$\mathfrak{p} = \mathfrak{t}$, following Malliaris-Shelah and Steprāns

D.H.FREMLIN

University of Essex, Colchester, England

I attempt a proof, based on that sketched in STEPRĀNS N13, of the theorem in MALLIARIS & SHELAH 16 that $\mathfrak{p} = \mathfrak{t}$.

1 Gaps, interpolation and chain-additivity

1A Definitions Let P be a partially ordered set and λ , κ non-zero cardinals.

- (a) A (λ, κ^*) -gap in P is a pair $(\langle x_{\xi} \rangle_{\xi < \lambda}, \langle y_{\xi} \rangle_{\eta < \kappa})$ of families in P such that $x_{\xi} < x_{\xi'} \le y_{\eta'} < y_{\eta}$ whenever $\xi < \xi' < \lambda$ and $\eta < \eta' < \kappa$, there is no $z \in P$ such that $x_{\xi} \le z \le y_{\eta}$ whenever $\xi < \lambda$ and $\eta < \kappa$.
- (a) A **peculiar** (λ, κ^*) -gap in P is a pair $(\langle x_{\xi} \rangle_{\xi < \lambda}, \langle y_{\xi} \rangle_{\eta < \kappa})$ of families in P such that $x_{\xi} < x_{\xi'} \le y_{\eta'} < y_{\eta}$ whenever $\xi < \xi' < \lambda$ and $\eta < \eta' < \kappa$, whenever $z \in P$ is such that $z \le y_{\eta}$ for every $\eta < \kappa$, there is a $\xi < \lambda$ such that $z \le x_{\xi}$, whenever $z \in P$ is such that $x_{\xi} \le z$ for every $\xi < \lambda$, there is an $\eta < \kappa$ such that $y_{\eta} \le z$.

1B Definitions Let (P, \leq) be a partially ordered set.

(a) The chain-additivity of P, chadd P, is the least cardinal of any totally ordered subset of P with no upper bound in P; or ∞ if there is no such set.

Note that chadd P is either 0 (if P is empty) or ∞ (if every maximal chain in P has a greatest member) or a regular infinite cardinal κ , and in the last case there is a strictly increasing family $\langle p_{\xi} \rangle_{\xi < \kappa}$ in P with no upper bound in P.

If P is upwards-directed then chadd P = add P as defined in FREMLIN 08, 511Bb.

(b)(i) If κ is a cardinal, say that P has the $< \kappa$ -interpolation property if whenever $A, B \subseteq P$ are non-empty, $a \leq b$ for every $a \in A$ and $b \in B$, and $\max(\#(A), \#(B)) < \kappa$, then there is a $c \in P$ such that $a \leq c \leq b$ whenever $a \in A$ and $b \in B$.

(ii) The interpolation number of P, interp P, is the greatest cardinal κ such that P has the $< \kappa$ interpolation property, or ∞ if there is no such κ . (For this use of ' ∞ ', see FREMLIN 08, 511C.)

Note that interp $P = \infty$ iff P is Dedekind complete, and that interp $P \ge \omega$ if P is a lattice.

1C Lemma Suppose that P is a lattice. Write chgap P for the least cardinal κ such that there is a (λ_0, λ_1^*) -gap in P with cardinals $\lambda_0, \lambda_1 \leq \kappa$, or ∞ if there is no such κ . Then interp P = chgap P.

proof (a) Suppose that $(\langle x_{\xi} \rangle_{\xi < \lambda_0}, \langle y_{\xi} \rangle_{\eta < \lambda_1})$ is a (λ_0, λ_1^*) -gap. Then $\{x_{\xi} : \xi < \lambda_0\}, \{y_{\eta} : \eta < \lambda_1\}$ witness that interp $P \le \max(\lambda_0, \lambda_1)$. As $(\langle x_{\xi} \rangle_{\xi < \lambda_0}, \langle y_{\xi} \rangle_{\eta < \lambda_1})$ is arbitrary, interp $P \le \operatorname{chgap} P$.

(b) Suppose that $A, B \subseteq P$ are non-empty sets with cardinal less than chgap P and $a \leq b$ for every $a \in A$ and $b \in B$.

(i) If A is well-ordered and B is downwards well-ordered (that is, (B, \geq) is well-ordered), then there is a $c \in P$ such that $a \leq c \leq b$ for every $a \in A$ and $b \in B$. **P** Set $\lambda_0 = cf A$, $\lambda_1 = ci B$, and let $\langle x_{\xi} \rangle_{\xi < \lambda_0}$ be the increasing enumeration of a cofinal subset of A with cardinal λ_0 , and $\langle y_{\eta} \rangle_{\eta < \lambda_1}$ the decreasing enumeration of a coinitial subset of B with cardinal λ_1 ; then $\lambda_0 \leq \#(A) < chgap P$ and $\lambda_1 \leq \#(B) < chgap P$, so $(\langle x_{\xi} \rangle_{\xi < \lambda_0}, \langle y_{\eta} \rangle_{\eta < \lambda_1})$ cannot be a (λ_0, λ_1^*) -gap and there must be a $c \in P$ such that $x_{\xi} \leq c \leq y_{\eta}$ for all ξ and η , so that $a \leq c \leq b$ whenever $a \in A$ and $b \in B$. **Q**

(ii) If A is well-ordered then there is a $c \in P$ such that $a \leq c \leq b$ for every $a \in A$ and $b \in B$. **P** If B is finite, this is trivial, as inf B is defined in P. So suppose that B is infinite. Set $\lambda_0 = cf A$ and let $\langle x_{\xi} \rangle_{\xi < \lambda_0}$ be the increasing enumeration of a cofinal subset of A with cardinal λ_0 ; of course $\lambda_0 < chgap P$. Set

$$A' = \{y : a \le y \text{ for every } a \in A\} = \{y : x_{\xi} \le y \text{ for every } \xi < \lambda_0\} \supseteq B.$$

Enumerate *B* as $\langle b_{\eta} \rangle_{\eta < \lambda_1}$, where $\lambda_1 < \text{chgap } P$, and choose a non-increasing family $\langle y_{\eta} \rangle_{\eta \leq \lambda_1}$ in *A'* inductively, as follows. Start with $y_0 = b_0$. Given y_{η} , where $\eta < \lambda_1$, set $y_{\eta+1} = y_{\eta} \wedge b_{\eta}$. Given a non-zero limit ordinal $\beta \leq \lambda_1$ and a non-increasing family $\langle y_{\eta} \rangle_{\eta < \beta}$ in *A'*, the set $\{y_{\eta} : \eta < \beta\}$ is downwards well-ordered and has cardinal at most $\#(\beta) \leq \lambda_1 < \text{chgap } P$, so by (ii) there is a $y_{\beta} \in P$ such that $a_{\xi} \leq y_{\beta} \leq y_{\eta}$ for every $\xi < \lambda_0$ and $\eta < \beta$, and the induction continues.

At the end of the induction, consider $c = y_{\lambda_1}$. Then $c \in A'$; since also $c \leq y_{\eta+1} \leq b_{\eta}$ for every $\eta < \lambda_1$, c serves. **Q**

(iii) In any case, there is a $c \in P$ such that $a \leq c \leq b$ for every $a \in A$ and $b \in B$. **P** If A is finite, take $c = \sup A$. Otherwise, enumerate A as $\langle a_{\xi} \rangle_{\xi \leq \lambda_0}$ and choose $\langle x_{\xi} \rangle_{\xi \leq \lambda_0}$ inductively, as follows. Start with $x_0 = a_0$. If $\xi < \lambda_0$, set $x_{\xi+1} = x_{\xi} \lor a_{\xi}$. If $\alpha \leq \lambda_0$ is a non-zero limit ordinal, (ii) tells us that there is an $x_{\alpha} \in P$ such that $x_{\xi} \leq x_{\alpha} \leq b$ whenever $\xi < \alpha$ and $b \in B$. At the end of the induction, take $c = x_{\lambda_0}$.

(iv) As A and B are arbitrary, chgap $P \leq \text{interp } P$ and the two are equal.

1D Lemma Let P be a lattice with the $< \omega_1$ -interpolation property which is not Dedekind σ -complete. Then interp $P \le \#(P)$.

proof (a) Suppose that there is a countable subset A of P with an upper bound but no least upper bound. Then A must be infinite; let $\langle p_n \rangle_{n \in \mathbb{N}}$ be an enumeration of A, and set $p'_n = \sup_{i \leq n} p_i$, so that $\langle p'_n \rangle_{n \in \mathbb{N}}$ is a non-decreasing sequence which is not eventually constant, and has a strictly increasing subsequence $\langle p''_n \rangle_{n \in \mathbb{N}}$. Let B the set of upper bounds of A. Because B has no infimum, it is surely infinite; set $\kappa = \#(B)$ and enumerate B as $\langle q_\eta \rangle_{\eta < \kappa}$. Choose $\langle q'_\eta \rangle_{\eta < \beta}$ in B as follows. Start with $q'_0 = q_0$. Given $q'_\eta \in B$, q'_η is not the least member of B, so there is a first $\zeta_\eta < \kappa$ such that $q'_\eta \not\leq q_{\zeta_\eta}$; set $q'_{\eta+1} = q'_\eta \wedge q_{\zeta_\eta}$. Given $\langle q'_{\eta'} \rangle_{\eta' < \eta}$ where $\eta < \kappa$ is a non-zero limit ordinal, then if there is a member of B less than or equal to $q'_{\eta'}$ for every $\eta' < \eta$, take such a member for q'_η ; otherwise set $\beta = \eta$ and stop. If the induction continues to the end, then there cannot be a member of B less than or equal to $q'_{\eta+1} \leq q_\eta$ for every $\eta < \kappa$, so set $\beta = \kappa$.

cannot be a member of *B* less than or equal to $q'_{\eta+1} \leq q_{\eta}$ for every $\eta < \kappa$, so set $\beta = \kappa$. Thus we have a strictly decreasing family $\{q'_{\eta} : \eta < \beta\}$ in *B* with no lower bound in *B*, where $\omega \leq \beta \leq \kappa \leq \#(P)$. Set $\lambda = \operatorname{cf} \beta$ and let $\langle \eta_{\theta} \rangle_{\lambda < \theta}$ be the increasing enumeration of a cofinal subset of β . Then $(\langle p''_{n} \rangle_{n \in \mathbb{N}}, \langle q'_{\eta_{\theta}} \rangle_{\theta < \lambda})$ is an (ω, λ^{*}) -gap in *P*. As *P* has the $< \omega_{1}$ -interpolation property, $\lambda > \omega$, so

interp
$$P \leq \lambda \leq \beta \leq \kappa \leq \#(P)$$
.

(b) If there is a countable subset of P with a lower bound but no greatest lower bound, argue similarly, or apply (a) to (P, \geq) .

1E Definitions (a) Write \mathfrak{p} for the least cardinal of any downwards-directed set $A \subseteq [\mathbb{N}]^{\omega}$ for which there is no $b \in [\mathbb{N}]^{\omega}$ such that $b \setminus a$ is finite for every $a \in A$.

(b) Write t for the least cardinal κ for which there is a family $\langle a_{\xi} \rangle_{\xi < \kappa}$ in $[\mathbb{N}]^{\omega}$ such that $a_{\eta} \setminus a_{\xi}$ is finite whenever $\xi < \eta < \kappa$, but there is no $a \in [\mathbb{N}]^{\omega}$ such that $a \setminus a_{\xi}$ is finite for every $\xi < \kappa$.

2 Reduced products and internal sets

Most of the rest of the arguments in this note will be based on a fragment of the model theory of ultrapowers. For the next few sections, fix an ultrafilter \mathcal{F} on a set I.

2A Suppose that X_i is a non-empty set for each $i \in I$,

(a) We have an equivalence relation on $\prod_{i \in I} X_i$ given by saying that $\langle x_i \rangle_{i \in I} \sim \langle y_i \rangle_{i \in I}$ if $\{i : x_i = y_i\}$ belongs to \mathcal{F} . I will write $\langle x_i \rangle_{i \in I}$ for the equivalence class of $\langle x_i \rangle_{i \in I}$. The set of equivalence classes is the **reduced product** of $\langle X_i \rangle_{i \in I} \mod \mathcal{F}$, which I will denote $\prod_{i \in I} X_i | \mathcal{F}$. (See FREMLIN 08, 5A2A.)

(b) A subset Z of X is internal if it corresponds to a member of $\prod_{i \in I} \mathcal{P}X_i | \mathcal{F}$, that is, if there is a family $\langle Z_i \rangle_{i \in I}$ such that $Z_i \subseteq X_i$ for every $i \in I$ and $Z = \{\langle x_i \rangle_{i \in I}^{\bullet} : \{i : x_i \in Z_i\} \in \mathcal{F}; \text{ note that if every } Z_i \text{ is non-empty this is in a natural one-to-one correspondence with } \prod_{i \in I} Z_i | \mathcal{F}.$

(c) Because \mathcal{F} is an ultrafilter, the family of internal subsets of X is an algebra of sets containing all singleton sets, therefore every finite subset of X.

(d) If Z is a non-empty internal subset of X, then a subset of Z is internal in Z iff it is internal in X. \mathbf{P} Q

(e) Generally, when I use an italic bold upper-case letter like X or P, you should take it that I am thinking of a set together with an associated structure of internal sets.

2B Let $\boldsymbol{X} = \prod_{i \in I} X_i | \mathcal{F}$ and $\boldsymbol{Y} = \prod_{i \in I} Y_i | \mathcal{F}$ be two reduced products mod \mathcal{F} . Then we have a natural bijection between $\boldsymbol{X} \times \boldsymbol{Y}$ and $\prod_{i \in I} X_i \times Y_i | \mathcal{F}$, identifying $(\langle x_i \rangle_{i \in I}^{\bullet}, \langle y_i \rangle_{i \in I}^{\bullet})$ with $\langle (x_i, y_i) \rangle_{i \in I}^{\bullet}$. This gives us an associated notion of 'internal' subset of $\boldsymbol{X} \times \boldsymbol{Y}$, being one corresponding to an internal subset of $\prod_{i\in I} X_i \times Y_i | \mathcal{F}.$

The same idea applies to products of any finite number of reduced products mod \mathcal{F} .

2C Again suppose that $\boldsymbol{X} = \prod_{i \in I} X_i | \mathcal{F}$ and $\boldsymbol{Y} = \prod_{i \in I} Y_i | \mathcal{F}$ are two reduced products mod \mathcal{F} .

(a) If $Z \subseteq X$ and $W \subseteq Y$ are internal, then $Z \times W$ is an internal subset of $X \times Y$.

(b) If W is an internal subset of $X \times Y$ and Z is an internal subset of X, then W[Z] is an internal subset of \boldsymbol{Y} . (For if \boldsymbol{W} corresponds to $\langle W_i \rangle_{i \in I}$ and \boldsymbol{Z} to $\langle Z_i \rangle_{i \in I}$, then $\boldsymbol{W}[\boldsymbol{Z}]$ corresponds to $\langle W_i[Z_i] \rangle_{i \in I}$.) In particular, any section $W[\{x\}]$, where $x \in X$, is an internal subset of Y.

(c) If $W_i \subseteq X_i \times Y_i$ is the graph of a function for each *i*, then the corresponding internal relation $W \subseteq X \times Y$ will be the graph of a function, its domain being the internal subset of X corresponding to $\langle \operatorname{dom} W_i \rangle_{i \in I}.$

(d) If $X_i = Y_i$ and W_i is a partial order on X_i for each i, then **W** will be a partial order on **X**. If $X_i = Y_i$ and W_i is a total order on X_i for each *i*, then **W** will be a total order on **X**. If $X_i = Y_i$ and W_i is a well-ordering of X_i for each i, then every non-empty internal subset of X will have a W-least member. (For if $\mathbf{Z} \subseteq \mathbf{X}$ corresponds to $\langle Z_i \rangle_{i \in I}$ and $\mathbf{x} = \langle x_i \rangle_{i \in I}^{\bullet} \in \mathbf{Z}$, define $\langle z_i \rangle_{i \in I}$ by saying that

> z_i is the W_i -least member of Z_i if $Z_i \neq \emptyset$, $= x_i$ otherwise;

then $\langle z_i \rangle_{i \in I}^{\bullet}$ is the **W**-least member of **Z**.)

(e) Conversely, if W is an internal subset of $X \times X$ and is a partial order, then there is a family $\langle W_i \rangle_{i \in I}$ such that W_i is a partial order on X_i for each i and W corresponds to $\langle W_i \rangle_{i \in I}$. **P** By the definition of 'internal subset of $\boldsymbol{X} \times \boldsymbol{X}$ there is a family $\langle W'_i \rangle_{i \in I}$ such that \boldsymbol{W} corresponds to $\langle W'_i \rangle_{i \in I}$. Set $\Delta_i = \{(x, x) : x \in X_i\}$ for $i \in I$. Now consider

$$J = \{i : W'_i \not\supseteq \Delta_i\}, \quad K = \{i : W'_i \circ W'_i \not\subseteq W'_i\} \quad L = \{i : W_i \cap W_i^{-1} \not\subseteq \Delta_i\}.$$

? If $J \in \mathcal{F}$, take $x_i \in X_i$ such that $(x_i, x_i) \notin W'_i$ for $i \in J$ and set $\boldsymbol{x} = \langle x_i \rangle_{i \in I}^{\bullet}$; then $(\boldsymbol{x}, \boldsymbol{x}) \notin \boldsymbol{W}$. ? If $K \in \mathcal{F}$, take $x_i, y_i, z_i \in X_i$ such that, for $i \in K$, $(x_i, y_i) \in W'_i$, $(y_i, z_i) \in W'_i$ but $(x_i, z_i) \notin W'_i$; setting $\boldsymbol{x} = \langle x_i \rangle_{i \in I}^{\bullet}$, $\boldsymbol{y} = \langle y_i \rangle_{i \in I}^{\bullet}$ and $\boldsymbol{z} = \langle z_i \rangle_{i \in I}^{\bullet}$, $(\boldsymbol{x}, y_i) \in \boldsymbol{W}$ and $(\boldsymbol{y}, \boldsymbol{z}) \in \boldsymbol{W}$ but $(\boldsymbol{x}, z) \notin \boldsymbol{W}$. **X** ? If $L \in \mathcal{F}$, take $x_i, y_i \in X_i$ such that, for $i \in L$, $(x_i, y_i) \in W'_i$ and $(y_i, x_i) \in W'_i$ but $x_i \neq y_i$. Setting

 $\boldsymbol{x} = \langle x_i \rangle_{i \in I}^{\bullet}$ and $\boldsymbol{y} = \langle y_i \rangle_{i \in I}^{\bullet}$, $(\boldsymbol{x}, \boldsymbol{y}) \in \boldsymbol{W}$ and $(\boldsymbol{y}, \boldsymbol{x}) \in \boldsymbol{W}$ but $\boldsymbol{x} \neq \boldsymbol{y}$.

Consequently, $M = I \setminus (J \cup K \cup L)$ belongs to \mathcal{F} , while W'_i is a partial order on X_i for every $i \in M$. Setting $W_i = W'_i$ for $i \in M$, $W_i = \Delta_i$ for $i \in J \cup K \cup L$, we have a suitable family.

(f) If W is an internal subset of $X \times Y$, then its projection $\{x : \exists y, (x,y) \in W\}$ is an internal subset of **X**. **P** If **W** corresponds to $\langle W_i \rangle_{i \in I}$, consider $A_i = \{x : \exists y, (x, y) \in W_i\}$ for each $i \in I$. **Q** Hence, or otherwise, $\{\boldsymbol{x}: (\boldsymbol{x}, \boldsymbol{y}) \in \boldsymbol{W} \text{ for every } \boldsymbol{y} \in \boldsymbol{Y}\}$ is an internal subset of \boldsymbol{X} .

2D Power sets (a) Once more, suppose that we have a family $\langle X_i \rangle_{i \in I}$ of non-empty sets and the reduced product $\mathbf{X} = \prod_{i \in I} X_i | \mathcal{F}$. Then we can form the reduced product $\prod_{i \in I} \mathcal{P} X_i | \mathcal{F}$.

(b) If $\langle Z_i \rangle_{i \in I}$ and $\langle Z'_i \rangle_{i \in I}$ belong to $\prod_{i \in I} \mathcal{P}X_i$, and we look at the corresponding internal sets Z, Z' as defined in 2Ab, we find that $\mathbf{Z} = \mathbf{Z}'$ iff $\{i : Z_i = Z'_i\} \in \mathcal{F}$. **P** If $J = \{i : Z_i = Z'_i\}$ belongs to \mathcal{F} , then for any $\langle x_i \rangle_{i \in I} \in \prod_{i \in I} X_i$

$$\langle x_i \rangle_{i \in I}^{\bullet} \in \mathbf{Z} \iff \{i : i \in I, \, x_i \in Z_i\} \in \mathcal{F} \iff \{i : i \in J, \, x_i \in Z_i\} \in \mathcal{F} \\ \iff \{i : i \in J, \, x_i \in Z_i'\} \in \mathcal{F} \iff \langle x_i \rangle_{i \in I}^{\bullet} \in \mathbf{Z}'$$

and $\mathbf{Z} = \mathbf{Z}'$. If $K = \{i : Z_i \not\subseteq Z'_i\}$ belongs to \mathcal{F} , choose $z_i \in Z_i \setminus Z'_i$ for $i \in K$, and take $\langle z_i \rangle_{i \in I}^{\bullet} \in \mathbf{Z} \setminus \mathbf{Z}'$ and $\mathbf{Z} \neq \mathbf{Z}'$. Similarly, $\mathbf{Z} \neq \mathbf{Z}'$ if $\{i : Z'_i \not\subseteq Z_i\} \in \mathcal{F}$. So if $J \notin \mathcal{F}$ then $\mathbf{z} \neq \mathbf{Z}'$. \mathbf{Q}

(c) Thus we have a natural bijection between the reduced product $\prod_{i \in I} \mathcal{P}X_i | \mathcal{F}$ and the algebra $\mathcal{P}X$ of internal subsets of X. Accordingly we have a notion of internal subset of $\mathcal{P}X$, being one corresponding to a family $\langle \mathcal{A}_i \rangle_{i \in I}$ where $\mathcal{A}_i \subseteq X_i$ for each i, so that \mathcal{PPX} can be identified with $\prod_{i \in I} \mathcal{PPX}_i | \mathcal{F}$.

(d) In 2Ae I spoke of a 'structure of internal sets'; the vagueness was deliberate, as I intended to include not only the subalgebra $\mathcal{P}X$ of $\mathcal{P}X$ but the repeated sets-of-internal-sets algebras $\mathcal{PP}X$, $\mathcal{PPP}X$ and so on. (For this note, happily, we do not have to go far along this road.)

2E Proposition Let $\langle X_i \rangle_{i \in I}$ be a family of non-empty sets, and $\mathbf{X} = \prod_{i \in I} X_i | \mathcal{F}$ their reduced product. Then the relation \subseteq on $\mathcal{P}\mathbf{X}$ is internal.

proof As in 2D, we can identify $\mathcal{P}X$ with $\prod_{i\in I} \mathcal{P}X_i | \mathcal{F}$, so that we think of internal subsets of X as equivalence classes $\langle Z_i \rangle_{i\in I}^{\bullet}$ where $Z_i \subseteq X_i$ for $i \in I$. Now if we have two families $\langle W_i \rangle_{i\in I}, \langle Z_i \rangle_{i\in I} \in \prod_{i\in I} \mathcal{P}X_i$ representing internal sets $W, Z \subseteq X$, we have $W \subseteq Z$ iff $J = \{i : W_i \subseteq Z_i\}$ belongs to \mathcal{F} . **P** This is a triffing refinement of 2Db. If $J \in \mathcal{F}$ and $\mathbf{x} = \langle x_i \rangle_{i\in I}^{\bullet} \in W$, then $\{i : x_i \in Z_i\} \supseteq J \cap \{i : x_i \in W_i\}$ belongs to \mathcal{F} and $\mathbf{x} \in Z$. If $I \setminus J \in \mathcal{F}$, choose $x_i \in W_i \setminus Z_i$ for $i \in I \setminus J$, $x_i \in X_i$ for $i \in J$; then $\mathbf{x} = \langle x_i \rangle_{i\in I}^{\bullet}$ belongs to $W \setminus Z$ and $W \not\subseteq Z$. **Q**

Now this means that if we look at the internal subset of $\mathcal{P}X \times \mathcal{P}X$ corresponding to the family $\langle \subseteq_i \rangle_{i \in I} \in \prod_{i \in I} \mathcal{P}X_i \times \mathcal{P}X_i$, where $\subseteq_i = \{(W, Z) : W \subseteq Z \subseteq X_i\}$ for each *i*, we find that it is precisely the relation \subseteq .

2F Definitions (a) Let $\text{Ufm}_{<\omega}(\mathcal{F})$ be the class of structures isomorphic to structures $\prod_{i \in I} X_i | \mathcal{F}$, together with the corresponding algebras of internal sets, where every X_i is finite and not empty.

(b) Let $\operatorname{Po}_{<\omega}(\mathcal{F})$ be the class of non-empty partially ordered sets (\mathbf{P}, \leq) where $\mathbf{P} \in \operatorname{Ufm}_{<\omega}(\mathcal{F})$ and \leq is an internal relation on \mathbf{P} which is a partial order. As noted in 2Ce, we must then be able to identify (\mathbf{P}, \leq) with a structure $\prod_{i \in I} (P_i, \leq_i) | \mathcal{F}$ where P_i is finite and \leq_i is a partial order on P_i for every i.

(c) Let $\operatorname{Lo}_{<\omega}(\mathcal{F}) \subseteq \operatorname{Po}_{<\omega}(\mathcal{F})$ be the class of non-empty totally ordered sets belonging to $\operatorname{Po}_{<\omega}(\mathcal{F})$. If $(\mathbf{X}, \leq) \in \operatorname{Lo}_{<\omega}(\mathcal{F})$, we can identify it with a structure $\prod_{i \in I} (X_i, \leq_i) | \mathcal{F}$ where X_i is finite and \leq_i is a total order on X_i for every i.

2G Proposition (a) If $X \in \text{Ufm}_{<\omega}(\mathcal{F})$ and Z is a non-empty internal subset of X, then $Z \in \text{Ufm}_{<\omega}(\mathcal{F})$. (b) If $X \in \text{Ufm}_{<\omega}(\mathcal{F})$ then $\mathcal{P}X \in \text{Ufm}_{<\omega}(\mathcal{F})$.

(c) If $X, Y \in \text{Ufm}_{<\omega}(\mathcal{F})$ then $X \times Y \in \text{Ufm}_{<\omega}(\mathcal{F})$.

proof (a) If $X \cong \prod_{i \in I} X_i | \mathcal{F}$ where X_i is finite for every $i \in I$, then $Z \cong \prod_{i \in I} Z_i | \mathcal{F}$ where $Z_i \subseteq X_i$ is finite for every $i \in I$.

(b) If $X \cong \prod_{i \in I} X_i | \mathcal{F}$ where X_i is finite for every $i \in I$, then $\mathcal{P}X \cong \prod_{i \in I} \mathcal{P}X_i | \mathcal{F}$ and $\mathcal{P}X_i$ is finite for every $i \in I$.

(c) If $X \cong \prod_{i \in I} X_i | \mathcal{F}$ and $Y \cong \prod_{i \in I} Y_i | \mathcal{F}$ where X_i and Y_i are finite for every $i \in I$, then $X \times Y \cong \prod_{i \in I} X_i \times Y_i | \mathcal{F}$ and $X_i \times Y_i$ is finite for every $i \in I$.

2H Lemma (a) Suppose that $(\mathbf{P}, \leq) \in \operatorname{Po}_{<\omega}(\mathcal{F})$. Then every non-empty internal subset of \mathbf{P} has a maximal element.

(b) Suppose that $(\mathbf{P}, \leq) \in \mathrm{Lo}_{<\omega}(\mathcal{F})$.

(i) (\mathbf{P}, \leq) is isomorphic to (\mathbf{P}, \geq) .

(ii) Every non-empty internal subset of \boldsymbol{P} has greatest and least members.

proof (a) The point is just that this is true for all finite partially ordered sets, and it is a first-order property. More explicitly, if $(\mathbf{P}, \leq) \cong \prod_{i \in I} (P_i, \leq_i) | \mathcal{F}$, and \mathbf{Z} is a non-empty internal subset of \mathbf{P} , then \mathbf{Z} corresponds

5

to $\prod_{i \in I} Z_i$ where $Z_i \subseteq P_i$ is non-empty for every $i \in I$. Now if $z_i \in Z_i$ is \leq_i -maximal for every $i, \mathbf{z} = \langle z_i \rangle_{i \in I}^{\bullet}$ is \leq -maximal in \mathbf{Z} .

(b)(i) In this case,

$$(\mathbf{P}, \geq) \cong \prod_{i \in I} (P_i, \geq) | \mathcal{F} \cong \prod_{i \in I} (P_i, \leq) | \mathcal{F} \cong (\mathbf{P}, \leq).$$
 Q

(ii) This is a special case of (a).

2I Lemma If $\boldsymbol{P} \in \text{Lo}_{<\omega}(\mathcal{F})$ is infinite, then $\omega_1 \leq \text{interp } \boldsymbol{P} \leq \omega^{\#(I)}$.

proof We can suppose that P is a reduced product $\prod_{i \in I} (P_i, \leq_i)$ where every P_i is finite and every \leq_i is a total order.

(a) \boldsymbol{P} has the $\langle \omega_1$ -interpolation property. \boldsymbol{P} If $\langle \boldsymbol{p}_k \rangle_{k \in \mathbb{N}}$ and $\langle \boldsymbol{q}_k \rangle_{k \in \mathbb{N}}$ are sequences in \boldsymbol{P} with $\boldsymbol{p}_j \leq \boldsymbol{q}_k$ for all $j, k \in \mathbb{N}$, express \boldsymbol{p}_k as $\langle p_{ki} \rangle_{i \in I}^{\bullet}$ and \boldsymbol{q}_k as $\langle q_{ki} \rangle_{i \in I}^{\bullet}$, where $p_{ki}, q_{ki} \in P_i$ for $i \in I$ and $k \in \mathbb{N}$. Set

$$A_l = \{ i : i \in I, \, p_{ji} \le q_{ki} \text{ whenever } j, \, k < l \},\$$

so that $\langle A_l \rangle_{l \in \mathbb{N}}$ is a non-increasing sequence in \mathcal{F} starting with $A_0 = I$. Set

$$p_i^* = \max(\{p_{0i}\} \cup \{p_{ji} : j < l\}) \text{ if } i \in A_l \setminus A_{l+1},$$
$$= \max\{p_{ji} : j \in \mathbb{N}\} \text{ if } i \in \bigcap_{l \in \mathbb{N}} A_l.$$

Then

 $\{i: p_{ki} \le p_i^* \le q_{ki}\} \supseteq A_{k+1} \in \mathcal{F}$

for every k, so

 $\boldsymbol{p}_k \leq \langle p_i^* \rangle_{i \in I}^\bullet \leq \boldsymbol{q}_k$

for every $k \in \mathbb{N}$. **Q**

(b) There is a sequence $\langle \mathbf{p}_k \rangle_{k \in \mathbb{N}}$ in \mathbf{P} with no supremum in \mathbf{P} . \mathbf{P} Let $\langle p'_{ki} \rangle_{k < \#(P_i)}$ be the increasing enumeration of P_i for each i. As \mathbf{P} is infinite, $A_k = \{i : \#(P_i) \ge k\} \in \mathcal{F}$ for each k. So if we set

$$p_{ki} = p'_{ki} \text{ if } k < \#(X_i),$$

= max $P_i \text{ if } k \ge \#(X_i),$
$$\boldsymbol{p}_k = \langle p_{ki} \rangle_{i \in I}^{\bullet}$$

for $k \in \mathbb{N}$, $\langle \boldsymbol{p}_k \rangle_{k \in \mathbb{N}}$ will be strictly increasing. If $\boldsymbol{q} = \langle q_i \rangle_{i \in I}^{\bullet}$ is an upper bound for $\{\boldsymbol{p}_k : k \in \mathbb{N}\}$, and we take $\boldsymbol{q}' = \langle q'_i \rangle_{i \in I} \in \prod_{i \in I} X_i$ such that q'_i is the predecessor of q_i in P_i whenever $q_i \neq \min P_i$, then $\boldsymbol{q}' < \boldsymbol{q}$ and \boldsymbol{q}' is still an upper bound of $\{\boldsymbol{p}_k : k \in \mathbb{N}\}$, so $\{\boldsymbol{p}_k : k \in \mathbb{N}\}$ has no least upper bound. \boldsymbol{Q}

(c) Since **P** has a greatest member $\langle \max P_i \rangle_{i \in I}^{\bullet}$, 1D tells us that

interp
$$\boldsymbol{P} \leq \#(\boldsymbol{P}) \leq \#(\prod_{i \in I} P_i) \leq \omega^{\#(I)}$$
.

3 $Interp_{<\omega}$ and $Chadd_{<\omega}$

As in §2, take a fixed ultrafilter \mathcal{F} on a fixed set I.

3A Definitions (a) Write $\operatorname{Interp}_{<\omega}(\mathcal{F})$ for $\min\{\operatorname{interp} \boldsymbol{P} : \boldsymbol{P} \in \operatorname{Lo}_{<\omega}(\mathcal{F})\}.$

(b) Write $\operatorname{Chadd}_{<\omega}(\mathcal{F})$ for $\min\{\operatorname{chadd} \boldsymbol{P} : \boldsymbol{P} \in \operatorname{Po}_{<\omega}(\mathcal{F})\}$.

3B Lemma Suppose that $X \in Lo_{<\omega}(\mathcal{F})$ and that we have sets $A \subseteq X$, $\mathcal{Z} \subseteq PX$) such that #(A), $\#(\mathcal{Z})$ are both less than min(Chadd_{< ω}(\mathcal{F}), interp X) and every member of \mathcal{Z} is an internal set including A. Then there is an internal set $Z^* \subseteq X$ such that $A \subseteq Z^* \subseteq \bigcap \mathcal{Z}$.

Remark Note that there is no suggestion that A or \mathcal{Z} should be an internal set.

proof (a) If either A or \mathcal{Z} is finite, the result is trivial. Otherwise, set $\kappa = \max(\#(A), \#(\mathcal{Z}))$ and let $\langle \boldsymbol{x}_{\xi} \rangle_{\xi < \kappa}$, $\langle \boldsymbol{Z}_{\xi} \rangle_{\xi < \kappa}$ run over A, \mathcal{Z} respectively.

Because interp $\boldsymbol{X} < \infty$ (2I), we have a (λ_0, λ_1^*) -gap in \boldsymbol{X} with $\max(\lambda_0, \lambda_1^*) = \operatorname{interp} \boldsymbol{X}$; as $(\boldsymbol{X}, \leq) \cong (\boldsymbol{X}, \geq)$, we can suppose that $\lambda_1 \leq \lambda_0$ and we have a strictly increasing family $\langle \boldsymbol{y}_\eta \rangle_{\eta < \operatorname{interp} \boldsymbol{X}}$ in \boldsymbol{X} .

Let $P = P(X \times X)$ be the set of internal subsets of $X \times X$. For $p \in P$ and $e \in X$, write $p \lceil e$ for $\{(\min(z, e), x) : (z, x) \in p\}$. Observe that $(p \lceil e) \lceil e' = p \rceil \min(e, e')$ for all p, e and e', so we have a partial order \leq on P defined by saying that $p' \leq p$ if there is an $e \in X$ such that $p' = p \lceil e$. Now $(P, \leq) \in \operatorname{Po}_{<\omega}(\mathcal{F})$. **P** We have just to repeat the formula in each coordinate. Suppose that (X, \leq) is isomorphic to the reduced product $\prod_{i \in I} (X_i, \leq_i) \mid \mathcal{F}$ where (X_i, \leq_i) is a finite totally ordered set for each i. If $i \in I$, $p \subseteq X_i^2$ and $e \in X_i$, set $p \lceil e = (\min(z, e), x) : (z, x) \in p \rceil$; for $p', p \subseteq X_i^2$ say that $p' \leq_i p$ if there is an $e \in X_i$ such that $p' = p \lceil e$. If now $p', p \in P$, we can identify them with $\langle p'_i \rangle_{i \in I}^{\bullet}$, $\langle p_i \rangle_{i \in I}^{\bullet}$ respectively, where $p_i, p'_i \subseteq X_i^2$ for each i (2B). If e corresponds to $\langle e_i \rangle_{i \in I} \in \prod_{i \in I} X_i \mid \mathcal{F}, p \lceil e$ corresponds to $\langle p_i \lceil e_i \rangle_{i \in I}^{\bullet}$. So if $p' \leq p$, $\{i : p'_i \leq_i p_i\}$ belongs to \mathcal{F} ; and, conversely, if $J = \{i : p'_i \leq_i p_i\}$ belongs to \mathcal{F} , we can find a family $\langle e_i \rangle_{i \in I} \in \prod_{i \in I} X_i$ such that $J \supseteq \{i : p'_i = p_i \lceil e_i\}$, in which case $p' \leq p$. Thus P is isomorphic to $\langle (\mathcal{P}(X_i^2), \leq_i) \rangle_{i \in I}^{\bullet}$ and belongs to $\operatorname{Po}_{<\omega}(\mathcal{F})$.

(b) Choose a non-decreasing family $\langle \boldsymbol{p}_{\eta} \rangle_{\eta \leq \kappa}$ in \boldsymbol{P} inductively, as follows. The inductive hypothesis will be that $\boldsymbol{p}_{\eta} \in \boldsymbol{P}, \, \boldsymbol{p}_{\eta'} = \boldsymbol{p}_{\eta} [\boldsymbol{y}_{\eta'}]$ whenever $\eta' \leq \eta$, and $(\boldsymbol{y}_{\eta}, \boldsymbol{x}_{\xi}) \in \boldsymbol{p}_{\eta}$ whenever $\xi < \kappa$.

Start with $\boldsymbol{p}_0 = \{\boldsymbol{y}_0\} \times \boldsymbol{X}$. Given \boldsymbol{p}_{η} where $\eta < \kappa$, set

$$p_{\eta+1} = p_{\eta} \cup \{(y_{\eta+1}, x) : (y_{\eta}, x) \in p_{\eta}, x \in Z_{\eta}\}.$$

Then $p_{\eta} = p_{\eta+1} [\boldsymbol{y}_{\eta} \leq \boldsymbol{p}_{\eta+1}, \text{ and } (\boldsymbol{y}_{\eta+1}, \boldsymbol{x}_{\xi}) \in \boldsymbol{p}_{\eta+1} \text{ whenever } \xi < \kappa, \text{ because } \boldsymbol{x}_{\xi} \in A \subseteq \boldsymbol{Z}_{\eta} \in \boldsymbol{\mathcal{Z}}.$

For the inductive step to a non-zero limit ordinal $\eta \leq \kappa$, we have

 $\operatorname{cf} \eta \leq \kappa < \operatorname{Chadd}_{<\omega}(\mathcal{F}) \leq \operatorname{chadd} \mathcal{P},$

so there is an upper bound p' of $\{p_{\eta'} : \eta' < \eta\}$ in P. For each $\xi < \kappa$, set

$$e_{\xi} = \max\{oldsymbol{z}: (oldsymbol{z}, oldsymbol{x}_{\xi}) \in oldsymbol{p}'\}$$

which is defined because p' is an internal subset of X^2 , so $\{z : (z, x_{\xi}) \in p'\}$ is an internal subset of X, and is non-empty because $(y_0, x_{\xi}) \in p_0 = p' \lceil y_0$. If $\eta' < \eta$, then $(y_{\eta'}, x_{\xi}) \in p_{\eta'} = p' \lceil y_{\eta'}$, so $y_{\eta'} \le e_{\xi}$ and $y_{\eta'} \le \min(y_{\eta}, e_{\xi})$. Because $\kappa < \operatorname{interp} X$, there must be an $e \in X$ such that $y_{\eta'} \le e \le \min(y_{\eta}, e_{\xi})$ whenever $\eta' < \eta$ and $\xi < \kappa$. Set

$$p^{\prime\prime}=p^{\prime}\lceil e, \quad p_{\eta}=p^{\prime\prime}\cup\{(y_{\eta},x):(e,x)\in p^{\prime\prime}\}.$$

For $\eta' < \eta$, we have

$$oldsymbol{p}_{\eta'} = oldsymbol{p}' ig oldsymbol{y}_{\eta'} = oldsymbol{p}'' ig oldsymbol{y}_{\eta'} = oldsymbol{p}_\eta ig oldsymbol{y}_{\eta'} \leq oldsymbol{p}_\eta$$

while if $\xi < \kappa$ then $(\boldsymbol{e}_{\xi}, \boldsymbol{x}_{\xi}) \in \boldsymbol{p}'$, $(\boldsymbol{e}, \boldsymbol{x}_{\xi}) \in \boldsymbol{p}''$ and $(\boldsymbol{y}_{\eta}, \boldsymbol{x}_{\xi}) \in \boldsymbol{p}_{\eta}$. Of course $\boldsymbol{z} \leq \boldsymbol{y}_{\eta}$ whenever $(\boldsymbol{z}, \boldsymbol{x}) \in \boldsymbol{p}_{\eta}$, so the induction continues.

(c) At the end of the induction, set $Z^* = \{x : (y_{\kappa}, x) \in p_{\kappa}\}$. Then Z^* is an internal set because p_{κ} is, and contains every x_{ξ} by the construction of p_{κ} . If $\eta < \kappa$ and $x \in Z^*$, then

$$(oldsymbol{y}_{\eta+1},oldsymbol{x})=(\min(oldsymbol{y}_\kappa,oldsymbol{y}_{\eta+1}),oldsymbol{x})\inoldsymbol{p}_\kappaigertoldsymbol{y}_{\eta+1}=oldsymbol{p}_{\eta+1}$$

so $\boldsymbol{x} \in \boldsymbol{Z}_{\eta}$. Thus $A \subseteq \boldsymbol{Z}^* \subseteq \bigcap \mathcal{Z}$, as required.

3C Corollary Suppose that $X \in Lo_{<\omega}(\mathcal{F})$ and $h: X \times X \to X$ is an internal function. Let $A \subseteq X$ and $w \in X$ be such that $h(x, x') \leq w$ for all $x, x' \in A$ and $\#(A) < \min(Chadd_{<\omega}(\mathcal{F}), \operatorname{interp} X)$. Then there is an internal set $D \subseteq X$ such that $A \subseteq D$ and $h(x, x') \leq w$ for all $x, x' \in D$.

proof For $\boldsymbol{x} \in A$, set $\boldsymbol{Z}_{\boldsymbol{x}} = \{\boldsymbol{x}' : \boldsymbol{x}' \in \boldsymbol{X}, \boldsymbol{h}(\boldsymbol{x}, \boldsymbol{x}') \leq \boldsymbol{w}\}$. Then $\boldsymbol{Z}_{\boldsymbol{x}}$ is an internal subset of \boldsymbol{X} including A. Applying 3B to A and $\mathcal{Z} = \{\boldsymbol{Z}_{\boldsymbol{x}} : \boldsymbol{x} \in A\}$, we see that there is an internal set $\boldsymbol{Z} \subseteq \boldsymbol{X}$ such that $A \subseteq \boldsymbol{Z} \subseteq \boldsymbol{Z}_{\boldsymbol{x}}$ for every $\boldsymbol{x} \in A$. Now

$$D = \{ \boldsymbol{x} : \boldsymbol{x} \in \boldsymbol{Z}, \, \boldsymbol{h}(\boldsymbol{x}, \boldsymbol{x}') \leq \boldsymbol{w} \text{ for every } \boldsymbol{x}' \in \boldsymbol{Z} \}$$

is an internal set including A, and $h(x, x') \leq w$ for all $x, x' \in D$.

3D Lemma Suppose that $X \in \text{Po}_{<\omega}(\mathcal{F})$ and that $Y \in \text{Ufm}_{<\omega}(\mathcal{F})$. Let $D \subseteq X$ be a well-ordered set with order type less than $\text{Chadd}_{<\omega}(\mathcal{F})$, and $F : D \to Y$ a function. Then there is an internal function $h: X \to Y$ extending F.

proof (a) Write α for otp D. Let P be the set of internal partial functions from subsets of X to Y, that is, the set of internal subsets p of $X \times Y$ such that y = y' whenever (x, y) and $(x, y') \in p$. Then $(P, \subseteq) \in \operatorname{Po}_{<\omega}(\mathcal{F})$, being isomorphic to $\prod_{i \in I} (P_i, \subseteq) |\mathcal{F}|$ where each P_i is the set of partial functions from subsets of X_i to Y_i . (See 2Ce.) So $\alpha < \operatorname{chadd} P$.

Let $\langle \boldsymbol{d}_{\beta} \rangle_{\beta < \alpha}$ be the increasing enumeration of D.

(b) Choose a non-decreasing family $\langle \boldsymbol{p}_{\beta} \rangle_{\beta < \alpha}$ inductively, as follows. The inductive hypothesis will be that $\boldsymbol{p}_{\beta} \in \boldsymbol{P}$ and \boldsymbol{d}_{β} is the greatest element of dom \boldsymbol{p}_{β} . Start with $\boldsymbol{p}_{0} = \{(\boldsymbol{d}_{0}, F(\boldsymbol{d}_{0}))\}$. Given $\langle \boldsymbol{p}_{\gamma} \rangle_{\gamma < \beta}$, where $\beta < \alpha$, this is a totally ordered subset of \boldsymbol{P} of cofinality less than chadd \boldsymbol{P} , so has an upper bound $\boldsymbol{q} \in \boldsymbol{P}$; set

$$p_{\beta} = \{(x, y) : (x, y) \in q, x < d_{\beta}\} \cup \{(d_{\beta}, F(d_{\beta}))\}.$$

(c) At the end of the induction, $\langle \boldsymbol{p}_{\beta} \rangle_{\beta < \alpha}$ is still a totally ordered subset of \boldsymbol{P} with cofinality less than chadd \boldsymbol{P} , so has an upper bound $\boldsymbol{q}^* \in \boldsymbol{P}$; let \boldsymbol{h} be any internal function extending \boldsymbol{q}^* to a function from \boldsymbol{X} to \boldsymbol{Y} . Now

$$\boldsymbol{h}(\boldsymbol{d}_{\beta}) = \boldsymbol{q}^{*}(\boldsymbol{d}_{\beta}) = \boldsymbol{p}_{\beta}(\boldsymbol{d}_{\beta}) = F(\boldsymbol{d}_{\beta})$$

for every $\beta < \alpha$, so $\boldsymbol{h} \supseteq F$.

3E Lemma Suppose that $X \in \text{Po}_{<\omega}(\mathcal{F})$ and that $Y \in \text{Ufm}_{<\omega}(\mathcal{F})$. Suppose that $D \subseteq X$ is a well-ordered set with order type less than $\text{Chadd}_{<\omega}(\mathcal{F})$, and $F: D^2 \to Y$ a function. Then there is an internal function from X^2 to Y extending F.

proof Set $\mathbf{Z} = \prod_{i \in I} Z_i | \mathcal{F}$, where Z_i is the set of functions from X_i to Y_i for each $i \in I$; note that each Z_i is finite. For $\mathbf{d} \in D$, define $F_{\mathbf{d}} : D \to \mathbf{Y}$ by setting $F_{\mathbf{d}}(\mathbf{d}') = F(\mathbf{d}, \mathbf{d}')$ for $\mathbf{d}' \in D$. By 3D, we have an internal function $\mathbf{h}_{\mathbf{d}} : \mathbf{X} \to \mathbf{Y}$ extending $F_{\mathbf{d}}$, and $\mathbf{h}_{\mathbf{d}}$ can be represented by a member \mathbf{z}_d of \mathbf{Z} .

By 3D again, there is an internal function $\mathbf{h}' : \mathbf{X} \to \mathbf{Z}$ such that $\mathbf{h}'(\mathbf{d}) = \mathbf{z}_{\mathbf{d}}$ for every $\mathbf{d} \in D$. Suppose that \mathbf{h}' corresponds to $\langle h'_i \rangle_{i \in I}$ where $h'_i : X_i \to Z_i$ is a function for each *i*. If we set $h_i(x, x') = h'_i(x)(x')$ for $x, x' \in X_i$, then $\langle h_i \rangle_{i \in I}$ corresponds to an internal function $\mathbf{h} : \mathbf{X}^2 \to \mathbf{Y}$. If $\mathbf{d}, \mathbf{d}' \in D$ correspond to $\langle d_i \rangle_{i \in I}^{\bullet}$ and $\langle d'_i \rangle_{i \in I}^{\bullet}$ respectively, then $\mathbf{h}(\mathbf{d}, \mathbf{d}')$ corresponds to

$$\langle h_i(d_i, d'_i) \rangle_{i \in I}^{\bullet} = \langle h'_i(d_i)(d'_i) \rangle_{i \in I}^{\bullet} = \langle h'_i(d_i) \rangle_{i \in I}^{\bullet} (\langle d'_i \rangle_{i \in I}^{\bullet})$$

and

$$h(d, d') = h'(d)(d') = h_d(d') = F_d(d') = F(d, d').$$

So \boldsymbol{h} extends F, as required.

3F Lemma If $X \in Lo_{<\omega}(\mathcal{F})$, κ is a cardinal and there is a (κ, κ^*) -gap in X, then $Chadd_{<\omega}(\mathcal{F}) \leq \kappa$.

proof (a) Of course X must be infinite. Consider the partial ordering \preccurlyeq on $[X]^2$ defined by saying that $I \preccurlyeq J$ if min $I \le \min J$ and max $J \le \max I$. Then $([X]^2, \preccurlyeq)$ is isomorphic to a member of $\operatorname{Po}_{<\omega}(\mathcal{F})$. **P** Suppose that $X \cong \prod_{i \in I} (X_i, \le_i) | \mathcal{F}$ where (X_i, \le_i) is a finite non-empty totally ordered set for each i. Since $\#(X) > 1, K = \{i : \#(X_i) \ge 2\} \in \mathcal{F}\}$; set

$$(X'_i, \leq'_i) = (X_i, \leq_i) \text{ for } i \in K,$$
$$= (\{0, 1\}, \leq) \text{ for } i \in I \setminus K$$

On $[X'_i]^2$ define \preccurlyeq_i by saying that $I \preccurlyeq_i J$ if min $I \leq'_i \min J$ and max $J \leq'_i \max I$. Then

$$([\mathbf{X}]^2, \preccurlyeq) \cong \prod_{i \in I} ([X'_i]^2, \leq'_i) | \mathcal{F} \in \operatorname{Po}_{<\omega}(\mathcal{F}).$$
 Q

(b) Let $(\langle \boldsymbol{x}_{\xi} \rangle_{\xi < \kappa}, \langle \boldsymbol{y}_{\xi} \rangle_{\xi < \kappa})$ be a (κ, κ^*) -gap in \boldsymbol{X} . Then $\langle \{\boldsymbol{x}_{\xi}, \boldsymbol{y}_{\xi}\} \rangle_{\xi < \kappa}$ is a strictly increasing family in $[\boldsymbol{X}]^2$. **?** If it has an upper bound $I \in [\boldsymbol{X}]^2$, then $\boldsymbol{x}_{\xi} \leq \min I \leq \max I \leq \boldsymbol{y}_{\eta}$ for all $\xi, \eta < \kappa$, which is supposed to be impossible. \boldsymbol{X} So $\kappa \geq \operatorname{chadd}[\boldsymbol{X}]^2 \geq \operatorname{Chadd}_{<\omega}(\mathcal{F})$.

3G Theorem Chadd_{$<\omega$}(\mathcal{F}) \leq Interp_{$<\omega$}(\mathcal{F}).

proof? Suppose otherwise.

(a) Of course $\operatorname{Interp}_{<\omega}(\mathcal{F})$ cannot be ∞ . Set $\kappa = \operatorname{Interp}_{<\omega}(\mathcal{F})$ and let $X \in \operatorname{Lo}_{<\omega}(\mathcal{F})$ be such that interp $X = \kappa$. By 1C, there is a (λ, λ_1^*) -gap in X with $\max(\lambda, \lambda_1) = \kappa$; since (X, \leq) is isomorphic to (X, \geq) (see 2Fa), we can take it that $\lambda \leq \lambda_1 = \kappa$. We are supposing that $\kappa < \operatorname{Chadd}_{<\omega}(\mathcal{F})$. By 3F, there is no (κ, κ^*) -gap in X, so $\lambda < \kappa$. Let $(\langle x_\eta \rangle_{\eta < \lambda}, \langle x'_{\xi} \rangle_{\xi < \kappa})$ be a (λ, κ^*) -gap in X.

(b) Because (\mathbf{X}, \geq) and (\mathbf{X}, \leq) are isomorphic, and \mathbf{X} has a strictly decreasing family $\langle \mathbf{x}'_{\xi} \rangle_{\xi < \kappa}$, there is also a strictly increasing family $\langle \mathbf{d}_{\xi} \rangle_{\xi < \kappa}$ in \mathbf{X} . Let $G : \lambda^+ \times \lambda^+ \to \lambda$ be such that $\beta \mapsto G(\alpha, \beta) : \alpha \to \lambda$ is injective for every $\alpha < \lambda^+$. Because $\lambda^+ \leq \kappa < \text{Chadd}_{<\omega}(\mathcal{F})$, 3E tells us that there is an internal function $\mathbf{h} : \mathbf{X}^2 \to \mathbf{X}$ such that $\mathbf{h}(\mathbf{d}_{\alpha}, \mathbf{d}_{\beta}) = \mathbf{x}_{G(\alpha, \beta)}$ for all $\alpha, \beta < \lambda^+$. Now 3C tells us that for every $\xi < \kappa$ there is an internal set $\mathbf{D}_{\xi} \supseteq \{\mathbf{d}_{\alpha} : \alpha < \min(\lambda^+, \xi + 1)\}$ such that $\mathbf{h}(\mathbf{d}, \mathbf{d}') \leq \mathbf{x}'_{\xi}$ for all $\mathbf{d}, \mathbf{d}' \in \mathbf{D}_{\xi}$.

(c) Let Q be the family of internal subsets q of X^3 such that

 $h(d', d'') \le y$ whenever $(z, y, d), (z', y', d'), (z', y'', d'') \in q$ and $z \le z'$.

Then Q, partially ordered by inclusion, belongs to $\operatorname{Po}_{<\omega}(\mathcal{F})$. **P** We can suppose that $(\mathbf{X}, \leq) = \prod_{i \in I} (X_i, \leq_i)$ $|\mathcal{F}$ where (X_i, \leq_i) is a finite totally ordered set for every $i \in I$. Because \mathbf{h} is an internal function, we have a family $\langle h_i \rangle_{i \in I}$ such that $h_i : X_i^2 \to X_i$ is a function for each $i \in I$ and \mathbf{h} can be regarded as $\langle h_i \rangle_{i \in I}^{\bullet}$. If we set

$$Q_i = \{q : q \subseteq X_i^3, h_i(d', d'') \le {}_i y \text{ whenever} \\ (z, y, d), (z', y', d'), (z', y'', d'') \in q \text{ and } z \le {}_i z'\},$$

then we can identify $(\boldsymbol{Q}, \subseteq)$ with $\prod_{i \in I} (Q_i, \subseteq) | \mathcal{F}. \mathbf{Q}^1$ Accordingly chadd $\boldsymbol{Q} > \kappa$.

 $\frac{1}{2} = \frac{1}{2} + \frac{1}$

(d) There is a non-decreasing family $\langle q_{\xi} \rangle_{\xi < \kappa}$ in Q such that, for each $\xi < \kappa$,

- if $\beta < \min(\lambda^+, \xi + 1)$ and $d_\beta \le z \le d_\xi$ then there is a y such that $(z, y, d_\beta) \in q_\xi$,
- $\text{ if } (\boldsymbol{z},\boldsymbol{y},\boldsymbol{d}) \in \boldsymbol{q}_{\boldsymbol{\xi}} \text{ then } \boldsymbol{z} \leq \boldsymbol{d}_{\boldsymbol{\xi}} \text{ and } \boldsymbol{x}_{\boldsymbol{\xi}}' \leq \boldsymbol{y}, \\ \end{array}$

$$(oldsymbol{d}_{\xi},oldsymbol{x}_{arepsilon}^{\prime},oldsymbol{d}_{0})\inoldsymbol{q}$$

P Start the induction with $q_0 = \{(d_0, \mathbf{x}'_0, \mathbf{d}_0)\}$. Given $\langle q_\eta \rangle_{\eta < \xi}$ where $0 < \xi < \kappa$, take an upper bound q of $\{q_\eta : \eta < \xi\}$ in Q. For $\alpha < \min(\lambda^+, \xi)$, the set

 $\{(\boldsymbol{z}, \boldsymbol{y}, \boldsymbol{e}) : \boldsymbol{e}, \, \boldsymbol{y}, \, \boldsymbol{z} \in \boldsymbol{X}, \, \boldsymbol{z} < \boldsymbol{d}_{\alpha} \text{ or } \boldsymbol{e} < \boldsymbol{z} \text{ or } (\boldsymbol{z}, \boldsymbol{y}, \boldsymbol{d}_{\alpha}) \in \boldsymbol{Q}\}$

is an internal subset of X^3 , so

 $E_{\alpha} = \{ e : e \in X, \text{ for every } z \in [d_{\alpha}, e] \text{ there is a } y \text{ such that } (z, y, d_{\alpha}) \in q \}$

is an internal subset of X (use 2Cf); since there is a y such that $(\boldsymbol{d}_{\alpha}, \boldsymbol{y}, \boldsymbol{d}_{\alpha}) \in \boldsymbol{q}_{\alpha} \subseteq \boldsymbol{q}, \, \boldsymbol{d}_{\alpha} \in \boldsymbol{E}_{\alpha}$; by 2H(b-ii), \boldsymbol{E}_{α} has a greatest element \boldsymbol{e}_{α} say.

Because $\boldsymbol{q}_{\eta} \in \boldsymbol{Q}$ and $\boldsymbol{q}_{\eta} \subseteq \boldsymbol{q}$ for $\alpha \leq \eta < \xi$, $\boldsymbol{d}_{\eta} \leq \boldsymbol{e}_{\alpha}$ whenever $\eta < \xi$ and $\alpha < \min(\lambda^{+}, \xi)$. Now $\xi < \kappa = \operatorname{interp} \boldsymbol{X}$ so there is a $\boldsymbol{e} \in \boldsymbol{X}$ such that $\boldsymbol{d}_{\eta} \leq \boldsymbol{e} \leq \boldsymbol{e}_{\alpha}$ for every $\eta < \xi$ and $\alpha < \min(\lambda^{+}, \xi)$; replacing \boldsymbol{e} by $\min(\boldsymbol{e}, \boldsymbol{d}_{\xi})$ if necessary, we can suppose that $\boldsymbol{e} \leq \boldsymbol{d}_{\xi}$. Set

$$oldsymbol{q}_{\xi} = \{(oldsymbol{z}, \max(oldsymbol{y}, oldsymbol{x}'_{\xi}), oldsymbol{d}) : (oldsymbol{z}, oldsymbol{y}, oldsymbol{d}) \in oldsymbol{q}, \, oldsymbol{z} < oldsymbol{e}\} \cup \{(oldsymbol{z}, oldsymbol{x}'_{\xi}, oldsymbol{d}) : oldsymbol{e} \leq oldsymbol{z} \leq oldsymbol{d}_{\xi}, \, oldsymbol{d} \in oldsymbol{D}_{\xi}\}$$

This continues the induction.

(e) At the end of the induction take an upper bound \boldsymbol{q} of $\{\boldsymbol{q}_{\xi}: \xi < \kappa\}$ in \boldsymbol{Q} , For $\alpha < \lambda^+$ take \boldsymbol{e}_{α} maximal subject to

for every $\boldsymbol{z} \in [\boldsymbol{d}_{\alpha}, \boldsymbol{e}_{\alpha}]$ there is a \boldsymbol{y} such that $(\boldsymbol{z}, \boldsymbol{y}, \boldsymbol{d}_{\alpha}) \in \boldsymbol{q}$.

¹Alternatively, check that

 $\textit{\textbf{R}} = \{(\textit{\textbf{z}}, \textit{\textbf{y}}, \textit{\textbf{d}}, \textit{\textbf{z}}', \textit{\textbf{y}}', \textit{\textbf{d}}', \textit{\textbf{z}}'', \textit{\textbf{y}}'', \textit{\textbf{d}}'') : \textit{\textbf{z}} \leq \textit{\textbf{z}}' = \textit{\textbf{z}}'', \textit{\textbf{y}} < \textit{\textbf{h}}(\textit{\textbf{d}}', \textit{\textbf{d}}'')\}$

is an internal subset of X^9 ; note that $Q = \{q : q^3 \cap R = \emptyset\}$ and that $q \mapsto q^3 \cap R$ is an internal function.

$$\begin{split} \boldsymbol{h}(\boldsymbol{d}_{\alpha},\boldsymbol{d}_{\beta}) &\leq \min\{\boldsymbol{y}: (\boldsymbol{z},\boldsymbol{y},\boldsymbol{d}) \in \boldsymbol{q}, \, \boldsymbol{z} \leq \boldsymbol{e}\} = \max(\boldsymbol{y}_{\alpha},\boldsymbol{y}_{\beta}) \\ &\leq \max(\boldsymbol{x}_{\theta(\alpha)},\boldsymbol{x}_{\theta(\beta)}) \leq \boldsymbol{x}_{\eta} < \boldsymbol{x}_{G(\alpha,\beta)} = \boldsymbol{h}(\boldsymbol{d}_{\alpha},\boldsymbol{d}_{\beta}) \end{split}$$

which is impossible. \mathbf{X}

therefore have

(f) This contradiction shows that $\operatorname{Chadd}_{<\omega}(\mathcal{F})$ is indeed less than or equal to $\operatorname{Interp}_{<\omega}(\mathcal{F})$.

4 A forcing notion

Let \mathbb{P} be the forcing notion $([\mathbb{N}]^{\omega}, \subseteq^*, \mathbb{N}, \downarrow)$, where $A \subseteq^* B$ if $A \setminus B$ is finite.

4A Proposition t is the largest cardinal such that \mathbb{P} is t-closed in the sense of KUNEN 80, 6.12.

proof Immediate from the definition.

4B Proposition (a) \mathbb{P} preserves cofinalities and cardinals up to and including t.

(b) $\Vdash_{\mathbb{P}} \mathcal{P} \mathbb{N} = (\mathcal{P} \mathbb{N})^{\check{}}.$ (c)(i) $\Vdash_{\mathbb{P}} \mathfrak{t} = \check{\mathfrak{t}}.$

(ii) $\Vdash_{\mathbb{P}} \mathfrak{p} = \check{\mathfrak{p}}.$

proof (a) KUNEN 80, 6.15.

(b) We just need to know that \mathbb{P} is countably closed.

(c)(i)(α) Let $\langle a_{\xi} \rangle_{\xi < \mathfrak{t}}$ be a \subseteq *-decreasing family in $[\mathbb{N}]^{\omega}$ with no \subseteq *-lower bound in $[\mathbb{N}]^{\omega}$. Then $\| \vdash_{\mathbb{P}} \langle \check{a}_{\xi} \rangle_{\xi < \mathfrak{t}}$ is a \subseteq *-decreasing family in $[\mathbb{N}]^{\omega}$

and as $\Vdash_{\mathbb{P}} \mathcal{PN} = (\mathcal{PN})^{\sim}$,

 $\Vdash_{\mathbb{P}} {\check{a}_{\xi} : \xi < \check{\mathfrak{t}}}$ has no ⊆*-lower bound in $[\mathbb{N}]^{<\omega}$, so $\mathfrak{t} \le \check{\mathfrak{t}}$.

(β) Suppose that $\kappa < \mathfrak{t}, p \in \mathbb{P}$ and $\langle \dot{a}_{\xi} \rangle_{\xi < \kappa}$ is a family of \mathbb{P} -names such that

 $p \Vdash \langle \dot{a}_{\xi} \rangle_{\xi < \check{\kappa}}$ is a \subseteq^* -decreasing family in $[\mathbb{N}]^{\omega}$.

Because \mathbb{P} is t-closed, there are a q stronger than p and a family $\langle a_{\xi} \rangle_{\xi < \kappa}$ in $\mathcal{P}\mathbb{N}$ such that $q \Vdash_{\mathbb{P}} \dot{a}_{\xi} = \check{a}_{\xi}$ for every $\xi < \kappa$. Now

 $q \models \langle \check{a}_{\xi} \rangle_{\xi < \check{\kappa}}$ is a \subseteq^* -decreasing family in $[\mathbb{N}]^{\omega}$,

so in fact $\langle a_{\xi} \rangle_{\xi < \kappa}$ is a \subseteq^* -decreasing family in $[\mathbb{N}]^{\omega}$; as $\kappa < \mathfrak{t}$, there is a \subseteq^* -lower bound a of $\{a_{\xi} : \xi < \kappa\}$ in $[\mathbb{N}]^{\omega}$, and now

 $\parallel_{\mathbb{P}} \check{a} \text{ is a } \subseteq^*\text{-lower bound of } \{\check{a}_{\xi} : \xi < \check{\kappa}\} \text{ in } [\mathbb{N}]^{\omega},$

 \mathbf{so}

 $q \Vdash_{\mathbb{P}} \check{a} \text{ is } a \subseteq^* \text{-lower bound of } \{ \dot{a}_{\xi} : \xi < \check{\kappa} \} \text{ in } [\mathbb{N}]^{\omega}.$

As $\langle \dot{a}_{\xi} \rangle_{\xi < \kappa}$ is arbitrary,

 $\models_{\mathbb{P}} \check{\kappa} < \mathfrak{t}.$

As κ is arbitrary,

 $\parallel_{\mathbb{P}} \check{\mathfrak{t}} \leq \mathfrak{t} \text{ so } \check{\mathfrak{t}} = \mathfrak{t}.$

(ii) Argue similarly, using the fact that $\mathfrak{p} \leq \mathfrak{t}$ so \mathbb{P} is \mathfrak{p} -closed.

4C Proposition Let $\dot{\mathcal{G}}$ be the \mathbb{P} -name $\{(\check{A}, A) : A \in [\mathbb{N}]^{\omega}\}$. Then

 $\parallel_{\mathbb{P}} \dot{\mathcal{G}}$ is a non-principal ultrafilter on \mathbb{N} .

proof It is easy to see that

Now if $A \in [\mathbb{N}]^{\omega}$ and \dot{C} is a \mathbb{P} -name such that $A \Vdash_{\mathbb{P}} \dot{C} \in [\mathbb{N}]^{\omega}$, there are a $C \subseteq \mathbb{N}$ and an infinite $A' \subseteq^* A$ such that $A' \Vdash \dot{C} = \check{C}$ (4Bb); now if $A' \cap C$ is infinite, $A' \cap C \Vdash \dot{C} \in \dot{\mathcal{G}}$; otherwise, $A' \setminus C$ is infinite and $A' \setminus C \Vdash \mathbb{N} \setminus \dot{C} \in \dot{\mathcal{G}}$. So $\Vdash_{\mathbb{P}} \dot{\mathcal{G}}$ is an ultrafilter. Finally, if $n \in \mathbb{N}$,

$$\mathbb{N} \subseteq^* \mathbb{N} \setminus \{n\} \Vdash \mathbb{N} \setminus \{n\} \in \mathcal{G}$$

and $\parallel_{\mathbb{P}} \dot{\mathcal{G}}$ is non-principal.

4D Proposition $\Vdash_{\mathbb{P}} \mathfrak{t} \leq \text{Chadd}_{<\omega}(\dot{\mathcal{G}}).$

proof Let \boldsymbol{P}, \hat{R} be \mathbb{P} -names such that

$$\Vdash_{\mathbb{P}} \dot{R} \subseteq \dot{P} \in \operatorname{Po}_{<\omega}(\dot{\mathcal{G}}), \dot{R} \text{ is well-ordered, } \operatorname{otp}(\dot{R}) < \mathfrak{t}.$$

We can suppose that

 $\Vdash_{\mathbb{P}}$ there is a sequence $\langle (P_n, \leq_n) \rangle_{n \in \mathbb{N}}$ of non-empty finite partially ordered sets such that $\dot{P} = \prod_{n \in \mathbb{N}} P_n | \dot{\mathcal{G}}.$

Take any $A \in [\mathbb{N}]^{\omega}$. By 4B(c-i), $\Vdash_{\mathbb{P}} \operatorname{otp}(\dot{R}) < \check{\mathfrak{t}}$ and there are a $B \in [A]^{\omega}$ and an ordinal $\alpha < \mathfrak{t}$ such that $B \Vdash \operatorname{otp}(\dot{R}) = \check{\alpha}$. Let $\langle \dot{\boldsymbol{p}}_{\boldsymbol{\xi}} \rangle_{\boldsymbol{\xi} < \alpha}$ be a family of \mathbb{P} -names such that

 $B \Vdash \langle \dot{\mathbf{p}}_{\xi} \rangle_{\xi < \check{\alpha}}$ is the increasing enumeration of \dot{R} .

Next, we have families $\langle (\dot{P}_n, \leq_n) \rangle_{n \in \mathbb{N}}$ and $\langle \dot{p}_{\xi n} \rangle_{\xi < \alpha, n \in \mathbb{N}}$ of \mathbb{P} -names such that

 $B \Vdash (\dot{P}_n, \leq_n)$ is a non-empty finite partially ordered set, $\dot{P} = \prod_{n \in \mathbb{N}} \dot{P}_n | \dot{\mathcal{G}}$, and $\dot{p}_{\xi} = \langle \dot{p}_{\xi n} \rangle_{n \in \mathbb{N}}^{\bullet}$

for every $\xi < \alpha$. Because \mathbb{P} is t-closed, there are an infinite $C \subseteq B$ and families $\langle (P_n, \leq_n) \rangle_{n \in \mathbb{N}}$ and $\langle p_{\xi n} \rangle_{\xi < \alpha, n \in \mathbb{N}}$ such that

 (P_n, \leq_n) is a non-empty finite partially ordered set and $p_{\xi n} \in P_n$,

 $C \Vdash (\dot{P}_n, \dot{\leq}_n) = (\check{P}_n, \check{\leq}_n)$ and $\dot{p}_{\xi n} = \check{p}_{\xi n}$

for every $n \in \mathbb{N}$ and $\xi < \alpha$.

For $\xi < \alpha$, set

$$E_{\mathcal{E}} = \{(n, p) : n \in C, p \in P_n, p_{\mathcal{E}n} \leq_n p\}.$$

If $\xi \leq \eta < \alpha$, then $E_{\eta} \setminus E_{\xi}$ is finite. **P?** Otherwise, set $D = \{n : \exists p, (n,p) \in E_{\eta} \setminus E_{\xi}\}$; because every P_n is finite, D is an infinite subset of C. If $n \in D$ there is a $p \in P_n$ such that $p_{\eta n} \leq p$ but $p_{\xi n} \not\leq_n p$, so that $p_{\xi n} \not\leq_n p_{\eta n}$; now

 $D \Vdash \check{p}_{\xi n} \check{\leq}_n \check{p}_{\eta n}$ for every $n \in \check{D}$,

so we have

$$D \Vdash \check{D} \in \dot{\mathcal{G}}$$
 and $\dot{p}_{\xi n} = \check{p}_{\xi n} \not\leq_n \check{p}_{\eta n} = \dot{p}_{\eta n}$ for every $n \in \check{D}$

and

$$D \Vdash \langle \dot{p}_{\xi n} \rangle_{n \in \mathbb{N}}^{\bullet} \not\leq \langle \dot{p}_{\eta n} \rangle_{n \in \mathbb{N}}^{\bullet},$$

contrary to the choice of $\langle \dot{p}_{\xi n} \rangle_{\xi < \alpha, n \in \mathbb{N}}$.

Since every E_{ξ} is a subset of the countable set $\{(n, p) : n \in C, p \in P_n\}$, and $cf \alpha < \mathfrak{t}$, there is an infinite $E \subseteq \{(n, p) : n \in C, p \in P_n\}$ such that $E \setminus E_{\xi}$ is finite for every $\xi < \alpha$. Now set $D = \{n : \exists p, (n, p) \in E\}$, so that D is infinite, and for each $n \in D$ take $q_n \in P_n$ such that $(n, q_n) \in E$; for other $n \in \mathbb{N}$ take any $q_n \in P_n$. In this case, for any $\xi < \alpha$,

$$\{n: n \in D, \, p_{\xi n} \not\leq q_n\} \subseteq \{n: n \in D, \, (n, q_n) \notin E_{\xi}\}$$

is finite, so

$$D \subseteq^* \{n : n \in D, (n, q_n) \in E_{\xi}\} \subseteq \{n : n \in \mathbb{N}, p_{\xi n} \le q_n\}.$$

But now observe that, writing D_{ξ} for $\{n : n \in D, p_{\xi n} \leq q_n\}$,

 $D \subseteq^* D_{\xi} \Vdash \check{D}_{\xi} \in \dot{\mathcal{G}}$ and $\dot{p}_{\xi n} \leq \check{q}_n$ for every $n \in \check{D}_{\xi}$, so that $\langle \dot{p}_{\xi n} \rangle_{n \in \mathbb{N}}^{\bullet} \leq \langle \check{q}_n \rangle_{n \in \mathbb{N}}^{\bullet}$ in $\dot{\boldsymbol{P}}$. As ξ is arbitrary,

 $D \models \langle \check{q}_n \rangle_{n \in \mathbb{N}}^{\bullet}$ is an upper bound for \dot{R} , and \dot{R} is bounded above in \dot{P} .

As A is arbitrary,

$$\Vdash_{\mathbb{P}} \dot{R}$$
 is bounded above.

As \dot{R} is arbitrary,

 $\parallel_{\mathbb{P}} \mathfrak{t} \leq \text{chadd} \dot{\boldsymbol{P}}.$

As \dot{P} is arbitrary,

 $\parallel_{\mathbb{P}} \mathfrak{t} \leq \mathrm{Chadd}_{<\omega}(\dot{\mathcal{G}}),$

as claimed.

4E Lemma Let \leq be the partial ordering on $\mathbb{N}^{\mathbb{N}}$ defined by saying that $f \leq g$ if either f = g or $\{n : g(n) \leq f(n)\}$ is finite. If $\kappa \leq \mathfrak{p}$ is an infinite cardinal and there is a peculiar (κ, \mathfrak{p}^*) -gap in $(\mathbb{N}^{\mathbb{N}}, \leq)$, then $\mathfrak{p} = \mathfrak{t}$.

proof (a) Let $(\langle f_{\xi} \rangle_{\xi < \kappa}, \langle g_{\eta} \rangle_{\eta < \mathfrak{p}})$ be such a gap; we can suppose that $f_{\xi}, g_{\eta} \leq g_{0}$ for every $\xi < \kappa$ and $\eta < \mathfrak{p}$. Let \dot{P} be a \mathbb{P} -name such that

$$- \mathbb{P} \dot{\boldsymbol{P}} = \prod_{n \in \mathbb{N}} (\check{g}_0(n) + 1) | \dot{\mathcal{G}} \in \mathrm{Lo}_{<\omega}(\dot{\mathcal{G}}).$$

Then for each $\xi < \kappa, \, \eta < \mathfrak{p}$ we have \mathbb{P} -names $\dot{p}_{\xi}, \, \dot{q}_{\eta}$ such that

$$\|\!|_{\mathbb{P}}\dot{\pmb{p}}_{\xi} = \check{f}^{ullet}_{\xi} \in \dot{\pmb{P}}, \, \dot{\pmb{q}}_{\eta} = \check{g}^{ullet}_{\eta} \in \dot{\pmb{P}}$$

Now from 4Ba and 4B(c-ii) we have

 $\|-\mathbb{P}\check{\kappa}$ is a cardinal less than \mathfrak{p} and $\check{f}_{\xi} \prec \check{f}_{\xi'} \prec \check{g}_{\eta'} \prec \check{g}_{\eta}$ whenever $\xi < \xi' < \check{\kappa}$ and $\eta < \eta' < \mathfrak{p}$; since we also know that $\|-\mathbb{P}\check{\mathcal{G}}$ is a free filter, we have

$$\|\!|_{\mathbb{P}} \dot{\boldsymbol{p}}_{\xi} < \dot{\boldsymbol{p}}_{\xi'} < \dot{\boldsymbol{q}}_{\eta'} < \dot{\boldsymbol{q}}_{\eta} \text{ whenever } \xi < \xi' < \check{\kappa} \text{ and } \eta < \eta' < \mathfrak{p}.$$

(b) ? If

 $\not\Vdash_{\mathbb{P}} (\langle \dot{\boldsymbol{p}}_{\xi} \rangle_{\xi < \check{\kappa}}, \langle \dot{\boldsymbol{q}}_{\eta} \rangle_{\eta < \mathfrak{p}}) \text{ is a } (\check{\kappa}, \mathfrak{p}^*) \text{-gap in } \dot{P},$

there are an $A \in [\mathbb{N}]^{\omega}$ and a \mathbb{P} -name \dot{h} such that

$$A \parallel \dot{h} \in \prod_{n \in \mathbb{N}} (\check{g}_0(n) + 1) \text{ and } \dot{p}_{\xi} \leq \dot{h}^{\bullet} \leq \dot{q}_{\eta} \text{ for every } \xi < \check{\kappa} \text{ and } \eta < \mathfrak{p}$$

Because \mathbb{P} is countably closed, there are an infinite $B \subseteq A$ and an $h \in \mathbb{N}^{\mathbb{N}}$ such that

$$B \Vdash \dot{h} = \check{h}$$

Next, for each $\xi < \kappa$, we have

$$B \Vdash \check{f}^{\bullet}_{\xi} < \check{h}^{\bullet},$$

that is,

$$B \models \{n : \mathring{f}_{\xi}(n) \le \mathring{h}(n)\} \in \dot{\mathcal{G}},$$

that is,

$$B \models \{n : f_{\xi}(n) < h(n)\} \in \dot{\mathcal{G}}_{\xi}$$

that is,

$$B \subseteq^* \{ n : f_{\xi}(n) < h(n) \}.$$

But this means that if we set

$$h'(n) = h(n) \text{ for } n \in B,$$

= $g_0(n) \text{ for } n \in \mathbb{N} \setminus B$

we shall have $f_{\xi} \prec h'$; and this is true for every $\xi < \kappa$. Because $(\langle f_{\xi} \rangle_{\xi < \kappa}, \langle g_{\eta} \rangle_{\eta < \mathfrak{p}})$ is a peculiar gap, there is an $\eta < \mathfrak{p}$ such that $g_{\eta} \preceq h'$, in which case $B \subseteq^* \{n : g_{\eta+1}(n) < h(n)\}$; running the argument above backwards, we see that

$$B \parallel \dot{\boldsymbol{q}}_{n+1} < \dot{h}^{\bullet},$$

contrary to the choice of A and \dot{h} . **X**

(c) We conclude that

 $\Vdash_{\mathbb{P}} (\langle \dot{\boldsymbol{p}}_{\boldsymbol{\xi}} \rangle_{\boldsymbol{\xi} < \check{\kappa}}, \langle \dot{\boldsymbol{q}}_{\eta} \rangle_{\eta < \mathfrak{p}}) \text{ is a } (\check{\kappa}, \mathfrak{p}^*) \text{-gap in } \dot{\boldsymbol{P}}, \text{ so that } \mathfrak{p} \geq \text{interp } \dot{\boldsymbol{P}}.$

But now 3F and 4D, together with the Forcing Theorem (KUNEN 80, VII.4.2), tell us that

$$\Vdash_{\mathbb{P}} \mathfrak{t} \leq \operatorname{Chadd}_{<\omega}(\mathcal{G}) \leq \operatorname{Interp}_{<\omega}(\mathcal{G}) \leq \operatorname{interp} \boldsymbol{P} \leq \mathfrak{p}.$$

Accordingly, by 4Bc,

 $\parallel_{\mathbb{P}} \check{\mathfrak{t}} \leq \check{\mathfrak{p}}$

and $\mathfrak{t} \leq \mathfrak{p}$, so in fact $\mathfrak{t} = \mathfrak{p}$.

4F Theorem (MALLIARIS & SHELAH 16)
$$\mathfrak{p} = \mathfrak{t}$$
.

proof ? Otherwise, there are an uncountable regular $\kappa < \mathfrak{p}$ and a (κ, \mathfrak{p}^*) -gap in $(\mathbb{N}^{\mathbb{N}}, \preceq)$, by SHELAH 09, 1.12 or FREMLIN N14, 2H (see parts (c)-(g) of the proof). And 4E tells us that this can happen only if $\mathfrak{p} = \mathfrak{t}$.

Acknowledgements Correspondence with M.Malliaris, J.T.Moore, J.Steprāns. I am grateful to M.Goldstern for pointing out errors and obscurities in earlier drafts.

References

Fremlin D.H. [08] *Measure Theory, Vol. 5: Set-theoretic Measure Theory.* Torres Fremlin, 2008 (http://www.lulu.com/content/3365665, http://www.lulu.com/content/4745305).

Fremlin D.H. [n14] 'm, p and t, following SHELAH 885', note of 28.5.14.

Kunen K. [80] Set Theory. North-Holland, 1980.

Malliaris M. & Shelah S. [16] 'Cofinality spectrum theorems in model theory, set theory and general topology', J. Amer. Math. Soc. 29 (2016) 237-297. http://math.uchicago.edu/~mem/Malliaris-Shelah-CST-new.pdf.

Shelah S. [09] 'A comment on " $\mathfrak{p} < \mathfrak{t}$ "', Canadian Math. Bull. 52 (2009) 303-314. Steprāns J. [n13] ' $\mathfrak{p} = \mathfrak{t}$ ', 2013.