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D.H.Fremlin

University of Essex, Colchester, England

I attempt a proof, based on that sketched in Steprāns n13, of the theorem in Malliaris &

Shelah 16 that p = t.

1 Gaps, interpolation and chain-additivity

1A Definitions Let P be a partially ordered set and λ, κ non-zero cardinals.

(a) A (λ, κ∗)-gap in P is a pair (〈xξ〉ξ<λ, 〈yξ〉η<κ) of families in P such that

xξ < xξ′ ≤ yη′ < yη whenever ξ < ξ′ < λ and η < η′ < κ,
there is no z ∈ P such that xξ ≤ z ≤ yη whenever ξ < λ and η < κ.

(a) A peculiar (λ, κ∗)-gap in P is a pair (〈xξ〉ξ<λ, 〈yξ〉η<κ) of families in P such that

xξ < xξ′ ≤ yη′ < yη whenever ξ < ξ′ < λ and η < η′ < κ,
whenever z ∈ P is such that z ≤ yη for every η < κ, there is a ξ < λ such that z ≤ xξ,
whenever z ∈ P is such that xξ ≤ z for every ξ < λ, there is an η < κ such that yη ≤ z.

1B Definitions Let (P,≤) be a partially ordered set.

(a) The chain-additivity of P , chaddP , is the least cardinal of any totally ordered subset of P with no
upper bound in P ; or ∞ if there is no such set.

Note that chaddP is either 0 (if P is empty) or ∞ (if every maximal chain in P has a greatest member)
or a regular infinite cardinal κ, and in the last case there is a strictly increasing family 〈pξ〉ξ<κ in P with
no upper bound in P .

If P is upwards-directed then chaddP = addP as defined in Fremlin 08, 511Bb.

(b)(i) If κ is a cardinal, say that P has the < κ-interpolation property if whenever A, B ⊆ P are
non-empty, a ≤ b for every a ∈ A and b ∈ B, and max(#(A),#(B)) < κ, then there is a c ∈ P such that
a ≤ c ≤ b whenever a ∈ A and b ∈ B.

(ii) The interpolation number of P , interpP , is the greatest cardinal κ such that P has the < κ-
interpolation property, or ∞ if there is no such κ. (For this use of ‘∞’, see Fremlin 08, 511C.)

Note that interpP = ∞ iff P is Dedekind complete, and that interpP ≥ ω if P is a lattice.

1C Lemma Suppose that P is a lattice. Write chgapP for the least cardinal κ such that there is a
(λ0, λ

∗
1)-gap in P with cardinals λ0, λ1 ≤ κ, or ∞ if there is no such κ. Then interpP = chgapP .

proof (a) Suppose that (〈xξ〉ξ<λ0
, 〈yξ〉η<λ1

) is a (λ0, λ
∗
1)-gap. Then {xξ : ξ < λ0}, {yη : η < λ1} witness

that interpP ≤ max(λ0, λ1). As (〈xξ〉ξ<λ0
, 〈yξ〉η<λ1

) is arbitrary, interpP ≤ chgapP .

(b) Suppose that A, B ⊆ P are non-empty sets with cardinal less than chgapP and a ≤ b for every
a ∈ A and b ∈ B.

(i) If A is well-ordered and B is downwards well-ordered (that is, (B,≥) is well-ordered), then there is
a c ∈ P such that a ≤ c ≤ b for every a ∈ A and b ∈ B. PPP Set λ0 = cfA, λ1 = ciB, and let 〈xξ〉ξ<λ0

be the
increasing enumeration of a cofinal subset of A with cardinal λ0, and 〈yη〉η<λ1

the decreasing enumeration
of a coinitial subset of B with cardinal λ1; then λ0 ≤ #(A) < chgapP and λ1 ≤ #(B) < chgapP , so
(〈xξ〉ξ<λ0

, 〈yη〉η<λ1
) cannot be a (λ0, λ

∗
1)-gap and there must be a c ∈ P such that xξ ≤ c ≤ yη for all ξ and

η, so that a ≤ c ≤ b whenever a ∈ A and b ∈ B. QQQ

(ii) If A is well-ordered then there is a c ∈ P such that a ≤ c ≤ b for every a ∈ A and b ∈ B. PPP If B is
finite, this is trivial, as inf B is defined in P . So suppose that B is infinite. Set λ0 = cfA and let 〈xξ〉ξ<λ0

be the increasing enumeration of a cofinal subset of A with cardinal λ0; of course λ0 < chgapP . Set
1
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A′ = {y : a ≤ y for every a ∈ A} = {y : xξ ≤ y for every ξ < λ0} ⊇ B.

Enumerate B as 〈bη〉η<λ1
, where λ1 < chgapP , and choose a non-increasing family 〈yη〉η≤λ1

in A′ induc-
tively, as follows. Start with y0 = b0. Given yη, where η < λ1, set yη+1 = yη ∧ bη. Given a non-zero limit
ordinal β ≤ λ1 and a non-increasing family 〈yη〉η<β in A′, the set {yη : η < β} is downwards well-ordered
and has cardinal at most #(β) ≤ λ1 < chgapP , so by (ii) there is a yβ ∈ P such that aξ ≤ yβ ≤ yη for
every ξ < λ0 and η < β, and the induction continues.

At the end of the induction, consider c = yλ1
. Then c ∈ A′; since also c ≤ yη+1 ≤ bη for every η < λ1, c

serves. QQQ

(iii) In any case, there is a c ∈ P such that a ≤ c ≤ b for every a ∈ A and b ∈ B. PPP If A is finite,
take c = supA. Otherwise, enumerate A as 〈aξ〉ξ<λ0

and choose 〈xξ〉ξ≤λ0
inductively, as follows. Start with

x0 = a0. If ξ < λ0, set xξ+1 = xξ ∨ aξ. If α ≤ λ0 is a non-zero limit ordinal, (ii) tells us that there is an
xα ∈ P such that xξ ≤ xα ≤ b whenever ξ < α and b ∈ B. At the end of the induction, take c = xλ0

.

(iv) As A and B are arbitrary, chgapP ≤ interpP and the two are equal.

1D Lemma Let P be a lattice with the < ω1-interpolation property which is not Dedekind σ-complete.
Then interpP ≤ #(P ).

proof (a) Suppose that there is a countable subset A of P with an upper bound but no least upper bound.
Then A must be infinite; let 〈pn〉n∈N be an enumeration of A, and set p′n = supi≤n pi, so that 〈p′n〉n∈N is a
non-decreasing sequence which is not eventually constant, and has a strictly increasing subsequence 〈p′′n〉n∈N.
Let B the set of upper bounds of A. Because B has no infimum, it is surely infinite; set κ = #(B) and
enumerate B as 〈qη〉η<κ. Choose 〈q′η〉η<β in B as follows. Start with q′0 = q0. Given q′η ∈ B, q′η is not the
least member of B, so there is a first ζη < κ such that q′η 6≤ qζη ; set q

′
η+1 = q′η ∧ qζη . Given 〈q′η′〉η′<η where

η < κ is a non-zero limit ordinal, then if there is a member of B less than or equal to q′η′ for every η′ < η,

take such a member for q′η; otherwise set β = η and stop. If the induction continues to the end, then there
cannot be a member of B less than or equal to q′η+1 ≤ qη for every η < κ, so set β = κ.

Thus we have a strictly decreasing family {q′η : η < β} in B with no lower bound in B, where ω ≤
β ≤ κ ≤ #(P ). Set λ = cfβ and let 〈ηθ〉λ<θ be the increasing enumeration of a cofinal subset of β. Then
(〈p′′n〉n∈N, 〈q

′
ηθ
〉θ<λ) is an (ω, λ∗)-gap in P . As P has the < ω1-interpolation property, λ > ω, so

interpP ≤ λ ≤ β ≤ κ ≤ #(P ).

(b) If there is a countable subset of P with a lower bound but no greatest lower bound, argue similarly,
or apply (a) to (P,≥).

1E Definitions (a) Write p for the least cardinal of any downwards-directed set A ⊆ [N]ω for which
there is no b ∈ [N]ω such that b \ a is finite for every a ∈ A.

(b) Write t for the least cardinal κ for which there is a family 〈aξ〉ξ<κ in [N]ω such that aη \ aξ is finite
whenever ξ < η < κ, but there is no a ∈ [N]ω such that a \ aξ is finite for every ξ < κ.

2 Reduced products and internal sets
Most of the rest of the arguments in this note will be based on a fragment of the model theory of

ultrapowers. For the next few sections, fix an ultrafilter F on a set I.

2A Suppose that Xi is a non-empty set for each i ∈ I,

(a) We have an equivalence relation on
∏

i∈I Xi given by saying that 〈xi〉i∈I ∼ 〈yi〉i∈I if {i : xi = yi}
belongs to F . I will write 〈xi〉

•

i∈I for the equivalence class of 〈xi〉i∈I . The set of equivalence classes is the
reduced product of 〈Xi〉i∈I mod F , which I will denote

∏
i∈I Xi|F . (See Fremlin 08, 5A2A.)

(b) A subset ZZZ ofXXX is internal if it corresponds to a member of
∏

i∈I PXi|F , that is, if there is a family
〈Zi〉i∈I such that Zi ⊆ Xi for every i ∈ I and ZZZ = {〈xi〉

•

i∈I : {i : xi ∈ Zi} ∈ F ; note that if every Zi is
non-empty this is in a natural one-to-one correspondence with

∏
i∈I Zi|F .

(c) Because F is an ultrafilter, the family of internal subsets of XXX is an algebra of sets containing all
singleton sets, therefore every finite subset of XXX.

Measure Theory
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(d) If ZZZ is a non-empty internal subset of XXX, then a subset of ZZZ is internal in ZZZ iff it is internal in XXX. PPP
QQQ

(e) Generally, when I use an italic bold upper-case letter like XXX or PPP , you should take it that I am
thinking of a set together with an associated structure of internal sets.

2B Let XXX =
∏

i∈I Xi|F and YYY =
∏

i∈I Yi|F be two reduced products mod F . Then we have a natural
bijection between XXX × YYY and

∏
i∈I Xi × Yi|F , identifying (〈xi〉

•

i∈I , 〈yi〉
•

i∈I) with 〈(xi, yi)〉
•

i∈I . This gives
us an associated notion of ‘internal’ subset of XXX × YYY , being one corresponding to an internal subset of∏

i∈I Xi × Yi|F .
The same idea applies to products of any finite number of reduced products mod F .

2C Again suppose that XXX =
∏

i∈I Xi|F and YYY =
∏

i∈I Yi|F are two reduced products mod F .

(a) If ZZZ ⊆XXX and WWW ⊆ YYY are internal, then ZZZ ×WWW is an internal subset of XXX × YYY .

(b) If WWW is an internal subset of XXX × YYY and ZZZ is an internal subset of XXX, then WWW [ZZZ] is an internal
subset of YYY . (For if WWW corresponds to 〈Wi〉i∈I and ZZZ to 〈Zi〉i∈I , then WWW [ZZZ] corresponds to 〈Wi[Zi]〉i∈I .) In
particular, any section WWW [{xxx}], where xxx ∈XXX, is an internal subset of YYY .

(c) If Wi ⊆ Xi × Yi is the graph of a function for each i, then the corresponding internal relation
WWW ⊆ XXX × YYY will be the graph of a function, its domain being the internal subset of XXX corresponding to
〈domWi〉i∈I .

(d) If Xi = Yi and Wi is a partial order on Xi for each i, then WWW will be a partial order on XXX. If
Xi = Yi and Wi is a total order on Xi for each i, then WWW will be a total order on XXX. If Xi = Yi and Wi

is a well-ordering of Xi for each i, then every non-empty internal subset of XXX will have a WWW -least member.
(For if ZZZ ⊆XXX corresponds to 〈Zi〉i∈I and xxx = 〈xi〉

•

i∈I ∈ ZZZ, define 〈zi〉i∈I by saying that

zi is the Wi-least member of Zi if Zi 6= ∅,

= xi otherwise;

then 〈zi〉
•

i∈I is the WWW -least member of ZZZ.)

(e) Conversely, if WWW is an internal subset of XXX ×XXX and is a partial order, then there is a family 〈Wi〉i∈I

such thatWi is a partial order onXi for each i andWWW corresponds to 〈Wi〉i∈I . PPP By the definition of ‘internal
subset of XXX ×XXX’ there is a family 〈W ′

i 〉i∈I such that WWW corresponds to 〈W ′
i 〉i∈I . Set ∆i = {(x, x) : x ∈ Xi}

for i ∈ I. Now consider

J = {i : W ′
i 6⊇ ∆i}, K = {i : W ′

i
◦W ′

i 6⊆ W ′
i} L = {i : Wi ∩W−1

i 6⊆ ∆i}.

??? If J ∈ F , take xi ∈ Xi such that (xi, xi) /∈ W ′
i for i ∈ J and set xxx = 〈xi〉

•

i∈I ; then (xxx,xxx) /∈WWW . XXX
??? If K ∈ F , take xi, yi, zi ∈ Xi such that, for i ∈ K, (xi, yi) ∈ W ′

i , (yi, zi) ∈ W ′
i but (xi, zi) /∈ W ′

i ;
setting xxx = 〈xi〉

•

i∈I , yyy = 〈yi〉
•

i∈I and zzz = 〈zi〉
•

i∈I , (xxx,yyy) ∈WWW and (yyy,zzz) ∈WWW but (xxx,zzz) /∈WWW . XXX
??? If L ∈ F , take xi, yi ∈ Xi such that, for i ∈ L, (xi, yi) ∈ W ′

i and (yi, xi) ∈ W ′
i but xi 6= yi. Setting

xxx = 〈xi〉
•

i∈I and yyy = 〈yi〉
•

i∈I , (xxx,yyy) ∈WWW and (yyy,xxx) ∈WWW but xxx 6= yyy. XXX
Consequently, M = I \ (J ∪ K ∪ L) belongs to F , while W ′

i is a partial order on Xi for every i ∈ M .
Setting Wi = W ′

i for i ∈ M , Wi = ∆i for i ∈ J ∪K ∪ L, we have a suitable family. QQQ

(f) If WWW is an internal subset of XXX × YYY , then its projection {xxx : ∃ yyy, (xxx,yyy) ∈ WWW} is an internal subset
of XXX. PPP If WWW corresponds to 〈Wi〉i∈I , consider Ai = {x : ∃ y, (x, y) ∈ Wi} for each i ∈ I. QQQ Hence, or
otherwise, {xxx : (xxx,yyy) ∈WWW for every yyy ∈ YYY } is an internal subset of XXX.

2D Power sets (a) Once more, suppose that we have a family 〈Xi〉i∈I of non-empty sets and the reduced
product XXX =

∏
i∈I Xi|F . Then we can form the reduced product

∏
i∈I PXi|F .

(b) If 〈Zi〉i∈I and 〈Z ′
i〉i∈I belong to

∏
i∈I PXi, and we look at the corresponding internal sets ZZZ, ZZZ ′ as

defined in 2Ab, we find that ZZZ = ZZZ ′ iff {i : Zi = Z ′
i} ∈ F . PPP If J = {i : Zi = Z ′

i} belongs to F , then for
any 〈xi〉i∈I ∈

∏
i∈I Xi

D.H.Fremlin
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〈xi〉
•

i∈I ∈ ZZZ ⇐⇒ {i : i ∈ I, xi ∈ Zi} ∈ F ⇐⇒ {i : i ∈ J, xi ∈ Zi} ∈ F

⇐⇒ {i : i ∈ J, xi ∈ Z ′
i} ∈ F ⇐⇒ 〈xi〉

•

i∈I ∈ ZZZ ′

and ZZZ = ZZZ ′. If K = {i : Zi 6⊆ Z ′
i} belongs to F , choose zi ∈ Zi \Z

′
i for i ∈ K, and take 〈zi〉

•

i∈I ∈ ZZZ \ZZZ ′ and
ZZZ 6= ZZZ ′. Similarly, ZZZ 6= ZZZ ′ if {i : Z ′

i 6⊆ Zi} ∈ F . So if J /∈ F then zzz 6= ZZZ ′. QQQ

(c) Thus we have a natural bijection between the reduced product
∏

i∈I PXi|F and the algebra PXPXPX of
internal subsets of XXX. Accordingly we have a notion of internal subset of PXPXPX, being one corresponding to
a family 〈Ai〉i∈I where Ai ⊆ Xi for each i, so that PPXPPXPPX can be identified with

∏
i∈I PPXi|F .

(d) In 2Ae I spoke of a ‘structure of internal sets’; the vagueness was deliberate, as I intended to include
not only the subalgebra PXPXPX of PXXX but the repeated sets-of-internal-sets algebras PPXPPXPPX, PPPXPPPXPPPX and so on.
(For this note, happily, we do not have to go far along this road.)

2E Proposition Let 〈Xi〉i∈I be a family of non-empty sets, and XXX =
∏

i∈I Xi|F their reduced product.
Then the relation ⊆ on PXPXPX is internal.

proof As in 2D, we can identify PXPXPX with
∏

i∈I PXi|F , so that we think of internal subsets of XXX as
equivalence classes 〈Zi〉

•

i∈I where Zi ⊆ Xi for i ∈ I. Now if we have two families 〈Wi〉i∈I , 〈Zi〉i∈I ∈
∏

i∈I PXi

representing internal sets WWW , ZZZ ⊆ XXX, we have WWW ⊆ ZZZ iff J = {i : Wi ⊆ Zi} belongs to F . PPP This is a
trifling refinement of 2Db. If J ∈ F and xxx = 〈xi〉

•

i∈I ∈WWW , then {i : xi ∈ Zi} ⊇ J ∩ {i : xi ∈ Wi} belongs to
F and xxx ∈ ZZZ. If I \ J ∈ F , choose xi ∈ Wi \ Zi for i ∈ I \ J , xi ∈ Xi for i ∈ J ; then xxx = 〈xi〉

•

i∈I belongs to
WWW \ZZZ and WWW 6⊆ ZZZ. QQQ

Now this means that if we look at the internal subset of PXPXPX×PXPXPX corresponding to the family 〈⊆i〉i∈I ∈∏
i∈I PXi × PXi, where ⊆i= {(W,Z) : W ⊆ Z ⊆ Xi} for each i, we find that it is precisely the relation ⊆.

2F Definitions (a) Let Ufm<ω(F) be the class of structures isomorphic to structures
∏

i∈I Xi|F , to-
gether with the corresponding algebras of internal sets, where every Xi is finite and not empty.

(b) Let Po<ω(F) be the class of non-empty partially ordered sets (PPP ,≤≤≤) where PPP ∈ Ufm<ω(F) and ≤≤≤ is
an internal relation on PPP which is a partial order. As noted in 2Ce, we must then be able to identify (PPP ,≤≤≤)
with a structure

∏
i∈I(Pi,≤i)|F where Pi is finite and ≤i is a partial order on Pi for every i.

(c) Let Lo<ω(F) ⊆ Po<ω(F) be the class of non-empty totally ordered sets belonging to Po<ω(F). If
(XXX,≤≤≤) ∈ Lo<ω(F), we can identify it with a structure

∏
i∈I(Xi,≤i)|F where Xi is finite and ≤i is a total

order on Xi for every i.

2G Proposition (a) IfXXX ∈ Ufm<ω(F) and ZZZ is a non-empty internal subset ofXXX, then ZZZ ∈ Ufm<ω(F).
(b) If XXX ∈ Ufm<ω(F) then PXPXPX ∈ Ufm<ω(F).
(c) If XXX, YYY ∈ Ufm<ω(F) then XXX × YYY ∈ Ufm<ω(F).

proof (a) If XXX ∼=
∏

i∈I Xi|F where Xi is finite for every i ∈ I, then ZZZ ∼=
∏

i∈I Zi|F where Zi ⊆ Xi is finite
for every i ∈ I.

(b) If XXX ∼=
∏

i∈I Xi|F where Xi is finite for every i ∈ I, then PXPXPX ∼=
∏

i∈I PXi|F and PXi is finite for
every i ∈ I.

(c) If XXX ∼=
∏

i∈I Xi|F and YYY ∼=
∏

i∈I Yi|F where Xi and Yi are finite for every i ∈ I, then XXX × YYY ∼=∏
i∈I Xi × Yi|F and Xi × Yi is finite for every i ∈ I.

2H Lemma (a) Suppose that (PPP ,≤≤≤) ∈ Po<ω(F). Then every non-empty internal subset of PPP has a
maximal element.

(b) Suppose that (PPP ,≤≤≤) ∈ Lo<ω(F).
(i) (PPP ,≤≤≤) is isomorphic to (PPP ,≥≥≥).
(ii) Every non-empty internal subset of PPP has greatest and least members.

proof (a) The point is just that this is true for all finite partially ordered sets, and it is a first-order property.
More explicitly, if (PPP ,≤≤≤) ∼=

∏
i∈I(Pi,≤i)|F , and ZZZ is a non-empty internal subset of PPP , then ZZZ corresponds

Measure Theory
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to
∏

i∈I Zi where Zi ⊆ Pi is non-empty for every i ∈ I. Now if zi ∈ Zi is ≤i-maximal for every i, zzz = 〈zi〉
•

i∈I

is ≤≤≤-maximal in ZZZ.

(b)(i) In this case,

(PPP ,≥≥≥) ∼=
∏

i∈I(Pi,≥)|F ∼=
∏

i∈I(Pi,≤)|F ∼= (PPP ,≤≤≤). QQQ

(ii) This is a special case of (a).

2I Lemma If PPP ∈ Lo<ω(F) is infinite, then ω1 ≤ interpPPP ≤ ω#(I).

proof We can suppose that PPP is a reduced product
∏

i∈I(Pi,≤i) where every Pi is finite and every ≤i is a
total order.

(a) PPP has the < ω1-interpolation property. PPP If 〈pppk〉k∈N and 〈qqqk〉k∈N are sequences in PPP with pppj ≤ qqqk
for all j, k ∈ N, express pppk as 〈pki〉

•

i∈I and qqqk as 〈qki〉
•

i∈I , where pki, qki ∈ Pi for i ∈ I and k ∈ N. Set

Al = {i : i ∈ I, pji ≤ qki whenever j, k < l},

so that 〈Al〉l∈N is a non-increasing sequence in F starting with A0 = I. Set

p∗i = max({p0i} ∪ {pji : j < l}) if i ∈ Al \Al+1,

= max{pji : j ∈ N} if i ∈
⋂

l∈N

Al.

Then

{i : pki ≤ p∗i ≤ qki} ⊇ Ak+1 ∈ F

for every k, so

pppk ≤ 〈p∗i 〉
•

i∈I ≤ qqqk

for every k ∈ N. QQQ

(b) There is a sequence 〈pppk〉k∈N in PPP with no supremum in PPP . PPP Let 〈p′ki〉k<#(Pi) be the increasing
enumeration of Pi for each i. As PPP is infinite, Ak = {i : #(Pi) ≥ k} ∈ F for each k. So if we set

pki = p′ki if k < #(Xi),

= maxPi if k ≥ #(Xi),

pppk = 〈pki〉
•

i∈I

for k ∈ N, 〈pppk〉k∈N will be strictly increasing. If qqq = 〈qi〉
•

i∈I is an upper bound for {pppk : k ∈ N}, and we take
qqq′ = 〈q′i〉i∈I ∈

∏
i∈I Xi such that q′i is the predecessor of qi in Pi whenever qi 6= minPi, then qqq′ < qqq and qqq′

is still an upper bound of {pppk : k ∈ N}, so {pppk : k ∈ N} has no least upper bound. QQQ

(c) Since PPP has a greatest member 〈maxPi〉
•

i∈I , 1D tells us that

interpPPP ≤ #(PPP ) ≤ #(
∏

i∈I Pi) ≤ ω#(I).

3 Interp<ω and Chadd<ω

As in §2, take a fixed ultrafilter F on a fixed set I.

3A Definitions (a) Write Interp<ω(F) for min{interpPPP : PPP ∈ Lo<ω(F)}.

(b) Write Chadd<ω(F) for min{chaddPPP : PPP ∈ Po<ω(F)}.

3B Lemma Suppose that XXX ∈ Lo<ω(F) and that we have sets A ⊆XXX, Z ⊆ PPPXXX) such that #(A), #(Z)
are both less than min(Chadd<ω(F), interpXXX) and every member of Z is an internal set including A. Then
there is an internal set ZZZ∗ ⊆XXX such that A ⊆ ZZZ∗ ⊆

⋂
Z.

Remark Note that there is no suggestion that A or Z should be an internal set.

D.H.Fremlin
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proof (a) If either A or Z is finite, the result is trivial. Otherwise, set κ = max(#(A),#(Z)) and let
〈xxxξ〉ξ<κ, 〈ZZZξ〉ξ<κ run over A, Z respectively.

Because interpXXX < ∞ (2I), we have a (λ0, λ
∗
1)-gap inXXX with max(λ0, λ

∗
1) = interpXXX; as (XXX,≤≤≤) ∼= (XXX,≥≥≥),

we can suppose that λ1 ≤ λ0 and we have a strictly increasing family 〈yyyη〉η<interpXXX in XXX.
Let PPP = PPP (XXX × XXX) be the set of internal subsets of XXX × XXX. For ppp ∈ PPP and eee ∈ XXX, write ppp⌈eee for

{(min(zzz,eee),xxx) : (zzz,xxx) ∈ ppp}. Observe that (ppp⌈eee)⌈eee′ = ppp⌈min(eee,eee′) for all ppp, eee and eee′, so we have a partial
order ≤≤≤ on PPP defined by saying that ppp′ ≤≤≤ ppp if there is an eee ∈XXX such that ppp′ = ppp⌈eee. Now (PPP ,≤≤≤) ∈ Po<ω(F).
PPP We have just to repeat the formula in each coordinate. Suppose that (XXX,≤≤≤) is isomorphic to the reduced
product

∏
i∈I(Xi,≤i)|F where (Xi,≤i) is a finite totally ordered set for each i. If i ∈ I, p ⊆ X2

i and e ∈ Xi,

set p⌈e = (min(z, e), x) : (z, x) ∈ p}; for p′, p ⊆ X2
i say that p′ ≤i p if there is an e ∈ Xi such that p′ = p⌈e.

If now ppp′, ppp ∈ PPP , we can identify them with 〈p′i〉
•

i∈I , 〈pi〉
•

i∈I respectively, where pi, p
′
i ⊆ X2

i for each i (2B).
If eee corresponds to 〈ei〉

•

i∈I ∈
∏

i∈I Xi|F , ppp⌈eee corresponds to 〈pi⌈ei〉
•

i∈I . So if ppp′ ≤ ppp, {i : p′i ≤i pi} belongs
to F ; and, conversely, if J = {i : p′i ≤i pi} belongs to F , we can find a family 〈ei〉i∈I ∈

∏
i∈I Xi such

that J ⊇ {i : p′i = pi⌈ei}, in which case ppp′ ≤≤≤ ppp. Thus PPP is isomorphic to 〈(P(X2
i ),≤i)〉

•

i∈I and belongs to
Po<ω(F). QQQ

(b) Choose a non-decreasing family 〈pppη〉η≤κ in PPP inductively, as follows. The inductive hypothesis will
be that pppη ∈ PPP , pppη′ = pppη⌈yyyη′ whenever η′ ≤ η, and (yyyη,xxxξ) ∈ pppη whenever ξ < κ.

Start with ppp0 = {yyy0} ×XXX. Given pppη where η < κ, set

pppη+1 = pppη ∪ {(yyyη+1,xxx) : (yyyη,xxx) ∈ pppη, xxx ∈ ZZZη}.

Then pppη = pppη+1⌈yyyη ≤ pppη+1, and (yyyη+1,xxxξ) ∈ pppη+1 whenever ξ < κ, because xxxξ ∈ A ⊆ ZZZη ∈ Z.
For the inductive step to a non-zero limit ordinal η ≤ κ, we have

cf η ≤ κ < Chadd<ω(F) ≤ chaddPPP ,

so there is an upper bound ppp′ of {pppη′ : η′ < η} in PPP . For each ξ < κ, set

eeeξ = max{zzz : (zzz,xxxξ) ∈ ppp′}

which is defined because ppp′ is an internal subset of XXX2, so {zzz : (zzz,xxxξ) ∈ ppp′} is an internal subset of XXX,
and is non-empty because (yyy0,xxxξ) ∈ ppp0 = ppp′⌈yyy0. If η′ < η, then (yyyη′ ,xxxξ) ∈ pppη′ = ppp′⌈yyyη′ , so yyyη′ ≤ eeeξ and
yyyη′ ≤ min(yyyη, eeeξ). Because κ < interpXXX, there must be an eee ∈XXX such that yyyη′ ≤ eee ≤ min(yyyη, eeeξ) whenever
η′ < η and ξ < κ. Set

ppp′′ = ppp′⌈eee, pppη = ppp′′ ∪ {(yyyη,xxx) : (eee,xxx) ∈ ppp′′}.

For η′ < η, we have

pppη′ = ppp′⌈yyyη′ = ppp′′⌈yyyη′ = pppη⌈yyyη′ ≤ pppη,

while if ξ < κ then (eeeξ,xxxξ) ∈ ppp′, (eee,xxxξ) ∈ ppp′′ and (yyyη,xxxξ) ∈ pppη. Of course zzz ≤ yyyη whenever (zzz,xxx) ∈ pppη, so
the induction continues.

(c) At the end of the induction, set ZZZ∗ = {xxx : (yyyκ,xxx) ∈ pppκ}. Then ZZZ∗ is an internal set because pppκ is,
and contains every xxxξ by the construction of pppκ. If η < κ and xxx ∈ ZZZ∗, then

(yyyη+1,xxx) = (min(yyyκ, yyyη+1),xxx) ∈ pppκ⌈yyyη+1 = pppη+1,

so xxx ∈ ZZZη. Thus A ⊆ ZZZ∗ ⊆
⋂
Z, as required.

3C Corollary Suppose that XXX ∈ Lo<ω(F) and hhh :XXX ×XXX →XXX is an internal function. Let A ⊆XXX and
www ∈ XXX be such that hhh(xxx,xxx′) ≤ www for all xxx, xxx′ ∈ A and #(A) < min(Chadd<ω(F), interpXXX). Then there is
an internal set DDD ⊆XXX such that A ⊆DDD and hhh(xxx,xxx′) ≤ www for all xxx, xxx′ ∈DDD.

proof For xxx ∈ A, set ZZZxxx = {xxx′ : xxx′ ∈ XXX, hhh(xxx,xxx′) ≤ www}. Then ZZZxxx is an internal subset of XXX including A.
Applying 3B to A and Z = {ZZZxxx : xxx ∈ A}, we see that there is an internal set ZZZ ⊆XXX such that A ⊆ ZZZ ⊆ ZZZxxx

for every xxx ∈ A. Now

DDD = {xxx : xxx ∈ ZZZ, hhh(xxx,xxx′) ≤ www for every xxx′ ∈ ZZZ}

is an internal set including A, and hhh(xxx,xxx′) ≤ www for all xxx, xxx′ ∈DDD.
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3D Lemma Suppose that XXX ∈ Po<ω(F) and that YYY ∈ Ufm<ω(F). Let D ⊆ XXX be a well-ordered set
with order type less than Chadd<ω(F), and F : D → YYY a function. Then there is an internal function
hhh :XXX → YYY extending F .

proof (a)Write α for otpD. Let PPP be the set of internal partial functions from subsets ofXXX to YYY , that is, the
set of internal subsets ppp of XXX ×YYY such that yyy = yyy′ whenever (xxx,yyy) and (xxx,yyy′) ∈ ppp. Then (PPP ,⊆) ∈ Po<ω(F),
being isomorphic to

∏
i∈I(Pi,⊆)|F where each Pi is the set of partial functions from subsets of Xi to Yi.

(See 2Ce.) So α < chaddPPP .
Let 〈dddβ〉β<α be the increasing enumeration of D.

(b) Choose a non-decreasing family 〈pppβ〉β<α inductively, as follows. The inductive hypothesis will be
that pppβ ∈ PPP and dddβ is the greatest element of dompppβ . Start with ppp0 = {(ddd0, F (ddd0))}. Given 〈pppγ〉γ<β , where
β < α, this is a totally ordered subset of PPP of cofinality less than chaddPPP , so has an upper bound qqq ∈ PPP ;
set

pppβ = {(xxx,yyy) : (xxx,yyy) ∈ qqq, xxx < dddβ} ∪ {(dddβ , F (dddβ)}.

(c) At the end of the induction, 〈pppβ〉β<α is still a totally ordered subset of PPP with cofinality less than
chaddPPP , so has an upper bound qqq∗ ∈ PPP ; let hhh be any internal function extending qqq∗ to a function from XXX
to YYY . Now

hhh(dddβ) = qqq∗(dddβ) = pppβ(dddβ) = F (dddβ)

for every β < α, so hhh ⊇ F .

3E Lemma Suppose thatXXX ∈ Po<ω(F) and that YYY ∈ Ufm<ω(F). Suppose that D ⊆XXX is a well-ordered
set with order type less than Chadd<ω(F), and F : D2 → YYY a function. Then there is an internal function
from XXX2 to YYY extending F .

proof Set ZZZ =
∏

i∈I Zi|F , where Zi is the set of functions from Xi to Yi for each i ∈ I; note that each Zi

is finite. For ddd ∈ D, define Fddd : D → YYY by setting Fddd(ddd
′) = F (ddd,ddd′) for ddd′ ∈ D. By 3D, we have an internal

function hhhddd :XXX → YYY extending Fddd, and hhhddd can be represented by a member zzzd of ZZZ.
By 3D again, there is an internal function hhh′ : XXX → ZZZ such that hhh′(ddd) = zzzddd for every ddd ∈ D. Suppose

that hhh′ corresponds to 〈h′
i〉i∈I where h′

i : Xi → Zi is a function for each i. If we set hi(x, x
′) = h′

i(x)(x
′) for

x, x′ ∈ Xi, then 〈hi〉i∈I corresponds to an internal function hhh :XXX2 → YYY . If ddd, ddd′ ∈ D correspond to 〈di〉
•

i∈I

and 〈d′i〉
•

i∈I respectively, then hhh(ddd,ddd′) corresponds to

〈hi(di, d
′
i)〉

•

i∈I = 〈h′
i(di)(d

′
i)〉

•

i∈I = 〈h′
i(di)〉

•

i∈I(〈d
′
i〉

•

i∈I)

and

hhh(ddd,ddd′) = hhh′(ddd)(ddd′) = hhhddd(ddd
′) = Fddd(ddd

′) = F (ddd,ddd′).

So hhh extends F , as required.

3F Lemma If XXX ∈ Lo<ω(F), κ is a cardinal and there is a (κ, κ∗)-gap in XXX, then Chadd<ω(F) ≤ κ.

proof (a) Of course XXX must be infinite. Consider the partial ordering 4 on [XXX]2 defined by saying that
I 4 J if min I ≤ min J and max J ≤ max I. Then ([XXX]2,4) is isomorphic to a member of Po<ω(F). PPP
Suppose that XXX ∼=

∏
i∈I(Xi,≤i)|F where (Xi,≤i) is a finite non-empty totally ordered set for each i. Since

#(XXX) > 1, K = {i : #(Xi) ≥ 2} ∈ F}; set

(X ′
i,≤

′
i) = (Xi,≤i) for i ∈ K,

= ({0, 1},≤) for i ∈ I \K.

On [X ′
i]
2 define 4i by saying that I 4i J if min I ≤′

i min J and max J ≤′
i max I. Then

([XXX]2,4) ∼=
∏

i∈I([X
′
i]
2,≤′

i)|F ∈ Po<ω(F). QQQ

(b) Let (〈xxxξ〉ξ<κ, 〈yyyξ〉ξ<κ) be a (κ, κ∗)-gap in XXX. Then 〈{xxxξ, yyyξ}〉ξ<κ is a strictly increasing family in
[XXX]2. ??? If it has an upper bound I ∈ [XXX]2, then xxxξ ≤ min I ≤ max I ≤ yyyη for all ξ, η < κ, which is supposed
to be impossible. XXX So κ ≥ chadd[XXX]2 ≥ Chadd<ω(F).

D.H.Fremlin
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3G Theorem Chadd<ω(F) ≤ Interp<ω(F).

proof ??? Suppose otherwise.

(a) Of course Interp<ω(F) cannot be ∞. Set κ = Interp<ω(F) and let XXX ∈ Lo<ω(F) be such that
interpXXX = κ. By 1C, there is a (λ, λ∗

1)-gap in XXX with max(λ, λ1) = κ; since (XXX,≤≤≤) is isomorphic to (XXX,≥≥≥)
(see 2Fa), we can take it that λ ≤ λ1 = κ. We are supposing that κ < Chadd<ω(F). By 3F, there is no
(κ, κ∗)-gap in XXX, so λ < κ. Let (〈xxxη〉η<λ, 〈xxx

′
ξ〉ξ<κ) be a (λ, κ∗)-gap in XXX.

(b) Because (XXX,≥≥≥) and (XXX,≤≤≤) are isomorphic, and XXX has a strictly decreasing family 〈xxx′
ξ〉ξ<κ, there is

also a strictly increasing family 〈dddξ〉ξ<κ in XXX. Let G : λ+ × λ+ → λ be such that β 7→ G(α, β) : α → λ is
injective for every α < λ+. Because λ+ ≤ κ < Chadd<ω(F), 3E tells us that there is an internal function
hhh : XXX2 → XXX such that hhh(dddα, dddβ) = xxxG(α,β) for all α, β < λ+. Now 3C tells us that for every ξ < κ there is

an internal set DDDξ ⊇ {dddα : α < min(λ+, ξ + 1)} such that hhh(ddd,ddd′) ≤≤≤ xxx′
ξ for all ddd, ddd′ ∈DDDξ.

(c) Let QQQ be the family of internal subsets qqq of XXX3 such that

hhh(ddd′, ddd′′) ≤≤≤ yyy whenever (zzz,yyy,ddd), (zzz′, yyy′, ddd′), (zzz′, yyy′′, ddd′′) ∈ qqq and zzz ≤≤≤ zzz′}.

Then QQQ, partially ordered by inclusion, belongs to Po<ω(F). PPP We can suppose that (XXX,≤≤≤) =
∏

i∈I(Xi,≤i

)|F where (Xi,≤i) is a finite totally ordered set for every i ∈ I. Because hhh is an internal function, we have
a family 〈hi〉i∈I such that hi : X

2
i → Xi is a function for each i ∈ I and hhh can be regarded as 〈hi〉

•

i∈I . If we
set

Qi = {q : q ⊆ X3
i , hi(d

′, d′′) ≤≤≤ iy whenever

(z, y, d), (z′, y′, d′), (z′, y′′, d′′) ∈ q and z ≤≤≤ iz
′},

then we can identify (QQQ,⊆) with
∏

i∈I(Qi,⊆)|F . QQQ1

Accordingly chaddQQQ > κ.

(d) There is a non-decreasing family 〈qqqξ〉ξ<κ in QQQ such that, for each ξ < κ,

if β < min(λ+, ξ + 1) and dddβ ≤≤≤ zzz ≤≤≤ dddξ then there is a yyy such that (zzz,yyy,dddβ) ∈ qqqξ,
if (zzz,yyy,ddd) ∈ qqqξ then zzz ≤≤≤ dddξ and xxx′

ξ ≤≤≤ yyy,

(dddξ,xxx
′
ξ, ddd0) ∈ qqq.

PPP Start the induction with qqq0 = {(ddd0,xxx
′
0, ddd0)}. Given 〈qqqη〉η<ξ where 0 < ξ < κ, take an upper bound qqq of

{qqqη : η < ξ} in QQQ. For α < min(λ+, ξ), the set

{(zzz,yyy,eee) : eee, yyy, zzz ∈XXX, zzz < dddα or eee < zzz or (zzz,yyy,dddα) ∈QQQ}

is an internal subset of XXX3, so

EEEα = {eee : eee ∈XXX, for every zzz ∈ [dddα, eee] there is a yyy such that (zzz,yyy,dddα) ∈ qqq}

is an internal subset of XXX (use 2Cf); since there is a yyy such that (dddα, yyy,dddα) ∈ qqqα ⊆ qqq, dddα ∈ EEEα; by 2H(b-ii),
EEEα has a greatest element eeeα say.

Because qqqη ∈ QQQ and qqqη ⊆ qqq for α ≤ η < ξ, dddη ≤≤≤ eeeα whenever η < ξ and α < min(λ+, ξ). Now
ξ < κ = interpXXX so there is a eee ∈XXX such that dddη ≤≤≤ eee ≤≤≤ eeeα for every η < ξ and α < min(λ+, ξ); replacing eee
by min(eee,dddξ) if necessary, we can suppose that eee ≤≤≤ dddξ. Set

qqqξ = {(zzz,max(yyy,xxx′
ξ), ddd) : (zzz,yyy,ddd) ∈ qqq, zzz < eee} ∪ {(zzz,xxx′

ξ, ddd) : eee ≤≤≤ zzz ≤≤≤ dddξ, ddd ∈DDDξ).

This continues the induction.

(e) At the end of the induction take an upper bound qqq of {qqqξ : ξ < κ} in QQQ, For α < λ+ take eeeα maximal
subject to

for every zzz ∈ [dddα, eeeα] there is a yyy such that (zzz,yyy,dddα) ∈ qqq.

1Alternatively, check that

RRR = {(zzz,yyy,ddd,zzz′, yyy′, ddd′, zzz′′, yyy′′, ddd′′) : zzz ≤≤≤ zzz′ = zzz′′, yyy < hhh(ddd′, ddd′′)}

is an internal subset of XXX9; note that QQQ = {qqq : qqq3 ∩RRR = ∅} and that qqq 7→ qqq3 ∩RRR is an internal function.
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As in the inductive step in (d) above, eeeα ≥ dddξ for every ξ < κ. So if yyyα = min{yyy : (zzz,yyy,ddd) ∈ qqq, zzz ≤≤≤ eeeα},
yyyα ≤≤≤ xxx′

ξ for every ξ < κ and there is a θ(α) < λ such that yyyα ≤≤≤ xxxθ(α). Let η < λ be such that A = {α :

θ(α) ≤ η} has cardinal λ+; let α ∈ A be such that #(A∩α) = λ; then there must be a β ∈ A∩α such that
G(α, β) > η. Set eee = min(eeeα, eeeβ); then there are yyy′, yyy′′ such that (eee,yyy′, dddα) and (eee,yyy′′, dddβ) belong to qqq. We
therefore have

hhh(dddα, dddβ) ≤≤≤ min{yyy : (zzz,yyy,ddd) ∈ qqq, zzz ≤≤≤ eee} = max(yyyα, yyyβ)

≤≤≤ max(xxxθ(α),xxxθ(β)) ≤≤≤ xxxη <<< xxxG(α,β) = hhh(dddα, dddβ)

which is impossible. XXX

(f) This contradiction shows that Chadd<ω(F) is indeed less than or equal to Interp<ω(F).

4 A forcing notion
Let P be the forcing notion ([N]ω,⊆∗,N, ↓), where A ⊆∗ B if A \B is finite.

4A Proposition t is the largest cardinal such that P is t-closed in the sense of Kunen 80, 6.12.

proof Immediate from the definition.

4B Proposition (a) P preserves cofinalities and cardinals up to and including t.
(b) P PN = (PN)̌ .
(c)(i) P t = ť.
(ii) P p = p̌.

proof (a) Kunen 80, 6.15.

(b) We just need to know that P is countably closed.

(c)(i)(ααα) Let 〈aξ〉ξ<t be a ⊆∗-decreasing family in [N]ω with no ⊆∗-lower bound in [N]ω. Then

P 〈ǎξ〉ξ<ť is a ⊆∗-decreasing family in [N]ω

and as P PN = (PN)̌ ,

P {ǎξ : ξ < ť} has no ⊆∗-lower bound in [N]<ω, so t ≤ ť.

(βββ) Suppose that κ < t, p ∈ P and 〈ȧξ〉ξ<κ is a family of P-names such that

p 〈ȧξ〉ξ<κ̌ is a ⊆∗-decreasing family in [N]ω.

Because P is t-closed, there are a q stronger than p and a family 〈aξ〉ξ<κ in PN such that q P ȧξ = ǎξ for
every ξ < κ. Now

q 〈ǎξ〉ξ<κ̌ is a ⊆∗-decreasing family in [N]ω,

so in fact 〈aξ〉ξ<κ is a ⊆∗-decreasing family in [N]ω; as κ < t, there is a ⊆∗-lower bound a of {aξ : ξ < κ} in
[N]ω, and now

P ǎ is a ⊆∗-lower bound of {ǎξ : ξ < κ̌} in [N]ω,

so

q P ǎ is a ⊆∗-lower bound of {ȧξ : ξ < κ̌} in [N]ω.

As 〈ȧξ〉ξ<κ is arbitrary,

P κ̌ < t.

As κ is arbitrary,

P ť ≤ t so ť = t.

(ii) Argue similarly, using the fact that p ≤ t so P is p-closed.

4C Proposition Let Ġ be the P-name {(Ǎ, A) : A ∈ [N]ω}. Then

P Ġ is a non-principal ultrafilter on N.

proof It is easy to see that

D.H.Fremlin



10

P Ġ is a filter on N.

Now if A ∈ [N]ω and Ċ is a P-name such that A P Ċ ∈ [N]ω, there are a C ⊆ N and an infinite A′ ⊆∗ A

such that A′ Ċ = Č (4Bb); now if A′ ∩ C is infinite, A′ ∩ C Ċ ∈ Ġ; otherwise, A′ \ C is infinite and

A′ \ C N \ Ċ ∈ Ġ. So P Ġ is an ultrafilter. Finally, if n ∈ N,

N ⊆∗
N \ {n} N \ {n} ∈ Ġ

and P Ġ is non-principal.

4D Proposition P t ≤ Chadd<ω(Ġ).

proof Let ṖPP , Ṙ be P-names such that

P Ṙ ⊆ ṖPP ∈ Po<ω(Ġ), Ṙ is well-ordered, otp(Ṙ) < t.

We can suppose that

P there is a sequence 〈(Pn,≤n)〉n∈N of non-empty finite partially ordered sets such that

ṖPP =
∏

n∈N
Pn|Ġ.

Take any A ∈ [N]ω. By 4B(c-i), P otp(Ṙ) < ť and there are a B ∈ [A]ω and an ordinal α < t such that

B otp(Ṙ) = α̌. Let 〈ṗppξ〉ξ<α be a family of P-names such that

B 〈ṗppξ〉ξ<α̌ is the increasing enumeration of Ṙ.

Next, we have families 〈(Ṗn, ≤̇n)〉n∈N and 〈ṗξn〉ξ<α,n∈N of P-names such that

B (Ṗn, ≤̇n) is a non-empty finite partially ordered set, ṖPP =
∏

n∈N
Ṗn|Ġ, and ṗppξ =

〈ṗξn〉
•

n∈N

for every ξ < α. Because P is t-closed, there are an infinite C ⊆ B and families 〈(Pn,≤n)〉n∈N and
〈pξn〉ξ<α,n∈N such that

(Pn,≤n) is a non-empty finite partially ordered set and pξn ∈ Pn,

C (Ṗn, ≤̇n) = (P̌n, ≤̌n) and ṗξn = p̌ξn

for every n ∈ N and ξ < α.
For ξ < α, set

Eξ = {(n, p) : n ∈ C, p ∈ Pn, pξn ≤n p}.

If ξ ≤ η < α, then Eη \ Eξ is finite. PPP??? Otherwise, set D = {n : ∃ p, (n, p) ∈ Eη \ Eξ}; because every Pn

is finite, D is an infinite subset of C. If n ∈ D there is a p ∈ Pn such that pηn ≤ p but pξn 6≤n p, so that
pξn 6≤n pηn; now

D p̌ξn ˇ6≤n p̌ηn for every n ∈ Ď,

so we have

D Ď ∈ Ġ and ṗξn = p̌ξn ˙6≤n p̌ηn = ṗηn for every n ∈ Ď

and

D 〈ṗξn〉
•

n∈N
6≤ 〈ṗηn〉

•

n∈N
,

contrary to the choice of 〈ṗξn〉ξ<α,n∈N. XXX
Since every Eξ is a subset of the countable set {(n, p) : n ∈ C, p ∈ Pn}, and cfα < t, there is an infinite

E ⊆ {(n, p) : n ∈ C, p ∈ Pn} such that E \Eξ is finite for every ξ < α. Now set D = {n : ∃ p, (n, p) ∈ E}, so
that D is infinite, and for each n ∈ D take qn ∈ Pn such that (n, qn) ∈ E; for other n ∈ N take any qn ∈ Pn.
In this case, for any ξ < α,

{n : n ∈ D, pξn 6≤ qn} ⊆ {n : n ∈ D, (n, qn) /∈ Eξ}

is finite, so

D ⊆∗ {n : n ∈ D, (n, qn) ∈ Eξ} ⊆ {n : n ∈ N, pξn ≤ qn}.
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But now observe that, writing Dξ for {n : n ∈ D, pξn ≤ qn},

D ⊆∗ Dξ Ďξ ∈ Ġ and ṗξn ≤ q̌n for every n ∈ Ďξ, so that 〈ṗξn〉
•

n∈N
≤ 〈q̌n〉

•

n∈N
in ṖPP .

As ξ is arbitrary,

D 〈q̌n〉
•

n∈N
is an upper bound for Ṙ, and Ṙ is bounded above in ṖPP .

As A is arbitrary,

P Ṙ is bounded above.

As Ṙ is arbitrary,

P t ≤ chadd ṖPP .

As ṖPP is arbitrary,

P t ≤ Chadd<ω(Ġ),

as claimed.

4E Lemma Let � be the partial ordering on N
N defined by saying that f � g if either f = g or

{n : g(n) ≤ f(n)} is finite. If κ ≤ p is an infinite cardinal and there is a peculiar (κ, p∗)-gap in (NN,�),
then p = t.

proof (a) Let (〈fξ〉ξ<κ, 〈gη〉η<p) be such a gap; we can suppose that fξ, gη ≤ g0 for every ξ < κ and η < p.

Let ṖPP be a P-name such that

P ṖPP =
∏

n∈N
(ǧ0(n) + 1)|Ġ ∈ Lo<ω(Ġ).

Then for each ξ < κ, η < p we have P-names ṗppξ, q̇qqη such that

P ṗppξ = f̌•

ξ ∈ ṖPP , q̇qqη = ǧ•

η ∈ ṖPP .

Now from 4Ba and 4B(c-ii) we have

P κ̌ is a cardinal less than p and f̌ξ ≺ f̌ξ′ ≺ ǧη′ ≺ ǧη whenever ξ < ξ′ < κ̌ and η < η′ < p;

since we also know that P Ġ is a free filter, we have

P ṗppξ < ṗppξ′ < q̇qqη′ < q̇qqη whenever ξ < ξ′ < κ̌ and η < η′ < p.

(b) ??? If

6
P
(〈ṗppξ〉ξ<κ̌, 〈q̇qqη〉η<p) is a (κ̌, p∗)-gap in Ṗ ,

there are an A ∈ [N]ω and a P-name ḣ such that

A ḣ ∈
∏

n∈N
(ǧ0(n) + 1) and ṗppξ ≤ ḣ• ≤ q̇qqη for every ξ < κ̌ and η < p.

Because P is countably closed, there are an infinite B ⊆ A and an h ∈ N
N such that

B ḣ = ȟ.

Next, for each ξ < κ, we have

B f̌•

ξ < ȟ•,

that is,

B {n : f̌ξ(n) ≤ ȟ(n)} ∈ Ġ,

that is,

B {n : fξ(n) < h(n)}̌ ∈ Ġ,

that is,

B ⊆∗ {n : fξ(n) < h(n)}.

But this means that if we set

D.H.Fremlin
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h′(n) = h(n) for n ∈ B,

= g0(n) for n ∈ N \B,

we shall have fξ ≺ h′; and this is true for every ξ < κ. Because (〈fξ〉ξ<κ, 〈gη〉η<p) is a peculiar gap, there
is an η < p such that gη � h′, in which case B ⊆∗ {n : gη+1(n) < h(n)}; running the argument above
backwards, we see that

B q̇qqη+1 < ḣ•,

contrary to the choice of A and ḣ. XXX

(c) We conclude that

P (〈ṗppξ〉ξ<κ̌, 〈q̇qqη〉η<p) is a (κ̌, p∗)-gap in ṖPP , so that p ≥ interp ṖPP .

But now 3F and 4D, together with the Forcing Theorem (Kunen 80, VII.4.2), tell us that

P t ≤ Chadd<ω(Ġ) ≤ Interp<ω(Ġ) ≤ interp ṖPP ≤ p.

Accordingly, by 4Bc,

P ť ≤ p̌

and t ≤ p, so in fact t = p.

4F Theorem (Malliaris & Shelah 16) p = t.

proof ??? Otherwise, there are an uncountable regular κ < p and a (κ, p∗)-gap in (NN,�), by Shelah 09,
1.12 or Fremlin n14, 2H (see parts (c)-(g) of the proof). And 4E tells us that this can happen only if
p = t. XXX

Acknowledgements Correspondence with M.Malliaris, J.T.Moore, J.Steprāns. I am grateful to M.Goldstern
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