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p = t, following Malliaris-Shelah and Steprans
D.H.FREMLIN

University of Essex, Colchester, England

I attempt a proof, based on that sketched in STEPRANS N13, of the theorem in MALLIARIS &
SHELAH 16 that p = t.

1 Gaps, interpolation and chain-additivity
1A Definitions Let P be a partially ordered set and A, k non-zero cardinals.

(a) A (M, k*)-gap in P is a pair ((z¢)e<nr, (Ye)n<x) of families in P such that
ze < xg <y <y, whenever { <& < Xandn <n <k,
there is no z € P such that ¢ < z <y, whenever £ < X and n < k.

(a) A peculiar (A, x*)-gap in P is a pair ((Z¢)e<n, (Ye)n<x) of families in P such that
ze < xg <y, <y, whenever { <& < Xand n<n <k,
whenever z € P is such that z <y, for every n < x, there is a £ < X such that z < z¢,
whenever z € P is such that x¢ < 2 for every £ < A, there is an 1 <  such that y, < z.

1B Definitions Let (P, <) be a partially ordered set.

(a) The chain-additivity of P, chadd P, is the least cardinal of any totally ordered subset of P with no
upper bound in P; or oo if there is no such set.

Note that chadd P is either 0 (if P is empty) or oo (if every maximal chain in P has a greatest member)
or a regular infinite cardinal &, and in the last case there is a strictly increasing family (p¢)e<, in P with

no upper bound in P.
If P is upwards-directed then chadd P = add P as defined in FREMLIN 08, 511Bb.

(b)(i) If « is a cardinal, say that P has the < k-interpolation property if whenever A, B C P are
non-empty, a < b for every a € A and b € B, and max(#(A), #(B)) < k, then there is a ¢ € P such that
a <c¢<bwhenever a € Aand b e B.

(ii) The interpolation number of P, interp P, is the greatest cardinal x such that P has the < -
interpolation property, or oo if there is no such . (For this use of ‘co’; see FREMLIN 08, 511C.)
Note that interp P = oo iff P is Dedekind complete, and that interp P > w if P is a lattice.

1C Lemma Suppose that P is a lattice. Write chgap P for the least cardinal k such that there is a
(Mo, A7)-gap in P with cardinals Ag, A1 < k, or oo if there is no such x. Then interp P = chgap P.

proof (a) Suppose that ((Te)ewrg, (Ye)n<rs) 1S @ (Ao, AT)-gap. Then {xe : £ < Ao}, {yy 1 7 < A1} witness
that interp P < max(Xg, A1). As ((Te)e<rgs (Ye)n<r,) is arbitrary, interp P < chgap P.

(b) Suppose that A, B C P are non-empty sets with cardinal less than chgap P and a < b for every
a€ Aand b e B.

(i) If A is well-ordered and B is downwards well-ordered (that is, (B, >) is well-ordered), then there is
ace& Psuchthat a <c<bforeveryac Aandbe B. P Set \g =cfA, \y =ciB, and let (z¢)e<», be the
increasing enumeration of a cofinal subset of A with cardinal Ao, and (y,)n<x, the decreasing enumeration
of a coinitial subset of B with cardinal A;; then A\g < #(A) < chgap P and Ay < #(B) < chgap P, so
((Ze)e<rgs (Un)n<r,) cannot be a (Ao, A])-gap and there must be a ¢ € P such that z¢ < ¢ <y, for all { and
7, so that a < ¢ < b whenever a € A and b € B. Q

(ii) If A is well-ordered then there is a ¢ € P such that a < ¢ < b for every a € Aand b€ B. P If B is
finite, this is trivial, as inf B is defined in P. So suppose that B is infinite. Set A\g = cf A and let (z¢)e<n,

be the increasing enumeration of a cofinal subset of A with cardinal Ag; of course Ay < chgap P. Set
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A'={y:a<yforevery a € A} = {y:xzc <y forevery £ < Ao} D B.

Enumerate B as (b,)n<x,, where A\; < chgap P, and choose a non-increasing family (y,),<x, in A" induc-
tively, as follows. Start with yo = by. Given y,, where n < A1, set y,4+1 = y, A b,. Given a non-zero limit
ordinal f < Ay and a non-increasing family (y,),<s in A’, the set {y, : n < 8} is downwards well-ordered
and has cardinal at most #(8) < A1 < chgap P, so by (ii) there is a yg € P such that a¢ < yg < y, for
every £ < Ag and n < 3, and the induction continues.

At the end of the induction, consider ¢ = yy,. Then ¢ € A’; since also ¢ < y,41 < by, for every n < Ay, ¢
serves. Q

(iii) In any case, there is a ¢ € P such that a < ¢ < b for every a € A and b € B. P If A is finite,
take ¢ = sup A. Otherwise, enumerate A as (a¢)e<y, and choose (x¢)e<y, inductively, as follows. Start with
xo = ap. If & < Xo, set zg1 = x¢ Vae. If @ < Xg is a non-zero limit ordinal, (ii) tells us that there is an
Zo € P such that z¢ <2, < b whenever £ < o and b € B. At the end of the induction, take ¢ = xy,.

(iv) As A and B are arbitrary, chgap P < interp P and the two are equal.

1D Lemma Let P be a lattice with the < wj-interpolation property which is not Dedekind o-complete.
Then interp P < #(P).

proof (a) Suppose that there is a countable subset A of P with an upper bound but no least upper bound.
Then A must be infinite; let (pn)nen be an enumeration of A, and set p;, = sup,<,, pi, so that (p;,)nen is a
non-decreasing sequence which is not eventually constant, and has a strictly increasing subsequence (p!),en.
Let B the set of upper bounds of A. Because B has no infimum, it is surely infinite; set K = #(B) and
enumerate B as (¢y),<x. Choose (g;)n<p in B as follows. Start with g5 = qo. Given g; € B, g, is not the
least member of B, so there is a first ¢, < s such that ¢; £ qc,; set ¢, 1 = g, A qc,,- Given (q;,)y <, Where
7 < K is a non-zero limit ordinal, then if there is a member of B less than or equal to q7’7, for every ' < 7,
take such a member for q;; otherwise set S = 7 and stop. If the induction continues to the end, then there
cannot be a member of B less than or equal to q;]“ < gy for every n < K, so set 3 = k.

Thus we have a strictly decreasing family {q;, : n < B} in B with no lower bound in B, where w <
B <k < #(P). Set A =cff and let (ng)r<g be the increasing enumeration of a cofinal subset of 5. Then
((Ph)nen, (qn,)e<r) is an (w, A*)-gap in P. As P has the < w;-interpolation property, A > w, so

interpP < A< B <k < #(P).

(b) If there is a countable subset of P with a lower bound but no greatest lower bound, argue similarly,
or apply (a) to (P, >).

1E Definitions (a) Write p for the least cardinal of any downwards-directed set A C [N]* for which
there is no b € [N]* such that b\ a is finite for every a € A.

(b) Write t for the least cardinal x for which there is a family (ag¢)e<, in [N]* such that a, \ a¢ is finite
whenever £ < n < k, but there is no a € [N]* such that a \ a¢ is finite for every & < k.

2 Reduced products and internal sets
Most of the rest of the arguments in this note will be based on a fragment of the model theory of
ultrapowers. For the next few sections, fix an ultrafilter F on a set I.

2A Suppose that X; is a non-empty set for each i € I,

(a) We have an equivalence relation on [],.; X; given by saying that (x;)icr ~ (yi)ier if {i : 2; = yi}
belongs to F. I will write (x;);; for the equivalence class of (;);c;. The set of equivalence classes is the
reduced product of (X;);c; mod F, which I will denote [[,.; X;|F. (See FREMLIN 08, 5A2A.)

(b) A subset Z of X is internal if it corresponds to a member of [],.; PX;|F, that is, if there is a family
(Zi)ier such that Z; C X; for every i € I and Z = {(w;)}c; : {9 : ;s € Z;} € F; note that if every Z; is
non-empty this is in a natural one-to-one correspondence with []..,; Z;|F.

icl

iel
(c) Because F is an ultrafilter, the family of internal subsets of X is an algebra of sets containing all
singleton sets, therefore every finite subset of X.
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(d) If Z is a non-empty internal subset of X, then a subset of Z is internal in Z iff it is internal in X. P
Q

(e) Generally, when I use an italic bold upper-case letter like X or P, you should take it that I am
thinking of a set together with an associated structure of internal sets.

2B Let X = [[,; X¢|F and Y = [],; Yi|F be two reduced products mod F. Then we have a natural
bijection between X x Y and [[,c; Xi x Yi|F, identifying ((z:)3c;, (vi)jc;) With ((ws,:));c;. This gives
us an associated notion of ‘internal’ subset of X x Y, being one corresponding to an internal subset of
Hie[ Xi X Yi| F.

The same idea applies to products of any finite number of reduced products mod F.

2C Again suppose that X = [[,.; X;[F and Y =[],
() f Z C X and W CY are internal, then Z x W is an internal subset of X x Y.

el Y;|F are two reduced products mod F.

(b) If W is an internal subset of X x Y and Z is an internal subset of X, then W[Z] is an internal
subset of Y. (For if W corresponds to (W;);cr and Z to (Z;);cr, then W[Z] corresponds to (W;[Z;])icr.) In
particular, any section W[{z}], where € X, is an internal subset of Y.

(c) f W, C X, xY; is the graph of a function for each ¢, then the corresponding internal relation
W C X xY will be the graph of a function, its domain being the internal subset of X corresponding to
(dom W;)ier.

(d) If X; = Y; and W; is a partial order on X; for each 4, then W will be a partial order on X. If
X; =Y; and W; is a total order on X; for each 7, then W will be a total order on X. If X; =Y, and W;
is a well-ordering of X; for each 4, then every non-empty internal subset of X will have a W-least member.
(For if Z C X corresponds to (Z;)icr and & = (x;)5c; € Z, define (z;);cr by saying that

z; is the W-least member of Z; if Z; # 0,

= x; otherwise;
then (z;)3c; is the W-least member of Z.)

(e) Conversely, if W is an internal subset of X x X and is a partial order, then there is a family (W;);cr
such that W is a partial order on X for each i and W corresponds to (W;);cr. PP By the definition of ‘internal
subset of X x X’ there is a family (W/);c such that W corresponds to (W/);cr. Set A; = {(z,x) : x € X;}
for ¢ € I. Now consider

J={i: W/ 20}, K={i:WW ¢gW/} L={i:WinW;'¢ZA;}.

? If J € F, take x; € X; such that (z;,z;) ¢ Wy for i € J and set = (x;)}c;; then (z,2) ¢ W. X

? If K € F, take x;, y;, z; € X; such that, for i € K, (z;,v;) € W/, (yi,2:) € W] but (z;,2;) ¢ W/;
setting * = (x;)3cr, ¥ = (Ui)jer and 2 = (2;)3c;, (x,y) € W and (y,2z) € W but (z,2) ¢ W. X

? If L € F, take x;, y; € X; such that, for i € L, (z;,y;) € W/ and (y;,x;) € W/ but x; # y;. Setting
= (r)5c; and y = (yi)icp, (x,y) € Wand (y,z) e Wbutz #y. X

Consequently, M = I'\ (JU K U L) belongs to F, while W/ is a partial order on X; for every i € M.

K3

Setting W; = W/ for i € M, W; = A, for i € JU K U L, we have a suitable family. Q

(f) If W is an internal subset of X x Y, then its projection {z :3 y, (z,y) € W} is an internal subset
of X. P If W corresponds to (W;);cr, consider A; = {z : 3y, (x,y) € W;} for each i € I. Q Hence, or
otherwise, {z : (z,y) € W for every y € Y} is an internal subset of X.

2D Power sets (a) Once more, suppose that we have a family (X;);cs of non-empty sets and the reduced
product X = [[..; X;|F. Then we can form the reduced product [[,.; PX;|F.

(b) If (Zi)ier and (Z])ics belong to [],.; PX;, and we look at the corresponding internal sets Z, Z’ as
defined in 2Ab, we find that Z = 2" iff {i: Z, = Z} € F. P If J = {i : Z;, = Z[} belongs to F, then for
any (z3)ier € [[;e; Xi

el i€l
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(@i)icr €2 <= {iviel,mi€Z}eF = {irieJ s €Z}eF
— {ivied zeZ}eF < (x)jc; €2

and Z =2Z'. f K = {i: Z; £ Z}} belongs to F, choose z; € Z; \ Z] for i € K, and take (2;)$.; € Z\ Z' and
Z+4Z'. Similartly, Z £ Z' if {i: 2. ¢ Z;} € F. Soif J ¢ F then z £ Z'. Q

(c) Thus we have a natural bijection between the reduced product [],.; PX;|F and the algebra PX of
internal subsets of X. Accordingly we have a notion of internal subset of PX, being one corresponding to
a family (A;);er where A; C X; for each i, so that PPX can be identified with [],., PPX;|F.

(d) In 2Ae I spoke of a ‘structure of internal sets’; the vagueness was deliberate, as I intended to include
not only the subalgebra PX of PX but the repeated sets-of-internal-sets algebras PPX, PPPX and so on.
(For this note, happily, we do not have to go far along this road.)

2E Proposition Let (X;);c; be a family of non-empty sets, and X =[]
Then the relation C on PX is internal.

proof As in 2D, we can identify PX with [[;,.; PX;|F, so that we think of internal subsets of X as
equivalence classes (Z;)$c; where Z; C X for i € I. Now if we have two families (W;)icr, (Zi)ier € [[;c; PXi
representing internal sets W, Z C X, we have W C Z iff J = {i : W; C Z;} belongs to 7. P This is a
trifling refinement of 2Db. If J € F and x = (z;);.; € W, then {i: x; € Z;} D J N {i: x; € W;} belongs to
Fandx e Z If I\ JecF,choose x; € Wi\ Z; fori e I'\ J, x; € X; for i € J; then x = (x;);.; belongs to
W\NZandW Z Z. Q

Now this means that if we look at the internal subset of PX x PX corresponding to the family (C;);cs €
[Lic; PXi x PX;, where C;= {(W,Z) : W C Z C X;} for each i, we find that it is precisely the relation C.

ser Xi|F their reduced product.

2F Definitions (a) Let Ufm,(F) be the class of structures isomorphic to structures [[,.;
gether with the corresponding algebras of internal sets, where every X; is finite and not empty.

Xl|]:, to-

(b) Let Po.,(F) be the class of non-empty partially ordered sets (P, <) where P € Ufm,(F) and < is
an internal relation on P which is a partial order. As noted in 2Ce, we must then be able to identify (P, <)
with a structure [[,c; (P, <;)|F where P; is finite and <; is a partial order on P; for every i.

(c) Let Locw(F) C Pocy(F) be the class of non-empty totally ordered sets belonging to Po,(F). If
(X, <) € Lo<y(F), we can identify it with a structure [[;.;(X;, <;)|F where X; is finite and <; is a total
order on X; for every i.

2G Proposition (a) If X € Ufm.,,(F) and Z is a non-empty internal subset of X, then Z € Ufm,,(F).
(b) If X € Ufm,(F) then PX € Ufm.,, (F).
(¢c) f X,Y € Um.,(F) then X xY € Ufm,,(F).
proof (a) If X = [[,.; Xi|F where X is finite for every i € I, then Z =[]
for every i € I.
(b)) If X =]
every i € 1.

) I X 2 J[.., X;|Fand Y = J[..;Y;|F where X; and Y; are finite for every ¢ € I, then X xY &
icl el
[Licr Xi x Y3|F and X; x Y} is finite for every i € I.

el i1 ZilF where Z; C X is finite

X;|F where X; is finite for every i € I, then PX = [[._; PX;|F and PX; is finite for

iel iel

2H Lemma (a) Suppose that (P,<) € Po.,(F). Then every non-empty internal subset of P has a
maximal element.
(b) Suppose that (P, <) € Lo, (F).
(i) (P, <) is isomorphic to (P,>).
(ii) Every non-empty internal subset of P has greatest and least members.

proof (a) The point is just that this is true for all finite partially ordered sets, and it is a first-order property.
More explicitly, if (P, <) = [],c;(Pi, <;)|.F, and Z is a non-empty internal subset of P, then Z corresponds
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to [[;e; Zi where Z; C P; is non-empty for every i € I. Now if z; € Z; is <;-maximal for every i, 2 = (2;)3¢;
is <-maximal in Z.

(b)(i) In this case,
(P,2) = [Lie,(Pi, 2)|F = [, (P )| F = (P.5). Q

(ii) This is a special case of (a).

2I Lemma If P € Lo, (F) is infinite, then w; < interp P < w#(),

proof We can suppose that P is a reduced product [[;.;(P;, <;) where every P; is finite and every <; is a
total order.

(a) P has the < wi-interpolation property. P If (pp)ren and (gx)ren are sequences in P with p; < g
for all j, k € N, express pi as (pri)jc; and qi as (qri)ier, Where pri, qu; € P; for i € I and k € N. Set

Ay ={i:iel, pj <q whenever j, k <},

so that (A4;);en is a non-increasing sequence in F starting with Ag = I. Set

=max{p;; : j €N} ifie ﬂAl.
leN

Then
{iipei <pf < qri} 2 Agy1 €F
for every k, so
Pr < (P7)ier < 4k
for every kK € N. Q

(b) There is a sequence (pi)ren in P with no supremum in P. B Let (p};)r<#(p,) be the increasing
enumeration of P; for each i. As P is infinite, Ay = {i : #(F;) > k} € F for each k. So if we set

Dki = p;ﬂ if k< #(Xz)7
=max P, if k > #(X,),
Pk = <pki>;el

for k € N, (pr)ren will be strictly increasing. If ¢ = (g;)jc; is an upper bound for {p, : k € N}, and we take
q' = (qi)ier € [1;c; Xi such that ¢; is the predecessor of ¢; in P; whenever ¢; # min P;, then ¢’ < ¢ and ¢
is still an upper bound of {py : k € N}, so {pi : £ € N} has no least upper bound. Q

(c) Since P has a greatest member (max P;) 1D tells us that

.
i€l

interp P < #(P) < #([[,c; Pi) < w#)

3 Interp_,, and Chadd,,
As in §2, take a fixed ultrafilter F on a fixed set I.
3A Definitions (a) Write Interp_,,(F) for min{interp P : P € Lo« (F)}.
(b) Write Chadd <, (F) for min{chadd P : P € Po.,(F)}.
3B Lemma Suppose that X € Lo, (F) and that we have sets A C X, Z C PX) such that #(A), #(2)

are both less than min(Chadd <, (F), interp X) and every member of Z is an internal set including A. Then
there is an internal set Z* C X such that A C Z* C (N Z.

Remark Note that there is no suggestion that A or Z should be an internal set.
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proof (a) If either A or Z is finite, the result is trivial. Otherwise, set Kk = max(#(A),#(Z)) and let
(Te)e<ns (ZLe)e<r Tun over A, Z respectively.

Because interp X < oo (21), we have a (Mg, AT)-gap in X with max(Ao, AT) = interp X; as (X, <) = (X, >),
we can suppose that A\; < Ao and we have a strictly increasing family (y,),<interp x in X.

Let P = P(X x X) be the set of internal subsets of X x X. For p € P and e € X, write p[e for
{(min(z,e),z) : (z,z) € p}. Observe that (p[e)[e’ = p[min(e,e’) for all p, e and €', so we have a partial
order < on P defined by saying that p’ < p if there is an e € X such that p’ = p[e. Now (P,<) € Po.,(F).
P We have just to repeat the formula in each coordinate. Suppose that (X, <) is isomorphic to the reduced
product ], (Xi, <;)|F where (X;, <;) is a finite totally ordered set for each i. If i € I, p C X? and e € X,
set p[e = (min(z,e), ) : (2,7) € p}; for p/, p C X? say that p’ <, p if there is an e € X; such that p’ = p[e.
If now p', p € P, we can identify them with (p}):.;, (pi)sc; respectively, where p;, pj € X7 for each i (2B).
If e corresponds to (e;)jc; € [[;c; XilF, ple corresponds to (p;[e;)ic;. Soif p' < p, {i: pj <; pi} belongs
to F; and, conversely, if J = {i : p; <; p;} belongs to F, we can find a family (e;)icr € [];c; X such
that J D {i : p, = p;[e;}, in which case p’ < p. Thus P is isomorphic to ((P(X?),<;)):c; and belongs to
P0<w<]:)' Q

(b) Choose a non-decreasing family (p,),<. in P inductively, as follows. The inductive hypothesis will
be that p, € P, p,y = p,[y,y whenever / <1, and (y,,Z¢) € p, whenever £ < k.
Start with po = {yo} x X. Given p, where n < &, set
Pot1 =Py U{(¥n+1,2) 1 (¥, Z) EPy, T € Z,}.

Then p, = py+1[yn < Pyt1, and (Yp41,%¢) € Pyy1 Whenever £ < &, because xe € AC Z, € Z.
For the inductive step to a non-zero limit ordinal 1 < x, we have

cfn < k < Chadd<,(F) < chadd P,

so there is an upper bound p’ of {p,y : 7 < n} in P. For each £ < &, set
ec = max{z: (z,z¢) €p'}
which is defined because p’ is an internal subset of X2, so {z : (z,z¢) € p'} is an internal subset of X,
and is non-empty because (Yo,Z¢) € po = P’'[yo. If ' < n, then (y,,x¢) € Py = p'[yyy, s0 yy < €¢ and
Yy < min(y,,e¢). Because k < interp X, there must be an e € X such that y,, < e < min(y,,e¢) whenever
7 <nand £ < k. Set
p"'=p'le, py=p"U{(yyx): (e,x) €p”}.

For 1’ < n, we have

Py =P [y =2"[yn =Dylyy <pn,
while if £ <  then (e¢,z¢) € P/, (e,x¢) € p” and (y,,x¢) € p,. Of course z <y, whenever (2,z) € p,;, so

the induction continues.

(c) At the end of the induction, set Z* = {z : (y.,z) € p.}. Then Z* is an internal set because p,, is,
and contains every ¢ by the construction of p.. If n < x and ¢ € Z*, then

(yn+1az) = (min(ymyn+1)7x) Gpn (yn+1 :anrlv
sox € Z,. Thus A C Z* C () Z, as required.

3C Corollary Suppose that X € Lo, (F) and h: X x X — X is an internal function. Let A C X and
w € X be such that h(z,2’) <w for all z, 2’ € A and #(A4) < min(Chadd,(F),interpX). Then there is
an internal set D C X such that A C D and h(z,2’) <w for all z, ' € D.

proof Forz € A, set Z, = {z' : ¢’ € X, h(z,2’) < w}. Then Z, is an internal subset of X including A.
Applying 3B to A and Z = {Z, : ¢ € A}, we see that there is an internal set Z C X such that A C Z C Z,
for every x € A. Now

D={x:2zcZ, h(z,z') <w for every 2’ € Z}

is an internal set including A, and h(z,z’) < w for all z, 2’ € D.
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3D Lemma Suppose that X € Po.,(F) and that Y € Ufm,(F). Let D C X be a well-ordered set
with order type less than Chadd<,(F), and F : D — Y a function. Then there is an internal function
h:X —Y extending F.

proof (a) Write « for otp D. Let P be the set of internal partial functions from subsets of X to Y, that is, the
set of internal subsets p of X XY such that y =y’ whenever (z,y) and (z,y’) € p. Then (P, C) € Po.,(F),
being isomorphic to [],.;(P;, €)|F where each P; is the set of partial functions from subsets of X; to Y;.

(See 2Ce.) So a < chadd P.
Let (dg)g<qa be the increasing enumeration of D.

(b) Choose a non-decreasing family (pg)s<o inductively, as follows. The inductive hypothesis will be
that pg € P and dg is the greatest element of dompg. Start with po = {(do, F'(do))}. Given (p,) <3, where
B < «, this is a totally ordered subset of P of cofinality less than chadd P, so has an upper bound q € P;
set

ps=1{(z,y): (z,y) €q,xz <dg}U{(ds, F'(dp)}.

(c) At the end of the induction, (pg)g<q is still a totally ordered subset of P with cofinality less than
chadd P, so has an upper bound g¢* € P; let h be any internal function extending ¢* to a function from X
to Y. Now

h(ds) = q"(dg) = ps(ds) = F(dp)
for every S < a, soh D F.

3E Lemma Suppose that X € Po.,,(F) and that Y € Ufm.,,(F). Suppose that D C X is a well-ordered
set with order type less than Chadd.,(F), and F : D> — Y a function. Then there is an internal function
from X2 to Y extending F.

proof Set Z = Hiel Z;|F, where Z; is the set of functions from X; to Y; for each ¢ € I; note that each Z;
is finite. For d € D, define Fy : D — Y by setting Fg(d') = F(d,d’) for d’ € D. By 3D, we have an internal
function hg : X — Y extending Fy, and hg can be represented by a member z4 of Z.

By 3D again, there is an internal function A’ : X — Z such that h'(d) = z4 for every d € D. Suppose
that h’ corresponds to (h});er where h} : X; — Z; is a function for each i. If we set h;(z,2’) = hi(x)(a’) for
x, 2’ € X;, then (h;);er corresponds to an internal function h : X2 — Y. If d, d’ € D correspond to (di)cr
and (dj)sc; respectively, then h(d,d’) corresponds to

(hi(di, di))iep = (hi(di)(d5))ier = (hi(di))ie; ((di)ies)
and

h(d.d’) = W' (d)(d') = hq(d') = Fa(d') = F(d,d’).

So h extends I, as required.

3F Lemma If X € Lo, (F),  is a cardinal and there is a (k, x*)-gap in X, then Chadd,,(F) < k.
proof (a) Of course X must be infinite. Consider the partial ordering < on [X]? defined by saying that
I < J if min/ < minJ and max.J < maxI. Then ([X]?, <) is isomorphic to a member of Po.,(F). P
Suppose that X = [, ;(Xs, <;)|F where (X;, <;) is a finite non-empty totally ordered set for each 4. Since
B(X) > 1, K = (i 4(X,) > 2} € F; set

(XZI7 S;) = (Xl, Sz) fori € K,
= ({0,1},<) fori e T\ K.
On [X/]? define <; by saying that I <; J if minI </ minJ and max J </ maxI. Then
([X]27 '\<) = Hie[([Xz{P? S;)l}- € P0<w(]:)- Q
(b) Let ((®e)ewn, We)e<r) be a (k,x*)-gap in X. Then ({xe¢,ye})eck is a strictly increasing family in

[X]2. ? If it has an upper bound I € [X]?, then £ < minI < maxI <y, for all £, n < r, which is supposed
to be impossible. X So x > chadd[X]? > Chadd,(F).
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3G Theorem Chadd,,(F) < Interp__,(F).
proof 7 Suppose otherwise.

(a) Of course Interp_,,(F) cannot be co. Set k = Interp_,(F) and let X € Lo, (F) be such that
interp X = k. By 1C, there is a (A, A})-gap in X with max(A, A1) = &; since (X, <) is isomorphic to (X,>)
(see 2Fa), we can take it that A < A\; = k. We are supposing that £ < Chadd.,,(F). By 3F, there is no
(k,K%)-gap in X, so A < k. Let ((zy)n<r, (Tg)e<n) be a (A, £%)-gap in X.

(b) Because (X,>) and (X, <) are isomorphic, and X has a strictly decreasing family (z})¢<, there is
also a strictly increasing family (d¢)e<, in X. Let G : AT x AT — X be such that 8 — G(a, ) : @ — A is
injective for every a < AT. Because AT < k < Chadd,(F), 3E tells us that there is an internal function
h: X? — X such that h(d,,dg) = Zg(a,p) for all a, B < AT, Now 3C tells us that for every { < & there is
an internal set D¢ 2 {d, : @ < min(A*, & + 1)} such that h(d,d’) < z; for all d, d’' € De.

(c) Let @ be the family of internal subsets g of X3 such that
h(d',d") <y whenever (2,y.d), (2',y'.d'), (z',y",d") € g and z < 2'}.

Then @, partially ordered by inclusion, belongs to Po..,(F). B We can suppose that (X, <) =[], (Xs, <i
)|F where (X;, <;) is a finite totally ordered set for every i € I. Because h is an internal function, we have
a family (h;);cs such that h; : X? — X, is a function for each i € I and h can be regarded as (hi)ser- If we
set

Qi ={q:qC X2, hi(d,d") < iy whenever
(z7yad)7 (Zl>ylad/)a (Zl7y”7d”) €q and z S iz/}7

then we can identify (Q,C) with [],.,(Qi, )| F. Q'
Accordingly chadd Q > k.

(d) There is a non-decreasing family (g¢)e<, in @ such that, for each £ < k,

if 8 < min(A*,£+ 1) and dg < z < d¢ then there is a y such that (z,y,dg) € ge,

if (2,9,d) € g¢ then 2 < d¢ and z; < g,

(d§7xéad0) €q.
P Start the induction with go = {(do,x(,do)}. Given (g,),<¢ where 0 < £ < &, take an upper bound g of
{g, :n <&} in Q. For a < min(At,£), the set

{(z,y,e) :e,y,z€ X, z<d, ore<zor (z2,y,d,) €Q}

is an internal subset of X3, so

E, ={e:ecX, for every z € [d,, €] there is a y such that (z,y,d,) € ¢}

is an internal subset of X (use 2Cf); since there is a y such that (da,¥y,do) € go € ¢, do € E,; by 2H(b-ii),
E, has a greatest element e, say.

Because ¢, € Q and g, C g for & < 1 < &, d, < e, whenever < & and a < min(AT,¢). Now
¢ < k = interp X so there is a e € X such that d, < e <e, for every n < £ and @ < min(A",€); replacing e
by min(e, d¢) if necessary, we can suppose that e < d¢. Set

gc = {(z,max(y,z;),d) : (z,y,d) €q, z <e}U{(z,7;,d) :e <2< d¢, d € D).
This continues the induction.

(e) At the end of the induction take an upper bound g of {g¢ : £ < k} in @, For o < AT take e, maximal
subject to

for every z € [d,,e,] there is a y such that (z,y,d,) € q.

L Alternatively, check that

is an internal subset of X?; note that @ = {g : ¢ N R = 0} and that ¢ — ¢ N R is an internal function.
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As in the inductive step in (d) above, eq > d¢ for every £ < k. So if yo = min{y : (z,y,d) € ¢, z < e, },
Yo < :1:’5 for every £ < s and there is a 6(a) < A such that y, < 2y, Let n < A be such that A = {a :

6(c) < n} has cardinal A\T; let o € A be such that #(ANa) = A; then there must be a 8 € AN« such that
G(o, B) > n. Set e = min(eq,ep); then there are y', y” such that (e,y’,d,) and (e,y”,dg) belong to g. We
therefore have

h(do,ds) < min{y : (2,9,d) € ¢, 2 < e} = max(ya,ys)
< max(xg(a),mg(ﬁ)) < Ty <ZTG(a,p) = h(dmd@)

which is impossible. X
(f) This contradiction shows that Chadd«,(F) is indeed less than or equal to Interp_, (F).

4 A forcing notion
Let P be the forcing notion ([N]*, C* N, |), where A C* B if A\ B is finite.

4A Proposition t is the largest cardinal such that P is t-closed in the sense of KUNEN 80, 6.12.

proof Immediate from the definition.

4B Proposition (a) P preserves cofinalities and cardinals up to and including t.
(b) |Fe PN = (PN)"
(@) [et=t
(ii) [Fep = p
proof (a) KUNEN 80, 6.15.
(b) We just need to know that P is countably closed.

(c)(i)(a) Let (ag)e<t be a C*-decreasing family in [N]* with no C*-lower bound in [N]*. Then
[Fp (Ge)e i is a C*-decreasing family in [N]*
and as |-p PN = (PN)”,
[Fe {as : € < t} has no C*-lower bound in [N]<%, so t < t.

(B) Suppose that k < t, p € P and (d¢)e<, is a family of P-names such that

Pl (ae)e<r is a C*-decreasing family in [N]«.
Because P is t-closed, there are a ¢ stronger than p and a family (a¢)e<,. in PN such that ¢ |-pae = a¢ for
every £ < k. Now

q|F (Ge)e<r is a C*-decreasing family in [N]*,
so in fact (ae)e<x is & C*-decreasing family in [N]¥; as k < t, there is a C*-lower bound a of {as : { < x} in
[N]“, and now

|Fpais a C*-lower bound of {a¢ : £ < &} in [N],
SO

q|Frais a C*-lower bound of {a¢ : £ < &} in [N].
As (ag)e<x is arbitrary,

e <t
As k is arbitrary,

[Fpt<tsot=t.

(ii) Argue similarly, using the fact that p < t so P is p-closed.

4C Proposition Let G be the P-name {(4, A) : A € [N]*}. Then

lF& G is a non-principal ultrafilter on N.
proof It is easy to see that
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I G is a filter on N.
Now if A € [N]* and C is a P-name such that A|-pC € [N]*, there are a C' C N and an infinite A’ C* A
such that A’ |- C' = C (4Bb); now if A" N C is infinite, A’ N C' |- C € G; otherwise, A"\ C' is infinite and
A'\CIFN\C€g. So |Fpg is an ultrafilter. Finally, if n € N,
NC*N\{n}[FN\{n} €g
and |Fp G is non-principal.

4D Proposition |fpt < Chadd«,(9).
proof Let P, R be P-names such that
ke R C P € Po.,(G), R is well-ordered, otp(R) < t.

We can suppose that
|Fp there is a sequence ((P,, <, ))nen of non-empty finite partially ordered sets such that
P =1Len Pnl9-

Take any A € [N]*. By 4B(c-i), |Fr otp(R) < t and there are a B € [A]* and an ordinal a < t such that
Bl otp(R) = a. Let (p¢)¢<a be a family of P-names such that

Bl (p¢)e<a is the increasing enumeration of R.

Next, we have families (P, <,))nen and (Den)e<a,nen of P-names such that
B (P,,<,) is a non-empty finite partially ordered set, P = []
<p§"l>;l€N
for every £ < «a. Because P is t-closed, there are an infinite C C B and families ((P,, <p))nen and
<p§n>§<a,neN such that

PalG, and p; =

(P, <) is a non-empty finite partially ordered set and p¢, € Py,

C ”_ (Pn7 Sn) = (Pna én) and pﬁn = ﬁgn
for every n € N and £ < a.
For € < a, set

E¢ ={(n,p) :ne€C,pe€ Py, pen <n p}.
If ¢ <71 < a, then E, \ E¢ is finite. P2 Otherwise, set D = {n :3 p, (n,p) € E, \ E¢}; because every P,
is finite, D is an infinite subset of C. If n € D there is a p € P, such that p,, < p but pg, £, p, so that
Pen £n Pyn; NOW
D|- pf’ﬂinp’l’]ﬂ for every n € D,
so we have
D|FD e G and Den = ﬁgnﬁnﬁnn = Py, for every n € D
and
D ”‘ <p5n>;LeN £ <p7m>;LENa

contrary to the choice of (Pen)ecanen. X
Since every Eg is a subset of the countable set {(n,p) : n € C, p € P,}, and cfa < t, there is an infinite
E C{(n,p):neC,pe P,} such that E\ E is finite for every { < a. Now set D = {n :3 p, (n,p) € E}, so
that D is infinite, and for each n € D take g, € P, such that (n,q,) € E; for other n € N take any ¢,, € P,.
In this case, for any £ < «,
{n:neD, pep £ ¢} C{n:neD, (n,qg,) ¢ Ee}
is finite, so

DC*{n:neD, (ng,)€E}C{n:neN, pe <gn}
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But now observe that, writing D¢ for {n:n € D, pen, < ¢n},
D C* D¢l De € G and pey, < Gy, for every n € Dg, so that (Den)nen < (Gn) ey in P.
As £ is arbitrary,
D |- {gn)2en is an upper bound for R, and R is bounded above in P.
As A is arbitrary,
|Fp R is bounded above.
As R is arbitrary,
et < chadd P.
As P is arbitrary,
et < Chadd<.(G),

as claimed.

4E Lemma Let < be the partial ordering on NN defined by saying that f < g if either f = g or

{n : g(n) < f(n)} is finite. If k < p is an infinite cardinal and there is a peculiar (x,p*)-gap in (NN, <),
then p =t.

proof (a) Let ((f¢)e<w, (9n)n<p) be such a gap; we can suppose that fe, g, < go for every £ < x and n < p.
Let P be a P-name such that

”'lP’P = HneN(gO(n) + 1)‘9 € L0<w(g)-
Then for each § < x, n < p we have P-names p,, ¢, such that
lFepe = fe € P, g, =g; €P.
Now from 4Ba and 4B(c-ii) we have
|2 % is a cardinal less than p and f¢ < fer < gy < g, whenever € < & < & and n <7’ < p;
since we also know that |Fp G is a free filter, we have
Fepe <Der <4, <q, whenever £ <& <k andn<n' <p.
(b) 2 If
H_]P‘ (@5>5<k7 <qn>ﬁ<P) is a (R7p*)'gap in P’
there are an A € [N]* and a P-name & such that
AlFhe [1,en(go(n) +1) and p, < he < g, for every £ < & and n <p.

Because P is countably closed, there are an infinite B C A and an h € NV such that

B|-h=h.
Next, for each £ < k, we have
BlF fe < b,

that is,

Bl {n: fe(n) < h(n)} € G,
that is,

Bl-{n: fe(n) < h(n)} €4,
that is,

B C*{n: fe(n) < h(n)}.

But this means that if we set
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h'(n) = h(n) for n € B,
= go(n) for n € N\ B,
we shall have f¢ < h’; and this is true for every { < k. Because ((f¢)e<r, (gn)n<p) is a peculiar gap, there

is an n < p such that g, < A/, in which case B C* {n : g,41(n) < h(n)}; running the argument above
backwards, we see that

B ”_ qn+1 < h.v
contrary to the choice of A and h. X
(c) We conclude that

IFe ((Pe)e<i» (@y)n<p) i a (K, p*)-gap in P, so that p > interp P.
But now 3F and 4D, together with the Forcing Theorem (KUNEN 80, VII.4.2), tell us that
Frpt < Chadd.,,(G) < Interp<w(g) < interp P < p.
Accordingly, by 4Bc,

Fet<p
and t < p, so in fact t = p.

4F Theorem (MALLIARIS & SHELAH 16) p = t.

proof 7 Otherwise, there are an uncountable regular x < p and a (k,p*)-gap in (NV, <), by SHELAH 09,
1.12 or FREMLIN N14, 2H (see parts (c)-(g) of the proof). And 4E tells us that this can happen only if
p=t X
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