteq \bigcup \mathcal{K}$. So $L = X \setminus H$ is a compact set included in Y, while

$$\mu(Y \setminus L) \le \theta(H) = \sup_{G \in \mathcal{W}} \theta G \le \epsilon$$

for every $\mu \in A$. As A and ϵ are arbitrary, Y is a Prokhorov space.

5. Proposition For a cardinal κ , \mathbb{Q} is embeddable in \mathbb{R}^{κ} as a closed subset iff κ is at least \mathfrak{d} , the cofinality of $\mathbb{N}^{\mathbb{N}}$.

proof (a) Suppose there is a function $f : \mathbb{Q} \to \mathbb{R}^{\kappa}$ such that $f[\mathbb{Q}]$ is closed in \mathbb{R}^{κ} and f is a homeomorphism between \mathbb{Q} and its image. For $\xi < \kappa, q \in \mathbb{Q}$ set $f_{\xi}(q) = f(q)(\xi)$, so that $f_{\xi} : \mathbb{Q} \to \mathbb{R}$ is continuous. Set

$$G_{\xi} = \bigcup \{ U : U \subseteq \mathbb{R} \text{ is open, } f_{\xi}[U \cap \mathbb{Q}] \text{ is bounded in } \mathbb{R} \}$$

Then G_{ξ} is open and $\mathbb{Q} \subseteq G_{\xi}$. Now $\mathbb{Q} = \bigcap_{\xi < \kappa} G_{\xi}$. **P?** Otherwise, take $x \in \bigcap_{\xi < \kappa} G_{\xi} \setminus \mathbb{Q}$. Let \mathcal{F} be an ultrafilter on \mathbb{Q} containing $U \cap \mathbb{Q}$ for every neighbourhood U of x. For $\xi < \kappa$, $f_{\xi}[[\mathcal{F}]]$ is an ultrafilter on \mathbb{R} ; because $x \in G_{\xi}$, $f_{\xi}[[\mathcal{F}]]$ contains a bounded set and is convergent. Accordingly $f[[\mathcal{F}]]$ converges in \mathbb{R}^{κ} , and the limit must belong to $\overline{f[\mathbb{Q}]}$. It is therefore of the form f(q) for some $q \in \mathbb{Q}$. But as $x \neq q$ there is a neighbourhood V of q such that $x \notin \overline{V}$, $\mathbb{Q} \setminus \overline{V} \in \mathcal{F}$ and $f(q) \in \overline{f[\mathbb{Q} \setminus V]}$; which is impossible because f is supposed to be a homeomorphism between \mathbb{Q} and $f[\mathbb{Q}]$. **XQ**

Consequently $\{[-n,n] \setminus G_{\xi} : n \in \mathbb{N}, \xi < \kappa\}$ is a cover of $\mathbb{R} \setminus \mathbb{Q}$ by at most $\max(\omega, \kappa)$ compact sets. But $\mathbb{R} \setminus \mathbb{Q}$ is homeomorphic to $\mathbb{N}^{\mathbb{N}}$ and every compact subset of $\mathbb{N}^{\mathbb{N}}$ has an upper bound in $\mathbb{N}^{\mathbb{N}}$. So $\mathfrak{d} \leq \max(\omega, \kappa)$; as \mathfrak{d} is uncountable, $\mathfrak{d} \leq \kappa$.

(b) Now suppose that $\kappa \geq \mathfrak{d}$. Using the same ideas as in the last part of (a) above, we have a family $\langle K_{\xi} \rangle_{\xi < \kappa}$ of compact sets with union $\mathbb{R} \setminus \mathbb{Q}$. Set $G_{\xi} = \mathbb{R} \setminus K_{\xi}$ for each ξ , so that $\mathbb{Q} = \bigcap_{\xi < \kappa} G_{\xi}$. This means that \mathbb{Q} will be homeomorphic to

$$Q = \{ x : x \in \prod_{\xi < \kappa} G_{\xi}, \, x(\xi) = x(\eta) \text{ for all } \xi, \, \eta < \kappa \},\$$

which is a closed subset of $\prod_{\xi < \kappa} G_{\xi}$.

Next note that, for any $\xi < \kappa$, G_{ξ} is homeomorphic to a closed subset of \mathbb{R}^2 . **P** G_{ξ} has a partition into countably many non-empty open intervals; topologically it is the direct sum of these intervals, and each is homeomorphic to \mathbb{R} ; consequently G_{ξ} is homeomorphic to $\mathbb{R} \times I$ for some countable set I, and is homeomorphic to a closed subset of \mathbb{R}^2 . **Q** Consequently $\prod_{\xi < \kappa} G_{\xi}$ is homeomorphic to a closed subset of $(\mathbb{R}^2)^{\kappa}$. But this means that $\mathbb{Q} \cong Q$ is homeomorphic to a closed subset of $(\mathbb{R}^2)^{\kappa} \cong \mathbb{R}^{\kappa}$.

6. Corollary $\mathbb{R}^{\mathfrak{d}}$ is not a Prokhorov space.

Measure Theory

proof A closed subset of a Prokhorov space is Prokhorov (FREMLIN 03, 437Vb) and \mathbb{Q} is not Prokhorov, by Preiss' theorem.

7. Problem Is it relatively consistent with ZFC to suppose that \mathbb{R}^{ω_1} is a Prokhorov space?

References

Fremlin D.H. [02] *Measure Theory, Vol. 3: Measure Algebras.* Torres Fremlin, 2002 (http://www.lulu.com/shop/david-fremlin/measure-theory-3-i/hardcover/product-20575027.html, http://www.lulu.com/shop/david-fremlin/measure-theory-3-ii/hardcover/product-20598433.html).

Fremlin D.H. [03] *Measure Theory, Vol. 4: Topological Measure Spaces.* Torres Fremlin, 2003 (http://www.lulu.com/shop/david-fremlin/measure-theory-4-i/hardcover/product-21260956.html, http://www.lulu.com/shop/david-fremlin/measure-theory-4-ii/hardcover/product-21247268.html).

Fremlin D.H. [08] Measure Theory, Vol. 5: Set-theoretic Measure Theory. Torres Fremlin, 2008 (http://www.lulu.com/shop/david-fremlin/measure-theory-5-i/hardcover/product-22032430.html, http://

/www.lulu.com/shop/david-fremlin/measure-theory-5-ii/hardcover/product-22032397.html).
Preiss D. [73] 'Metric spaces in which Prohorov's theorem is not valid', Z. Wahrscheinlichkeitstheorie und
verw. Gebiete 27 (1973) 109-116.

Wheeler R.F. [83] 'A survey of Baire measures and strict topologies', Expositiones Math. 1 (1983) 97-190.